
Algebraic Cryptanalysis of AO Primitives Based
on Polynomial Decomposition

Applications to Rain and Full AIM-I/III/V

Hong-Sen Yang, Qun-Xiong Zheng(B), and Jing Yang(B)

Information Engineering University, Zhengzhou 450001, China
moonlight0833@outlook.com
qunxiong_zheng@163.com

yangjingfi@163.com

Abstract. The LowMC-based post-quantum signature scheme Picnic
was selected as a third-round candidate for NIST PQC, attracting wide
attention to the design of efficient and secure post-quantum signature
schemes using Symmetric Techniques for Advanced Protocols (STAP).
Symmetric primitives designed for advanced protocols such as secure
multi-party computation (MPC), fully homomorphic encryption (FHE),
and zero-knowledge (ZK) proof systems, with the goal of reducing the
number of multiplication operations, are referred to as arithmetic-oriented
(AO) primitives. These cryptographic primitives are typically constructed
over large finite fields, which makes classical statistical analysis methods
like differential and linear cryptanalysis inefficient. Due to their inher-
ent algebraic properties, the mainstream security evaluation approaches
are based on algebraic attacks. In this paper, we analyze the security
of the MPC-friendly primitives Rain (CCS 2022) and AIM (CCS 2023)
used in the post-quantum signature schemes Rainier and AIMer. Ex-
isting algebraic attacks on Rain and AIM were conducted over F2. We
propose a novel algebraic attack over F2n that uses the polynomial de-
composition to reduce degrees of equations. By further combining with
the guess-and-determine technique, meet-in-the-middle modeling, and
resultant, we are able to attack Rain and the full AIM. Specifically,
we successfully attacked 2-round Rain with 273.7/2107.0/2138.9 primi-
tive calls, 3-round Rain with 2160.6/2236.0/2311.1 primitive calls, for the
128/192/256-bit key. For the full AIM, we successfully attacked it with
2114.0/2163.2/2228.3 primitive calls for the 128/192/256-bit key. The at-
tack complexities mainly lie in solving univariate polynomial equations
and computing resultants, and hence the complexity evaluations are ac-
curate.

Keywords: Polynomial Decomposition· MITM · Rain · AIM · Guess-
and-determine · Resultant.

1 Introduction

The emergence of privacy-preserving protocols such as zero-knowledge (ZK)
proofs, secure multi-party computation (MPC), and fully homomorphic encryp-

tion (FHE) has gained extensive attention and wide research in recent years.
These advanced schemes have motivated the development of one type of novel
symmetric cryptographic primitives known as arithmetic-oriented (AO) primi-
tives. AO primitives are designed to optimize performance in arithmetic circuits,
with main focus on minimizing the number of multiplication operations [25]. Dif-
ferent from classical symmetric ciphers like AES [35] and SHA-3 [19] that are
designed for optimizing speeds in software or hardware, the algebraic structures
of these primitives are designed to be well aligned with the privacy-preserving
protocols that operate over large finite fields. For instance, the AO primitives
Rescue variants [4,38,8], Poseidon variants [24,25], Arion [36], Griffin [21],
Reinforced Concrete [22], Tip5 variants [39], and the Monolith family [23] are
all operating over large prime fields. MiMC [1], Jarvis [6], Vision [4], Rain [18]
and AIM [30] etc. are working on binary extension fields with large degrees of
extension. GMiMC [3], Ciminion [17], Anemoi [14] are operating over both large
prime fields and binary extension fields.

In parallel, the urgency to develop post-quantum digital signatures has in-
tensified and the MPC-in-the-Head (MPCitH) paradigm proposed by Ishai et
al [26] presents a novel constructing way. The MPCitH paradigm is basically a
non-interactive zero-knowledge proof of knowledge (NIZKPoK) that verifies the
correspondence between the input (the secret key of a signature) and the output
(the public key of the signature) of a specific one-way function. The performance
of MPCitH-based signatures is typically closely related to the number of non-
linear operations in the circuit of the underlying one-way function. Therefore,
AO primitives that target to reduce the number of multiplication operations
are well-suited to meet this requirement. The authors in [15,28] pioneered the
research of NIZKPoK-based signatures and designed the Picnic scheme, which
utilized the MPC-friendly block cipher LowMC to instantiated a one-way func-
tion. In this paper, we mainly study the MPC-friendly one-way functions Rain
[18] and AIM [30]. Their MPCitH-based signatures Rainier and AIMer (a can-
didate of NIST Round 1 PQC Additional Signatures1 and a final algorithm of
Korean Round 2 PQC Competition2) managed to reduce multiplications as well
as the signature sizes.

Security of AO primitives. The cryptanalysis of AO cryptographic primi-
tives has experienced significant advances in recent years. The security of an AO
primitive often relies on the hardness of solving an equation system using a single
plaintext-ciphertext pair since very few amount of available plaintext-ciphertext
data can be obtained. Besides, due to the inherent algebraic properties of AO
primitives, algebraic attacks typically outperform other statistical analysis such
as differential and linear cryptanalysis. For instance, Gröbner basis attacks com-
bined with low-degree equation modeling on some AO primitives are proposed in
[12,2,32]. In Crypto 2024 and Asiacrypt 2024, two novel algebraic attacks have

1 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
2 https://kpqc.or.kr

2

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://kpqc.or.kr

been proposed, named the FreeLunch [11] and the resultant-based method [40],
both of which have proved high efficiency for a wide range of AO primitives.

Another type of widely used attacks is the guessing-based algebraic attack
[34,9,10,37,41]. For Rain and AIM, Zhang et al. proposed guess-and-determine
attacks on 2-round Rain and full AIM-III (the variant targeting for 192 bits
of security) at ASIACRYPT 2023 [41]. They linearize the S-box by guessing
the power of the input of the S-box such that the attack is reduced to solve
a system of linear equations. At FSE 2024 [33], Liu et al. further improved
the attack on 2-round Rain by using Dinur’s methods [16] or the Crossbred
method [27] to solve the low-degree equivalent equation representation of Rain.
They also employed the fast exhaustive search method [13] to solve the low-
degree equivalent equation of AIM, demonstrating that AIM does not meet its
security claims. In CCS 2023 [30], the designers of AIM proposed using Gröbner
basis attacks and XL attacks to analyze the security of 3-round Rain. They
estimated the complexities of the XL attacks based on the strong independence
assumption between the equations with ω = 2, where ω denotes the exponent of
the time complexity of matrix multiplication. The authors also admit that the
independent assumption is too ideal, therefore, the complexities in [30] do not
imply that Rain has been broken. At ASIACRYPT 2024 [32], Liu et al. improved
the equation modeling in [30] and constructed more equations to build the over-
determined system for 3-round Rain and reduced the time complexities of the
Gröbner basis attacks. It is worth noting that the aforementioned attacks on
Rain and AIM are implemented over F2, which will introduce a large number
of variables and enlarge the scale of the equation system. Besides, only one
pair of plaintext and ciphertext is available for attacks on keyed AO primitives,
which makes the construction of an over-determined system and linearization
technique over F2 difficult. Furthermore, algebraic attacks that directly solve
equations using Gröbner basis on AO primitives over F2 fail to make full use of
the inherent algebraic properties of the AO primitives, and the complexities of
Gröbner basis algorithms are not precise, leading to inaccurate evaluation of the
security of AO primitives. In this paper, we propose a novel algebraic attack over
the extension field F2n that can make full use of the properties of linear layers.
Such an attack can derive more powerful attacking results and the evaluation of
complexities are accurate.

Our Contributions. In this paper, we propose to use polynomial decomposi-
tion in algebraic attacks on Rain and AIM over F2n . Our attack is highly flex-
ible, allowing integration with guess-and-determine attacks [41] and resultant-
substitution [40] methods. The complexity of our attack is primarily from solv-
ing univariate polynomial equations and computing a bivariate resultant, which
can be estimated accurately. Our main contributions are as below and Table 1
presents the comparison of our attacks with existing ones.

