
How to Verify that a Small Device is Quantum,
Unconditionally

Giulio Malavolta∗ and Tamer Mour†

Bocconi University

Abstract

A proof of quantumness (PoQ) allows a classical verifier to efficiently test if a
quantum machine is performing a computation that is infeasible for any classical ma-
chine. In this work, we propose a new approach for constructing PoQ protocols where
soundness holds unconditionally assuming a bound on the memory of the prover, but
otherwise no restrictions on its runtime. In this model, we propose two protocols:

• A simple protocol with a quadratic gap between the memory required by the
honest parties and the memory bound of the adversary. The soundness of this
protocol relies on Raz’s (classical) memory lower bound for matrix inversion (Raz,
FOCS 2016).

• A protocol that achieves an exponential gap, building on techniques from the
literature on the bounded storage model (Dodis et al., Eurocrypt 2023).

Both protocols are also efficiently verifiable. Despite having worse asymptotics, our
first protocol is conceptually simple and relies only on arithmetic modulo 2, which can
be implemented with one-qubit Hadamard and CNOT gates, plus a single one-qubit
non-Clifford gate.

∗giulio.malavolta@unibocconi.it. Work supported by the European Research Council through an
ERC Starting Grant (Grant agreement No. 101077455, ObfusQation) and partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA – 390781972.

†tamer.mour@unibocconi.it. Work supported by European Research Council (ERC) under the EU’s
Horizon 2020 research and innovation programme (Grant agreement No. 101019547).

1

Contents

1 Introduction 3

1.1 Our Contributions . 4

1.2 Technical Overview . 5

2 Preliminaries 9

2.1 Memory Bounded Algorithms . 9

2.2 The Goldreich-Levin Extractor . 10

2.3 Information Theory . 10

2.4 Quantum Information . 12

3 Simple Proof of Quantumness with Quadratic Gap 12

3.1 The Protocol . 13

3.2 Analysis . 14

4 Proof of Quantumness with Arbitrary Gap 18

4.1 PoQ from Claw Generation . 19

4.2 Interactive Hashing . 21

4.3 Claw Generation . 23

4.4 Classical Hardness of Finding a Claw . 26

4.5 Quantum Hardness of Finding a Claw . 28

A Classical Verification of BQP 36

A.1 From Claw-Generation to Verification of BQP 36

A.2 Tolerating Non-Negligible Soundness Error 38

2

1 Introduction

Quantum computing promises to bring the computing sciences to a new world, where the
laws of quantum mechanics are harnessed to do computation. The first step towards this
ambitious goal is to obtain an experimental demonstration of quantum advantage: The con-
struction of a quantum apparatus capable of performing computations that are manifestly
infeasible for any classical machine. Existing approaches combine techniques from cryptog-
raphy, complexity theory, and physics, in order to design a proof of quantumness (PoQ) that
is (i) efficient enough to be run on existing quantum machines and (ii) efficiently verifiable
by a fully classical computer. Unfortunately, despite a massive industrial and academic ef-
fort devoted to achieving this milestone, a convincing experimental demonstration remains
elusive.

To set some context, let us discuss existing approaches for the experimental demon-
stration of quantum advantage. On the one hand, the circuit sampling approach asks the
quantum machine to (approximately) sample from a distribution defined by a quantum cir-
cuit, that is conjectured to be hard to simulate classically. The advantage of this approach
is that it is feasible for near-term quantum machines, and is in fact the approach adopted by
Google’s first experiment [AAB+19], and more recently in [AABA+24]. On the downside,
the classical hardness of sampling from these distributions has been called into question
[LLL+21]. Moreover, by far the biggest problem of this approach is that a classical machine
cannot efficiently verify that the computation was done correctly.

To overcome this drawback, researchers have turned their attention to cryptography.
The simplest proposal that allows efficient verification would be to run Shor’s algorithm
[Sho94] to factor a large number. Then, given its prime decomposition, it is easy to check
that the computation was done correctly. More sophisticated and general approaches exist,
where the classical hardness is proven assuming the intractability of computational problems
related to lattices [BCM+18], group actions [AMR22], or discrete logarithms [KMCVY22].
More recently, proposals based on compiling two-player non-local games [KLVY23a] have
emerged as an alternative pathway to PoQ. Common to all of these approaches is that the
(classical) verification is always efficient, making them an appealing alternative to the circuit
sampling approach. On the flip-side, their soundness also relies on unproven computational
conjectures and, furthermore, the quantum operations are somewhat more complex than the
ones involved in the sampling method, making this approach less suitable for experiments.
To the best of our knowledge, none of the existing experiments [LZG+24] was performed in
a regime where the problem is classically hard.

To summarize, all known PoQ protocols rely on computational assumptions, and are
either inefficiently verifiable or beyond the current technological reach. We emphasize that
the former limitation is for a good reason: It was recently shown that PoQ protocols imply the
existence of (quantum) computationally hard problems [MSY24]. In this work, we propose a
new approach for testing quantumness. Instead of placing assumptions on the computational
power of the prover, we constrain its memory.

3

1.1 Our Contributions

We consider a model where the adversary has a limited amount of memory, but is otherwise
computationally unbounded. This is commonly referred to as the bounded storage model
[Mau92, CM97, Din01, Vad04, DHRS04, GZ19, DQW23]. We show that in this model, one
can construct protocols that are (i) efficiently verifiable and (ii) unconditionally sound.

Our first result is a simple PoQ protocol with a quadratic gap between the space complex-
ity of the honest execution and the memory bound on the malicious prover.1 The protocol
is extremely simple; the honest quantum prover performs simple arithmetics modulo 2, and
can be implemented with one-qubit Hadamard and CNOT gates and a single one-qubit
non-Clifford gate. The prover’s circuit is illustrated in Figure 1. The protocol is inspired
by techniques from the cryptographic literature [Mah18b, BCM+21, BGK+23, NZ23, BK24,
BKM+24], and its soundness relies on Raz’s (classical) memory lower bound for learning
parities [Raz18]. We summarize our result with the following statement.

Theorem 1 (Simple PoQ with Quadratic Gap, Informal). There exists a proof of quan-
tumness protocol with constant gap between completeness and soundness, where the honest
execution runs O(n2) time, the verifier has O(n) memory, and the honest prover has n + 2
qubits. Soundness holds unconditionally against any classical attacker that uses less than
n2/20 bits of memory.

We stress that, although the verifier’s runtime and the prover’s quantum circuit size are
quadratic, an honest execution of the protocol has linear parallel runtime. In particular, the
quantum circuit implementing the prover has depth O(n).

Despite its simplicity, an unsatisfactory aspect of the above protocol is that it has only
a quadratic gap between the memory of the honest and the malicious prover. Leveraging
techniques from the literature of protocols in the bounded storage model [DQW23], we show
that this gap can be made arbitrarily large. The following theorem establishes the theoretical
feasibility of a PoQ with an exponential gap.

Theorem 2 (PoQ with Exponential Gap, Informal). There exists a proof of quantumness
protocol with constant gap between completeness and soundness, where the honest execution
execution runs poly(n) time, the verifier has polylog(n) memory, and the honest prover has
polylog(n) qubits. Soundness holds unconditionally against any classical attacker that uses
less than n bits of memory.

As our final contribution, we show that the above protocol achieves a form of soundness
also against quantum provers. In more details, it allows the generation of a state of the form

|x0⟩+ |x1⟩√
2

such that even the prover that holds that state in memory cannot guess both x0 and x1. In
the literature, this is known as a claw state generation protocol [BK24].

1For the moment, it suffices to think of the space complexity of a quantum prover as the logarithm of the
dimension of his Hilbert space. We make this more precise as the discussion progresses.

4

Theorem 3 (Claw Generation with Quantum Soundness, Informal). There exists a claw gen-
eration protocol, where the honest execution runs poly(n) time, the verifier has polylog(n)
memory, and the honest prover has polylog(n) qubits. Soundness holds unconditionally
against any quantum attacker that uses less than n qubits.

Claw generation protocols have proven to be extremely valuable in quantum cryptog-
raphy. For instance, all known protocols to classically verify BQP computation rely on
claw states, one way or another [Mah18b, BCM+21, BGK+23, NZ23, BK24, BKM+24]. To
demonstrate the usefulness of our claw-generation protocol, we sketch how to derive analo-
gous PoQ protocols with unconditional security in the bounded storage model, by adapting
analysis from prior work [BK24] (Appendix A).

1.2 Technical Overview

Our starting point is a recent result of Raz [Raz18], who considers the following experiment
between a verifier and a prover:

1. The verifier samples a uniform s← Fn
2 .

2. For i = 1 . . .m, the verifier samples a uniform vi ← Fn
2 and sends (vi, v

⊺
i s) to the prover.

3. The prover returns some s̃ ∈ Fn
2 .

The main theorem of [Raz18] shows that, if a prover uses less than n2/20 memory bits, then
the probability that he outputs s is 2−Ω(n), for any m = poly(n). This implies a strong lower
bound on the memory needed to solve linear equation systems, for any classical computer.
One could speculate that quantum algorithms are better suited for solving this kind of tasks,
thus immediately yielding a PoQ protocol based on the memory-hardness of solving linear
equations. Alas, we are not aware of any quantum algorithm solving this problem with O(n)
qubits, bringing us back to square one.

Nevertheless, inspired by a recent work from Guan and Zhandry [GZ19], we observe that
the above problem has sufficient structure to allow us to leverage techniques developed in the
context of computationally security. Turning our attention to cryptographic PoQs, we see
that all recent works [BCM+21, KCVY22, KLVY23b, BGK+23] follow the same three-phase
template:

• (Claw Generation) In the first phase, the prover and verifier engage in an interaction,
at the end of which the internal state of the (honest) prover is of the form

|x0⟩+ |x1⟩√
2

,

where x0 and x1 are two bitstrings that are known to the verifier. Furthermore, it
is required that the prover cannot output both x0 and x1 simultaneously. Thus, this
phase relies on cryptographic hardness and is typically realized using a trapdoor claw-
free function (TCF) [Mah18a]. We refer to the above state as a claw state, and to this
interaction as a claw generation subroutine.

5

• (Commitment) In the second phase, the prover is instructed to convert the claw state
into a single qubit b ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}. The security guarantee from the claw state
generation phase translates to the fact that the prover cannot tell whether b is in the
Z-basis or in the X-basis, as this would imply learning the values x0 and x1.

• (Non-Local Game) The protocol then completes with a CHSH test : A test of quantum-
ness that is derived by the CHSH non-local game, where a quantum prover is challenged
to produce a correlation with the “hidden basis” that a classical prover cannot.

Note that after the first phase, all guarantees are information-theoretic. In other words,
cryptography is used only to derive the hardness of recovering the values in the claw state.
Thus, our task to design a PoQ in the bounded storage model reduces to the task of designing
a claw state generation protocol with security against memory-bounded provers.

A Simple PoQ from Learning Parities. The above experiment considered by Raz
already suggests a construction for a claw state generation protocol. Consider the linear
map x 7→ Ax, where A = (V, V s) ∈ Fm×(n+1) is induced by samples in the experiment,
namely composed by rows of the form (vi, v

⊺
i s). We make two simple observations:

1. A is two-to-one with overwhelming probability, since V is full rank with overwhelming
probability.

2. Finding a claw, namely x0, x1 such that Ax0 = Ax1, implies finding s since x0 + x1 =
(s,−1) is the only non-trivial element in ker(A). Computing s given samples of the
form (vi, v

⊺
i s) ∈ Fn+1 is precisely the problem of learning parities considered in the

experiment, and cannot be done with less than n2/20 memory.

Hence, x 7→ Ax is a claw-free function in the bounded storage model, namely a 2-to-1
function where it is hard to find a claw. Claw generation from such a function is straight-
forward: the verifier sends the function to the prover, the prover computes the function over
the uniform superposition then measures an outcome y, reducing the state to a superposition
of the two pre-images of y.

