
A Novel Leakage Model in OpenSSL’s
Miller-Rabin Primality Test

Xiaolin Duan1, Fan Huang1, Yaqi Wang1, and Honggang Hu1,2

1 School of Cyber Science and Technology
University of Science and Technology of China, Hefei 230027, China

2 Hefei National Laboratory,
University of Science and Technology of China Hefei 230088, China

{duanxl, lanplush, yaqi127}@mail.ustc.edu.cn, hghu2005@ustc.edu.cn

Abstract. At Crypto 2009, Heninger and Shacham presented a branch-
and-prune algorithm for reconstructing RSA private keys given a random
fraction of its private components. This method is widely adopted in
side-channel attacks, and its complexity is closely related to the specific
leakage pattern encountered. In this work, we identified a novel leak-
age model in the Miller-Rabin primality test implemented in OpenSSL.
Under certain side-channel attacks against fixed-window modular expo-
nentiation (e.g., recovering the least significant b bits from each win-
dow), the proposed model enables staggered recovery of bits in p and
q, reducing uncertainty in key reconstruction. In particular, this model
includes previously undocumented scenarios where full key recovery is
achievable without branching. To understand how the proposed leakage
model could contribute to attacks on modular exponentiation, we investi-
gated the global and local behavior of key reconstruction. Our evaluation
demonstrates that the proposed scenarios enable more efficient key re-
construction and retain this advantage when additional erasure bits are
introduced. Moreover, in specific cases, successful reconstruction remains
achievable within practical time even if the bits obtained are less than
50%. Finally, we conducted a series of experiments to confirm the prac-
ticality of our assumption, successfully recovering the lower 4 bits from
each 6-bit window.

Keywords: Partial key exposure attacks · primality test · modular ex-
ponentiation · side-channel attacks.

1 Introduction

RSA is a mainstream public key cryptosystem that has provided various crypto-
graphic services for decades. Its security relies on the practical difficulty of integer
factorization and has been intensively discussed by the community. One research
direction pursued by cryptanalysis is to examine this assumption when side in-
formation is available, known as partial key exposure (PKE) attacks, which seek
efficient key reconstruction given a fraction of the secrets. To carry out real-world
attacks, a growing field of research has emerged known as side-channel attacks

(SCAs), drawing inspiration from Kocher’s seminal works [30, 31]. This area
leverages physical information from running cryptosystems, including power,
electromagnetics, time, sound, cache footprints, etc., to extract sufficient secret
bits. Some of these attacks have considerable strength, allowing them to derive
the full key based solely on the physical information obtained [28, 34, 35, 39]. In
practice, noise and countermeasures usually result in incomplete key acquisition,
and PKE attacks are required to finish the analysis [8, 9, 47,48].

1.1 Partial Key Exposure Attacks on RSA

Ideally, cryptosystems are expected to offer a certain security strength even if
partial key bits are compromised, but it is well known that RSA does not enjoy
this property. For security purposes, it is critical to know how many partial bits
of the secret components suffice to break the system.

Let the public key be (N, e) and the private key be (p, q, d), with N = pq and
d ≡ e−1 mod (p − 1)(q − 1). n denotes the length of p and q. In 1985, Rivest
and Shamir [42] indicated that given 2/3 least significant bits (LSBs) of p or q
is sufficient to break RSA in polynomial-time. In Coppersmith’s pioneered work
[20], this result was improved to 1/2 of the most significant bits (MSBs) or LSBs
of a factor by utilizing the lattice reduction technique. Later, Howgrave-Graham
[27] presented an alternative method to settle this problem by introducing the
dual lattice. In 1998, Boneh et al. [11] presented a polynomial-time attack when
a quarter of the LSBs of d are given. As the Chinese Remainder Theorem (CRT)
is often used to speed up RSA implementation, in 2003, Blömer and May [10]
investigated PKE on CRT-RSA and stated that known half of the bits of d
mod (p− 1) could efficiently factorize N .

In 2008, Herrmann and May [26] demonstrated that the problem of factor-
izing N could be solved in polynomial-time when given at most O(log logN)
blocks of bits. Concurrently, Halderman et al. [23] proposed cold boot attacks
and introduced a new leakage model that reveals a random fraction of secret
bits. According to the bound presented in [26], lattice-based techniques are not
directly applicable to this model. In 2009, Heninger and Shacham [25] observed
substantial redundancy in RSA key storage. Based on cold boot attacks, they de-
veloped a branch-and-prune algorithm that could efficiently recover the private
key given a random fraction of p, q, d, dp, dq.

Heninger and Shacham considered an idealized scenario in which all given
information is error-free, later termed the erasure model. Under this assump-
tion, their algorithm reconstructs the key deterministically. However, when the
given bits contain errors, this algorithm fails as the correct solution is inevitably
pruned during the process. In 2010, Henecka et al. [24] proposed a probabilistic
algorithm capable of correcting a secret key corrupted by random bit-flip errors.
This work was subsequently refined by Paterson et al. [40] with their asymmet-
ric bit-flip model. Later, Kunihiro et al. [32] analyzed the key reconstruction
in the presence of both errors and erasures. Recently, Saito et al. [44] adapted
Henecka’s algorithm to efficiently handle leakage in windowed exponentiation.

2

1.2 Side-Channel Attacks on RSA Modular Exponentiation

Numerous attacks have been proposed to exploit vulnerabilities in RSA imple-
mentations, including but not limited to modular exponentiation [1, 2, 4, 5, 9,
12,15,16,21,22,28,29,33–36,38,41,43–45,47–49], binary GCD computation [8],
modular inversion [3, 6, 39], key validation [46] and pseudorandom number gen-
erators [18,19].

Modular exponentiation is a core operation in the entire life cycle of RSA,
spanning key generation, encryption, and decryption. Its implementation in cryp-
tographic libraries has undergone rigorous scrutiny and several significant it-
erations to enhance security and reliability. The square-and-multiply method,
which exploits the binary representation of the exponent, is less efficient and has
been proven to be insecure in Kocher’s timing attack [30]. To improve perfor-
mance, modern open-source cryptographic libraries employ window exponenti-
ation techniques, including fixed-window exponentiation (as in OpenSSL) and
sliding-window exponentiation (as in Libgcrypt).

However, windowed exponentiation alone cannot guarantee constant-time ex-
ecution, as loading precomputed multipliers remains vulnerable to cache-based
attacks [9, 41, 48]. To mitigate this issue, a dummy load technique has become
a widely adopted countermeasure. This method works by loading all precom-
puted operands and then selecting the desired value through bitwise masking
operations, thereby eliminating observable timing differences.

Recent studies [5, 29, 44] have demonstrated successful single-trace attacks
against this countermeasure, achieving high-accuracy secret key recovery. Specif-
ically, Alam et al. [5] presented an EM-based attack that targets the exponent
extraction mechanism in OpenSSL’s modular exponentiation, successfully cir-
cumventing this countermeasure. Saito et al. [44] developed a deep learning
(DL)-based classifier, leveraging power analysis, to reliably distinguish secret-
dependent memory accesses from dummy operations. Hu et al. [29] showed that
the dummy load technique introduces measurable power differences during the
computation of masks, enabling efficient key extraction through simple power
analysis. Interestingly, none of these three studies targeted modular exponenti-
ation in key generation. Our findings reveal this to be a fundamentally different
scenario.

1.3 Motivation

Lattice-based RSA key reconstruction requires knowledge of partial consecutive
bits, whereas Heninger and Shacham’s branch-and-prune algorithm excels at
handling dispersed known bits, making it more suitable for SCAs. Previous SCAs
often yield sufficient information to enable successful key reconstruction via the
branch-and-prune method, rarely approaching the algorithm’s theoretical limits.

The complexity of the branch-and-prune algorithm varies depending on the
specific leakage pattern. For instance, consider an adversary who obtains 50%
of the bits of p and q. As demonstrated by [25] and [40], the key can be recon-
structed using the branch-and-prune algorithm when these bits are randomly

3

distributed. If the 50% known bits are consecutive least significant bits, the al-
gorithm faces significant computational challenges, requiring examination of up
to 2n/2 candidates to recover the remaining bits, rendering the problem compu-
tationally infeasible in practice. However, when the known bits follow an alter-
nating pattern, the key can be reconstructed without generating false candidates,
demonstrating that the algorithm can handle erasure rates exceeding 50% in this
scenario.

An intriguing question arises: Does the scenario where p and q are recovered
in an alternating pattern exist in practical settings?

1.4 Our Contributions

This paper presents a novel leakage model in constant-time modular exponenti-
ation invoked by the Miller-Rabin primality test in OpenSSL. The main contri-
butions of this work are summarized as follows:

– Our study reveals a previously unnoticed vulnerability in the Miller-Rabin
primality test in OpenSSL, and a novel leakage model is developed based on
this finding. Assuming that an adversary could extract b bits from each win-
dow in fixed-window modular exponentiation, this model encompasses sce-
narios that did not arise in previous SCAs, referred to as misalignment. Ac-
cording to the branching behavior of the branch-and-prune algorithm, such
misalignment could reduce the uncertainty in key reconstruction, thereby
increasing the efficiency of this process. Some scenarios could even rebuild
the key without generating false solutions.

– To evaluate the complexity of reconstructing p and q in the new model,
we extended the discussion of global and local behavior of the branch-and-
prune algorithm from bit to window size. Additionally, we estimated the
average number of false solutions examined in key reconstruction, illustrat-
ing that misalignment cases contribute to a more efficient reconstruction
process. In certain proposed scenarios, key reconstruction can be completed
instantly without branching, demonstrating tolerance for additional erasures.
Our analysis confirms that the speed advantage in misaligned cases persists
while the introduced erasures approach the algorithm’s maximum tolerance.
When b

w = 50%, where w is window size, the computational cost remains
reasonable even with the additional erasure bits introduced.

