
Distance-Aware OT with Application to Fuzzy PSI
Lucas Piske

Arizona State University

lpiske@asu.edu

Jaspal Singh

Georgia Institute of Technology

wsing1361@purdue.edu

Ni Trieu

Arizona State University

nitrieu@asu.edu

Vladimir Kolesnikov

Georgia Institute of Technology

kolesnikov@gatech.edu

Vassilis Zikas

Georgia Institute of Technology

vzikas@gatech.edu

ABSTRACT
A two-party fuzzy private set intersection (PSI) protocol between

Alice and Bob with input sets 𝐴 and 𝐵 allows Alice to learn noth-

ing more than the points of Bob that are “𝛿-close” to its points in

some metric space dist. More formally, Alice learns only the set

{𝑏 | dist(𝑎, 𝑏) ≤ 𝛿, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} for a predefined threshold 𝛿 and

distance metric dist, while Bob learns nothing about Alice’s set.

Fuzzy PSI is a valuable privacy tool in scenarios where private set

intersection needs to be computed over imprecise or measurement-

based data, such as GPS coordinates or healthcare data. Previous

approaches to fuzzy PSI rely on asymmetric cryptographic primi-

tives, generic two-party computation (2PC) techniques like garbled

circuits, or function secret sharing methods, all of which are com-

putationally intensive and lead to poor concrete efficiency.

This work introduces a new modular framework for fuzzy PSI,

primarily built on efficient symmetric key primitives. Our frame-

work reduces the design of efficient fuzzy PSI to a novel variant of

oblivious transfer (OT), which we term distance-aware random OT

(da-ROT). This variant enables the sender to obtain two random

strings (𝑟0, 𝑟1), while the receiver obtains one of these values 𝑟𝑏 , de-
pending onwhether the receiver’s input keyword 𝑎 and the sender’s

input keyword 𝑏 are close in some metric space i.e., dist(𝑎, 𝑏) ≤ 𝛿 .

The da-ROT can be viewed as a natural extension of traditional

OT, where the condition (choice bit) is known to the receiver. We

propose efficient constructions for da-ROT based on standard OT

techniques tailored for small domains, supporting distance met-

rics such as the Chebyshev norm, the Euclidean norm, and the

Manhattan norm.

By integrating these da-ROT constructions, our fuzzy PSI frame-

work achieves up to a 14× reduction in communication cost and

up to a 54× reduction in computation cost compared to previous

state-of-the-art protocols, across input set sizes ranging from 2
8

to 2
16
. Additionally, we extend our framework to compute fuzzy

PSI cardinality and fuzzy join from traditional PSI-related func-

tionalities. All proposed protocols are secure in the semi-honest

model.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM CCS ’25, October 2025, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Private Set Intersection (PSI) is a cryptographic primitive that al-

lows two parties to compute the intersection of their sets without

revealing any information. Traditional PSI protocols focus on exact

matching of elements, with many efficient and practical imple-

mentations [19, 22, 25, 27, 34]. However, these approaches are not

well-suited for cases requiring approximate matches or similarity-

based comparisons, such as biometric identification, DNA sequence

alignment, or location-based services. In this work, we focus on

fuzzy PSI, where the goal is to compute intersections based on

proximity or similarity, rather than strict equality.

In recent years, fuzzy PSI protocols have been the focus of active

research. However, they still face practical limitations. For example,

Garimella et al. [14, 15] introduced structure-aware PSI, which is

designed for scenarios where the receiver has geometric objects

(e.g., balls or regions) and the sender possesses points, with the aim

of identifying which points fall within these regions. This variant

can implement fuzzy PSI; however, their protocols are based on

function secret sharing (FSS), and thus, mainly focus on 𝐿∞ and

𝐿1 distance metrics. While they achieve relative communication

efficiency, their computational efficiency remains limited, especially

when applied to more general distance metrics or arbitrary shapes.

Recent work by [11] improves the computational limitations of the

prior protocols, but still supports only 𝐿∞ metric due to its reliance

on the same foundational building block of FSS.

In certain applications, such as location-based services for car

sharing, the 𝐿2 norm is often required. To address this, Baarsen and

Pu [37] presented a novel protocol that supports arbitrary distance

metrics. However, their protocol is based on public-key operations

and has a computational complexity of 𝑂 (𝛿2𝑑𝑑𝑛 +𝑚), where the
receiver holds𝑛 hyperballs of radius 𝛿 and the sender holds𝑚 points

in Z𝑑 . Thus, their protocol is still computationally expensive due to

the high number of public key computations required. Furthermore,

their protocol only works under a disjoint assumption, meaning

that each receiver’s point has at least one dimension in which its

component maintains a distance greater than 2𝛿 from the other.

Gao et al. [9] improved upon [37] by presenting the first pro-

tocol that achieves linear complexity with respect to input sizes,

dimensions, and radius 𝛿 . However, unlike [37], their protocol is

based on a different and unrealistic disjoint projection assumption;

each sender’s or receiver’s point is separated from other points in

the same set by at least one dimension. Most recently, [31] general-

izes the PSI approach of [6] to the fuzzy PSI setting by combining

that approach with Gabled Circuits and spatial hashing techniques,

leading to a general framework that supports 𝐿𝑝 and 𝐿∞ metrics.

They propose the use of arithmetic garbling for the 𝐿2, while other

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

metrics like 𝐿1 and 𝐿∞ are instantiated using regular boolean-based

Garbled Circuits. Although it is based on symmetric primitives,

the use of generic two-party computation leads to poor concrete

efficiency for fuzzy PSI.

1.1 Our Contribution
Distance-aware OT. We introduce the notion of a distance-aware

random OT (da-ROT) parameterized by a distance metric (dist)
and threshold distance (𝛿 > 0). This variant enables the sender to
obtain two random strings (𝑟0, 𝑟1), while the receiver obtains one of
these values 𝑟𝑐 , depending on whether the receiver’s input keyword

𝑎 and the sender’s input keyword 𝑏 are 𝛿-close, i.e., dist(𝑎, 𝑏) ≤ 𝛿 .

We then present new concretely efficient da-ROT protocols for

Chebyshev norm (𝐿∞), Manhattan norm (𝐿1), and Euclidian norm

(𝐿2) for small domains based on oblivious transfer (OT).

We also introduce a “sparse variant” of the da-ROT functionality,

which informally allows the sender and receiver to execute multiple

instances of da-ROT (each labeled with an index), while also hiding

from each party which indexes are in the other party’s input. We

present a sparse compiler (sparse-comp) that converts a class of
da-ROT protocols into their sparse variants using sparse OT [26],

shared OT [28], and oblivious key-value store (OKVS) [13].

New Fuzzy PSI Framework. One of our key contributions is a

new modular fuzzy PSI framework for any arbitrary 𝐿p norm

(p ∈ N ∪ {∞}) based on spatial hashing introduced by Garimella

et al. [14] and the newly introduced sparse da-ROT primitive for

the same distance metric. Our framework reduces the design of

fuzzy PSI protocols to the design of efficient da-ROT protocols for

small domains. A comparison with previous works is presented

in Table 1. Previous works either use expensive public-key crypto

or have very poor computational complexity - given their use of

generic two-party computation or FSS-based methods. To the best

of our knowledge, we present the first efficient fuzzy PSI protocol

primarily based on symmetric key techniques
1
. The only assump-

tion in our construction is that the sender input set has, at max, one

input point per grid cell (where we assume the entire 𝑑-dimensional

input space is partitioned into grid cells of side length 2𝛿). This is a

weaker assumption than most other previous works based on FSS

and asymmetric crypto techniques, which require some form of

disjointness of input points.

Other Related Fuzzy Functionalities. In addition to our primary

contributions, we demonstrate how our framework can be adapted

to support other related fuzzy PSI functionalities. Specifically, we

show that our framework reduces the problem of fuzzy PSI cardi-

nality (which computes only the cardinality of the fuzzy intersec-

tion) to the well-established problem of traditional PSI cardinality,

which has been extensively studied and optimized in the literature

[8, 12, 16, 24]. Our framework also reduces the fuzzy join prob-

lem—where the join of two input databases is based on a fuzzy met-

ric, and the result is secret-shared—into its non-fuzzy variant [5, 20].

To the best of our knowledge, we provide the first concrete protocol

for privacy-preserving fuzzy database join for various norms. We

1
Our proposed protocol relies on a small number of base OTs, which are implemented

using public-key techniques. Since generating a batch of base OTs typically takes only

a few hundred milliseconds per party under reasonable network conditions [23], this

overhead is negligible compared to the overall protocol execution time.

believe that this modular approach offers a useful framework that

can aid future research focused on designing protocols for fuzzy

PSI-related functionalities.

Fuzzy PSI Implementation. We developed a prototype implemen-

tation of our fuzzy PSI framework using the newly proposed da-
ROT protocols. Our evaluation shows that the framework achieves

up to a 14× reduction in communication cost and up to a 54× re-
duction in computation cost compared to previous state-of-the-art

protocols, across input set sizes ranging from 2
8
to 2

16
.

1.2 Technical Overview
Gao et al. [9] highlight that most fuzzy PSI protocols [11, 14, 15, 37]
rely on a batched fuzzy matching approach to determine whether a

receiver’s point 𝑎𝑎𝑎𝑖 and a sender’s point 𝑏𝑏𝑏 𝑗 satisfy dist(𝑎𝑎𝑎𝑖 ,𝑏𝑏𝑏 𝑗) ≤ 𝛿 .

The result is then revealed to the receiver. This process typically

involves two distinct phases: coarse mapping and refined filtering.

In the coarse mapping phase, identifiers are assigned to points from

both the sender and receiver, establishing initial pairings between

a receiver point 𝑎𝑎𝑎𝑖 and a sender point 𝑏𝑏𝑏 𝑗 if they share the same

identifier. In the refined filtering phase, fuzzy matching is applied

to each pair formed during the coarse mapping phase, yielding the

final results.

This work introduces a new randomOT variant, termed distance-

aware random OT (da-ROT), alongside a scheme for compiling

da-ROT protocols into sparse versions. This innovation effectively

bridges the gap between fuzzy PSI protocols’ refined filtering and

coarse mapping phases. Leveraging these two building blocks with

existing sparse hashing techniques, we present an efficient and

scalable fuzzy PSI protocol and computation on fuzzy PSI. The

technical overview of our framework is presented in Figure 1, which

illustrates the various components and their interdependencies.

FSOT [28]

FSpSOTSect. 3.2 Fda-ROT Sect. 3.1

FSp-daROTSect. 4.1

FfuzzyCard
Sect. 2.2

FfuzzyPSI
Sect. 2.2

FfuzzyJoin
Sect. 2.2

Figure 1: Technical Overview of Our Fuzzy PSI Framework.
The new functionalities are marked with rectangles.

Our da-ROT protocol for distance metric p ∈ {∞, 1, 2} starts
by obliviously evaluating 𝑧𝑖 = 𝑓

(𝑖)
p (𝑎𝑖) for every 0 ≤ 𝑖 ≤ 𝑑 . The

definition of the function 𝑓 depends on 𝑏𝑖 , 𝛿 , and the metric p. For
example, for 𝐿∞, the function 𝑓 (𝑖) is defined as

𝑓
(𝑖)
∞ (𝑥) =

{
1 if 𝑥 ∈ [𝑏𝑖 − 𝛿, 𝑏𝑖 + 𝛿],
0 otherwise.

As a result of every evaluation, the two parties receive additive

shares of ℎ𝑖 , which are then homomorphically summed to obtain

2

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

Table 1: Asymptotic Complexities of Fuzzy PSI Protocols, where the receiver and sender hold 𝑛 and𝑚 hyperballs of radius 𝛿 in
Z𝑑 , respectively. All multiplicative factors of the computational security parameter 𝜅 and statistical security parameter 𝜆 are
ignored.

Dist. Prot. Assumption Communication

Computation Symmetric

Sender Receiver Crypto

𝐿∞

[11] R. 𝑙min > 2𝛿 O
(
𝑚 + (4 log𝛿)𝑑𝑛

)
O

(
(2 log𝛿)𝑑𝑚

)
O

(
(2𝛿)𝑑𝑛

)
✓

[37]

R. 𝑙min > 2𝛿 O
(
2
𝑑𝑚 + 𝛿𝑑𝑛

)
O

(
2
𝑑𝑑𝑚

)
O

(
2
𝑑𝑚 + 𝛿𝑑𝑛

)
✗

R. disj. proj. O
(
𝑚 + (𝛿𝑑)2𝑛

)
O

(
𝑑2𝑚

)
O

(
𝑚 + (𝛿𝑑)2𝑛

)
✗

[9] 𝑅 ∧ 𝑆 . disj. proj. O(𝛿𝑑𝑚 + 𝛿𝑑𝑛) O (𝛿𝑑𝑚 + 𝑛) O (𝑚 + 𝛿𝑑𝑛) ✗

[31] disj. hash O(𝑑 · log(𝛿) (𝑛 · 2𝑑 +𝑚 · 2𝑑−𝑠)) O (𝑑𝛿 ·𝑚2
𝑑−𝑠) O (𝑑𝛿 · 𝑛2𝑠) ✓

Ours disj. hash, 𝜌𝑅𝜂 = 1 O(𝑑 · (𝑛 · 2𝑑 +𝑚 · 𝛿)) O (𝑑 ·𝑚 · 𝛿) O (𝑑 · 𝑛 · 2𝑑 +𝑚) ✓

𝐿1

[37]

R. 𝑙min > 2𝛿

(
𝑑

1

𝑝 + 1
)

O
(
𝛿p𝑚 + 𝛿2𝑑𝑑𝑛

)
O

((
𝑑 + 𝛿P

)
𝑚
)

O
(
𝑚 + 𝛿2𝑑𝑑𝑛

)
✗

R. 𝑙min > 1

𝜌
𝛿 O

(
(𝛿p𝑛𝜌

log𝑛)𝑚 + 𝛿𝑑𝑛𝜌+1) O (((𝑑 + 𝛿p) 𝑛𝜌
log𝑛)𝑚) O

(
(𝑛𝜌

log𝑛)𝑚 + 𝛿𝑑𝑛𝜌+1) ✗

[9] 𝑅 ∧ 𝑆 . disj. proj. O((𝛿𝑑 + p log𝛿)𝑚 + 𝛿𝑑𝑛) | O ((𝛿𝑑 + p log𝛿)𝑚 + 𝑛) | O (p log𝛿𝑚 + 𝛿𝑑𝑛) ✗

[31] disj. hash O(𝑑 · log(𝑑𝛿) (𝑛 · 2𝑑 +𝑚 · 2𝑑−𝑠)) O (log(𝑑𝛿)𝑑 ·𝑚2
𝑑−𝑠 + 𝑑 ·𝑚2

𝑑−𝑠) O (log(𝑑𝛿)𝑑 · 𝑛2𝑠 + 𝑑 · 𝑛2𝑠) ✓

Ours disj. hash, 𝜌𝑅𝜂 = 1 O(𝑑 · (𝑛 · 2𝑑 +𝑚 · 𝛿)) O (𝑑 ·𝑚 · 𝛿) O (𝑑 · 𝑛 · 2𝑑 +𝑚) ✓

𝐿2

[37]

R. 𝑙min > 2𝛿

(
𝑑

1

𝑝 + 1
)

O
(
𝛿p𝑚 + 𝛿2𝑑𝑑𝑛

)
O

((
𝑑 + 𝛿P

)
𝑚
)

O
(
𝑚 + 𝛿2𝑑𝑑𝑛

)
✗

R. 𝑙min > 1

𝜌
𝛿 O

(
(𝛿p𝑛𝜌

log𝑛)𝑚 + 𝛿𝑑𝑛𝜌+1) O (((𝑑 + 𝛿p) 𝑛𝜌
log𝑛)𝑚) O

(
(𝑛𝜌

log𝑛)𝑚 + 𝛿𝑑𝑛𝜌+1) ✗

[9] 𝑅 ∧ 𝑆 . disj. proj. O((𝛿𝑑 + p log𝛿)𝑚 + 𝛿𝑑𝑛) | O ((𝛿𝑑 + p log𝛿)𝑚 + 𝑛) | O (p log𝛿𝑚 + 𝛿𝑑𝑛) ✗

[31] disj. hash O(𝑛𝑑2𝑠 log(𝑑𝛿) +𝑚2
𝑑−𝑠 (log(𝑑𝛿)𝑑 + log(𝑑𝛿)3)) O ((log(𝑑𝛿2)𝑑 + 𝑑 + log(𝑑𝛿2))3 ·𝑚2

𝑑−𝑠) O ((log(𝑑𝛿2)𝑑 + 𝑑 + log(𝑑𝛿2))3 · 𝑛2𝑠) ✓

Ours disj. hash, 𝜌𝑅𝜂 = 1 O(𝑑 · (𝑛 · 2𝑑 +𝑚 · 𝛿)) O (𝑑 ·𝑚 · 𝛿) O (𝑑 · 𝑛 · 2𝑑 +𝑚) ✓

– R. 𝑙min > 𝑙∗ means that the minimum distance between the receiver’s points is greater than 𝑙∗ .
– R. disj. proj. means that for every pair of receiver points (𝑢, 𝑣) , there must be at least one dimension 𝑖 where the components 𝑢𝑖 and 𝑣𝑖 are further apart than 2𝛿 .

– R ∧ S. disj. proj. means that the disj. proj. assumption should hold for both the sender’s input set and the receiver’s input set.

– disj. hash means the spatial hashing scheme used by the construction maps at most one point to every possible target grid cell/sparse index.