1. We discovered a useful property of linearized polynomials: a linearized poly-
nomial L of degree 2n−1 can be decomposed into L = L1(L−1

2) with deg(L1) ≤
2⌈n/2⌉ and deg(L2) ≤ 2⌈n/2⌉. This property cannot be utilized in algebraic

3

attacks over F2, but can be exploited in algebraic attacks over F2n . Taking ad-
vantage of this property and combing with the meet-in-the-middle (MITM)
modeling, we decompose the linearized polynomial and derive a univariate
polynomial equation with a degree not exceeding 2n/2+2 for 2-round Rain
(n ∈ {128, 192, 256}). Solving this relatively low-degree univariate polyno-
mial equation can significantly reduce the attack complexity. The 2-round
Rain can be broken with 273.7/2107.0/2138.9 primitive calls for 128/192/256-
bit key, respectively.

2. To extend our algebraic attack to the full-round (3-round) Rain, we fur-
ther incorporate the idea of the guess-and-determine attack. By guessing
the value of the 2n/2+1-th power of the input of the middle S-box, we can
linearize the S-box and thus the two linear layers of the 3-round Rain can
be combined and regarded as one linear layer. Then using the MITM mod-
eling and polynomial decomposition, we can obtain an equivalent represen-
tation of the 3-round Rain as a univariate polynomial equation with de-
gree at most 22n/3+1. Furthermore, we can attack the 3-round Rain with
2160.6/2236.0/2311.1 primitive calls for 128/192/256-bit key, respectively.

3. For the full AIM, we observe that all its linear layers can be decomposed us-
ing appropriate linearized polynomials and merged into a single linear layer.
By using the MITM modeling, we obtain a system of two special forms of
bivariate equations. We find that this system has the property of variable iso-
lation mentioned in [40], making it especially suitable for deriving solutions
using the resultant-based method. Based on the special parameter settings of
AIM, we propose a fast substitution method such that the complexity of the
substitution is negligible, and the complexities of the algebraic attacks on the
full AIM are primarily determined by computing the resultants and solving
univariate polynomial equations. We finally successfully attack the full AIM
with 2114.0/2163.2/2228.3 primitive calls for 128/192/256-bit key, respectively.
The results indicate that AIM cannot achieve its security claims.

Organization. In Section 2, we introduce the background knowledge used in
this paper, including linearized polynomials and resultants. In Section 3, we de-
scribe our algebraic attack on 2-round Rain based on polynomial decomposition
in Section 3.3 and extend the attack to 3-round Rain by further combing with
the guess-and-determine technique in Section 3.4. In Section 4, we discuss how
to integrate the MITM modeling and resultant with our approach to attack the
full AIM. We end the paper with conclusions in Section 5.

2 Prelimnaries

2.1 Notation

Let q = pn be a prime power and Fq the finite field with q elements, where p
is a prime number and n is a positive integer. We also use n to denote both
the security level and the block size, since they are the same both in Rain and

4

AIM. Let Fq [x1, x2, . . . , xs] be the multivariate polynomial ring over Fq with
indeterminates x1, x2, . . . , xs.

Table 1: Time complexities for attacking 2-round, 3-round Rain, and full AIM,
which are given in the number of equivalent calls of the primitives.

Primitives Techniques 128 192 256

2-round Rain∗

guess-and-determine [41] 2120.3 2180.4 2243.1

polynomial method∗∗ [33] 297 2149 2201

crossbred algorithm [33] 290 2147 2204

Section 3.3 273.7 2107.0 2138.9

3-round Rain
Gröbner basis method [32] (ω=2) 2118 2173 2228

Gröbner basis method [32] (ω=2.8) 2174 2251 2328

Section 3.4 2160.6 2236.0 2311.1

Full AIM
guess-and-determine [41] 2125.7 2186.5 2254.4

fast exhaustive search [33] 2115 2178 2241

Section 4 (ω=2.8) 2114.0 2163.2 2228.3

* The attack for 2-round Rain in [41] additionally considered one linear layer in the
last round.

** The so-called polynomial method in [33] is to use the Dinur’s methods [16] to solve
the low-degree equivalent equations representation of Rain.

A product of the form xk1
1 xk2

2 · · ·xks
s is called a term, where all exponents

k1, k2, . . . , ks are nonnegative integers. For any f ∈ Fq [x1, x2, . . . , xs] with f ̸= 0,
the set of all terms of f is denoted by T (f) and the degree of f , denoted by
deg(f), is defined as the maximum degree among all its terms, i.e.,

deg(f) = max


s∑

j=1

kj | xk1
1 xk2

2 · · ·xks
s ∈ T (f)

 .

For 1 ≤ i ≤ s, let degxi
(f) be the maximum degree of f in variable xi, that is

degxi
(f) = max

{
ki | xk1

1 xk2
2 · · ·xks

s ∈ T (f)
}
.

2.2 Linearized Polynomial

Definition 1 (Linearized Polynomial and Affine Polynomial). A poly-
nomial of the form L(x) =

∑n−1
i=0 αix

pi

with coefficients αi ∈ Fq is called a
linearized polynomial over Fq. A polynomial of the form A(x) = L(x) + c is
called an affine polynomial, where L(x) is a linearized polynomial and c ∈ Fq.

The terminology linearized polynomial stems from the following peoperty:

L(a+ b) = L(a) + L(b) for all a, b ∈ Fq,

5

c · L(a) = L(c · a) for all a ∈ Fq and c ∈ Fp.

We can view x ∈ Fq = Fpn as x̂ ∈ Fn
p when Fq is regarded as a vector space over

Fp. In this case, a linearized polynomial over Fq has a one-to-one correspondence
with a linear transformation over Fp, and hence there exists a matrix M ∈
Fn×n
p such that L(x) = Mx̂. Due to the linearity of linearized polynomials, the

composition L3(x) = L1(L2(x)) of two linearized polynomials L1(x) and L2(x)
remains a linearized polynomial. For convenience, we sometimes also denote the
composition of linearized polynomials as L3 = L1 ◦ L2.

Our new method, based on polynomial decomposition, requires the target
linearized polynomial to be a permutation polynomial (called linearized permu-
tation polynomial). However, not all linearized polynomials satisfy this property.
In [31, page 362], it is proved that a linearized polynomial L(x) =

∑n−1
i=0 aix

pi ∈
Fq[x] is a permutation polynomial if and only if its Dickson matrix DL is invert-
ible, where

DL =


a0 a1 · · · an−1

a2n−1 a20 · · · a2n−2
...

...
...

...
a2

n−1

1 a2
n−1

2 · · · a2n−1

0

 .

We note that, in [18], the designers impose a critical constraint that all coef-
ficients of the terms of both the linearized polynomials representing the linear
layer and its inverse must be non-zero. Furthermore, [18] shows that the inverse
of a linearized polynomial L(x) can be explicitly derived through its associated
Dickson matrix, that is

L−1(x) =
1

det (DL)
·
n−1∑
i=0

āix
2i ,

where āi is the (i, 0)-th cofactor of DL.

2.3 Resultant

The resultant is a powerful tool for solving systems of polynomial equations.
In [40], the authors propose a novel algebraic attack method on AO primitives
based on the resultant. In this paper, we will also utilize the resultant to eliminate
variables.

Definition 2 (Resultant). Let f(x, y), g(x, y) ∈ Fq[x, y] with x = (x1, . . . , xs).
The resultant of f(x, y) and g(x, y) with respect to the indeterminant y, denoted
by R(f, g, y), is defined as the determinant of the Sylvester matrix of f(x, y) and
g(x, y) when considered as polynomials in the single indeterminate y. That is,
if f(x, y) =

∑m
i=0 fiy

i and g(x, y) =
∑n

i=0 giy
i, where fi, gi ∈ Fq [x], then

6

R(f, g, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f0
fm fm−1 · · · f0

.
.

fm fm−1 · · · f0
gn gn−1 · · · · · · g0

gn gn−1 · · · · · · g0
.

gn gn−1 · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is well-known that the resultant is non-zero if and only if the two poly-
nomials are algebraically independent. In this case, the resultant yields a new
polynomial h(x), such that if (x0, y0) is a root of both f(x, y) and g(x, y), then
h(x0) = 0. In this way, we can remove one variable from two polynomials while
retaining information about the roots of the original polynomials. Given ℓ poly-
nomials in s variables, we can repeatedly compute resultants of the polynomials
until we get a univariate polynomial. Solving for the roots of the univariate poly-
nomial and repeatedly substituting them back, we can derive the roots that the
polynomials have in common.