– We analyzed the likelihood of proposed scenarios occurring by repeatedly
invoking OpenSSL’s key generation, confirming that misaligned scenarios
exhibit non-negligible occurrence probabilities. To demonstrate the practical
implications of our assumption, we performed SPA attacks targeting the
fixed-window modular exponentiation in OpenSSL’s Miller-Rabin primality
test, running on an ARM Cortex-M4 processor. These attacks successfully
recovered the least significant 4 bits from each 6-bit window.

In conclusion, attacking modular exponentiation in the Miller-Rabin primal-
ity test offers three advantages: (1) The key reconstruction process benefits from

4

our new leakage model’s efficiency and erasure tolerance. (2) An adversary can
directly recover p and q without considering the implementation of the Chi-
nese Remainder Theorem and blinding3. (3) OpenSSL recommends at least 64
rounds of tests to achieve a false positive rate of 2−128, indicating that 64 mod-
ular exponentiations will be invoked in the Miller-Rabin primality test. This
implementation allows an adversary to obtain more side-channel information
from a single trace generated during key generation.

1.5 Paper Organization

The remainder of the paper is organized as follows. Section 2 gives the prelim-
inaries of the leakage model and describes Heninger and Shacham’s work. Sec-
tion 3 details the vulnerability in the Miller-Rabin primality test implemented
in OpenSSL and introduces our proposed leakage model. In Section 4, we con-
ducted a comprehensive evaluation of the global and local behavior of the key
reconstruction based on the new model, including analysis of scenarios with ad-
ditional erasures. Section 5 demonstrates our practical attack and experimental
results. Section 6 offers concluding remarks.

2 Background

2.1 Fixed-Window Modular Exponentiation in OpenSSL

Several algorithms have been suggested for RSA modular exponentiation, includ-
ing the square-and-multiply, the sliding-window, and the fixed-window approach.
The latter has gained widespread adoption in cryptographic libraries due to its
inherent feature against leaking the square and multiplication sequence.

Given a fixed window of size ω, a base a, a modular N , and an n-bit exponent
p denoted as a sequence of digits in base 2ω, fixed-window exponentiation outputs
r = ap mod N using two steps. It first computes a set of multipliers aj = aj

mod N for 0 ≤ j ≤ 2ω−1. Then from the most significant to the least significant
digit of p, r is accumulated by squaring ω times and multiplying api

in each
iteration.

A naive implementation of fixed-window exponentiation suffers from severe
lookup table leaks, especially from cache-based channels. OpenSSL mitigated
this vulnerability by integrating dummy load operations with a scatter-gather
memory layout, following Intel’s recommendation [13,14]. This technique parti-
tions each precomputed multiplier into blocks and interleaves blocks from dif-
ferent multipliers within the same cache line, thereby making cache-line access

3 Attacks on modular exponentiation during decryption typically recover the private
exponent d. Due to the widespread use of the Chinese Remainder Theorem in prac-
tical RSA implementations, such an attack often acquires partial information of dp
and dq. As demonstrated in CacheBleed [48], this necessitates guessing both kp and
kq (65,537 possible pairs), significantly increasing the key reconstruction time.

5

patterns independent of the specific multiplier being processed. Under this mem-
ory layout, identifying specific cache line accesses could leak partial bits of the
window exponent, necessitating dummy loads to obscure cache access patterns.
Building on this implementation, Yarom et al. [48] devised CacheBleed, a sub-
cache-line attack capable of exposing the least significant three bits of each win-
dow through cache bank conflicts. In response, OpenSSL 1.0.2g implemented a
patch that iterates over all chunks of each multiplier and applies a masking op-
eration for selection. This countermeasure remains active by default in current
OpenSSL releases.

2.2 Miller-Rabin Primality Test

Cryptographic libraries typically call a random number generator followed by
a primality test to obtain secret components p and q. The Miller-Rabin test,
a probabilistic algorithm that returns whether a given number is likely to be
prime, is frequently employed to check for prime numbers.

Given a prime p = 2s · p′ +1 and an integer base a such that 0 < a < p, then
one of the following congruence relations holds:

– ap
′ ≡ 1 mod p;

– a2
r·p′ ≡ −1 mod p for some 0 ≤ r < s.

This can be proved based on two facts:

– Fermat’s litter theorem: an−1 ≡ 1 mod p;
– The only square roots of 1 modulo p are 1 and -1.

However, the inverse of the above property is incorrect. One of the above
congruence relations holding does not guarantee p is prime. It only promises
such p is a strong probable prime to base a. A small fraction of composites,
known as strong pseudoprimes, also pass this test. The Miller-Rabin algorithm
assesses the primality of a given number with different bases. If enough tests
are passed, the number is said to be prime with high probability. The number
of tests is determined according to the size of p and the desired probability. For
example, the latest version of OpenSSL recommends at least 64 rounds of tests
to attain a false positive rate of 2−128.

2.3 Probability Generating Functions

The probability generating function (PGF) refers to the power series expression
of the probability mass function of the random variable. It is often used to
describe the probability distribution of a discrete random variable.

Definition 1 (Probability Generating Functions). Let X be a discrete ran-
dom variable taking values in the non-negative integers. The PGF of X is defined
as

GX(s) = E sX =

∞∑
x=0

sxP(X = x),

where E denotes the expectation and P is the probability mass function.

6

Algorithm 1 Miller-Rabin Primality Test
Require: prime candidate p = 2s · p′ + 1, number of rounds j,
Ensure: statement "p is composite" or "p is likely prime"
1: for i = 1 to j do
2: choose a random a ∈ {2, 3, ..., p− 2};
3: u← ap′ mod p;
4: if u ̸= 1 and u ̸= p− 1 then
5: for j = 1 to s− 1 do
6: u = u2 mod p
7: if u = 1 then
8: return ("p is composite")
9: end if

10: end for
11: if u ̸= p− 1 then
12: return ("p is composite")
13: end if
14: end if
15: end for
16: return ("p is likely prime")

The following properties can be obtained according to the definition of PGF,
expectation, and variance.

– GX(1) =
∑∞

x=0 P(X = x) = 1;
– EX = G′

X(1);
– VarX = G′′

X(1) +G′
X(1)− (G′

X(1))2.

Theorem 1. Assume that X1,...,Xn are independent random variables, and
Y = X1 + ...+Xn. Then

GY (s) =

n∏
i=1

GXi
(s).

Theorem 2. Assume that {Xi} is a sequence of independent and identically
distributed random variables with the common PGF GX . Let Y = X1+ ...+XM ,
where M is a random variable independent of Xi. Denoting the PGF of M as
GM , the PGF of Y is

GY (s) = GM (GX(s)).

2.4 The Heninger-Shacham Algorithm

At Crypto 2009, Heninger and Shacham [25] utilized the algebraic relationship
between the private components to develop a branch-and-prune technique for key
reconstruction with known bits. They discussed this algorithm in the context of
cold boot attacks and demonstrated a lower bound on the number of known bits
required for the algorithm to succeed within polynomial-time.

7

Let (N, e) be an RSA public key, where N is 2n-bit and e = 65, 537. The
corresponding CRT private key set is (p, q, d, dp, dq, qinv), which simultaneously
satisfies the following equations.

N = pq,

ed = 1 + k(p− 1)(q − 1),

edp = 1 + kp(p− 1),

edq = 1 + kq(q − 1),

where k, kp and kq can be enumerated if e is small. The key exhibits high levels of
redundancy, as knowledge of any of its components can lead to the factorization
of N . Heninger-Shacham’s algorithm leverages these constraints to progressively
determine the parameters. It starts from the least significant bit, and at each
iteration, partial solutions are branched or pruned depending on the knowledge
of bits for that position. Specifically, given the knowledge of bits 0 to i− 1, the
i-th bit of each argument can be solved by lifting the solution to the constraint
equations mod 2i to the solution mod 2i+1.

Cold boot attacks could result in partial information of (p, q, d, dp, dq, qinv)
being obtained at random. However, in other side-channel models, only some of
them may be obtained, such as {p, q}, {d}, or {dp, dq}. This study focuses on
the first case in which partial knowledge of p and q is revealed. The following
part reviews the behavior of the algorithm in this scenario.

According to Hensel’s lifting lemma, the dependency between the i-th bit
and known bits is expressed as

p[i] + q[i] ≡ (N − p̄q̄)[i] mod 2, (1)

where p̄ and q̄ denote the partial solution of p and q up to i of the bits. Given p̄
and q̄, the algorithm’s branching behavior at bit i can be summarized as follows.

– When both p[i] and q[i] are unknown, the algorithm branches;
– When one of p[i] and q[i] is unknown, there is a unique solution;
– When the i-th bit of p and q are known, the wrong solution is pruned with

approximate 50% probability (empirically).

Understanding these cases is straightforward, as the right side of equation (1) is
given.

Heninger and Shacham conducted a complexity analysis of the reconstruction
by examining the algorithm’s local and global branching behavior. They evalu-
ated the number of erroneous solutions generated during the process. Specifically,
at bit i, the algorithm generates one correct solution and some incorrect solu-
tions. As the number of unknown bits increases, the expansion of branches tends
to be exponential; conversely, it converges swiftly when the number of unknown
bits decreases.