– 𝜌𝑅𝜂 represents the maximum number of receiver points in neighboring cells for any grid cell; for 𝜌𝑅𝜂 > 1 our protocol complexity has an additional multiplicative factor 𝜌𝑅𝜂

additive shares of 𝑧 = ℎ0 + · · · + ℎ𝑑−1. Assuming the modulo of

the additive shares is large enough to prevent wrap-around dur-

ing the computation of 𝑧, this value 𝑧 has a property that enables

determining whether dist(𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿 . In the case of 𝐿∞, we have

𝑧 = 𝑑 ⇐⇒ ∀𝑖∈[𝑑] 𝑎𝑖 ∈ [𝑏𝑖 − 𝛿, 𝑏𝑖 + 𝛿]

Now, to ensure the correct OT messages are sent to the corre-

sponding parties, the parties obliviously evaluate 𝑦 = 𝑔p (𝑧), receiv-
ing additive shares of the result. The function 𝑔 depends on 𝑑, 𝛿 ,

and the metric p. For example, with the sender’s chosen random

value 𝑟 , the function for the 𝐿∞ can be defined as:

𝑔∞ (𝑥) =
{
0 if 𝑥 = 𝑑,

𝑟 otherwise.

Clearly, 𝑦 = 0 if dist(𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿 , and 𝑟 otherwise. If we denote

the sender’s and receiver’s additive shares of 𝑦 as 𝑦𝑅 and 𝑦𝑆 , re-

spectively, the receiver outputs 𝑟𝑐 = 𝑦𝑅 , while the sender defines

𝑟0 = −𝑦𝑆 and 𝑟1 = 𝑟 −𝑦𝑆 . Thus, we have if 𝑦 = 0, 𝑟𝑐 = 𝑟0, otherwise,

𝑟𝑐 = 𝑟1. This ensures that the OT messages are correctly routed

based on whether dist(𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿

An important aspect that we previously overlooked is that the

functions 𝑓 and 𝑔 must remain hidden from the receiver. Addi-

tionally, all outputs of the function evaluations are represented as

additive shares, as described earlier. To achieve this, we rely on the

Share OT (SOT) primitive introduced in [28]. The SOT primitive

extends the functionality of 1-out-of-𝑣 OT by supporting additively

secret-shared modulo-𝑁 choice indices and producing additive se-

cret shares modulo-𝑀 of the 𝑣 sender’s messages as output. In our

fuzzy PSI application, we work with a small value 𝑣 such as 𝑣 = 2
8
,

which allows us to implement this primitive efficiently. Concretely,

the sender can prepare all possible values of the function 𝑓 such as

𝑚 𝑗 = 𝑓
(𝑖)
∞ (𝑗), for example, and act as the OT sender. Meanwhile,

the receiver begins by secret-sharing the index 𝑎𝑖 to the sender.

This setup then allows the parties to use the SOT protocol to obtain

the share of 𝑓
(𝑖)
∞ (𝑎 𝑗) for each 𝑗 .

As a building block, we introduce a second OT variant called

Sparse SOT. As input, the Sparse SOT functionality FSpSOT takes

a set of tuples (𝑖, J𝑐 (𝑖)K𝑅
𝑁
) from the receiver and a set of tuples

(𝑗, J𝑐 (𝑗)K𝑆
𝑁
,𝑚𝑚𝑚 (𝑗)) from the sender, where the first tuple compo-

nents are indexes, the second are secret shares mod-𝑁 , and the

third component of the sender’s tuple is a vector of messages. The

functionality pairs up the two parties’ inputs based on their asso-

ciated indexes and outputs secret shares mod-𝑀 of𝑚
(𝑗)
𝑐 (𝑖)

, where

𝑗 = 𝑖 . For their respective non-paired inputs, the parties get random

mod-𝑀 elements. Our protocol for FSpSOT is a natural combination

of the Sparse OT Extension first introduced in [26], and the SOT

protocol introduced in [28], changing the OKVS scheme used by

the Sparse OT for a more efficient one.

We then use da-ROT and SpSOT to construct the sparse variant

of the Fda-ROT functionality, which serves as the main component

of our fuzzy PSI protocol. The FSp-daROT functionality takes as

input a set of pairs (𝑖, 𝑎𝑖) from the receiver and a set of pairs (𝑗, 𝑏𝑖)
from the sender, where the first component of each pair is an index

and the second component is a point. The functionality matches

points between the parties based on their associated indexes. For

each matched pair, it performs a da-ROT operation on the points,

providing the resulting outputs to the respective parties. The parties

receive random outputs for points that do not have a matching

counterpart (i.e., points with no index alignment). These outputs

are indistinguishable from “real” da-ROT outputs, preserving the

security and correctness guarantees of the da-ROT functionality.

3

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

Finally, using FSp-daROT, spatial hashing techniques, and an

OKVS, we construct protocols for fuzzy PSI, fuzzy cardinality, and
computation on fuzzy matching for the metrics 𝐿∞, 𝐿1 and 𝐿2.

For the fuzzy PSI protocol, the receiver and sender start by map-

ping their respective input points into indexes of an index set I
using spatial hashing. After mapping its input point set𝐵, the sender

holds a set 𝐵′ of pairs (𝑖, 𝑏), where 𝑖 is the mapped index and 𝑏 is an

input original point. Next, they invoke the FSp-daROT functionality,

providing their points and associated indexes as inputs. After re-

ceiving its output message pairs 𝑟𝑟𝑟 (𝑖) = (𝑟 (𝑖)
0

, 𝑟
(𝑖)
1
) from FSp-daROT,

the sender constructs an OKVS𝐷 to send to the receiver. The OKVS

𝐷 is defined as:

𝐷 ← OKVS.Encode(𝑌), where 𝑌 = {(𝑖, Enc(𝑟 (𝑖)
0

, 𝑏)) | (𝑖, 𝑏) ∈ 𝐵′}.

Here, Enc is a symmetric encryption algorithm. After receiving

𝐷 , the receiver queries it at a position 𝑗 , using 𝑟 (𝑗) from FSp-daROT
to decrypt, where 𝑗 is an index the receiver mapped one of its

points to using spatial hashing. If the receiver successfully decrypts

a queried index, it implies the associated point matches one of the

sender’s input points.

The fuzzy cardinality protocols start very similarly. It maps the

two parties’ input points into indexes of set I using spatial hashing,

and they invoke the FSp-daROT functionality, providing the mapped

indexes and associated points as input. After that, however, the

sender computes the set 𝑌 and the receiver computes the receiver

𝑋 , where 𝑌 = {𝑟 (𝑖)
0
| 𝑖 ∈ 𝐵′} and 𝑋 = {𝑟 (𝑗) | 𝑗 ∈ 𝐴′}. Here, 𝐵′ and

𝐴′ are the set of mapped indexes the sender and receiver got from

spatial hashing their input points, respectively. At the same time,

𝑟
(𝑖)
0

and 𝑟 (𝑗) are the outputs the sender and receiver got from the

FSp-daROT for every respective index, respectively. After assembling

these sets, the two parties invoke a regular PSI cardinality protocol

using sets 𝑋 and 𝑌 as input and output the result they receive from

this protocol. Our fuzzy join follows the same structure as our fuzzy
cardinality protocol, only replacing the PSI cardinality protocol for

a private join protocol.

2 PRELIMINARIES
2.1 Notation
In this work, the computational and statistical security parameters

are denoted by 𝜅, 𝜆, respectively. We use [.] notation to refer to a

set. For example, [𝑚] implies the set {1, . . . ,𝑚}. Additionally, we
use [𝑖, 𝑗] to denote the set {𝑖, . . . , 𝑗}. We denote the concatenation

of two bit strings 𝑥 and 𝑦 by 𝑥 | |𝑦. The symbol Z𝑀 represents the

set of all elements modulo𝑀 , and Z𝑁
𝑀

is used to represent the set

of all vectors of length 𝑁 and components in Z𝑀 .

We represent a 2-out-of-2 additive sharing of 𝑥 modulo 𝑀 as

J𝑥K𝑀 . In this sharing scheme, the shares held by parties 𝐴 and 𝐵

are denoted as J𝑥K𝐴
𝑀
∈ Z𝑀 and J𝑥K𝐵

𝑀
∈ Z𝑀 , respectively. These

shares satisfy the relation J𝑥K𝐵
𝑀
+ J𝑥K𝐴

𝑀
= 𝑥 (mod 𝑀).

For any set 𝐴 ⊂ [2𝑢]𝑑 , we define two density parameters - cell

density and neighborhood density. For any grid parameter 𝛿 , we

can partition the input domain [2𝑢]𝑑 in grid cells each of side

length 2𝛿 or into disjoint 𝐿∞ balls each of radius 𝛿 . The cell density

parameter 𝜌𝐴
𝑐,𝛿

represents the maximum number of points in 𝐴

contained within any grid cell, and neighborhood density 𝜌𝐴
𝜂,𝛿,

to

be the maximum number of points in 𝐴 within any neighborhood

of a grid cell. For simplicity, the 𝛿 parameter in the subscript is

omitted when it is clear from the context.

We define the function cshift𝑁 : G𝑁 × Z𝑁 → G𝑁
for a group G

and 𝑁 ∈ N in the following way:

𝑣𝑣𝑣 ′ = cshift𝑁 (𝑣𝑣𝑣, 𝑥) =⇒ 𝑣 ′𝑖 = 𝑣𝑖+𝑥 (mod 𝑁) for all 𝑖 ∈ [𝑁] .

Let𝑢𝑢𝑢,𝑣𝑣𝑣 ∈ Z𝑁
𝑀

and 𝑠 ∈ Z𝑀 for a modulo𝑀 ∈ N≥2 and vector length
𝑁 ∈ N. We use 𝑣𝑣𝑣 = 𝑢𝑢𝑢 + 𝑠 (mod 𝑀) to denote 𝑣𝑣𝑣 = 𝑢𝑢𝑢 + 111 · 𝑠 , where
111 ∈ Z𝑁

𝑀
contains the element 1 in all its components.

All protocols in this work are secure in the semi-honest model,

as defined in Appendix B.1.

2.2 Fuzzy PSI Functionalities
We formally define fuzzy PSI and its related functionalities as:

Fuzzy PSI Ideal Functionalities

Parameters: Input set sizes 𝑛,𝑚, input length ℓ , D = Z𝑑
2
𝑢 for some

𝑢 ∈ N, dist : D × D → R and radius 𝛿 ∈ R, and associated length

size 𝜎 for FfuzzyJoin.
Behavior:

• The two parties receiver Alice and sender Bob input sets

𝐴, 𝐵 ⊂ D with 𝑛 = |𝐴 | and𝑚 = |𝐵 |
• Only for FfuzzyJoin: the sender and receiver also input associ-

ated data dictionaries AD𝑆 ,AD𝑅
respectively with key sets

𝐴, 𝐵 and values in {0, 1}ℓ ,
• Define outputs for each functionality as follows:

– FfuzzyPSI: output set {𝑎 ∈ 𝐴 | dist(𝑎,𝑏) < 𝛿,𝑏 ∈ 𝐵} to
the receiver Alice

– FfuzzyCard: output | {𝑎 ∈ 𝐴 | dist(𝑎,𝑏) < 𝛿,𝑏 ∈ 𝐵} | to
the receiver Alice

– FfuzzyJoin:
∗ Initialize 𝑡 = 0.

∗ For every (𝑎,𝑏) ∈ 𝐴 × 𝐵 where dist(𝑎,𝑏) < 𝛿 :

· sample 𝑢𝑡 ←$
{0, 1}2𝜎

· set 𝑣𝑡 such that 𝑢𝑡 ⊕ 𝑣𝑡 = AD𝑆 (𝑎) | |AD𝑅 (𝑏)
· 𝑡 ← 𝑡 + 1

– Shuffle both ®𝑢 and ®𝑣 with the same random permutation

– Output vectors ®𝑢 to sender and ®𝑣 to receiver

2.3 Oblivious Key-Value Store (OKVS)
An Oblivious Key-Value Store (OKVS) allows a sender 𝑆 to en-

code a set of key-value pairs (𝑘𝑖 , 𝑣𝑖) into a data structure 𝐷 , us-

ing uniformly random values, via the encoding function 𝐷 ←
OKVS.Encode((𝑘𝑖 , 𝑣𝑖)). A receiver 𝑅, upon receiving 𝐷 , does not

learn the encoded keys 𝑘𝑖 , but can retrieve the corresponding

value 𝑣 when querying the store for a key 𝑘 . The decoding process

𝑣 ← OKVS.Decode(𝐷,𝑘) will return 𝑣𝑖 if 𝑘 = 𝑘𝑖 , and a random

value otherwise. The detailed definition and its obliviousness prop-

erty are provided in Appendix B.2.

2.4 Oblivious Pseudorandom Function (OPRF)
An OPRF is a two-party protocol where a sender, 𝑆 , holds a key

k for a PRF, and a receiver queries the function with an input 𝑥 .

The receiver learns only the output 𝐹k (𝑥) and nothing about k.
Meanwhile, 𝑆 learns nothing about 𝑥 . We formally define the ideal

4

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

functionality (FOPRF) for the batch OPRF used in our protocol in

Appendix B.3, which includes a detailed discussion of OPRF.

2.5 Oblivious Transfer (OT) and Its Variants
Oblivious Transfer (OT) [29] is a fundamental cryptographic prim-

itive involving a sender with two input strings (𝑚0,𝑚1) and a

receiver with a choice bit 𝑐 . As a result of OT, the receiver obtains

the string 𝑚𝑐 without learning any information about the other

string𝑚1−𝑐 , while the sender learns nothing about the choice bit
𝑐 . [3] introduced the 1-out-of-𝑁 OT variant, which extends the

1-out-of-2 OT to support a message vector of length 𝑁 ∈ N≥2 (i.e.,
the sender’s input is (𝑚1, . . . ,𝑚𝑁). [17] introduces the 𝑘-out-of-𝑁
OT variant which allows the receiver choose 𝑘 vectors from the 𝑁

sender vectors. In [26], the concept of sparse OT was introduced,

where 𝑁 is exponentially larger than 𝑘 .

The 1-out-of-𝑁 Shared OT (SOT) was formally defined in [28],

extending the 1-out-of-𝑁 OT variant to support an additively secret-

shared choice index 𝑐 and to output additive secret shares of the

selected message. Below, we present the 1-out-of-𝑁 SOT function-

ality defined in [28].

1-out-of-𝑁 SOT Ideal Functionality FSOT𝑁
𝑀

Parameters: Two parties Alice and Bob.

Behavior:
• Upon receiving a message (choose, J𝑐K𝐵

𝑁
) from Bob: Ignore

any subsequent (choose, J𝑐K𝐵
𝑁
) messages. If J𝑐K𝐵

𝑁
∉ Z𝑁 , then

send (invalid input) to both parties and halt. Store J𝑐K𝐵
𝑁

and send the public delayed message (chosen) to Alice.

• Upon receiving a message (sample share) from Alice: Ig-

nore any subsequent messages (sample share) . Sample

J ®𝑚𝑐K𝐴𝑀 ∈𝑅 Z𝑀 , store it internally and send it to Alice.

• Upon receiving a message (propose, J𝑐K𝐴
𝑁
, ®𝑚) from Alice:

Ignore any subsequent (propose, J𝑐K𝐴
𝑁
, ®𝑚) messages. If it is

not the case that ®𝑚 ∈ Z𝑁
𝑀
, J𝑐K𝐴

𝑁
∈ Z𝑁 and J ®𝑚𝑐K𝐴𝑀 is currently

stored, send (invalid input) to both parties and halt. If it is

the case, send J ®𝑚𝑐K𝐵𝑀 = ®𝑚𝑐 + J ®𝑚𝑐K𝐴𝑀 (mod 𝑀) to Bob.

2.6 Spatial Hashing
For domainU𝑑

and grid parameter 𝛿 , the spatial hashing scheme

is defined using two functions (cellhash, sphash), where each func-

tion takes as input a subset ofU𝑑
and outputs a dictionary. For any

𝑥 ∈ U𝑑
, let cell𝛿 (𝑥) = (⌊𝑥1/2𝛿⌋, . . . , ⌊𝑥𝑑/2𝛿⌋) and trunc𝑡 (𝑥) = (𝑥

mod 2
𝑡). Here, the function cell intuitively maps any point in the

domain to the unique grid cell or tile if the entire domain is tiled by

𝑑-dimensional hypercubes of side length 2𝛿 . Let the set of all grid

cells be represented by C and let neigh(𝑥 ∈ U𝑑) output the set of
all cells ⊂ C which neighbor point 𝑥 . The function trunc𝑡 truncates
the input number 𝑥 to its last 𝑡 bits. In our construction, we use the

truncate to round number to their last 𝑡∗ = ⌈log(6𝛿)⌉ bits. Hence,
throughout any invocation of trunc refers to trunc𝑡∗ . Now we can

present the spatial hashing functions for rid parameter 𝛿 :

• 𝐷𝑋 ← cellhash(𝑋, 𝜌): outputs a dictionary, where for each
𝑥 ∈ 𝑋 dictionary 𝐷𝑋 contains key-value pairs (cell(𝑥), 𝑗)
and trunc(𝑥) for 𝑗 ∈ [𝜌].
• 𝐷𝑌 ← sphash(𝑌): Outputs a dictionary 𝐷𝑌 which is con-

structed as follows:

– Initialize dictionary 𝐷′ with 𝐷′ [𝑐] = 1 for 𝑐 ∈ C
– For each 𝑦 ∈ 𝑌 , for each 𝑐 ∈ neigh(𝑦):

𝐷𝑌 .insert((𝑐, 𝐷′ [𝑐] + +), trunc(𝑦))
This function outputs a dictionary, where for each element

𝑦 ∈ 𝑌 , it inserts multiple key-value pairs, one for each neigh-

boring cell of 𝑦.