Naively performing the above, however, requires the parties to communicate A and, in
particular, to remember it using quadratic space. Instead, we perform the evaluation in
rounds: at rounds i = 1, . . . ,m of the interaction, the verifier samples a row from A, i.e. a
vector ai = (vi, v

⊺
i s) ∈ Fn+1

2 , and sends it to the prover. The prover starts with a uniform
superposition over n+ 1 qubits in a register X and, at round i, applies the isometry

|x⟩X 7→ |x⟩X |a
⊺
i x⟩Y ,

measures Y and returns the outcome yi ∈ F2 to the verifier. Overall, such an interaction
corresponds to the prover computing the mapping |x⟩X 7→ |x⟩X |Ax⟩Y, then measuring the m
qubits in Y to obtain an outcome y = (y1, . . . , ym) and a residual claw state (|x0⟩+ |x1⟩)/

√
2,

where x0, x1 are the two pre-images of y under A.

While the above protocol seems to give us the claw generation sufficient for a PoQ,
we have omitted an important detail: How can the verifier compute x0 and x1, which are

6

generally necessary to carry out the CHSH test? Once again, computing x0 and x1 given y
requires the verifier to invert the matrix A. Since A has quadratic size, it is infeasible for the
verifier in our model to remember it, let alone invert it. Taking a closer look at the literature,
we observe that existing instantiations of this outline, e.g., [KCVY22], do not require the
verifier to extract x0 and x1 entirely but rather only the bits b0 = r⊺x0 and b1 = r⊺x1 for a
uniformly random r ← Fn+1

2 sampled by the verifier in the commitment phase, independently
of x0 and x1. In fact, it is required that the verifier can tell if b0 and b1 are equal – in which
case r⊺(s,−1) = r⊺(x0 + x1) = 0 – and, only when they are, to know their value.

Given this observation, we propose a memory-efficient implementation of the verifier. At
the beginning of the protocol, the verifier flips a coin to decide whether r satisfies r⊺(s,−1) =
0 or r⊺(s,−1) = 1. In the former case, the verifier is not required to learn b0 and b1
and, therefore, the CHSH test can be executed with a uniformly random r /∈ ker((s,−1)),
independently of x0, x1. In the latter case, the verifier must know r⊺x0. We use the fact
that the prover communicates y, which is a linear function of x0, to the verifier. Instead
of sampling r ← ker((s,−1)) directly, the verifier samples r as a linear combination of the
rows of A: when he sends ai at round i, he decides “on-the-fly” whether to include it in the
linear combination or not, with probably 1/2 each. Remembering his choices, the verifier
completes the claw generation with a linear combination u ∈ Fm

2 satisfying u⊺A = r. In
particular, it holds that r⊺x0 = u⊺Ax0 = u⊺y. This the verifier can compute given u and y
in linear space, allowing him to execute the CHSH test also in this case.

A PoQ with an Exponential Gap. Our first PoQ, while extremely simple, achieves only
a quadratic gap between the space complexity of the honest parties and the memory needed
for a successful attacker. A natural question is whether we can achieve a better gap.

We positively answer this question in our second result. We devise an interactive claw
generation protocol that is secure against attackers with memory m while requiring only
polylogm memory for an honest execution. The protocol is based on interactive hash-
ing [NOVY92, DHRS04]. In prior work [CCM98, Din01, DQW23], (classical) interactive
hashing was used to construct oblivious transfer (OT) protocols in the BSM. Most relevant
to us is the work by Dodis et al. [DQW23] where, roughly speaking, interactive hashing
is used to let a sender and a receiver jointly choose two bit values from a long stream
u1, . . . , uk ∈ {0, 1}, such that the verifier knows both values but a bounded-memory re-
ceiver can remember only one of them by the end of the protocol. We observe that realizing
this outline with a quantum receiver, using a coherent implementation of interactive hash-
ing [MY23], allows the receiver to obtain a superposition of the two chosen bits while still
preventing him from recovering both simultaneously.

Let us recall the outline from [DQW23] in more detail. A sender sends a stream of k ≫ m
uniform bits u1, . . . , uk ← {0, 1}, one at a time, to the receiver. The sender remembers the
bits at two random locations v∗0, v

∗
1 ← [k] of his choice. After the streaming is complete, the

two parties perform interactive hashing. The transcript of the interactive hashing protocol
defines a 2-to-1 hash function h over the domain [k] and a hash value y, and guarantees
the following: (i) On the one hand, the receiver can control one pre-image of y under h
and, in fact, he can make it so y = h(v) for an apriori arbitrarily chosen input v. (ii) On

7

the other hand, the receiver cannot control both pre-images of y under h. Namely, for any
bounded-size set of inputs B, apriori chosen by the receiver, it holds that h−1(y) ⊆ B with
a very small probability. Consequently, the interactive hashing protocol defines a pair of
indices v0, v1 ∈ [k], and the two chosen bits are set to be uv0 and uv1 . By the soundness of
the interactive hashing ((ii)), the receiver cannot obtain both uv0 and uv1 by the end of the
protocol. This is shown in [DQW23] as follows: Define B to be the set of bits in the stream
about which the receiver remembers sufficient information. Via standard incompressibility
argument, due to the bounded memory of the receiver, B cannot be too large. Hence, the
receiver cannot have too much information about both uv0 and uv1 .

We carry the above outline where the verifier plays the role of the sender and the quantum
prover plays the role of the classical receiver, coherently. That is, the prover prepares a
uniform superposition over [k], next to an ancilla qubit. In the streaming phase, upon the
receipt of the vth bit uv, the prover maps the basis vector |v⟩ |0⟩ to |v⟩ |uv⟩, entangling the
two registers. Consequently, the streaming completes with the prover’s internal state being

1√
k

∑
v∈[k]

|v⟩V |uv⟩U .

Next, the verifier and the prover, with input register V, perform interactive hashing to
select two values v0, v1 ∈ [k]. The residual state of the prover after this is complete is

|v0, uv0⟩+ |v1, uv1⟩√
2

,

where v0, v1 are the two pre-images of y under h, for y and h defined by the transcript of
the interactive hashing (recall in a classical invocation, it holds by (i) that h(v) = y for
the prover’s classical input v). The verifier then checks that h(v∗0) = h(v∗1) = y. If not,
the protocol is repeated with a new random stream of bits. Otherwise, the parties have
performed successful claw generation: the prover has a superposition of two values that
the verifier knows, yet of which he can remember at most one. By extending the analysis
from [DQW23] to the setting of a memory-bounded quantum adversary, we additionally
show that such claw generation guarantees security also against quantum adversaries. The
analysis turns out to be quite technical. In particular, we rely on a lemma from [BBK22]
that can be seen as an analog of incompressibility arguments for quantum information. For
more details we refer the reader to Section 4.5.

While the above claw generation already provides non-trivial hardness for computing the
values in the claw, such hardness is limited to that of predicting a single bit (note we do
not claim that the prover cannot obtain the indices v0, v1). Naturally, such a “1-bit claw
generation” cannot provide too much security. We propose a simple security amplification
strategy via stitching. In stitching, we convert many “1-bit claws” into a single claw that is
as hard to predict as predicting all of the 1-bit claws that compose it, simultaneously.

Let us describe how to stitch two claws together. Stitching more claws generalizes
straight-forwardly. Let the prover’s state be (|v10, u10⟩ + |v11, u11⟩) ⊗ (|v20, u20⟩ + |v21, u21⟩) af-
ter the generation of two claw states. The verifier, who has the values v10, v

1
1, v

2
0, v

2
1, sends

8

to the prover two predicates g1, g2 : [k]→ {0, 1} such that gi(vib) = b. Stitching is complete
with the prover applying the following isometry over the registers containing the v values∣∣v1〉

V1

∣∣v2〉
V2 7→

∣∣v1〉
V1

∣∣v2〉
V2

∣∣g1(v1)⊕ g2(v2)〉
B
,

then measuring the qubit in B to obtain a bit b ∈ {0, 1}, which he sends to the verifier. This
operation entangles the two claws, resulting in the following stitched claw state

|v10, u10⟩ |v2b , u2b⟩+ |v11, u11⟩
∣∣v21−b, u21−b〉√

2
,

which the verifier can anticipate given b.

To conclude, our claw generation protocol performs the above 1-bit claw generation
sequentially λ times, where λ is a security parameter, then performs stitching to stitch
together the λ 1-bit claws into a claw that a memory-bounded attacker can break with only
negligible probability.

2 Preliminaries

We denote by [n] the set {1, . . . , n}. We recall the following fundamental fact about the rank
of random binary matrices (see, e.g. [BKW97]).

Proposition 4 (Rank of a Random Matrix). LetM ← Fm×n
2 be a uniformly sampled random

matrix, with m = 2n. Then,

Pr (rank(M) = n) = 1−O(2−n).

2.1 Memory Bounded Algorithms

We say that an adversary is memory bounded if the size of its state at any point in the
computation is bounded by some parameter m. In fact, for most of our bounds (for instance
the one in Section 4) we can also consider a slightly stronger adversary that is allowed to
have an unlimited amount of short-term memory, but can only store an m-bit state after the
end of each round.

Lemma 5 ([Raz18]). For any C < 1/20 there exists α > 0, such that the following holds.
For m ≤ 2αn and an algorithm A, consider the experiment:

• Sample a uniform s ∈ Fn
2 .

• For i = 1 . . .m: Sample a uniform vi ∈ Fn
2 and send (vi, vi · s) to A.

• A returns some s̃.

If A uses less than Cn2 memory bits, then:

Pr (s = s̃) ≤ O(2−αn).

9

2.2 The Goldreich-Levin Extractor

We recall the well-known Goldreich-Levin extractor [GL89], highlighting its memory com-
plexity.

Lemma 6 ([GL89]). Let f : Fn
2 → F2 be a function such that, for some x ∈ Fn

2 ,

Pr
r∈Fn

2

(f(r) = r⊺x) ≥ 1/2 + ε(n).

for inverse-polynomial ε(n). Then there exists an extractor with memory O(n log n) running
in time polynomial in n and making oracle calls to f , that returns x with probability inverse-
polynomial in n.

Proof Sketch. We briefly recall the description of the extractor. For t = O(log n/ε2(n)) =
O(log n) the extractor proceeds as follows:

1. Sample uniformly random (r1, . . . , rt)← Fn
2 and (b1, . . . , bt)← F2.

2. For i = 1 . . . n,

2.1. For any S ⊆ [t], compute

xi,S = f

(∑
j∈S

rj

)
+
∑
j∈S

bj.

2.2. Set xi = maj {xi,S}S.

3. Return (x1, . . . , xn).

It is clear that the runtime of the algorithm is polynomial in n and it is shown in [GL89]
that the above extractor succeeds with at least inverse-polynomial probability in n. As
for the memory complexity, the algorithm must store (r1, . . . , rt) and (b1, . . . , bt) and, for
each bit, compute the majority function which is computable in constant memory due to
Barrington’s theorem [Bar89]. Overall, the memory required by the extractor is bounded by
O(n log n).

2.3 Information Theory

The Shannon entropy (or simply entropy) of a random variable X is defined as H(X) =
Ex←X(− log PrX(X = x)). The conditional entropy of X given another random variable Y
is defined as H(X | Y) = Ey←Y (H(X | Y = y)).

The min-entropy of a random variable X is defined as H∞(X) = − logmaxx Pr(X = x).
We define the conditional min-entropy of X given another random variable Y as:

H∞(X | Y) = − logEy←Y (max
x

Pr(X = x | Y = y)) = − logEy←Y (2
−H∞(X|Y=y)).

10

Note that H∞(X | Y) ≤ H(X | Y) for any X, Y (in particular this holds for the non-
conditional notions).

We recall the following basic facts on min-entropy from the literature.

Lemma 7 ([DORS06]). For any random variables X, Y, Z, where Y is over {0, 1}m, we have
H∞(X | Y, Z) ≥ H∞(X | Z)−m.

