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Abstract. The smoothing parameter is a cornerstone concept in lattice-
based cryptography. Traditionally defined using the L∞ distance, this
standard formulation can be overly stringent compared to the L1 (or
statistical) distance more commonly employed in cryptographic contexts.
Recent work has proposed relaxed definitions based on Kullback-Leibler
(KL) divergence and L1 distance, thereby loosening the constraints re-
quired for the distance to vanish. However, the additive nature of the L1

distance can be limiting for cryptographic applications where probability
preservation is essential. In this paper, we introduce the Rényi smooth-
ing parameter of a lattice, based on Rényi divergence, to address this
limitation. The advantages of Rényi divergence in cryptographic settings
are well known thanks to its multiplicative nature. The Rényi smoot-
ing parameter provides a tunable framework that interpolates between
the L1 and L∞ distances, offering enhanced flexibility. We present two
complementary methods to study the averaging behavior of the Rényi
flatness factor: one uses classical tools such as the Minkowski-Hlawka
ensemble and Rogers’ formula for computing lattice function moments;
the other employs Construction A lattices derived from random codes.
Finally, we illustrate how this new perspective yields improvements in
lattice-based cryptographic constructions.

Keywords: Lattice-based cryptography · Minkowski-Hlawka theorem ·
Rényi divergence · Rogers’ formula · smoothing parameter

1 Introduction

The smoothing parameter of a lattice Λ is defined as the minimum amount of
Gaussian noise that, when added to the lattice, produces a distribution that is
close to uniform over the fundamental domain Rn/Λ [23]. This concept plays
a central role in both the theory and practice of lattice-based cryptography.
Theoretically, it underpins the security proofs of a wide range of cryptographic
constructions based on lattices [23, 28]; lattice Gaussian sampling with width
close to the smoothing parameter enables solutions to the approximate closest
vector problem (CVP) and shortest vector problem (SVP) [1,2,24]. Practically,
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the smoothing parameter guides concrete parameter selection in several lattice-
based schemes [13], such as the FALCON signature algorithm [27]. It is also
important to note that closeness to uniformity can be evaluated using different
distance metrics.

In cryptography, the L1 (statistical) distance is the standard metric. How-
ever, its additive nature can be limiting in security proofs where preservation
of probabilities is crucial. To address this, Rényi divergence has been proposed
as a more suitable alternative [3]. Owing to its multiplicative property, Rényi
divergence offers several benefits in cryptographic settings, including tighter se-
curity reductions and more efficient parameter selection. As a result, it has seen
growing adoption in lattice-based cryptography (see, e.g., [4, 21,26,31]).

Interestingly, the situation is reversed in the context of the smoothing pa-
rameter. Micciancio and Regev originally defined the smoothing parameter using
the L∞ distance [23], which corresponds to Rényi divergence of order ∞. This
is a stricter notion than the L1 distance, requiring a larger Gaussian parameter
for the folded distribution to approximate uniformity. To mitigate this, an L1-
based version of the smoothing parameter was proposed in [7, 20], potentially
enabling more efficient implementations through smaller parameter choices. In-
deed, many lattice-based protocols require sampling at or above the smoothing
parameter. Tighter sampling enhances security by resisting attacks that exploit
large approximation factors. However, the L1-based smoothing parameter lacks
the multiplicative property, and thus inherits the same limitations as the L1

distance.
This highlights a gap between the L1 and L∞ definitions of the smoothing

parameter. To bridge this gap, we introduce the Rényi smoothing parameter3,
defined using the Rényi divergence of order 1 ≤ α ≤ ∞. This new definition
interpolates between the two extremes and forms the central focus of this pa-
per. In particular, choosing an order α close to 1—such as α = 2—allows the
smoothing parameter to retain both the multiplicative property and improved
parameter efficiency, offering the best of both worlds.

1.1 Our Contributions

Given a lattice Λ and a noise probability density function (pdf) ρ(x), define the
Λ-periodic function

ρΛ(x) =
∑
λ∈Λ

ρ(x+ λ).

In this paper, we use the Rényi divergence to measure the closeness between the
folded distribution ρΛ(x) and the uniform distribution U(x) = 1/V (Λ), where

3 Rényi divergence-based smoothing was previously considered in [3], but their analysis
was limited to the case of Rényi divergence of order ∞, which coincides with the
standard smoothing parameter [23].
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V (Λ) is the covolume of Λ, over a fundamental domain R(Λ) of Λ:

Rα(ρΛ∥U) =

(∫
R(Λ)

ρΛ(x)
α

1/V (Λ)α−1
dx

) 1
α−1

, α > 1.

We define R1(ρΛ∥U) and R∞(ρΛ∥U) as the limits of Rα(ρΛ∥U) as α → 1 and
α→∞, respectively.

Typically, we consider the n-dimensional Gaussian distribution with param-
eter s > 0:

ρs(x) =
1

sn
exp

(
−π∥x∥2

s2

)
.

In this case, we write Rα(ρΛ∥U) more explicitly as Rα(ρs,Λ∥U).

Definition 1. Let ρs(x) be a Gaussian noise pdf and ε ≥ 0. The Rényi smooth-
ing parameter η

(α)
ε (Λ) of a lattice Λ with order α ∈ [1,∞] is defined as the

smallest s > 0 such that Rα(ρs,Λ∥U) ≤ 1 + ε.

In Section 2, we derive a closed-form expression for Rα(ρs,Λ∥U) when α ∈
N≥2, which allows the Rényi smoothing parameter η

(α)
ε (Λ) to be explicitly de-

fined as the smallest s > 0 satisfying:∑
λ1,...,λα−1∈Λ∗

exp
(
−πs2(λT

1 , . . . ,λ
T
α−1)(A⊗ In)(λ

T
1 , . . . ,λ

T
α−1)

T
)
≤ (1 + ε)α−1,

(1)
where Λ∗ is the dual lattice and A = Iα−1 + Jα−1, with Ik the k × k identity
matrix and Jk the k×k all-one matrix. Here, ⊗ denotes the Kronecker product.

For α = 2, this simplifies to the particularly elegant expression:∑
λ∈Λ∗

exp
(
−2πs2∥λ∥2

)
≤ 1 + ε.

Interestingly, this resembles the expression for the standard L∞ smoothing pa-
rameter, defined as [23]: ∑

λ∈Λ∗

exp
(
−πs2∥λ∥2

)
≤ 1 + ε.

The only difference is a factor of 2 in the exponent. Hence, we obtain the exact
relation:

η(2)ε (Λ) =

√
2

2
η(∞)
ε (Λ). (2)

This highlights the advantage of using the Rényi smoothing parameter: for
order α = 2, it yields a

√
2
2 reduction in s. Although seemingly modest, this gain

can have a significant impact in lattice-based cryptography. For example, the
security of the GPV signature scheme is highly sensitive to the value of s [26].
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While this is encouraging, we should also be aware of the inherent limit of
Rényi smoothing. As shown in Section 3, on average the smoothing parameter
of a lattice with unit volume (as the lattice dimension n→∞) is given by:

η(α)ε (Λ)→ α−1/2(α−1) =



1√
e
, as α→ 1;

1√
2
, for α = 2;

1
4√3

, for α = 3;

...
1, as α→∞.

Therefore, the maximum possible reduction is a factor of
√
e, achieved in the

limit as α→ 1, in agreement with the results in [7, 20].

Remark 1. By defining Rényi flatness factor ϵ
(α)
Λ (s) ≜ Rα(ρs,Λ∥U)− 1, the con-

nection between ϵ
(α)
Λ (s) and η

(α)
ε (Λ) is as follows. For α ∈ N≥2 ∪ {∞}, we have

ϵ
(α)
Λ (s) = ε⇔ s = η(α)ε (Λ).

Specifically η
(∞)
ε (Λ) = ηε(Λ) where ηε(Λ) is the commonly defined smoothing

parameter in [23].

Theorem 1 (Informal). For α ∈ N≥2 and random lattices of unit volume, we
have

EΛ[ϵ
(α)
Λ (s)]→ 0

exponentially fast as n→∞, provided:

s > α−1/(2α−2),

which is optimal.

Here ‘optimal’ means no lattice of unit volume exists for the smoothing be-
havior unless the above bounds is satisfied, which is stated in the following.

Theorem 2 (Informal). For α ∈ N≥2 and any lattice Λ of unit volume, we have

ϵ
(α)
Λ (s)→∞,

exponentially fast as n→∞, provided:

s < α−1/(2α−2).

Thus the bound s > α−1/(2α−2) is sharp: the Rényi flatness factor of order α
of a lattice cannot vanish for any s < α−1/(2α−2). In particular, the L∞ flatness
factor explodes exponentially for any s < 1. This can also be seen from (5):

ϵ
(∞)
Λ (s) >

1

sn
− 1
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since the theta series ΘΛ(τ) > 1 for any τ > 0. Thus, as s becomes smaller than
1, the L∞ flatness factor ≈ 1

sn , but the Rényi flatness factor can still be brought
under control. This demonstrates the advantage of the Rényi flatness factor.

We also obtain vanishing rates with explicit exponents of the Rényi flatness
factor.

Theorem 3 (Informal). For α ≥ 2, s > α−1/(2α−2) and random lattices of unit
volume,

EΛ[ϵ
(α)
Λ (s)] = O(e−nE(α)

s )

where

E(α)
s = min

{
1

2
logα+ (α− 1) log s,

1

2
log 2s2

}
.

Our proofs estimate the average behavior of random lattice ensembles. When
the average behavior vanishes, there must exist some lattice in the ensemble with
the same property. We use both the Minkowski–Hlawka ensemble and the Con-
struction A ensemble, which are detailed in later sections. The formal versions
of these results appear in Theorem 5, Theorem 6 and Theorem 7.

1.2 Technical Overview

Random Lattice Ensembles In our subsequent proofs establishing the existence
of smoothing-good lattices, we analyze the average behavior of lattices drawn
from certain random ensembles. In particular, we consider two ensembles: the
Minkowski–Hlawka ensemble and Loeliger’s ensemble via Construction A. These
two ensembles form the basis for our analysis of smoothing-good lattices. Their
averaging properties allow us to deduce that there exist lattices whose average
behavior meets the requirements for smoothing.

Rogers’ Formula. To study the asymptotic behavior of lattices drawn from the
Minkowski–Hlawka ensemble, one must evaluate expectations of the form

EΛ

[
f(λ1,λ2, . . . ,λk)

]
.

This requires the Rogers averaging formula, which generalizes Siegel’s mean-
value theorem to the multivariate setting. In the resulting expansion, the leading
terms are straightforward to compute, but the remaining terms are notoriously
difficult to handle. In this work, we treat each term in the Gaussian case in turn
and derive explicit asymptotic convergence bounds.