Previous works, including [14] and [37], employ these hashing

functions (or their minor modifications) for the coarse mapping of

input sets 𝑋 and 𝑌 in their fuzzy PSI protocols. Specifically, they

prove a version of Theorem 2 (in Appendix), which we also use in

this paper. The theorem essentially implies that all fuzzy matches

between the two sets 𝑋 and 𝑌 will have matching cell indexes in

the dictionaries output by sphash and cellhash. Further, even if

two non-close elements in 𝑋 and 𝑌 have matching cell indexes

in sphash and cellhash, then their truncated values will have a

distance greater than 𝛿 as well. This second case arises when points

in 𝑋 and 𝑌 are in neighboring cells, but they aren’t 𝛿-close.

3 BUILDING BLOCKS
3.1 Distance-aware Random OT (da-ROT)
Wepresent the da-ROT functionality as below,which supports fuzzy
PSI and can be seamlessly applied towards “refined filtering” of [9]

in a straightforwardway. Specifically, the two parties execute the da-
ROT protocol such that the sender obtains {𝑟0, 𝑟1} and the receiver

obtains 𝑟0 if their input points are close. The sender then obliviously

transfers 𝑟0 to the receiver using OKVS, enabling the receiver to

check whether their point belongs to the fuzzy intersection.

da-ROT Ideal Functionality Fda-ROTp
Parameters: Input domain D = Z𝑑𝑣 with 𝑣 ∈ N≥2, output group Z𝑢 ,
threshold distance 𝛿 ∈ R, and distance metric distp : D × D → R

Input: Sender 𝑆 inputs 𝑎 ∈ D, and receiver 𝑅 inputs 𝑏 ∈ D.

Behavior:
• Sample 𝑟0, 𝑟1 ←$

Z𝑢

• Set 𝑐 =

{
0 if distp (𝑎,𝑏)

?

≤ 𝛿

1 if otherwise

• Output (𝑟0, 𝑟1) to sender and 𝑟𝑐 to receiver

We designed da-ROT protocols for the distance metrics 𝐿∞, 𝐿1,
and 𝐿2, with the 𝐿2 protocol specifically restricted to dimension

𝑑 = 2. These protocols follow a common framework, differing only

slightly in the formulas used in Step 2 and Step 5. Therefore, we

present them as a unified protocol in Figure 2, highlighting the

specific differences when applicable. Our da-ROT protocol takes

advantage of the relatively small input domain (𝑣), dimension (𝑑),

and threshold (𝛿) values (e.g., 𝑣 = 2
8
, 𝑑 ∈ 2, 6, 10, and 𝛿 ∈ 10, 30)

when applied to our fuzzy PSI protocol. As a result, the protocol

remains efficient even though its communication and computational

complexity scale linearly with the size of the set Z𝑑𝑣 . Next, we
5

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

present the correctness and security proofs for our da-ROT protocol
along with an explanation of the protocol. The asymptotic efficiency

of the protocol is presented in Appendix C.1.

Theorem 1. Protocol Πda-ROT securely realizes the da-ROT func-
tionality Fda-ROT for distance metrics p ∈ {∞, 1, 2} and domain
D = Z𝑑𝑣 , where 𝑑 ∈ N and 𝑣 ∈ N≥2, against a PPT semi-honest
adversary in the FSOT-hybrid model.

Proof. We begin the proof by showing that the output distribu-

tion of the functionality and the joint output distribution of the two

parties in the protocol are computationally indistinguishable. To

establish this, we divide the proof into three cases, corresponding

to each metric p ∈ {∞, 1, 2}. We then proceed to show that our

protocol can be simulated.

Infinity norm. When p = ∞, the protocol defines modulo𝑀 =

𝑑 + 1, ensuring that no wrap-around occurs during the execution of

protocol operations. The protocol starts by having the two parties’

non-interactively additive secret share vector𝑎𝑎𝑎mod-𝑣 . In the second

step, 𝑅 and 𝑆 run 𝑑 instances of FSOT, where for each instance

𝑖 ∈ [𝑑], they provide shares J𝑎𝑖K𝑣 as input and 𝑆 also provides

vector𝑚𝑚𝑚
(𝑖)
∞ as defined in the first part of Eq (1). As output, for each

instance 𝑖 ∈ [𝑑], the two parties receive their respective shares of

Jℎ𝑖K𝑀 . Based on the definition of FSOT and how 𝑆 constructs𝑚𝑚𝑚
(𝑖)
∞ ,

we have the following equations governing the ℎ𝑖 values:

ℎ𝑖 =

{
1 if 𝑎𝑖 ∈ [𝑏𝑖 − 𝛿, 𝑏𝑖 + 𝛿],
0 otherwise.

In Step 3, the two parties homomorphically compute additive

shares mod-𝑀 of 𝑧 =
∑
𝑖∈[𝑑] ℎ𝑖 . The following equation holds based

on the previously presented definition of ℎ𝑖 .

𝑧 = 𝑑 ⇐⇒ ∀𝑖∈[𝑑] 𝑎𝑖 ∈ [𝑏𝑖 − 𝛿, 𝑏𝑖 + 𝛿]
In Steps 4-5, 𝑆 samples and outputs 𝑟 ∈𝑅 Z𝑢 and then executes a

single instance of FSOT. The two parties provide the shares J𝑧K𝑀
to this final FSOT instance, and 𝑆 also provides a message vector

𝑤𝑤𝑤∞ as defined in the first part of Eq (3). As output, the parties

get 2-out-of-2 additive shares mod-𝑢 of 𝑦. Based on the previously

described equation for 𝑧 and how 𝑆 builds𝑤𝑤𝑤∞, we get the following
equation describing 𝑦:

𝑦 =

{
0, if 𝑧 = 𝑑,

𝑟, otherwise.
=

{
0, if ∀𝑖∈[𝑑] 𝑎𝑖 ∈ [𝑏𝑖 − 𝛿, 𝑏𝑖 + 𝛿],
𝑟 , otherwise.

=

{
0, if distp (𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿,

𝑟, otherwise.

Finally, 𝑅 outputs J𝑦K𝑅𝑢 and 𝑆 outputs (−J𝑦K𝑆𝑢 , 𝑟 − J𝑦K𝑆𝑢). Clearly,
J𝑦K𝑅𝑢 = −J𝑦K𝑆𝑢 if distp (𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿 , and J𝑦K𝑅𝑢 = 𝑟 − J𝑦K𝑆𝑢 otherwise.

Therefore, we can conclude that the protocol and functionality have

indistinguishable output distributions when p = ∞.

L1 norm. When p = 1, the protocol defines modulo𝑀 = 𝑑 · (𝛿 +
1) + 1. Similar to the first case, after the initial two steps, the parties

receive Jℎ𝑖K𝑀 from each FSOT, with ℎ𝑖 being described by

ℎ𝑖 =

{
|𝑎𝑖 − 𝑏𝑖 |, if |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿,

𝛿 + 1, otherwise.

After homomorphically computing additive secret shares mod-𝑀

of 𝑧 =
∑
𝑖∈[𝑑] ℎ𝑖 , we have:

𝑧 ≤ 𝛿 ⇐⇒
∑︁
𝑖∈[𝑑]

|𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿

First, suppose that 𝑧 ≤ 𝛿 . Assuming this implies thatℎ𝑖 = |𝑎𝑖−𝑏𝑖 |
for all 𝑖 ∈ [𝑑], otherwise we would have 𝑧 > 𝛿 . In turn, this implies

that 𝑧 =
∑
𝑖∈[𝑑] |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿 . Now, suppose

∑
𝑖∈[𝑑] |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿 .

Since

∑
𝑖∈[𝑑] |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿 , it must be true that |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿 for all

𝑖 ∈ [𝑑], implying that ℎ𝑖 = |𝑎𝑖 − 𝑏𝑖 | for all 𝑖 ∈ [𝑑]. Thus, we have
𝑧 =

∑
𝑖∈[𝑑] ℎ𝑖 =

∑
𝑖∈[𝑑] |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿 .

In Step 4-5, 𝑆 samples 𝑟 ∈ Z𝑢 , and then the two parties execute

an FSOT instance where 𝑆 provides message vector𝑤𝑤𝑤1 as input and

the two parties provide shares J𝑧K𝑀 as input. As output, the parties

get shares J𝑦K𝑢 such that 𝑦 is governed by

𝑦 =

{
0, if 𝑧 ≤ 𝛿,

𝑟, otherwise.
=

{
0, if

∑
𝑖∈[𝑑] |𝑎𝑖 − 𝑏𝑖 | ≤ 𝛿,

𝑟, otherwise.

=

{
0, if dist1 (𝑎𝑎𝑎,𝑏𝑏𝑏) ≤ 𝛿,

𝑟, otherwise.

The remaining proof steps follow similarly to the previous case.

L2 norm. When p = 2, the protocol defines modulo 𝑀 = 𝑑 ·
(𝛿 + 1) + 1 and sets dimension 𝑑 = 2. The first proof steps for this

case follow as in the previous two cases, with the only difference

being the message vectors𝑚𝑚𝑚
(𝑖)
2

provided by 𝑆 to the first 𝑑 = 2

FSOT instances. The parties receive Jℎ0K𝑀 and Jℎ1K𝑀 as output,

one from each FSOT instance, where ℎ0 and ℎ1 are described by

ℎ0 = min

𝑥∈Z≥0
{(𝛿 + 1) − 𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿}

ℎ1 =

{
|𝑎1 − 𝑏1 | if |𝑎1 − 𝑏1 | ≤ 𝛿,

𝛿 + 1 otherwise.

The value 𝑧 = ℎ0 + ℎ1 satisfies the following.

𝑧 ≤ 𝛿 ⇐⇒
√︁
(𝑎1 − 𝑏1)2 + (𝑎0 − 𝑏0)2 ≤ 𝛿

First, suppose

√︁
(𝑎1 − 𝑏1)2 + (𝑎0 − 𝑏0)2 ≤ 𝛿 . This supposition

implies that ℎ1 = |𝑎1 − 𝑏1 |, and

ℎ1 < min

𝑥∈Z≥0
{𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 }

⇔ ℎ1 − min

𝑥∈Z≥0
{𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 } < 0

⇔ ℎ1 + (𝛿 + 1) − min

𝑥∈Z≥0
{𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 } < 𝛿 + 1

⇔ ℎ1 + min

𝑥∈Z≥0
{(𝛿 + 1) − 𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 } < 𝛿 + 1

⇔ ℎ1 + ℎ0 < 𝛿 + 1
⇔ ℎ1 + ℎ0 ≤ 𝛿

Now, suppose

√︁
(𝑎1 − 𝑏1)2 + (𝑎0 − 𝑏0)2 > 𝛿 . This supposition

implies the following:

6

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

Parameters:
• p ∈ {∞, 1, 2}; Radius 𝛿 ∈ N; Domain D = Z𝑑𝑣 with 𝑣 ∈ N≥2; Group Z𝑢 .
• Dimension 𝑑 = 2 if p = 2, and 𝑑 ∈ N otherwise.

• The SOT functionality as described in Section 2.5.

Inputs: Receiver 𝑅 and sender 𝑆 input points 𝑎𝑎𝑎 ∈ Z𝑑𝑣 and𝑏𝑏𝑏 ∈ Z𝑑𝑣 , respectively.
Protocol: Let𝑀 = 𝑑 + 1 if p = ∞, and𝑀 = 𝑑 · (𝛿 + 1) + 1 otherwise. For all the instances of SOT executed in this protocol, 𝑆 and 𝑅 play the roles of

sender and receiver, respectively.

(1) For each 𝑖 ∈ [𝑑], 𝑅 set J𝑎𝑖K𝐴𝑣 = 𝑎𝑖 and 𝑆 sets J𝑎𝑖K𝐵𝑣 = 0.

(2) Both parties invoke a 1-oo-𝑣 SOT for every 𝑖 ∈ [𝑑], where they input J𝑎𝑖K𝑣 , and 𝑆 also inputs the message vector𝑚𝑚𝑚
(𝑖)
p ∈ Z𝑣

𝑀
, which is

computed using Eq (1) or Eq (2), depending on the metric p . As a result, each party obtains Jℎ𝑖K𝑀 as output.

𝑚
(𝑖)
∞, 𝑗 =

{
1 if 𝑗 ∈ [𝑏𝑖 − 𝛿,𝑏𝑖 + 𝛿],
0 otherwise.

and 𝑚
(𝑖)
1, 𝑗

=

{
| 𝑗 − 𝑏𝑖 | if | 𝑗 − 𝑏𝑖 | ≤ 𝛿,

𝛿 + 1 otherwise.
(1)

𝑚
(0)
2, 𝑗

= min

𝑥 ∈Z≥0
{ (𝛿 + 1) − 𝑥 |

√︁
𝑥2 + (𝑗 − 𝑏0)2 > 𝛿 } and 𝑚

(1)
2, 𝑗

=

{
| 𝑗 − 𝑏1 | if | 𝑗 − 𝑏1 | ≤ 𝛿,

𝛿 + 1 otherwise.
(2)

(3) The parties compute J𝑧K𝑀 =
∑

𝑖∈ [𝑑]Jℎ𝑖K𝑀 .

(4) 𝑆 samples and outputs 𝑟 ∈𝑅 Z𝑢 .
(5) Both parties execute a single 1-oo-𝑀 SOT for which they input J𝑧K𝑀 , and 𝑆 also inputs the message vector𝑤𝑤𝑤p ∈ Z𝑀𝑢 , which is computed

using Eq (3), depending on the metric p . As a result, the parties obtain J𝑦K𝑢 as output.

𝑤∞, 𝑗 =

{
0 if 𝑗 = 𝑑,

𝑟 otherwise.
and 𝑤1, 𝑗 =

{
0 if 𝑗 ≤ 𝛿,

𝑟 otherwise.
and 𝑤2, 𝑗 =

{
0 if 𝑗 ≤ 𝛿,

𝑟 otherwise.
(3)

(6) 𝑅 outputs J𝑦K𝑅𝑢 and 𝑆 outputs (−J𝑦K𝑆𝑢 , 𝑟 − J𝑦K𝑆𝑢) .

Figure 2: Our da-ROT Protocol Πda-ROTp∈{∞,1,2}

ℎ1 ≥ min

𝑥∈Z≥0
{𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 }

⇔ ℎ1 + (𝛿 + 1) − min

𝑥∈Z≥0
{𝑥 |

√︁
𝑥2 + (𝑎0 − 𝑏0)2 > 𝛿 } ≥ 𝛿 + 1

⇔ ℎ1 + ℎ0 > 𝛿

Proving that indeed 𝑧 ≤ 𝛿 ⇐⇒
√︁
(𝑎1 − 𝑏1)2 + (𝑎0 − 𝑏0)2 ≤ 𝛿 .

The remaining proof steps for this case follow as for case p = 1.

Based on the proofs for these three individual cases, we conclude

that the output distribution of this protocol is indistinguishable

from the functionality’s output distribution for all p ∈ {∞, 1, 2}. We

now proceed to describe the simulators. For this part of the proof,

we omit detailed discussion for each distance metric and instead

provide a sketch of the simulators, as the simulation process is

essentially trivial.

Corrupt Receiver. By inspecting the protocol, it is straightfor-

ward to see that both sender 𝑆 and receiver 𝑅 only receive messages

from FSOT instances, where these messages are the output 2-out-of-

2 secret additive secret shares. We simulate the output for the SOT
instances executed at step 2 by uniformly sampling elements mod-

𝑀 , since these SOT instances output shares mod-𝑀 . This leaves

us the last SOT executed at step 5. For this last SOT, we output 𝑟𝑐
as the output share, where 𝑟𝑐 is the receiver’s output sent by the

functionality Fda-ROT.

Corrupt Sender. The simulation proceeds similarly for the

sender. We simulate the output for the SOT instances executed

at step 2 by uniformly sampling elements mod-𝑀 , and then sim-

ulate the final SOT instance’s output at step 5 using the sender’s

functionality output. Let (𝑟0, 𝑟1) be the sender’s output received
from Fda-ROT. For the last SOT instance, we output −𝑟0 (mod 𝑢)
as the output share.

□

3.2 Sparse SOT
This section introduces the new ideal functionality called Sparse

SOT (FSpSOT), which generalizes the 1-out-of-𝑁 Sparse Oblivious

Transfer (SOT) framework. This primitive builds upon the concepts

proposed in [13, 26, 28].

The FSpSOT functionality involves two parties. The receiver, 𝑅,

inputs a sparse index set 𝐼𝑅 ⊆ D of size 𝑛𝑅 and an additive share of

the choice index, J𝑐 (𝑖)K𝑅
𝑁
, for each index in 𝐼𝑅 . The sender, 𝑆 , inputs

its own sparse index set 𝐼𝑆 ⊆ D of size 𝑛𝑆 , along with an additive

share of the choice index, J𝑐 (𝑖)K𝑆
𝑁
, and an associated message vector,

m(𝑖) ∈ Z𝑁
𝑀
. Upon completing the Sparse SOT functionality, the

receiver 𝑅 and the sender 𝑆 will each obtain 𝑛𝑅 and 𝑛𝑆 additive

secret shares, denoted as 𝑦𝑦𝑦𝑅 and 𝑦𝑦𝑦𝑆 , respectively. Each share is

associated with a sparse index within their respective sets, 𝐼𝑅 and 𝐼𝑆 .

The relationships governing these secret share values are outlined

in the equations below.

𝑦𝑦𝑦𝑅 ∈𝑅 Z𝑛
𝑅

𝑀 ,𝑦𝑦𝑦𝑆 ∈𝑅 Z𝑛
𝑆

𝑀

𝑦𝑅𝑗 +𝑦
𝑆
𝑘
=𝑚

(𝑖)
𝑐 (𝑖)

, for every 𝑖𝑅𝑗 ∈ 𝐼
𝑅
and 𝑖𝑆

𝑘
∈ 𝐼𝑆 , such that 𝑖 = 𝑖𝑅𝑗 = 𝑖𝑆

𝑘
.

7

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

In other words, if both parties share a common index 𝑖 in their

sparse index sets, they execute a 1-out-of-𝑁 SOT using their re-

spective choice index shares and the sender’s message vector as

inputs. Otherwise, the output share associated with 𝑖 is a uniformly

random element sampled from Z𝑀 . We formally define the Sparse

SOT ideal functionality as follows.