2.4 Finding Roots of Univariate Polynomials over Fq

Finding roots of univariate polynomials over Fq plays a crucial role in solving
a system of multivariate polynomials over Fq, regardless of whether one em-
ploys resultant-based algorithms or Gröbner basis techniques. The authors in
[12] showed that the roots of a univariate polynomial R(x) ∈ Fq[x] can be found
in O(d log d(log d+log q) log log d) field operations, provided that the multiplica-
tion of two univariate polynomials of degree d over Fq can be done in O(d log d
log log d) field operations using an FFT (Fast Fourier Transform) algorithm. We
note that the log function is of base 2 throughout the paper. The process consists
of three main steps.

1. Compute Q(x) = xq − x mod R(x). The complexity of this step mainly
lies in computing xq mod R(x), which requires O(d log d log q log log d) field
operations using a double-and-add algorithm.

2. Compute P (x) = gcd(R(x), Q(x)). This step requires O(d(log d)2 log log d)
field operations.

3. Factor P (x). The complexity of this step is negligible since P (x) is of degree
one or two in general.

By using a fast gcd algorithm called half-gcd (see [20, Section 11.1]), the
complexity of the second step can be reduced to O(d(log d)2). Then the com-
plexity of finding roots of univariate polynomials over Fq can be reduced to
O(d log d(log d+ log q log log d)) field operations.

7

3 Improved Algebraic Attacks on Rain

In this section, we present improved algebraic attacks on 2-round and 3-round
Rain. The MPC-friendly cipher Rain[18] was first proposed at CCS 2022 and
designed as the one-way function for the post-quantum signature scheme Rainier.
We start with a brief introduction to Rain.

3.1 Description of Rain

The schematic of the r-round Rain is depicted in Fig. 1, where the plaintext
p and ciphertext c are public, while the key k is kept secret. The security of
Rain relies on the difficulty of solving the key from a single pair of plaintext
and ciphertext. Let Ri denote the permutation in the i-th round, defined as

Ri = Mi (S (x+ k + ci)) , 1 ≤ i ≤ r − 1,

where ci ∈ F2n is the round constant and Mi ∈ Fn×n
2 is the linear-layer matrix

used in the i-th round. Note that the “+” operation denotes the “⊕” operation
as done in the original paper. The permutation in the final round is given by

Rr = S (x+ k + cr) + k.

Each Mi(1 ≤ i ≤ r − 1) is constructed from a linearized polynomial over F2n ,
expressed as

Li(x) =

n−1∑
j=0

di,jx
2j .

All the coefficients in both Li(x) and its inverse L−1
i (x) are non-zero, which

means that deg(Li(x)) = deg(L−1
i (x)) = 2n−1. The S-box S : F2n → F2n is

defined by

S(x) = x2n−2 =

{
x−1, if x ̸= 0,
0, if x = 0.

For simplicity, we define 0−1 = 0. Furthermore, we simply use x−1 to repre-
sent the S-box throughout the rest of paper, when there is no ambiguity.

Fig. 1: The r-round Rain

8

Concrete Instances. The designers instantiate three variants of Rain targeted
for 128, 192, and 256 bits of security, respectively. Two security levels for each
variants are recommended with the round number as 3 or 4. The parameters
and irreducible polynomials for constructing the corresponding finite fields are
shown in Table 2.

Table 2: Three instantiations of Rain

scheme security level round finite field
(block size) polynomial over F2

Rain-128 128 {3, 4} F2128 : X128 +X7 +X2 +X + 1
Rain-192 192 {3, 4} F2192 : X192 +X7 +X2 +X + 1
Rain-256 256 {3, 4} F2256 : X256 +X10 +X5 +X2 + 1

3.2 Existing Cryptanalysis of Rain

In this subsection, we mainly review the cryptanalysis results of the 2-round
and 3-round Rain. We note that the main idea of existing attacks on Rain is
converting the problem into solving systems of linear or quadratic equations over
F2. In Asiacrypt 2023 [41], Zhang et al. proposed that the multiplicative inverse
function x−1 can be linearized by guessing the value of its input to a specific
power xd. For 2-round Rain, the authors selected a suitable value of d that
divides 2n − 1, then constructed an overdefined system of equations and solved
the system using linearization techniques. In FSE 2024 [33], Liu et al. pointed
out that it is feasible to construct a low-degree equation system to describe 2-
round Rain, then employed the Dinur’s method [16] or the crossbred method
[27] to solve the well-determined or over-determined system, respectively.

For 3-round Rain, the designers of AIM proposed using Gröbner basis attacks
and XL attacks to analyze its security in [30]. Liu et al. in Asiacrypt 2024 [32]
improved the modeling approach in [30] to derive more equations for constructing
an over-determined system and thus reducing the complexity of Gröbner basis
attacks.

The main barrier of the previous work over F2 lies in the number of S-boxes:
typically, a larger number of S-boxes indicates a higher attacking complexity.
As a comparison, we model Rain over F2n and the influence of the number of
S-boxes is much smaller, instead, we need to carefully deal with the linear lay-
ers. Specifically, we decompose the linearized polynomial of the linear layer into
composition of low-degree polynomials and obtain equations with much lower de-
grees. For 2-round Rain, we can construct an equivalent univariate polynomial
equation with a degree no more than 2n/2+2. By further combining the method
of polynomial decomposition with guess-and-determine techniques, we can ex-
tend our attack to 3-round Rain. As the complexities of our attacks mainly
lie in finding the roots of univariate polynomials and computing resultants, the
evaluations of complexities are accurate.

9

3.3 Improved Algebraic Attack on 2-round Rain

In this subsection, we present improved algebraic attacks on 2-round Rain using
decomposition of linearized polynomials.

Inspiration of Decomposition of Linearized Polynomials. Our idea for
decomposition of the linearized polynomials is inspired by the design of Jarvis
[7]. The round function of Jarvis is shown in Fig. 2, in which the linear layer
is constructed from the composition of two quartic affine polynomials B(x) and
C(x), i.e., A = C ◦B−1, where

B(x) = x4 + b2x
2 + b1x+ b0,

C(x) = x4 + c2x
2 + c1x+ c0,

with b2, b1, b0, c2, c1, c0 ∈ F2n .

Fig. 2: The i-th round of the Jarvis block cipher.

In Asiacrypt 2019 [2], low-degree representation for Jarvis was proposed and
used to break its security claims. In Asiacrypt 2024 [40], Yang et al. further pro-
posed to use the resultant to solve the equations of the low-degree representation
of Jarvis. Motivated by these work, we wonder if the high-degree linear layers of
Rain could be represented as compositions of low-degree linearized polynomi-
als, such that we can employ the tools such as the resultant to solve the derived
system. Below we show how we achieve it for Rain.

Meet-in-the-Middle (MITM) Modeling for 2-round Rain. The meet-
in-the-middle modeling for 2-round Rain is illustrated in Fig. 3, where M1 is
the original linear-layer matrix while Ma is another nonsingular matrix of a low
degree that we introduced. We append M−1

a , the inverse of Ma, immediately after
Ma to cancel out the influence of the introduction of Ma. Let L1(x) and La(x)
denote the linearized polynomials corresponding to M1 and Ma, respectively.
Denote Lα(x) = La(L1(x)) and the goal is to find a low-degree La such that Lα

also has a low degree. It is worth noting that we do not directly construct the
matrix Ma, instead, we find linearized polynomials by solving a system of linear
equations in the coefficients of the polynomials. We will elaborate the process
later on.

10

Fig. 3: MITM modeling for 2-round Rain

After we have found an appropriate La, we employ the MITM modeling
to construct equations for k. Specifically, we regard p, c as knowns and run the
cipher forward and backward, respectively, and then meet in the middle at where
the value should be identical. Then we can derive the equation below

Lα(
1

p+ k + c1
) = La(

1

c+ k
+ k + c2). (1)

Construct Low-degree Decomposition of Linearized Polynomials. We
now show how we decomposite a linearized polynomial into the composition of
two low-degree polynomials, i.e., how we find low-degree La(x) and Lα in Fig.
3. The degree of Equation (1) relies on the degrees of La and Lα. Let

La(x) =

n−1∑
i=0

aix
2i , L1(x) =

n−1∑
j=0

d1,jx
2j ,

where d1,j ’s are known while ai’s are the unknowns to be solved. It is clear that

Lα(x) = La (L1 (x)) =

n−1∑
i=0

ai(

n−1∑
j=0

d1,jx
2j)2

i

=

n−1∑
i=0

n−1∑
j=0

aid
2i

1,jx
2(i+j) mod n

.