In their random model, it is assumed that the knowledge of p[i] and q[i] is
mutually independent, each occurring with a probability of δ. To establish the
relation between the number of branches examined during the reconstruction and

8

δ, the authors calculated the expected number of wrong solutions generated from
a good and incorrect one, denoted as EZg and EWb, respectively. Subsequently,
using PGF and the sequence, they derived the expected total number of branches
produced at step i, represented as EXi =

E Zg

1−E Wb
(1− (EWb)

i). Given that the
expressions for the expected values of E Zg and E Wb are dependent solely on
δ, it follows that when EWb < 1, EXi can be bounded by a constant that only
depends on δ.

Adding up the incorrect solutions generated at each bit, one can calculate
the expected total number of branches examined for an n-bit key. Heninger and
Shacham also provided the variance of Xi as a measure of how far

∑n−1
i=0 Xi is

spread from its average value. The following lemma plays an important role in
this computation.

Lemma 1.

Var

n∑
i=1

Xi ≤ n2 max
i

VarXi

In sum, if the algorithm has partial knowledge of p and q, it checks no more than
29n2 + 29n keys with a probability higher than n2−1

n2 when δ = 0.59.

3 A Novel Leakage Model

This section presents a vulnerability identified in the Miller-Rabin primality test
implemented in OpenSSL. Assuming that an adversary is capable of extracting b
bits from each window in fixed-window modular exponentiation, this vulnerabil-
ity leads to a new leakage model that may minimize the uncertainty in Heninger
and Shacham’s reconstruction method, thereby potentially reducing the number
of keys that need to be checked. The vulnerability arises for two reasons:

– The input of modular exponentiation in the primality test is p′ = p−1
τ(p−1) ,

where τ(p− 1) denotes the largest power of 2 that divides by p− 1;
– At the beginning of modular exponentiation, OpenSSL pads p′ to the public

size of p, which is n.

The most significant 0 bits of the exponent could be disclosed by analyzing
the number of iterations performed in modular exponentiation. To avoid such a
leakage, OpenSSL uses all bits stored in the exponent variable. Listing 1 is a code
snippet of constant-time modular exponentiation used in OpenSSL. It computes
rr = ap mod m. BIGNUM is a structure that holds a single large integer.
The member variable top represents the number of words used. BN_BITS2
indicates the word size specified in the bn.h file. Hence, bits corresponds to
the public size of the exponent, which ensures that the number of iterations in
fixed-window modular exponentiation is independent of the actual size of p.

1 int bn_mod_exp_mont_fixed_top(BIGNUM *rr , const BIGNUM *a
, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx ,
BN_MONT_CTX *in_mont)

9

'0's

'0's

'0's

'0's

Fig. 1: Map the recovered p′[i] and q′[i] to p and q.

2 {
3 ...
4 /* Use all bits stored in stored in variable p to

prevent leakage of leading zero bits. */
5 bits = p->top * BN_BITS2;
6 ...
7 }

Listing 1: OpenSSL pads the exponent to its public size.

The operands involved in modular exponentiation are p′ or q′, extended to a
length of n. In our assumed side-channel model, p′ and q′ are recovered in the
same manner. So, p′[i] and q′[i] are known, or neither is known. However, this
does not necessarily imply that the same relationship exists between p[i] and
q[i].

Upon reconstructing the key using equation (1), the recovered p′[i] and q′[i]
are mapped to p[i + τ(p − 1)] and q[i + τ(q − 1)]. Figure 1 shows the mapping
from p′ and q′ to p and q, where

p = p′2τ(p−1) + 1,

q = q′2τ(q−1) + 1.

Suppose τ(p − 1) > τ(q − 1), both p and q can be partitioned into three
blocks, as shown in Figure 2. Specifically,

– Block 1 (τ(q − 1) > i ≥ 0): p[i] = q[i] = 0, except p[0] = q[0] = 1;
– Block 2 (τ(p− 1) > i ≥ τ(q − 1)): p[i] = 0 and q[i] may be revealed;
– Block 3 (n − 1 ≥ i ≥ τ(p − 1)): each window of p (or q) is revealed in a

fixed pattern.

When τ(p − 1) < τ(q − 1), the situation is analogous. Block 2 is absent when
τ(p− 1) = τ(q − 1).

Given τ(p− 1) and τ(q − 1), Block 1 is fully determined, and either p or q
in Block 2 can be uniquely identified, yielding exactly one valid partial solution

10

Block 3 Block 2 Block 1

Fig. 2: p and q recovered from the side-channel oracle.

for Block 3. Consequently, the efficiency of key reconstruction depends on its
performance in Block 3, subject to the knowledge of p[i] and q[i] within each
window. To formalize our new model, we categorize Block 3 into two cases.

– The aligned case: p[i] and q[i] are either recovered or unknown;
– The misaligned case: p[i] and q[i] could be one of the following: both recov-

ered, one recovered, or both unknown.

Table 1 demonstrates both scenarios for a window size of 6, with 4 bits suc-
cessfully recovered in each window. The remainder of this paper will utilize this
assumption as a case study and present corresponding experimental validations.
Our work is not constrained by this specific assumption. In Section 4, we develop
a generalized analysis that extends our results to various assumptions, including
3-bit recovery from 5-bit windows4 and 2-bit recovery from 4-bit windows5.

Table 1: Left: aligned case; Right: misaligned case.

i+ 2 i+ 1 i i− 1 i− 2 i− 3 i+ 2 i+ 1 i i− 1 i− 2 i− 3

X X 1 0 1 0 X X 1 0 1 0

X X 1 0 1 1 1 0 1 1 X X

The occurrence of each scenario is determined by the absolute value of the
difference between τ(p − 1) and τ(q − 1), denoted as τ . Notably, the recovered
bits exhibit a periodic pattern within each window. This establishes τ as defining
a ring over the integer w. For simplicity, we omit the modulus of τ ≡ x mod w
in subsequent discussions.

– τ ≡ 0 indicates the case of alignment;
– τ ̸≡ w indicates the case of misalignment.

In the subsequent section, we demonstrate that the reconstruction process
for the misaligned case exhibits a lower complexity due to the reduced level of
uncertainty.

4 This leakage pattern has been demonstrated in [48].
5 This leakage pattern represents the specific case we analyzed for 1024-bit RSA.

11

4 Algorithm Runtime Analysis

This section explores the complexity of key reconstruction in different cases in the
proposed leakage model by assessing the number of partial solutions examined
during the process.

4.1 Global Branching Behavior

Given that the cases of the proposed leakage model differ only in their window-
level recovery patterns, we first establish a general equation characterizing the
algorithm’s global behavior, then investigate the local branching process in the
window.

Let Yı denote the number of partial solutions checked at window ı in Block
3, and a sum of Yı yields the total number of partial keys examined in the third
block, where 1 ≤ ı ≤ ⌈(n−max(τ(p− 1), τ(q − 1)))/w⌉.

Yı =

Xı−1∑
ȷ=1

Zȷ + Zc, (2)

where Z and Zc are random variables that count, within a window, the number
of key validation attempts triggered by a bad and a good solution, respectively.
There is only one correct partial key in the whole process. Since the number
of incorrect solutions is not constant, it is imperative to estimate how many
incorrect solutions are likely to remain after lifting the window ı, denoted as Xı.

Let C and W be two random variables representing the number of incorrect
candidates remaining after a good and a bad solution passes a window in Block
3, respectively. Then

Xı =

Xı−1∑
ȷ=1

Wȷ + C. (3)

To depict the distribution of Yı, we have the following expressions. The derivation
is performed using a generating function and can be found in Appendix A.

Theorem 3.

E Yı =
E C E Z

1− EW
(1− (EW)ı−1) + E Zc. (4)

Theorem 4.

Var Yı = c3(EW)2(ı−1) − c2(EW)ı−1 + c1, (5)

12

with

c1 =
E C VarW + (1− EW)Var C

(1− (EW)2)(1− EW)
(E Z)2

+
E C

1− EW
Var Z +Var Zc,

c2 =
E C VarW

(1− EW)2EW
(E Z)2 +

E C

1− EW
Var Z,

c3 = (
E C VarW

(1− (EW)2)(1− EW)EW
− Var C

1− (EW)2
)(E Z)2.

The expression presented above is derived under the assumption that EW ̸=
1. For the sake of generality, when EW = 1,

E Yı = (ı− 1) E C E Z + E Zc. (6)

Similarly,

Var Yı = (
(ı− 1)(ı− 2)

2
E C VarW + (ı− 1)Var C)(E Z)2

+ (ı− 1) E C Var Z +Var Zc. (7)

4.2 Local Branching Behavior at Each Window

Recall that the program’s local behavior at each bit depends on the knowledge
of p[i] and q[i]. Within a window, the leakage pattern is fixed by providing w, b,
and τ , where w is given by the implementation of modular exponentiation, b is
subject to the attacker’s capabilities, and τ is determined by randomly generated
p and q. In the reconstruction process, the only variable is the probability of a
wrong branch that will be pruned when p[i] and q[i] are known, denoted as φ.

For the sake of discussion, we consider the scenario where the least significant
b bits of each window are recovered. When τ ≡ 0, a correct partial solution
passes the window and generates 2w−b−1 wrong candidates. An incorrect partial
solution produces 2w−b erroneous candidates after passing the evaluation with
probability (1− φ)b. This is the case of alignment.

Depending on the degree of misalignment, the number of situations where
p[i] and q[i] are unknown within a window, denoted as ∆, could be reduced at
most to {

0 if w − b ≤ b,

w − 2b if w − b > b.

