
Learning with Alternating Moduli, Arora-Ge over Composite
Moduli, and Weak PRFs

Yilei Chen∗ Liheng Ji† Wenjie Li‡

May 27, 2025

Abstract

In TCC 2018, Boneh, Ishai, Passelègue, Sahai, and Wu propose candidates of weak and
strong PRFs by evaluating linear functions over coprime moduli alternatively. Such PRFs can
be evaluated by low-depth circuits and are MPC-friendly. However, they have not been able to
base the security of their PRFs on well-formed assumptions other than assuming that the PRF
constructions themselves are secure.

In this paper, we formalize a new assumption called Learning with Alternating Moduli
(LAM). We show that over certain large moduli, the LAM assumption is as hard as the Learning
with Errors (LWE) assumption. For LAM over constant moduli, we do not know how to base
its hardness on the LWE assumption. Instead, we provide

(i) polynomial-time attacks on LAM with constant prime-power moduli and certain constant
non-prime-power moduli, and

(ii) evidence of the sub-exponential hardness of LAM with other moduli by analyzing the effect
of typical attacks.

More specifically, we put forward two new attacks. The first attack is a recursive algorithm that
solves LWE with certain constant composite moduli and error distributions. The algorithm
extends the Arora-Ge algorithm for LWE from prime moduli to composite moduli, and it also
solves LAM for certain parameters. The second attack is a polynomial-time attack that rules
out the existence of weak PRFs in NC0[p] for any prime p.

Based on our studies, we propose candidate weak PRFs in NC0[p1, p2] for some distinct
primes p1, p2 based on LAM over constant moduli, or the Learning with Rounding (LWR)
assumption over constant moduli. Compared to the weak PRF candidates by Boneh et al., our
weak PRF candidates live in the same complexity class while having the advantage of being
based on well-formed assumptions.

1 Introduction

A function family is called pseudorandom if a randomly chosen function in the family is indistin-
guishable from a truly random function given black-box access. Since its introduction by Goldreich,

∗IIIS, Tsinghua University; Shanghai Artificial Intelligence Laboratory; and Shanghai Qi Zhi Institute.
chenyilei@mail.tsinghua.edu.cn. Supported by Shanghai Qi Zhi Institute Innovation Program SQZ202405.

†IIIS, Tsinghua University and Shanghai Qi Zhi Institute. jlh23@mails.tsinghua.edu.cn.
‡IIIS, Tsinghua University and Shanghai Qi Zhi Institute. liwj22@mails.tsinghua.edu.cn.

1

Goldwasser and Micali [GGM86], the pseudorandom function (PRF) has been one of the fundamen-
tal building blocks in cryptography.

How simple can a pseudorandom function family be? This is an intriguing question in cryp-
tography, complexity, and learning theory. In this work we focus on constructing low-depth weak
PRFs, where weak PRFs are PRFs that only allow the adversary to query on random inputs instead
of arbitrary inputs. The seminal work of Linial, Mansour, and Nisan [LMN89] shows that weak
PRFs in AC0 with more than quasipolynomial security do not exist. This implies that any weak
PRF candidate achieving subexponential security must be outside the class AC0. (In this article,
we say a primitive is T -secure if any distinguisher of circuit size bounded by T succeeds in breaking
the primitive with probability less than 1/T .)

In the past few years, a variety of weak PRF candidates slightly beyond AC0 have been pro-
posed and analyzed by, e.g., Akavia et al. [ABG+14], Applebaum and Raykov [AR16], Yu and
Steinberger [YS16], Bogdanov and Rosen [BR17], Boneh et al. [BIP+18], and Boyle et al. [BCG+20,
BCG+21]. In particular, Boneh et al. [BIP+18] propose weak PRF candidates by evaluating linear
functions over alternating moduli. For example, one of their weak PRF candidates is constructed as
follows: let map : {0, 1}m → Z3 take y ∈ {0, 1}m to

∑m
i=1 yi mod 3. The weak PRF construction,

with key k = A ∈ Zm×n
2 , is

FA(x) := map(Ax mod 2). (1)

That is, the evaluation algorithm of FA interprets the result of Ax mod 2 as m bits, and then sums
them up modulo 3.

To the best of our knowledge, this “alternating moduli” technique has been the only known
method to construct sub-exponentially secure weak PRFs in NC0[2, 3] circuits. Let us take a moment
to introduce the definition of NC0[2, 3]: for any c1, ..., cm ∈ N+, a circuit is in NC0[MODc1 , ...,MODcm]
if it consists of 2-fan-in OR and AND gates, unbounded-fan-in MODc1 , ..., MODcm gates (on input
x ∈ {0, 1}n, MODc outputs 0 if the number of 1s in x is multiple of c, outputs 1 elsewhere), and
NOT gates, and has poly(n) size and O(1) depth. We abbreviate it as NC0[c1, ..., cm] in the rest of
the paper. Occasionally we use NC[c1, ..., cm], and the depth of the circuit will be explicitly given.
Originally, Boneh et al. [BIP+18] only claimed that FA is in AC0[2, 3], a much more studied com-
plexity class that additionally allows OR and AND gates with unbounded fan-in. Here we observe
that FA does not need OR and AND gates with unbounded fan-in, and the circuit class NC0[2, 3]
is more accurate for the purpose of our paper, so we use NC0[2, 3] instead.

Although the security of FA is not known to be based on any well-established assumption,
Boneh et al. [BIP+18] provide evidence suggesting that FA is a secure weak PRF against certain
attacks. Over the past few years, improved weak PRFs based on alternating moduli have been
proposed [DGH+21,APRR24], together with some cryptanalytic attempts [CCKK21,JMN23,AR24],
but all attacks run in exponential time in the security parameter.

Previous works on low-depth weak PRF candidates, particularly the work by Boneh et al. [BIP+18],
leave us with the following questions:

1. Can we base any learning problems over alternating moduli on established cryptographic
assumptions? Or is it possible to construct alternating-moduli low-depth weak PRFs from
simpler assumptions?

2. Do weak PRFs exist in circuit classes more restricted than NC0[p1, p2], for distinct primes
p1, p2?

2

1.1 Main contributions

Our main contributions are as follows.

1. We formalize the learning with alternating moduli (LAM) assumption and establish its relation
to the standard learning with errors (LWE) assumption.

2. We give a systematic analysis of the Arora-Ge algorithm [AG11] for LWE with composite
moduli. Based on our analysis, we design a recursive algorithm for solving LWE with constant
composite moduli and certain error distributions.

3. We show that weak PRFs do not exist in NC0[p] for prime p.

4. Based on the studies above, we derive new weak PRF candidates in NC0[p1, p2] for some
distinct primes p1, p2, assuming the hardness of LAM or learning with rounding (LWR) with
constant moduli.

Before giving the details of our results, let us first recall the definitions of the LWE [Reg09]
and LWR [BPR12] problems.

Definition 1 (Learning with errors). Let n,m, q be positive integers. Let s ∈ Zn
q be a secret vector.

The search LWE problem LWEn,m,q,χ requires the adversary to find the secret s given access to
an oracle that outputs (ai, (⟨s,ai⟩+ ei) mod q) on its i-th query, for i = 1, . . . ,m. Here, each ai is
a uniformly random vector in Zn

q , and each error term ei is sampled from χ over Zq.

The decisional LWE problem DLWEn,m,q,χ requires the adversary to distinguish whether we
are given samples (A,y) ∈ Zn×m

q × Zm
q from the LWE distribution, i.e.,

A← Zn×m
q , y = (A⊤s+ e) mod q

where s ∈ Zn
q , e← χm; or from the uniformly random distribution over Zn×m

q × Zm
q .

Definition 2 (Learning with rounding). Let n,m, q1, q2 be positive integers such that q1 > q2. Let
s ∈ Zn

q1 be a secret vector. The search LWR problem LWRn,m,q1,q2 requires the adversary to find
the secret s given access to an oracle that outputs (ai, ⌊(q2/q1) · (⟨s,ai⟩ mod q1)⌉ mod q2) on its i-th
query, for i = 1, . . . ,m. Here, each ai is a uniformly random vector in Zn

q2.

The decisional LWR problem DLWRn,m,q1,q2 requires the adversary to distinguish whether
we are given samples (A,y) ∈ Zn×m

q1 × Zm
q2 from the LWR distribution, i.e.,

A← Zn×m
q1 , y = ⌊(q2/q1) · (A⊤s mod q1)⌉ mod q2

where s ∈ Zn
q1; or from the distribution U(Zn×m

q1)× (⌊(q2/q1) · U(Zm
q1)⌉ mod q2).

Learning with Alternating Moduli. Our first contribution is to formalize the LAM problem
and show its connections to the LWE problem.

Definition 3 (Learning with Alternating Moduli). Let n,m, q1, q2 be positive integers such that q1 >
q2 ≥ 2, and gcd(q1, q2) = 1. Let s ∈ Zn

q1 be a secret vector. The search LAM problem LAMn,m,q1,q2

3

requires the adversary to find the secret s given access to an oracle that outputs (ai, (⟨s,ai⟩ mod
q1) mod q2) on its i-th query, for i = 1, . . . ,m. Here, each ai is a uniformly random vector in Zn

q1.

The decisional LAM problem DLAMn,m,q1,q2 requires the adversary to distinguish whether
we are given samples (A,y) ∈ Zn×m

q1 × Zm
q2 obtained from querying the LAM distribution, i.e,

A← Zn×m
q1 , y = (A⊤s mod q1) mod q2

where s ∈ Zn
q ; or from the distribution U(Zn×m

q1)× (U(Zm
q1) mod q2).

Let us make a few remarks on Def. 3. First, for any q ≥ 2, we define the output of any integer
modulo q to be in [q] := {0, ..., q − 1} by default (some other papers use (−q/2, ..., q/2]∩Z). Second,
we only consider coprime moduli q1, q2 since otherwise s mod gcd(q1, q2) becomes trivially learnable.

In Section 3, we present several reductions between LAM and LWE. In particular, we show in
Theorem 22 that under certain parameters, the LAM problem is as hard as LWE. The techniques
used in our reductions are inspired by the reductions between LWR and LWE in [BPR12,BGM+16].

Theorem 4 (Theorem 22, informal). Let n,m, q1, q2 and B be integers such that q1 > 2Bmq2, DB

be a B-bounded and balanced distribution. If there is a randomized poly(n)-time algorithm Learn
that solves search-LAMn,m,q1,q2 with probability ϵ, then there is a poly(n)-time algorithm Learn′ that
solves search-LWEn,m,q1,DB

with probability Ω(ϵ2).

We also provide reductions from search to decisional LAM, from LAM to LWE, and others,
which shows that LWE and LAM are as hard as each other under certain parameter regimes. Please
find more details in Section 3.