If we expect that deg(La(x)) ≤ 2l and deg(Lα(x)) ≤ 2γ for some integers 0 ≤
l, γ ≤ n− 1, then we can obtain the following system of linear equations

ai = 0 for l + 1 ≤ i ≤ n− 1,∑
0≤i,j≤n−1
i+j≡t mod n

aid
2i

1,j = 0 for γ + 1 ≤ t ≤ n− 1. (2)

After removing the ai’s that are zero, Equation (2) can be simplified to a system
of n−γ−1 linear equations with l+1 unknowns, i.e., a0, a1, . . . , al. To guarantee

11

a non-zero solution, l and γ should satisfy that l+1 > n−γ−1, or equivalently,
l+ γ > n− 2. Furthermore, to minimize the degree of Equation (1), we prefer γ
and l to be as close as possible. In our experiments, we start to select l = n/2−1
and γ = n/2 . Once the values of γ and l are determined, we can solve the system
of linear equations. When we have derived a solution vector a = (a0, a1, . . . , al),
we check if the Dickson matrix mentioned in Section 2.2 is invertible. If not,
we try a different solution or increase the null space by increasing the values of
l and γ until we find one satisfying the requirements, which indicates that we
get a pair of La(x) and Lα(x) with degrees below the thresholds we have set.
According to the experiments performed for the linearized polynomials chosen
for Rain, we observed that l will not exceed n/2 and γ will not exceed n/2 + 1.

Key Recovery. After we have found La and Lα, we can solve the univariate
polynomial equation in Equation (1) using the method described in Section 2.4
and recover the secret key k.

Complexity Analysis. The complexity of finding one solution of Equation
(2) does not exceed O(nω) and can be neglected. Therefore, we below mainly
focus on the complexity of solving Equation (1).

Let L∗
a and L∗

α be the reciprocal polynomials of La and Lα, which are defined
by

L∗
a(x) = xdeg(La)La

(
1

x

)
,

L∗
α(x) = xdeg(Lα)Lα

(
1

x

)
,

respectively. Using the linearity of linearized polynomials, Equation (1) can be
rewritten as below

Lα(
1

p+ k + c1
) = La(

1

c+ k
) + La(k + c2),

or equivalently,

Lα(
1

p+ k + c1
) + La(

1

c+ k
) + La(k + c2) = 0.

Multiplying both sides of the equation by (p+k+ c1)
2γ (c+k)2

l

to eliminate the
denominators, we have

(p+ k + c1)
2γ · (c+ k)2

l

·
(
Lα

(
1

p+ k + c1

)
+ La

(
1

c+ k

)
+ La (k + c2)

)
= 0,

or equivalently,

G(k) :=(p+ k + c1)
2γ · L∗

a (c+ k) + (c+ k)2
l

· L∗
α (p+ k + c1)

+ (p+ k + c1)
2γ · (c+ k)2

l

· La (k + c2) = 0.

12

Since deg(L∗
a) < 2l and deg(L∗

α) < 2γ , it follows that

deg(G(k)) ≤ 2γ + 2l + 2l = 2γ + 2l+1.

In our experiments, we observe that l and γ will not exceed n/2 and n/2 + 1,
respectively, so that deg(G(k)) will not exceed 2n/2+2. According to Section 2.4,
the complexity of solving G(k) will not exceed

O
(
2n/2+2(n/2 + 2) (n/2 + 2 + log q log(n/2 + 2))

)
. (3)

The complexity above is expressed in terms of the number of field operations
denoted as T . For fair comparison with [33,41], we also convert all complexity
estimates into bit operations Tbit and number of encryptions Tenc. Specifically:

– A field multiplication over F2n is equivalent to n2 bit operations,
– A field addition over F2n is equivalent to n bitwise XOR operations,
– One call of primitives over F2n is equivalent to n3 bit operations [41, Page

14].

For simplicity, we uniformly equate one field operation to n2 bit operations.
Therefore, we have Tbit = n2 · T and Tenc = T/n.

Experimental Verification We generated the linearized polynomial L1 using
the rain_instance_gen.sage program provided in [18] for 2-round Rain. We
started with l = n/2 − 1, γ = n/2 and got the concrete linearized permutation
polynomials La and Lα that satisfy L1 = Lα◦L−1

a . The degrees of La and Lα are
263/295/2127 and 264/297/2128, respectively, for Rain-128/192/256. Based on the
experimental results, the degrees of the linearized polynomials derived through
polynomial decomposition and the time complexities are shown in Table 3.

We also verified the correctness of our novel attack on all variants of 2-round
Rain over small finite fields (e.g., F230). In our experiments, we observed the
existence of pseudo-keys, meaning that a single pair of plaintext and ciphertext
might yield more than two keys. That is, a pseudo-key can also encrypt the
same plaintext to the same ciphertext as the actual key. However, the number
of pseudo-keys is very limited.

Table 3: Time complexities of our attacks on 2-round Rain

Scheme n l γ T Tbit Tenc

Rain-128 128 263 264 280.7 294.7 273.7

Rain-192 192 295 297 2114.6 2129.8 2107.0

Rain-256 256 2127 2128 2146.9 2162.9 2138.9

13

3.4 Attacks on 3-round Rain Combined with the
Guess-and-determine Attack

It is natural to consider how to extend our attack to 3-round Rain. However,
due to the presence of two linear-layer matrices that are separated by one S-box
in 3-round Rain, it is hard to trivially connect them together and directly apply
our method. To address this issue, we employ the linearization technique for x−1

proposed by Zhang et al in [41].

Linearization Technique for x−1. For even n, the multiplicative inverse
function x−1 can be linearized by guessing 2n/2−1 possible values for xd, where
d = 2n/2 + 1. More specifically, the x−1 over F2n can be represented as

x2n−2 = (x2n/2+1)2
n/2−2 · x2n/2

.

Once the value of (x2n/2+1)2
n/2−2 is guessed, x2n−2 becomes a linearized poly-

nomial.

MITM Modeling for 3-round Rain. Fig. 4 illustrates the MITM model-
ing for 3-round Rain, where M1 and M2 are the original linear-layer matrices
while Ma and Mb are two nonsingular matrices we introduced. Similarly, to
cancel out the influence of Ma and Mb, we add their inverses right before or
after them, respectively. Let L1(x), L

−1
2 (x), La(x), and Lb(x) denote the lin-

earized polynomials corresponding to M1,M
−1
2 ,Ma, and Mb, respectively. De-

note Lα(x) = La(L1(x)), Lβ(x) = Lb(L
−1
2 (x)), and the input of the second

S-box as variable v. We apply meet-in-the-middle modeling between the red and
first green arrows, as well as between the yellow and the second green arrows,
respectively. Hence, we derive a system of bivariate equations as below{

Lα(
1

p+k+c1
) = La(k + c2 + v)

Lβ(
1

c+k + k + c3) = Lb(
1
v)

. (4)

Extracting a Univariate Equation from Equation (4). To eliminate the
variable v, we rewrite Equation (4) as below{

Lα(
1

p+k+c1
) + La(k + c2) = La(v)

Lβ(
1

c+k + k + c3) = Lb(
1
v)

. (5)

We can linearize the second S-box by guessing the value of v2
n/2+1. More

precisely, suppose that v2
n/2+1 = η, let θ = η2

n/2−2, then it is clear that η, θ ∈
F∗
2n/2 , and

Lb(
1

v
) = Lb(v

2n−2) = Lb(η
2n/2−2v2

n/2

) = Lb(θv
2n/2

).