Loeliger’s Formula for Higher-Order Moments. To derive the Rényi flatness fac-
tor of order α ≥ 2 for the Construction-A lattice ensemble, we extend Loeliger’s
averaging lemma to α-fold correlations, mirroring the multivariate Rogers for-
mula. Recall that a Construction-A lattice Λ(C) ⊂ Rn is obtained by lifting a
linear code C ⊂ Fn

q modulo p. By grouping ordered α-tuples of codewords accord-
ing to the dimension k of their span, one shows that the probability a random
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α-tuple spans a k-dimensional subspace of Fn
q is related to the Gaussian binomial

coefficient. Substituting this decomposition into the ensemble average produces
a finite sum of Gaussian integrals indexed by k = 1, . . . ,min(α, n). Each term
can then be bounded asymptotically, yielding explicit convergence rates for the
α-th moment.

1.3 Related Work and Open Problems

Our research builds upon and complements several recent advances in infor-
mation theory and lattice-based cryptography. Luzzi, Ling and Bloch [20] ana-
lyzed the Kullback–Leibler (KL) and L1 smoothing behavior of Construction A
ensembles under Gaussian noise. Debris-Alazard, Ducas, Resch and Tillich [7]
performed an analysis of L1 smoothing using both Minkowski–Hlawka and Con-
struction A ensembles, considering both Gaussian and ball-shaped noise distri-
butions. They both [7, 20] showed the existence of lattices whose L1 smoothing
parameter η(1)ε (Λ)→ V (Λ)1/n/

√
e for a suitable sequence εn → 0. This improves

upon the result on L∞ smoothing parameter ηεn(Λ)→ V (Λ)1/n.
Pouly and Shen [24] employed Rogers’ formula to study the L∞ smoothing

properties of the Minkowski–Hlawka ensemble under Gaussian noise, though
their analysis is limited to the first and second moments. Rogers’ formula has
also been used in [11, 12] to prove probabilistic bounds for the shortest vectors
in module lattices.

Interestingly, the left-hand side of (1) can be identified with the degree-(α−1)
Siegel theta series [10] associated to the dual lattice Λ∗:

Θ
(α−1)
Λ∗

(
As2

)
=

∑
(λ1,··· ,λα−1)∈Λ∗×···×Λ∗

e−πs2 tr(Sα−1A),

where tr(·) denotes the trace of a matrix, and the Gram matrix Sα−1 = (Sij)
where Sij =

〈
λi,λj

〉
, i, j = 1, . . . , α − 1. Moreover, the infinite sum appearing

in our Proposition 1—which involves matrix determinants—bears a resemblance
to a variant of the Selberg zeta function, as studied by Koecher [33]:

ζA(k) =
∑

0 ̸=D∈Zm×n

|DADT |−k

where A is positive definite symmetric and the sum is over a complete set of
representatives for equivalence relation D ∼D′ if D′ = DU with U ∈ GLn(Z).
This function extends the classical Epstein zeta function from quadratic forms
over vectors to quadratic forms over matrices. Exploring these connections may
offer a fruitful direction for future research.

While we have illustrated some applications of the Rényi smoothing param-
eter, we believe that many more problems in lattice-based cryptography could
benefit from this framework, particularly given the central role played by Rényi
divergence in recent cryptographic analyses.



Rényi Smoothing Parameter 7

1.4 Roadmap

The remainder of this paper is organized as follows: Section 2 introduces the
basic definitions of lattices, discrete Gaussian distributions, information theo-
retic measures, and the Rényi smoothing parameter. Section 3 develops our first
main result by applying Rényi divergence to analyze the average behavior of
the Minkowski–Hlawka ensemble. Section 4 extends our analysis to the Con-
struction A ensemble. Finally, we present selected applications in lattice-based
cryptography in Section 5.

Throughout the paper, we use standard asymptotic notation: f(x) = O(g(x))
if lim supx→∞ |f(x)/g(x)| < ∞, f(x) = o(g(x)) if lim supx→∞ |f(x)/g(x)| = 0,
and f(x) = ω(g(x)) if lim supx→∞ |g(x)/f(x)| = 0. O(·) always denotes growth
in n alone. Whenever we write o(·) with respect to parameters beyond n, those
additional variables will be clearly indicated.

2 Definitions

2.1 Information-Theoretic Measures and Inequalities

We define the Rényi divergence and other distance in the same way as [3].
Let p(x) and q(x) be probability density functions on Rn. Define

∆(p, q) =
1

2
∥p− q∥1 =

1

2

∫ ∣∣ p(x)− q(x)
∣∣ dx,

∥p− q∥∞ = sup
x

∣∣ p(x)− q(x)
∣∣.

For α ̸= 1, the Rényi divergence is define by 4

Rα

(
p∥q
)
=

(∫
p(x)α

q(x)α−1
dx

)1/(α−1)

.

The limit α→ 1 corresponds to the KL divergence. In the limit α→∞ [9],

R∞
(
p∥q
)
= ess supp

p(x)

q(x)
.

Here, ess sup denotes the essential supremum, i.e., the supremum taken after
ignoring sets of measure zero. These satisfy the following monotonicity for α1 ≤
α2:

Rα1(p∥q) ≤ Rα2(p∥q).

We will also use the following key inequalities:

4 In cryptography, the convention for Rényi divergence typically refers to the exponen-
tial of the classical Rényi divergence, which is originally defined using the logarithm.
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Lemma 1 (Pinsker’s Inequality). For α ∈ [1,∞],

Rα(p∥q) ≥ e2∆(p,q)2 .

We now present the properties of statistical distance including probability
preservation and data processing inequality.

Lemma 2. Let p and q be two probability densities on (X ,F). Then for any
measurable E ⊆ X , ∫

E

q(x) dx ≥
∫
E

p(x) dx−∆(p, q).

Moreover, for any measurable map f : X → Y, letting pf and qf denote the
pushforward densities on Y, one has

∆(pf , qf ) ≤ ∆(p, q).

Lemma 3 ( [3, Lemma 2.9]). Let p, q be two probability density functions over a
measurable space X , and let (pi)i, (qi)i be two families of density functions. The
Rényi divergence satisfies the following properties:

– Data processing inequality: For any measurable function f , and let pf , qf
denote the pushforward densities of p, q through f , we have

Rα(pf∥qf ) ≤ Rα(p∥q).

– Multiplicativity: For product densities,

Rα

(∏
i

pi
∥∥∏

i

qi

)
=
∏
i

Rα(pi∥qi).

– Probability preservation: For any measurable event E ⊆ Supp(q) and
α ∈ (1,+∞), we have∫

E

q(x) dx ≥
(∫

E
p(x) dx

)α/(α−1)

Rα(p∥q)
.

2.2 Lattice Gaussian Distribution

An n-dimensional lattice Λ in the Euclidean space Rn is a set defined by

Λ = L (B) = {Bx : x ∈ Zn}

where the columns of the basis matrix B = [b1, · · · , bn] are assumed to be
linearly independent. The dual lattice Λ∗ of a lattice Λ is defined as the set of
vectors v ∈ Rn such that ⟨v,λ⟩ ∈ Z, for all λ ∈ Λ (see, e.g., [6]).

A measurable set R(Λ) ⊂ Rn is a fundamental region of the lattice Λ
if ∪λ∈Λ(R(Λ) + λ) = Rn and if (R(Λ) + λ) ∩ (R(Λ) + λ′) has measure 0 for
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any λ ̸= λ′ in Λ. The volume of a fundamental region is equal to that of the
Voronoi cell V (Λ) =

√
|det(BTB)|.

For s > 0 and v ∈ Rn, the usual Gaussian pdf of parameter s centered at
v ∈ Rn is given by

ρs,v(x) =
1

sn
e−

π∥x−v∥2

s2 ,

for all x ∈ Rn. For convenience, we write ρs(x) = ρs,0(x).
Consider the Λ-periodic function

ρs,Λ(x) =
∑
λ∈Λ

ρs,λ(x) =
1

sn

∑
λ∈Λ

e−
π∥x−λ∥2

s2 , (3)

for all x ∈ Rn. Observe that ρs,Λ restricted to the fundamental region R(Λ) is
a probability density.

We define the discrete Gaussian distribution over Λ centered at v ∈ Rn as
the following discrete distribution taking values in λ ∈ Λ:

DΛ,s,v(λ) =
ρs,v(λ)

ρs,v(Λ)
, ∀λ ∈ Λ,

where ρs,v(Λ) ≜
∑

λ∈Λ ρs,v(λ) = ρs,Λ(v). Again for convenience, we write
DΛ,s = DΛ,s,0.

In some sense, the continuous distribution ρs,Λ and the discrete distribution
DΛ,s are the Fourier dual of each other. To see this, note that since ρs,Λ(x) is
Λ-periodic, it has the Fourier expansion on the dual lattice Λ∗

ρs,Λ(x) =
1

V (Λ)

∑
λ∗∈Λ∗

ρ̂s(λ
∗)ej2π⟨λ

∗,x⟩

where
ρ̂s(y) =

∫
ρs(x)e

−i2π⟨x,y⟩ = e−πs2∥y∥2

(4)

is the Fourier transform. Thus, the Fourier coefficients ρ̂s(λ
∗) have a discrete

Gaussian distribution over the dual lattice Λ∗ (upon normalization).

Definition 2 (L∞ Flatness Factor [18]). For a lattice Λ and for a parameter
s, the L∞ flatness factor is defined by:

ϵΛ(s) ≜ max
x∈R(Λ)

|V (Λ)ρs,Λ(x)− 1| .

The expression of ϵΛ(s) can be established by theta series (see [6]) defined as

ΘΛ(τ) =
∑
λ∈Λ

e−πτ∥λ∥2

.

Lemma 4 (Expression of ϵΛ(s) [18]).

ϵΛ(s) =
V (Λ)

sn
ΘΛ

(
1

s2

)
− 1 = ΘΛ∗(s2)− 1. (5)
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The flatness factor is shown to be equivalent to the notion of smoothing
parameter.

Definition 3 (L∞ Smoothing Parameter [23,28]). For a lattice Λ and for
ε > 0, the L∞ smoothing parameter ηε(Λ) is the smallest s > 0 such that∑

λ∈Λ∗

e−πs2∥λ∥2

≤ 1 + ε.

Lemma 5 ( [18, Prop. 3]). If s = ηε(Λ), then ϵΛ(s) = ε.

2.3 Rényi Smoothing Parameter

In this section, we generalize both the smoothing parameter and flatness factor
to their Rényi versions.

Definition 4 (Rényi Flatness Factor). Given a lattice Λ, and Gaussian
noise pdf ρ(x), the Rényi flatness factor with order α > 1 is defined as:

ϵ
(α)
Λ (s) ≜ Rα(ρs,Λ∥U)− 1 =

(∫
R(Λ)

ρs,Λ(x)
α

1/V (Λ)α−1
dx

) 1
α−1

− 1.

For α ∈ N≥2 we obtain the following expression of ϵ(α)Λ (s).