It should be noted that most of our reductions, including Theorem 22 as shown above, require
q1 to be at least a polynomial in n. To understand the hardness of LAM over constant modulus q1,
we need to investigate the Arora-Ge algorithm and other algorithms, as detailed in our next two
contributions.

Arora-Ge over Composite Moduli. Recall that the Arora-Ge algorithm [AG11] is efficient for
solving LWE with prime modulus and small support.

Lemma 5 (Section 3 in [AG11]). Let q be a prime and n be an integer. Let Dnoise be an error
distribution whose support is of size D < q, and Pr[e = 0, e ← Dnoise] =

1
δ for some δ > 1. Let

N be
(
n+D
D

)
and C be a sufficiently large constant. Let m := CNδq log q/(q − D). The Arora-Ge

algorithm solves LWEn,m,q,Dnoise
in time poly(m) with overwhelming probability.

Let us make three remarks on Lemma 5. First, it applies as long as D < q, meaning that the
size of possible errors can be as large as q−1. Second, in [AG11] the sample complexity was written
as m = CNδq log q. However, a careful examination of their proof reveals that in their application
of the Schwartz-Zippel lemma to the proof, they simplified the lower bound ≥ 1 −D/q to ≥ 1/q.
By retaining the original bound ≥ 1 −D/q instead of performing this relaxation, one can directly
recover the tighter sample complexity stated in Lemma 5. Third, since the Schwartz-Zippel lemma
only applies to prime fields, their analysis does not apply to composite moduli. To the best of our
knowledge, the behavior of the Arora-Ge algorithm over LWE with composite moduli has never
been published before.

We start by analyzing the Arora-Ge algorithm over prime power rings. Our result is as follows.

4

Lemma 6 (Lemma 31, informal). Let q = pκ, where p is prime and κ is some positive integer.
Let d ∈ [1, q) be an integer. Let σ ∈ (0, 1/d], and χd,σ be any distribution on [d] such that for
any x∗ ∈ [d], Prx←χd,σ

[x = x∗] ≥ σ. Let n,m,N be positive integers such that N =
(
n+d
n

)
,

m > 10N log q/σ. Given an instance of LWEn,m,q,χd,σ
with secret s, the Arora-Ge algorithm learns

s mod q/ gcd(d!, q) with overwhelming probability.

To prove Lemma 6, we have identified favorable linear algebraic properties of the Arora-Ge
polynomials, which enable us to avoid Schwartz-Zippel and use a more direct analytic approach. A
proof sketch is given in Subsection 1.2. This approach not only extends the Arora-Ge algorithm to
prime-power rings, but also reduces the sample complexity by a multiplicative factor of q/(q − d)
when q is prime. The factor of q/(q − d) can be large when q is much larger than q − d.

By Lemma 6, when gcd(d!, q) = 1 (including the case when q is prime), the algorithm fully
recovers s, which is consistent with the result in [AG11]; when gcd(d!, q) = q, the algorithm gains
no information about s, since the polynomials built in the Arora-Ge algorithm will always be 0;
when 1 < gcd(d!, q) < q, the algorithm obtains partial information about s. Actually, we can do
even better in the last case. We design an algorithm that uses the recursive application of Arora-Ge
plus CRT, which can fully recover s as long as gcd(d!, q) < q, i.e., d! mod q ̸= 0.

Theorem 7 (Theorem 30, informal). Let q = pκ1
1 pκ2

2 . . . pκℓ
ℓ , where p1, . . . , pℓ are distinct primes

and κ1, κ2, . . . , κℓ ∈ N+. Let d be a positive integer such that d! mod q ̸= 0. Let σ ∈ (0, 1/d], and
χd,σ be any distribution on [d] such that for any x∗ ∈ [d], Prx←χd,σ

[x = x∗] ≥ σ. Let n,m,N be
positive integers such that N =

(
n+d
n

)
, m > 10N log q/σ. There is an algorithm running in time

poly(m) that solves LWEn,m,q,χd,σ
with overwhelming probability. In particular, when d is constant

and σ is non-negligible in n, the algorithm runs in poly(n) time.

Let us remark that our algorithm also applies to LAM and LWR. Concretely, since LAMn,m,q1,q2

and LWRn,m,q1,q2 can both be reduced to LWE over modulus q1 and error support [⌊q1/q2⌋], the
recursive Arora-Ge algorithm applies as long as ⌊q1/q2⌋! mod q ̸= 0. To illustrate this result, we
provide several examples in Table 1. The first column lists selected constant values of q1, and the
second column gives the smallest d for which Arora-Ge fails to apply to LWE over modulus q1 and
error support [d] (i.e., the smallest d such that d!/q1 ∈ Z). The third and fourth columns show the
largest q2 values for which Arora-Ge does not apply to LAMn,m,q1,q2 and LWRn,m,q1,q2 , respectively.
Note that the LAM problem has an additional constraint gcd(q1, q2) = 1. Consequently, the largest
secure q2 value against the Arora-Ge attack is typically smaller for LAM than for LWR with the
same q1.

Before we move on to our next contribution, let us briefly discuss other related works of Arora-
Ge. Among the works [ACF+15,STA20,Ste24,NMSÜ25] following the Arora-Ge algorithm [AG11],
only two have developed optimized attacks on LWE with prime moduli without relying on any
heuristic assumptions. The first is by Steiner [Ste24], who shows that for any LWE polynomial
system (with m > n), there exists a Gröbner basis algorithm that takes exponential time and
memory. The second is from Noval et al. [NMSÜ25], whose attack has a time complexity independent
of the modulus q, but only works when q = Ω(

(
n+d
d

)
· d). Since we mainly focus on polynomial-

time attacks on constant-moduli LWE in this work, we do not dive deep into the composite-moduli
generalization of these two optimizations.

5

q1
smallest d
of LWE

largest q2
of LAM

largest q2
of LWR

4 4 1 1
8 4 1 2
16 6 1 2
32 8 3 4
9 6 1 1
27 9 2 3

q1
smallest d
of LWE

largest q2
of LAM

largest q2
of LWR

81 9 8 9
243 12 20 20
6 3 1 2
15 5 2 3
20 5 3 4
24 4 5 6

Table 1: Secure parameter choices of LWE, LAM and LWR with constant moduli under the Arora-
Ge attack.

Polynomial Attack for wPRF candidates in NC0[p]. Next, we prove in Section 5 that no
weak PRF exists in NC0[p] with prime p. The attack is done in two steps. First, we show that all
circuits in NC0[p] with prime p can be computed by a constant-degree polynomial over Zp. Second,
we show that all constant degree polynomials can be distinguished from random by a simple linear
algebraic attack.

Note that for circuits in NC0[q] where q has at least two distinct prime factors, we do not know
how to compute them by low-degree polynomials in general. In fact, we show (in Theorem 48) that
it is impossible to compute some circuits in NC0[q] by low-degree polynomials.

Looking ahead, we will provide candidate weak PRFs based on LAM and LWR over some
constant modulus q1, which are computable in NC0[q1]. So our attack implies that when q1 is a
prime power, the candidates are not weak PRFs. When q1 is not a prime power, our attack does
not apply.

Candidate weak PRFs from LAM. Next, we present simple constructions of weak PRFs based
on the hardness of decisional LAM. For any coprime integers q1, q2 with q1 > q2 > 1, consider the
function family F :=

{
Fs : Zn

q1 → Zq2

}
s∈Zn

q1

,

Fs(x) := (⟨s,x⟩ mod q1) mod q2. (2)

If q1/q2 is super-polynomial in n, then F is a weak PRF assuming DLAM holds, and DLAM
is as hard as DLWE with super-polynomial modulus/noise ratio when q1/q2 is super-polynomial. If
q1/q2 ∈ poly(n), then F is not yet a weak PRF family since the output distribution is not statistically
close to uniformly random over Zq2 . Nevertheless, we can sum up (over Zp for some prime p that
divides q1) several independent copies of F to make the output indistinguishable from random, and
get the weak PRF family G := {gS : Zn

q1 → Zp}S∈Zn×ℓ
q1

as follows:

gS(x) :=

(
ℓ∑

i=1

((⟨si,x⟩ mod q1) mod q2)

)
mod p. (3)

What if the moduli q1, q2 are constants? In this way, Fs, gS can be evaluated by NC0[q1]
circuits, and their security is based on the hardness of LAM with constant modulus. However, in

6

this case, the security reductions from standard LWE do not apply, so we need to be careful about
the parameter choice. First of all, q1 should not be any prime power pk, as otherwise G lies in
the circuit class NC0[p] where weak PRFs do not exist. In addition, to make Fs secure against the
Arora-Ge attack, we should guarantee that ⌊q1/q2⌋! mod q1 = 0. For the remaining choices of q1, q2,
we are not aware of any other polynomial-time algorithms for solving LAMn,m,q1,q2 when q1 is a
constant.

To safely instantiate gS with concrete parameters, we pick the rows with non-prime-power q1
in Table 1. For example, let q1 = 24, q2 = 5, p = 3, and then we have

gS(x) :=

(
ℓ∑

i=1

((⟨si,x⟩ mod 24) mod 5)

)
mod 3 (4)

is a weak PRF candidate in NC0[2, 3] based on the conjectured security of LAMn,m,24,5.

Attentive readers may have already noticed that the NC0[2, 3] weak PRF candidate of Boneh et
al. ([BIP+18]; see Eqn. (1)) can be formulated as a special case of gS by setting q1 = 6, q2 = 2, p = 3:

gS(x) :=

(
ℓ∑

i=1

((⟨si,x⟩ mod 6) mod 2)

)
mod 3. (5)

However, we note that the security of this specific instantiation cannot be directly based on
the LAM assumption, since we inherently need gcd(q1, q2) = 1, but here gcd(6, 2) = 2. In general,
we have not been able to provide an assumption to capture the construction in Eqn. (1). Although
our construction and the construction of Boneh et al. both use alternating moduli, we think their
underlying reasoning of security are different in some perspectives.

We also analyze the effect of other typical attacks, for example, linear cryptanalysis, and the
BKW attack [BKW03]. In particular, the BKW algorithm gives a 2O(n/ logn) time attack to the
LAM problem, since the LAM distribution is biased. However, our wPRF construction gS tackles
this by summing sufficiently many LAM samples, making the bias exponentially small, therefore
the BKW attack does not apply to our wPRF candidate.