14

Fig. 4: MITM modeling for 3-round Rain

We can rewirte Equation (5) as:{
Lα(

1
p+k+c1

) + La(k + c2) = La(v)

Lβ(
1

c+k) + Lβ(k + c3) = Lb(θv
2n/2

)
. (6)

By guessing the value of θ, we can transform Lb(θv
2n/2

) into a linearized poly-
nomial, the next step is to solve the coeffients of La and Lb to make La(v) =

Lb(θv
2n/2

). Let

La(x) =

n−1∑
i=0

aix
2i , Lb(x) =

n−1∑
i=0

bix
2i ,

L1(x) =

n−1∑
j=0

d1,jx
2j , L−1

2 (x) =

n−1∑
j=0

d′2,jx
2j ,

then we have

Lα(x) = La (L1 (x)) =

n−1∑
i=0

ai(

n−1∑
j=0

d1,jx
2j)2

i

=

n−1∑
i=0

n−1∑
j=0

aid
2i

1,jx
2(i+j) mod n

,

Lβ(x) = Lb

(
L−1
2 (x)

)
=

n−1∑
i=0

bi(

n−1∑
j=0

d′2,jx
2j)2

i

=

n−1∑
i=0

n−1∑
j=0

bid
′
2,j

2i
x2(i+j) mod n

,

where d1,j ’s, d′2,j ’s are known, while ai’s, bi’s are unknowns to be solved. To
elimilate v, we need La(v) = Lb(θv

2n/2

), which yields

a(i+n/2) mod n = biθ
2i for 0 ≤ i ≤ n− 1. (7)

15

In other words, if the equations in Equation (7) have solutions, we can eliminate
the variable v. After v is eliminated, we add the two equations in Equation (6)
and derive the equation below

Lα(
1

p+ k + c1
) + La(k + c2) + Lβ(

1

c+ k
) + Lβ(k + c3) = 0. (8)

Construct Low-degree Decomposition of Linearized Polynomials. Sup-
pose we expect that deg(La(x)) ≤ 2l, deg(Lα(x)) ≤ 2γ , and deg(Lβ(x)) ≤ 2λ

for some integers 0 ≤ l, λ, γ ≤ n− 1, then we can obtain the following system of
linear equations

ai = 0 for l + 1 ≤ i ≤ n− 1∑
0≤i,j≤n−1

i+j≡t1 mod n

aid
2i

1,j = 0 for γ + 1 ≤ t1 ≤ n− 1

∑
0≤i,j≤n−1

i+j≡t2 mod n

bid
′
2,j

2i
= 0 for λ+ 1 ≤ t2 ≤ n− 1

. (9)

There are a total of 2n variables u = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1) and 4n−
γ − λ − l − 3 equations in Equations (7) and (9). To ensure that the system of
equations has a non-zero solution, the number of variables should be larger than
the number of equations, i.e., λ + γ + l + 3 > 2n. To minimize the degree of
the targeted equation in Equation (8), we aim to make γ, λ, and l as close as
possible. In practice, we start by choosing l = ⌈2n/3− 1⌉, γ = ⌈2n/3− 1⌉, and
λ = ⌈2n/3⌉.

The Steps and Complexities of Our Attacks. Our attacks and complexities
on 3-round Rain can be outlined as follows.

1. Eliminating the intermediate variable v through enumerating θ. Let
g be a generator of F∗

2n . Then any element in F∗
2n can be represented as gi, 0 ≤

i ≤ 2n − 2. The values of θ ∈ F∗
2n/2 =

{
gi·(2

n/2+1) : i = 0, . . . , 2n/2 − 2
}

.

Therefore, we directly assign θ the value of gi·(2
n/2+1).

2. Solving La and Lb. This step involves solving a linear system derived from
Equations (7) and (9). For each solution derived, we check if the Dickson
polynomials of La and Lb are invertible. Therefore, the complexity of this
step can be estimated as δ · O((2n)ω), where δ denotes the number that
one repeats the solving and checking process. In experiments, δ is small,
indicating that we only need to try few times. Therefore, the time complexity
of this step is negligible compared to the complexity of solving the univariate
polynomial below.

3. Solving Equation (8). Similar to Equation (1), by eliminating the denom-
inators, we can obtain a univariate equation in terms of the key k for 3-round

16

Rain as

G(k) :=(c+ k)2
λ

· L∗
α(p+ k + c1) + (p+ k + c1)

2γ · L∗
β(c+ k)

+ (c+ k)2
λ

· (p+ k + c1)
2γ · (La (k + c2) + Lβ (k + c3)) = 0,

where L∗
α and L∗

β are the reciprocal polynomials of Lα and Lβ , respectively.
In our experiments, we have l, γ, λ ≤

⌈
2
3n
⌉
. The degree of G(k) satisfies that

deg(G(k)) ≤ max(2l + 2λ + 2γ , 2λ+1 + 2γ) ≤ 2⌈
2
3n⌉+2.

Therefore, the time complexity of our attack can be evaluated as

O
(
(2n/2 − 1) · (d log d (log d+ log q log log d))

)
, (10)

where d = 2⌈
2
3n⌉+2.

Experimental Verification. For 3-round Rain, we generated the linearized
polynomials L1 and L2 using the rain_instance_gen.sage program provided
in [18]. Due to the large size of the finite field, we cannot traverse all possibilities
of θ. However, through experiments on small finite fields and verifications under
some guessed values of θ on Rain-128/192/256, we found that when l, γ, λ ≤⌈
2
3n
⌉
, there always exist linearized permutation polynomials La, Lα, Lb, and Lβ

such that L1 = Lα ◦ L−1
a and L2 = Lβ ◦ L−1

b . Therefore, it is appropriate
to use 2⌈

2
3n⌉+2 to estimate the degree of G(k) after each guess. Based on the

experimental results, we set l = γ = λ =
⌈
2
3n
⌉

and the time complexities for
attacking different variants of 3-round Rain are shown in Table 4. Furthermore,
we also verified the correctness of our novel attack on all variants of 3-round
Rain over small finite fields (e.g., F218).

Table 4: Time complexities of attacking 3-round Rain

Scheme n l γ λ T Tbit Tenc

Rain-128 128 286 286 286 2167.6 2181.6 2160.6

Rain-192 192 2128 2128 2128 2243.6 2258.7 2236.0

Rain-256 256 2171 2171 2171 2319.1 2335.1 2311.1

4 Attacks on Full AIM Combined with the Resultant and
Substitution Theory

We observed that AIM [30] has a similar linear layer to Rain and thus we can
extend the idea of polynomial decomposition to AIM. However, the S-boxes
x2ei−1 in AIM are quite different to those in Rain. Specifically, the inverses
of the S-boxes in AIM have high degrees, and correspondingly, the constructed

17

equations in the backward direction would have high degrees when using the
MITM modeling. Therefore, we adopt the substitution theory and resultant in
[40] to reduce the degrees of equations and derive a univariate polynomial for
AIM.

4.1 Description of AIM

The general construction of AIM is illustrated in Fig. 5. It takes a secret k as the
input of several (say m − 1) parallel branches each consisting of an S-box and
a linear layer, and uses all the outputs to produces a public output y through
an additional S-box. The S-boxes have the form of x2ei−1(i = 1, 2, . . . ,m) where
ei’s are distinct prime numbers for which 2ei−1 are Mersenne primes. The linear
layer Bi(x) can be expressed as Bi(x) = Li(x)+ci, with Li(x) being a linearized
polynomial over Fq and ci ∈ Fq. Denote

zi = k2
ei−1 for i = 1, 2, . . . ,m− 1,

then the output y can be represented as:

y =

(
m−1∑
i=1

Bi (zi)

)2em−1

+ k.

Fig. 5: The general construction of AIM

Parameter Sets. The extension fields F2128 , F2192 , and F2256 are constructed
using the same irreducible polynomials over F2 as those specified in Rain (see
Subsection 3.1). Other parameters are presented in Table 5.

18

Table 5: Parameters sets of AIM
Scheme n m e1 e2 e3 e4

AIM-I 128 3 3 27 5 -
AIM-III 192 3 5 29 7 -
AIM-V 256 4 3 53 7 5

4.2 Algebraic Attacks on AIM-I/III

Our improved algebraic attack applies to all variants of AIM. In this section, we
first focus on AIM-I/III (with m = 3) to illustrate our attack.

MITM Modeling for AIM-I/III. Fig. 6 presents the MITM modeling of
AIM-I/III. As defined, Bi(x) = Li(x)+ci, where Li(x) is a linearized polynomial
for i = 1, 2. We introduce a linearized polynomial denoted as La(x) aiming to
get two low-degree linearized polynomials Lα1

(x) and Lα2
(x) as below

Lα1(x) = La(L1(x)), Lα2(x) = La(L2(x)).

Note that we introduce the same linearized polynomial La(x) for both L1(x) and
L2(x) to reduce the number of variables. Similarly, we additionally introduce
L−1
a (x) right after La(x) to cancel out the influence of La(x). We also introduce

two variables v1 and v2 after the linear layers as shown in Fig. 6.