Lemma 8 ([DORS06]). For any random variables X, Y and any ε > 0, it holds that

Pr
y←Y

(H∞(X | Y = y) ≥ H∞(X | Y)− log(1/ε)) ≥ 1− ε.

Proposition 9 ([DQW23]). For random variables X, Y, Z where X and Y are independent
conditioned on Z, it holds that H∞(X | Y) ≥ H∞(X | Y, Z) ≥ H∞(X | Z) and H∞(X, Y |
Z) ≥ H∞(X|Z) +H∞(Y |Z).
Proposition 10 ([DQW23]). For any random variables X = X1, . . . , Xk and Y , it holds
that

H∞(X | Y) ≤
∑
i∈[k]

H(Xi | Y).

Proof. The inequality follows easily from the chain-rule of Shannon entropy

H∞(X | Y) ≤ H(X | Y) =
∑
i∈[k]

H(Xi | Y,X1, . . . , Xi−1) ≤
∑
i∈[k]

H(Xi | Y).

In the following proposition, we give a lower bound on the min-entropy of a binary random
variable with high Shannon entropy.

Proposition 11 (Binary Entropy Bound). For any binary random variable X, letting
H(X) = h, it holds that

H∞(X) ≥ 1− log
(
1 +

√
1− hln 4

)
.

Proof. Let p = maxb∈{0,1} Pr(X = b) = 2−H∞(X) > 1/2. We start from the following known
upper bound on the binary entropy function [Top01]: H(X) ≤ (4p(1− p))1/ ln 4. The bound
implies 4p− 4p2 − hln 4 ≥ 0 and, consequently, p ≤ 1

2
(1 +

√
1− hln 4).

We recall some useful concentration bounds.

Lemma 12 (Markov Inequality). Let X be a non-negative random variable and let α > 0,
then:

Pr (X ≥ α · E(X)) ≤ 1/α.

Lemma 13 (Chernoff Inequality). Let X1 . . . Xn be independent random variables such that
Xi ∈ {0, 1} and let X̃ = E(

∑
iXi). Then:

Pr

(∑
i

Xi ≥ (1 + δ) · X̃

)
≤ e−

X̃δ2

3 .

11

We say that a set of random variables X1 . . . Xn is negatively correlated if for every subset
S ⊆ [n] it holds that:

Pr

(∏
i∈S

Xi = 1

)
≤
∏
i∈S

Pr (Xi = 1) .

In [PS97], it is shown that the Chernoff bound (Lemma 13) continues to hold also for
negatively correlated random variables.

2.4 Quantum Information

In quantum mechanics, physical systems are identified with Hilbert spaces H, and the states
of the system are identified with positive semidefinite operators (PSD) ρ with unit trace,
called density operators. A state is called pure if the density operator has rank one, and
otherwise it is called mixed. Any unit vector |ψ⟩ ∈ H determines a pure state by the
formula ρ = |ψ⟩⟨ψ|, and conversely any pure state can be written in this way. We often
associate a Hilbert space with a register X, and we denote a state in such register as |ψ⟩X.

A measurement with a finite outcome set O is described by a collection of bounded
operators {Mx}x∈O acting on H such that

∑
x∈OMx = Id, referred to as a POVM. A

quantum circuit is a unitary operator that operates on H and is given by the composition
of unitary gates (taken from some fixed universal gate set). The size of a quantum circuit
is the number of gates used in that circuit. The qubits are typically split into input qubits
and ancillas, which are assumed to be initialized in the |0⟩. In its most general form,
any physically-admissible quantum operation is described by a completely-positive trace-
preserving (CPTP) map from linear operators L(X) on a register X to linear operators L(Y)
on a register Y. The trace distance between two states ρ and σ is defined as:

TD(ρ, σ) =
1

2
∥ρ− σ∥1 =

1

2
Tr
(√

(ρ− σ)†(ρ− σ)
)

where Tr is the trace of a matrix. The operational meaning of the trace distance is that
1/2 · (1+TD(ρ, σ)) is the maximal probability that two states ρ and σ can be distinguished
by any (possibly unbounded) quantum channel or algorithm.

Lastly, we recall a useful lemma from [BBK22].

Lemma 14 (Plug-In Lemma [BBK22]). Let X = X1, . . . , Xk and W be arbitrarily dependent
random variables, where W is over m qubits. Then, it holds that:

TD ((i,X<i, Xi,W), (i,X<i, X
′
i,W)) ≤

√
m/2k,

where i is uniformly random over [k] and X ′i is sampled according to the marginal distribution
of Xi given X<i (and is otherwise independent in W).

3 Simple Proof of Quantumness with Quadratic Gap

The first proof of quantumness we present in this work is based on the space lower bound
for learning with parities by Raz [Raz18] (Lemma 5) and, consequently, achieves a quadratic

12

gap between the space complexity of an honest execution and the space complexity of the
best attack.

Theorem 15 (PoQ with Quadratic Gap). There exists a protocol between a classical verifier
and a quantum prover where the two parties take as input a security parameter n ∈ N and,
at the end of the interaction, the verifier either accepts or rejects, and

• (Completeness) The verifier accepts with probability cos2(π/8)−O(2−n) when interact-
ing with an honest prover.

• (Soundness) Any non-uniform classical prover P∗ that on input n uses less than n2/20
memory bits has success probability at most 3/4+O(2−n) in making the verifier accept.

• (Complexity) The verifier and (honest) prover run in time O(n2) and in space O(n).
In particular, the prover uses n+ 2 qubits.

3.1 The Protocol

Our protocol follows the general framework of basing PoQ protocol on claw generation [BCM+21,
KCVY22, BGK+23]. We perform claw generation using on a simple linear function x 7→ Ax,
where A = (V, V s) ∈ Fm×(n+1) for a random V ← Fm×n and s← Fn. The function is 2-to-1
with overwhelming probability and it is claw-free for any adversary who has space at most
quadratic due to the space complexity of learning parities by [Raz18] (Lemma 5).

While PoQ based on claw generation generally requires the verifier to extract the values in
the claw, for the above function this demands inverting A (and, in particular, remembering
it) and therefore considered infeasible in our bounded-storage model. We show how to
nevertheless implement the verifier using only linear space. Due to the simplicity of our claw-
free function, the prover in our protocol is not only space-efficient, but can be implemented
by a very simple quantum circuit, which we illustrate in Fig. 1.

Protocol 1 (Parity-based PoQ). Let n be the security paramter of the protocol and let
m = 2n. The protocol consists of an interaction between a quantum prover and a classical
verifier, described as follows.

• (Claw Generation)

1. The verifier samples a uniform s ← Fn
2 and a uniform u = (u1, . . . , um) ← Fm

2 at
the beginning of the protocol. The verifier sets t = (s,−1) and r = 0n+1.

The prover prepares the uniform superposition:

|ψ⟩ = 1√
2n+1

∑
x∈Fn+1

2

|x⟩ ∈ C2n+1

.

2. For i = 1 . . .m,

2.1. The verifier samples a uniform vi ← Fn
2 and sends to the prover (vi, v

⊺
i s) = ai.

The verifier updates r = r + ui · ai.

13

2.2. The prover applies the following isometric mapping to his state

|x⟩X 7→ |x⟩X |a
⊺
i x⟩Y

and measures the qubit in Y in the computational basis to obtain a bit yi ∈ F2

and sends it to the verifier.

• (Commitment)

1. The verifier samples a random bit c← {0, 1}, then:
– If c = 0, sends r to the prover.

– If c = 1, samples a fresh uniform r ← Fn+1
2 conditioned on r⊺t = 1 and sends

it to the prover.

2. The prover applies the following isometric mapping to his state

|x⟩X 7→ |x⟩X |r
⊺x⟩B ,

then measures X in Hadamard basis to obtain d ∈ Fn+1
2 and sends it to the verifier.

• (CHSH Test)

1. The verifier samples an angle θ ∈ {π/8,−π/8} and sends θ to the prover.

2. The prover measures the qubit in B in the basis

{cos(θ) |0⟩+ sin(θ) |1⟩ , cos(θ) |0⟩ − sin(θ) |1⟩}

to obtain an outcome b ∈ {0, 1} and sends it to the verifier.

3. The verifier accepts if the following conditions are satisfied:

– If c = 0, accept iff u⊺y = b, where y = (y1, . . . , ym).

– Otherwise: If θ = π/8, accept iff d⊺t = b.
If θ = −π/8, accept iff d⊺t ̸= b.

3.2 Analysis

First, notice that the honest parties only require storage linear in n to run the protocol.
Specifically, the verifier only needs to keep in memory the variables s, ai (one at a time), u,
d and y, all of size O(n). On the other hand, the prover’s memory consists of n+1 classical
bits (to store each ai), along with n+1 qubits in X and an additional qubit in Y and B (one
at a time).

We start with showing that the protocol is complete, namely that an honest quantum
prover is able to convince the verifier with high probability.

Lemma 16 (Completeness). The verifier in an honest execution of the protocol accepts with
probability cos2(π/8)−O(2−n).

14

[]

[]

[]

[]

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩ y1

a1 = 1011

· · ·

[]

[]

[]

[]

H d1

H d2

H d3

H d4

|0⟩ Rθ b

r = 0110

θ ← ±π/8

Figure 1: The quantum circuit executed by the prover in a run of the protocol with n = 4.
In each of the first 2n rounds the prover receives ai ∈ Fn

2 from the verifier and responds by
yi ∈ F2. In round 2n+1 he receives r ∈ Fn

2 and returns d ∈ Fn
2 . In the last round, he receives

an angle θ ← {π/8,−π/8} and responds by a bit b.

Proof. Let ℓ = n + 1 and let A ∈ Fm×ℓ denote the matrix that is composed by the vectors
ai, sent by the verifier in Step 2.1. in the claw generation of Protocol 1, as its rows. Let
V ∈ Fm×n denote the matrix similarly composed by the random vectors vi. It holds that
A = (V, V s). By Proposition 4, V has full rank with probability at least 1 − O(2−n) and,
therefore, A defines a 2-to-1 linear map with such a probability.

We show that the verifier accepts with probability cos2(π/8) conditioned on A is 2-to-1.
By the above, this is sufficient to derive the lemma.

It is convenient to delay the measurements done by the prover in Step 2.2. until after
all iterations in claw generation are complete. This results in an equivalent residual state
by the principle of delayed measurement. Applying the isometric map defined by ai to the
prover state results into

1√
2n+1

∑
x∈Fn+1

2

|x, ψx⟩XY1...i−1
7→ 1√

2n+1

∑
x∈Fn+1

2

|x, ψx, a
⊺
i x⟩XY1...i

.

We can then rewrite the state of the prover in the end of claw generation (but before any
measurement) as

1√
2n+1

∑
x∈Fn+1

2

|x,Ax⟩XY1...m
.

Measuring the last m qubits in registers Y1, . . . ,Ym in the computational basis, the prover
obtains a y ∈ Fm

2 and the state collapses to

1√
2

∑
x∈Fn+1

2 : Ax=y

|x⟩ = 1√
2
(|x0⟩+ |x1⟩) .

Let r ∈ Fℓ
2 be the string sent by the verifier in the commitment phase. The prover maps its

15

state to
1√
2
(|x0⟩+ |x1⟩)X 7→

1√
2
(|x0, r⊺x0⟩+ |x1, r⊺x1⟩)XB , (1)

then measures X in the Hadamard basis and gets d ∈ Fℓ
2. We distinguish between two cases.

• (Case I) c = 0 =⇒ r⊺x0 = r⊺x1 = δ for some δ ∈ F2: In such a case, the prover’s state
before measuring B (RHS of Equation (1)) is a tensor product between a claw state in
X and the qubit in B, therefore, the measurement of X has no effect on B. Thus, the
prover’s residual state after measuring is |δ⟩. In the CHSH test, the verifier verifies b
against the most likely outcome of the prover’s measurement, which is δ = r⊺x0 = u⊺y.
It follows, then, that the prover succeeds with probability exactly cos2(π/8).