Considering the attack on fixed-window modular exponentiation, w − b > b
implies that less than half of the bits of p and q are obtained. This situation
produces a large number of incorrect candidates, rendering key reconstruction
infeasible within a reasonable time.6 Hence, only the case of w−b ≤ b is discussed
in this study.
6 According to [40], the branch-and-prune algorithm works if more than 50% of the

secret bits are acquired. Although known bits could be slightly lower than 50%, such
as p[i] and q[i] are recovered alternatively, w − b > b indicates two many erasures.

13

𝑥𝑥𝑦𝑦𝑦𝑦 𝑥𝑦𝑦𝑦𝑦𝑥 𝑦𝑦𝑦𝑦𝑥𝑥 𝑦𝑦𝑦𝑥𝑥𝑦 𝑦𝑦𝑥𝑥𝑦𝑦

𝑥𝑥𝑦𝑦𝑦𝑦 𝑥𝑥𝑦𝑦𝑦𝑦 𝑥𝑥𝑦𝑦𝑦𝑦 𝑥𝑥𝑦𝑦𝑦𝑦 𝑥𝑥𝑦𝑦𝑦𝑦𝑝

𝑞

𝜏 ≡ 0 𝜏 ≡ 1 𝜏 ≡ 2 𝜏 ≡ 3 𝜏 ≡ 4

𝑦𝑥𝑥𝑦𝑦𝑦

𝑥𝑥𝑦𝑦𝑦𝑦

𝜏 ≡ 5

Fig. 3: Take w = 6 and b = 4 as an example to illustrate the leakage pattern of
the window in Block 3.

Assuming τ(p − 1) ≥ τ(q − 1),
w−b︷︸︸︷
x...x

b︷︸︸︷
y...y denotes the least window of p in

Block 3, where x and y represent unknown and known bits, respectively.7 As
τ increases from 0 to w, the leakage pattern in the corresponding window of q
constructs a cycle, while ∆ initially decreases from w− b to 0 and then increases
back to w − b, as shown in Figure 3.

Based on the branching behavior exhibited by the algorithm, it can be ob-
served that the variable C is directly related to ∆.

E C = 2∆ − 1, E C2 = (2∆ − 1)2.

Let Λ denote the number of bits where p[i] and q[i] are known in the window. Λ
determines the probability of retaining an incorrect input solution, ∆ specifies
how this solution forks.

EW = 2∆(1− φ)Λ, EW 2 = 22∆(1− φ)Λ.

When discussing the number of partial keys verified within a given window,
it should be noted that Z and Zc are determined by ∆, Λ, and the position
of known bits. Consider τ ≡ 1 and τ ≡ 5 depicted in Figure 3. When τ ≡ 1, a
correct partial key passes through five bits and branches at the last bit. However,
the latter case produces a false branch at the 5-th bit, requiring an additional
calculation at the 6-th bit.

The general expressions for the expected values and variances of Z and Zc
require knowledge of the position of known bits, leading to complex expressions.
To simplify the computation, we provide E Zc, E Zc2, E Z, and E Z2 under
specific w and b, as shown in Table 2. These results can be directly extended to
other scenarios.

To demonstrate the results in Table 2, we use the alignment case as an
example. After the first 4 evaluations, a correct solution passes the lower 4 bits
of the window. Two branches are generated after evaluating the next bit. Then,
two candidates are evaluated at the last bit. Thus, a correct solution involves a
total of 7 evaluations. In contrast, an incorrect solution may be discarded after
each of the first 4 evaluations with a probability of φ. Once an incorrect solution
is retained with probability (1− φ)4, it behaves identically to a correct solution
in the last two bits. Consequently, E Z =

∑4
i=1 i(1− φ)i−1φ+ 7(1− φ)4.

Under the random model, [25] empirically demonstrates that the probability
of independently pruning an incorrect candidate approaches 1/2 for known p[i]

7 τ(p− 1) < τ(q − 1) is analogous since p and q are equivalent here.

14

and q[i]. Since our model can be viewed as a special case of this random model,
φ = 1/2 is expected to hold here. Our simulations confirm this expectation.

Table 2: The expected values and variances for Z and Zc when w = 6 and b = 4.

τ ≡ 0 τ ≡ 1 τ ≡ 2 τ ≡ 3 τ ≡ 4 τ ≡ 5

E Zc 7 6 6 6 6 7
E Zc2 49 36 36 36 36 49
E Z 33

16
3 4 3 5

2
9
4

E Z2 107
16

43
4

35
2

27
2

21
2

35
4

4.3 Bounding the Total Number of Keys Examined

The total number of keys examined over an entire program can be represented
as

Y = |τ(p− 1)− τ(q − 1)|+
l∑

ı=1

Yı + ε,

where l = ⌊(n−max(τ(p− 1), τ(q − 1)))/w⌋ is the number of complete windows
in Block 3. Specifically, the first term counts the evaluations executed in blocks
2. The second term plus ε represents the total number of keys examined in
Block 3, where ε denotes the number of keys evaluated in the last window. If
n − max(τ(p − 1), τ(q − 1)) is divisible by w, ε = 0. For E W ≤ 1 (w − b ≤
b), the program either converges continuously or alternates between divergence
and convergence in each window. Thus, the tree does not spread exponentially,
which implies that ε will not be too large. In addition, empirical investigations
demonstrate that τ(p − 1) and τ(q − 1) are usually small, as shown in Figure
4. Therefore, the primary contribution to E Y arises from the accumulation of
E Yı.

Given w, b, τ , and estimation of φ, E C, EW , E Zc, and E Z are constants.
According to Theorem 3, we give a bound on E Y to facilitate estimation.

E Y < E

⌈ n
w ⌉∑

ı=1

Yı

 (8)

≤

⌈ n
w

⌉
(
E C E Z

1− EW
+ E Zc) if EW < 1,

=

⌈
n
w

⌉2 − ⌈
n
w

⌉
2

E C E Z +
⌈ n
w

⌉
E Zc if EW = 1.

Next, Lemma 1 gives a bound for the variance of
∑

ı Yı, where 1 ≤ ı ≤
⌈
n
w

⌉
.

Var
∑
ı

Yı ≤
⌈ n
w

⌉2
max

ı
VarYı

15

From equation 5, we observe that it converges to c1 as ı increases. When ı = 1,
c3 − c2 ≤ 0. As ı grows, the expression c3(E W)2(ı−1) − c2(E W)ı−1 remains
negative but increases monotonically. Consequently, maxVarYı = c1 at ı =

⌈
n
w

⌉
,

where c1 is a constant determined by w, b, τ , and the estimate of φ. The result
holds when EW = 1, where the maximum variance occurs at ı =

⌈
n
w

⌉
.

Table 3 gives E Y and Var Y when w = 6, b = 4, and φ = 1/2. Our analysis
reveals that both: (i) the expected number of keys examined during reconstruc-
tion, and (ii) their degree of dispersion are lower in misaligned cases compared
to aligned cases. Despite the fact that the number of recovered bits remains
constant, the system exhibits significantly reduced uncertainty in misalignment
scenarios. Furthermore, the cases in which τ ≡ 2, 3, and 4 yield identical esti-
mates for EY and VarY . These cases can be treated as equivalent in subsequent
analyses. Although cases where τ ≡ 2 and τ ≡ 3 show minor differences in VarY ,
we classify them into the same category. This grouping is justified because both
have exactly one bit where p[i] and q[i] are recovered. The observed difference
in variance arises from the position of this bit.

Table 3: E Y and Var Y when w = 6, b = 4, and φ = 1/2.

τ ≡ 0 τ ≡ 1 τ ≡ 2 τ ≡ 3 τ ≡ 4 τ ≡ 5

E C 3 1 0 0 0 1

EW 1
4

1
4

1
4

1
4

1
4

1
4

E Zc 7 6 6 6 6 7
E Z 33

16
3 4 3 5

2
9
4

E Y < 61
4

⌈
n
6

⌉
10

⌈
n
6

⌉
6
⌈
n
6

⌉
6
⌈
n
6

⌉
6
⌈
n
6

⌉
10

⌈
n
6

⌉
Var C 0 0 0 0 0 0

VarW 15
16

7
16

3
16

3
16

3
16

7
16

Var Zc 0 0 0 0 0 0

Var Z 623
256

7
4

3
2

9
2

17
4

59
16

Var Y ≤ 107
4

⌈
n
6

⌉2 119
15

⌈
n
6

⌉2
0 0 0 121

15

⌈
n
6

⌉2

4.4 Discussion on Additional Erasures

Results in Table 3 suggest that the algorithm could be reconstructed in a rea-
sonable time, even if the recovered partial key contains additional erasures. In
this subsection, we examine scenarios in which some windows are totally erased.
This happens in some SCAs. For example, in cache-timing attacks, system in-
terruptions may lead to information loss [8, 47]. In [37], system noise in power
or EM traces may cause some windows to be recovered with a low probability.

Let ρ be the probability that a given window fails to be recovered in either p
or q. In this context, the recovery of a window does not imply retrieving all bits,
but rather refers specifically to the recovery corresponding to our assumption.
For each window, there exist three possible cases:

16

– Both of p and q are recovered with probability (1− ρ)2;
– One of p and q is recovered with probability 2ρ(1− ρ);
– Both of p and q fail to be recovered with probability ρ2.

As additional erasures do not impact the algorithm’s global behavior, we only
need to re-estimate C, W , Zc and Z.

E C = (2∆ − 1)(1− ρ)2 + (2w−b − 1)(2ρ− 2ρ2)

+ (2w − 1)ρ2,

EW = 2∆(1− φ)Λ(1− ρ)2 + 2w−b(2ρ− 2ρ2) + 2wρ2.