Fig. 6: MITM modeling for AIM-I/III

As shown in Fig. 6, we construct equations at the intersection of the red and
green arrows as well as at the last S-box as below

Lα1(k
2e1−1) = La(v1 + c1)

Lα2(k
2e2−1) = La(v2 + c2)

(v1 + v2)
2e3−1 = y + k

. (11)

19

Let v = v1 + v2, c = c1 + c2, then Equation (11) can be transformed into the
following form by adding the first two equations{

Lα1
(k2

e1−1) + Lα2
(k2

e2−1) + La(c) = La(v)

v2
e3−1 = y + k

. (12)

Constructing Low-degree Equations. We now proceed to get low-degree
representation for Equation (12). Precisely, let

La(x) =

n−1∑
i=0

aix
2i , L1(x) =

n−1∑
j=0

d1,jx
2j , L2(x) =

n−1∑
j=0

d2,jx
2j ,

where d1,j ’s, d2,j ’s ∈ Fq are known coefficients, while ai’s ∈ Fq are the unknowns
to be determined. Then Lα1

(x) and Lα2
(x) can be represented as:{

Lα1(x) = La (L1 (x)) =
∑n−1

i=0 ai(
∑n−1

j=0 d1,jx
2j)2

i

Lα2(x) = La (L2 (x)) =
∑n−1

i=0 ai(
∑n−1

j=0 d2,jx
2j)2

i .

If we expect that

deg(La(x)) ≤ 2l,deg(Lα1(x)) ≤ 2γ ,deg(Lα2(x)) ≤ 2λ

for some integers 0 ≤ l, γ, λ ≤ n− 1, then we can obtain the following system of
linear equations:

ai = 0 for l + 1 ≤ i ≤ n− 1∑
0≤i,j≤n−1

i+j≡t1 mod n

aid
2i

1,j = 0 for γ + 1 ≤ t1 ≤ n− 1

∑
0≤i,j≤n−1

i+j≡t2 mod n

aid
2i

2,j = 0 for λ+ 1 ≤ t2 ≤ n− 1

. (13)

After removing the ai variables that are zero, Equation (13) can be simplified to a
system of 2n−γ−λ−2 linear equations with l+1 unknowns. To guarantee a non-
zero solution, the number of variables should be larger than that of equations,
i.e., l + γ + λ+ 3 > 2n.

Extracting a Univariate Equation. Next, we eliminate the variable v in
Equation (12) to obtain a univariate polynomial with respect to k. Equation (12)
has the property of variable isolation mentioned in [40], meaning that there are
no cross terms between variables v and k and the powers of v can be substituted
by an expression of k. Therefore, the resultant and substitution theory can be
well applied to achieve the goal. However, directly applying the resultant to elim-
inate v would lead to high computational complexity, as the resulting linearized
polynomial would have an excessively large degree. To mitigate this, we first em-
ploy the substitution theory to reduce the degree of v below 2e3 −1. Specifically,

20

we substitute v2
e3−1 = y+k into the linearized polynomial La(v) =

∑l
i=0 aiv

2i .
For each e3 ≤ i ≤ l, the term v2

i

can be rewritten as

v2
i

= (v2
e3−1)sivri = (y + k)sivri ,

where ri < 2e3 − 1, si < 2i−e3+1, and (2e3 − 1)si + ri = 2i. In practice, we
use the substitution v2

e3
= v · (y + k) rather than v2

e3−1 = y + k to improve
the computational efficiency. To illustrate this, consider the substitution for v2

l

,
which yields:

v2
l

= (v2
e3
)2

l−e3

= v2
l−e3 · (y + k)2

l−e3

= v2
l−2e3 · (y + k)2

l−e3+2l−2e3

= · · ·

= v2
l−s·e3 · (y + k)2

l−e3+2l−2e3+···+2l−s·e3

= v2
r

· (y + k)2
l−e3+2l−2e3+···+2l−s·e3

= v2
r

·
s∏

j=1

(y2
l−j·e3

+ k2
l−j·e3

),

(14)

where s and r are the unique integers such that l = s · e3 + r with 0 ≤ r < e3.
Denote the expression of La(v) after substitution as h(v, k), we have degk(h) <

2l−e3+1 and degv(h) < 2e3 − 1. Let{
f(k, v) := Lα1(k

2e1−1) + Lα2(k
2e2−1) + La(c) + h(v, k) = 0

g(k, v) := v2
e3−1 + y + k = 0

, (15)

where degk(f) is bounded by

D := degk(f) ≤ max((2e1 − 1)2γ , (2e2 − 1)2λ, 2l−e3+1). (16)

The next step is to compute G(k) = R(f, g, v). According to Definition 2, the
size of the Sylvester determinant corresponding to R(f, g, v) is at most (2e3+1 −
3)× (2e3+1−3). In this determinant, each entry in the first 2e3 −2 rows contains
the variable k with degree D, while each entry in the remaining 2e3 − 1 rows
contains k with degree 1. Consequently, the degree of G(k) is bounded by

deg(G(k)) ≤ D(2e3 − 2) + 2e3 − 1.

The complexities of resultant computation and root-finding for G(k) are both
highly dependent on D. As shown later, these two steps dominate the compu-
tational cost, far exceeding that of the substitution step. Thus, our objective
reduces to selecting optimal values for γ, λ, and l to minimize D. From (16),
this requires balancing (2e1 − 1)2γ , (2e2 − 1)2λ, and 2l−e3+1 as close as possible
under the condition l+γ+λ+3 > 2n. Neglecting lower-order terms, we aim for

21

γ + e1 = λ+ e2 = l − e3 + 1 and l + γ + λ+ 3 = 2n+ 1. Rearranging yields the
equality:

(l − e3 + 1) + (γ + e1) + (λ+ e2) = 2n− 2 + e1 + e2 − e3.

Let β = ⌈(2n− 2 + e1 + e2 − e3)/3⌉. We then start to choose l = β + e3 − 1,
γ = β − e1 and λ = β − e2.

Complexity Analysis. Our attacks and their computational complexities can
be summarized as follows.

1. Constructing La. This step can be precomputed with an estimated time
complexity of O(nω), which can be neglected.

2. Substitution of La(v). In the substituted Equation (14), we only need to
compute the product

∏s
j=1(y

2l−j·e3
+ k2

l−j·e3
), where s ≤ ⌈l/e3⌉ ≤ ⌈n/e3⌉.

This step requires at most O(2s) field operations, and since s is small com-
pared to l, the cost remains low. Consequently, the substitution of La(v) has
a time complexity of at most O(l ·2s) field operations, which is also negligible
in the overall computation.

3. Resultant Computation. The computational complexity of evaluating the
univariate determinant can be analyzed using the framework introduced in
[11]. Specifically, for a DH ×DH determinant with entries of degree at most
α0, the number of required field operations is bounded by

O
(
α0 (logα0)

2
Dω

H + α0 (logα0)
2
log logα0D

2
H

)
≈ O

(
α0 (logα0)

2
Dω

H

)
.

In our setting, the Sylvester determinant associated with R(f, g, v) has size
at most (2e3+1−3)× (2e3+1−3). Notably, each entry in the first 2e3 −2 rows
contains the variable k with degree D (as defined in (16)), while each entry
in the remaining 2e3 − 1 rows contains k with degree 1. Using this structure,
we can further reduce the determinant size to (2e3 − 1)× (2e3 − 1). In detail,
let f =

∑2e3−2
i=0 fiv

i and g = v2
e3−1 + g0, where each fi ∈ F2n [k] has degree

at most D and g0 = y + k. The resultant R(f, g, v) is given by

R(f, g, v) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f2e3−2 f2e3−3 · · · f0
f2e3−2 f2e3−3 · · · f0

.
.

f2e3−2 f2e3−3 · · · f0
1 0 · · · · · · g0

1 0 · · · · · · g0
.

1 0 · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (17)

22

By performing Gaussian elimination on the first 2e3 −2 rows using the pivot
elements 1 in the last 2e3 − 1 rows, we simplify the resultant to

R(f, g, v) =

∣∣∣∣∣∣∣∣∣∣∣

f0 f2e3−2g0 · · · f2g0 f1g0
f1 f0 · · · f3g0 f2g0
...

...
...