Theorem 4. Let Λ be an n-dimensional lattice, with Λ∗ its dual lattice, and
α ∈ N≥2. Then

ϵ
(α)
Λ (s) =

( ∑
λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

) 1
α−1

− 1

where A = Iα−1 + Jα−1 with Jα−1 the all-one matrix ( i.e., all entries are 1) of
size (α− 1)× (α− 1) and ⊗ the Kronecker product.

The infinite sum on the right-hand side is a theta function. Note that the
matrix A has one eigenvalue α and other eigenvalues 1, with determinant |A| =
α. It is worth pointing out that A is the Gram matrix of the Aα−1 lattice whose
squared minimum distance is 2.

Proof. We need a basic property of the Fourier transform:∫
R(Λ)

ej2π⟨λ,x⟩dx =

{
V (Λ), λ = 0;
0, λ ∈ Λ∗ \ {0}.

Using the Fourier expansion

V (Λ)ρs,Λ(x) =
∑
λ∈Λ∗

ρ̂s(λ)e
j2π⟨λ,x⟩,
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we have

V (Λ)α
∫
R(Λ)

ρs,Λ(x)
α
dx =

∫
R(Λ)

(∑
λ∈Λ∗

ρ̂s(λ)e
j2π⟨λ,x⟩

)α

dx

=

∫
R(Λ)

∑
λi∈Λ∗

ρ̂s(λ1) · · · ρ̂s(λα)e
j2π⟨λ1+···λα,x⟩dx

=
∑

λi∈Λ∗

ρ̂s(λ1) · · · ρ̂s(λα)

∫
R(Λ)

ej2π⟨λ1+···λα,x⟩dx

= V (Λ)
∑

λi∈Λ∗,
∑

λi=0

ρ̂s(λ1) · · · ρ̂s(λα).

Recall that ρ̂s(y) = e−πs2∥y∥2

, we deduce

V (Λ)α−1

∫
R(Λ)

ρs,Λ(x)
α
dx =

∑
λi∈Λ∗,

∑
λi=0

e−πs2(∥λ1∥2+···∥λα∥2)

=
∑

λ1,...,λα−1∈Λ∗

e−πs2(∥λ1∥2+···∥λα−1∥2+∥λ1+···λα−1∥2)

=
∑

λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

.

The proof is completed by substituting the above expression into the definition
of ϵ(α)Λ (s).

From this theorem we are able to define Rényi smoothing parameter η(α)ε (Λ)

and establish its connection with Rényi flateness factor ϵ
(α)
Λ (s).

Definition 5 (Rényi Smoothing Parameter for α ∈ N≥2). Given a lattice
Λ, and A as defined previously, the Rényi smoothing parameter η

(α)
ε (Λ) with

order α ∈ N≥2 is defined as the smallest s > 0 such that∑
λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

≤ (1 + ε)α−1. (6)

Setting α = 2, we recognize the left-hand side∑
λ∈Λ∗

e−2πs2∥λ∥2

= ΘΛ∗(2s2) (7)

which coincides with the theta series of the dual lattice Λ∗.
When we set α = 3, the original series reduces to∑

λ1,λ2∈Λ∗

exp
(
−2πs2

(
∥λ1∥2 + ∥λ2∥2 + ⟨λ1,λ2⟩

))
.
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Moreover, this double sum can be identified with the degree-2 Siegel theta series
[10] associated to the dual lattice Λ∗:

Θ
(2)
Λ∗

(
As2

)
=

∑
(λ1,λ2)∈Λ∗×Λ∗

e−πs2 tr(S2A),

where the Gram matrix S2 = (Sij)2×2, Sij =
〈
λi,λj

〉
, i, j = 1, 2.

In general, the left-hand side of (6) can be identified with the degree-(α− 1)

Siegel theta series Θ
(α−1)
Λ∗

(
As2

)
.

For any integer α ≥ 2, the Rényi smoothing parameter and the Rényi flatness
factor satisfy

ϵ
(α)
Λ (s) = ε ⇐⇒ s = η(α)ε (Λ) .

Moreover, by Lemma 4 and the definition of the Rényi divergence of order ∞,
we have

ϵ
(∞)
Λ (s) = max

x∈R(Λ)
{V (Λ) ρs,Λ(x)} − 1 = ϵΛ(s) .

Combining this with Lemma 5 yields

ϵ
(∞)
Λ (s) = ε ⇐⇒ s = ηε(Λ) = η(∞)

ε (Λ) ,

which shows that the usual smoothing parameter is exactly the Rényi divergence
of order ∞.

The following Theorem provides a lower bound of ϵ(α)Λ (s).

Theorem 5. For α > 1 and any n dimensional lattice Λ of unit volume, we
have

ϵ
(α)
Λ (s) ≥ 1(

s2 α
1

α−1
)n

2
− 1→∞,

given
s < α−1/(2α−2).

Proof. Since α > 1, we have

ϵ
(α)
Λ (s) = Rα(ρs,Λ∥U)− 1

=

(∫
R(Λ)

(∑
λ∈Λ

ρs(x+ λ)

)α

dx

) 1
α−1

− 1

≥
(∫

R(Λ)

∑
λ∈Λ

ρs(x+ λ)αdx

) 1
α−1

− 1

=

(∑
λ∈Λ

∫
R(Λ)+λ

ρs(x)
αdx

) 1
α−1

− 1

=

(∫
Rn

ρs(x)
αdx

) 1
α−1

− 1

=
(
s2 α

1
α−1
)−n

2 − 1.
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In particular, if

s2 α
1

α−1 < 1,

then the factor
(
s2 α1/(α−1)

)−n/2 grows without bound (exponentially) as n →
∞. Hence the entire expression diverges in that regime.

In the next section we will explore the regime of s that a lattice can have a
vanishing Rényi flatness factor.

3 Proof Based on Minkowski-Hlawka Ensemble

In this section, we employ the Minkowski-Hlawka ensemble to examine the condi-
tions under which ϵ

(α)
Λ (s) approaches zero as n tends to infinity. Furthermore, we

investigate the corresponding smoothing parameter η
(α)
ε (Λ) and its asymptotic

behavior.

3.1 Minkowski–Hlawka Ensemble

The Minkowski–Hlawka ensemble is constructed by considering the space of uni-
modular lattices. Specifically, define

Ln
∼= SLn(R)/SLn(Z),

where each lattice Λn ∈ Ln is represented by a generator matrix B and the
coset BSLn(Z) uniquely corresponds to the lattice BZn. In this ensemble, each
lattice is identified up to scaling and basis transformation, which enables a uni-
form treatment of lattice properties. The space Ln is endowed with the unique,
normalized invariant Haar measure µn. A central result underlying this ensemble
is Siegel’s averaging formula [30]:

Lemma 6 ([16,30]). For n ≥ 2, let f : Rn → R be a Riemann integrable function
such that ∥x∥n+c

f(x) is bounded on Rn for some fixed c > 0. Then, for lattices
Λn drawn according to the Haar measure µn, we have

EΛn∼µn

 ∑
x∈Λn\{0}

f(x)

 =

∫
Rn

f(x) dx.

Note that the lemma has been generalized to apply to essentially bounded
Lebesgue measurable functions f(x) that vanish outside a bounded region [22].
For convenience in subsequent proofs, we omit the notation Λn ∼ µn and simply
write Λn when the distribution is understood. With this ensemble, we are able
to specify the average Rényi smoothing parameter.
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3.2 Average Behavior for α ∈ N≥2

Fix an integer α ≥ 2. We first consider the average over the ensemble,

EΛ

 ∑
λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

 .

If Λ = BZn, with B ∈ SLn(R), then Λ∗ = B−T Zn. Hence on cosets we have

B SLn(Z) 7−→ B−T SLn(Z).

It follows that averaging any summation over nonzero lattice points yields the
same result whether one averages over Λ or over its dual Λ∗ and it can be
obtained that

EΛ = EΛ∗ .

Therefore, in what follows we will no longer distinguish between EΛ and EΛ∗ ,
and denote them both simply by EΛ.

Rogers’ mean-value formula then provides an explicit expression for this ex-
pectation.

Lemma 7. [29, Theorem 4] Consider a Minkowski-Hlawka ensemble of random
lattices Λ of dimension n and a Riemann-integrable function f . For α ∈ N≥2,
the average

EΛ

[∑
λi∈Λ

f(λ1,λ2, . . . ,λα−1)

]

= f(0,0, . . . ,0) +

∫
Rn

· · ·
∫
Rn

f(x1,x2, . . . ,xα−1)dx1dx2 . . . dxα−1 (8)

+
∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q
· · · em

q

)n ∫
Rn

· · ·
∫
Rn

f

(
m∑
i=1

d̃i1
q
xi, . . . ,

m∑
i=1

d̃i(α−1)

q
xi

)
dx1 . . . dxm,

(9)

where the outer sum is over all divisions (ν;µ) = (ν1, . . . , νm;µ1, . . . , µα−1−m)
of the numbers 1, 2, . . . , α− 1 into two sequences,

1 ≤ ν1 ≤ . . . ≤ νm ≤ α− 1

1 ≤ µ1 ≤ . . . ≤ µα−1−m ≤ α− 1

νi ̸= µj , 1 ≤ i ≤ m, 1 ≤ j ≤ α− 1−m.

The inner sum is over all m× (α− 1) matrices D̃, with integer elements having
greatest common divisor (gcd) relatively prime to q, and with

d̃iνj = qδij , i = 1, . . . ,m, j = 1, . . . ,m,

d̃iµj = 0, if µj < νi, i = 1, . . . ,m, j = 1, . . . , α− 1−m.

δij = 1 only for i = j, ei = gcd(ϵi, q), i = 1, . . . ,m, where ϵi are the elementary
divisors of matrix D̃.
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Proposition 1. For order α ∈ N≥2, the flatness factor of the Minkowski-Hlawka
ensemble of random lattices satisfies

EΛ

[
ϵ
(α)
Λ (s)

]
≤
(
1 +

1

s(α−1)n · αn/2

+
∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q

e2
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2

)1/(α−1)

− 1

(10)

following the notation of Lemma 7.