• (Case II) c = 1 =⇒ r⊺x0 ̸= r⊺x1: The residual state of the prover after measuring X
is

1√
2

(
|0⟩+ (−1)d·(x0+x1) |1⟩

)
.

Thus, if θ = π/8, the most likely outcome of the prover’s measurement is d⊺(x0 + x1),
whereas if θ = −π/8, the most likely outcome is 1− d⊺(x0 + x1). Notice that if A has
rank n then ker(A) has dimension 1, namely a single non-trivial element. Therefore, it
must be the case that x0 + x1 = t. We conclude that the honest prover succeeds with
probability exactly cos2(π/8) in this case as well.

It remains to show that Protocol 1 is sound against classical cheating provers. In the
following lemma, we show that if a classical prover is able to convince the verifier with
probability significantly better than 3/4, then he is able to find the vector s sampled by the
verifier at the first step of claw generation. The hardness of finding s is implied directly by
the bound on space complexity of learning parities from Lemma 5; computing s correspond
precisely to learning parities give the verifier messages (vi, v

⊺
i s) at claw generation.

Hence, together with Lemma 16, the following lemma completes the proof of Theorem 15.

Lemma 17 (Soundness). Assume there exists a classical adversary P∗(1λ) that makes the
verifier from Protocol 1 accept with probability larger than 3/4 + ε(λ) for some function
ε = 1/ poly. Then, there exists an adversary A(1λ) that interacts with the verifier in the
claw generation sub-protocol (the first phase) and, at the end of the interaction, outputs s with
probability at least 1/ poly(λ), where s is the vector sampled by the verifier at the beginning
of the protocol. Further, the space complexity of A is larger than the space complexity of P∗
by an additive factor of at most O(ℓ log ℓ).

Proof. First, we switch to a modified experiment where the matrix A defined by the rows ai
sent by the verifier in claw generation is a rank-n matrix. Since this occurs with probability
all but O(2−n), the assumption on P∗ that it convinces the verifier holds also in the modified
experiment.

16

LetW be the internal state of the prover after the completion of claw generation (the first
phase). Let accept denote the event that the verifier accepts at the end of the interaction
with P∗. We define a “good” set G over the support of W as

G =

{
w : Pr (accept | W = w) ≥ 3

4
+
ε(λ)

2

}
.

We claim that Pr (W ∈ G) ≥ ε(λ)/2, where probability is over the random choices of P∗
and the verifier. Assume not, then

Pr (accept) = Pr (accept | W ∈ G) · Pr (W ∈ G) + Pr (accept | W /∈ G) · Pr (W /∈ G)

<
ε(λ)

2
+

3

4
+
ε(λ)

2
=

3

4
+ ε(λ),

in contradiction to the initial assumption on P∗.
Next, we argue that the vector r that the verifier sends in Step 1 of the commitment

phase distributes uniformly at random in the eyes of the prover. To see this, observe that r
is sampled as follows:

• With probability 1/2, r is sampled uniformly conditioned on r⊺t = 1.

• With probability 1/2, r is uniformly sampled from the row-span of A. Conditioned
on A is rank-n, t is the only non-trivial element in ker(A). Thus, this is equivalent to
sampling a uniform r, conditioned on r⊺t = 0.

Such a distribution is equivalent to uniform since r⊺t = 0 with probability exactly half for a
uniformly random r.

We describe an adversary B that takes as input a P∗’s internal state after claw generation,
and aims to predict r⊺t for a uniformly random r ← Fℓ

2 (where ℓ = n + 1). B(w) performs
the following:

1. On input a uniformly sampled r ← Fℓ
2, B sends r to P∗(w) as the message from Step 1

of the commitment phase.

2. P∗ returns some d ∈ Fℓ
2.

3. Simulate P∗ on both θ = π/8 and θ = −π/8, rewinding the algorithm in-between. If
P∗ outputs the same answer for both cases return 0, else return 1.

Let us denote by equal(w) the event where the answers of simulated P∗ in Step 3 of
B(w) are indeed identical for both θ = π/8 and θ = −π/8. To conclude the proof of the
theorem it suffices to show that

Pr
r,P∗

(equal(w) | r⊺t = 0, w ∈ G)− Pr
r,P∗

(equal(w) | r⊺t = 1, w ∈ G) ≥ 2ε(λ). (2)

This is indeed sufficient, since it implies the existence of a predictor that has bias ε against
r⊺t conditioned on w ∈ G. Consequently, by Lemma 6 (Goldreich-Levin), there exists

17

an extractor with memory O(ℓ log ℓ) that outputs t, given oracle access to B(w) that is
successful when w ∈ G. Given such an extractor, we define A as follows: Simulate P∗ in the
claw generation with the verifier and obtain an internal state w, then use the extractor with
access to B(w) to extract t. Since w ∈ G with probability at least ε/2, it suffices to argue
inverse-polynomial success probability of A given w ∈ G, which follows by the success of the
Goldreich-Levin extractor.

To conclude, we turn to the proof of Eq. (2), which is derived by the following

3

4
+
ε(n)

2
≤ Pr

r∈Fn+1
2

(accept | w ∈ G)

=
1

2
Pr

r∈Fn+1
2

(accept | r⊺t = 0, w ∈ G) + 1

2
Pr

r∈Fn+1
2

(accept | r⊺t = 1, w ∈ G)

≤ 1

4
+

1

4
Pr

r∈Fn+1
2

(equal(w) | r⊺t = 0, w ∈ G) + 1

2
Pr

r∈Fn+1
2

(accept | r⊺t = 1, w ∈ G)

≤ 1

4
+

1

4
Pr

r∈Fn+1
2

(equal(w) | r⊺t = 0, w ∈ G) + 1

2
− 1

4
Pr

r∈Fn+1
2

(equal(w) | r⊺t = 1, w ∈ G)

=
3

4
+

1

4

(
Pr

r∈Fn+1
2

(equal(w) | r⊺t = 0, w ∈ G)− Pr
r∈Fn+1

2

(equal(w) | r⊺t = 1, w ∈ G)

)
.

4 Proof of Quantumness with Arbitrary Gap

Our second main result is a proof of quantumness protocol that can exhibit up to an ex-
ponential gap between the space complexity of the honest parties and the space complexity
of the best attack. The protocol instantiates a template laid down by [BGK+23] which,
similarly to our protocol from Section 3, follows the general framework from the litera-
ture [BCM+21, KCVY22, KLVY23b] that bases PoQ on claw generation. Unlike the simpler
protocol from Section 3, the claw here is generated in an interactive process, namely via
interactive hashing [NOVY92]. While the protocol, just like our first one, guarantees only
a constant gap between completeness and soundness, the gap can be naturally amplified by
sequential repetition. Formally, we obtain the following result.

Theorem 18 (PoQ with Arbitrary Gap). There exists a protocol between a classical verifier
and a quantum prover where the two parties take as input a security parameter λ ∈ N and,
at the end of the interaction, the verifier either accepts or rejects, and

• (Completeness) The verifier accepts with probability cos2(π/8) when interacting with
an honest prover.

• (Soundness) Any non-uniform classical prover P∗ that on input λ uses less than m(λ)
memory bits has success probability at most 3/4+ 2−Ω(λ) in making the verifier accept.

• (Complexity) The verifier and (honest) prover run in time O(λ7m3 · polylogm) and in
space O(λ · polylogm).

18

4.1 PoQ from Claw Generation

We recall the PoQ outline from [BGK+23, Figure 4], which assumes the existence of a
claw generation sub-protocol. In fact, [BGK+23] assumes a special case of claw generation,
namely claw generation via trapdoor claw-free functions (TCF). In contrast, we consider
a more general outline where claw generation may be performed arbitrarily as long as it
guarantees completeness, i.e. that the prover obtains a claw state, and soundness, i.e. that
it is hard for the verifier to compute both values in the claw simultaneously. This does not
affect the analysis of the protocol at all: its completeness and soundness follow from those
of claw generation, just as in [BGK+23]. Nevertheless, we provide proofs for the sake of
completeness.

Protocol 2 (PoQ from Claw Generation). The following proof of quantumness is parame-
terized by a security parameter λ ∈ N and consists of three phases:

• (Claw Generation) The prover and verifier engage in a claw generation sub-protocol at
the end of which the verifier has a pair of claw values x0, x1 ∈ {0, 1}ℓ, where ℓ := ℓ(λ)
is a polynomial, and the prover’s residual state is the claw state

1√
2
(|x0⟩+ |x1⟩)X. (3)

Additionally, we assume that the prover obtains a function g : {0, 1}ℓ → {0, 1} that
satisfies g(x0) = 0 and g(x1) = 1.

• (Commitment)

1. The verifier samples uniformly random r0, r1 ← Fℓ
2 and sends it to the prover.

2. The prover applies the following isometric mapping to his state

|x⟩X 7→ |x⟩X
∣∣rg(x)⊺x〉B ,

then measures X in Hadamard basis to obtain d ∈ Fℓ
2 and sends it to the verifier.

• (CHSH Test)

1. The verifier samples an angle θ ← {π/8,−π/8} and sends θ to the prover.

2. The prover measures the qubit in B in the basis

{cos(θ) |0⟩+ sin(θ) |1⟩ , cos(θ) |0⟩ − sin(θ) |1⟩}

to obtain an outcome b ∈ {0, 1} and sends it to the verifier.

3. Let α = r⊺0x0 ⊕ r⊺1x1 = (r0||r1)⊺(x0||x1). The verifier accepts if the following
conditions are satisfied (hereby, arithmetics are over the integers):

– If θ = π/8, accept iff

(−1)b = (1− α)(−1)r0x0 + α(−1)d⊺(x0⊕x1). (4)

19

– If θ = −π/8, accept iff

(−1)b = (1− α)(−1)r0x0 − α(−1)d⊺(x0⊕x1). (5)

In the following, we confirm that if the prover in Protocol 2 completes claw generation
with the claw state from Equation (3), then he is able to convince the verifier into ac-
cepting with good probability. The proof follows the lines of the proof of Proposition 5.4
in [BGK+23].

Lemma 19 (Completeness [BGK+23]). The verifier in Protocol 2 accepts with probability
cos2(π/8) ≈ 0.853 when interacting with an honest quantum prover.

Proof. Assuming the completeness of claw generation, the prover’s state at the end of the
first phase of Protocol 2 is (|x0⟩+ |x1⟩)/

√
2. Let r0, r1 ∈ Fℓ

2 be the strings sent by the verifier
in Step 1 of the commitment phase. The prover maps its state to

1√
2
(|x0⟩+ |x1⟩)X 7→

1√
2
(|x0, r⊺0x0⟩+ |x1, r

⊺
1x1⟩)XB , (6)

then measures X in the Hadamard basis and gets d ∈ Fℓ
2, which leaves him with

(−1)d⊺x0

√
2

(|r⊺0x0⟩+ (−1)d⊺(x0⊕x1) |r⊺1x1⟩).

From here, it follows by inspection that, when the above state is measured in the basis
{|π/8⟩ , |5π/8⟩} (i.e. when Θ = π/8), then b satisfying Equation (4) is the most likely
outcome with probability cos2(π/8). Otherwise, when the state is measured in the basis
{|−π/8⟩ , |3π/8⟩}, the most likely outcome is b satisfying Equation (5).

The soundness of Protocol 2 holds whenever it is hard for any classical prover to compute
both values in the claw from Equation (3) simultaneously, i.e. x0 and x1.

Lemma 20 (Soundness [BGK+23]). Assume there exists a classical adversary P∗(1λ) that
makes the verifier from Protocol 2 accept with probability larger than 3/4 + ε(λ) for some
function ε = 1/ poly. Then, there exists an adversary A(1λ) that interacts with the verifier in
the claw generation sub-protocol (the first phase) and, at the end of the interaction, outputs
(x0, x1) with probability at least 1/ poly(λ), where x0, x1 ∈ {0, 1}ℓ are the claw values that
the verifier obtains. Further, the space complexity of A is larger than the space complexity
of P∗ by an additive factor of at most O(ℓ log ℓ).