Sparse SOT Ideal Functionality FSpSOT
Parameters:

• Sparse index domain I.
• Moduli 𝑁,𝑀 ∈ N≥2.
• Input set sizes 𝑛𝑅, 𝑛𝑆 ∈ N.

Inputs:
• 𝑅: An ordered set 𝐼𝑅 = {𝑖𝑅

0
, . . . , 𝑖𝑅

𝑛𝑅−1} ⊆ I of size 𝑛𝑅 and a

vector additive secret shares (J𝑐 (𝑖) K𝑅
𝑁
)𝑖∈𝐼𝑅 .

• 𝑆 : An ordered set 𝐼𝑆 = {𝑖𝑆
0
, . . . , 𝑖𝑆

𝑛𝑆 −1} ⊆ I of size 𝑛𝑆 and a

vector of pairs of additive secret shares and message vectors

(J𝑐 (𝑖) K𝑆
𝑁
,𝑚𝑚𝑚 (𝑖))𝑖∈𝐼𝑆 , where𝑚𝑚𝑚 (𝑖) ∈ Z𝑁

𝑀
.

Behavior:
• Let 𝑦𝑦𝑦𝑅 ∈ Z𝑛𝑅

𝑀
and 𝑦𝑦𝑦𝑆 ∈ Z𝑛𝑆

𝑀
.

• For every 𝑖 ∈ 𝐼𝑅 ∩ 𝐼𝑆 :
– Reconstruct 𝑐 (𝑖) using J𝑐 (𝑖) K𝑅

𝑁
and J𝑐 (𝑖) K𝑆

𝑁

– Sample 2-out-of-2 additive secret shares

(J𝑚 (𝑖)
𝑐 (𝑖)

K𝑆
𝑀
, J𝑚 (𝑖)

𝑐 (𝑖)
K𝑅
𝑀
) of𝑚 (𝑖)

𝑐 (𝑖)
.

– Set 𝑦𝑅
𝑗
← J𝑚 (𝑖)

𝑐 (𝑖)
K𝑅
𝑀
, where 𝑖 = 𝑖𝑅

𝑗
.

– Set 𝑦𝑆
𝑗
← J𝑚 (𝑖)

𝑐 (𝑖)
K𝑆
𝑀
, where 𝑖 = 𝑖𝑆

𝑗
.

• For every 𝑖 ∈ 𝐼𝑆 \ 𝐼𝑅 :
– Sample 𝑦𝑆

𝑗
∈𝑅 Z𝑀 , where 𝑖 = 𝑖𝑆

𝑗
.

• For every 𝑖 ∈ 𝐼𝑅 \ 𝐼𝑆 :
– Sample 𝑦𝑅

𝑗
∈𝑅 Z𝑀 , where 𝑖 = 𝑖𝑅

𝑗
.

• Send 𝑦𝑦𝑦𝑅 and 𝑦𝑦𝑦𝑆 to 𝑅 and 𝑆 , respectively.

To construct a protocol for FSpSOT, we leverage concepts from
[28] and the well-known reduction from ROT to OT. These are

combined with the OPRF and the OKVS scheme to satisfy the

necessary sparsity requirements. Figure 3 presents our sparse OT

protocol.

A good starting point for understanding our Sparse SOT protocol

is to examine how the sender 𝑆 builds the OKVS 𝐷 , which is sent

to the receiver 𝑅 at protocol step 6. Specifically, party 𝑆 encodes

the following key-value pair set 𝐸 into the OKVS 𝐷 :

𝐸 = {((𝑖, 𝑗),𝑤 (𝑖)
𝑗
) | (𝑖, 𝑗) ∈ 𝐼𝑆 × Z𝑁 }

𝑤
(𝑖)
𝑗
← 𝑢

(𝑖)
𝑗
− J𝑧 (𝑖)K𝑆𝑀 − 𝐹𝜃 (𝑖, 𝑗) − ℎ

(𝑖)

After receiving𝐷 , party𝑅 evaluates theOKVS to obtain𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

←

OKVS.Decode(𝐷, (𝑖, J𝑐 (𝑖)K𝑅
𝑁
)). It then outputs shares J𝑧 (𝑖)K𝑅

𝑀
as:

J𝑧 (𝑖)K𝑅𝑀 ← 𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝑓 (𝑖) + 𝐻𝜙 (𝑖) for every 𝑖 ∈ 𝐼𝑅

This implies that the following relationship will hold for every

𝑖 ∈ 𝐼𝑆 ∩ 𝐼𝑅 , based on the definition of 𝑓 (𝑖) and ℎ (𝑖) .

J𝑧 (𝑖)K𝑅𝑀 = 𝑢
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

− J𝑧 (𝑖)K𝑆𝑀 for every 𝑖 ∈ 𝐼𝑅

By the definition of cshift provided in Section 2.1 and its appli-

cation in protocol step 4, we have:

J𝑧 (𝑖)K𝑅𝑀 =𝑚
(𝑖)
𝑐 (𝑖)
− J𝑧 (𝑖)K𝑆𝑀 for every 𝑖 ∈ 𝐼𝑅

Since J𝑧 (𝑖)K𝑆
𝑀

is uniformly sampled by 𝑆 at Step 3, and 𝑆 outputs

J𝑧 (𝑖)K𝑆
𝑀

as its own share, both parties receive additive shares mod-

𝑀 of𝑚
(𝑖)
𝑐 (𝑖)

, ∀𝑖 ∈ 𝐼𝑅 ∩ 𝐼𝑆 . Note that 𝑅 only learns J𝑧 (𝑖)K𝑅
𝑀
, because

in the first protocol step, 𝑅 obliviously queried 𝐹𝜃 (𝑖, 𝑗) only for

𝑗 = J𝑐 (𝑖)K𝑅
𝑀
, and learning any other information about𝑚𝑚𝑚 (𝑖) would

require querying 𝐹𝜃 for different 𝑗 values.

Next, we consider the case where 𝑖 ∈ 𝐼𝑆 \ 𝐼𝑅 . We show that 𝑆

outputs J𝑧 (𝑖)K𝑆
𝑀
∈𝑅 Z𝑀 such that 𝑅 does not learn anything about

it. The fact that J𝑧 (𝑖)K𝑆
𝑀
∈𝑅 Z𝑀 is uniformly sampled from Z𝑀 is

evident from protocol step 3. Now, party 𝑆 does send the vector

𝑤𝑤𝑤 (𝑖) ∈ Z𝑁
𝑀

as part of OKVS 𝐷 to 𝑅, where

𝑤
(𝑖)
𝑗

= 𝑢
(𝑖)
𝑗
− J𝑧 (𝑖)K𝑆𝑀 − 𝐹𝜃 (𝑖, 𝑗) − ℎ

(𝑖) .

However, the receiver does not hold 𝐹𝜃 (𝑖, 𝑗) for any 𝑗 , since

𝑖 ∈ 𝐼𝑆 ∩ 𝐼𝑅 . This implies that the receiver does not learn anything

about J𝑧 (𝑖)K𝑆
𝑀
.

Now, we consider the final case where 𝑖 ∈ 𝐼𝑅 \ 𝐼𝑆 . We know that

𝑅 computes its shares J𝑧 (𝑖)K𝑅
𝑀

according to the following equation:

J𝑧 (𝑖)K𝑅𝑀 ← 𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝑓 (𝑖) + 𝐻𝜙 (𝑖)

Because 𝐻𝜙 (𝑖) is pseudorandom and unknown to 𝑆 , and 𝑓 (𝑖) is

pseudorandom to 𝑅, we can conclude that J𝑧 (𝑖)K𝑅
𝑀

is indistinguish-

able from an element uniformly sampled from Z𝑀 and 𝑆 does not

learn any information about it.

We formally define the security of our Sparse SOT protocol

(ΠSpSOT) in Theorem 3 and provide the proof in Appendix D.1. At

a high level, the security of our protocol follows from the security

of OKVS and the way we use two FOPRF instances, where the two
parties reverse roles between the two instances. The asymptotic

efficiency of ΠSpSOT is detailed in Appendix C.2.

4 FUZZY PSI FRAMEWORK
The key building block of our PSI framework is the FSp-daROT
functionality, introduced in the next subsection. This functionality

can be seen as a sparse variant of the Fda-ROT functionality. In

Section 4.1, we also present a black-box compiler that constructs a

protocol for FSp-daROT using Fda-ROT and FSpSOT. Subsequently, in
Section 4.2, we introduce our Fuzzy PSI framework, which supports

𝐿∞ and 𝐿p (p ∈ N) norms. The framework can be easily adapted to

support other fuzzy PSI-related functionalities.

4.1 Sparse distance-aware random OT
(Sp-daROT) Functionality and Its Compiler

Functionality F D,𝑢,dist,𝛿
Sp-daROT with parameters input domain D, out-

put group Z𝑢 , distance metric dist, threshold 𝛿 (> 0) defines the
sparse variant of the F D,𝑢,dist,𝛿

da-ROT functionality in a natural way -

where each party has multiple da-ROT inputs (∈ D), each with a

corresponding index (∈ I). Hence, each party inputs a dictionary

8

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

Parameters:
• Set size 𝑛𝑆 and 𝑛𝑅

• Two PRFs 𝐹 : I × Z𝑁 → Z𝑀 , and 𝐻 : I → Z𝑀
• The OPRF functionality, OKVS scheme, and cshift function described Section 2.4, Section 2.3, and Section 2.1, respectively.

Inputs:
• The 𝑆’s input: An ordered set 𝐼𝑆 = {𝑖𝑆

0
, . . . , 𝑖𝑆

𝑛𝑆−1} ⊆ I of size 𝑛𝑆 and a vector of pairs of additive secret shares and message

vectors (J𝑐 (𝑖)K𝑆
𝑁
,𝑚𝑚𝑚 (𝑖))𝑖∈𝐼𝑆 , where𝑚𝑚𝑚 (𝑖) ∈ Z𝑁𝑀 .

• The 𝑅’s input: An ordered set 𝐼𝑅 = {𝑖𝑅
0
, . . . , 𝑖𝑅

𝑛𝑅−1} ⊆ I of size 𝑛𝑅 and a vector additive secret shares (J𝑐 (𝑖)K𝑅
𝑁
)𝑖∈𝐼𝑅 .

Protocol: Assume every arithmetic operation is done modulo𝑀 .

(1) 𝑆 and 𝑅 run FOPRF for PRF 𝐹 , with 𝑅 querying points (𝑖, J𝑐 (𝑖)K𝑅
𝑁
)𝑖∈𝐼𝑅 . As output, 𝑆 receives an PRF key 𝜃 , and 𝑅 receives vector

𝑓𝑓𝑓 = (𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁))𝑖∈𝐼𝑅 .
Let 𝑓 (𝑖) = 𝑓𝑗 , where 𝑗 is the position of vector 𝑓𝑓𝑓 for which 𝑓𝑗 = 𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁)).

(2) 𝑆 and 𝑅 run FOPRF for PRF 𝐻 , with 𝑆 querying points 𝐼𝑆 . As output, 𝑅 receives key 𝜙 , and 𝑆 receives vector ℎℎℎ = (𝐻𝜙 (𝑖))𝑖∈𝐼𝑆 .
Let ℎ (𝑖) = ℎ 𝑗 , where 𝑗 is the position of vector ℎℎℎ for which ℎ 𝑗 = 𝐻𝜙 (𝑖).

(3) 𝑆 samples J𝑧 (𝑖)K𝑆
𝑀
∈𝑅 Z𝑀 , for every 𝑖 ∈ 𝐼𝑆 .

(4) 𝑆 computes𝑢𝑢𝑢 (𝑖) ← cshift𝑁 (𝑚𝑚𝑚 (𝑖) , J𝑐 (𝑖)K𝑆𝑁) for every 𝑖 ∈ 𝐼
𝑆
.

(5) 𝑆 computes𝑤
(𝑖)
𝑗
← 𝑢

(𝑖)
𝑗
− J𝑧 (𝑖)K𝑆

𝑀
− 𝐹𝜃 (𝑖, 𝑗) − ℎ (𝑖) , for every pair (𝑖, 𝑗) ∈ 𝐼𝑆 × Z𝑁 .

(6) 𝑆 sends 𝐷 ← OKVS.Encode(𝐸) to 𝑅, where 𝐸 = {((𝑖, 𝑗),𝑤 (𝑖)
𝑗
) | (𝑖, 𝑗) ∈ 𝐼𝑆 × Z𝑁 }.

(7) 𝑅 computes 𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

← OKVS.Decode(𝐷, (𝑖, J𝑐 (𝑖)K𝑅
𝑁
)) for every 𝑖 ∈ 𝐼𝑅 .

(8) 𝑅 computes J𝑧 (𝑖)K𝑅
𝑀
← 𝑞

(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝑓 (𝑖) + 𝐻𝜙 (𝑖) for every 𝑖 ∈ 𝐼𝑅 .

(9) 𝑅 and 𝑆 output𝑦𝑦𝑦𝑅 and𝑦𝑦𝑦𝑆 , respectively, where𝑦𝑦𝑦𝑅 = (J𝑧 (𝑖𝑅0)K𝑅
𝑀
, . . . , J𝑧 (𝑖

𝑅

𝑛𝑅−1
)K𝑅
𝑀
) and𝑦𝑦𝑦𝑆 = (J𝑧 (𝑖𝑆0)K𝑆

𝑀
, . . . , J𝑧 (𝑖

𝑆

𝑛𝑆 −1
)K𝑆
𝑀
).

Figure 3: Our Sparse SOT Protocol ΠSpSOT

∈ I×D of some public size. The functionality outputs two dictionar-

ies (same size as respective inputs), for each party. The Sp-daROT
sender’s output dictionary and receiver’s output dictionary have

elements as defined by the Fda-ROT functionality for each index

present in both input parties’ dictionaries. More formally, if the

sender and receiver have inputs (𝑖, 𝑥) and (𝑖, 𝑦) in their input dic-

tionaries, respectively, then their output dictionaries have elements

(𝑖, (𝑟0, 𝑟1)) and (𝑖, 𝑟𝑐) respectively where 𝑐 = [dist(𝑥,𝑦)
?

≤ 𝛿].
For non-intersecting indexes, the parties receive random values

in the output dictionary - ensuring no party can learn the inter-

secting indexes given just their outputs of Sp-daROT functionality.

The formal description is provided below.

Sparse Distance-Aware Random OT FD,𝑢,dist,𝛿
Sp-daROT

Parameters: Input domain D, index set I, output group Z𝑢 , thresh-
old distance 𝛿 ∈ R, distance metric dist : D × D → R, sender and
receiver set sizes 𝑛0 and 𝑛1 respectively

Input: Sender 𝑆 and Receiver 𝑅 input dictionaries 𝑋 ∈ I × D,

𝑌 ∈ I × D of sizes 𝑛0 and 𝑛1, respectively.

Behavior:
• Initialize empty dictionaries 𝑋out, 𝑌out
• For each (𝑖, 𝑥) ∈ 𝑋 :

– Sample 𝑟0, 𝑟1 ←$
Z𝑢

– 𝑋out .insert(𝑖, (𝑟0, 𝑟1))

• For each (𝑖, 𝑦) ∈ 𝑌 :
– If 𝑋 [𝑖] ?

= ⊥: 𝑌out .insert(𝑖, 𝑟) where 𝑟 ←$
Z𝑢

– Else

∗ Compute 𝑐 =

{
0 if dist(𝑋 [𝑖], 𝑦)

?

≤ 𝛿

1 if otherwise

∗ 𝑌out .insert(𝑖, 𝑟𝑐)
• Output 𝑋out to Sender 𝑆 and 𝑌out to Receiver 𝑅.

0-round SOT Hybrid Protocols. Our design of the Sp-daROT
compiler builds on the observation that all the da-ROT protocols

proposed in Subsection 3.1 operate in the shared OT hybrid model.

Moreover, in these constructions, the sender and receiver interact

solely through a constant number of calls to the SOT functionality

with fixed parameters. This property is formalized in the following

definition.

Definition 4.1 (0-round protocol in SOT hybrid model). A two-

party protocol Π = (SOTInp,UpdState ,Out, param, 𝑘 ∈ N) is
termed a 0-round protocol in FSOT hybrid model if it has the fol-

lowing form:

Inputs: Sender 𝑆 inputs 𝑥 , and Receiver 𝑅 inputs 𝑦.

Behavior:
• 𝑅 and 𝑆 initialize states 𝜎𝑅 ← {𝑥 }, 𝜎𝑆 ← {𝑦}, respectively

9

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

• For 𝑗 ∈ [𝑘]:
– R executes 𝑖𝑅 ← SOTInp(𝑅, 𝜎𝑅, 𝑗) ; S executes 𝑖𝑆 ←

SOTInp(𝑆, 𝜎𝑆 , 𝑗)
– R acts as receiver and S as sender, and they execute

(𝑜𝑅, 𝑜𝑆) ← Fparam[𝑗]SOT (𝑖𝑅, 𝑖𝑆)
– R executes 𝜎𝑅 ← UpdState(𝑅, 𝜎𝑅, 𝑗, 𝑜𝑅) ; S executes 𝜎𝑆 ←

UpdState(𝑆, 𝜎𝑆 , 𝑗, 𝑜𝑆)
• R outputs Out(𝑅, 𝜎𝑅) and S outputs Out(𝑆, 𝜎𝑆)

Wedefine these 0-round protocols using three algorithms SOTInp,
UpdState and Out, a parameter vector param and an integer 𝑘 rep-

resenting the total number of iterations or SOT calls in the protocol.