Proof. By Theorem 4, it can be obtained that

EΛ

[
ϵ
(α)
Λ (s)

]
= EΛ

[ ∑
λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

 1
α−1 ]

− 1

≤

EΛ

∑
λ1,...,λα−1∈Λ∗

e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

 1
α−1

− 1

where Jensen’s inequality is applied. To evaluate the expectation of the lattice-
sum inside, define the function

f(λ1,λ2, . . . ,λα−1) = e−πs2(λT
1 ,...,λT

α−1)(A⊗In)(λ
T
1 ,...,λT

α−1)
T

and apply Lemma 7 where the terms (8) and (9) are analyzed below.
The first term of (8) is

f(0,0, . . . ,0) = 1,

while the second term of (8) can be derived as∫
Rn

· · ·
∫
Rn

f(x1,x2, . . . ,xα−1)dx1dx2 . . . dxα−1 =
1

s(α−1)n
|(A⊗ In)|−1/2

=
1

s(α−1)n · αn/2

For the infinite sum in (9), we derive∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q
· · · em

q

)n ∫
Rn

· · ·
∫
Rn

f

(
m∑
i=1

d̃i1
q
xi, . . . ,

m∑
i=1

d̃i(α−1)

q
xi

)
dx1 . . . dxm

=
∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q
· · · em

q

)n ∫
Rn

· · ·
∫
Rn

e
− π

q2
s2(xT

1 ,··· ,xT
m)(D̃AD̃T⊗In)(x

T
1 ,··· ,xT

m)T
dx1 . . . dxm

=
∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2.
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To bound the contribution of the infinite sum in (10), we use the following
Lemma.

Lemma 8.

∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q

e2
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2 = O

(
max

1≤m≤α−2

1

smn(m+ 1)
n
2

)

Proof. After permuting the columns, one may write

D̃ =
(
qIm | C

)
,

where Im is the m ×m identity matrix and C is an m × (α − 1 −m) integer
matrix all of whose entries are coprime to q. Let N(C, q) denote the number of
vectors x ∈ (Z/qZ)m satisfying

CTx ≡ 0 (mod q).

Then by [29, Lemma 1] we have

e1e2 · · · em = N(C, q) =

{
qm, if C = 0,

≤ qm−1, if C ̸= 0.
(11)

Therefore

∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q

e2
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2

≤
∑
ν,µ

1

smn

 qm√
|(qI,C)A (qI,C)

T |

n∣∣∣∣∣∣
q=1
C=0

+
∑
ν,µ

∞∑
q=1

∑
D̃

1

smn

 qm−1√
|D̃AD̃T |

n∣∣∣∣∣∣
C ̸=0

(12)

≤
∑
ν,µ

1

smn

 qm√
|(qI,C)A (qI,C)

T |

n∣∣∣∣∣∣
q=1
C=0

+
∑
ν,µ

∞∑
q=1

∑
D∈Dq(Pν,µ)

1

smn

(
qm−1√
|DADT |

)n

.

(13)

Here (12) is derived from (11). Case C = 0 only appears when q = 1, since 1
is the only positive integer coprime with 0. (13) is derived by relaxing matrices
D̃ that require elements of C coprime with q to matrices D that has nonzero
C. The notation Dq(Pν,µ) in (13) represents a set of matrices for permutation
matrix Pν,µ, which is defined as a m×m permutation matrix with (Pν,µ)νi,i = 1
for i = 1, 2, . . . ,m. For any permutation matrix P , Dq(P ) is defined as

Dq(P ) ≜ {D ∈ Zm×(α−1) : DP = (qIm,C), where C ∈ Zm×(α−1−m),C ̸= 0}.
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Then it has been proved in Appendix A that

∞∑
q=1

∑
D∈Dq(P )

1

smn

(
qm−1√
|DADT |

)n

= O

(
1

smn(m+ 1)
n
2

)
. (14)

Continuing from Eq. (13), we have∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q

e2
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2

≤
∑
ν,µ

1

smn(m+ 1)
n
2
+
∑
ν,µ

O

(
1

smn(m+ 1)
n
2

)
(15)

= O

(
max

1≤m≤α−2

1

smn(m+ 1)
n
2

)
. (16)

Here (15) is derived by computing the first term and applying (14) to the second
term. (16) is derived by the fact that the sum is finite, and m is ranged from 1
to α− 2 over all possible partitions (ν,µ).

Combining results above, we are able to specify the average behavior of
ϵ
(α)
Λ (s).

Theorem 6. For the Minkowski-Hlawka ensemble of random lattices, and order
α ∈ N≥2, if

s > α−1/2(α−1),

then

EΛ

[
ϵ
(α)
Λ (s)

]
= O

(
max

{
1

(
√
2s)n

,
1

s(α−1)nα
n
2

})
→ 0.

Proof. Combining Proposition 1 and Lemma 8, it can be derived that

EΛ

[
ϵ
(α)
Λ (s)

]
≤
(
1 +

1

s(α−1)nα
n
2
+ max

1≤m≤α−2
O

(
1

smn(m+ 1)
n
2

)) 1
α−1

− 1

≤ 1

α− 1

1

s(α−1)nα
n
2
+

1

α− 1
max

1≤m≤α−2
O

(
1

smn(m+ 1)
n
2

)
= O

(
max

1≤m≤α−1

1

smn(m+ 1)
n
2

)
. (17)

where Bernoulli’s inequality (1+ a)
1

α−1 − 1 ≤ a
α−1 for α ≥ 2 is applied. For (17)

to vanish as n→∞, it is required for each 1 ≤ m ≤ α− 1,

1

sm(m+ 1)
1
2

< 1⇒ 1

s2
< (m+ 1)1/m.

Since g1(m) = (m+1)1/m is monotonically decreasing for m ≥ 1, it suffices that

s > α−1/2(α−1).



18 Cong Ling, Laura Luzzi, Hao Yan

To better estimate the convergence rate in (17), consider the function g2(m) =
1

sm(m+1)1/2
. Setting d

dmg2(m) = 0, we get the critical point m∗ = − 1
log(s2) − 1.

If m∗ > 1, g2(m) is decreasing for [1,m∗), and then increasing for (m∗,∞) . If
m∗ ≤ 1, g2(m) is increasing over [1,∞). Combining these results, (17) can be
expressed as

EΛ

[
ϵ
(α)
Λ (s)

]
= O

(
max

{
1

(
√
2s)n

,
1

s(α−1)nα
n
2

})
. (18)

Thus we have obtained a full spectrum of smoothing parameters. The Rényi
smoothing parameter decreases with the order α, from 1 for α →∞ (the usual
smoothing parameter) to 1/

√
e for α→ 1 (KL divergence) [20].

We now present some examples for small orders α.

Example 1 (α = 2). In this case, only the terms of (8) exist so that

EΛ

[
ϵ
(2)
Λ (s)

]
≤ 1

(
√
2s)n

→ 0

if s > 1√
2
. This agrees with the analysis using (7), since

ΘΛ∗(2s2) =
1

(
√
2s)n

ΘΛ

(
1

2s2

)
.

Example 2 (α = 3). In this case, m = 1 and the only possible partitions are
(ν,µ) = (1; 2) and (2; 1). Thus the 1×2 matrix D̃ = (q, p) for q ≥ 1, gcd(p, q) = 1
or D̃ = (0, 1) 5; in either case it holds that ϵ1 = 1.

The two terms of (8) are given by

1 +

∫
Rn

∫
Rn

e−πs2(xT
1 ,xT

2 )(I2n+J2⊗In)(x
T
1 ,xT

2 )T dx1dx2

= 1 +
1

(
√
3s2)n

. (19)

The infinite sum in (9) is given by

∑
ν,µ

∞∑
q=1

∑
D̃

(
e1
q

e2
q
· · · em

q

)n (q
s

)mn

|D̃AD̃T |−n/2

=

∞∑
q=1

∑
p:gcd(p,q)=1

1

sn

(
1

2(p2 + pq + q2)

)n/2

+

(
1√
2s

)n

5 In general, the second case is (0, q) for q ≥ 1, but it is required that gcd(q, q) = 1
which leaves q = 1 the only possibility.
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≤
(

1√
2s

)n ∑
(p,q)̸=(0,0)

(
1

p2 + pq + q2

)n/2

=

(
1√
2s

)n

ζQ(n/2) (20)

where ζQ(n/2) is the Epstein zeta function associated with the positive-definite
quadratic form Q(p, q) = p2+pq+q2. The Epstein zeta function corresponding to
a binary quadratic form Q is defined by ζQ(z) =

∑
(p,q)̸=(0,0)

1
Q(p,q)z for ℜ(z) > 1.

The Epstein zeta function converges if n > 2 in this case. If we consider (19)
and (20) both vanish, then it suffices that (19) vanishes, i.e.

s >
1
4
√
3
.

But for the dominant term, we need to compare (19) and (20) depending on s.
In fact for n ≥ 4, ζQ(n/2) ≤ ζQ(2) ≈ 2.873 < 3. Thus

EΛ

[
ϵ
(3)
Λ (s)

]
≤


1

2 ·
(√

3 s2
)n (1 + o(1)), s ∈

(
1
4
√
3
,

√
2

3

]
,

3

2 ·
(√

2 s
)n (1 + o(1)), s ∈

(√
2

3
, +∞

)
.

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
s

10−3

10−2

10−1

100

T 1
,T

2 (
lo
g 
 c
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e)

Compari on of T1(s) and T2(s) for α=4, 6, 10
T1(s) = (2s2)−n/2
T2(s), α=4
T2(s), α=6
T2(s), α=10

Fig. 1. Comparison of T1(s) = (2s2)−n/2 and T2(s) = s−(α−1)n α−n/2, with n = 20.
The solid black line is T1(s); dashed lines are T2(s) for α = 4, 6, and 10. The hori-
zontal axis spans s ≈ [0.83, 0.92], and the vertical axis is logarithmic over [10−3, 1] to
emphasize where each T2 curve crosses T1 (the critical sc).
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For large n and general α, one sees by comparing

1

(
√
2s)n

and
1

s(α−1)n αn/2

that the sign of
ln(2s2) −

[
(α− 1) ln(s2) + lnα

]
determines which term is exponentially larger: if s exceeds the unique critical
value sc(α) solving

ln(2s2) = (α− 1) ln(s2) + lnα,

then the Gaussian kernel term (
√
2s)−n dominates, whereas for s < sc(α) the

mixture term
(
s(α−1) α1/2

)−n prevails. Figure 1 illustrates this crossover for α =
4, 6, 10, showing how the threshold sc(α) shifts to larger values as α increases.

4 Proof Based on Construction A

While the Minkowski-Hlawka ensemble encompasses a rich variety of lattices,
it presents significant computational challenges for practical implementation.
A more tractable alternative is Loeliger’s Ensemble, which can be efficiently
generated by extending linear codes through Construction A. In this section,
we replace the Minkowski-Hlawka ensemble with the ensemble constructed from
Construction A based on linear codes over Fp.

4.1 Loeliger’s Ensemble via Construction A

This ensemble is obtained by narrowing the Minkowski–Hlawka ensemble using
Construction A, as described in [19]. Let p be a prime number and let C ⊆ Fn

p

be an [n, k]p-linear code over the finite field Fp. The lattice associated with C is
defined via Construction A as

ΛC = γ · {x ∈ Zn : x mod p ∈ C} = γ · (C + pZn) ,

where γ is a scaling factor (typically chosen in (0, 1)) to ensure that the lattice
has the desired volume properties.