(9)

According to equation (8), EW should be ≤ 1 to avoid an exponential increase
in the complexity of the key reconstruction. Given w, b, φ, the expression for
EW in (9) depends solely on ρ 8.

Case1: w = 6, b = 4, and φ = 1/2.

EW =
225

4
ρ2 +

15

2
ρ+

1

4
.

Solving the inequality EW ≤ 1 yields − 1
5 ≤ ρ ≤ 1

15 . Since ρ is a probability that
should be in [0, 1], we have ρ ≤ 1

15 .

Table 4: E Y and Var Y when w = 6, b = 4, φ = 1/2 and ρ = 1
15 .

τ ≡ 0 τ ≡ 1 τ ≡ 2 τ ≡ 3 τ ≡ 4 τ ≡ 5

E C 49
15

343
225

49
75

49
75

49
75

343
225

EW 1 1 1 1 1 1

E Zc 1,631
225

497
75

1,603
225

1,561
225

1,519
225

1,673
225

E Z 2,653
900

301
75

1,211
225

973
225

833
225

742
225

E Y ≈ 4.8
⌈
n
6

⌉2
3.1

⌈
n
6

⌉2
1.8

⌈
n
6

⌉2
1.4

⌈
n
6

⌉2
1.2

⌈
n
6

⌉2
2.5

⌈
n
6

⌉2
Var C 3,584

225
876,176
50,625

103,124
5,625

103,124
5,625

103,124
5,625

876,176
50,625

VarW 301
15

4,417
225

1,456
75

1,456
75

1,456
75

4,417
225

Var Zc 702,464
50,625

29,372
1,875

1,202,616
50,625

1,004,654
50,625

57,736
3,375

724,346
50,625

Var Z 16,907,891
8,100,000

120,799
5,625

1,489,754
50,625

1,502,396
50,625

1,348,886
50,625

1,197,686
50,625

Var Y ≈ 47.5
⌈
n
5

⌉3
40

⌈
n
5

⌉3
30.6

⌈
n
5

⌉3
19.8

⌈
n
5

⌉3
14.5

⌈
n
5

⌉3
11.5

⌈
n
5

⌉3
Table 4 presents the estimation of E Y and Var Y computed from equations

(6) and (7), accounting for 1
15% unrecovered windows (equivalent to additional

erasures). Here, ≈ is used instead of < and ≤, as we discard lower-order polyno-
mial terms that have a negligible impact on overall expression. Comparing Table
4 with Table 3, the expected number of partial keys verified in the reconstruc-
tion scales quadratically with n (as opposed to linearly), due to the introduced
erasures. It is observed that the speed advantage in misaligned cases persists
8 EW is independent of ∆ and Λ if φ = 1

2
.

17

even when the introduced erasures approach the algorithm’s maximum toler-
ance. Moreover, the variance of Y indicates that the aligned case is more prone
to generating candidates with larger search spaces, which leads to a longer time
for key reconstruction in practice.

Case2: w = 4, b = 2, and φ = 1/2.

EW = 9ρ2 + 6ρ+ 1.

Solving the inequality EW ≤ 1 yields ρ = 0. This is consistent with the results
of [25] and [40], which show that revealing 50% of the bits of p and q is necessary
to prevent the algorithm’s complexity from growing exponentially.

In this case, b
w = 50% indicates that the key reconstruction cannot tolerate

additional erasures. However, τ = 2 in 5 suggests that allowing some additional
erasures may be feasible in practice. When τ = 2, the reconstruction process
verifies at most n correct partial keys. In practical scenarios, although an ad-
ditional 25-bit erasure would expand the candidate solution space to 225, the
computational cost remains well within the means of modestly resourced adver-
saries [17]. For 1024-bit RSA(w = 4), an additional 25-bit erasure corresponds
to approximately 10% windows remaining unrecovered.

Table 5: E Y when w = 4, b = 2, and φ = 1/2.

τ ≡ 0 τ ≡ 1 τ ≡ 2 τ ≡ 3

E C 3 1 0 1

EW 1 1 1 1

E Zc 5 4 4 5
E Z 9

4
3 4 3

E Y < 27
8

⌈
n
4

⌉2
+ 27

8

⌈
n
4

⌉
3
2

⌈
n
4

⌉2
+ 5

2

⌈
n
4

⌉
4
⌈
n
4

⌉
3
2

⌈
n
4

⌉2
+ 7

2

⌈
n
4

⌉
In sum, misaligned cases outperform the aligned case in both efficiency and

tolerance to additional erasures. Although it is possible in SCAs that the recov-
ered partial key contains errors, we omit this discussion in this work. According
to the result presented in [32], the success rate is as low as 4% when p and q con-
tain 1% errors and 25% erasures. In the absence of more efficient error-correction
algorithms, the conventional approach treats potential errors as erasures in sub-
sequent processing.

5 Experiment Evaluation

This section illustrates the practical implications of our proposed model from
the following perspectives.

– Statistical analysis of the distribution of aligned and misaligned scenarios
confirms that they exhibit non-negligible occurrence probabilities.

18

– SPA attacks are conducted on the target implementation, successfully re-
covering τ(x− 1) and the lower 4 bits within each 6-bit window, empirically
validating the practical implications of our leakage assumption.

– An evaluation of key reconstruction is performed between theoretical pre-
dictions and practical outcomes.

5.1 Experimental Setup

The experiments in Sections 5.2 and 5.4 were performed on an AMAX server
equipped with 64 CPU cores and 503 GB of RAM. A Python module pyOpenSSL
is used to generate the key pairs of RSA. Leveraging multiprocess parallel com-
puting, each experiment was completed in minutes to tens of minutes.

The experiments in Section 5.3 were carried out on the ChipWhisperer CW308
platform with an STM32F303 target board. The STM32F303 features an ARM
Cortex-M4 core operating at 7.38 MHz. Power traces were recorded using CW-
Lite at a sampling rate of 4 × 7.38 MS/s (4 samples per clock cycle) with 10-bit
resolution. The trace processing was performed on a ThinkPad X1 laptop run-
ning Ubuntu 20.04, equipped with an Intel i7-8550U CPU (1.80 GHz) and 8
GB of RAM. We targeted the RSA implementation in the current version of
OpenSSL, using an additional trigger signal to facilitate trace recording. Our
analysis focuses on two functions:

– BN_is_bit_set(), invoked by ossl_bn_miller_rabin_is_prime() in the
source file bn_prime.c.

– MOD_EXP_CTIME_COPY_FROM_PREBUF(), called by bn_mod_exp_mont_fixed
_top() in the source file bn_exp.c.

5.2 The Distribution of Aligned and Misaligned Cases

To demonstrate that the misaligned cases occur with non-negligible probabil-
ity, we conducted the statistical analysis by repeatedly invoking OpenSSL to
generate the private key set, from which we extracted p and q.

This test was performed 100,000 times for 1024-, 2048-, and 4096-bit RSA,
respectively. We recorded the value of τ(p−1) and τ(q−1). Due to the symmetric
roles of p and q in this context, the distributions of τ(p − 1) and τ(q − 1) are
identical. Figure 4.(a) presents the distributions of τ(x − 1) for 2048-bit RSA,
where x represents either prime. Notably, τ(x − 1) consistently takes relatively
small values. Figure 4.(b) shows the distributions for the proposed scenarios. As
noted previously, these scenarios can be classified by the value of ∆ due to the
similarity of the computational complexity. Specifically:

– Class 1 (τ ≡ 0): 34,422;
– Class 2 (τ ≡ 1, 5): 35,927;
– Class 3 (τ ≡ 2, 3, 4): 29,651;

Each class occurs with non-negligible probability. Similar behavior is observed
for both RSA-1024 and RSA-4096.

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(x 1)

0
1
2
3
4
5
6

Nu
m

be
r o

f O
cc

ur
re

nc
es

1e4
50178

24847

12521
620231281604 760 378 198 111 40 18 7 3 2 2 0 1

(a)

0 1 2 3 4 5
0

1

2

3

4

Nu
m

be
r o

f O
cc

ur
re

nc
es

1e4
34422 33761

16998

8446
4207 2166

(b)

Fig. 4: (a) and (b) represent the distributions of τ(x− 1) and τ , respectively, for
RSA-2048 over 100,000 trials.

5.3 Recovering τ (x − 1) and idx[3:0] via SPA Attacks

Recovering τ (x − 1) To map the information recovered by SCAs back to
p and q, the values of τ(p − 1) and τ(q − 1) need to be known. In OpenSSL,
the Miller-Rabin primality test calculates τ(x − 1) and reduces x to x′ before
invoking modular exponentiation.

Listing 2 is a code snippet illustrating the process of calculating τ(x− 1) in
OpenSSL. The implementation repeatedly calls BN_is_bit_set(), which tests
whether the a-th bit in w1 is set to 1. Since this operation is not constant-time,
the exact number of function calls, which is τ(x− 1), can be leaked through the
power channel.

1 int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int
iterations , BN_CTX *ctx , BN_GENCB *cb , int enhanced ,
int *status)

2 {
3 ...
4 /* (Step 1) Calculate largest integer 'a' such that

2^a divides w-1 */
5 a = 1;
6 while (! BN_is_bit_set(w1 , a))
7 a++;
8 /* (Step 2) m = (w-1) / 2^a */
9 if (! BN_rshift(m, w1, a))

10 goto err;
11 ...
12 }

Listing 2: Computing τ(x− 1) in OpenSSL.