In these protocols, the sender and receiver maintain a local state

𝜎𝑆 and 𝜎𝑅 , which is updated after each SOT call. The protocol has

the following structure: for iteration 𝑗 ∈ [𝑘]: each party runs the

SOTInp algorithm to generate the SOT input for 𝑗𝑡ℎ iteration. The

output of this algorithm is input to FSOT with parameters param[𝑗].
The output of this SOT call is further used to update the local state

of each party using the UpdState function. At the end of the 𝑘 iter-

ations, each party can use the Out function to generate the output

of their protocol.

For each of our da-ROT protocols in Section 3.1, we do not

explicitly present them in the aforementioned form; however, they

clearly adhere to this structure, i.e., in all our protocols, the sender

and receiver only invoke the SOT primitive a constant number of

times, and they do not interact other than through these SOT calls.

A Sparse Compiler for 0-round SOT da-ROT Protocols.
In Figure 4, we present a compiler that, given a 0-round da-ROT
protocol in the FSOT hybrid model, can generate a corresponding

Sp-daROT protocol in SpSOT hybridmodel. The key idea behind the

design of this sparse compiler is to run multiple parallel instances

of da-ROT protocols (proportional to the input set size), where each
set of parallel invocations of FSOT is replaced by a single call to

FSpSOT. More formally, in the 𝑗𝑡ℎ iteration, let the sender run 𝑜𝑖 ←
SOTInp(𝑆, 𝜎𝑖

𝑆
, 𝑗) algorithm on state 𝜎𝑖

𝑆
for each index 𝑖 in its input

set. Then the sender input in the corresponding iteration of FSpSOT
primitive call in the compiler is {(𝑖, 𝑜𝑖) | for index 𝑖 in input set 𝑋 }.
The security of this compiler for Sp-daROT follows directly from

the underlying da-ROT protocol. A formal security theorem, along

with a proof sketch, is in Appendix D.2, with asymptotic efficiency

detailed in Appendix C.3.

4.2 Our Fuzzy PSI Framework
Figure 5 illustrates our fuzzy PSI framework, which combines spatial

hashing with sparse distance-aware OT (Sp-daROT). While the da-
ROT protocols in Section 3.1 are restricted to specific norms and

dimensions, this framework generalizes to any dimension𝑑 and any

norm 𝐿𝑝 (𝑝 ∈ N ∪∞). Its flexibility makes it a valuable foundation

for future fuzzy PSI protocol designs.

High-level Outline of Fuzzy PSI Framework. Alice (the re-
ceiver) and Bob (the sender) input sets 𝐴 and 𝐵, respectively, such

that the cell density of 𝐴 with grid parameter 𝛿 is 1.

In the protocol, Alice and Bob first run local algorithms 𝐴′ ←
sphash(𝐴) and cellhash(𝐵) respectively, where the spatial hashing

Parameters: Given a da-ROT protocol Π = (SOTInp,UpdState
,Out, param, 𝑘 ∈ N)
Inputs: Sender 𝑆 inputs 𝑋 and Receiver 𝑅 inputs 𝑌 .

Behavior:
• S initializes states 𝜎𝑖

𝑆
← {𝑥 } for each (𝑖, 𝑥) ∈ 𝑋

• R initializes states 𝜎𝑖
𝑅
← {𝑦} for each (𝑖, 𝑦) ∈ 𝑌

• For 𝑗 ∈ [𝑘]:
– R computes𝑋 ′ ← {(𝑖, SOTInp(𝑅, 𝜎𝑖

𝑅
, 𝑗)) | where (𝑖, 𝑥) ∈

𝑋 }
– S computes 𝑌 ′ ← {(𝑖, SOTInp(𝑆, 𝜎𝑖

𝑆
, 𝑗)) | where (𝑖, 𝑦) ∈

𝑌 }
– R acts as receiver and S as sender, and they execute

(𝑂𝑅,𝑂𝑆) ← Fparam[𝑗]SpSOT (𝑋 ′, 𝑌 ′)
– For each (𝑖, 𝑥) ∈ 𝑋 : R updates state 𝜎𝑖

𝑅
←

UpdState(𝑅, 𝜎𝑖
𝑅
, 𝑗,𝑂𝑅 [𝑖])

– For each (𝑖, 𝑦) ∈ 𝑌 : S updates state 𝜎𝑖
𝑆
←

UpdState(𝑆, 𝜎𝑖
𝑆
, 𝑗,𝑂𝑆 [𝑖])

• R outputs 𝑌out = { (𝑖,Out(𝑅, 𝜎𝑖
𝑅
)) | where (𝑖, 𝑥) ∈ 𝑋 }

• S outputs 𝑋out = { (𝑖,Out(𝑆, 𝜎𝑖
𝑆
)) | where (𝑖, 𝑦) ∈ 𝑌 }

Figure 4: sparse-comp: Compiler for Sp-daROT

is done with grid parameter 𝛿 . By correctness of spatial hashing, for

each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are in the same grid cells or neighboring

ones, there exists some index 𝑖 such that (𝑖, trunc(𝑎)) ∈ 𝐴′ and
(𝑖, trunc(𝑏)) ∈ 𝐵′. Here, the trunc function outputs only the last

𝑡∗ = ⌈log(6𝛿)⌉ input bits (as discussed in Subsection 2.6) - reducing

the problem of fuzzy PSI over exponentially large domain [2𝑢]𝑑 to

sparse matching over smaller domain of size 2
𝑑𝑡∗ = 𝑂 (𝛿𝑑). Alice

and Bob now execute the FSp-daROT functionality as receiver and

sender, respectively, on dictionaries 𝐴′ and 𝐵′, and they receive as

output dictionaries 𝐴out and 𝐵out. By correctness of Sp-daROT, for
each 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 that are 𝛿-close in the underlying metric space

dist, there exist (𝑖, 𝑟0) and (𝑖, (𝑟0, 𝑟1)) in the output sets 𝐴out and

𝐵out where 𝑖 was the index of cell containing both 𝑎 and 𝑏.

To complete the fuzzy PSI protocol, we want Alice to learn the

elements from Bob that are 𝛿-close to its input set 𝐴. Specifically,

Alice should learn the elements from Bob that share the same "r-

value" output by both dictionaries 𝐴out and 𝐵out for corresponding

indexes. To achieve this, Bob first encrypts each of his points 𝑏

using a one-time pad authenticated encryption with key 𝑟0, where

(𝑖, trunc(𝑏)) ∈ 𝐵′ and (𝑖, (𝑟0, 𝑟1)) ∈ 𝐵out, and adds the encrypted

points to an OKVS 𝐷 , which he then sends to Alice.

Upon receiving 𝐷 , Alice performs the following steps: for each

element (𝑖, 𝑟0) ∈ 𝐴out, Alice checks if Dec(𝑟0,OKVS.Decode(𝐷, 𝑖))
does not result in an error. If the decryption is successful, Alice

adds the corresponding element to the output set 𝑍 . Due to the

obliviousness property of the OKVS, Alice cannot learn any key-

value pairs that were added by Bob to OKVS 𝐷 , except for those

that are revealed through the output set 𝑍 .

Extending to Other Fuzzy Variants. Another advantage of
our modular framework is its flexibility in adapting to other fuzzy

PSI functionalities, such as FfuzzyCard and FfuzzyJoin, as depicted in

10

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

Parameters:
• Input domain D = U𝑑

, threshold distance 𝛿 ∈ R, distance metric dist : D × D → R for norm 𝑝 ∈ [0,∞] , sender and receiver set sizes 𝑛

and𝑚 respectively

• (cellhash, sphash) is a spatial hashing construction for domain U𝑑
and grid parameter 𝛿

• (OKVS.Encode,OKVS.Decode) be an OKVS scheme

• (Enc,Dec) be a one-time pad authenticated encryption scheme

• The functionalities for traditional PSI Cardinality, FPSICard, and traditional PSI Join, FPSIJoin, as described in Appendix E.

• The function trunc𝑡 truncates the input number 𝑥 to its last 𝑡 bits, where 𝑡 = ⌈log(6𝛿) ⌉ bits.
Inputs:

• The receiver Alice inputs a set 𝐴 ⊂ U𝑑
of size 𝑛. The sender Bob inputs a set B ⊂ U𝑑

of size𝑚 with 𝜌𝐵𝑐 = 1

• For FfuzzyJoin functionality, Alice and Bob have additional input dictionaries AD𝑅
and AD𝑆

Protocol:
(1) Alice computes 𝐴′ ← sphash(𝐴) . Bob computes 𝐵′ ← cellhash(𝐵, 𝜌𝐴𝜂)
(2) The parties invoke FD,𝑢,dist,𝛿

Sp-daROT protocol where:

• Alice acts as receiver with input 𝐴′; and Bob acts as sender with input 𝐵′

• Alice and Bob receive outputs 𝐴out and 𝐵out, respectively

For FfuzzyPSI functionality:
(3) Bob initializes an empty dictionary 𝑌 , which is updated as follows:

• For each (𝑖, (𝑟0, 𝑟1)) ∈ 𝐵out:

Find 𝑏 ∈ 𝐵 such that (𝑖, 𝑏) ∈ 𝐵′
𝑌 .insert(𝑖, Enc(𝑟0, 𝑏))

(4) Bob sends 𝐷 ← OKVS.Encode(𝑌)
(5) Alice initializes the output set 𝑍 = {}. For ∀(𝑖, 𝑟0) ∈ 𝐴out:

• Compute ciphertext 𝑐 ← OKVS.Decode(𝐷, 𝑖)
• If 𝑏 ← Dec(𝑟0, 𝑐) ≠ ⊥: 𝑍 ← 𝑍 ∪ {𝑏}

For FfuzzyCard functionality:
(6) Bob computes 𝑌 ← {𝑟0 | (𝑖, (𝑟0, 𝑟1)) ∈ 𝐵out}; and Alice computes 𝑋 ← {𝑟0 | (𝑖, 𝑟0) } ∈ 𝐴out}
(7) Parties invoke FPSICard where Alice acts as receiver, and Bob acts as sender with inputs sets 𝑋 and 𝑌 respectively; the output from this

functionality is Alice’s output

For FfuzzyJoin functionality:

(8) Bob computes 𝑌 ← {(𝑟0,AD𝑆 (𝑏) | (𝑖, (𝑟0, 𝑟1)) ∈ 𝐵out, (𝑖, trunc(𝑏)) ∈ 𝐵′ }
(9) Alice computes 𝑋 ← {(𝑟0,AD𝑆 (𝑎) | (𝑖, 𝑟0) ∈ 𝐴out, (𝑖, trunc(𝑎)) ∈ 𝐴′ }
(10) Parties invoke FPSIJoin where Alice acts as the receiver and Bob acts as the sender with inputs sets 𝑋 and 𝑌 respectively; the output from this

functionality is Alice’s output

Figure 5: Our Fuzzy PSI Framework

Figure 5. As discussed earlier, for each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are 𝛿-

close in the underlyingmetric space dist, there exist corresponding
(𝑖, 𝑟0) and (𝑖, (𝑟0, 𝑟1)) in the output sets𝐴out and𝐵out for some index

𝑖 . Therefore, for the fuzzyCard functionality, the parties can simply

check how many 𝑟0 values in the two sets 𝐴out and 𝐵out match.

This matching can be efficiently performed using a traditional PSI

cardinality protocol, as outlined in Step 7 of Figure 5.

Similarly, we show in Steps 8-10 how the FfuzzyJoin can be re-

duced to the traditional join functionality FPSIJoin. In this case, the

approach is to perform the standard join operation on the matching

𝑟0 values from the sets 𝐴out and 𝐵out.

Theorem 5, which formalizes our fuzzy PSI protocol, is stated in

Appendix D.3, where its correctness and security are also formally

established. We also get Theorem 6 for other fuzzy PSI related

functionalities in Appendix D.3. The asymptotic efficiency of the

protocols is detailed in Appendix C.4.

5 PERFORMANCE EVALUATION
We provide experimental details and compare the performance of

our fuzzy PSI protocol with previous works in the low-dimensional

balanced setting.

Implementation. Our end-to-end implementation
2
is written in

C++ and utilizes the libOTe library [33] for performing OT Exten-

sion, the volePSI library [30] for instantiating the required OKVS

scheme, and the cryptoTools library [32] to implement symmetric

cryptographic primitives, e.g., PRNG. To instantiate the required

OPRF primitive, we implement the construction of [18], replacing

the polynomial interpolation technique with the same (state-of-the-

art) OKVS scheme provided by the volePSI library. For security,

we selected 𝜅 = 128 as the security parameter and 𝜆 = 40 as the

statistical parameter, in line with standard practices in the literature.

Environment. We ran our benchmarks over a single thread on

our server with the following hardware configuration: AMD EPYC

74F3 (3.2 GHz base clock, up to 4.0 GHz) and 256 GB RAM. As

2
https://github.com/asu-crypto/daOT-fuzzyPSI

11

https://github.com/asu-crypto/daOT-fuzzyPSI

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

Table 2: Performance Comparison of Fuzzy PSI Protocols: The set size𝑚 = 𝑛, the dimension 𝑑 , and threshold 𝛿 . GC refers to garbled circuit.
(ERROR) indicates an error occurred when executing the benchmark for the specific parameter setting. (-) indicates no implementation was
provided for the specific parameter setting or, in the case of GC, the experiment took more than 1 hour. (*) indicates parameter settings for the
𝐿2 metric we did not measure, given that our protocol does not support it.

𝑛 Prot.
Communication Cost (MBs) Runtime (Seconds)

(𝑑, 𝛿)
(2, 10) (6, 10) (10, 10) (2, 30) (6, 30) (10, 30) (2, 10) (6, 10) (10, 10) (2, 30) (6, 30) (10, 30)

𝐿∞

2
8

Naive GC 330.14 994.14 1658.14 330.14 994.14 1658.14 2.48 7.33 12.27 2.45 7.36 12.54

[38] 2.77 132 3520 8.27 396 > 10
4

2.15 102.46 2831.27 6.27 299.29 8464.17

[10] 7.52 22.1 36.8 21.4 63.9 106 2.20 6.24 10.32 5.36 15.9 26.56

[31] 1.77 21.2 142 1.77 21.2 142 − − − − − −
Ours 0.17 2.46 54.50 0.17 2.46 54.50 0.12 0.43 7.07 0.12 0.43 7.03

2
12

Naive GC 84512.01 254496.01 - 84512.01 254496.01 - 636.72 2666.47 - 711.63 2006.82 -

[38] 44.3 2112 > 10
4

132 > 6000 > 10
5

34.77 1682.01 ERROR 100.63 5003.74 ERROR

[10] 120 354 922 343 1022 1702 37.84 108.42 175.92 89.17 271.75 448.05

[31] 28.3 340 2265 28.3 340 2265 − − − − − −
Ours 2.21 38.46 869.63 2.21 38.46 869.63 1.76 9.29 129.17 1.78 9.37 125.02

2
16

Naive GC - - - - - - - - - - - -

[38] 708 > 10
4 > 10

5
2116 > 10

4 > 10
6

563.89 ERROR ERROR 1655.61 ERROR ERROR

[10] 1924 5665 9408 5488 16358 27228 635.124 1772.58 2915.02 1509.90 ERROR ERROR

[31] 453 5436 36239 453 5436 36239 − − − − − −
Ours 34.24 612.87 13906.80 34.24 612.87 13906.80 31.75 171.14 2441.31 32.18 169.35 2482.36

𝐿1

2
8

Naive GC 457.54 1377.25 2293.74 457.58 1377.34 2293.65 3.18 11.08 18.35 3.12 10.94 17.97

[38] 2.85 132 3520 8.51 396 > 10
4

2.15 − − 6.29 − −
[10] 7.5 21.8 36.4 21.3 63.2 105 2.44 6.48 10.69 5.80 16.63 26.97

[31] 1.78 21.3 142 1.78 21.3 142 − − − − − −
Ours 0.33 2.99 55.27 0.54 3.63 56.43 0.12 0.43 7.05 0.13 0.44 7.11

2
12

Naive GC 117135.53 352566.74 - 117144.29 352557.29 - 1207.55 3081.34 - 1381.35 3225.4 -

[38] 45.6 2113 > 10
4

132 > 6000 > 10
5

34.97 − − 101.64 − −
[10] 120 351 589 340 1024 1703 40.87 111.91 181.98 94.93 281.14 464.05

[31] 28.4 341 2274 28.4 341 2274 − − − − − −
Ours 4.67 46.74 881.89 8.05 56.86 900.27 1.83 9.36 147.94 1.9 9.73 126.94

2
16

Naive GC - - - - - - - - - - - -

[38] 730 > 10
4 > 10

5
2179 > 10

4 > 10
6

564.26 − − 1659.55 − −
[10] 1919 5685 9427 5513 16382 27253 706.08 1902.36 3055.09 1660.61 ERROR ERROR

[31] 455 5457 36390 455 5457 36390 − − − − − −
Ours 73.44 745.08 14102.6 127.30 906.58 14396.2 32.84 173.19 2393.49 35.08 180.27 2481.96

𝐿2

2
8

Naive GC 17281.73 * * 17281.69 * * 54.45 * * 54.36 * *

[38] 3.55 * * 15.3 * * 2.14 * * 6.23 * *

[10] 7.59 * * 21.4 * * 2.63 * * 5.82 * *

[31] 4.63 * * 4.63 * * − * * − * *

Ours 0.33 * * 0.54 * * 0.12 * * 0.12 * *

2
12

Naive GC - * * - * * - * * - * *

[38] 56.9 * * 245 * * 34.47 * * 99.86 * *

[10] 122 * * 347 * * 43.76 * * 99.17 * *

[31] 73.8 * * 73.8 * * − * * − * *

Ours 4.67 * * 8.05 * * 1.84 * * 1.82 * *

2
16

Naive GC - * * - * * - * * - * * -

[38] 911 * * 3919 * * 560.01 * * 1649.77 * *

[10] 1964 * * 5549 * * 748.30 * * 1735.24 * *

[31] 1191 * * 1181 * * − * * − * *

Ours 73.44 * * 127.30 * * 33.2 * * 35.3 * *

in [37], we did not account for network latency when measuring

the runtime of our implementations. This should not be an issue, as

measurements show that our protocol has a significant advantage

in communication cost compared to the others.