Candidate weak PRFs from LWR. Our construction of candidate weak PRFs from LWR
mimics that from LAM (Eqn. (3)). That is, for integers q1, q2, p > 1 such that q1 is not a prime
power, (⌊q1/q2⌋)! mod q1 = 0, and p is a prime such that p | q1, we define the function family
L :=

{
LS : Zn

q1 → Zp

}
S∈Zn×ℓ

q1

as follows:

LS(x) :=

(
ℓ∑

i=1

⌊(q2/q1) · (⟨si,x⟩ mod q1)⌉ mod q2

)
mod p. (6)

An advantage of LWR is that it does not require the condition gcd(q1, q2) = 1. Furthermore,
when q2 is a divisor of q1, the LWR distribution is not biased, so there is no need to do a sum of
the samples. This enables a simpler candidate construction K := {Ks : Zn

q1 → Zq2}s∈Zq1
as follows:

Ks(x) := ⌊(q2/q1) · (⟨s,x⟩ mod q1)⌉ mod q2 (7)

In Remark 6.4 in the Eprint version of [BIP+18], Boneh et al. make some comments on weak PRFs
related to LWR with constant composite moduli. We extend their analysis by taking into account
the Arora-Ge attack over composite moduli and the polynomial attack for NC0[p] circuits.

7

Comparison with existing works. In Table 2 we list some low-depth weak PRF candidates with
conjectured security at least subexponential in the security parameter. In each of [BIP+18,BCG+20,
BCG+21], the authors provide some main candidates along with several variant constructions. Here
we only include their main candidates. See Table 1 in [BCG+21] for a more detailed survey of weak
and strong PRF candidates with possibly quasipolynomial security and in larger circuit classes.
Note that the best attack we are aware of against our weak PRF candidates runs in 2O(n) time, but
we put 2O(n/ logn) in the table since their underlying assumptions (LAM and LWR with constant
coprime moduli) suffer from 2O(n/ logn) time attacks (e.g., the BKW algorithm [BKW03]). This
assumption is cleaner and more reasonable than that made by Boneh et al. [BIP+18]. Let us also
mention that some constructions in [BIP+18,BCG+20,BCG+21] are given with explicit low depths
(e.g., the depths are as low as 2 or 3). The explicit circuit depths of our constructions are higher
than 3.

Reference Circuit Class Hardness Assumption
[BIP+18, Sec 3.1] NC0[p1, p2] 2O(n) Heuristic
[BCG+20, Sec. 1.2] XNF 2Õ(n1/3) Variable-Density LPN
[BCG+21, Sec. 3.1] Sparse F2 polynomials 2Õ(

√
n) Heuristic

Ours (3) NC0[p1, p2] 2O(n/ logn) LAM with constant moduli
Ours (6),(7) NC0[p1, p2] 2O(n/ logn) LWR with constant moduli

Table 2: Low-depth weak PRF candidates. Here p1, p2 are two arbitrary distinct primes.

1.2 Overview of Arora-Ge on LWE with prime power modulus

Here we provide an overview of our analysis of Arora-Ge for LWE with prime power moduli
(Lemma 6, Lemma 31). Extending it to general composite moduli is easy using the Chinese Re-
mainder Theorem. In the following, we consider the toy case of 1-dimensional LWE for simplicity.
The Arora-Ge algorithm works as follows.

• Given an LWE sample (a, b = (as + e) mod q), for some secret s ∈ Zq, a ← Zq, e ← [d] for
some d < q, construct a polynomial P (z) :=

∏d−1
η=0(b − az − η). Then we have P (z) |z=s≡ 0

(mod q).

• Compute the expansion form of P (z): calculate the set of coefficients {cj}0≤j≤d such that
P (z) = c0 +

∑d
j=1 cjz

j .

• For every 1 ≤ j ≤ d, replace zj by a new variable yj , and we get a linear polynomial
P ′(y1, y2, . . . , yd) := c0 +

∑d
j=1 cjyj . Then the equation P ′(y1, y2, . . . , yd) ≡ 0 (mod q) has a

solution (y∗1, y
∗
2, . . . , y

∗
d) s.t. y∗1 = s.

Repeat the procedure above for m times using m LWE samples, and we get m linear equations
P ′1, ..., P ′m over the unknowns y1, . . . , yd. Solve the linearized equations and return

S := {y∗1 | ∃y∗2, . . . , y∗n s.t. P ′i (y
∗
1, y
∗
2, . . . , y

∗
d) ≡ 0 (mod q) for all i = 1, ...,m }

Now we prove that with high probability, for all s′ ∈ S, s′ ≡ s (mod q/gcd(d!, q)) holds with
non-negligible probability over a ← Zq and e ← [d]. To facilitate the analysis, we consider the

8

specific case of s = 0. Then P (z) =
∏d−1

η=0(e − az − η). Fix an a such that gcd(a, q) = 1. After
linearization, we have for any possible error e ∈ [d], there exists a coefficient vector ωe ∈ Zd

q such
that P ′(y1, y2, . . . , yd) =

∑d
j=1 ωe(j) · ajyj . Since P ′(y1, y2, . . . , yd) ≡ 0 (mod q) holds for every e

ranging from 0 to d− 1, we obtain a system of d distinct linear equations. Expressing this equation
system in the matrix form, we have

ωT
0

ωT
1

. . .
ωT

d−1

 ·

ay1
a2y2
. . .
adyd

 ≡ 0 (mod q)

The key observation is, by left-multiplying some unimodular matrix on the linear system above
(details are given in Proposition 35), we get

d! 0 0 0 . . . 0
∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
.
∗ ∗ . . . ∗ ∗ 0
∗ ∗ . . . ∗ ∗ ∗

 ·

ay1
a2y2
. . .
adyd

 ≡ 0 (mod q)

Here the asterisks denote arbitrary entries. This gives d! · ay1 ≡ 0 (mod q). By gcd(a, q) = 1 and
s′ = y1, we have s′ ≡ 0 (mod q/gcd(d!, q)).

Consequently, when q/gcd(d!, q) > 1, i.e., d! mod q ̸= 0, the Arora-Ge algorithm, with high
probability, outputs the value of s mod (q/gcd(d!, q)). By recursively invoking the Arora-Ge algo-
rithm (Subsection 4.3), the complete value of s mod q can be determined.

Here we remark that d! mod q ̸= 0 is a necessary condition for the Arora-Ge algorithm to work,
since otherwise the polynomial P (z) will be 0 modulo q.

2 Preliminary

Let C,R,Q,Z,N be the set of complex numbers, real numbers, rational numbers, integers, and
natural numbers (non-negative integers). Let R+,N+ denote positive reals and integers. For any
integer q ≥ 2, denote Z/qZ by Zq, and define Zn∗

q := {x ∈ Zn
q | gcd(q, x1, . . . , xn) = 1}. For any

d ∈ N+, let [d] := {0, 1, . . . , d− 1}. For any d ∈ N+, let Ud denote the uniform distribution on [d].
For any finite set S, let U(S) denote the uniform distribution on S. The rounding operation ⌊a⌉
rounds a real number a to its nearest integer (if a ∈ Z+0.5, we round it to a+0.5). We give “mod”
lower precedence than addition/subtraction. For example, a+ b mod q = (a+ b) mod q.

A vector in Rn (represented in column form by default) is written as a bold lower-case letter,
e.g. v. For a vector v, the ith component of v will be denoted by vi or v(i) by default, unless vi or
v(i) is defined for other meanings explicitly. A matrix is written as a bold capital letter, e.g. A. The
ith column vector of A is denoted ai by default, unless ai is defined for other meanings explicitly.
Let I := diag(1, 1, . . . , 1) be the identity matrix. For any matrix A, AT denotes its transpose. If A
is invertible, then A−1 denotes its inverse. For a distribution or a set X , x← X denotes sampling
x according to the distribution or uniformly at random from X .

9

The binomial coefficient
(
n
k

)
:= n!

k!(n−k)! represents the number of ways to choose k elements
from a set of n elements. The multinomial coefficient

(
n

k1,k2,...,kl

)
:= n!∏l

i=1 ki!
generalizes this to

partitioning n into l groups of sizes k1, k2, . . . , kl, and for some vector k ∈ Nl such that ∥k∥1 = n,
we can abbreviate the definition as

(
n
k

)
:= n!∏l

i=1 k(i)!
.

Definition 8 (Discrete Gaussian Distribution). The discrete Gaussian distribution with parameter
α > 0, denoted by Dα, is defined as the discrete distribution over Z with the probability density
function Dα(x) ∝ exp(−πx2/α2).

Definition 9 (Thresholded discrete distribution). Let χ be a discrete probability distribution with
support S. We say χ is c-thresholded, where 0 < c ≤ 1/|S|, if for all s ∈ S,

Pr
x←χ

[x = s] ≥ c.

Definition 10 (Bounded distribution). For any B > 0, a distribution D is called B-bounded if the
support of D is a subset of [−B,B].

Definition 11 (Balanced distribution). A distribution D over Z is called balanced if Prx←D[x ≤
0] ≥ 1/2 and Prx←D[x ≥ 0] ≥ 1/2.

Definition 12 (Weak pseudorandom functions [NR04]). Let Kn, Xn, Yn be finite sets related to
the security parameter n. A function family F = {Fn = {Fk : Xn → Yn}k∈Kn}n∈N is a weak PRF
family if for any probabilistic polynomial time algorithm A, there exists a negligible function ϵ such
that for all n ∈ N:

| Pr
k←Kn

[AFk(·)(1n) = 1]− Pr
R
[AR(·)(1n) = 1]| ≤ ϵ(n),

where R : Xn → Yn is a truly random function, the adversary A is only allowed to query uniformly
random inputs from Xn.

The proofs of the following lemmas are postponed to Appendix C.1, C.2, C.3 and C.4 respec-
tively.

Lemma 13. For any prime p and positive integers n, κ, let x ∈ Zn
pκ be any vector such that x ̸= 0.

Then for any b ∈ Zpκ

Pr
a←Zn

pκ

[⟨a,x⟩ ̸≡ b (mod pκ)] ≥ 1− 1/p.

Lemma 14. Let m,n be positive integers. Suppose q = pκ1
1 . . . pκℓ

ℓ , where p1, . . . , pℓ are ℓ distinct
primes, κ1, . . . , κℓ are positive integers. Let x ∈ Zn

q be a fixed vector. Let a1, . . . ,am ← Zn
q be m

random vectors. Let bi := ⟨ai,x⟩ for all 1 ≤ i ≤ m. We have

Pr
a1,...,am

[∃x′ ∈ Zn
q , (x′ ̸= x) ∨ (∀1 ≤ i ≤ m, ⟨ai,x′⟩ = bi)] ≤ qn/2ℓm.

Lemma 15. Let n, q be integers, there is a negligible function negl(n) such that for x1, x2, · · · , xn
generated uniformly at random from Zq,

Pr
x1,x2,··· ,xn

[gcd(q, x1, x2, · · · , xn) ̸= 1] < 1/2n.

We have |Zn∗
q |/|Zn

q | ≥ 1− 1/2n as a corollary of Lemma 15.

10

Lemma 16. Let n, p, q be positive integers such that p ≥ q. For some 0 < c < 1/p, let P be a c-
thresholded distribution with support [p]. Let the random variable Y :=

∑n
i=1Xi mod q, where each

Xi is sampled from P independently. Let Qn over [q] be the distribution of Y . Then the statistical
distance between Qn and U(Zq) is within q · (1− c)n−1.