In function ossl_bn_miller_rabin_is_prime(), the variable w holds the
candidate prime to be tested. line 6–7 in Listing 2 sequentially check each bit of
w-1 starting from the second least significant bit to count the number of trailing
zeros. This operation exhibits two properties that introduce a distinct timing
channel exploitable via SPA: (1) The execution time of this operation depends
on the value of τ(x − 1); (2) The execution time for each iteration is nearly
constant.

20

0 500 1000 1500 2000 2500

0.2

0.1

0.0

0.1

Vo
lt/

V

(x) = 15

0 20 40 60 80 100 120 140 160
Samples

0.2

0.1

0.0

0.1

0.2

0.3

Vo
lt/

V

iter. 1
iter. 2
iter. 3

iter. 4
iter. 5
iter. 6

iter. 7
iter. 8
iter. 9

iter. 10
iter. 11
iter. 12

iter. 13
iter. 14
iter. 15

(a)

0 200 400 600 800 1000 1200
Samples

0.2

0.1

0.0

0.1

0.2

Vo
lt/

V

(x) = 1
(x) = 2
(x) = 3
(x) = 4
(x) = 5
(x) = 6

(b)

Fig. 5: Determining the value of τ(x− 1) via SPA.

Our experimental analysis successfully identified the power trace correspond-
ing to a single iteration, enabling a precise determination of the iteration count
through visual inspection of the power traces. Figure 5.(a) displays the power
trace when τ(x− 1) = 15. Each iteration is distinguishable, separated by alter-
nating gray and white intervals. Although all subsequent intervals contain the
168 samples, the first interval initially contains a reduced count due to missing
control instructions in the initial loop. To ensure consistent analysis, we padded
the first iteration’s samples to 168 by borrowing preceding data points. This
preprocessing explains the visible deviation in the blue trace (Bottom of Figure
5.(a)) compared to the others. To enhance visibility, we deliberately offset the
traces vertically along the y-axis, as well as in Figure 5.(b). Notably, the power
trace of all subsequent iterations exhibits highly consistent patterns, enabling a
reliable identification of the iteration count through visual inspection.

Figure 5.(b) presents a comparison of power traces for τ(x − 1) ≡ 1 to 6.
The colored traces represent the execution of the loop body, whereas the gray
traces correspond to unrelated operations. These colored traces overlap at the
execution of each iteration. A straightforward method to determine the number
of iterations involves cross-correlating a reference single-loop trace (or a reference
trace that contains 30 loops) with the target trace, and the number of overlapping
segments directly yields the value of τ(x− 1).

Moreover, Figure 4 indicates τ(p−1) and τ(q−1) are typically small. Hence,
an exhaustive search for possible values of these two parameters may also lead
to successful key reconstruction.

21

Recovering Partial Bits of p and q In this subsection, we conducted an SPA
attack on the fixed-window modular exponentiation implemented in OpenSSL
to validate the practical implications of our leakage assumption.

Target function: Listing 3 presents the core implementation of fixed-window
modular exponentiation in OpenSSL, illustrating the complete operation in each
window. The computation proceeds as follows:

– Line 4-5 perform the squaring.
– Line 6-7 extract the current window of bits from the exponent.
– Line 9 retrieves the precomputed multiplier corresponding to the bits ex-

tracted in line 7.
– Line 10 multiplies the intermediate result by the retrieved multiplier.

1 int bn_mod_exp_mont_fixed_top(BIGNUM *rr , const BIGNUM *a
, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx ,
BN_MONT_CTX *in_mont)

2 {
3 ...
4 for (i = 0; i < window; i++)
5 bn_mul_mont_fixed_top (&tmp , &tmp , &tmp , mont ,ctx)
6 bits -= window;
7 wvalue = bn_get_bits(p, bits) & wmask;
8 /* Fetch the appropriate precomputed value */
9 MOD_EXP_CTIME_COPY_FROM_PREBUF (&am, top , powerbuf ,

wvalue ,window)
10 bn_mul_mont_fixed_top (&tmp , &tmp , &am, mont , ctx)
11 ...
12 }

Listing 3: Fixed-window modular exponentiation in the current version of
OpenSSL.

Listing 4 defines the target function MOD_EXP_CTIME_COPY_FROM_PREBUF().
For a window size of 6, buf holds 64 precomputed multipliers, and their ar-
rangement can be visualized as a 4×16 table. The variable idx (or wvalue)
acts as the index for selecting the multiplier to read, where its value represents
the partial secret. To protect idx from potential attacks, this function employs
a dummy load that sequentially reads all 64 precomputed multipliers and se-
lects the correct one via the masking technique. The mask is computed as: (0
- constant_time_eq_int()&1). This expression yields 0 (all zeros) or −1 (all
ones, in two’s complement).

In line 7-8, idx is decomposed into: (1) the upper 2 bits (stored in i) as the
row index; (2) the lower 4 bits for (stored in idx) as the column index. Then
line 10–13 make the selection of the row, where the mask equals to all ones only
when the row index matches the upper 2 bits of idx. Similarly, in line 15-22,
the mask outputs all ones only when the loop counter matches the lower 4 bits
of idx and 0 otherwise. By distinguishing whether the mask is 0 or all ones, we

22

can recover secret bits in each window. Our experiments focus on line 15-22 in
Listing 4, which handle the extraction of 4 bits per window(idx[3:0]), rather
than retrieving all bits in each 6-bit window. This is because the computation
in line 10-13 is too brief to reveal detectable leaks through SPA.

1 int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top ,
unsigned char *buf , int idx , int window)

2 {
3 ...
4 int width = 1 << window;
5 int xstride = 1 << (window - 2);
6 BN_ULONG y0 , y1, y2 , y3;
7 i = idx >> (window - 2);
8 idx &= xstride - 1;
9

10 y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
11 y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
12 y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
13 y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
14
15 for (i = 0; i < top; i++, table += width) {
16 BN_ULONG acc = 0;
17 for (j = 0; j < xstride; j++) {
18 acc |= ((table[j + 0 * xstride] & y0) |
19 (table[j + 1 * xstride] & y1) |
20 (table[j + 2 * xstride] & y2) |
21 (table[j + 3 * xstride] & y3))
22 & ((BN_ULONG)0 - (

constant_time_eq_int(j,idx)&1));}
23 b->d[i] = acc;}
24 ...
25 }

Listing 4: Implementation of fetching the precomputed multiplier.

The top of Figure 6 shows a trace fragment for MOD_EXP_CTIME_COPY_FROM
_PREBUF(), extracted from the complete power trace, where idx[3:0]= 0. The
target function performs 16 iterations, line 22 in Listing 4 compares idx[3:0]
with j, where j is range from 0 to 15. (0 - constant_time_eq_int()&1) out-
puts all ones when idx[3:0]=j. We highlighted the 16 iterations in the target
function using alternating gray and white backgrounds, and a distinct downward
dip can be observed in the first block, indicating idx[3:0]= 0. The middle plot
of Figure 6 overlays the traces of all 16 iterations, where the red line represents
idx[3:0]= 0, while the remaining 15 lines are shown in gray. Zooming in (bot-
tom plot), the red line is visually distinct from the gray lines. Similar results are
observed when idx[3:0] takes values from 1 to 15.

Figure 7 shows the trace fragments extracted from the power trace, with each
subplot representing the sensitive operations in MOD_EXP_CTIME_COPY_FROM
_PREBUF(). The subplots are sorted by idx[3:0], ranging from 0 to 15. Red

23

0 1000 2000 3000 4000 5000 6000
0.4

0.3

0.2

0.1

0.0

0.1

0.2

Vo
lt/

V

idx[3:0]=0

0 50 100 150 200
0.3

0.2

0.1

0.0

0.1

0.2

Vo
lt/

V

0 5 10 15 20 25
Samples

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

Vo
lt/

V

Fig. 6: The power traces of the sensitive operations in MOD_EXP_CTIME_COPY
_FROM_PREBUF()

arrows in the subplots mark leakage locations. It can be observed that the val-
ues of idx[3:0] corresponding to different traces can be directly distinguished
through visual inspection.

In sum, we could recover the lower 4 bits of each window by launching SPA
attack on an ARM Cortex-M4 device, demonstrating power-based leakage. It
should be noted that the upper 2 bits of idx are more difficult to obtain directly
through visual observation.

5.4 An Evaluation of Key Reconstruction

Figure 8 displays the distributions of incorrect partial solutions observed in
100,000 trials for RSA-2048 and RSA-4096. The green line represents cases where
τ ≡ 2, 3 and 4, none of which produced incorrect solutions. These scenarios oc-
cur 29,651 times for RSA-2048 and 29,545 times for RSA-4096, respectively. We
adopted non-uniform intervals in this figure since the number of incorrect solu-
tions in the remaining two classes varied significantly, ranging from hundreds to
hundreds of thousands. For example, when τ ≡ 0, the false solutions in Figure
8.(b) varied between 1, 849 to 111, 723. As the interval width increases, the prob-
ability that the number of incorrect solutions falls within a given range drops
rapidly.9 The blue and orange lines demonstrate that most the results cluster
9 Interestingly, both of the figures have an unexplained increase in the interval [5, 000−
6, 000]. We skip it here because of its minimal influence on the overall analysis. The

24

0.4

0.2

0.0

0.2
Vo

lt/
V

idx[3:0]=0
0.4

0.2

0.0

0.2

idx[3:0]=1

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=2
0.4

0.2

0.0

0.2

idx[3:0]=3

0.4

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=4
0.2

0.0

0.2

idx[3:0]=5

0.4

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=6
0.4

0.2

0.0

0.2

idx[3:0]=7

0.4

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=8
0.4

0.2

0.0

0.2

idx[3:0]=9

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=10
0.4

0.2

0.0

0.2

idx[3:0]=11

0.4

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=12
0.4

0.2

0.0

0.2

idx[3:0]=13

0 1000 2000 3000 4000 5000 6000
Samples

0.4

0.2

0.0

0.2

Vo
lt/

V

idx[3:0]=14

0 1000 2000 3000 4000 5000 6000
Samples

0.4

0.2

0.0

0.2

idx[3:0]=15

Fig. 7: The power traces of the sensitive operations in MOD_EXP_CTIME_COPY
_FROM_PREBUF(), where idx[3:0] takes values from 1 to 15.