Concrete Performance and Comparison. We evaluate fuzzy-PSI

protocols for all three distance metrics (i.e., 𝐿∞, 𝐿1, 𝐿2) and report

their performance in Table 2. For a fair comparison with the most

recent work [31], we adopt their parameters. Additionally, to facil-

itate comparisons with [9, 31, 37], we assume that Alice’s points

are separated by at least 4𝛿 . In all comparisons (similar to [31]),

we assume that both parties have sets of equal size, evaluating

performance across set sizes {28, 212, 216}. Beyond input set sizes,

we examine these constructions under varying dimensions 𝑑 and

distance threshold 𝛿 . Specifically, for both 𝐿∞ and 𝐿1 based fuzzy

PSI, we evaluate the protocols with 𝑑 ∈ {2, 6, 10} and 𝛿 ∈ {10, 30},
while for metric 𝐿2, our comparisons focus on dimension 𝑑 = 2

and 𝛿 ∈ {10, 30}. To enable a comprehensive comparison, we also

included the performance of naive garbled-circuit-based solution,

implemented using the EMP-sh2pc library [1]. In this solution, we

use standard garbled circuits to perform pair-wise distance compar-

ison between all points of the sender and the receiver to compute

the output, leading to quadratic complexity.

We also used the reported numbers from [31] to compare con-

crete communication costs for all other protocols. For compu-

tational costs, we evaluated open-source implementations from

12

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

[9, 37]. We did not include [31] in the computational cost com-

parison, as the authors provided no concrete implementation. Our

solution significantly outperforms prior work, achieving better run-

time performance for all the parameters included in our comparison

and, in some cases, achieving a 54× improvement. Regarding com-

munication costs, our solution improves on previous works for all

settings except for the case where we have 𝑑 = 10, 𝛿 = 10. In this

case, however, our solution requires less 2× communication than

the best solution. For the settings where our solution is the better

option communication-wise, we can sometimes achieve up to an

14× improvement.

ACKNOWLEDGMENTS.
Lucas Piske and Ni Trieu were partially supported by NSF award

#2115075, and ARPA-H SP4701-23-C-0074. Vladmir Kolesnikov was

partially supported by Visa research award and NSF awards CNS-

2246354, and CCF-2217070. Vassilis Zikas was supported in part by

NSF Grant No. 2448339, by Sunday Group, Inc., and by the United

States-Israel Binational Science Foundation (BSF) through Grant

No. 2020277. Jaspal Singh was supported in part by Sunday Group,

Inc., and the BSF Grant No. 2020277.

REFERENCES
[1] GitHub - emp-toolkit/emp-sh2pc: Semi-honest Two Party Computation Based on

Garbled Circuits. — github.com. https://github.com/emp-toolkit/emp-sh2pc.git.

[Accessed 16-04-2025].

[2] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and

computing on intervals. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329

of LNCS, pages 515–529. Springer, Berlin, Heidelberg, December 2004.

[3] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclo-

sure of secrets. In Conference on the Theory and Application of Cryptographic
Techniques, pages 234–238. Springer, 1986.

[4] Anrin Chakraborti, Giulia Fanti, and Michael K Reiter. {Distance-Aware} private
set intersection. In 32nd USENIX Security Symposium (USENIX Security 23), pages
319–336, 2023.

[5] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear

complexity via relaxed batch OPPRF. Cryptology ePrint Archive, Paper 2021/034,

2021.

[6] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient con-

current covert computation of string equality and set intersection. In Kazue

Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 164–179. Springer, Cham,

February / March 2016.

[7] Jiahui Gao, Truong Son Nguyen, and Ni Trieu. Toward a practical multi-party

private set union. Proceedings on Privacy Enhancing Technologies, 2024(4):622–635,
2024.

[8] Jiahui Gao, Ni Trieu, and Avishay Yanai. Multiparty private set intersection

cardinality and its applications. In Proceedings on Privacy Enhancing Technologies
(PETS), 2024.

[9] Ying Gao, Lin Qi, Xiang Liu, Yuanchao Luo, and Longxin Wang. Efficient fuzzy

private set intersection from fuzzy mapping. Cryptology ePrint Archive, Paper

2024/1462, 2024.

[10] Ying Gao, Lin Qi, Xiang Liu, Yuanchao Luo, and Longxin Wang. Efficient fuzzy

private set intersection from fuzzy mapping. Cryptology ePrint Archive, 2024.
[11] Gayathri Garimella, Benjamin Goff, and Peihan Miao. Computation efficient

structure-aware PSI from incremental function secret sharing. In Leonid Reyzin

and Douglas Stebila, editors, CRYPTO 2024, Part VIII, volume 14927 of LNCS,
pages 309–345. Springer, Cham, August 2024.

[12] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and

Jaspal Singh. Private set operations from oblivious switching. In Juan Garay,

editor, PKC 2021, Part II, volume 12711 of LNCS, pages 591–617. Springer, Cham,

May 2021.

[13] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

Oblivious key-value stores and amplification for private set intersection. In Tal

Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 395–425, Virtual Event, August 2021. Springer, Cham.

[14] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware private

set intersection, with applications to fuzzy matching. In Yevgeniy Dodis and

Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
323–352. Springer, Cham, August 2022.

[15] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Malicious secure, structure-

aware private set intersection. In Helena Handschuh and Anna Lysyanskaya,

editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 577–610. Springer,
Cham, August 2023.

[16] Mihaela Ion, Ben Kreuter, Ahmet ErhanNergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure

computing: Private intersection-sum-with-cardinality. In 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 370–389. IEEE, 2020.

[17] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for trans-

ferring short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 54–70. Springer, Berlin, Heidelberg, August
2013.

[18] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient

batched oblivious PRF with applications to private set intersection. In Edgar R.

Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

[19] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto

Trifiletti. DUPLO: Unifying cut-and-choose for garbled circuits. In Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 3–20. ACM Press, October / November 2017.

[20] Tancrède Lepoint, Sarvar Patel, Karn Seth,Mariana Raykova, andNi Trieu. Private

join and compute from pir with default. In Advances in Cryptology – ASIACRYPT
2021, volume 13090 of Lecture Notes in Computer Science, pages 605–635. Springer,
2021.

[21] Yehuda Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique,
pages 277–346. Springer International Publishing, Cham, 2017.

[22] Rasoul Akhavan Mahdavi, Nils Lukas, Faezeh Ebrahimianghazani, Thomas

Humphries, Bailey Kacsmar, John Premkumar, Xinda Li, Simon Oya, Ehsan Amja-

dian, and Florian Kerschbaum. PEPSI: Practically efficient private set intersection

in the unbalanced setting. In 33rd USENIX Security Symposium (USENIX Security
24), pages 6453–6470, Philadelphia, PA, August 2024. USENIX Association.

[23] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious transfers.

In Mehdi Tibouchi and HuaxiongWang, editors,ASIACRYPT 2021, Part III, volume

13092 of LNCS, pages 281–310. Springer, Cham, December 2021.

[24] Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Bud-

dhavarapu, and Benjamin Case. Delegated private matching for compute. In

Proceedings on Privacy Enhancing Technologies (PETS), 2024.
[25] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private

set intersection. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
1151–1165. ACM Press, November 2021.

[26] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Light-

weight private set intersection from sparse OT extension. In Alexandra Boldyreva

and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 401–431. Springer, Cham, August 2019.

[27] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,

malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors,

EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Cham,

May 2020.

[28] Lucas Piske, Jeroen Graaf, Anderson CA Nascimento, and Ni Trieu. Shared ot

and its applications to unconditional secure integer equality, comparison and

bit-decomposition. Cryptology ePrint Archive, 2024.
[29] Michael Rabin. How to exchange secrets by oblivious transfer, 1981.

[30] Visa Research. volepsi: A protocol for private set intersection. https://github.

com/Visa-Research/volepsi/blob/main/volePSI/, 2023. Accessed: 2025-01-07.

[31] David Richardson, Mike Rosulek, and Jiayu Xu. Fuzzy psi via oblivious protocol

routing. Cryptology ePrint Archive, 2024.
[32] Peter Rindal et al. cryptotools: A cryptographic library for secure computation.

https://github.com/ladnir/cryptoTools, 2023. Accessed: 2025-01-07.

[33] Peter Rindal et al. libote: A fast and portable oblivious transfer library. https:

//github.com/osu-crypto/libOTe, 2023. Accessed: 2025-01-07.

[34] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for

small sets. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
1166–1181. ACM Press, November 2021.

[35] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas. Make

some ROOM for the zeros: Data sparsity in secure distributed machine learning.

In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,

editors, ACM CCS 2019, pages 1335–1350. ACM Press, November 2019.

[36] Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and

Wenke Lee. Fuzzy labeled private set intersection with applications to private

Real-Time biometric search. In 30th USENIX Security Symposium (USENIX Security
21), pages 911–928. USENIX Association, August 2021.

[37] Aron van Baarsen and Sihang Pu. Fuzzy private set intersection with large

hyperballs. Eurocrypt, 2024.

[38] Aron van Baarsen and Sihang Pu. Fuzzy private set intersection with large

hyperballs. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 340–369. Springer, 2024.

13

https://github.com/emp-toolkit/emp-sh2pc.git
https://github.com/Visa-Research/volepsi/blob/main/volePSI/
https://github.com/Visa-Research/volepsi/blob/main/volePSI/
https://github.com/ladnir/cryptoTools
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

A CONCLUSION
This work introduces a new modular framework for fuzzy PSI, pri-

marily constructed using efficient symmetric-key primitives. At its

core is a novel OT variant called Distance-aware Random OT (da-
ROT). Compared to prior approaches based on FSS or asymmetric

cryptographic techniques, our protocol achieves a 14× improve-

ment in communication cost and a 54× in computation cost for

input sets of size from 2
8
to 2

16
. Furthermore, it operates under

weaker cryptographic assumptions than existing solutions.

While our presented solution is in the unique grid cell assump-

tion, they can be extended to support arbitrary sender inputs as well.

In the assumption-free setting, if the sender holds at most 𝑡 > 1

points per grid cell, it can decompose its input set 𝑆 into 𝑡 disjoint

sets 𝑆𝑖 (for 𝑖 ∈ [𝑡]) such that each point of 𝑆 is randomly mapped

to one set 𝑆𝑖 conditioned on each 𝑆𝑖 containing at most one point

per grid cell. Further the sender and receiver can run 𝑡 instances of

our fuzzy PSI protocol based on unique grid cell assumption, where

receiver inputs its original set and the sender inputs set 𝑆𝑖 (padded

with dummy elements to make set size |𝑆 |) in the 𝑖𝑡ℎ fuzzy PSI call.

The security of this scheme directly follows from our proposed

fuzzy PSI construction and the leakage of the additional parameter

𝑡 . We leave it as future work to optimize our construction for the

assumption-free case where the multiplicative 𝑡 overhead can be

avoided.

B PRELIMINARIES: DETAILS
B.1 Secure Semi-Honest Model
We use the standard notion of security in the presence of semi-

honest adversaries. Let 𝜋 be a protocol for computing the a (proba-

bilistic) polynomial time functionality 𝑓 (𝑥1, 𝑥2) = (𝑓1 (𝑥1, 𝑥2), 𝑓2 (𝑥1, 𝑥2)),
where party 𝑃𝑖 has input 𝑥𝑖 and it receives as output 𝑓1 (𝑥1, 𝑥2). For
party 𝑃𝑖 , let view𝑖 (1𝜅 , 𝑥1, 𝑥2) denote the view of party 𝑃𝑖 during an

honest execution of 𝜋 on inputs 𝑥1, 𝑥2 and security parameter 𝜅,

and out𝑖 (1𝜅 , 𝑥1, 𝑥2) denote the output received by 𝑃𝑖 from protocol

𝜋 . We also use out(1𝜅 , 𝑥1, 𝑥2) = (out1 (1𝜅 , 𝑥1, 𝑥2), out2 (1𝜅 , 𝑥1, 𝑥2))
as shorthand to denote the protocol’s joint output of both parties.

We have the formal definition of semi-honest security (see Defi-

nition B.1) as defined by [21]. Given the nature of the functionalities

presented in this work, we use the more general definition, which

supports non-deterministic functionalities.

Definition B.1. [21] Let 𝜅 denote a computational security param-

eter and �𝜅 denote computational indistinguishability. A 2-party

protocol 𝜋 securely realizes a probabilistic polynomial time func-

tionality 𝑓 against static semi-honest adversaries if there exists a

probabilistic polynomial-time simulator Sim such that, for all input

pairs 𝑥1, 𝑥2 and all 𝑖 ∈ {1, 2}:

(Sim(1𝜅 , 𝑖, 𝑥𝑖 , 𝑓𝑖 (𝑥1, 𝑥2)), 𝑓 (𝑥1, 𝑥2)) �𝜅 (view𝑖 (1𝜅 , 𝑥1, 𝑥2), out(1𝜅 , 𝑥1, 𝑥2)) .

Theorem 2. For domainU𝑑 , grid parameter 𝛿 , any 𝑋,𝑌 ⊂ U𝑑

where 𝜌𝑋𝑐 = 1. Let 𝐷𝑋 ← cellhash(𝑋, 𝜌𝑌𝜂) and 𝐷𝑌 ← sphash(𝑌).
Then the following holds for any 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 and 𝑝 ∈ [0,∞]

• If dist𝑝 (𝑥,𝑦) ≤ 𝛿 : there exist 𝑐 ∈ C such that (𝑐, trunc(𝑥)) ∈
𝐷𝑋 and (𝑐, trunc(𝑦)) ∈ 𝐷𝑌

• If dist𝑝 (𝑥,𝑦) > 𝛿 : either there exist no 𝑐 such that (𝑐, trunc(𝑥)) ∈
𝐷𝑋 and (𝑐, trunc(𝑦)) ∈ 𝐷𝑌 , or dist𝑝 (trunc(𝑥), trunc(𝑦)) >
𝛿

B.2 Oblivious Key-Value Store (OKVS)
Definition B.2. [13] An OKVS is parameterized by a setK of keys,

a set V of values, and a set of functions 𝐻 , and consists of two

algorithms:

– OKVS.Encode𝐻 takes as input a set of (𝑘𝑖 , 𝑣𝑖) key-value pairs
and outputs an object 𝐷 (or, with statistically small probabil-

ity, an error indicator ⊥).
– OKVS.Decode𝐻 takes as input an object 𝐷 , a key 𝑘 , and

outputs a value 𝑣 .

An OKVS is correct if, for all 𝐴 ⊆ K ×V with distinct keys:(
(𝑘, 𝑣) ∈ 𝐴

)
∧
(
{⊥, 𝐷} ← OKVS.Encode𝐻 (𝐴)

)
=⇒ OKVS.Decode𝐻 (𝐷,𝑘) = 𝑣

An OKVS is oblivious if, for all distinct {𝑘0
1
, . . . , 𝑘0𝑛} and all dis-

tinct {𝑘1
1
, . . . , 𝑘1𝑛}, ifOKVS.Encode does not output⊥ for (𝑘0

1
, . . . , 𝑘0𝑛)

or (𝑘1
1
, . . . , 𝑘1𝑛), then the output of R(𝑘0

1
, . . . , 𝑘0𝑛) is computationally

indistinguishable to that of R(𝑘1
1
, . . . , 𝑘1𝑛), where:

R(𝑘1, . . . , 𝑘𝑛) :
for 𝑖 ∈ [𝑛] : do 𝑣𝑖 ← V
return OKVS.Encode({ (𝑘1, 𝑣1), . . . , (𝑘𝑛, 𝑣𝑛) })

In our proofs, we assume a more general obliviousness property:

the OKVS output reveals only the identities of keys whose corre-

sponding values are not randomly chosen. For a formal definition

of this generalized obliviousness property, we refer the reader to

[31].

In this paper, we will omit the underlying parameter𝐻 whenever

the context is clear and unambiguous.

B.3 Oblivious Pseudorandom Function (OPRF)
Definition B.3. A Pseudorandom Function (PRF) consists of the

following two PPT algorithms for a domain D and a range R:
• KeyGen(1𝜅) → k: Given a security parameter 𝜅, this algo-

rithm generates a PRF key k. We often omit the security

parameter argument when it is clear from context.

• 𝐹k (𝑥) → 𝑦: Evaluates the PRF on input 𝑥 ∈ D using the key

𝑘 , giving output 𝑦 ∈ R.
A PRF is secure if, for all, PPT distinguishes A, there is a negli-

gible function negl such that:���Pr[A𝐹k (·) (1𝜅)] − Pr[A 𝑓 (·) (1𝜅)]
��� ≤ negl(𝜅),

where both probabilities are taken over the randomness of k ←
KeyGen(1𝜅) and A, and the second one is also taken over the

uniform choice of 𝑓 from the family of functions 𝑓 : D → R.

Ideal Functionality FOPRF
Parameters: Two parties: sender 𝑆 and receiver 𝑅, a PRF

scheme 𝐹 for domain D and range R, and bound 𝑡 ∈ N.

14

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

Behavior:
• Wait for input ordered set 𝑋 = {𝑥0, . . . , 𝑥𝑡−1} ⊆ D of

size 𝑡 from 𝑅.

• Sample k using KeyGen and give it to 𝑆 .

• Give (𝐹k (𝑥0), . . . , 𝐹k (𝑥𝑡−1)) to 𝑅.