Proof. The soundness analysis from [BGK+23] is in two steps: (i) First, they observe that
a classical prover that succeeds with probability better than 3/4 can essentially predict the
value α = (r0||r1)⊺(x0||x1) used for the verification in Step 3 in the CHSH test. (ii) Second,
by a Goldreich-Levin argument similar to that from the proof of soundness of our first
protocol (Lemma 17), they show that a predictor of (r0||r1)⊺(x0||x1) for random r0, r1 can
be transformed into an algorithm that computes x0, x1.

Similarly to the proof of Lemma 17, we begin by fixing an internal state of P∗ after the
claw generation is complete, with which he succeeds to convince the verifier at the end with

20

good probability. Specifically, letting W denote P∗’s state after claw generation (the first
phase) and accept denote the event that the verifier accepts, we again define a “good” set
G over the support of W as

G =

{
w : Pr (accept | W = w) ≥ 3

4
+
ε(λ)

2

}
.

By an averaging argument, it holds that Pr (W ∈ G) ≥ ε(λ)/2.

Next, we proceed with showing (i). Denote by b+ the value of b that satisfies Equation (4)
and by b− the value that satisfies Equation (5). Then, it holds that (−1)b+⊕b− = (1− α)2 −
α2 = 1 − 2α = (−1)α. Hence, predicting the parity b+ ⊕ b− is equivalent to predicting α.
We describe an adversary B that takes as input a P∗’s internal state after claw generation,
and aims to predict α = (r0||r1)⊺(x0||x1) for uniformly random r0, r1 ← Fℓ

2. B(w) performs
the following:

1. On input uniformly sampled r0, r1 ← Fℓ
2, B sends r0, r1 to P∗(w) as the message from

Step 1 of the commitment phase.

2. P∗ returns some d ∈ Fℓ
2.

3. Simulate P∗ on both θ = π/8 and θ = −π/8, rewinding the algorithm in-between. If
P∗ outputs the same answer for both cases return 0, else return 1.

We argue that, given w ∈ G, B(w) predicts b+ ⊕ b−, and therefore α, with advantage at
least 2ε(λ). This follows by the same derivation with which we proved the advantage of the
same predictor in the proof of Lemma 17, namely Equation (2) (there, the corresponding
parity b+ ⊕ b− is precisely the inner product r⊺t).

The proof is then complete via (ii), again similarly to the proof of Lemma 17. The
predictor B against (r0||r1)⊺(x0||x1) implies, via Lemma 6 (Goldreich-Levin), an algorithm
A that computes x0, x1 as follows: A simulates P∗ in the claw generation with the verifier
and obtains an internal state w. Then, A applies the Goldreich-Levin extractor with access
to B(w). By Lemma 6, A uses at most O(ℓ log ℓ) additional memory compared to P∗.

4.2 Interactive Hashing

In a (classical) interactive hashing protocol [NOVY92], two parties, say Alice (to be thought
of as a challenger, or the verifier later in our context) and Bob (a challengee, or the prover),
engage in an interaction the defines a 2-to-1 hash function h over [k] and a hash value y.
An interactive hashing protocol allows Bob to control one of the pre-images of y under h,
specifically to make it so h(v) = y for an input v of his choice. However, the soundness of
interactive hashing prevents Bob from controlling both pre-images.

Definition 21 (Interactive Hashing [NOVY92]). An interactive hashing protocol is a classi-
cal protocol between a public-coin Alice (the verifier in our context) and a deterministic Bob
(the prover). Alice has no input and Bob has an input v ∈ [k]. For any choice of Alice’s
public randomness h and Bob’s input v, we denote by y = h(v) the deterministic answers
computed by (an honest) Bob. The protocol satisfies the following:

21

• (2-to-1 Hash) Any random choice of h is a 2-to-1 function. That is, for any h and y,
|h−1(y)| = 2.

• ((α, β)-Security) For any fixed set B ⊆ [k] of size at most βk, for any (possibly mali-
cious, unbounded) Bob’s strategy which, on input public coins h results in an arbitrary
y such that h−1(y) = {v0, v1}, it holds that:

Pr ({v0, v1} ⊆ B) ≤ α.

We say that an interactive hashing protocol is stateless if Bob is not required to keep an
intermediate state between the rounds of the protocol. Namely, if Bob’s message at any round
is a deterministic function of its input v and Alice’s public coins at that round.

The seminal work of Naor et al. [NOVY92] devises a simple interactive hashing protocol,
where the hash function is a random 2-to-1 linear map, sent by Alice one row at a time.
Bob, in turn, answers by multiplying the rows with its input v at every round, hence the
protocol is stateless and has a linear number of rounds. Ding et al. [DHRS04] propose an
improvement over the [NOVY92] protocol where Alice sends random hash functions with cer-
tain t-wise independence properties, and requires only 4 rounds of interaction. The protocol
from [DHRS04] is also stateless as per Definition 21: at every round, Bob merely applies the
functions sent by Alice on his input and sends back the result.

Theorem 22 (Constant-round Interactive Hashing [DHRS04]). There exists a stateless 4-
round interactive hashing protocol that is (α, β)-secure for any β > 0 with α = O(β log k).
The execution of the protocol and the computation of h−1 can be done in time and space
polylogarithmic in k.

Morimae and Yamakawa [MY23] show how to perform the interactive hashing protocol
from [NOVY92] in a setting where Bob’s input is a quantum state rather than a classical
input. They propose a coherent implementation where Bob’s state at the end of the protocol
is a superposition over all possible classical inputs consistent with the obtained transcript. In
the following lemma, we generalize their implementation to any stateless interactive hashing
protocol.

Lemma 23 (Coherent Implementation of Interactive Hashing). For any stateless interactive
hashing protocol over k-bit input, there exists a coherent implementation of the protocol
between a classical Alice and a quantum Bob with k-qubit input register V , satisfying the
following:

• (Correctness) If Bob’s state before the protocol is:

ρVW =
∑

v∈{0,1}k
|v⟩V |ψv⟩W ,

and the transcript of the protocol upon its completion is (h, y), then Bob’s state at the
end of the protocol is:

ρ̃VW =
∑

v: h(v)=y

|v⟩V |ψv⟩W .

22

• (Complexity) The time and space complexity of quantum Bob in the implementation is
polynomial in the time and, resp., space complexity of Bob in the classical protocol.

Proof. Let hi and yi denote Alice’s public coins and, respectively, Bob’s message at round
i of the protocol. Let yi ← fi(v, hi) denote Bob’s computation at round i. The coherent
interactive hashing over Bob’s quantum input performs the protocol as follows. At round i,
upon receiving Alice’s random coins, Bob applies the following mapping to its state

|v, z⟩VY 7→ |v, z ⊕ fi(v, hi)⟩VY ,

where Y is an additional ancilla register (created new and initialized to |0⟩ at every round).
Bob measures the register Y to obtain yi and sends it to Alice.

To see why the implementation satisfies correctness, note that we may purify the execu-
tion of the protocol as follows: Apply the following for a random choice of h = (h1, . . . , hr)

|v, z1, . . . , zr⟩ 7→ |v, z1 ⊕ f1(v, h1), . . . , zr ⊕ fr(v, hr)⟩VY1...Yr
,

then measure the registers Y1, . . . ,Yr to obtain y (recall h is sampled independently in Bob’s
input). In particular, when applied over ρVW and Yi registers that are initiated to ancillas,
the above mapping gives∑

v∈{0,1}k
|v⟩V |0⟩Y1...Yr

|ψv⟩W 7→
∑

v∈{0,1}k
|v⟩V |f1(v, h1), . . . , fr(v, hr)⟩Y1...Yr

|ψv⟩W

=
∑

v∈{0,1}k
|v⟩V |h(v)⟩Y |ψv⟩W .

Evidently, when we measure Y in the above state and obtain y, we obtain the claimed residual
state ρ̃VW.

4.3 Claw Generation

Equipped with the formulation of coherent interactive hashing, we are prepared to present
our claw generation protocol. The following lemma immediately implies Theorem 18 through
Lemmas 19 and 20. In addition, we prove that our protocol provides soundness against space-
bounded quantum attackers, albeit with inverse-polynomial soundness error. We elaborate
on the applications of quantum soundness in Section 4.5.

Lemma 24 (Claw Generation). Let m := m(λ) be a bound on memory. Let k := k(λ) be
an additional security parameter such that k/ log k > λ(m + Ω(λ)). There exists a protocol
between a classical verifier and a quantum prover, where both parties take as input a security
parameter 1λ and at the end of the protocol the verifier outputs a pair of values x0, x1 ∈
{0, 1}ℓ(λ), that satisfies the following:

• (Correctness) The residual state of the prover at the end of the protocol is

1√
2
(|x0⟩+ |x1⟩),

23

with probability 1, where (x0, x1) is the output of the verifier. Additionally, the prover
obtains a function g : {0, 1}ℓ → {0, 1} that satisfies g(x0) = 0 and g(x1) = 1.

• (Claw-Finding Hardness) Any non-uniform classical, or quantum, adversary with mem-
ory of at most m bits (resp., qubits) that interacts with the verifier, outputs (x0, x1)
with probability at most 2−Ω(λ), respectively O(λ2

√
m/k), at the end of the interaction,

where (x0, x1) is the output of the verifier.

• (Complexity) Both the prover and the verifier run in time O(λ ·k3) in expectation (and
with probability all but negligible in λ) and use O(λ · polylog k) space.

In particular, setting k = Θ(λ(m + λ) logm) gives a protocol with classical soundness (with
negligible soundness error), runtime O(λm3 polylogm) and space O(λ polylogm). Setting
k = Θ(λ2cm) gives a protocol with quantum soundness up to soundness error 1/λc, polynomial
runtime and space polylogm.

The rest of this subsection is dedicated to presenting the protocol underlying Lemma 24
and analyzing its correctness and complexity. The proof of security (hardness of finding a
claw) is deferred to Sections 4.4 and 4.5.

The Protocol. Our claw generation protocol is parametrized by a stream length k := k(λ)
which is chosen such that k/(λ log k) > m + Ω(λ). We assume for notational convenience
that k is always a power of 2. The protocol makes use of a coherent interactive hashing
sub-routine (see Definition 21 and Lemma 23), which in particular may be based on the
protocol from Theorem 22.

The protocol proceeds as follows:

1. (1-bit Claws Generation) For j ∈ [λ], the prover creates new log k-qubit register Vj

and 1-qubit register Uj and engages in the following interaction with the verifier:

1.1. (Setup) The verifier samples two uniform indices v0, v1 ← [k] and the prover
prepares the uniform superposition over Vj and the 0 state in Uj:

|ψ⟩ =
∑
v∈[k]

|v⟩Vj
⊗ |0⟩Uj

.

1.2. (Streaming) The verifier uniformly samples and transmits to the prover a stream
of k bits U = (U1, . . . , Uk), one bit at a time. The verifier stores (v0, Uv0) and
(v1, Uv1) in his memory. Upon receiving the i-th bit Ui, the prover applies to its
state the unitary defined by the following map:

|v⟩Vj
⊗ |u⟩Uj

7→ |v⟩Vj
|u⊕ fi,Ui

(v)⟩Uj
where fi,Ui

(v) =

{
Ui if v = i

0 otherwise.

24

1.3. (Interactive Hashing) The verifier and the prover engage in a run of the coherent
interactive hashing protocol over [k], where the input of the prover is the register
Vj. Let (h, y) be the transcript of the interactive hashing upon its completion.
If h−1(y) ̸= {v0, v1}, the verifier aborts and starts over with the Setup phase.
Otherwise, the verifier stores:

vj0 = v0 vj1 = v1 zj0 = Uv0 zj1 = Uv1 .