To analyze the average behavior of lattices constructed from linear codes, let
B denote the ensemble of all [n, k]p-linear codes over Fn

p . The following averaging
lemma, analogous to Siegel’s formula, holds for the Construction A ensemble:

Lemma 9 (Averaging Lemma [5,19]). Let f : Rn → R be a Riemann integrable
function that is semi-admissible, i.e., (1 + ∥x∥)n+c|f(x)| is bounded for some
fixed c > 0 . Then, for any integer k satisfying 0 < k < n and any fixed volume
V , the following holds:

1

|B|
∑
C∈B

∑
v∈ΛC

f(v) =
∑

v∈pZn

f(γv) +
pk − 1

pn − 1

( ∑
v∈Zn

f(γv)−
∑

v′∈pZn

f(γv′)

)
,
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and
lim
p→∞

1

|B|
∑
C∈B

∑
v∈ΛC\{0}

f(v) =
1

V

∫
Rn

f(v) dv,

with the constraint γnpn−k = V .

Now we introduce some notations. For a pdf f : Rn → R≥0 and j > 0, we
define the capped Lj-norm integral as

∥f∥jj ≜ min
{
∥f∥jj , 1

}
=


∫
Rn

f(x)j dx, j ≥ 1,

1, j = 0.

For notational convenience, we define ∥f∥00 = 1. Another notation is∑
k1+···+ki=i

where the summation is over i nonnegative integers k1, . . . , ki satisfying k1 +
· · ·+ ki = i

In the analysis that follows, we normalize the fundamental volume V = 1 for
simplicity. The key tool in our analysis is understanding the behavior of lattice
point distributions. For any m ∈ Fk

p, let

φx(G,m) ≜ ρs(x+ γ ·Gm+ γ · pZn) =
∑

vmod p=Gm

ρs(x+ γv),

where G ∈ Fn×k
p is the generator matrix for code C ∈ B. For any non-zero

codeword v̄ = Gm ∈ Fn
p \ {0}, we abbreviate φx(G,m) as φx(v̄). Leveraging

the uniform distribution of codewords Gm over Fn
p for random G, Lemma 9

simplifies to:

EG∼B

[ ∑
m∈Fk

p\{0}

φx(G,m)

]
=

pk − 1

pn − 1

∑
v̄∈Fn

p\{0}

φx(v̄)

∼ 1

V

∫
Rn

ρs(x+ v) dv
(
p→∞, γ → 0, γnpn−k = V

)
.

(21)

For convenience, we shall write EG instead of EG∼B in what follows.

4.2 Average Behavior for α ∈ [2,∞) with Gaussian Noise

To estimate Rα(ρs,ΛC
∥U) for order α ≥ 2, we need to extend (21) to higher

moments and thus define the following,

Si,j ≜


EG

[( ∑
m∈Fk

p

φx(G,m)

)i]
, if i ≥ 1 and j = 0.

EG

[( ∑
m∈Fk

p

φx(G,m)

)i ∑
m′∈Fk

p

φx(G,m′)j

]
, if i ∈ N and j ≥ 1.
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The Si,j exhibits recursive structure. For instance, S0,0 = 1 and Si,0 = Si−1,1

for i ∈ N+ establishes a recursive link between orders. In this way, all Si,j will
be reduced to

S0,j = φx(0)
j +

pk − 1

pn − 1

∑
v̄∈Fn

p\{0}

φx(v̄)
j , j ≥ 1.

More specifically, the following recurrence relation and bounds can be estab-
lished.

Proposition 2. Based on the notations above, We have the following recurrence
relation for i ∈ N+, j ≥ 1:

Si,j ≤ piSi−1,j+1 + S0,jSi−1,1, (22)

Furthermore, based on this recurrence, we derive the following upper bound:

Si,j ≤ S0,jS
i
0,1 + p

i(i+1)
2

∑
k1+···+ki=i

S0,j+k1

i∏
l=2

S0,kl
, (23)

Proof. The second claim follows by repeatedly calling for the first claim. For
details, see Appendix B.

Below we first provide an informal, intuitive outline of the proof to aid un-
derstanding, before presenting the full rigorous argument.

Given γnpn−k = V and for sufficiently large pγ and small γ, it is easy to
derive that

lim
p→∞

φx(0)
j = lim

p→∞
ρs(x+ γ · pZn)j = ρs(x)

j ,

and combined with Lemma 9 we have

lim
p→∞

S0,j = ρs(x)
j +

∫
Rn

ρs(x+ y)j dy = ρs(x)
j + ∥ρs∥jj , j ≥ 1. (24)

Applying Proposition 2 to the above, the bound of Sα,0 with α ∈ N+ can be
obtained as follows,

lim
p→∞

Sα,0 = lim
p→∞

Sα−1,1 ≤ lim
p→∞

Sα
0,1 + lim

p→∞
p

α(α−1)
2

∑
k1+···+kα−1=α

α−1∏
l=1

S0,kl

≤ (ρs(x) + 1)α + lim
p→∞

p
α(α−1)

2

∑
k1+···+kα−1=α

α−1∏
l=1

(
ρs(x)

kl + ∥ρs∥kl

kl
+ op(1)

)
.

(25)
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Meanwhile we have

EΛC

[ ∫
R(ΛC)

ρs,ΛC
(x)

α
dx

]
= EΛC

[ ∫
R(ΛC)

∑
v∈ΛC

ρs(x+ v)ρs,ΛC
(x)

α−1
dx

]
= EΛC

[ ∑
v∈ΛC

∫
R(ΛC)

ρs(x+ v)ρs,ΛC
(x)

α−1
dx

]
= EΛC

[ ∑
v∈ΛC

∫
R(ΛC)+v

ρs(x)ρs,ΛC
(x)α−1dx

]
=

∫
Rn

ρs(x)EΛC

[
ρs,ΛC

(x)α−1dx

]
, (26)

Thus combining (26) and (25), we are able to compute

lim
p→∞

EΛC

[ ∫
R(ΛC)

ρs,ΛC
(x)α+1 dx

]
= lim

p→∞

∫
Rn

ρs(x)Sα,0 dx by (26)

≤
∫
Rn

ρs(x)
(
ρs(x) + 1

)α
dx︸ ︷︷ ︸

(i)

+ lim
p→∞

p
α(α−1)

2

∑
k1+···+kα−1=α

∫
Rn

ρs(x)

α−1∏
l=1

(
ρs(x)

kl + ∥ρs∥kl

kl
+ op(1)

)
dx

︸ ︷︷ ︸
(ii)

,

where op(1) tends to zero if p→∞. Our goal is to explore under which condition
can we prove (i)→ 1 and (ii)→ 0.

Assume that
s > α− 1

2(α−1) .

Under this assumption, we have

∥ρs∥ββ =

{
s−n(β−1)β−n

2 → 0, if α ≥ β > 1,

1, if β = 1.

Thus for the first term (i), we expand:

(i) =

∫
Rn

ρs(x)(ρs(x) + 1)α dx =

α∑
j=0

(
α

j

)
∥ρs∥ j+1

j+1 = 1 + on(1).

Similarly, for the second term (ii) we note that the combinatorial contribution
becomes for some constant cα that

(ii) = lim
p→∞

p
α(α−1)

2

(
cα

∑
k′
1+···+k′

α−1=α

∥ρs∥
k′
1+1

k′
1+1

α−1∏
l=2

∥ρs∥
k′
l

k′
l
+ op(1)

)
,
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which would diverge if p → ∞ directly. In order to bound term (ii) and prove
that it vanishes, we require p to be dependent on n, i.e. p = p(n) as n → ∞.
Since each ∥f∥k

′
l

k′
l
goes to 0 exponentially, the whole contribution will as well goes

to 0 if we set p(n) as a polynomial of n, for example p(n) = O(n2) or O(n3).
Collecting these results, we get the following bounds as n→∞:

EΛC

[ ∫
R(ΛC)

ρs,ΛC
(x)α+1 dx

]
≤
∫
Rn

ρs(x)Sα,0 dx ≤ (i) + (ii)→ 1

⇒ EΛC
[Rα+1(ρs,ΛC

∥U)]→ 0.

The analysis looks nice, but requires a more careful way to deal with the Riemann
integral approximation error in (24) and (25) since we assumed p = p(n) is
dependent with n. The following lemma helps to bound the approximation error
in e−ω(n).

Lemma 10. For any j > 0, j′ ≥ 1, and under the conditions p = ηnn
1+2ε →∞,

γ = η
− 1

2
n n− 1

2−ε → 0, k = n
2 , and ε > 0, the following bounds are satisfied:

S0,j ≤ φx(0)
j + ∥ρs∥jj + e−ω(n),∫

Rn

ρs(x)
j′φx(0)

j dx ≤ ∥ρs∥j+j′

j+j′ + e−ω(n).

Here, ηn ∈
(
1
2 , 1
]

is chosen to ensure that p remains prime, which is guaranteed
by the fact that there exists a prime number between n′ and 2n′ for any integer
n′ [14].

Proof. See Appendix C.

With this approximation error lemma, a rigorous proof of EΛC

[
ϵ
(α)
ΛC

(s)
]
→ 0

is provided below.

Theorem 7. For an ensemble of random lattice based on Construction A of
linear codes, α ∈ N≥2, given

s > α− 1
2(α−1) ,

then

EΛC

[
ϵ
(α)
ΛC

(s)
]
= O

(
max

{
1

(
√
2s)n

,
1

s(α−1)nα
n
2

})
.

Proof. We first estimate∫
Rn

ρs(x)(φx(0) + 1)α−1dx

=

α−1∑
j=0

(
α− 1

j

)∫
Rn

ρs(x)φx(0)
j dx

≤ 1 + c′α

α∑
j=2

∥ρs∥jj + e−ω(n). (27)
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The last step follows by Lemma 10, and c′α = max
j∈{0,1,...,α−1}

(
α−1
j

)
. Based on this

inequality, it can be obtained that

EΛC

[ ∫
R(ΛC)

ρs,ΛC
(x)α dx

]
=

∫
Rn

ρs(x)Sα−1,0 dx by Eq. (26)

≤ p
α(α−1)

2

∑
k1+···+kα−1=α−1

∫
Rn

ρs(x)

α−1∏
l=1

S0,kl
dx+

∫
Rn

ρs(x)S
α−1
0,1 dx

by Proposition 2

≤ p
α(α−1)

2

∑
k1+···+kα−1=α−1

∫
Rn

ρs(x)

α−1∏
j=1

(
φx(0)

kj + ∥ρs∥
kj

kj

)
dx+

∫
Rn

ρs(x)(φx(0) + 1)α−1dx+ e−ω(n)

by Lemma 10

≤ p
α(α−1)

2 cα
∑

k′
1+···+k′

α−1=α−1

α−1∏
j=2

∥ρs∥
k′
j

k′
j

∫
Rn

ρs(x)φx(0)
k′
1dx+

∫
Rn

ρs(x)(φx(0) + 1)α−1dx+ e−ω(n)

≤ p
α(α−1)

2 cα
∑

k′
1+···+k′

α−1=α

α−1∏
j=1

∥ρs∥
k′
j

k′
j
+ c′α

α∑
j=2

∥ρs∥jj + 1 + e−ω(n). (28)

The last step is derived by Eq. (27) and Lemma 10.
Noting that p is polynomial in n and

∥ρs∥ββ =
1

sn(β−1)β
n
2
→ 0, β > 1,

which is exponentially small, we can retain only the exponential term with the
dominant convergence bound in (28) as

EΛC

[ ∫
R(ΛC)

ρs,ΛC
(x)αdx

]
= O

(
max

2≤β≤α

1

sn(β−1)β
n
2

)
+ 1.