3 Hardness of Learning with Alternating Modulus

In this section, we present several reductions related to LAM, mainly for showing that LAM is
as hard as LWE under certain parameters. In Subsection 3.1, we establish a search-to-decision
reduction for LAM with binary secrets. Subsections 3.2 and 3.3 introduce reductions from search-
LWE to search-LAM and from decisional-LWE to decisional-LAM, respectively. In Subsection 3.4,
we show a reduction from search-LAM to search-LWE.

3.1 Search to Decision Reduction for LAM with Binary Secrets

For q1 = poly(n), [BGM+16] demonstrates a search-to-decision reduction for LWR with binary
secrets. The proof can be generalized to establish a search-to-decision reduction for any statistically
injective polynomial function applied to AT s, where A ∈ Zn×m

q and s ∈ {0, 1}n. A function R over
Zq is said to be statistically injective if for all s ∈ {0, 1}n, there exists a negligible function negl(n)
such that

Pr
A
[∃s′ ̸= s, R(AT s′) = R(AT s)] ≤ negl(n),

where we abuse the notation that let R(y) := (R(y(1)), R(y(2)), ..., R(y(m)))T for any y ∈ Zm
q . The

following theorem generalizes the search-to-decision reduction in [BGM+16].

Theorem 17. For every ϵ > 0, positive integers n, m, q = poly(n), statistically injective polynomial
function R over Zq, and poly(n)-time algorithm Dist such that

| Pr
A,s

[Dist(A, R(AT s)) = 1]− Pr
A
[Dist(A, R(U(Zm

q))) = 1]| ≥ ϵ,

where A ← Zn×m
q and s ∈ {0, 1}n, there exists a poly(n)-time algorithm Learn and a negligible

function negl(n) such that

Pr
A,s

[Learn(A, R(AT s)) = s] ≥ ϵ

4qm
− negl(n).

Before proving Theorem 17, we need two lemmas from [BGM+16] in the following.

Lemma 18. For any ϵ, n, m, q, every poly(n)-time computable function R over Zq, and poly(n)-
time algorithm Dist such that

Pr
A,s

[Dist(A, R(AT s)) = 1]− Pr
A
[Dist(A, R(U(Zm

q))) = 1] = ϵ,

there exists a poly(n)-time algorithm Pred such that

Pr
A,s,v

[Pred(A, R(AT s),v) = ⟨v, s⟩] = 1

q
+

ϵ

mq
,

where A← Zn×m
q , v← Zn

q , and s is sampled from an arbitrary distribution over Zn
q .

11

Lemma 19. Let 1/ϵ, q be polynomial in n. There exists a poly(n)-time oracle algorithm List such
that for every algorithm Pred satisfying |Pr[Pred(A, R(AT s),v) = ⟨v, s⟩]−1/q| ≥ ϵ, ListPred outputs
a list of entries (q′, s′) containing at least one entry such that q′ > 1, q′ divides q, and s′ ≡ s
(mod q′), with probability at least ϵ/4, where the probability is taken over A ← Zn×m

q , and an
arbitrary distribution of s on Zn

q .

Proof of Theorem 17. By Lemma 18, we know there exists a poly(n)-time predictor Pred such that

| Pr
A,s,v

[Pred(A, R(AT s),v← Zn
q) = ⟨v, s⟩]−

1

q
| ≥ ϵ

mq
.

By Lemma 19, there is a poly(n)-time algorithm List, such that ListPred outputs a list of (q′, s′).
With probability at least ϵ/(4mq), there is an entry (q′, s′) contained in the list, such that q′ > 1,
q′ divides q, and s′ ≡ s (mod q′). Since s ∈ {0, 1}n, s′ ≡ s (mod q′) implies s′ = s.

Algorithm Learn simulates List on Pred, obtains a list of (q′, s′). For each (q′, s′) in the list,
Learn tests whether R(AT s′) = R(AT s) or not, and outputs s′ if the condition is satisfied. Since R
is statistically injective, we have s′ = s with overwhelming probability.

Concretely, the overall probability that Learn outputs the secret s satisfies:

Pr
A,s

[Learn(A, R(AT s)) = s]

≥Pr[Learn outputs s′ such that R(AT s′) = R(AT s)]

− Pr[∃s∗ ̸= s such that R(AT s∗) = R(AT s)]

≥Pr[List outputs (q′, s)]− negl(n)

≥ ϵ

4qm
− negl(n).

The following lemma shows the statistical injectivity of the LAM function.

Lemma 20. Let q1, q2, n,m be positive integers such that q1 ≥ 2q2 > 2, gcd(q1, q2) = 1, and
m ≥ 3n. The function f : Zm

q1 7→ Zm
q2 defined as

f(x) = (x mod q1) mod q2

is a statistically injective function.

Proof. For any t ∈ {0, 1}n \ {0}, we know gcd(q1, t1, · · · , tn) = 1. Thus, ⟨a, t⟩ is distributed
uniformly at random over Zq1 . For any y ∈ Zq2 , we have

Pr
a
[f(⟨a, t⟩) = y] ≤ ⌈q1/q2⌉

q1
≤ q1/q2 + 1

q1
≤ 3/4.

Then for any y ∈ Zn
q2 , we have

Pr
A
[f(AT t) = y] ≤ (3/4)m ≤ (27/64)n.

12

For any s, s′ ∈ {0, 1}n such that s′ ̸= s, we have at least one of them is a non-zero vector. Therefore,

Pr
A
[f(AT s′) = f(AT s)] ≤ (3/4)m ≤ (27/64)n.

Finally, by the union bound, we have

Pr
A
[∃s′ ̸= s, f(AT s′) = f(AT s)] ≤ 2n · (27/64)n ≤ (27/32)n,

which is exponentially small in n.

By Theorem 17 and Lemma 20, we get the following corollary.

Corollary 21. Let q1, q2, n,m be positive integers such that m ≥ 3n, q1 ≥ 2q2 and gcd(q1, q2) = 1.
If DLAMn,m,q1,q2 with binary secrets is hard, then LAMn,m,q1,q2 with binary secrets is hard.

3.2 Reduction from Search-LWE to Search-LAM

In this section, we prove search-LAM is at least as hard as search-LWE for certain parameters.

Theorem 22. Let n,m, q1, q2 and B be positive integers such that q1 > 2Bmq2. Let DB be a B-
bounded and balanced distribution. If there exists a randomized poly(n)-time algorithm Learn that
solves LAMn,m,q1,q2 with probability ϵ, then there exists a poly(n)-time algorithm Learn′ that solves
LWEn,m,q1,DB

with probability Ω(ϵ2), where the secret s is sampled from an arbitrary distribution
over Zn∗

q1 .

Proof. Suppose there exists a randomized algorithm Learn that solves search-LAMn,m,q1,q2 with
probability ϵ, i.e.,

Pr
r,A,s

[Learn(A, (AT s mod q1) mod q2, r) = s] ≥ ϵ,

where A ← Zn×m
q1 , the secret s is sampled from an arbitrary distribution over Zn∗

q1 , and r is the
internal randomness of Learn.

For any LWE instance (A,b = (AT s + e) mod q1), where e ← Dm
B , we define the following

algorithm Learn′:

Learn′(A,b, r) = Learn(q2A mod q1, (q2b mod q1) mod q2, r).

Let A′ := q2A mod q1. Then

(q2b mod q1) mod q2 = ((A′T s+ q2e) mod q1) mod q2.

Note that gcd(q1, q2) = 1, which implies that A′ is distributed uniformly in Zn×m
q1 . Therefore, we

have

Pr
r,A,s,e

[Learn′(A,b, r) = s]

= Pr
r,A,s,e

[Learn(A′, ((A′T s+ q2e) mod q1) mod q2, r) = s]

= Pr
r,A,s,e

[Learn(A, ((AT s+ q2e) mod q1) mod q2, r) = s].

13

Let E denote the event that (AT s + q2e) mod q1 mod q2 equals AT s mod q1 mod q2, and let Ei
denote the event that (⟨ai, s⟩ + q2ei) mod q1 mod q2 equals ⟨ai, s⟩ mod q1 mod q2. The event ¬Ei
occurs only if (⟨ai, s⟩ mod q1) + q2ei < 0 or (⟨ai, s⟩ mod q1) + q2ei ≥ q1. For any fixed A, s, the
following statements hold:

• If Bq2 ≤ ⟨ai, s⟩ mod q1 < q1 −Bq2, then

Pr
ei
[Ei|A, s] = 1.

• If ⟨ai, s⟩ mod q1 < Bq2, then

Pr
ei
[Ei|A, s] ≥ Pr

ei
[ei ≥ 0] ≥ 1/2.

• If ⟨ai, s⟩ mod q1 ≥ q1 −Bq2, then

Pr
ei
[Ei|A, s] ≥ Pr

ei
[ei ≤ 0] ≥ 1/2.

• Ei only dependents on ai, that is,

Pr
ei
[Ei|A, s] = Pr

ei
[Ei|ai, s].

• All Ei are pairwise independent, that is,

Pr
e
[E|A, s] =

m∏
i=1

Pr
ei
[Ei|A, s].

By Bayes’ Formula, we have:

Pr
r,A,s,e

[Learn′(A,b, r) = s]

= Pr
r,A,s,e

[Learn(A, ((AT s+ q2e) mod q1) mod q2, r) = s|E] Pr
r,A,s,e

[E]

+ Pr
r,A,s,e

[Learn(A, ((AT s+ q2e) mod q1) mod q2, r) = s|¬E] Pr
r,A,s,e

[¬E]

≥ Pr
r,A,s,e

[Learn(A, ((AT s+ q2e) mod q1) mod q2, r) = s|E] Pr
r,A,s,e

[E]

= Pr
r,A,s,e

[Learn(A, (AT s mod q1) mod q2, r) = s|E] Pr
r,A,s,e

[E]

= Pr
r,A,s,e

[Learn(A, (AT s mod q1) mod q2, r) = s ∧ E].

(8)

Since the domains of r,A, s, e are finite, we can express the probability as summations. For
fixed r,A, s, the output of Learn(A, (AT s mod q1) mod q2, r) is fixed, indicating that the event

14

{Learn(A, (AT s mod q1) mod q2, r) = s} is independent of e.

Pr
r,A,s,e

[Learn(A, (AT s mod q1) mod q2, r) = s ∧ E]

=
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗] ·
∑
e∗

Pr[e = e∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗ ∧ E]

=
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗] ·
∑
e∗

Pr[e = e∗][E|A∗, s∗]

=
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗,A∗s∗ mod q1) mod q2, r) = s∗] · Pr
e
[E|A∗, s∗].