2. (Amplification) The prover and the verifier engage in the following protocol:

2.1. For any j ∈ [λ], the verifier arbitrarily picks a function gj : [k]→ {0, 1} with short
description satisfying gj(vjb) = b for b ∈ {0, 1},2 The verifier sends (g1, . . . , gλ) to
the prover.

2.2. For j = 2 . . . λ, the prover adds a new 1-qubit ancilla register Bj and applies the
following mapping over V1VjBj:∣∣v1〉

V1
⊗
∣∣vj〉

Vj
⊗ |b⟩Bj

7→
∣∣v1〉

V1
⊗
∣∣vj〉

Vj
⊗
∣∣b⊕ g1(v1)⊕ gj(vj)〉

Bj
.

2.3. The prover measures B2 . . .Bλ to obtain an outcome (b2, . . . , bλ) ∈ {0, 1}λ−1, which
he sends to the verifier. The verifier outputs:

x0 = (v10, z
1
0 , v

2
b2
, z2b2 , . . . , v

λ
bλ
, zλbλ) x1 = (v11, z

1
1 , v

2
1−b2 , z

2
1−b2 , . . . , v

λ
1−bλ , z

λ
1−bλ).

Complexity. The runtime of one attempt of a 1-bit claw generation is linear in k for both
parties (note interactive hashing is performed over the domain [k] which is of polylogarithmic
size). An attempt succeeds with probability 1/k2 since the verifier samples v0, v1 uniformly
and independently of the other random choices in the protocol. Therefore, in expectation, the
claw generation for a single bit takes O(k2) time. It also takes O(k2) time with probability all
but negligible in k via a standard Chernoff argument (Lemma 13). Since 1-bit claw generation
is repeated λ times, this results in O(λk3) runtime in total, which easily dominates over the
runtime of the amplification phase. As for space complexity, observe that, for each of the λ
bits in the claw, both parties require memory at most polylogarithmic in k since they both
store a constant amount of variables over [k] and apply interactive hashing over this domain.

Correctness. We show that the output of the protocol results into a well-formed claw (see
Lemma 24), with certainty, provided that the protocol terminates.

Consider a prover that follows the protocol honestly. At any round j ∈ [λ], once the
streaming in Step 1.2. is complete, the prover obtains the superposition

∑
v∈[k] |v⟩ |Uv⟩ in

the registers VjUj, where U is the communicated stream at that round. By Lemma 23, the
following coherent interactive hashing step, if succeeds, results in the state

∣∣vj0〉 ∣∣zj0〉+∣∣vj1〉 ∣∣zj1〉
in these registers. Notice that the generation of these 1-bit claws is independent across all j
and, hence, the prover’s state prior to the stitching stage may be written as: ∑

β∈{0,1}

∣∣v1β〉V1

∣∣z1β〉U1

⊗ · · · ⊗
 ∑

β∈{0,1}

∣∣vλβ〉Vλ

∣∣zλβ〉Uλ

 .

2For instance, gj can be a dictator function with description size log log k + 1.

25

By inspection, since g1(v1β1
)⊕gj(vjβj

) = β1⊕βj for any j, the mapping performed at Step 2.2.
gives: ∑

β1∈{0,1}

∣∣v1β1

〉
V1

∣∣z1β1

〉
U1
⊗
⊗

j=2...λ

 ∑
βj∈{0,1}

∣∣∣vjβj

〉
Vj

∣∣∣zjβj

〉
Uj

|β1 ⊕ βj⟩Bj

 .

Thus, when applying the measurement at Step 2.3. and obtaining (b2, . . . , bλ), the prover is
left with the following state:∑

β1∈{0,1}

∣∣v1β1

〉
V1

∣∣z1β1

〉
U1
⊗
∣∣v2β1⊕b2

〉
V2

∣∣z2β1⊕b2

〉
U2
⊗ · · · ⊗

∣∣vλβ1⊕bλ

〉
Vλ

∣∣zλβ1⊕bλ

〉
Uλ
,

which is a superposition of the two values x0 and x1 that the verifier outputs.

Lastly, recall that we require the prover to obtain a function g : {0, 1}ℓ → {0, 1} that
differentiates between the two values of the claw by satisfying g(xb) = b. This function may
be set to be g1 (which the prover receives from the verifier), applied to the first log k bits of
xb, namely the part containing the index v1b .

4.4 Classical Hardness of Finding a Claw

We show a bound on the success probability of any classical prover to output a claw. For
j ∈ [λ], let U j be the random variable taking the value of the string U streamed in Step 1.2.,
before the first successful completion of the interactive hashing step, namely the first attempt
where the verifier does not abort and start over in Step 1.3.. Let W j

pre denote the random
variable consisting of the adversary’s internal state, i.e., its m-bit memory, right after the
streaming of U j has completed and just before the start of the interactive hashing. LetW j

post

denote its internal state after the completion of the interactive hashing. For b ∈ {0, 1}, we let
the random variable Zj

b take the value of the bit zjb that is stored by the verifier in Step 1.3.
at round j and let Zb = (Z1

b , . . . , Z
λ
b) (note these values are part of the claw x0, x1).

By definition, the following lemma implies the classical hardness of finding a claw.

Lemma 25 (Classical Hardness of Claw-Finding). It holds that H∞(Z0, Z1 | W λ
post) ≥ Ω(λ).

Let t = k/(λ log k)−m = Ω(λ). Denote by Badj the event that W
j
pre = ω for ω ∈ {0, 1}m

satisfying:
H∞(U

j | W j
pre = ω,W j

post) < k − (m+ t).3 (7)

Let us first bound the probability that the above bad event occurs for any round j.

Claim 26 (Bad Events). Pr
(⋃

j Badj

)
< 2−Ω(λ).

Proof. By Proposition 9, since U j is independent in W j
post given W

j
pre, it holds that H∞(U

j |
W j

pre = ω,W j
post) ≥ H∞(U

j | W j
pre = ω). Thus, for any j, we have

Pr (Badj) < 2k−(m+t)−H∞(Uj |W j
pre) < 2k−t−H∞(Uj) = 2−t,

3Note this is the conditional entropy of the marginal distribution of Uj when W j
pre = ω, conditioned on

the random variable W j
post.

26

where the first inequality is by Lemma 8 and the second by Lemma 7. A union bound is
then sufficient to derive the inequality.

In the next proposition, we invoke the soundness of the interactive hashing to argue the
unpredictability of both Zj

0 and Zj
1 , for any round j, even given the adversary’s bounded

storage.

Claim 27 (Entropy Bound). Assume Badj does not occur, and fix any W j
pre = ω in the

support.Then, it holds that:

Pr
(
H∞(Z

j
0 , Z

j
1 | ω,W

j
post) > 0.8

)
= 1−O(1/λ)

where the probability is taken over the randomness of the interactive hashing at round j.

Proof. Conditioned on Badj not occurring, fix any W j = ω in the support. We have:

Ei←[k]

(
H(U j

i | W j
pre = ω,W j

post)
)
=

1

k

∑
i∈[k]

H(U j
i | ω,W

j
post)

≥ 1

k
H∞(U

j | ω,W j
post)

≥ 1

k
(k − (m+ t)) = 1− (m+ t)/k,

where the first inequality follows by Proposition 10 and the second one follows be the defi-
nition of the Badj event in Eq. (7). Define the set:

Bj
ω :=

{
i ∈ [k] | H(U j

i | W j
pre = ω,W j

post) < 0.99
}
.

By an averaging argument, it must hold that Pri←[k](i ∈ Bj
ω) ≤ 100(m + t)/k, and conse-

quently that |Bj
ω| ≤ 100(m+ t). Thus, by Theorem 22, we have that:

Pr
(
{vj0, v

j
1} ⊆ Bj

ω

)
= O((m+ t) log k/k) = O(1/λ),

where probability is over the randomness of the interactive hashing in the choice of {vj0, v
j
1}

and it holds for any (possibly unbounded) prover. By definition, we have:

Pr
(
∃b ∈ {0, 1} : H(Zj

b | W
j
pre = ω,W j

post) = 0.99
)
> 1−O(1/λ).

From Proposition 11, this implies:

Pr
(
∃b ∈ {0, 1} : H∞(Zj

b | W
j
pre = ω,W j

post) > 0.8
)
= 1−O(1/λ),

and, in particular, the proposition follows.

Fix any sequence ω = (ω1, . . . , ωλ) of values taken by W 1
pre, . . . ,W

λ
pre throughout the

protocol. Define the random variable:

Jω :=
{
j : H∞(Z

j
0 , Z

j
1 | W j

pre = ωj,W j
post) < 0.8

}
⊆ [λ].

27

Claim 28. Assume Badj does not occur for any j. Then, it holds that Pr(|Jω| ≥ λ/2) <
2−Ω(λ2) for any ω in the support, where probability is over the randomness of the interactive
hashing invocations.

Proof. Assuming that ω are such that Badj does not hold for any j, we have that

E (|Jω|) = λ ·O(1/λ) = O(1)

by Claim 27 (expectation is taken over the interactive hash invocations). Further, notice
that upon fixing ω, the membership of the different j’s in Jω constitute anti-correlated
predicates, since the probability of each is bounded by the soundness of the interactive hash,
independently of what happens in other rounds. Hence, we may invoke Chernoffs’s inequality
(Lemma 13) to obtain the following tail bound on the size of Jω:

Pr (|Jω| ≥ λ/2) < e−Ω(λ2) = e−Ω(λ2).

We consider a run of the protocol conditioned on Badj not occurring for any j and
|Jω| < λ/2, where ω = (ω1, . . . , ωλ) are the values taken by W 1

pre, . . . ,W
λ
pre. By Claims 26

and 28, if an adversary succeeds in the original experiment with certain probability, he must
succeed in the conditional experiment with probability smaller by at most 2−Ω(λ). It remains,
then, to bound the success probability under the above two conditions.

We denote the distributions in the conditional experiment by Z̃, W̃pre and W̃post. Note
that Z̃j

0 , Z̃
j
1 are independent in all other values in Z̃0 and Z̃1 given the snapshots of adversary’s

state before and after they are determined, namely W̃ j
pre and W̃

j
post. Hence, by Proposition 9,

H∞(Z̃0, Z̃1 | W̃ λ
post) ≥ H∞(Z̃0, Z̃1 | W̃ λ

post, . . . , W̃
1
post, W̃

λ
pre, . . . , W̃

1
pre)

≥
λ∑

j=1

H∞(Z̃
j
0 , Z̃

j
1 | W̃ λ

post, . . . , W̃
1
post, W̃

λ
pre, . . . , W̃

1
pre)

≥
λ∑

j=1

H∞(Z̃
j
0 , Z̃

j
1 | W̃

j
post, W̃

j
pre)

≥ min
ω

∑
j∈Jω

H∞(Z̃
j
0 , Z̃

j
1 | W̃

j
post, W̃

j
pre = ωj)

≥ 0.8(λ/2).

The above implies that the probability of success in the hybrid experiment is at most
2−0.4λ = 2−Ω(λ) and, consequently, is at most 2−Ω(λ) in the original experiment as well. This
completes the proof of Lemma 25.

4.5 Quantum Hardness of Finding a Claw

We prove hardness of finding a claw also against a quantum (but memory-bounded) attacker,
with a somewhat worse bound. Although this statement is not necessary for the proof of our

28

proof of quantumness theorem (Theorem 18), it enables new applications in the context of
verification of quantum computation, which we outline in Appendix A. Before starting with
the analysis, let us make the notion of a memory-bounded quantum adversary more precise.

Quantum Adversaries. Amemory-bounded quantum adversary is modeled as a quantum
channel acting on a fixed-size register M ≃ C2m and on a register N, which corresponds to
the next message of the protocol. We can model any memory-bounded quantum adversary
without loss of generality as follows:

• The adversary starts with an initial state ρM in the memory register.