Based on this result, it can be derived that

EΛC

[
ϵ
(α)
ΛC

(s)
]
≤
(
EΛC

∫
R(ΛC)

ρs,ΛC
(x)αdx

) 1
α−1

− 1

=

(
1 +O

(
max

2≤β≤α

1

sn(β−1)β
n
2

)) 1
α−1

− 1.

≤ O

(
max

2≤β≤α

1

sn(β−1)β
n
2

)
. (29)

The proof is completed by following the same steps as those from (17) to (18)
in Theorem 6.
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5 Cryptographic Applications

For cryptographic applications using integer lattices, we need the following adap-
tion:

Definition 6 (Rényi Smoothing Parameter for Discrete Distributions).
For a p-ary lattice pZn ⊂ Λ ⊂ Zn, and a noise distribution function ρ(x) over
Zn, denote Rényi divergence of order α ≥ 0 by 6

Dα(FΛ∥U) =

 ∑
x∈Zn∩R(Λ)

FΛ(x)
α

1/|Zn/Λ|α−1

 1
α−1

,

where FΛ(x) =
ρΛ(x)
ρZn (0) . For a Gaussian noise distribution function ρs(x) with pa-

rameter s, we write Dα(FΛ∥U) as Dα(Fs,Λ∥U). The smoothing parameter η̃(α)ε (Λ)
for ε > 1 is defined as the smallest s > 0 such that Dα(Fs,Λ∥U) ≤ ε.

If α = ∞, Dα(Fs,Λ∥U) can be bounded using its continuous counterpart
Rα(ρs,Λ∥U) in a straightforward manner [3, 13]. However, if α <∞, it becomes
tricky to bound Dα(Fs,Λ∥U). In the following, we show that Dα(Fs,Λ∥U) and
η̃
(α)
ε (Λ) are still upper-bounded by their continuous counterparts subject to ap-

propriate scaling.

Lemma 11. Let Λ be a p-ary lattice with volume pn−k for k < n. Fix the volume
V (Λ′) of Λ′ = γΛ where γ = p−(1−k/n)V (Λ′)1/n, and fix the noise parameter
s′ = γs. Then Dα(Fs,Λ∥U) ≤ Rα(ρs′,Λ′∥U) and γη̃

(α)
ε (Λ) ≤ η

(α)
ε (Λ′) as p→∞.

Proof. Firstly, we note that ρs,Zn(0) ≥ 1, thus Fs,Λ(x) ≤ ρΛ(x). Secondly, it is
easy to verify ρs,Λ(x) = ργs,γΛ(x)

αγαn. Then,∑
x∈Zn∩R(Λ)

Fs,Λ(x)
α

1/|Zn/Λ|α−1
≤

∑
x∈Zn∩R(Λ)

ρs,Λ(x)
α

1/p(α−1)(n−k)

=
∑

x∈γ(Zn∩R(Λ))

ργs,γΛ(x)
αγαn

1/p(α−1)(n−k)

=
∑

x∈γ(Zn∩R(Λ))

ργs,γΛ(x)
αγn

1/(p(n−k)γn)α−1

p→∞→
∫
R(Λ′)

ρs′,Λ′(x)α

1/V (Λ′)α−1
dx.

The last step follows from the definition of Riemann integration since γ → 0 as
p→∞. Therefore, we have proven Dα(Fs,Λ∥U) ≤ Rα(ρs′,Λ′∥U); since the noise
parameter is also a scaling, we have γη̃

(α)
ε (Λ) ≤ η

(α)
ε (Λ′).

Since the tightness of security reductions is not the main focus of this paper,
we concentrate on the savings in the sampling parameter. If needed, tight security
reductions can still be achieved by selecting an appropriate order α [31].
6 With overload of notation, here U denotes the uniform distribution over Zn/Λ.
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5.1 GPV Signature Scheme

The sampling parameter of the GPV Signature Scheme [13] has been reduced
in [3] by using Rényi smoothing of order ∞. Here we show it can be further
reduced by Rényi smoothing of order α <∞.

The core technique underlying GPV’s signature scheme is discrete Gaussian
sampling over a trapdoor lattice [13]. Its security crucially relies on the property
that the output distribution of discrete Gaussian sampling is oblivious to any
particular basis used in the sampling process, therefore preventing leakage of the
private key. We provide a high-level introduction to the GPV signature (see [13]
for details). In key generation, one generates a hard public basis for a random
lattice Λ, together with a short private basis of Λ. The public basis serves as the
public key, while the private basis serves as the private key. Given a message m,
one uses the private basis to sample a point x from DΛ+H(m,s),r with parameter
r, where H(·) is a hash function and s is a random salt. The signature of m is
x, s. The verifier checks that x is short and that x − H(m,s) ∈ Λ using the
public basis.

It is shown in [13] that the security of GPV signing can be reduced to the
hardness of the inhomogeneous short integer solution (ISIS) problem with ap-
proximation factor

√
nr. Therefore, the width r is the most important prop-

erty of a discrete Gaussian sampler in this context. A key component in the
security proof of the GPV signature scheme is the closeness of the distribu-
tion of Ax mod q, where x ← DZm,r, to the uniform distribution U(Zn

q ).
For statistical distance, this requires r = Ω(

√
λ+ log qs), where λ is the se-

curity parameter and qs denotes the number of signing queries made by the
attacker [3]. Using Rényi divergence of order ∞, [3] obtained a smaller bound,
namely r = Ω(

√
log λ+ log qs).

Notice that here the lattice Λ is identified with Λ⊥
A = {x ∈ Zm : Ax = 0

mod q}. This is actually Construction A defined with parity-check matrix A,
thus for prime q we can claim properties of the Loeliger ensemble thanks to
Lemma 11. The Rényi divergence under consideration is given by Dα(Fr,Λ⊥

A
∥U).

Now if we use Rényi smoothing of order α = 2, by (7) the required parameter
r can be further reduced by a constant

√
2
2 , for the same bound ε on Rényi

divergence. Although the constant may appear small, the security level is quite
sensitive to the choice of r [26].

Assuming access to an oracle capable of sampling exactly at or slightly above
the smoothing parameter [25, 34] (with potentially long running time), the im-
provement in the security level can be substantial. A small parameter s does not
only give higher security, but also more compact signatures.

5.2 Dual Regev Encryption

Dual Regev encryption is a public-key encryption scheme based on the Learning
With Errors (LWE) problem, formulated in the dual style [13]. In this version,
A ∈ Zn×m

q is a public matrix chosen uniformly at random, the secret key is
y ← DZm,r, and the public key is a vector u = Ay ∈ Zn

q ,.
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To encrypt a bit b ∈ {0, 1}, the sender samples s ← U(Zn
q ), e1 ← χm

and e2 ← χ, where χ an error distribution (typically a discrete Gaussian). The
ciphertext is given by

(c1, c2) = (ATs+ e1, uTs+ e2 + ⌊q/2⌋ · b) ∈ Zm
q × Zq.

The scheme is IND-CPA secure under the LWE assumption. A key step in the
security proof is to show the public key u = Ay is statistically close to uniform.
Again, the relevant lattice here is Λ⊥

A = {x ∈ Zm : Ax = 0 mod q}. The Rényi
divergence between the distribution of u and uniform is given by Dα(Fr,Λ⊥

A
∥U).

Using Rényi smoothing of order ∞, [3] showed the sampling parameter r =
Ω(
√
log λ), improving upon the bound r = Ω(

√
λ) based on L1 smoothing, for

ε = O(2−λ). If we use the Rényi smoothing parameter of order α < ∞, the
parameter r can be reduced further, resulting in more efficient implementation.

5.3 Cryptography Based on LIP

Given two lattices L and L′ with bases B and B′ respectively, the Lattice
Isomorphism Problem (LIP) is to find an orthogonal matrix O ∈ On(R) and a
unimodular matrix U ∈ GLn(Z) such that B′ = OBU . Lattices can also be
represented using quadratic forms. Given a lattice basis B, its Gram matrix is
defined as Q = BTB. Two quadratic forms Q and Q′ are equivalent if there
exists a unimodular matrix U such that Q′ = UTQU . Thus, the LIP in terms
of quadratic forms can be formulated as follows: Given two lattices L and L′

with Gram matrices Q and Q′ respectively, the LIP asks to find a unimodular
matrix U ∈ GLn(Z) such that

Q′ = UTQU

if it exists.
Recently, the LIP has found numerous applications in cryptography. In [8],

an identification scheme, a KEM, and a signature scheme were given with secu-
rity dependent on problems related to LIP. All these schemes require Gaussian
sampling to generate a random form from the equivalent class of Q, which, for
the KEM and signature schemes, serve as the public key. Given a quadratic form
Q and a parameter s > max{λn(Q), ∥B∗

Q ·
√
ln(2n+ 4/π)∥}, [8, Algorithm 1]

returns a from Q′ = UTQU together with U ∈ GLn(Z). This is achieved by
running Gaussian sampling over the lattice represented by Q with parameter s.
Reducing the parameter s would result in more efficient implementation.
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A Proof of Lemma 12

Lemma 12. Let m,α ∈ N be with 1 ≤ m < α− 1. For q ∈ Z+, define the set of
matrices

Dq ≜ {D ∈ Zm×(α−1) : D = (qIm,C), where C ∈ Zm×(α−1−m),C ̸= 0}

Let A = Iα−1 + Jα−1, where Jα−1 = 1α−11
T
α−1 is the all-one matrix. Then

∞∑
q=1

∑
D∈Dq

1

smn

(
qm−1√
|DADT |

)n

= O

(
1

smn(m+ 1)
n
2

)
.
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More generally, for any permutation matrix P , the same result holds when sum-
ming over Dq(P ) ≜ {D : DP = (qIm,C),C ̸= 0} instead. Note that the case
above corresponds to Dq = Dq(Iα−1).

Proof. Note that the general case can be reduced to the special case where
D ∈ Dq, because

(DP )A(DP )T = DP (Iα−1+Jα−1)P
TDT = D(Iα−1+Jα−1)D

T = DADT .