(9)

By the Cauchy-Schwarz inequality, we have:

(
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗] · Pr
e
[E|A∗, s∗])·

(
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗]/Pr
e
[E|A∗, s∗]))

≥(
∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗])2.

(10)
Note that:∑

r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗]/Pr
e
[E|A∗, s∗])

≤
∑

r∗,A∗,s∗

(Pr[r = r∗,A = A∗, s = s∗]/Pr
e
[E|A∗, s∗])

=
∑
A∗,s∗

Pr[A = A∗, s = s∗]
1

Pre[E|A∗, s∗]

=
∑
A∗,s∗

m∏
i=1

Pr[ai = a∗i , s = s∗]

Prei [Ei|A∗, s∗]

=
m∏
i=1

∑
a∗
i ,s

∗

Pr[ai = a∗i , s = s∗]

Prei [Ei|a∗i , s∗]

≤
m∏
i=1

(Pr
ai,s

[Bq2 ≤ ⟨ai, s⟩ mod q1 ≤ q1 −Bq2]

+ 2 Pr
ai,s

[⟨ai, s⟩ mod q1 < Bq2] + 2 Pr
ai,s

[⟨ai, s⟩ mod q1 > q1 −Bq2])

≤(♣)(1 + 2Bq2/q1)
m ≤ (1 + 1/m)m ≤ e,

(11)

where (♣) is derived as follows: For any s ̸= 0 such that gcd(q1, s1, · · · , sn) = 1, ⟨ai, s⟩ mod q1
distributes uniformly at random in Zq1 , so both Prai,s[⟨ai, s⟩ mod q1 < Bq2] and Prai,s[⟨ai, s⟩ mod

15

q1 > q1 −Bq2] are at most Bq2/q1. We also note that:∑
r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗]

= Pr
r,A,s

[Learn(A,AT s mod q1 mod q2, r) = s] ≥ ϵ
(12)

By Eqns. (10),(11),(12), we have:∑
r∗,A∗,s∗

Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗] · Pr
e
[E|A∗, s∗]

≥
(
∑

r∗,A∗,s∗ Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗])2∑
r∗,A∗,s∗ Pr[r = r∗,A = A∗, s = s∗, Learn(A∗, (A∗s∗ mod q1) mod q2, r) = s∗]/Pre[E|A∗, s∗])

≥ϵ2/e
(13)

Finally, by Eqns. (8),(9),(13), we have

Pr
r,A,s,e

[Learn′(A,b, r) = s] ≥ ϵ2/e.

This completes the proof.

3.3 Reduction from Decisional-LWE to Decisional-LAM

In this section, we give reductions from decisional-LWE to decisional-LAM under certain parameter
settings. For q1 = poly(n), Theorem 23 establishes an average-case (the secret s← U(Zn∗

q1)) reduc-
tion from decisional-LWE to decisional-LAM. For q1 such that q1/(2Bmq2) is super-polynomial in
n, Theorem 24 establishes a worst-case (the secret s can be chosen from any distribution over Zn∗

q1)
reduction from decisional-LWE to decisional-LAM.

Theorem 23. Let q1, q2, n,m be integers and let α be a positive real value such that m > 2n,
2α
√
nmq2 < q1 < poly(n). Let Dα be the discrete Gaussian distribution with parameter α. If there

exists a randomized polynomial time algorithm Dist that solves DLAMn,m,q1,q2 with uniform secrets
with non-negligible probability, then there exists c1, c2 > 0, for n′ ≤ n/ log q1−c1 log n, α ≥

√
c2 log n,

there exists a polynomial time algorithm Dist′ such that Dist′ solves DLWEn′,m,q1,Dα with uniform
secrets with non-negligible probability, where the secret s is sampled from the uniform distribution
over Zn∗

q1 .

Theorem 24. Let q1, q2, n,m,B be positive integers such that 2n < m ∈ poly(n). Assume q1
satisfies q1 > 2Bmq2 · T , where T is super-polynomial in n. Let DB be a B-bounded and balanced
distribution. If there exists a poly(n)-time algorithm Dist that solves DLAMn,m,q1,q2 with probability
non-negligible in n, then there exists a poly(n)-time algorithm Dist′ that solves DLWEn,m,q1,DB

with
probability non-negligible in n, where the secret s is sampled from an arbitrary distribution over Zn∗

q1 .

Proof of Theorem 23. When q1 < poly(n), we can obtain the following chain of reductions:

uniform-secret decisional LWE ≤(1) binary-secret decisional LWE ≤(2) binary-secret search LWE

≤(3)binary-secret search LAM ≤(4) binary-secret decisional LAM ≤(5) uniform-secret decisional LAM,

16

where “≤(1)” uses Lemma 28 ([BLP+13]), “≤(2)”, “≤(3)” and “≤(4)” are gathered up in Lemma 25,
and “≤(5)” is by Corollary 27. Note that for x ← Dα, we have |x| > α

√
n with probability 2−Ω(n).

So Dα can be treated as an α
√
n-bounded and balanced distribution in the reductions. The lemmas

used in our reduction are shown below.

In the following we show Lemma 25, which establishes the reduction from DLWE to DLAM
with secret chosen from any distribution over {0, 1}\{0}. We emphasize that this lemma establishes
a worst-case reduction, and Theorem 23 turns out to be an average-case reduction since Corollary 27
requires the secrets to be generated uniformly at random.

Lemma 25. Let q1, q2, n,m,B be positive integers such that m > 2n, 2Bmq2 < q1 < poly(n).
Let DB be a B-bounded and balanced distribution. If there exists a poly(n)-time algorithm Dist
that solves DLAMn,m,q1,q2 with binary secrets with non-negligible probability, then there exists a
poly(n)-time algorithm Dist′ that solves DLWEn,m,q1,DB

with binary secrets with non-negligible
probability, where the secret s is sampled from an arbitrary distribution over {0, 1}n \ {0}.

Proof. According to the conditions of the theorem, we have there exists a non-negligible value ϵ
such that

| Pr
A,s

[Dist(A, (AT s mod q1) mod q2) = 1]− Pr
A
[Dist(A,U(Zm

q1) mod q2)) = 1]| ≥ ϵ,

where A← Zn×m
q and s ∈ {0, 1}n\{0}. Since q1 is polynomial in n, by Theorem 17, there exists a

polynomial time algorithm Learn and a negligible function negl(n) such that

Pr
A,s

[Learn(A, (AT s mod q1) mod q2) = s] ≥ ϵ

4q1m
− negl(n) =: ϵ′.

By Theorem 22, there exists a polynomial time algorithm Learn′ such that

Pr
A,s,e

[Learn′(A, (AT s+ e) mod q1) = s] ≥ ϵ′2/e,

where e← Dm
B is the error, e is the natural constant.

Consider the algorithm Dist′: on input (A,b), it runs Learn′(A,b) to get s. If e = b−AT s ∈
Dm

B the algorithm outputs 1; otherwise it outputs 1 with probability 1/2. We have:

Pr
A,s,e

[Dist′(A,b = (AT s+ e) mod q1) = 1] ≥ 1/2 + ϵ′2/(2e),

Pr
A
[Dist′(A,U(Zm

q1)) = 1] = 1/2 +
qn1

(q1 − 2B)m
≤ 1/2 +

qn1
(q1 − q1/m)m

≤ 1/2 + 4qn−m1 .

Therefore,

Pr
A,s,e

[Dist′(A,b = (AT s+ e) mod q1) = 1]− Pr
A
[Dist′(A,U(Zm

q1)) = 1] ≥ ϵ′2/(2e)− 4qn−m1 .

Since q1 is polynomial in n, ϵ′ is non-negligible, indicating that Dist′ solves binary-secret decisional-
LWEn,m,q1,DB

with non-negligible probability.

Next, we show the reduction from DLAM with binary secrets to DLAM with uniform secrets.
We first state the following lemma from [BGM+16].

17

Lemma 26. Let S be any distribution supported on Zn∗
q . For every function R on Zq, there

is a polynomial-time transformation that (1) maps the distribution (A, R(AT s))A←Zm×n
q ,s←S to

(A, R(AT s))A←Zn×m
q ,s←Zn∗

q
and (2) maps the distribution (A, R(u))A←Zn×m

q ,u←Zm
q

to itself.

By setting S to {0, 1}n\{0} and R to the LAM function, we immediately have the following
corollary.

Corollary 27. Let q1, q2, n,m be positive integers such that q1 > q2 and gcd(q1, q2) = 1. If there
exists a poly(n)-time algorithm that solves decision(search)-LAMn,m,q1,q2 for uniform secrets with
non-negligible probability, then there exists a poly(n)-time algorithm that solves decision(search)-
LAMn,m,q1,q2 for binary secrets with non-negligible probability.

Finally, we present Lemma 28 from [BLP+13], which shows a reduction from DLWE with
uniform secrets to DLWE with binary secrets.

Lemma 28. Let n,m, q, k be positive integers, and let ϵ ∈ (0, 1/2), α, δ > 0, be such that n ≥
(k + 1) log2 q + 2 log(1/δ), α ≥

√
ln(2n(2 + 1/ϵ))/π. Let Dσ be the discrete Gaussian distribution

with parameter σ. If there exists an algorithm that solves DLWEn,m,q,D√
10nα

with binary secrets
with advantage ζ, then there exists an algorithm that solves DLWEk,m,q,Dα with uniform secrets with
advantage at least

(ζ − δ)/3m− 41ϵ/2−
∑

p|q,p prime

p−k−1.

By combining Lemma 25, Corollary 27, and Lemma 28, we generalize the reduction from
DLWE to DLAM with uniform secrets and q1 = poly(n), which exactly proves Theorem 23. In the
following, we continue to prove Theorem 24.

Proof of Theorem 24. Suppose there is a randomized algorithm Dist that solves decision-LAMn,m,q1,q2

with non-negligible probability, then there exists a non-negligible function ϵ such that

| Pr
A,s

[Dist(A, (AT s mod q1) mod q2) = 1]− Pr
A
[Dist(A, (U(Zm

q1) mod q1) mod q2) = 1]| ≥ ϵ,

where A← Zn×m
q and s ∈ Zn∗

q . Consider the following algorithm:

Dist′(A,b) := Dist(q2A mod q1, (q2b mod q1) mod q2).

In the following, we prove that Dist′ solves decision-LWE.

• When b is an LWE sample, i.e. b = AT s + e mod q1 where e ← Dm
B , we consider the

probability when

(q2(A
T s+ e) mod q1) mod q2 = (q2A

T s mod q1) mod q2.

This occurs if B ≤ (q2⟨ai, s⟩) mod q1 ≤ q1B for all columns ai of A, which means

Pr
A,s,e

[(q2b mod q1) mod q2 = (q2A
T s mod q1) mod q2]

≥(1− 2B/q1)
m ≥ (1− 1/(m · T))m ≥ 1− 1/T.