...
...

f2e3−3 f2e3−4 · · · f0 f2e3−2g0
f2e3−2 f2e3−3 · · · f1 f0

∣∣∣∣∣∣∣∣∣∣∣
, (18)

where each entry of (18) has degree at most D+ 1. Thus, the complexity of
this step can be estimated as

O
(
(D + 1) (log(D + 1))

2
(2e3 − 1)ω

)
.

4. Solving G(k). Let deg(G(k)) = d, then we have

deg(d) ≤ D(2e3 − 2) + 2e3 − 1 ≤ 2⌈(2n−2+e1+e2−e3)/3⌉ · (2e3 − 2) + 2e3 − 1.

The overall time complexity of our attack on AIM-I/III can be estimated as

O
(
(D + 1)(log(D + 1))2(2e3 − 1)ω + d log d(log d+ log q log log d)

)
.

4.3 Algebraic Attack on AIM-V

The attack for AIM-I/III can be naturally extended to AIM-V (with m = 4).
Below, we provide a brief introduction to the algebraic attack on AIM-V and
Fig. 7 presents the MITM modeling. Using the notations introduced earlier, we
define Lα1

, Lα2
, and Lα3

as follows:

Lα1 = La ◦ L1, Lα2 = La ◦ L2, Lα3 = La ◦ L3.

We further introduce intermediate variables v1, v2, and v3 after the linear layer
in each branch as shown in Fig.7.

Then we can construct equations for each branch and the output as below
Lα1

(k2
e1−1) = La(v1 + c1)

Lα2
(k2

e2−1) = La(v2 + c2)

Lα3
(k2

e3−1) = La(v3 + c3)

(v1 + v2 + v3)
2e4−1 = y + k

. (19)

Let v = v1 + v2 + v3, c = c1 + c2 + c3, then Equation (19) can be transformed
into the following form by adding the first three equations{

Lα1(k
2e1−1) + Lα2(k

2e2−1) + Lα3(k
2e3−1) + La(c) = La(v)

v2
e4−1 = y + k

. (20)

23

Fig. 7: MITM modeling for AIM-V

Let

La(x) =

n−1∑
i=0

aix
2i , L1(x) =

n−1∑
j=0

d1,jx
2j , L2(x) =

n−1∑
j=0

d2,jx
2j , L3(x) =

n−1∑
j=0

d3,jx
2j .

If we expect that

deg(La(x)) ≤ 2l,deg(Lα1(x)) ≤ 2γ ,deg(Lα2(x)) ≤ 2λ,deg(Lα3(x)) ≤ 2τ

for some integers 0 ≤ l, γ, λ, τ ≤ n− 1, then we can obtain the following system
of linear equations:

ai = 0 for l + 1 ≤ i ≤ n− 1∑
0≤i,j≤n−1

i+j≡t1 mod n

aid
2i

1,j = 0 for γ + 1 ≤ t1 ≤ n− 1

∑
0≤i,j≤n−1

i+j≡t2 mod n

aid
2i

2,j = 0 for λ+ 1 ≤ t2 ≤ n− 1

∑
0≤i,j≤n−1

i+j≡t3 mod n

aid
2i

3,j = 0 for τ + 1 ≤ t3 ≤ n− 1

. (21)

Similarly, to ensure that the system of Equation (21) has a non-zero solution, the
condition l+ γ + λ+ τ +4 > 3n should be satisfied. Employing the substitution
v2

e4−1 = y + k to La(v) =
∑l

i=0 aiv
2i . For each e4 ≤ i ≤ l, the term v2

i

will be
substituted as

v2
i

= (v2
e4−1)sivri = (y + k)sivri , ri < 2e4 − 1 and si < 2l−e4+1.

24

Denote the substituted La(v) as h(v, k), we have degk(h) ≤ 2l−e4+1 and degv(h) <
2e4 − 1. Let{
f(k, v) := Lα1

(k2
e1−1) + Lα2

(k2
e2−1) + Lα3

(k2
e3−1) + La(c) + h(v, k) = 0

g(k, v) := v2
e4−1 + y + k = 0

,

(22)
where degk(f) is bounded by

D := degk(f) ≤ max((2e1 − 1)2γ , (2e2 − 1)2λ, (2e3 − 1)2τ , 2l−e4+1).

In our setting, the Sylvester determinant associated with R(f, g, v) has size at
most (2e4+1 − 3) × (2e4+1 − 3), each entry in the first 2e4 − 2 rows contains
the variable k with degree D, while each entry in the remaining 2e4 − 1 rows
contains k with degree 1. Similar to the case of AIM-I/III, we can further reduce
the determinant size to (2e4 − 1)× (2e4 − 1), with each entry of the determinant
has degree at most D+1. Thus, the complexity of this step can be estimated as

O
(
(D + 1) (log(D + 1))

2
(2e4 − 1)ω

)
.

Next, we aim to select optimal values for l, γ, λ, and τ to minimize D. This
involves balancing (2e1 − 1)2γ , (2e2 − 1)2λ, (2e3 − 1)2τ , and 2l−e4+1 as close as
possible under the condition l + γ + λ+ τ + 4 > 3n. Using the same deduction
process as before, let β = ⌈(3n− 3 + e1 + e2 + e3 − e4)/4⌉, we start to choose
l = β + e4 − 1, τ = β − e3, λ = β − e2, and γ = β − e1. Let G(k) = R(f, g, v),
then the degree d of G(k) is bounded by

d ≤ D(2e4 − 2) + 2e4 − 1

≤ 2⌈(3n−3+e1+e2+e3−e4)/4⌉ · (2e4 − 2) + 2e4 − 1.

The overall time complexity of our attack on AIM-V can be estimated as

O
(
(D + 1) log ((D + 1))

2
(2e4 − 1)ω + d log d(log(d) + log q log log d)

)
.

Experimental Verification. For AIM-I and AIM-III, we randomly generated
two linearized permutation polynomials, L1 and L2, with all non-zero coeffi-
cients. Starting with the parameters l = β + e3 − 1, γ = β − e1, and λ = β − e2,
we go to find low-degree linearized permutation polynomials La, Lα1

, and Lα2

such that L1 = Lα1
· L−1

a and L2 = Lα2
· L−1

a . We finally got concrete lin-
earized permutation polynomials La, Lα1

, and Lα2
for AIM-I/III with degrees

297/2143, 291/2132, and 267/2108, respectively. For AIM-V, we randomly gen-
erated three linearized permutation polynomials L1, L2, and L3 with all non-
zero coefficients. We found concrete linearized permutation polynomials with
deg(La) = 2210, deg(Lα1

) = 2204, deg(Lα2
) = 2154, and deg(Lα3

) = 2200 such
that L1 = Lα1

·L−1
a , L2 = Lα2

·L−1
a , and L3 = Lα3

·L−1
a . The time complexities

of our attacks are shown in Table 6. Furthermore, we also verified the correctness
of our novel attack on all AIM variants over small finite fields (e.g., F218).

25

Table 6: Time complexities of our attacks on AIM
Scheme n m l γ λ τ T Tbit Tenc

AIM-I 128 3 297 291 267 - 2121.0 2135.0 2114.0

AIM-III 192 3 2143 2132 2108 - 2170.8 2185.9 2163.2

AIM-V 256 4 2210 2204 2154 2200 2236.3 2252.3 2228.3

5 Conclusions and Discussions

In this paper, we propose a novel algebraic attack over F2n on AO primitives
and apply them to Rain and AIM. The main idea of our attack is to decompose
the linearized polynomials with high degrees of the linear layers into low-degree
polynomials, such that we can build low-degree equations. To further simplify the
equation system, we additionally combine with the meet-in-the-middle modeling,
guess-and-determine technique, and resultant, either to reduce the degrees of
equations or eliminate variables. All the variants of the 2-round Rain and full
AIM are broken under our attacks.