25

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-20
20

-30
30

-40
40

-50
50

-60
60

-70
70

-80
80

-90
90

-10
0
>10

0

Range (×1k)

0

1

2

3

Ti
m

es

1e4
0
1, 5
2, 3, 4

(a) RSA-2048

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-20
20

-30
30

-40
40

-50
50

-60
60

-70
70

-80
80

-90
90

-10
0
>10

0

Range (×1k)

0

1

2

3

Ti
m

es

1e4
0
1, 5
2, 3, 4

(b) RSA-4096

Fig. 8: The distributions of incorrect partial solutions examined in 100,000 ex-
periments for RSA-2048 and RSA-4096.

around the expected value, with only a few trails significantly exceeding it. This
observed distribution aligns well with our theoretical predictions.

Table 6 compares the average number of incorrect partial solutions examined
in theoretical estimates and experimental results. For both RSA-2048 and RSA-
4096, the first row corresponds to the values derived from table 3, representing
our estimated count of false branches generated during key reconstruction when
φ = 1/2. The second row demonstrates the average number of false branches
counted in our experiments. The observed discrepancies between theoretical pre-
dictions and empirical results may arise from inaccuracies in estimating φ, which
implies a potential relationship between φ and the uncertainty in the key recon-
struction. Furthermore, the third row presents the observed proportions of the
three scenarios among 100,000 trials. In summary, the estimated complexity of
the key reconstruction is consistent with results observed in practical attacks.

Table 6: Comparison of the average number of incorrect partial solutions exam-
ined in theoretical estimates and experimental results.

τ ≡ 0 τ ≡ 1, 5 τ ≡ 2, 3, 4

RSA-2048
Theoretical 1,579 683 0
Practical 1,739 640 0

Occurrence 34.4% 35.9% 29.7%

RSA-4096
Theoretical 3,158 1,366 0
Practical 3,484 1,278 0

Occurrence 34.5% 36% 29.5%

As shown in Table 6, the difference in average complexity between the align-
ment and misalignment cases seems trivial, since hundreds of false candidates
can be examined in seconds on a modern computer. However, in scenarios that

increase in [10, 000− 20, 000] is reasonable since the interval is enlarged by a factor
of 10.

26

generate extensive candidates, especially in RSA-4096, key reconstruction may
take several hours. This occurs even as 4

6 ≈ 66.7% bits are recovered. With
additional erasure bits being introduced, the reconstruction time increases sig-
nificantly, demonstrating the efficiency advantages of our misaligned scenarios.

6 Conclusion

In this work, we demonstrated that the complexity of the branch-and-prune
algorithm is closely related to observed leakage patterns, and identify a new
vulnerability in OpenSSL’s implementation of the Miller-Rabin primality test.
Our proposed leakage model, termed misaligned scenarios, leads to a reduced
uncertainty in the key reconstruction process, thereby enhancing its practical
efficiency. These scenarios originate from two key factors:

– The input of modular exponentiation in the Miller-Rabin primality test is
p′ (or q′), which is derived from p − 1 (or q − 1) by truncating the least
significant zero bits.

– To prevent high-bit leakage, OpenSSL pads the exponent with leading zeros
before performing modular exponentiation.

When recovering p′ and q′ with a fixed pattern (extracting b bits in each window),
mapping these bits back to p and q reveals new leakage patterns. A key obser-
vation is that when either p[i] or q[i]] is determined, the reconstruction process
produces no false candidates. Our theoretical analysis demonstrates: (1) signifi-
cantly reduced computational complexity in these misaligned scenarios and (2)
their occurrence with non-negligible probability. By introducing additional era-
sure bits, we further investigated the limits of the branch-and-prune algorithm
in the proposed scenarios. Furthermore, experimental results validate both the
existence and practical implications of these leakage patterns.

References

1. Aciiçmez, O.: Yet another microarchitectural attack: Exploiting I-Cache. In: Pro-
ceedings of the 2007 ACM workshop on Computer Security Architecture. pp. 11–
18. ACM Press, New York, NY, USA (2007). https://doi.org/10.1145/1314466.
1314469

2. Aciiçmez, O., Koç, Ç.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security. pp. 312–320. ACM Press, New York, NY, USA
(2007). https://doi.org/10.1145/1229285.1266999

3. Aciiçmez, O., Gueron, S., Seifert, J.P.: New branch prediction vulnerabili-
ties in OpenSSL and necessary software countermeasures. In: Galbraith, S.D.
(ed.) 11th IMA International Conference on Cryptography and Coding. LNCS,
vol. 4887, pp. 185–203. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77272-9_12

27

https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/978-3-540-77272-9_12

4. Aciiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79263-5_16

5. Alam, M., Khan, H.A., Dey, M., Sinha, N., Callan, R.L., Zajic, A.G., Prvulovic,
M.: One&done: A single-decryption EM-based attack on OpenSSL’s constant-time
blinded RSA. In: Enck, W., Felt, A.P. (eds.) USENIX Security Symposium 2018.
pp. 585–602. USENIX Association (2018)

6. Aldaya, A.C., Brumley, B.B.: When one vulnerable primitive turns viral: Novel
single-trace attacks on ECDSA and RSA. IACR TCHES 2020(2), 196–221. (2020).
https://doi.org/10.13154/tches.v2020.i2.196-221

7. Aldaya, A.C., Brumley, B.B., ul Hassan, S. Pereida García C., Tuveri, N.: Port
Contention for Fun and Profit. In: 2019 IEEE Symposium on Security and Privacy.
pp. 870–887. IEEE (2019). https://doi.org/10.1109/SP.2019.00066

8. Aldaya, A.C., García, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing attacks
on RSA key generation. IACR TCHES 2019(4), 213–242. (2019). https://doi.org/
10.13154/tches.v2019.i4.213-242

9. Bernstein, D.J., Breitner, J., Genkin, D., Bruinderink, L.G., Heninger, N., Lange,
T., van Vredendaal, C., Yarom, Y.: Sliding right into disaster: Left-to-right
sliding windows leak. In: Fischer, W., Homma, N. (eds) CHES 2017. LNCS,
vol. 10529, pp. 555–576. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-319-66787-4_27

10. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_2

11. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT’98. LNCS, vol. 1514, pp.
25–34. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-45146-4_2

12. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: Enck, W., Mulliner,
C. (eds.) 11th USENIX Workshop on Offensive Technologies. USENIX Association,
Vancouver, BC, Canada (2017)

13. Brickell, E.: A vision for platform security (invited talk). In: Oswald, E., Rohatgi,
P. (eds) CHES 2008. LNCS, vol. 5154, pp. 444. Springer, Heidelberg (2008). https:
//doi.org/10.1007/978-3-540-85053-3_29

14. Brickell, E. Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. IACR Cryptology
ePrint Archive, 2006:52 (2006). http://eprint.iacr.org/2006/052

15. Briongos, S., Malagón, P., Moya, J.M., Eisenbarth, T.: RELOAD+REFRESH:
Abusing cache replacement policies to perform stealthy cache attacks. In: Capkun,
S., Roesner, F. (eds.) USENIX Security Symposium 2020. pp. 1967–1984. USENIX
Association (2020)

16. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium 2003. USENIX Association (2003)

17. Chuengsatiansup, C., Feutrill, A., Sim, R.Q., Yarom, Y.: RSA key recovery from
digit equivalence information. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. pp.
193-211. Springer(2022). https://doi.org/10.1007/978-3-031-09234-3_10

18. Cohney, S., Kwong, A., Paz, S., Genkin, D., Heninger, N., Ronen, E., Yarom,
Y.: Pseudorandom black swans: Cache attacks on CTR_DRBG. In: 2020 IEEE
Symposium on Security and Privacy. pp. 1241–1258. IEEE (2020). https://doi.
org/10.1109/SP40000.2020.00046

28

https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.13154/tches.v2020.i2.196-221
https://doi.org/10.13154/tches.v2020.i2.196-221
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.13154/tches.v2019.i4.213-242
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-85053-3_29
https://doi.org/10.1007/978-3-540-85053-3_29
https://doi.org/10.1007/978-3-540-85053-3_29
https://doi.org/10.1007/978-3-540-85053-3_29
http://eprint.iacr.org/2006/052
https://doi.org/10.1007/978-3-031-09234-3_10
https://doi.org/10.1007/978-3-031-09234-3_10
https://doi.org/10.1109/SP40000.2020.00046
https://doi.org/10.1109/SP40000.2020.00046
https://doi.org/10.1109/SP40000.2020.00046
https://doi.org/10.1109/SP40000.2020.00046

19. Cohney, S.N., Green, M.D., Heninger, N.: Practical state recovery attacks against
legacy RNG implementations. In: Lie, D., Mannan, M., Backes, M., Wang, X.
(eds.) ACM CCS 2018. pp. 265–280. ACM Press (2018). https://doi.org/10.1145/
3243734.3243756

20. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997). https://doi.org/10.
1007/s001459900030

21. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In: Enck, W., Felt, A.P. (eds.)
USENIX Security Symposium 2018. pp. 955–972. USENIX Association (2018)

22. Guo, Y., Zigerelli, A., Zhang, Y., Yang, J.: Adversarial prefetch: New cross-core
cache side channel attacks. In: 2022 IEEE Symposium on Security and Privacy.
pp. 1458–1473. IEEE (2020). https://doi.org/10.1109/SP46214.2022.9833692

23. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium 2008. pp. 45–60. USENIX Association (2008)

24. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7_19

25. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_1

26. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–
424. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_25

27. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M. (ed.) 6th IMA International Conference on Cryptogra-
phy and Coding. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0024458

28. Huo, T., Meng, X., Wang, W., Hao, C., Zhao, P., Zhai, J., Li, M.: Bluethunder: A
2-level directional predictor based side-channel attack against sgx. IACR TCHES
2020(1), 321–347. (2019). https://doi.org/10.13154/tches.v2020.i1.321-347

29. Hu, X., Meunier, Q. L., Encrenaz, E.: Blind-Folded: Simple power analysis attacks
using data with a single trace and no training. IACR TCHES 2025(1), 475-496.
(2025). https://doi.org/10.46586/tches.v2025.i1.475-496

30. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

31. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https:
//doi.org/10.1007/3-540-48405-1_25

32. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778 pp. 180–197. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36362-7_12

33. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: Kirda, E., Ristenpart,
T. (eds.) USENIX Security Symposium 2017. pp. 557–574. USENIX Association
(2017)

29

https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1109/SP46214.2022.9833692
https://doi.org/10.1109/SP46214.2022.9833692
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/BFb0024458
https://doi.org/10.13154/tches.v2020.i1.321-347
https://doi.org/10.13154/tches.v2020.i1.321-347
https://doi.org/10.46586/tches.v2025.i1.475-496
https://doi.org/10.46586/tches.v2025.i1.475-496
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-36362-7_12
https://doi.org/10.1007/978-3-642-36362-7_12
https://doi.org/10.1007/978-3-642-36362-7_12
https://doi.org/10.1007/978-3-642-36362-7_12

34. Li, M., Zhang, Y., Wang, H., Li, K., Cheng, Y.: CIPHERLEAKS: Breaking
constant-time cryptography on AMD SEV via the ciphertext side channel. In:
Bailey, M., Greenstadt, R. (eds.) USENIX Security Symposium 2021. pp. 717–732.
USENIX Association (2021)

35. Lipp, M., Kogler, A., Oswald, D.F., Schwarz, M., Easdon, C., Canella, C., Gruss,
D.: PLATYPUS: Software-based power side-channel attacks on x86. In: 2021 IEEE
Symposium on Security and Privacy. pp. 355–371. IEEE (2021). https://doi.org/
10.1109/SP40001.2021.00063

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy. pp. 605–
622. IEEE (2015). https://doi.org/10.1109/SP.2015.43

37. Mangard, S., Oswald, E., Popp, T.:Power analysis attacks: Revealing the secrets
of smart cards. Springer Science & Business Media (2008)

38. Mantel, H., Schickel, J., Weber, A., Weber, F.: How secure is green IT? The case of
software-based energy side channels. In: López, J., Zhou, J., Soriano, M. (eds.) ES-
ORICS 2018, Part I. LNCS, vol. 11098, pp. 218–239. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-99073-6_11

39. Moghimi, D., Van Bulck, J., Heninger, N., Piessens, F., Sunar, B.: CopyCat: Con-
trolled instruction-level attacks on enclaves. In: Capkun, S., Roesner, F. (eds.)
USENIX Security Symposium 2020. pp. 469–486. USENIX Association (2020)

40. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4_24

41. Percival, C.: Cache missing for fun and profit (2005). http://css.csail.mit.edu/6.
858/2014/readings/ht-cache.pdf

42. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-39805-8_3

43. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: Using sgx to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) 14th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. LNCS, vol. 10327, pp. 3–24. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-60876-1_1

44. Saito K., Ito A., Ueno R., Homma N.: One truth prevails: A deep-learning
based single-trace power analysis on RSA–CRT with windowed exponentiation.
IACR TCHES 2020(4): 490-526. (2022). https://doi.org/10.46586/tches.v2022.i4.
490-526

45. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Chen, X., Wang, X., Huang, X. (eds.) ASIACCS 2016.
pp. 317–328. ACM Press, Xi’an, China (2016). https://doi.org/doi.org/10.1145/
2897845.2897885

46. Weiser, S., Spreitzer, R., Bodner, L.: Single trace attack against RSA key genera-
tion in intel SGX SSL. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim,
T. (eds.) ASIACCS 2018. pp. 575–586. ACM Press, Incheon, Republic of Korea
(2018). https://doi.org/10.1145/3196494.3196524

47. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) USENIX Security Symposium 2014.
pp. 719–732. USENIX Association (2014)

30

https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1007/978-3-319-99073-6_11
https://doi.org/10.1007/978-3-319-99073-6_11
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://doi.org/10.1007/3-540-39805-8_3
https://doi.org/10.1007/3-540-39805-8_3
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.46586/tches.v2022.i4.490-526
https://doi.org/10.46586/tches.v2022.i4.490-526
https://doi.org/10.46586/tches.v2022.i4.490-526
https://doi.org/10.46586/tches.v2022.i4.490-526
https://doi.org/doi.org/10.1145/2897845.2897885
https://doi.org/doi.org/10.1145/2897845.2897885
https://doi.org/doi.org/10.1145/2897845.2897885
https://doi.org/doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/3196494.3196524
https://doi.org/10.1145/3196494.3196524

48. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: A timing attack on OpenSSL
constant time RSA. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS,
vol. 9813, pp. 346–367. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53140-2_17

49. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM
CCS 2012. pp. 305–316. ACM Press (2012). https://doi.org/10.1145/2382196.
2382230

A Computing the Expectation and Variance of Yı

This appendix presents the derivation of the expectation and variance of the
number of incorrect keys generated at each window during the key reconstruc-
tion.

Expectation of Yı Let GYı
(s) be the PGF for the Yı. In equation (2), Xı−1 and

{Zȷ} are independent random variables. Since {Zȷ} are identically distributed,
each with PGF GZ(s), according to Theorem 2, a PGF for Z1 + ...+ZXı−1 can
be given by function composition GXı−1(GZ(s)), where GXı−1(s) is the PGF of
Xı−1. Denote the PGF of Zc as GZc(s), then

GYı
(s) = GXı−1

(GZ(s))GZc(s).

Differentiating above equation gives G′
Yı
(s) =

G′
Xı−1

(GZ(s))G
′
Z(s)GZc(s) +GXı−1(GZ(s))G

′
Zc(s). (10)

G′
Yı
(s) at s = 1 is exactly the expectation of Yı. With the fact that GZ(1) =

GXı−1(1) = GZc(1) = 1, we obtain

G′
Yı
(1) = G′

Xı−1
(1)G′

Z(1) +G′
Zc(1). (11)

Let GW and GC be the PGFs for independent random variables W and C,
respectively. We have GXı(s) satisfying the recurrence

GXı(s) = GXı−1(GW (s))GC(s).

Similarly,

G′
Xı

(1) = G′
Xı−1

(1)G′
W (1) +G′

C(1). (12)

Supposing that the algorithm lifts from window ı = 1 and we know that the
partial solution obtained from Block 2 is error-free, it follows X1 = C. Rewriting
(12) as a geometric sequence yields

G′
Xı

(1) = EXı =
E C

1− EW
(1− (EW)ı).

Substituting G′
Xı−1

(1) in (11) gives

G′
Yı
(1) = E Yı =

E C E Z

1− EW
(1− (EW)ı−1) + E Zc.

31

https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230

Variance of Yı As Var Yı = G′′
Yı
(1) + G′

Yı
(1) − (G′

Yı
(1))2, we first obtain the

second derivative of GYı
(1) by differentiating (10). Then

G′′
Yı
(1) =G′′

Xı−1
(1)(G′

Z(1))
2 +G′

Xı−1
(1)G′′

Z(1)

+ 2G′
Xı−1

(1)G′
Z(1)G

′
Zc(1) +G′′

Zc(1).

Substituting G′′
Yı
(1) and G′

Yı
(1), we obtain the following expression based on the

properties of PGF.

Var Yı =VarXı−1(E Z)2 + EXı−1Var Z +Var Zc.

Similarly,

VarXı = VarXı−1(EW)2 + EXı−1VarW +Var C.

We have the following general solution

VarXı = c3(EW)2(ı−1) − c2(EW)ı−1 + c1,

where

c1 =
E C VarW + (1− EW)Var C

(1− (EW)2)(1− EW)
,

c2 =
E C VarW

(1− EW)2
,

c3 = c2 − c1 +Var C.

Substituting VarXı−1 into Var Yı yields equation (5).

In Case of E W = 1 The expression presented above is derived under the as-
sumption that EW ̸= 1. When EW = 1, G′

Xı
(1) = G′

Xı−1
(1) +G′

C(1). Solving
this recurrence yields

EXı = ı E C.

Then

E Yı = (ı− 1) E C E Z + E Zc.

Similarly, the expression of VarXı can be simplified as

VarXı =
ı(ı− 1)

2
E C VarW + ıVar C.

Then equation (7) can be obtained by substituting VarXı−1 into Var Yı.

32

	A Novel Leakage Model in OpenSSL's Miller-Rabin Primality Test