Hence, we assume without loss of generality that D = (qIm,C).
Let C = (cij) ∈ Zm×(α−1−m) \ 0m×(α−1−m). Define the composite radius R

associated with the parameters q and C as

R(q,C) ≜
√
q2 + ∥C∥2F =

√√√√q2 +

m∑
i=1

α−1−m∑
j=1

c2ij .

where ∥C∥F denotes the Frobenius norm of C. Define

N(r) ≜ #{(q,C) | R(q,C) =
√
r},

i.e., N(r) denotes the number of pairs (q,C) for which R(q,C) =
√
r. Then, we

have the inequality
N(r) ≤ (2

√
r)m(α−1−m)+1, (30)

which is derived by counting all possible values of −
√
r ≤ cij , q ≤

√
r .

Then we partition the sum based on a fixed threshold R0 dependent on m,

∞∑
q=1

∑
D∈Dq

1

smn

(
qm−1√
|DADT |

)n

=

∞∑
q=1

∑
C∈Zm×(α−1−m)

C ̸=0

1

smn

(
qm−1√
|DADT |

)n

=
∑

(q,C):R(q,C)≥R0

1

smn

(
qm−1√
|DADT |

)n

+
∑

(q,C):R(q,C)<R0

1

smn

(
qm−1√
|DADT |

)n

,

(31)

where R0 is a sufficiently large positive integer independent of n (to be deter-
mined later). In what follows, we estimate both sums for sufficiently large n.

1. Evaluate the infinite sum:
∑

(q,C):R(q,C)≥R0

1
smn

(
qm−1√
|DADT |

)n

.

We observe that the determinant |DADT | is a homogeneous polynomial of
degree 2m with respect to the variables q and cij . Since A = Iα−1+Jα−1 ≻ 0,
hence |DADT | > 0. Let us define the function

g(q, c11, . . . , cij , . . .) ≜ |DADT | > 0. (32)
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As a homogeneous polynomial of degree 2m, this function satisfies the scaling
property:

g(λq, λc11, . . . .λcij , . . .) = λ2mg(q, c11, . . . , cij , . . .),

for any scalar λ > 0. Specifically, let λ = 1/R(q,C) = 1/
√

q2 +
∑

c2ij , then
we have:

g(q, c11, . . . , cij , . . .) = R(q,C)2mg

 q√
q2 +

∑
c2ij

,
c00√

q2 +
∑

c2ij

, . . . ,
cij√

q2 +
∑

c2ij

, . . .


= R(q,C)2mg(q′, c′11, . . . , c

′
ij , . . .),

where q′ = q√
q2+

∑
c2ij

and c′ij =
cij√

q2+
∑

c2ij
.

This transformation normalizes our variables to the unit sphere, as can be
verified by:

q′2 +
∑

c′2ij =
q2

q2 +
∑

c2ij
+

∑
c2ij

q2 +
∑

c2ij
= 1.

Therefore, we can interpret g(q′, c′11, . . . , c
′
ij , . . .) as the evaluation of our

polynomial |DADT | over the m(α − m − 1) + 1 dimensional unit sphere.
Thus let M be the minimum of the function over the unit sphere, i.e.

M ≜ min
q′2+

∑
c′2ij=1

g(q′, c′11, . . . , c
′
ij , . . .).

Here M > 0 since it is a normalization of Eq. (32).
Consequently, we have the lower bound:

|DADT | = g(q, c11, . . . , cij , . . .) = R(q,C)2mg(q′, c′11, . . . , c
′
ij , . . .) ≥ R(q,C)2mM.

Using this property, we proceed to bound the given sum:

∑
(q,C):R(q,C)≥R0

1

smn

(
qm−1√
|DADT |

)n

(33)

≤
∑

(q,C):R(q,C)≥R0

1

smn

(
R(q,C)m−1√
|DADT |

)n

≤
∑

(q,C):R(q,C)≥R0

1

smn

1

(
√
MR(q,C))n

=
1

smn

∞∑
r=R2

0

N(r)

(Mr)
n
2

≤ 1

smn

2m(α−1−m)+1

M
n
2

∞∑
r=R2

0

1

r(n−m(α−1−m)−1)/2
by (30)
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=
1

smn

2m(α−1−m)+1

M
n
2

∞∑
r=R2

0

∫ r+1

r

dx

r(n−m(α−1−m)−1)/2

≤ 1

smn

2m(α−1−m)+1

M
n
2

∫ ∞

R2
0

dx

(x− 1)(n−m(α−1−m)−1)/2

=
2m(α−1−m)+2

n−m(α− 1−m)− 3
· 1

(s2)
mn
2 M

n
2
· 1

(R2
0 − 1)

(n−m(α−1−m)−3)/2

= O

(
1

smn
(
M(R2

0 − 1)
)n

2

)
for sufficiently large n. (34)

2. Evaluate the finite sum
∑

(q,C):R(q,C)<R0

1
smn

(
qm−1√
|DADT |

)n

.

Note that the sum over all terms where R(q,C) < R0 is finite.
Let s1 ≥ s2 ≥ . . . ≥ sm be the m singular values of matrix C. Since the
singular values of C are the square roots of the eigenvalues of CCT , we
find that s2i for i = 1, 2, . . . ,m are the eigenvalues of CCT and satisfy the
following properties:

m∏
i=1

(
q2 + s2i

)
=
∣∣q2Im +CCT

∣∣ ,
m∑
i=1

s2i = Tr(CCT ) =
∑
i,j

c2ij .

Denote dm = D1α−1 =

(
q +

∑
j

c1j , q +
∑
j

c2j , . . . , q +
∑
j

cmj

)T

and the

determinant of DADT is computed as follows,

|DADT | = |q2Im +CCT + dmdT
m|

=
∣∣q2Im +CCT

∣∣ · ∣∣Im +
(
q2Im +CCT

)−1
dmdT

m

∣∣ (35)

=

m∏
i=1

(
q2 + s2i

)
·
(
1 + dT

m

(
q2Im +CCT

)−1
dm

)
(36)

≥
m∏
i=1

(
q2 + s2i

)
·
(
1 +

dT
mdm

q2 + s21

)
(37)

=

m∏
i=1

(
q2 + s2i

)
+

m∏
i=2

(
q2 + s2i

)
dT
mdm

≥ q2m + q2m−2
m∑
i=1

s2i + q2m−2dT
mdm (38)

= q2m−2

(
q2 +

m∑
i=1

(
(q +

∑
j

cij)
2 +

∑
j

c2ij

))
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≥ q2m−2(q2 +m) (39)

≥ q2m−2(1 +m).

Here (35) is derived by identity
∣∣A + B

∣∣ = ∣∣A∣∣ · |I + A−1B
∣∣. (36) is de-

rived by noting that
(
q2Im +CCT

)−1
dmdT

m is a dyadic product matrix of
a column vector

(
q2Im +CCT

)−1
dm and a row vector dT

m, and apply the
matrix-determinant lemma [15, p. 446], i.e. |I + uvT | = 1 + vTu. (37) is
derived by Rayleigh-Ritz theorem [17, p. 176]. To establish (38), we begin
by applying the inequality

∏m
i=1

(
q2 + s2i

)
≥ q2m + q2m−2

∑m
i=1 s

2
i which

provides a lower bound for the first term, and subsequently employ the in-
equality

∏m
i=2

(
q2 + s2i

)
≥ q2m−2 on the last term. (39) is obtained from the

fact that q ≥ 1, and for each i we have (q +
∑

j cij)
2 +

∑
j c

2
ij ≥ 1 holds.

This is because the result is always a non-zero integer for any cij ∈ Z and
q ∈ Z+.
Then based on (39), it can be obtained that

∑
(q,C):R(q,C)<R0

1

smn

(
qm−1√
|DADT |

)n

≤
∑

(q,C):R(q,C)<R0

1

smn

1

(m+ 1)n/2

= O

(
1

smn(m+ 1)
n
2

)
, (40)

where the last step is derived since it is a finite sum, and the number of
terms does not depend on n.

By choosing

R0 ≥
√
1 +

m+ 1

M
,

and plugging the infinite sum bound (34) and finite sum bound (40) into (31),
the proof of the lemma will be finished,

∞∑
q=1

∑
D∈Dq

1

smn

(
qm−1√
|DADT |

)n

≤ O

(
1

smn(m+ 1)
n
2

)
+O

(
1

smn
(
M(R2

0 − 1)
)n

2

)

= O

(
1

smn(m+ 1)
n
2

)
.
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B Proof of Proposition 2

Proof. 1. We begin with proof of the recurrence relation claim of Si,j ≤ piSi−1,j+1+
S0,jSi−1,1 for i ∈ N+ and j ≥ 1.

Si,j = EG

[( ∑
m∈Fk

p

φx(G,m)

)i ∑
m′∈Fk

p

φx(G,m′)j

]

= EG

[ ∑
m1,...,mi∈Fk

p

i∏
l=1

φx(G,ml)
∑

m′∈Fk
p

φx(G,m′)j

]

= EG

[ ∑
m1,...,mi∈Fk

p

i∏
l=1

φx(G,ml)
∑

m′∈Ui\{0}

φx(G,m′)j

]
︸ ︷︷ ︸

(i)

+
∑

m1,...,mi∈Fk
p

EGm1,...,Gmi

[
i∏

l=1

φx(G,ml)

(
φx(0)

j + EG|Gm1,...,Gmi

[ ∑
m′ /∈Ui

φx(G,m′)j
])]

︸ ︷︷ ︸
(ii)

.

(41)

Here we denote Ui = span{m1, . . . ,mi}, and divide the vectors of m′’s
into two parts depending on whether they belong to Ui \ {0} or not. For
vectors not in Ui, we split the expectation into conditional fixed codewords
{Gm1, . . . ,Gmi} in the last step. Now we estimate (i) and (ii) separately.
To estimate (i), we need the following inequality.

Lemma 13 (Rearrangement Inequality, [32]). Let a1 ≤ a2 ≤ · · · ≤ an and
b1 ≤ b2 ≤ · · · ≤ bn be sequences of real numbers. Then,

a1b1 + a2b2 + · · ·+ anbn ≥ as(1)b1 + as(2)b2 + · · ·+ as(n)bn,

for any permutation s of {1, 2, . . . , n}.

Now we begin with

∑
m1,...,mi∈F∗

p

i∏
ℓ=1

φx

(
G,mℓ

) ∑
m′∈Ui

φx

(
G,m

)j
.

Since any m′ can be written as m =
∑i

ℓ=1 dℓ mℓ with d = (d1, . . . , di) ∈
Fi
p \ {0}, this becomes

∑
m1,...,mi∈F∗

p

i∏
ℓ=1

φx

(
G,mℓ

) ∑
d=(d1,...,di)∈Fi

p

d̸=0

φx

(
G,

i∑
ℓ=1

dℓ mℓ

)j
(some linear combinations may coincide).
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Re-ordering the sums,

∑
d∈Fi

p\{0}

∑
m1,...,mi∈F∗

p

( i∏
ℓ=1

φx(G,mℓ)
)
φx

(
G,

i∑
ℓ=1

dℓ mℓ

)j
.