18

Therefore, we have:

Pr
A,s,e

[Dist′(A,b = (AT s+ e) mod q1) = 1]

≥ Pr
A,s,e

[Dist′(A,b) = 1, (q2b mod q1) mod q2 = (q2A
T s mod q1) mod q2]

= Pr
A,s,e

[Dist(q2A mod q1, (q2A
T s mod q1) mod q2) = 1, (q2b mod q1) mod q2 = (q2A

T s mod q1) mod q2]

≥ Pr
A,s

[Dist(q2A mod q1, (q2A
T s mod q1) mod q2) = 1]

+ Pr
A,s,e

[(q2b mod q1) mod q2 = (q2A
T s mod q1) mod q2]− 1

≥ Pr
A,s

[Dist(q2A mod q1, (q2A
T s mod q1) mod q2) = 1]− 1/T

= Pr
A,s

[Dist(A, (AT s mod q1) mod q2) = 1]− 1/T.

The last equation follows from the fact that gcd(q1, q2) = 1, therefore q2A is distributed
uniformly in Zn×m

q1 .

• When b is a uniform sample, we note that gcd(q1, q2) = 1:

Pr
A
[Dist′(A,U(Zm

q1)) = 1] = Pr
A
[Dist(q2A mod q1, (q2U(Zm

q1) mod q1) mod q2)]

= Pr
A
[Dist(A, (U(Zm

q1) mod q1) mod q2)].

Finally, we have the advantage of Dist′ is:

| Pr
A,s,e

[Dist′(A,b = (AT s+ e) mod q1) = 1]− Pr
A
[Dist′(A,U(Zm

q1)) = 1]|

≥| Pr
A,s

[Dist(A, (AT s mod q1) mod q2) = 1]− Pr
A
[Dist(A, (U(Zm

q1) mod q1) mod q2)]| − 1/T

≥ϵ− 1/T.

This completes the proof.

3.4 Reduction from Search-LAM to Search-LWE

This section presents a reduction from the search-LAM problem to the search-LWE problem for
specific parameter sets.

Theorem 29. Let q1, q2, n,m be positive integers such that q1 > q2 and gcd(q1, q2) = 1. If there
exists a randomized poly(n)-time algorithm Learn that solves LWEn,m,q1,D, where the support of D
is over [⌊q1/q2⌉ + 1], with non-negligible probability, then there exists a randomized poly(n)-time
algorithm Learn′ that solves LAMn,m,q1,q2 with non-negligible probability.

Note that the reduction only guarantees that the LWE error obtained from the LAM sample
is in a small support, while the error term is possibly dependent on A and s. However, considering
LWE where the error is in a small support but possibly dependent on A and s is still meaningful.
For example, the Arora-Ge algorithm works even when the error is possibly dependent on A and s.

19

Proof. Suppose there exists a randomized polynomial time algorithm Learn that solves LWEm,n,q1,D

with non-negligible probability. Specifically, there is a non-negligible function ϵ such that

Pr
r,A,s,e

[Learn(A, (AT s+ e) mod q1, r) = s] ≥ ϵ,

where A ← Zn×m
q1 , s ∈ Zn

q1 , e ← Dm, and r is the internal randomness of Learn. For any LAM
instance (A,b = (AT s mod q1) mod q2), there exists a vector e ∈ [⌊q1/q2⌉+ 1]m such that

b ≡ AT s− q2e (mod q1).

Let (−q2)−1 denote the multiplicative inverse of −q2 in the ring Zq1 . We define the following
algorithm Learn′:

Learn′(A,b, r) := Learn(A′ := ((−q2)−1A) mod q1,b
′ := ((−q2)−1b) mod q1, r),

where r is the internal randomness of Learn′. Since b′ = (A′T s+ e) mod q1, we have (A′,b′) is an
LWE instance with secret s. So the algorithm outputs s with probability ϵ. This completes the
proof.

4 Arora-Ge Algorithm for LWE with Composite Modulus

In this section, we present a generalization of the Arora-Ge algorithm [AG11] for the LWE problem
over composite moduli.

Theorem 30. Let q = pκ1
1 pκ2

2 . . . pκℓ
ℓ , where p1, . . . , pℓ are distinct primes and κ1, κ2, . . . , κℓ ∈ N+.

Let d ∈ [1, q) be an integer. Let χd,σ be a σ-thresholded distribution on [d] for some 0 < σ ≤ 1/d.
Let n,m,N be positive integers such that N =

(
n+d
n

)
, m > 10N log q/σ. If d! mod q ̸= 0, then

there is an algorithm A that runs in time poly(m) and solves LWEn,m,q,χd,σ
with probability at least

1− 2qN · (1− σ/2)m − qn/2m−1. Specifically, if d is constant and σ is non-negligible in n, then A
runs in poly(n) time and solves LWEn,m,q,χd,σ

with overwhelming probability.

In Subsection 4.1, we introduce the Arora–Ge algorithm for LWE with composite moduli. In
Subsection 4.2, we analyze its effect on LWE with prime-power moduli. In Subsection 4.3, we give
a recursive algorithm for LWE with any composite moduli.

4.1 The Algorithm

In this subsection, we fix q = pκ, where p is prime and κ is a positive integer. Let n,m, d be positive
integers with d < q. For some 0 < σ ≤ 1/d, let χd,σ be a σ-thresholded distribution over [d].
Consider an instance {(ai, bi = (⟨ai, s⟩+ ei) mod q)}1≤i≤m of LWEn,m,q,χd,σ

. Since each ei ∈ [d], it

follows that for every 1 ≤ i ≤ m,
∏d−1

η=0

(
bi − ⟨ai, s⟩ − η

)
≡ 0 (mod q).

The Arora-Ge algorithm works as follows. For each sample (ai, bi), construct a polynomial over
Zq:

Pi(z) := Pi(z(1), . . . , z(n)) :=
d−1∏
η=0

(bi − ⟨ai, z⟩ − η) =
d−1∏
η=0

(bi −
n∑

j=1

ai(j)z(j)− η).

20

For any vector v ∈ Nn with ∥v∥1 ≤ d, let zv :=
∏n

i=1 z(i)
v(i). Then the expansion of Pi(z) is a

linear combination of these monomials zv. By a standard combinatorial argument, the total number
of distinct monomials zv is

N :=

(
d+ n

n

)
= O(nd).

Hence, we linearize Pi(z) by replacing each zv in its expansion with a new variable yv, thereby
obtaining a linear equation in the variables {yv}v. For every 1 ≤ j ≤ d, let y(j) denote the vector
formed by sorting {yv}∥v∥1=j in reverse lexicographical order of v, that is,

y(1) := (yδ1 , yδ2 , yδ3 , . . . , yδn)
T

y(2) := (y2δ1 , yδ1+δ2 , yδ1+δ3 , . . . , y2δn)
T

. . .

y(d) := (ydδ1 , y(d−1)δ1+δ2 , y(d−1)δ1+δ3 , . . . , ydδn)
T ,

where {δj}1≤j≤n denotes the n-dimensional standard basis. Let y := (yT
(1),y

T
(2), . . . ,y

T
(d))

T . Denote
the linearized equation by P ′i (y). By querying the oracle sufficiently many times, we obtain enough
linear equations of y. Solving this system yields the secret s = y(1). (For details on solving a linear
equation system on a ring and truncating the solution vector, please refer to Appendix A.)

The formalized Arora-Ge Algorithm is presented in Algorithm 1. Since the algorithm involves
only linear algebra of up to m dimensions, its time complexity is poly(m).

Algorithm 1 Arora-Ge Algorithm
1: function Arora_Ge(n,m, d, q, {(ai, bi)}1≤i≤m)
2: for i = 1 to m do
3: Construct the polynomial

Pi(z) :=
d−1∏
η=0

(bi − ⟨ai, z⟩ − η) (14)

4: Expansion: compute {ci,v ∈ Zq}v s.t. Pi(z) ≡
∑

v∈Nn,∥v∥1≤d ci,vz
v (mod q)

5: Linearization: construct the polynomial

P ′i (y) = ci,0 +
∑

v∈Nn,0<∥v∥1≤d

ci,vyv (15)

6: end for
7: Solve the system of linear equations {P ′i (y) ≡ 0 (mod q)}1≤i≤m and get the solution set Y
8: S ← {y(1) | ∃y(2), . . .y(d) s.t. (yT

(1),y
T
(2), . . . ,y

T
(d))

T ∈ Y}
9: return S

10: end function

4.2 The Solution Space of the Algorithm

In this subsection, we analyze the output of Algorithm 1. Our primary objective is to establish the
following lemma.

21

Lemma 31. Let q = pκ, where p is prime and κ is a positive integer. Let d ∈ [1, q) be an integer.
Let χd,σ be a σ-thresholded distribution on [d] for some 0 < σ ≤ 1/d. Let n,m,N be positive integers
such that N =

(
n+d
n

)
, m > 10N log q/σ. Let {(ai, bi = (⟨ai, s⟩+ ei) mod q)}1≤i≤m be an instance of

LWEn,m,q,χd,σ
. Let

S ← Arora_Ge(n,m, d, q, {(ai, bi)}1≤i≤m).

Then
Pr

{ai,ei}i
[∃s′ ∈ S s.t. s′ ̸≡ s (mod q/ gcd(d!, q))] < qN · (1− σ(1− 1/p))m.

Furthermore, we derive the following corollary, which provides a precise characterization of the
solution set generated by the Arora-Ge algorithm.

Corollary 32. Let q = pκ, where p is prime and κ is some positive integer. Let d ∈ [1, q) be an
integer. Let χd,σ be a σ-thresholded distribution on [d] for some 0 < σ ≤ 1/d. Let n,m be positive
integers. Let {(ai, bi = (⟨ai, s⟩+ ei) mod q)}1≤i≤m be an instance of LWEn,m,q,χd,σ

, and let

S ′ := {s′ ∈ Zn
q | s′ ≡ s (mod q/ gcd(d!, q))}.

We have

Pr[S ′ ← Arora_Ge(n,m, d, q, {(ai, bi)}1≤i≤m)] ≥ 1− qN · (1− σ(1− 1/p))m.

The proof of Corollary 32 is deferred to Appendix C.5, and some examples of this result are
illustrated in Table 3 in Appendix D. In the remainder of this section, we focus on proving Lemma 31.