• For each round i of the protocol and each incoming message µi, the adversary applies
an arbitrary CPTP linear map:

Φi,µi

M→MN : L(M) 7→ L(M⊗ N).

• The message sent by the adversary as a response is determined by measuring N in the
computational basis.

• The updated state of the attacker is the reduced density matrix on M.

An implication of this fact is that the initial state of the adversary, along with transcript of
the protocol, uniquely determine the state of the attacker at any given round.

Analysis. Just like in the proof for classical soundness in Section 4.4, let us denote by
Z the random variable containing the 2λ-bit bits {z1b , . . . , zλb }b∈{0,1} that are stored by the
verifier in Step 1.3., and by W the random variable containing the m-qubit state of the
attacker at the end of the protocol. Further, for a set J ⊆ [λ]× {0, 1}, we denote by ZJ the
restriction of Z to J .

Lemma 29 (Quantum Hardness of Claw-Finding). There exists a random variable J ⊆
[λ]× {0, 1} (which depends on Z and W) such that

TD ((J, ZJ ,W), (J, Z ′,W)) ≤ λ2
√
m/2k,

where Z ′ is a uniformly random string of length |J |, and, further, |J | ≥ λ/2 with probability
all but exp(−Ω(λ)) over the random coins of the protocol.

Before proving Lemma 29, we first observe that it indeed implies quantum hardness of
finding a claw. This is because an adversary that guesses the claw must in particular guess
any subset of its bits, including J . However, the success probability of the best attacker on
the RHS distribution is at most 2−λ/2. By a triangle inequality, this implies that the success
probability in guessing Z is bounded by 2−λ/2 + λ2

√
m/2k.

We now proceed to prove Lemma 29. Similarly as above, for j ∈ [λ], let U j be the random
variable taking the value of the string U streamed in Step 1.2., before the first successful
completion of the interactive hashing step, namely the first attempt where the verifier does

29

not abort and start over in Step 1.3.. Let W j
pre denote the random variable consisting of

the adversary’s internal state, i.e., its m-qubit memory, right after the streaming of U j has
completed. We consider the marginal distributions of U j and W j

pre given a fixed transcript
of the protocol up to (and excluding) the streaming of U j (recall the transcript, together
with the adversary’s initial state, determine the state of the adversary and, therefore the
aforementioned marginal distributions are well-defined). For any such possible transcript τ ,
we denote the corresponding marginals by U j(τ) and W j

pre(τ). By Lemma 14, for any τ , we
have that:

Ei←[k] TD
(
(U j

<i(τ), U
j
i (τ),W

j
pre(τ)), (U

j
<i(τ), Ũ

j
i ,W

j
pre(τ))

)
︸ ︷︷ ︸

δji (τ)

≤
√
m/2k (8)

where Ũ j
i is a uniformly sampled bit. Let t =

√
2k/λ2m. For all j ∈ [λ] and any τ define

the set:
Bj

τ :=
{
i : δji (τ) > 1/t

}
⊆ [k].

Using this definition, we define the set J as follows: For any round j ∈ [λ], we let τ j denote
the history of the protocol up to (and excluding) the streaming of U j. We add (j, b) to J if
b ∈ {0, 1} is the smallest such that vjb /∈ B

j
τ j
, where vj0, v

j
1 are the outcome of the (successful)

interactive hashing at round j. To complete the proof of Lemma 29, it suffices the bound
the size of J , and the trace distance between the following two experiments:

• The first experiment runs the protocol and outputs the adversary’s state W at its
completion and the bits in ZJ .

• The second experiment does the same thing, except that it outputs uniformly sampled
bits, along with W .

We do so in the following two propositions.

Claim 30 (J is Large). Let J be defined as above, then:

Pr(|J | < λ/2) < 2−Ω(λ).

Proof. By Equation (8) and Lemma 12 (Markov) we have that:

Pr
i←[k]

(
δji (τ

j) > 1/t
)
< t/

√
m/2k,

which implies that |Bj
τ j
| < t

√
km/2. By Theorem 22, we can bound the probability that

the pre-images of the interactive hashing belong to such a set by

Pr
(
{vj0, v

j
1} ⊆ Bj

τ j

)
≤ O

(
t log k

√
m/2k

)
, (9)

where the probability is taken over the random coins of the interactive hashing.

30

Let us denote by Ej the predicate for {vj0, v
j
1} ⊆ Bj

τ . To prove the proposition, it suffices
to show that Ej = 0 for at least half of the j’s with overwhelming probability. By Eq. (9),
we have:

Ẽ := E

∑
j∈[λ]

Ej

 = O
(
λt log k

√
m/2k

)
= O(log k).

Further, observe that the random variables Ej are negatively correlated, since interactive
hashing soundness holds for any round independently of the others and, therefore, the ad-
versary cannot increase probability that the event Ej happens across several rounds. Thus,
by Lemma 13 (Chernoff) we can bound:

Pr

∑
j∈[λ]

Ej
τ ≥ λ/2

 ≤ e−Ω(λ2/ log λ)

which completes the proof of the claim.

Claim 31 (Distance of the Experiments). Let J be defined as above. It holds that:

TD((J, ZJ ,W), (J, Z ′,W)) ≤ λ/t

where Z ′ is a uniformly random string of length |J |.

Proof. Let us denote J = {(j, bj)} (note for every j there exists at most one element in J
for some bj ∈ {0, 1}). We bound the distance incurred by each of the swaps. Let J≥j =
{(j′, bj′) ∈ J | j′ ≥ j} and let tj = |J | − |J≥j|. Then, for any j = 1, . . . , λ, our goal is to
prove

TD((J, Z ′tj , ZJ≥j ,W), (J, Z ′tj+1, ZJ≥j+1 ,W)) ≤ 1/t,

which implies the claim by triangle inequality. Now, for any (j, bj) ∈ J , let vj = vjbj ; this is

the location of the swapped bit in U j. Then, by monotonicity of trace distance, it holds that

TD((J, Z ′tj , ZJ≥j ,W), (J, Z ′tj+1, ZJ≥j+1 ,W))

≤ TD((J≤j, Z ′tj , U
j
<vj

, U j
vj
,W j

pre), (J
≤j, Z ′tj , U

j
<vj

, Ũ j
vj
,W j

pre)).

The above holds since the prover’s final state W , the final set J and the bits ZJ swapped
with random until round j − 1 (i.e. Z ′tj , ZJ≥j) or, respectively, round j (i.e. Z ′tj+1, ZJ≥j+1),

may be produced from the prover’s state after the streaming of U j, i.e. W j
pre, the choice of J

up until the jth round, i.e. J≤j, ZJ swapped up to round j − 1, i.e. Z ′tj , and the stream U j

up until the vthj bit which is either swapped (i.e. Ũ j
vj
) or not (U j

vj
), respectively. To produce

the final distributions, simply carry on with the protocol given W j
pre and J≤j to obtain the

final state W and J in full, together with the bits of ZJ at rounds j + 1, . . . , λ. The bit in
ZJ at round j is simulated by U j

vj
or Ũ j

vj
and the bits before round j are given as Z ′tj .

31

Lastly, since anything that occurs up till round j is a function of the transcript of the
protocol up to that round, i.e. τ j, we may finish as follows

TD((J≤j, Z ′tj , U
j
<vj

, U j
vj
,W j

pre), (J
≤j, Z ′tj , U

j
<vj

, Ũ j
vj
,W j

pre))

≤ Eτ jTD((U j
<vj

(τ j), U j
vj
(τ j),W j

pre(τ
j)), (U j

<vj
(τ j), Ũ j

vj
,W j

pre(τ
j)))

= Eτ jδ
j
vj
(τ j) ≤ 1/t.

References

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, 2019. 3

[AABA+24] Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I Andersen,
Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita As-
trakhantsev, Juan Atalaya, et al. Quantum error correction below the surface
code threshold. arXiv preprint arXiv:2408.13687, 2024. 3

[AMR22] Navid Alamati, Giulio Malavolta, and Ahmadreza Rahimi. Candidate trapdoor
claw-free functions from group actions with applications to quantum protocols.
In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022: 20th Theory of
Cryptography Conference, Part I, volume 13747 of Lecture Notes in Computer
Science, pages 266–293, Chicago, IL, USA, November 7–10, 2022. Springer,
Cham, Switzerland. 3

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in nc1. Journal of Computer and System Sci-
ences, 38(1):150–164, 1989. 10

[BBK22] Nir Bitansky, Zvika Brakerski, and Yael Tauman Kalai. Constructive post-
quantum reductions. In Yevgeniy Dodis and Thomas Shrimpton, editors, Ad-
vances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part III, volume 13509 of Lecture Notes in Computer Science,
pages 654–683. Springer, 2022. 8, 12

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and
Thomas Vidick. A cryptographic test of quantumness and certifiable ran-
domness from a single quantum device. In Mikkel Thorup, editor, 59th Annual
Symposium on Foundations of Computer Science, pages 320–331, Paris, France,
October 7–9, 2018. IEEE Computer Society Press. 3

32

[BCM+21] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and
Thomas Vidick. A cryptographic test of quantumness and certifiable ran-
domness from a single quantum device. J. ACM, 68(5), August 2021. 4, 5, 13,
18

[BGK+23] Zvika Brakerski, Alexandru Gheorghiu, Gregory D. Kahanamoku-Meyer, Eitan
Porat, and Thomas Vidick. Simple tests of quantumness also certify qubits. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V,
volume 14085 of Lecture Notes in Computer Science, pages 162–191. Springer,
2023. 4, 5, 13, 18, 19, 20

[BK24] James Bartusek and Dakshita Khurana. On the power of oblivious state prepa-
ration. CoRR, abs/2411.04234, 2024. 4, 5, 36, 37, 38, 39

[BKM+24] Kaniuar Bacho, Alexander Kulpe, Giulio Malavolta, Simon Schmidt, and
Michael Walter. Compiled nonlocal games from any trapdoor claw-free func-
tion. Cryptology ePrint Archive, Paper 2024/1829, 2024. 4, 5, 36

[BKW97] Johannes Blömer, Richard Karp, and Emo Welzl. The rank of sparse random
matrices over finite fields. Random Struct. Algorithms, 10(4):407–419, July
1997. 9

[CCM98] C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-
bounded receiver. In Proceedings 39th Annual Symposium on Foundations of
Computer Science (Cat. No.98CB36280), pages 493–502, 1998. 7

[CM97] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology
- CRYPTO ’97, 17th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 1997, Proceedings, volume 1294 of Lec-
ture Notes in Computer Science, pages 292–306. Springer, 1997. 4

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-
round oblivious transfer in the bounded storage model. In Moni Naor, editor,
Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004,
Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of
Lecture Notes in Computer Science, pages 446–472. Springer, 2004. 4, 7, 22

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In Joe Kil-
ian, editor, Advances in Cryptology — CRYPTO 2001, pages 155–170, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg. 4, 7

[DORS06] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
CoRR, abs/cs/0602007, 2006. 11

33

[DQW23] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little:
Cryptography in the bounded storage model, revisited. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part I, vol-
ume 14004 of Lecture Notes in Computer Science, pages 86–116. Springer, 2023.
4, 7, 8, 11

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, STOC ’89, page 25–32, New York, NY, USA, 1989. Association
for Computing Machinery. 10

[GZ19] Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EU-
ROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Sci-
ence, pages 500–524, Darmstadt, Germany, May 19–23, 2019. Springer, Cham,
Switzerland. 4, 5

[KCVY22] Gregory Kahanamoku-Meyer, Soonwon Choi, Umesh Vazirani, and Norman
Yao. Classically verifiable quantum advantage from a computational bell test.
Nature Physics, 18:1–7, 08 2022. 5, 7, 13, 18

[KLVY23a] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum
advantage from any non-local game. In Barna Saha and Rocco A. Servedio,
editors, 55th Annual ACM Symposium on Theory of Computing, pages 1617–
1628, Orlando, FL, USA, June 20–23, 2023. ACM Press. 3

[KLVY23b] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum
advantage from any non-local game. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1617–1628.
ACM, 2023. 5, 18, 36, 38

[KMCVY22] Gregory D Kahanamoku-Meyer, Soonwon Choi, Umesh V Vazirani, and Nor-
man Y Yao. Classically verifiable quantum advantage from a computational
bell test. Nature Physics, 18(8):918–924, 2022. 3

[LLL+21] Yong Liu, Xin Liu, Fang Li, Haohuan Fu, Yuling Yang, Jiawei Song, Pengpeng
Zhao, Zhen Wang, Dajia Peng, Huarong Chen, et al. Closing the” quantum
supremacy” gap: achieving real-time simulation of a random quantum circuit
using a new sunway supercomputer. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2021. 3

[LZG+24] Laura Lewis, Daiwei Zhu, Alexandru Gheorghiu, Crystal Noel, Or Katz, Bahaa
Harraz, Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas, et al.