Now set
i0(d) = min{ℓ : dℓ ̸= 0},

and group by which coordinate is first nonzero:

(∗) =
∑
d̸=0

∑
m1,...,mi0−1,

mi0+1,...,mi∈F∗
p

( i∏
ℓ=1
ℓ ̸=i0

φx(G,mℓ)
) ∑

mi0∈F∗
p

φx(G,mi0) φx

(
G,

i∑
ℓ=1

dℓ mℓ

)j
.

Note that as mi0 runs through F∗
p, since di0 ̸= 0, the linear combination∑

ℓ dℓ mℓ also runs through F∗
p. Hence by the “crypto-lemma” φx

(
G,
∑

ℓ dℓmℓ

)
is just a permutation of φx(G,mi0).
Applying Lemma 13 to the marked term (∗) gives

(∗) ≤
∑
d ̸=0

∑
m1,...,mi∈F∗

p

(∏
ℓ ̸=i0

φx(G,mℓ)
) ∑

mi0
∈F∗

p

φx(G,mi0)
j+1.

Since
∑

d ̸=0 1 = pi − 1 and the remaining products factor,

(i) ≤ (pi−1)EG

( ∑
m∈F∗

p

φx(G,m)
)i−1 ∑

m∈F∗
p

φx(G,m) j+1 < p i−1 S i−1,j+1,

(42)
Now we estimate (ii). The Gaussian binomial coefficient, denoted[

n
k

]
p

=
(1− pn)(1− pn−1) · · · (1− pn−k+1)

(1− pk)(1− pk−1) · · · (1− p)
,

counts the number of k-dimensional subspaces of an n-dimensional vector
space over Fp. Denote V = span{Gm1, . . . ,Gmi} and then V ⊥ as the com-
plement linear space of V with dim(V ⊥) = n− dim(V ). Thus

Fn
p = V ⊕ V ⊥.

If V is fixed, the number of linear codes in B containing V is
[
n− dim(V )
k − dim(V )

]
p

and the number of linear codes in B both containing V and a given v̄ /∈ V

is
[
n− dim(V )− 1
k − dim(V )− 1

]
p

. Note that v̄ is a combination of vectors from V and

V ⊥. Thus we have
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EG|Gm1,...,Gmi

[ ∑
m/∈Ui

φx(G,m)j

]
=

[
n− dim(V )− 1
k − dim(V )− 1

]
p[

n− dim(V )
k − dim(V )

]
p

∑
v̄/∈V

φx(v̄)
j

=
pk−dim(V ) − 1

pn−dim(V ) − 1

∑
v̄/∈V

φx(v̄)
j ≤ pk − 1

pn − 1

∑
v̄∈Fn

p\{0}

φx(v̄)
j

Thus

(ii) ≤
∑

m1,...,mi∈Fk
p

EGm1,...,Gmi

[
i∏

l=1

φx(G,ml)

](
φx(0)

j +
pk − 1

pn − 1

∑
v̄∈Fn

p\{0}

φx(v̄)
j

)

= S0,jEG

[ ∑
m1,...,mi∈Fk

p

i∏
l=1

φx(G,ml)

]
= S0,jSi−1,1. (43)

Substituting inequalities (42) and (43) into (41) yields the proof of the first
claim of (22).

2. Now we prove the first claim of (23) by induction on i.
With the case i = 1 settled in part 1, suppose the desired inequality is true
for all integers i′ ≤ i. We then turn to deriving an upper bound for Si+1,j

Si+1,j ≤ pi+1Si,j+1 + S0,jSi,1

≤ pi+1S0,j+1S
i
0,1 + pi+1 · p

i(i+1)
2

∑
k1+···+ki=i

S0,j+1+k1

i∏
l=2

S0,kl

+ S0,jS
i+1
0,1 + p

i(i+1)
2

∑
k1+···+ki=i

S0,j · S0,1+k1

i∏
l=2

S0,kl

(44)

≤ S0,jS
i+1
0,1 + p

(i+1)(i+2)
2

∑
k1+···+ki+1=i+1

S0,j+k1

i+1∏
l=2

S0,kl
. (45)

(44) is derived by induction. Thus the claim of upper bound for Si,j for
i ∈ N+ and j ≥ 1 follows.

C Proof of Lemma 10

Proof. First it is obvious that for r ≥ 1,

N(r) = #
{
u ∈ Zn : ∥u∥2 = r

}
≤ (2
√
r + 1)n ≤ (3

√
r)n.
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Then for some fixed β, as p = ηnn
1+2ε → ∞, γ = 1/η

1
2
nn

1
2+ε → 0, γnpn−k =

1, k = n
2 , ε > 0

∑
ξ∈ 1

γ Zn\{0}

e−β2∥ξ∥2

=
∑

u∈Zn\{0}

e
− β2

γ2 ∥u∥2

≤
∞∑
r=1

∑
u∈Zn

∥u∥2=r

e
− β2

γ2 r

=

∞∑
r=1

N(r)e
− β2

γ2 r ≤
∞∑
r=1

(3
√
r)ne

− β2

γ2 r
. (46)

Denote g(r) = (3
√
r)ne

−β2

γ2 r
, The critical point r0(n) is determined by

d ln g(r)

dr
= n

2r −
β2

γ2 = 0⇒ r0(n) =
nγ2

2β2
.

Thus∑
r≤r0(n)

(3
√
r)n exp

(
−β2

γ2 r
)
≤ r0(n) (3

√
r0(n))

n exp
(
−β2

γ2 r0(n)
)

= 3n
(

γ
√
n√

2 β

)n+2

e−n/2 = O
(
3n e−n/2 n−ε(n+2)

)
= e−ω(n). (47)

Continuing from Eq. (46), by (47) we have

∑
ξ∈ 1

γ Zn\{0}

e−β2∥ξ∥2

=
∑

r≤r0(n)

(3
√
r)n exp

(
−β2

γ2 r
)
+

∑
r>r0(n)

(3
√
r)n exp

(
−β2

γ2 r
)

≤ e−ω(n) +

∫ ∞

0

(3
√
r)ne

− β2

γ2 r
dr

= e−ω(n) +
3nγn+2

βn+2
Γ
(
n
2 + 1

)
= e−ω(n) +

3n

βn+2
· e

n+2
2 log n+2

2 −n
2 +O(1)

e
n+2
2 logn+ϵ(n+2) logn

= e−ω(n). (48)

Similarly, we have

∑
u∈pγZn\{0}

e−
1
j ∥u∥2

≤ e−ω(n). (49)

Given ρs(x) =
1
sn e

−π∥x∥2/s2 and assuming u0 = 0, we compute the Fourier
transform in v of

∏j−1
r=0 ρs(x+ v + ur) as follows:
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F

{
j−1∏
r=0

ρs(x+ v + ur)

}
(ξ)

= exp

 1
j

∥∥∥∑j−1
r=1 ur

∥∥∥2 −∑j−1
r=1 ∥ur∥2

s2
+ 2πi ⟨x+ u′, ξ⟩

 · F { 1

sjn
exp

(
−πj∥v∥2

s2

)}
(ξ)

(50)

⇒|F

{
j−1∏
r=0

ρs(x+ v + ur)

}
(ξ)| ≤ exp

(
− 1

s2j

j−1∑
r=1

∥ur∥2
)
· 1

sn(j−1)jn/2
e−

πs2

j ∥ξ∥2

.

(51)

Here in (50) phase shift property is applied and u′ = − 1
j

j−1∑
r=1

ur. (51) is ob-

tained by applying Cauchy-Schwarz inequality
∥∥∥∥j−1∑
r=1

ur

∥∥∥∥2 ≤ (j − 1)
j−1∑
r=1
∥ur∥2,

and |e−2πi⟨x+u′,ξ⟩| = 1.
With the tools and inequalities above, we are able to present the proof of the

lemma. When j ∈ N+, it can be derived that

S0,j = φx(0)
j +

pk − 1

pn − 1

∑
v̄∈Fn

p\{0}

φx(v̄)
j

≤ φx(0)
j + pk−n

∑
v̄∈Fn

p\{0}

( ∑
u∈pγZn

ρs(x+ γv̄ + u)

)j

= φx(0)
j + pk−n

∑
v̄∈γFn

p\{0}

∑
u∈pγZn

∑
u1,...,uj−1∈pγZn

j−1∏
r=0

ρs(x+ v̄ + u+ ur)

= φx(0)
j +

∑
u1,...,uj−1∈pγZn

pk−n
∑

v̄∈γFn
p\{0}

∑
u∈pγZn

j−1∏
r=0

ρs(x+ v̄ + u+ ur)

≤ φx(0)
j +

∑
u1,...,uj−1∈pγZn

pk−n
∑

v∈γZn

j−1∏
r=0

ρs(x+ v + ur)

= φx(0)
j +

∑
u1,...,uj−1∈pγZn

1

pn−kγn

∑
ξ∈ 1

γ Zn

F

{
j−1∏
r=0

ρs(x+ v + ur)

}
(ξ) by Poisson summation formula

≤ φx(0)
j +

∑
u1,...,uj−1∈pγZn

∑
ξ∈∈ 1

γ Zn

e
− 1

s2j

∑j−1
r=1 ∥ur∥2

· 1

sn(j−1)jn/2
e−

πs2

j ∥ξ∥2

by Eq. (51)
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= φx(0)
j +

1

sn(j−1)jn/2

( ∑
ξ∈∈ 1

γ Zn

e−
πs2

j ∥ξ∥2

)( ∑
u∈pγZn

e
− 1

s2j
∥u∥2

)j−1

≤ φx(0)
j +

1

sn(j−1)jn/2
(1 + e−ω(n))(1 + e−ω(n))j−1 by Eq. (48) and (49)

= φx(0)
j +

1

sn(j−1)jn/2
+ e−ω(n)

= φx(0)
j +

∫
Rn

ρs(x)
j dx+ e−ω(n). (52)

Meanwhile, it can be obtained that∫
Rn

ρs(x)
j′φ(0)jdx =

∫
Rn

ρs(x)
j′
( ∑

u∈pγZn

ρs(x+ u)

)j

=
∑

u1,...,uj∈pγZn

∫
Rn

ρs(x)
j′ρs(x+ u1) . . . ρs(x+ uj)dx

≤
∑

u1,...,uj∈pγZn

exp

(− j′

j+j′π
∑j

r=1 ∥ur∥2

s2

)∫
Rn

ρs(x)
j+j′ dx same in Eq. (51)

=

( ∑
u∈pγZn

e
− j′

j+j′ π∥u∥2

s2

)j ∫
Rn

ρs(x)
j+j′ dx

≤ (1 + e−ω(n))

∫
Rn

ρs(x)
j+j′dx by Eq. (49)

=

∫
Rn

ρs(x)
j+j′dx+ e−ω(n). (53)

Combining results above the proof is finished.
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