C ASYMPTOTIC EFFICIENCY OF OUR
PROTOCOLS

C.1 Our da-ROT Protocol
We assume computing the message vectors defined by Equations 1

and 2 of Figure 2 take 𝑂 (𝑣) time and the ones defined by Equa-

tion 3 takes 𝑂 (𝑀) time. To instantiate the FSOT functionality we

use the protocol proposed in [28], which, when amortized, takes

𝑂 (log
2
(𝑁) + 𝑁 · log(𝑀)) time to execute and requires 𝑂 (log𝑁 +

𝑁 · log𝑀) bits of communication, where 𝑁 is the message vector

size and the messages are elements mod-𝑀 .

Based on these assumptions, we can conclude that our protocol

Πda-ROT takes 𝑂 (𝑑 · (log 𝑣 + 𝑣 · log𝑀) + log𝑀 +𝑀 · log𝑢) time to

execute and requires𝑂 (𝑑 · (log 𝑣 +𝑣 · log𝑀) + log𝑀 +𝑀 · log𝑢) bits
of communication, where𝑀 = 𝑑 +1 if p = ∞, and𝑀 = 𝑑 · (𝛿 +1) +1
for p ∈ {1, 2}.

C.2 Our SpSOT Protocol
We assume mod-𝑀 addition and subtractions can be performed

in constant time, cshift𝑁 is done in 𝑂 (𝑁) time, and that OKVS

encoding and batch decoding take 𝑂 (𝑛 · 𝜆) time, with the encoded

OKVS structure having𝑂 (𝑛 ∗ ℓ) bits in size, for 𝑛 keys and elements

of bit-size ℓ .

To instantiate FOPRF, we use the protocol proposed in [26], re-

placing the polynomial with an OVKVS scheme. Assuming the PRF

used by this OPRF protocol executes in 𝑂 (𝜅) time, the resulting

OPRF protocol takes 𝑂 (𝑛 · (𝜅2 + 𝜆)) time to perform the oblivi-

ous evaluation of 𝑛 points, 𝑂 (𝑛 · (𝜅2 + 𝜆)) to perform a batch of 𝑛

non-oblivious evaluations of the PRF, and requires 𝑂 (𝑛 · 𝜅) bits of
communication when amortized.

The protocol ΠSpSOT is composed of the following operations:

– 1 FOPRF execution for PRF 𝐹 and 𝑛𝑅 oblivious evaluations,

where the generated key is 𝜃 .

– 𝑛𝑆 · 𝑁 𝐹𝜃 non-oblivious evaluations.

– 1 FOPRF execution for PRF 𝐻 and 𝑛𝑆 oblivious evaluations,

where the generated key is 𝜙 .

– 𝑛𝑅 𝐹𝜙 non-oblivious evaluations.

– 𝑛𝑆 calls to cshift𝑁 .

– 1 call to OKVS.Encode with 𝑛𝑆 · 𝑁 key-values pairs.

– 𝑛𝑅 calls to OKVS.Decode.
– 𝑂 (𝑛𝑆 · 𝑁 + 𝑛𝑅) mod-𝑀 addition/subtraction operations.

Based on our previously stated assumptions, the protocolΠSpSOT

then requires 𝑂 ((𝑛𝑅 + 𝑛𝑆 · 𝑁) · (𝜅2 + 𝜆)) time to execute, and

𝑂 (𝑛𝑆 · (𝑁 · log𝑀 + 𝜅) + 𝑛𝑅 · 𝜅)) bits of communication.

C.3 Our Sp-daROT Protocol
We now describe the asymptotic analysis of the resulting Sparse

da-ROT protocol when our compiler is provided with the da-ROT
protocol defined in Section 3.1 as input and FSpSOT is instantiated

by ΠSpSOT.

Independent of metric p, our da-ROT protocol is composed of 𝑑

1-oo-𝑣 SOTs with messages in Z𝑀 , a single 1-oo-𝑀 SOT with mes-

sages in Z𝑢 and local computations. The local computations don’t

impact the final asymptotic efficiency, so we will ignore them in

this analysis. Given the previously described asymptotic efficiency

of ΠSpSOT, our compiler gives us a protocol with computational

efficiency of𝑂 (𝑑 · (𝑛1 + 𝑛0 · 𝑣) · (𝜅2 + 𝜆) + (𝑛1 + 𝑛0 ·𝑀) · (𝜅2 + 𝜆))
and communication efficiency of𝑂 (𝑑 ·𝑛0 · (𝑣 · log𝑀 +𝜅) +𝑛0 · (𝑀 ·
log𝑢 +𝜅) + (𝑑 + 1) · 𝑛1 · 𝜅)), where𝑀 depends on p as described in

Figure 2.

C.4 Our Fuzzy PSI Framework
All three protocols described in Figure 5 share the costs incurred by

executing the first three steps. Based on the asymptotic analysis of

ΠSp-daROT presented in Section 4.1, given set sizes |𝐴′ | = 𝑛 · 2𝑑 and

|𝐵′ | =𝑚, we know the first three steps will have a computational

cost of𝑂 (𝑑 · (𝑛 · 2𝑑 +𝑚 · 2𝑡∗) · (𝜅2 + 𝜆) + (𝑛 · 2𝑑 +𝑚 ·𝑀) · (𝜅2 + 𝜆))
and communication cost of𝑂 (𝑑 ·𝑚 · (2𝑡∗ · log𝑀 +𝜅) +𝑚 · (𝑀 ·𝜅) +
(𝑑 + 1) · 𝑛 · 2𝑑 · 𝜅)), where𝑀 depends on metric p as described in

Figure 2 and 𝑡∗ = ⌈log(6𝛿)⌉.

Fuzzy PSI. Aside from the cost of the first three steps, the fuzzy

PSI protocol requires Bob to encrypt |𝐵out | =𝑚 · 𝜌𝐴𝜂 values and to

encode an OKVS structure𝐷 with |𝐵out | =𝑚 ·𝜌𝐴𝜂 items and requires

Alice to query OKVS 𝐷 |𝐴out | = 𝑛 · 𝜌𝐴𝜂 · 2𝑑 times and to decrypt

|𝐴out | = 𝑛 ·𝜌𝐴𝜂 ·2𝑑 ciphertexts. Assuming the sameOKVS asymptotic

efficiency as in Section 3.1 and assuming that encryption/decryption

takes 𝑂 (𝜅) time, both the total computational and communication

asymptotic costs are dominated by the first three steps. This leaves

us with a fuzzy PSI protocol that has a total computational cost of

𝑂 (𝑑 · 𝜌𝐴𝜂 · (𝑛 · 2𝑑 +𝑚 · 2𝑡
∗) · (𝜅2 +𝜆) + 𝜌𝐴𝜂 · (𝑛 · 2𝑑 +𝑚 ·𝑀) · (𝜅2 +𝜆))

and a total communication cost of𝑂 (𝑑 · 𝜌𝐴𝜂 ·𝑚 · (2𝑡
∗ · log𝑀 + 𝜅) +

𝑚 · (𝑀 · 𝜅) + (𝑑 + 1) · 𝑛 · 𝜌𝐴𝜂 · 2𝑑 · 𝜅)), where 2𝑡
∗ ∈ 𝑂 (𝛿).

Fuzzy Cardinality. Aside from the first three protocol steps, the

two parties build the sets 𝑋 and 𝑌 and then execute the FPSICard
using these two sets as input. This gives a total computational cost

of𝑂 (𝑑 · 𝜌𝐴𝜂 · (𝑛 · 2𝑑 +𝑚 · 2𝑡
∗) · (𝜅2 + 𝜆) + (𝑛 · 𝜌𝐴𝜂 · 2𝑑 +𝑚 ·𝑀) · (𝜅2 +

𝜆) + cmp-costcard) and a communication cost of𝑂 (𝑑 ·𝑚 · 𝜌𝐴𝜂 · (2𝑡
∗ ·

log𝑀 + 𝜅) +𝑚 · (𝑀 · 𝜅) + (𝑑 + 1) · 𝑛 · 𝜌𝐴𝜂 · 2𝑑 · 𝜅) + cmm-costcard),
where cmp-costcard and cmm-costcard are the computational and

communication costs of the protocol used to instantiate FfuzzyCard,
respectively.

Fuzzy Join. In the three protocol steps exclusive to the fuzzy join

protocol, the two parties build two dictionaries and execute the

FfuzzyJoin functionality, providing these dictionaries as input. This

leaves us with a fuzzy join protocol with a total computational cost

of𝑂 (𝑑 · 𝜌𝐴𝜂 · (𝑛 · 2𝑑 +𝑚 · 2𝑡
∗) · (𝜅2 + 𝜆) + 𝜌𝐴𝜂 · (𝑛 · 2𝑑 +𝑚 ·𝑀) · (𝜅2 +

𝜆) + cmp-costjoin) and a total communication cost of𝑂 (𝑑 · 𝜌𝐴𝜂 ·𝑚 ·
15

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

(2𝑡∗ · log𝑀 +𝜅) +𝑚 · (𝑀 ·𝜅) + (𝑑 +1) ·𝑛 · 𝜌𝐴𝜂 · 2𝑑 ·𝜅) +cmm-costjoin),
where cmp-costjoin and cmm-costjoin are the computational and

communication costs of the protocol used to instantiate FfuzzyJoin,
respectively.

D SECURITY PROOF
D.1 Security for Sparse SOT

Theorem 3. Protocol ΠSpSOT securely realizes the Sparse SOT
functionality FSpSOT against a PPT semi-honest adversary in the
FOPRF-hybrid model.

Proof. Denote the inputs provided by 𝑅 and 𝑆 to the func-

tionality and the protocol as 𝑥𝑅 = (𝐼𝑅, (J𝑐 (𝑖)K𝑅
𝑀
)𝑖∈𝐼𝑅) and 𝑥𝑆 =

(𝐼𝑆 , (𝑚𝑚𝑚 (𝑖) , J𝑐 (𝑖)K𝑆
𝑀
)𝑖∈𝐼𝑆), respectively. Let𝑦𝑦𝑦𝑅 ∈ Z𝑛

𝑅

𝑀
and𝑦𝑦𝑦𝑆 ∈ Z𝑛𝑆

𝑀
represent the output vectors returned by the protocol FSpSOT to 𝑅

and 𝑆 , respectively. Similarly, let 𝑔𝑔𝑔𝑅 ∈ Z𝑛
𝑅

𝑀
and 𝑔𝑔𝑔𝑆 ∈ Z𝑛

𝑆

𝑀
denote

the output vectors returned by the functionality ΠSpSOT to 𝑅 and

𝑆 , respectively.

Corrupt Receiver. From the protocol description, the 𝑅’s proto-

col transcript view𝑅 (1𝜅 , 𝑥𝑅, 𝑥𝑆) consists of the following elements

in order: the output vector 𝑓𝑓𝑓 ∈ Z𝑛𝑅
𝑀

received from FOPRF in step 1,

the key 𝜙 received from FOPRF at step 3, and the OKVS 𝐷 received

from 𝑆 at step 8.

view𝑅 (1𝜅 , 𝑥𝑅, 𝑥𝑆) = (𝑓𝑓𝑓 , 𝜙, 𝐷)
The simulator Sim starts by computing𝐷′ ← OKVS.Encode(𝐸′)

where 𝐸′ = {((𝑖, 0), 𝑣 (𝑖)) | 𝑖 ∈ 𝐼 ′𝑆 } (here, we include a dummy

value 0 as the second component of the tuple in the keyword for

the OKVS.), with 𝐼 ′𝑆 ⊆ I being a uniformly sampled set of size 𝑛𝑆

and 𝑣 (𝑖) ∈𝑅 Z𝑀 for every 𝑖 ∈ 𝐼 ′𝑆 . Next, Sim samples a key 𝜙 ′ to
the PRF 𝐻 . To simulate the output 𝑓𝑓𝑓 that 𝑅 receives at step 1 from

FOPRF, Sim waits for the input query-point set and answers with

vector 𝑓𝑓𝑓 ′ ∈ Z𝑛𝑅
𝑀

, which is computed as follows:

𝑓 ′𝑗 = 𝑦𝑅𝑗 −OKVS.Decode(𝐷
′, (𝑖𝑅𝑗 , J𝑐

(𝑖𝑅
𝑗
)K𝑅𝑁)) − 𝐻𝜙 (𝑖𝑅𝑗)

To simulate the key 𝜙 that 𝑅 receives as output from FOPRF in
step 3 and the OKVS 𝑅 obtains from 𝑆 in step 8, Sim sends 𝜙 ′ and
𝐷′ at the corresponding steps. Next, we prove that Sim satisfies the

following equation for all possible inputs of the parties.

Sim(1𝜅 , 𝑅, 𝑥𝑅,𝑦𝑦𝑦𝑅) �𝜅 view𝑅 (1𝜅 , 𝑥𝑅, 𝑥𝑆)

From the definition of FSpSOT, we have that𝑦𝑦𝑦𝑅 ∈𝑅 Z𝑛
𝑅

𝑀
, which

directly implies that 𝑓𝑓𝑓 ′ ∈𝑅 Z𝑛
𝑅
𝑀 , and consequently 𝑓𝑓𝑓 ′ �𝜅 𝑓𝑓𝑓 .

Similarly, from the definition of FOPRF, it follows that 𝜙 ′ �𝜅 𝜙 .

Next, we prove that 𝐷 �𝜅 𝐷′, beginning with an analysis of the

pseudorandomness of 𝐷 with respect to 𝑅. Considering two cases.

(1) i ∈ IS \ IR: Since the value of𝑤𝑤𝑤 (𝑖) ∈ Z𝑛𝑆
𝑀

is given by

𝑤
(𝑖)
𝑗
← 𝑢

(𝑖)
𝑗
− J𝑧 (𝑖)K𝑆𝑀 − 𝐹𝜃 (𝑖, 𝑗) − ℎ

(𝑖)

and 𝑅 only knows evaluations 𝑓𝑓𝑓 = (𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁))𝑖∈𝐼𝑅 of

𝐹𝜃 , it is clear that that𝑤𝑤𝑤
(𝑖)

is pseudorandom to 𝑅.

(2) i ∈ IS ∩ IR: Given how𝑤𝑤𝑤 (𝑖) is computed and the points queried

during step 1 of ΠSpSOT, the𝑤
(𝑖)
𝑗

appears pseudorandom to

𝑅 for every 𝑗 ≠ J𝑐 (𝑖)K𝑅
𝑁
. Additionally,𝑤

(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

is also pseu-

dorandom to 𝑅 because 𝑆 samples J𝑧 (𝑖)K𝑆
𝑀

uniformly from

Z𝑀 .

Since 𝐷 ← OKVS.Encode(𝐸) where 𝐸 = {((𝑖, 𝑗),𝑤 (𝑖)
𝑗
) | (𝑖, 𝑗) ∈

𝐼𝑆 ×Z𝑁 }, and given that𝑤𝑤𝑤 (𝑖) is pseudorandom to 𝑅 for every 𝑖 ∈ 𝐼𝑆 ,
combined with the oblivious property of OKVS schemes, we can

conclude that 𝐷′ �𝜅 𝐷 with respect to 𝑅.

Next, we show that the following holds for every possible input.

(Sim(1𝜅 , 𝑅, 𝑥𝑅,𝑦𝑦𝑦𝑅),𝑦𝑦𝑦𝑅) �𝜅 (view𝑅 (1𝜅 , 𝑥𝑅, 𝑥𝑆),𝑔𝑔𝑔𝑅) (4)

From the description of ΠSpSOT, we can see that𝑔𝑔𝑔𝑅 is defined by

𝑔𝑅𝑗 = J𝑧 (𝑖)K𝑅𝑀 = OKVS.Decode(𝐷, (𝑖, J𝑐 (𝑖)K𝑅𝑁))+𝑓
(𝑖)+𝐻𝜙 (𝑖), where 𝑖 = 𝑖𝑅𝑗 .

By replacing 𝐷, 𝑓𝑓𝑓 , 𝜙 for the their simuled counterparts 𝐷′, 𝑓𝑓𝑓 ′, 𝜙 ′,
we have

OKVS.Decode(𝐷′, (𝑖, J𝑐 (𝑖)K𝑅𝑁)) + 𝑓
′(𝑖) +𝐻𝜙 ′ (𝑖) = 𝑦𝑅𝑗 , where 𝑖 = 𝑖𝑅𝑗 .

This completes the proof of Equation (4). Finally, we prove:

(Sim(1𝜅 , 𝑅, 𝑥𝑅,𝑦𝑦𝑦𝑅), (𝑦𝑦𝑦𝑅,𝑦𝑦𝑦𝑆)) �𝜅 (view𝑅 (1𝜅 , 𝑥𝑅, 𝑥𝑆), (𝑔𝑔𝑔𝑅,𝑔𝑔𝑔𝑆)) (5)

From the definition of FSpSOT, we have that𝑦𝑦𝑦𝑆 ∈𝑅 Z𝑛
𝑆

𝑀
and

𝑦𝑅𝑗 +𝑦
𝑆
𝑘
=𝑚

(𝑖)
𝑐 (𝑖)

, for every 𝑖𝑅𝑗 ∈ 𝐼
𝑅
and 𝑖𝑆

𝑘
∈ 𝐼𝑆 , such that 𝑖 = 𝑖𝑅𝑗 = 𝑖𝑆

𝑘
.