Proof of Lemma 31. For any 1 ≤ i ≤ m, let Pi(z), P
′
i (y) be as defined in Eqns. (14), (15). We aim

to prove that for any y∗ = (y∗T(1),y
∗T
(2), . . . ,y

∗T
(d))

T ∈ ZN
q such that y∗(1) ̸≡ s (mod q/ gcd(d!, q)), it

holds that
Pr
ai,ei

[P ′i (y
∗) ≡ 0 (mod q)] ≤ 1− σ(1− 1/p). (16)

If this inequality holds, we can then conclude the following:

Pr
{ai,ei}i

[∃s′ ∈ S s.t. s′ ̸≡ s (mod q/ gcd(d!, q))]

= Pr
{ai,ei}i

[∃y∗ = (y∗T
(1),y

∗T
(2), . . . ,y

∗T
(d))

T ∈ ZN
q s.t. ((y∗

(1) ̸≡ s (mod q/ gcd(d!, q)))) ∧ (∀1 ≤ i ≤ m,P ′
i (y

∗) ≡ 0 (mod q))]

≤
∑

y∗=(y∗T
(1),y

∗T
(2),...,y

∗T
(d))

T∈ZN
q

y∗
(1) ̸≡s (mod q/ gcd(d!,q))

Pr
{ai,ei}i

[∀1 ≤ i ≤ m,P ′
i (y

∗) ≡ 0 (mod q)]

=
∑

y∗=(y∗T
(1),y

∗T
(2),...,y

∗T
(d))

T∈ZN
q

y∗
(1) ̸≡s (mod q/ gcd(d!,q))

m∏
i=1

Pr
ai,ei

[P ′
i (y

∗) ≡ 0 (mod q)]

≤
∑

y∗=(y∗T
(1),y

∗T
(2),...,y

∗T
(d))

T∈ZN
q

y∗
(1) ̸≡s (mod q/ gcd(d!,q))

(1− σ(1− 1/p))m

<qN · (1− σ(1− 1/p))m.

Thus, we only need to prove inequality (16).

22

We start by noting the following equation:

Pi(z) ≡
d−1∏
η=0

(bi − ⟨ai, z⟩ − η) ≡
d−1∏
η=0

(⟨ai, s− z⟩+ ei − η) (mod q).

Next, define the polynomial

P̃i(z̃) :=
d−1∏
η=0

(⟨ai, z̃⟩+ ei − η). (17)

It follows that: P̃i(z̃)
∣∣
z̃=s−z ≡ Pi(z) (mod q).

To simplify notation, we define xv :=
∏n

j=1 x(j)
v(j) for any vectors x ∈ Zn and v ∈ Nn s.t.

∥v∥1 ≤ d. Then, there exists a set of coefficients {c̃i,v ∈ Zq}v such that

P̃i(z̃) ≡
∑

v∈Nn,∥v∥1≤d

c̃i,vz̃
v (mod q).

Next, we linearize P̃i(z̃) by replacing z̃v with a new variable ỹv, yielding

P̃ ′i (ỹ) := c̃i,0 +
∑

v∈Nn,0<∥v∥1≤d

c̃i,vỹv. (18)

For every 1 ≤ j ≤ d, let ỹ(j) denote the vector formed by sorting {ỹv}∥v∥1=j in reverse lexicographical
order of v. Let ỹ := (ỹT

(1), ỹ
T
(2), . . . , ỹ

T
(d))

T . Define the following two solution sets.

Y := {y∗ ∈ ZN
q | ∀1 ≤ i ≤ m ,P ′i (y

∗) ≡ 0 (mod q)}. (19)

Ỹ := {ỹ∗ ∈ ZN
q | ∀1 ≤ i ≤ m , P̃ ′i (ỹ

∗) ≡ 0 (mod q)}. (20)

The following lemma provides a bijection between Y and Ỹ.

Lemma 33. Let Y, Ỹ be as defined in Eqns. (19), (20). For a fixed secret s ∈ Zn
q , there ex-

ists a bijection Fs between Y and Ỹ such that, for any y∗ = (y∗T(1),y
∗T
(2), . . . ,y

∗T
(d))

T and ỹ∗ :=

(ỹ∗T(1), ỹ
∗T
(2), . . . , ỹ

∗T
(d))

T satisfying Fs(y
∗) = ỹ∗, we have ỹ∗(1) ≡ s− y∗(1) (mod q).

We postpone the proof of Lemma 33 to Appendix C.6, and continue proving Lemma 31. Recall
that we only need to prove Inequality (16). Let Fs be the mapping defined in Lemma 33. Let
ỹ∗ := (ỹ∗T(1), ỹ

∗T
(2), . . . , ỹ

∗T
(d))

T := Fs(y
∗). Then we have

ỹ∗(1) ≡ s− y∗(1) ̸≡ 0 (mod q/ gcd(d!, q)),

which implies d! · ỹ∗(1) ̸≡ 0 (mod q).

Applying Lemma 34 (stated below), we obtain

Pr
ai,ei

[P̃ ′i (ỹ
∗) mod q ̸= 0] ≥ σ(1− 1/p).

Using Lemma 33, we get
Pr
ai,ei

[P ′i (y
∗) mod q ̸= 0] ≥ σ(1− 1/p).

This completes the proof of the key inequality (16). Therefore, it completes the proof of Lemma 31.

23

Lemma 34. Assume ỹ∗ := (ỹ∗T(1), ỹ
∗T
(2), . . . , ỹ

∗T
(d))

T := (yδ1 , yδ2 , . . . , ydδn)
T ∈ ZN

q , where N =
(
n+d
n

)
.

If d! · ỹ∗(1) ̸≡ 0 (mod q), then for all 1 ≤ i ≤ m,

Pr
ai,ei

[P̃ ′i (ỹ
∗) mod q ̸= 0] ≥ σ(1− 1/p),

where the polynomial P̃ ′i (ỹ) is defined in Eqn. (18).

Proof of Lemma 34. Let P̃i(z̃) be as defined in Eqn. (17). It expands as

P̃i(z̃) =

d−1∏
η=0

(⟨ai, z̃⟩+ ei − η)

=

d−1∏
η=0

(ei − η) +

d∑
k=1

 ∑
0≤η1<η2<···<ηd−k≤d−1

η1,η2...,ηd−k ̸=ei

d−k∏
j=1

(ei − ηj)

 · ⟨ai, z̃⟩k

=

d−1∏
η=0

(ei − η) +

d∑
k=1

 ∑
0≤η1<η2<···<ηd−k≤d−1

η1,η2...,ηd−k ̸=ei

d−k∏
j=1

(ei − ηj)

 · ∑
v∈Nn

∥v∥1=k

(
k

v

)
avi z̃

v.

Since ei ∈ [d], we have
∏d−1

η=0(ei − η) = 0. For any integer t, k, l such that t ≥ 1, 0 ≤ k < t,
0 ≤ l ≤ t− 1, define

wt,k,l :=
∑

0≤η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj). (21)

Therefore, we can rewrite P̃i(z̃) as

P̃i(z̃) =

d∑
k=1

wd,d−k,ei ·
∑
v∈Nn

∥v∥1=k

(
k

v

)
avi z̃

v,

which gives

P̃ ′i (ỹ) =
d∑

k=1

wd,d−k,ei ·
∑
v∈Nn

∥v∥1=k

(
k

v

)
avi ỹv. (22)

For any integer t, l such that t ≥ 1 and 0 ≤ l ≤ t− 1, define

ωt,l := (wt,t−1,l, wt,t−2,l, . . . , wt,0,l)
T . (23)

Additionally, define

γi := (
∑
v∈Nn

∥v∥=1

(
1

v

)
avi ỹ

∗
v,
∑
v∈Nn

∥v∥=2

(
2

v

)
avi ỹ

∗
v, . . . ,

∑
v∈Nn

∥v∥=d

(
d

v

)
avi ỹ

∗
v)

T .

24

Then we have P̃ ′i (ỹ
∗) = ⟨ωd,ei ,γi⟩. Thus, the remaining task is to prove

Pr
ai,ei

[⟨ωd,ei ,γi⟩ mod q ̸= 0] ≥ σ(1− 1/p).

Since

Pr
ai,ei

[⟨ωd,ei ,γi⟩ mod q ̸= 0]

=
n∑

l∗=1

Pr
ai←Zn

q

[⟨ωd,ei ,γi⟩ mod q ̸= 0 | ei = l∗] · Pr
ei←χd,σ

[ei = l∗]

≥σ
n∑

l∗=1

Pr
ai←Zn

q

[⟨ωd,l∗ ,γi⟩ mod q ̸= 0]

≥σ Pr
ai←Zn

q

[
n⋃

l∗=1

(⟨ωd,l∗ ,γi⟩ mod q ̸= 0)]

=σ Pr
ai←Zn

q

[∃l∗ ∈ [d], ⟨ωd,l∗ ,γi⟩ mod q ̸= 0],

we just need to prove: Prai←Zn
q
[∃l∗ ∈ [d], ⟨ωd,l∗ ,γi⟩ mod q ̸= 0] ≥ 1− 1/p.

For any integer t ≥ 1, define

Wt := (ωt,0,ωt,1, . . . ,ωt,t−1)
T . (24)

Then we only need to prove: Prai←Zn
q
[Wd · γi mod q ̸= 0] ≥ 1− 1/p.

By Proposition 35 (stated below), there exists a unimodular matrix Ud ∈ Zd×d such that

Ud ·Wd =



d! 0 0 0 . . . 0
∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
.
∗ ∗ . . . ∗ ∗ 0
∗ ∗ . . . ∗ ∗ ∗

 .

Here the asterisks denote arbitrary entries. Then we have

Ud ·Wd · γi = (d! · γi(1), ∗, ∗, · · · , ∗)T .

Since

γi(1) =
∑
v∈Nn

∥v∥=1

(
1

v

)
avi ỹ

∗
v =

n∑
j=1

ai(j)ỹ
∗
δj

= ⟨ai, ỹ∗(1)⟩,

we have

Pr
ai←Zn

q

[Wd · γi mod q ̸= 0] = Pr
ai←Zn

q

[Ud ·Wd · γi mod q ̸= 0]

≥ Pr
ai←Zn

q

[d! · γi(1) mod q ̸= 0]

= Pr
ai←Zn

q

[⟨ai, d! · ỹ∗(1)⟩ mod q ̸= 0].

25

Since we assume d! · ỹ(1) mod q ̸= 0 in the statement of Lemma 34, we can apply Lemma 13,
which gives: Prai←Zn

q
[⟨ai, d! · ỹ∗(1)⟩ mod q ̸= 0] ≥ 1− 1/p. Therefore, Prai←Zn

q
[Wd · γi mod q ̸= 0] ≥

1− 1/p. This concludes the proof of Lemma 34.

Proposition 35. For any integer t, k, l such that t ≥ 1, 0 ≤ k < t, 0 ≤ l ≤ t − 1, recall from
Eqns. (21), (23), (24) that wt,k,l :=

∑
0≤η1<η2<···<ηk≤t−1

η1,η2...,ηk ̸=l

∏k
j=1(l−ηj), ωt,l := (wt,t−1,l, wt,t−2,l, . . . , wt,0,l)

T ,

Wt := (ωt,0,ωt,1, . . . ,ωt,t−1)
T . Then there exists a unimodular matrix Ut ∈ Zt×t such that

Ut ·Wt =



t! 0 0 0 . . . 0
∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
.
∗ ∗ . . . ∗ ∗ 0
∗ ∗ . . . ∗ ∗ ∗

 ,

where the asterisks denote arbitrary entries.