34

Experimental implementation of an efficient test of quantumness. Physical
Review A, 109(1):012610, 2024. 3

[Mah18a] Urmila Mahadev. Classical homomorphic encryption for quantum circuits.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 332–338, 2018. 5

[Mah18b] Urmila Mahadev. Classical verification of quantum computations. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 259–267. IEEE, 2018. 4, 5

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. J. Cryptol., 5(1):53–66, 1992. 4

[MSY24] Tomoyuki Morimae, Yuki Shirakawa, and Takashi Yamakawa. Cryptographic
characterization of quantum advantage. Cryptology ePrint Archive, Paper
2024/1536, 2024. 3

[MY23] Tomoyuki Morimae and Takashi Yamakawa. Proofs of quantumness from
trapdoor permutations. In Yael Tauman Kalai, editor, 14th Innovations in
Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023,
MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 87:1–
87:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. 7, 22

[NOVY92] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Per-
fect zero-knowledge arguments for NP can be based on general complexity
assumptions (extended abstract). In Ernest F. Brickell, editor, Advances in
Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740
of Lecture Notes in Computer Science, pages 196–214. Springer, 1992. 7, 18,
21, 22

[NZ23] Anand Natarajan and Tina Zhang. Bounding the quantum value of compiled
nonlocal games: From CHSH to BQP verification. In 64th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 1342–1348. IEEE, 2023. 4, 5, 36, 38

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge
coloring via an extension of the chernoff–hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997. 12

[Raz18] Ran Raz. Fast learning requires good memory: A time-space lower bound for
parity learning. J. ACM, 66(1), December 2018. 4, 5, 9, 12, 13

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer
Society Press. 3

35

[Top01] Flemming Topsøe. Bounds for entropy and divergence for distributions over
a two-element set. JIPAM. Journal of Inequalities in Pure & Applied Mathe-
matics [electronic only], 2(2):Paper No. 25, 13 p.–Paper No. 25, 13 p., 2001.
11

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems
in the bounded-storage model. Journal of Cryptology, 17(1):43–77, January
2004. 4

A Classical Verification of BQP

It is shown in [NZ23, BK24, BKM+24] that a claw-generation protocol with quantum sound-
ness implies the existence of a protocol where a quantum prover can demonstrate to a
completely classical verifier the validity of any statement in BQP. The protocol roughly goes
as follows: First, it turns the hardness of finding a claw into a protocol for blind quantum
computation, i.e., a protocol where the circuit that is computed by the quantum prover is
computationally hidden, and the verifier is fully classical. Second, it uses blind quantum
computation to compile a two-player non-local game for BQP verification [NZ23, KLVY23b]
into a single-player one.

By plugging our claw-generation protocol into the framework of [BK24], one can ob-
tain a protocol for general verification of BQP computation against memory-bounded quan-
tum adversaries, with unconditional security. However, the straightforward combination of
Lemma 24 with the [BK24] theorem meets two main discrepancies.

First, the reductions as stated in [BK24] are not concerned with preserving the mem-
ory complexity of the attacker, which on the other hand is necessary in our setting. In
Appendix A.1, we outline how to adapt all reductions involved to be “memory preserving”.

Second, the analysis from [BK24] requires a claw-generation protocol where advantage of
claw-finding is negligible, whereas Lemma 29 only provides an inverse-polynomial bound on
the success probability of the attacker. We show how to bridge this gap in Appendix A.2.

A.1 From Claw-Generation to Verification of BQP

We outline how to construct a classical verification for BQP computations, unconditionally
secure against memory-bounded adversaries. In what follows, we assume that we have a claw-
generation protocol with negligible soundness error (the success probability of any memory-
bounded attacker) and obtain a classical verification protocol for BQP computations with
inverse-polynomial gap between completeness (the success probability of an honest prover)
and soundness error.

In a nutshell, we follow the strategy from [BK24] where an analogous implication is shown
in the standard cryptographic setting (against computationally-bounded attackers). In fact,
all the steps are precisely identical, except that we need to argue why security holds against

36

memory-bounded adversaries. Given that the protocol and the arguments are unchanged,
we only provide a proof sketch.

Step I: Oblivious State Preparation. An oblivious state preparation (OSP) [BK24] is
a protocol between a classical verifier and a quantum prover. At the end of the interaction,
the prover holds the state

Hθ |b⟩
whereas the verifier holds the bits (θ, b). Security requires that any QPT prover cannot
guess the bit of the verifier θ with probability non-negligibly greater than 1/2. It is shown
in [BK24] (Theorem 4.7) that a claw-state generation protocol can be generically used to
construct an OSP. First it is shown that a claw-state generation protocol can always be
assumed without loss of generality (Lemma 4.6 in [BK24]) to prepare a state of the form

|0, x0⟩+ |1, x1⟩√
2

for x0, x1 ∈ {0, 1}n. Then the prover and the verifier engage in the following interactive
protocol:

• The verifier samples two random bitstrings r0, r1 ← {0, 1}n.

• The prover applies the map

|0, x0⟩+ |1, x1⟩√
2

7→ |0, x0, x
⊺
0r0⟩+ |1, x1, x

⊺
1r1⟩√

2

and measures all but the last qubit in the Hadamard basis to obtain a string d ∈
{0, 1}n+1.

• The verifier sets θ = (x0, x1)
⊺(r0, r1). If θ = 0, then it sets b = x⊺0r0 = x⊺1r1. Otherwise,

it sets b = d⊺(1, x0 ⊕ x1).

Correctness follows by direct calculation, whereas security follows by reducing the hardness of
guessing θ to the hardness of computing (x0, x1), with the Goldreich-Levin search-to-decision
reduction. Using Lemma 6, the same reduction holds in the memory-bounded settings.

Step II: Blind Delegation. A blind delegation protocol allows a verifier to delegate the
computation of a quantum circuit Q on a classical input |y⟩, while keeping y hidden. It is
shown in [BK24] (Theorem 6.11) that OSP implies a blind delegation protocol. The protocol
starts with a one-time padded input Xx |y⟩ and proceeds while the verifier keeps track of the
one-time pad keys and the prover performs the quantum gates. For a Clifford gates C, the
following identity is used:

CXxZz = Xx′
Zz′C

where x′, z′ are functions of x, z. For non-Clifford gates, [BK24] (Theorem 6.10) shows an
interactive protocol to correct the errors, based on OSP. This subroutine, referred to as
encrypted phase, allows a prover to obliviously apply a phase, conditioned on a bit that is
only known to the verifier. The protocol proceeds as follows:

37

• The verifier and the prover engage in an OSP protocol, with the verifier’s bit (θ, b).
The prover applies a Hadamard gate H and a

√
X gate to its state. This results into

the state
ZbP θ |+⟩ .

• The prover CNOTs the target register onto the above state, and measures it in the
computational basis to obtain a bit m ∈ {0, 1}.

• The prover sents m to the verifier, who applies the appropriate correction to the one-
time pad.

We omit most details from this outline, but what is important for us is that the blindness
follows directly from the indistinguishability property of the OSP. Thus, precisely the same
analysis holds in the memory-bounded settings.

Step III: Computationally Non-Local Strategies. The last step in the strategy is to
use the blind-delegation protocol to compile a two-prover non-local game into a single prover
one. This idea was first proposed in [KLVY23b] and it soundness was analyzed in [NZ23],
for the case of a particular blind-delegation protocol, based on quantum fully-homomorphic
encryption. In [BK24] (Theorem 6.15) this approach is extended to any blind delegation
protocol, and it shown that the compilation results into a single-prover computationally
non-local strategy. Blindness of the delegation protocol is only used to establish that the
maximal success probability of any QPT prover in the compiled protocol is bounded by the
supremum over all computationally non-local strategies (Theorem 6.23). This is again a
direct reduction to the blind delegation protocol that also works in the memory-bounded
settings (provided of course that the prover is memory bounded). All subsequent steps of
the analysis are information-theoretic and thus trivially hold for our setting as well.

A.2 Tolerating Non-Negligible Soundness Error

Next, we show that our claw-generation protocol (Lemma 24) implies classical verification of
BQP computation, despite its inverse-polynomial soundness error against quantum attackers,
thus relaxing the assumption of negligible soundness error made in Appendix A.1.

One simple way to derive this is by relying on the fact that our quantum soundness
argument from Lemma 29 stems from an indistinguishability argument between the real
experiment and an ideal experiment, where soundness holds statistically.

Let us recall some notation from the proof of Lemma 29: Z is the random variable
containing the “hard” part of the claw consisting of bits {z1b , . . . , zλb }b∈{0,1} and W is the
adversary’s m-qubit state at the end of the protocol. Lemma 29 bounds that trace-distance
between (J, ZJ ,W) and (J, Z ′,W), where J is a subset of size at least λ/2 and Z ′ is uniformly
random, by ε = λ2

√
m/2k. Since the polynomial k can be chosen to be arbitrarily larger

than the bound on memory m, we can choose ε to be an arbitrarily small inverse-polynomial
function of λ. Specifically, let δ denote the inverse-polynomial gap between completeness
and soundness error in the protocol from [BK24] when instantiated using claw-generation

38

with negligible soundness error, which we inherit in the bounded-memory setting as shown
in Appendix A.1. Let T = poly(λ) denote the number of times claw-generation is invoked in
the protocol to prove a given BQP instance. We set ε to be small enough so that T ·ε < δ/2.
We argue that, when the protocol is instantiated using our claw-generation from Lemma 24,
we obtain gap between completeness and soundness error that is at most δ/2.

To see this, consider an ideal experiment where after any invocation of claw-generation
throughout the protocol, the verifier modifies the claw values in its memory by replacing the
bits at locations J in Z with freshly sampled uniformly random bits. By Lemma 29, any
such replacement deviates us from the real experiment by at most ε in trace-distance. In
total, we obtain an experiment that is at most δ/2-far from the real experiment by triangle
inequality.

In the ideal experiment, claw-generation provides soundness up to error 2−λ/2, which
is negligible in the security parameter. Following the adaption of [BK24] to our setting
(Appendix A.1), this implies that an attacker against the protocol in the experiment succeeds
with soundness error that is smaller than completeness by at least δ. Therefore, this gap in
the real experiment is at least δ/2 by triangle inequality.

39

	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Memory Bounded Algorithms
	2.2 The Goldreich-Levin Extractor
	2.3 Information Theory
	2.4 Quantum Information

	3 Simple Proof of Quantumness with Quadratic Gap
	3.1 The Protocol
	3.2 Analysis

	4 Proof of Quantumness with Arbitrary Gap
	4.1 PoQ from Claw Generation
	4.2 Interactive Hashing
	4.3 Claw Generation
	4.4 Classical Hardness of Finding a Claw
	4.5 Quantum Hardness of Finding a Claw

	A Classical Verification of BQP
	A.1 From Claw-Generation to Verification of BQP
	A.2 Tolerating Non-Negligible Soundness Error