We now proceed to prove the same holds for 𝑔𝑔𝑔𝑅 and 𝑔𝑔𝑔𝑆 . Let

𝑖 ∈ 𝐼𝑅 ∩ 𝐼𝑆 . From the protocol description, we have

𝑔𝑅𝑗 = J𝑧 (𝑖
𝑅
𝑗
)K𝑅𝑀 ,∀𝑖𝑅𝑗 ∈ 𝐼

𝑅
and 𝑔𝑆

𝑘
= J𝑧 (𝑖

𝑆
𝑘
)K𝑆𝑀 ,∀𝑖𝑆

𝑘
∈ 𝐼𝑆

Additionally,

J𝑧 (𝑖)K𝑅𝑀

= 𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝑓 (𝑖) + 𝐻𝜙 (𝑖)

= 𝑞
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁) + 𝐻𝜙 (𝑖)

= OKVS.Decode(𝑖, J𝑐 (𝑖)K𝑅𝑁) + 𝐹𝜃 (𝑖, J𝑐
(𝑖)K𝑅𝑁) + 𝐻𝜙 (𝑖)

= 𝑤
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

+ 𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁) + 𝐻𝜙 (𝑖)

= 𝑢
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

− J𝑧 (𝑖)K𝑆𝑀 − 𝐹𝜃 (𝑖, J𝑐
(𝑖)K𝑅𝑁) − 𝐻𝜙 (𝑖) + 𝐹𝜃 (𝑖, J𝑐 (𝑖)K𝑅𝑁) + 𝐻𝜙 (𝑖)

= 𝑢
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁

− J𝑧 (𝑖)K𝑆𝑀

=𝑚
(𝑖)
J𝑐 (𝑖) K𝑅

𝑁
+J𝑐 (𝑖) K𝑅

𝑁
(mod 𝑁) − J𝑧 (𝑖)K𝑆𝑀

=𝑚
(𝑖)
𝑐 (𝑖)
− J𝑧 (𝑖)K𝑆𝑀

This implies that 𝑔𝑆 ∈𝑅 Z𝑛
𝑆

𝑀
and

𝑔𝑅𝑗 +𝑔
𝑆
𝑘
=𝑚

(𝑖)
𝑐 (𝑖)

, for every 𝑖𝑅𝑗 ∈ 𝐼
𝑅
and 𝑖𝑆

𝑘
∈ 𝐼𝑆 , such that 𝑖 = 𝑖𝑅𝑗 = 𝑖𝑆

𝑘
.

16

Distance-Aware OT with Application to Fuzzy PSI ACM CCS ’25, October 2025, Taipei, Taiwan

This concludes our simulation proof for a corrupt receiver.

Corrupt Sender. The 𝑆 ’s protocol transcript view𝑆 (1𝜅 , 𝑥𝑅, 𝑥𝑆)
consists of the PRF key 𝜃 that 𝑆 receives at step 1, followed by the

output vector ℎℎℎ ∈ Z𝑛𝑆
𝑀

that 𝑆 receives in step 3.

view𝑆 (1𝜅 , 𝑥𝑅, 𝑥𝑆) = (𝜃,ℎℎℎ)
Sim simulates the output 𝜃 at step 1 by sampling and returning

a key 𝜃 ′ to PRF F, and simulates the output vector ℎℎℎ at step 3

by sampling ℎℎℎ′ ∈𝑅 Z𝑛
𝑆

𝑀
and returning it. From the definition of

FOPRF, it is straightforward to see the following holds for any

inputs provided by the parties.

Sim(1𝜅 , 𝑆, 𝑥𝑆 ,𝑦𝑦𝑦𝑆) �𝜅 view𝑆 (1𝜅 , 𝑥𝑅, 𝑥𝑆)
From the protocol description, the party 𝑆’s output 𝑔𝑔𝑔𝑆 is uni-

formly sampled from Z𝑛
𝑆

𝑀
. Thus, the next equation follows in a

straightforward manner for any inputs provided by the parties.

(Sim(1𝜅 , 𝑆, 𝑥𝑆 ,𝑦𝑦𝑦𝑆),𝑦𝑦𝑦𝑆) �𝜅 (view𝑆 (1𝜅 , 𝑥𝑅, 𝑥𝑆),𝑔𝑔𝑔𝑆)
Next, we complete our proof by showing the following for any

inputs provided by the parties:

(Sim(1𝜅 , 𝑆, 𝑥𝑆 ,𝑦𝑦𝑦𝑆), (𝑦𝑦𝑦𝑅,𝑦𝑦𝑦𝑆)) �𝜅 (view𝑆 (1𝜅 , 𝑥𝑅, 𝑥𝑆), (𝑔𝑔𝑔𝑅,𝑔𝑔𝑔𝑆)) (6)

From the definition of FSpSOT, we have that𝑦𝑦𝑦𝑅 ∈𝑅 Z𝑛
𝑅

𝑀
and

𝑦𝑅𝑗 +𝑦
𝑆
𝑘
=𝑚

(𝑖)
𝑐 (𝑖)

, for every 𝑖𝑅𝑗 ∈ 𝐼
𝑅
and 𝑖𝑆

𝑘
∈ 𝐼𝑆 , such that 𝑖 = 𝑖𝑅𝑗 = 𝑖𝑆

𝑘
.

Similar to the case of a corrupt receiver, we have that 𝑔𝑔𝑔𝑅 ∈ Z𝑛𝑅
𝑀

and

𝑔𝑅𝑗 +𝑔
𝑆
𝑘
=𝑚

(𝑖)
𝑐 (𝑖)

, for every 𝑖𝑅𝑗 ∈ 𝐼
𝑅
and 𝑖𝑆

𝑘
∈ 𝐼𝑆 , such that 𝑖 = 𝑖𝑅𝑗 = 𝑖𝑆

𝑘
.

Moreover, 𝑔𝑅
𝑗
is pseudorandom to 𝑆 for every 𝑖𝑅

𝑗
∈ 𝐼𝑅 \ 𝐼𝑆 . Let

𝑖 ∈ 𝐼𝑅 \ 𝐼𝑆 . As previously noted, we have that

𝑔𝑅𝑗 = J𝑧 (𝑖)K𝑅𝑀 = OKVS.Decode(𝐷, (𝑖, J𝑐 (𝑖)K𝑅𝑁))+𝑓
(𝑖)+𝐻𝜙 (𝑖), where 𝑖 = 𝑖𝑅𝑗 ,

and from step 3 of ΠSpSOT, the 𝐻𝜙 (𝑖) is pseudorandom to 𝑆 . This

directly implies that 𝑔𝑅
𝑗
is pseudorandom to 𝑆 for every 𝑖𝑅

𝑗
∈ 𝐼𝑅 \ 𝐼𝑆 ,

and concludes our proof for Equation (6).

□

D.2 Security for Sp-daROT
Theorem 4. Let Π be a secure 0-round da-ROT protocol in the

FSOT hybrid model. Then sparse-comp(Π) in Figure 4 is a secure
Sp-daROT protocol for the same parameters in the FSp-daROT hybrid
model.

Proof. The correctness of the Sp-daROT is easy to verify. The

key observation is that the output of each invocation of SpSOT
can be replaced by SOT outputs for matching indexes, and with

random elements otherwise. More formally, for any (𝑖, 𝑥) ∈ 𝑋 ′,
the receiver’s input to F param

SpSOT [𝑗], the corresponding output 𝑂𝑅

contains (𝑖, 𝑟) defined as follows:

• If there exists (𝑖, 𝑦) ∈ 𝑌 ′ for some 𝑦: Add the element (𝑖, 𝑟)
to 𝑂𝑅 where (𝑟, ∗) ← F param[𝑗]

SOT (𝑥,𝑦)
• Otherwise: Add (𝑖, 𝑟) to 𝑂𝑅 , where 𝑟 is a random value.

Therefore, the correctness of Sp-daROT follows directly from

the correctness of the underlying da-ROT protocol Π.
To complete the privacy proof, we construct a simulator for Sp-

daROT in a natural way: For a corrupt sender with input 𝑋 and

output 𝑋out, we run the da-ROT simulator Sim((𝑖, 𝑋 [𝑖]), 𝑋out [𝑖])
for each index 𝑖 in 𝑋 . This outputs a distribution indistinguish-

able from the multiple SOT calls in the underlying da-ROT pro-

tocol. Hence, by construction, concatenating the distributions of

Sim((𝑖, 𝑋 [𝑖]), 𝑋out [𝑖]) for each index in the input set gives the view

of the sender in Sp-daROT. A similar argument follows for a corrupt

receiver.

□

D.3 Security for fuzzyPSI
Theorem 5. The protocol in Figure 5 securely implements the

FfuzzyPSI functionality in the FSp-daROT hybrid model.

Proof. Correctness: For any 𝑏 ∈ 𝐵, we consider two cases:

• There exist 𝑎 ∈ 𝐴 such that dist(𝑎, 𝑏) ≤ 𝛿 : By correct-

ness of spatial hashing, Bob’s dictionary 𝐵′ contains a key-
value pair ((cell(𝑎), 𝑗), 𝑏) for some 𝑗 ∈ [𝜌𝐴𝜂]. By the cor-

rectness of FSp-daROT invoked in Step 2, Alice and Bob’s

out dictionaries, respectively, contain ((cell(𝑎), 𝑗), (𝑟0, 𝑟1))
and ((cell(𝑎), 𝑗), 𝑟0) for some 𝑟0, 𝑟1. Hence, set Y contains

((cell(𝑎), 𝑗), Enc(𝑟0, 𝑏)). In Step 5 for the loop for the ((cell(𝑎), 𝑗), 𝑟𝑜)
iteration, Alice computes Dec(𝑟0, 𝑐) and adds it to 𝑍 . This,

by the correctness of the encryption scheme, is precisely 𝑏.

• For all 𝑎 ∈ 𝐴, dist(𝑎, 𝑏) > 𝛿 : we complete this proof by

showing 𝑏 ∉ 𝑍 . Assume by contradiction 𝑏 ∈ 𝑍 , which

is the output of Alice. By the correctness of one-time pad

encryption, OKVS 𝐷 sent by Bob contains a key-value pair

(𝑖, Enc(𝑟, 𝑏)) for some 𝑖, 𝑟 where Alice’s set 𝐴out contains

(𝑖, 𝑟). By the correctness of FSp-daROT, Alice’s input set 𝐴′
contains (𝑖, 𝑎′) for some𝑎′ ∈ 𝐴 such that dist(𝑎, 𝑏) ≤ 𝛿 with

all but negligible probability. This gives us a contradiction

since, as assumed, no element in 𝐴 was 𝛿 close to 𝑏.

Privacy:We divide this proof into two cases:

• Corrupt Bob: Bob’s view in the protocol only contains 𝐵out
the output of FSp-daROT from Step 3, an OKVS of fixed size.

Hence, by the OKVS obliviousness property, this OKVS is

indistinguishable from another OKVS with key-value pairs

with arbitrary keys and corresponding random values, which

is simulatable given public parameters.

• CorruptAlice: Alice view contains𝐴out the output ofFSp-daROT
from Step 2 and an OKVS 𝐷 from Step 4. We first construct

a hybrid where the OKVS 𝐷 constructed in Step 3 of the

protocol is modified as follows: for each (𝑖, Enc(𝑟0, 𝑏)) in-
serted in 𝑌 where 𝑏 ∉ 𝐴 ∩ 𝐵, we replace it by (𝑖′, 𝑟) where
𝑟 is a random string of same length as Enc(𝑟0, 𝑏) and 𝑖′ is
a random index. This hybrid has a computationally indis-

tinguishable distribution compared to the original protocol

since the ciphertexts are pseudorandom for elements not

17

ACM CCS ’25, October 2025, Taipei, Taiwan Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

in the intersection, and OKVS satisfies the independence

property.

As the final hybrid, we replace the output of FSp-daROT from

Step 2 (i.e. 𝐴out) with another OKVS with random key-value

pairs for key indexes not corresponding to the intersection.

□

Theorem 6. The protocol in Figure 5 securely implements the
FfuzzyCard andFfuzzyJoin functionality in theFSp-daROT, FPSICard, FPSIJoin
hybrid model.

We omit the proof of Theorem 6, as it follows the same blueprint

as that of Theorem 5.

E PSI IDEAL FUNCTIONALITIES

PSI Ideal Functionalities.

Parameters: Input set sizes 𝑛,𝑚, input length ℓ , D = {0, 1}∗.
• The two parties, receiver Alice and sender Bob, provide sets

𝐴, 𝐵 ⊆ D as input, respectively, with 𝑛 = |𝐴 | and𝑚 = |𝐵 | .
• Only for FPSIJoin: the sender and receiver also input associated
data dictionaries AD𝑆 ,AD𝑅

respectively with key sets 𝐴, 𝐵

and values in {0, 1}ℓ ,
• Define outputs for each functionality as follows:

– FPSICard: output |𝐴 ∩ 𝐵 | to the receiver Alice.

– FPSIJoin:
∗ Initialize 𝑡 = 0.

∗ For every (𝑎,𝑏) ∈ 𝐴 × 𝐵 where 𝑎 = 𝑏:

· sample 𝑢𝑡 ←$
{0, 1}2𝜎

· set 𝑣𝑡 such that 𝑢𝑡 ⊕ 𝑣𝑡 = AD𝑆 (𝑎) | |AD𝑅 (𝑏)
· 𝑡 ← 𝑡 + 1

– Shuffle both ®𝑢 and ®𝑣 with the same random permutation

– Output vectors ®𝑢 to sender and ®𝑣 to receiver

F RELATEDWORK
In this section, we review advancements in malicious fuzzy PSI

protocols. We begin with the work of Garimella et al. [14], which

introduced the first specialized fuzzy PSI protocols for the 𝐿1 and

𝐿∞ distance metrics in 2022. Their approach introduced novel con-

structions, such as weak FSS, and innovative techniques like spatial

hashing to reduce the communication complexity of these protocols.

Among these contributions, spatial hashing stands out as a signif-

icant innovation and has been adopted in numerous subsequent

fuzzy PSI works.

Building on this foundation, [37] relies on the DDH assumption

to propose new spatial hashing techniques for a fuzzy PSI protocol

that supports metrics 𝐿p∈[1,∞] . By leveraging the homomorphic

properties of DDH tuples, they enabled efficient evaluation of com-

parison functions across various distance metrics. Additionally,

their spatial hashing techniques exploit the geometric structure

of the space, avoiding the quadratic blowup typically encountered

when comparing all receiver balls to all sender points. However,

their protocol relies heavily on public-key operations.

Gao et al.[9] observed that most fuzzy PSI protocols adhere to

a two-phase paradigm: coarse mapping and refined filtering. The

coarse mapping phase identifies receiver and sender points that

are “close enough,” while the refined filtering phase performs fuzzy

matching between these paired points. The paper introduced a

new interactive primitive called fuzz-mapping, which abstracts the

coarse mapping phase. By combining fuzzy-mapping with public-

key cryptography, they developed new fuzzy PSI protocols that

support 𝐿∞, 𝐿p, and Hamming metrics. However, a major draw-

back to this work is their reliance on a different and unrealistic

disjointness assumption, where each sender’s or receiver’s point is

separated from other points in the same set by at least one dimen-

sion.

In the most recent work considered in this section, Richardson

et al. [31] proposed a general fuzzy-psi protocol framework, which

they use to instantiate protocols for 𝐿p and 𝐿∞ metrics in the same

work. The starting point for the framework is the PSI protocol

presented in [6], which compiles a private equality test (PEQT) pro-

tocol into a PSI protocol. [31] generalizes this protocol to the fuzzy

PSI setting by combining it with garble circuit and spatial hashing

techniques, supporting 𝐿p and 𝐿∞ metric comparisons. Different

garbling schemes are recommended depending on the metric to

achieve better performance when instantiating their framework.

[36] presents fuzzy PSI protocols for Hamming distance, while [4]

extends this to support both Hamming distance and the 𝐿1 met-

ric. However, we do not consider these works in our comparisons

due to some major limitations of their protocols. More specifically,

their protocol [4] for hamming distance has a non-negligible false

positive rate, and their protocol for 𝐿1 metric only supports one-

dimensional spaces.

A sparse matching functionality was presented in [35] termed

Read-Only Oblivious Maps (ROOMs). In this primitive, the server

holds a dictionary 𝐷 , and the client holds a set of key values
®𝑘 . As

output the parties hold random secret sharing of vector ®𝑣 such that

®𝑣𝑖 is some default value 𝛽 if
®𝑘𝑖 is not in 𝐷 , else ®𝑣𝑖 = 𝐷 [®𝑘𝑖]. This

can be viewed as a special case of our sparse da-ROT primitive but

only for exact matches. Our work focuses on the fuzzy setting, and

hence, we provide no direct comparison with their constructions.

We note that our proposed da-ROT primitive shares a definition

similar to conditional OT (SCOT) [2] andmembership OT [7].While

membership OT can be viewed as a special case of da-ROT that

focuses solely on equality, previous works on SCOT are restricted

to one-dimensional, interval-based conditions (i.e., 𝐿∞ in 1D) and

depends on computationally expensive homomorphic encryption.

In contrast, da-ROT supports a wider range of distance metrics and

leverages standard OT. Combined with our sparse compiler, this

enables efficient implementations of sparse and batched da-ROT
via OT extensions. We believe this advancement will be particularly

valuable to the applied MPC literature, where SCOT is used as a

building block.

18

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notation
	2.2 Fuzzy PSI Functionalities
	2.3 Oblivious Key-Value Store (OKVS)
	2.4 Oblivious Pseudorandom Function (OPRF)
	2.5 Oblivious Transfer (OT) and Its Variants
	2.6 Spatial Hashing

	3 Building Blocks
	3.1 Distance-aware Random OT (da-ROT)
	3.2 Sparse SOT

	4 Fuzzy PSI Framework
	4.1 Sparse distance-aware random OT (Sp-daROT) Functionality and Its Compiler
	4.2 Our Fuzzy PSI Framework

	5 Performance Evaluation
	References
	A Conclusion
	B PRELIMINARIES: Details
	B.1 Secure Semi-Honest Model
	B.2 Oblivious Key-Value Store (OKVS)
	B.3 Oblivious Pseudorandom Function (OPRF)

	C Asymptotic Efficiency of Our Protocols
	C.1 Our da-ROT Protocol
	C.2 Our SpSOT Protocol
	C.3 Our Sp-daROT Protocol
	C.4 Our Fuzzy PSI Framework

	D Security Proof
	D.1 Security for Sparse SOT
	D.2 Security for Sp-daROT
	D.3 Security for fuzzyPSI

	E PSI Ideal Functionalities
	F Related Work