For future work, it is worth exploring whether our attacks can be combined
with other cryptanalysis techniques for AO primitives. Besides, extending the
attack to AIM2 [29] would also be interesting. Our attack can also provide some
insights for the design of AO primitives. For example, we suggest using two or
more linear layers that cannot be merged into one equivalent linear layer when
designing AO primitives to resist our attacks.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient en-
cryption and cryptographic hashing with minimal multiplicative complexity. In:
International Conference on the Theory and Application of Cryptology and Infor-
mation Security. pp. 191–219. Springer (2016)

2. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic cryptanalysis of stark-friendly designs: application
to marvellous and mimc. In: Advances in Cryptology–ASIACRYPT 2019: 25th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part III 25. pp.
371–397. Springer (2019)

3. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for mpc, and more. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) Computer Security – ESORICS 2019. pp. 151–171.
Springer International Publishing, Cham (2019)

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Transac-
tions on Symmetric Cryptology pp. 1–45 (2020)

5. Ashur, T., Bhati, A.S., Kindi, A., Mahzoun, M., Perrin, L.: XHash: Efficient
STARK-friendly hash function. Cryptology ePrint Archive, Paper 2023/1045
(2023), https://eprint.iacr.org/2023/1045

26

https://eprint.iacr.org/2023/1045

6. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. Cryptology ePrint Archive, Paper 2018/1098 (2018), https://eprint.
iacr.org/2018/1098

7. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic prim-
itives. Cryptology ePrint Archive (2018)

8. Ashur, T., Kindi, A., Meier, W., Szepieniec, A., Threadbare, B.: Rescue-prime
optimized. Cryptology ePrint Archive, Paper 2022/1577 (2022), https://eprint.
iacr.org/2022/1577

9. Banik, S., Barooti, K., Durak, F.B., Vaudenay, S.: Cryptanalysis of lowmc in-
stances using single plaintext/ciphertext pair. IACR Transactions on Symmetric
Cryptology 2020(ARTICLE), 130–146 (2020)

10. Banik, S., Barooti, K., Vaudenay, S., Yan, H.: New attacks on lowmc instances
with a single plaintext/ciphertext pair. In: Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6–10, 2021, Proceedings, Part I 27.
pp. 303–331. Springer (2021)

11. Bariant, A., Boeuf, A., Lemoine, A., Manterola Ayala, I., Øygarden, M., Perrin,
L., Raddum, H.: The algebraic freelunch: Efficient gröbner basis attacks against
arithmetization-oriented primitives. In: Reyzin, L., Stebila, D. (eds.) Advances in
Cryptology – CRYPTO 2024. pp. 139–173. Springer Nature Switzerland, Cham
(2024)

12. Bariant, A., Bouvier, C., Leurent, G., Perrin, L.: Algebraic attacks against some
arithmetization-oriented primitives. IACR Transactions on Symmetric Cryptology
pp. 73–101 (2022)

13. Bouillaguet, C., Chen, H.C., Cheng, C.M., Chou, T., Niederhagen, R., Shamir,
A., Yang, B.Y.: Fast exhaustive search for polynomial systems in f2. In: CHES.
Lecture Notes in Computer Science, vol. 6225, pp. 203–218. Springer (2010)

14. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems,
D.: New design techniques for efficient arithmetization-oriented hash functions:
Anemoi permutations and jive compression mode. In: Annual International Cryp-
tology Conference. pp. 507–539. Springer (2023)

15. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 acm sigsac conference on
computer and communications security. pp. 1825–1842 (2017)

16. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over gf(2). In: Canteaut, A., Standaert, F.X. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2021. pp. 374–403. Springer International
Publishing, Cham (2021)

17. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on toffoli-gates over large finite fields. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 3–34.
Springer (2021)

18. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Secu-
rity. p. 843–857. CCS ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3548606.3559353, https://doi.org/10.
1145/3548606.3559353

19. Dworkin, M.J.: Sha-3 standard: Permutation-based hash and extendable-output
functions (2015)

27

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/1577
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3548606.3559353

20. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge: Cambridge
University Press, 2nd ed. edn. (2003)

21. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst
meets fluid-spn: Griffin for zero-knowledge applications. In: Annual International
Cryptology Conference. pp. 573–606. Springer (2023)

22. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: A fast hash function for verifiable computation.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 1323–1335. CCS ’22, Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560686,
https://doi.org/10.1145/3548606.3560686

23. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Monolith: Circuit-friendly hash functions with new nonlinear layers for
fast and constant-time implementations. IACR Transactions on Symmetric Cryp-
tology 2024(3), 44–83 (2024)

24. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A
new hash function for {Zero-Knowledge} proof systems. In: 30th USENIX Security
Symposium (USENIX Security 21). pp. 519–535 (2021)

25. Grassi, L., Khovratovich, D., Schofnegger, M.: Poseidon2: A faster version of the
poseidon hash function. In: International Conference on Cryptology in Africa. pp.
177–203. Springer (2023)

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing. pp. 21–30 (2007)

27. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
In: International Conference on Number-Theoretic Methods in Cryptology. pp. 3–
21. Springer (2017)

28. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. pp. 525–537
(2018)

29. Kim, S., Ha, J., Son, M., Lee, B.: Efficacy and mitigation of the cryptanalysis on
AIM. Cryptology ePrint Archive, Paper 2023/1474 (2023), https://eprint.iacr.
org/2023/1474

30. Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., Lee, S., Kwon, J., Cho, J., Yoon,
H., Lee, J.: Aim: Symmetric primitive for shorter signatures with stronger security.
In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 401–415. CCS ’23, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3576915.3616579,
https://doi.org/10.1145/3576915.3616579

31. Lidl, R., Niederreiter, H.: Finite fields. No. 20, Cambridge university press (1997)
32. Liu, F., Mahzoun, M., Meier, W.: Modelling ciphers with overdefined systems of

quadratic equations: Application to friday, vision, rain and biscuit. Springer-Verlag
(2024)

33. Liu, F., Mahzoun, M., Øygarden, M., Meier, W.: Algebraic attacks on rain and
aim using equivalent representations. IACR Transactions on Symmetric Cryptol-
ogy 2023(4), 166–186 (Dec 2023). https://doi.org/10.46586/tosc.v2023.i4.
166-186, https://tosc.iacr.org/index.php/ToSC/article/view/11284

34. Liu, F., et al.: New low-memory algebraic attacks on lowmc in the picnic setting.
IACR Transactions on Symmetric Cryptology pp. 102–122 (2022)

28

https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1145/3548606.3560686
https://eprint.iacr.org/2023/1474
https://eprint.iacr.org/2023/1474
https://doi.org/10.1145/3576915.3616579
https://doi.org/10.1145/3576915.3616579
https://doi.org/10.1145/3576915.3616579
https://doi.org/10.46586/tosc.v2023.i4.166-186
https://doi.org/10.46586/tosc.v2023.i4.166-186
https://doi.org/10.46586/tosc.v2023.i4.166-186
https://doi.org/10.46586/tosc.v2023.i4.166-186
https://tosc.iacr.org/index.php/ToSC/article/view/11284

35. Rijmen, V., Daemen, J.: Advanced encryption standard. Proceedings of federal
information processing standards publications, national institute of standards and
technology 19, 22 (2001)

36. Roy, A., Steiner, M.J., Trevisani, S.: Arion: Arithmetization-oriented permutation
and hashing from generalized triangular dynamical systems (2023)

37. Sun, Y., Cui, J., Wang, M.: Improved attacks on lowmc with algebraic techniques
2023, 143–165 (Dec 2023). https://doi.org/10.46586/tosc.v2023.i4.143-165,
https://tosc.iacr.org/index.php/ToSC/article/view/11283

38. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification
(SoK). Cryptology ePrint Archive, Paper 2020/1143 (2020), https://eprint.
iacr.org/2020/1143

39. Szepieniec, A., Lemmens, A., Sauer, J.F., Threadbare, B., Al-Kindi: The tip5 hash
function for recursive STARKs. Cryptology ePrint Archive, Paper 2023/107 (2023),
https://eprint.iacr.org/2023/107

40. Yang, H.S., Zheng, Q.X., Yang, J., Liu, Q.F., Tang, D.: A new security evalu-
ation method based on resultant for arithmetic-oriented algorithms. In: Chung,
K.M., Sasaki, Y. (eds.) Advances in Cryptology – ASIACRYPT 2024. pp. 457–
489. Springer Nature Singapore, Singapore (2025)

41. Zhang, K., Wang, Q., Yu, Y., Guo, C., Cui, H.: Algebraic attacks on round-reduced
rain and full aim-iii. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology –
ASIACRYPT 2023. pp. 285–310. Springer Nature Singapore, Singapore (2023)

29

https://doi.org/10.46586/tosc.v2023.i4.143-165
https://doi.org/10.46586/tosc.v2023.i4.143-165
https://tosc.iacr.org/index.php/ToSC/article/view/11283
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2023/107

	Algebraic Cryptanalysis of AO Primitives Based on Polynomial Decomposition