Proof. We prove this by induction.

• Base case: When t = 1, W1 = [w1,0,0] = [1].

• Inductive step: Assume that for t > 1, there exists a unimodular matrix Ut−1 ∈ Z(t−1)×(t−1)

such that

Ut−1 ·Wt−1 =


(t− 1)! 0 0 0 . . . 0
∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
.
∗ ∗ . . . ∗ ∗ 0
∗ ∗ . . . ∗ ∗ ∗


Define a unimodular matrix

Xt :=


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
.
0 0 . . . 0 −1 1
0 0 . . . 0 0 1

 ∈ Zt×t.

By Proposition 36 (stated below), we have

Xt ·Wt =


ωT

t,1 − ωT
t,0

ωT
t,2 − ωT

t,1

. . .
ωT

t,t−1 − ωT
t,t−2

ωT
t,t−1

 Proposition 36
=


t · ωT

t−1,0∥0
t · ωT

t−1,1∥0
. . .

t · ωT
t−1,t−2∥0
ωT

t,t−1

 =

[
t ·Wt−1∥0

ωT
t,t−1

]
.

26

Let Ut :=

[
Ut−1 0
0T 1

]
·Xt. Then Ut is a unimodular matrix, and we have

Ut ·Wt =

[
Ut−1 0
0T 1

]
·
[
t ·Wt−1∥0

ωT
t,t−1

]
=


t! 0 0 0 . . . 0
∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
.
∗ ∗ . . . ∗ ∗ 0
∗ ∗ . . . ∗ ∗ ∗

 .

This completes the proof of Proposition 35.

Proposition 36. Adopting the notations in Proposition 35, for any t ≥ 2, 0 ≤ l ≤ t− 2, we have

ωT
t,l+1 − ωT

t,l = (t · ωT
t−1,l∥0)

Proof. It holds that

ωT
t,l+1 − ωT

t,l = (wt,t−1,l+1 − wt,t−1,l, wt,t−2,l+1 − wt,t−2,l, . . . , wt,0,l+1 − wt,0,l).

Since wt,0,l+1 = wt,0,l = 1, the remaining task is to prove

∀1 ≤ k ≤ t− 1, wt,k,l+1 − wt,k,l = t · wt−1,k−1,l.

First, we consider the term

wt,k,l+1 =
∑

0≤η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l+1

k∏
j=1

(l + 1− ηj).

Since l + 1 ̸= 0, we split the summation into two cases: one where η1 = 0, and one where η1 ̸= 0.
Thus, we have

wi,k,l+1 =
∑

0=η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l+1

k∏
j=1

(l + 1− ηj) +
∑

0<η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l+1

k∏
j=1

(l + 1− ηj)

(♠)
= (l + 1) ·

∑
0<η2<···<ηk≤t−1

η2...,ηk ̸=l+1

k∏
j=2

(l + 1− ηj) +
∑

0<η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l+1

k∏
j=1

(l + 1− ηj)

(♢)
= (l + 1) ·

∑
0≤η2<···<ηk≤t−2

η2...,ηk ̸=l

k∏
j=2

(l − ηj) +
∑

0≤η1<η2<···<ηk≤t−2
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj)

= (l + 1) · wt−1,k−1,l + wt−1,k,l,

(25)

where in (♠) we factored out (l + 1− η1) = (l + 1) from the first term, and in (♢) we let we let ηj
in (♢) be ηj − 1 in (♠).

27

Next, we consider the term

wt,k,l =
∑

0≤η1<η2<···<ηk≤t−1
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj).

Since l ̸= t−1, we split the summation into two cases: one where ηk = t−1 and one where ηk ̸= t−1.
Using the same proof idea as in Eqn. (25), we obtain

wt,k,l =
∑

0≤η1<η2<···<ηk<t−1
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj) +
∑

0≤η1<η2<···<ηk=t−1
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj)

=
∑

0≤η1<η2<···<ηk<t−1
η1,η2...,ηk ̸=l

k∏
j=1

(l − ηj) + (l − (t− 1)) ·
∑

0≤η1<η2<···<ηk−1<t−1
η1,η2...,ηk−1 ̸=l

k−1∏
j=1

(l − ηj)

=
∑

0≤η1<···<ηk−1≤t−2
η2...,ηk ̸=l

k−1∏
j=1

(l − ηj) + (l − (t− 1)) ·
∑

0≤η1<η2<···<ηk−1≤t−2
η1,η2...,ηk−1 ̸=l

k−1∏
j=1

(l − ηj)

= wt−1,k,l + (l − (t− 1)) · wt−1,k−1,l

(26)

Subtracting Eqn. (26) from Eqn. (25) gives

wt,k,l+1 − wt,k,l = t · wt−1,k−1,l.

This completes the proof.

4.3 The Recursive Arora-Ge Algorithm

In the following lemma, we show how to recursively call the Arora-Ge algorithm to solve LWE with
prime-power moduli.

Lemma 37. Let q = pκ, where p is prime and κ is some positive integer. Let d ∈ [1, q) be an integer.
Let χd,σ be a σ-thresholded distribution on [d] for some 0 < σ ≤ 1/d. Let n,m,N be positive integers
such that N =

(
n+d
n

)
, m > 10N log q/σ. When d! mod q ̸= 0, there is a poly(m)-time algorithm A

such that, on inputting a random instance {(ai, bi = (⟨ai, s⟩+ ei) mod q)}1≤i≤m of LWEn,m,q,χd,σ
,

Pr
{(ai,bi)}1≤i≤m

[s← A(n,m, d, q, {(ai, bi)}1≤i≤m)] > 1− 2qN · (1− σ(1− 1/p))m − qn/2m.

Remark 38. When d! mod q = 0, we have the polynomial Pi(z) (defined in Eqn. (14)), which is a
consecutive product of d integers, is always 0 modulo q (see Proposition 71 in Appendix C.5). So
the condition d! mod q ̸= 0 has reached the limit of the Arora-Ge algorithm.

Remark 39. This recursive algorithm is specifically required for solving search LWE problems. As
for decision LWE, we can tell the LWE distribution from uniform by calling the Arora-Ge algorithm
once, and checking whether the solution set is non-empty.

28

Proof. Prove by induction on q.

Base case: When q = p, we aim to find an algorithm that, given any positive integer d such
that d! mod p ̸= 0, for an instance {(ai, bi = (⟨ai, s⟩+ ei) mod p)}1≤i≤m of LWEn,m,p,χd,σ

, outputs
s mod p with probability at least 1− 2pN · (1− σ(1− 1/p))m.

Since d! mod p ̸= 0, we have gcd(d!, p) = 1. Using Lemma 31, we can obtain s mod p with
probability at least 1− pN · (1− σ(1− 1/p))m by directly applying Algorithm 1.

Inductive step: When q is composite, suppose that for any integers q̂ such that 1 < q̂ < q,
q̂ | q, there exists an algorithm Â that, given any positive integer d̂ such that d̂! mod q̂ ̸= 0, and
any σ-thresholded distribution χ̂ on [d̂], for an instance {(âi, b̂i = (⟨âi, ŝ⟩ + êi) mod q̂)}1≤i≤m of
LWEn,m,q̂,χ̂d̂,σ

, it holds that

Pr[ŝ← Â(n,m, d̂, q̂, {(âi, b̂i))}1≤i≤m)] > 1− 2q̂N̂ · (1− σ(1− 1/p))m − q̂n/2m,

where N̂ =
(
n+d̂
n

)
.

Our goal is to design an algorithm A such that

Pr[s← A(n,m, d, q, {(ai, bi)}1≤i≤m)] > 1− 2qN · (1− σ(1− 1/p))m − qn/2m.

We design A as follows. It first calls

S ← Arora_Ge(n,m, d, q, {(ai, bi)}1≤i≤m).

Let q′ := q/ gcd(d!, q). Since d! mod q ̸= 0, we have q′ > 1. Define the following event:

E1 : the event that ∀s′ ∈ S, s′ ≡ s (mod q′).

By Lemma 31, we have
Pr[E1] ≥ 1− qN · (1− σ(1− 1/p))m. (27)

If E1 does not happen, A fails. Otherwise, A continues to compute:

e′i :=(bi − ⟨ai, s′⟩) mod q′ = (bi − ⟨ai, s⟩) mod q′ = ei mod q′.

• If d ≤ q′, we have ei = (ei mod q′) = e′i. Then for every 1 ≤ i ≤ m, we have the equation

⟨ai, s⟩ ≡ bi − ei (mod q),

where s is the only unknown. Solving these linear equations yields a solution set S ′ (see
Appendix A for details on solving linear equations over a ring). Let E2 denote the event that
S ′ = {s}. By Lemma 14,

Pr
{ai}i

[E2] = 1− Pr
{ai}i

[∃s′ ̸= s s.t. s′ ∈ S ′] > 1− qn/2m. (28)

If E2 does not happen, A fails. Otherwise, it manages to get s. We have

Pr[s← A(n,m, d, q, {(ai, bi)}1≤i≤m)]

≥1− Pr[¬E1]− Pr[¬E2]
>1− qN · (1− σ(1− 1/p))m − qn/2m

>1− 2qN · (1− σ(1− 1/p))m − qn/2m.

This completes the proof.

29

• If d > q′, A continues to compute

âi := ai mod (q/q′), b̂i := (((bi − ⟨ai, s′⟩ − e′i) mod q)/q′) mod (q/q′).

Next, we define ŝ := (s− s′)/q′, êi := (ei − e′i)/q
′. Then we have

b̂i = (⟨âi, ŝ⟩+ êi) mod (q/q′).

Let d̂ = ⌊d/q′⌋. Then êi ∈ [d̂]. By Lemma 40 (stated below), we have d̂! mod (q/q′) ̸= 0.
Define the following event.

E3 : the event that Â(n,m, d̂, q/q′, {(âi, b̂i))}1≤i≤m) outputs ŝ.

By the inductive hypothesis,

Pr[E3] > 1− 2(q/q′)N̂ · (1− σ(1− 1/p))m − (q/q′)n/2m. (29)

If E3 does not happen, A fails. Otherwise, it computes s by

s = (q′ · ŝ+ (s′ mod q′)) mod q.

Finally we have

Pr[s← A(n,m, d, q, {(ai, bi)}1≤i≤m)]

≥1− Pr[¬E1]− Pr[¬E3]
>1− qN · (1− σ(1− 1/p))m − 2(q/q′)N · (1− σ(1− 1/p))m − (q/q′)n/2m

>1− 2qN · (1− σ(1− 1/p))m − qn/2m.

Since A calls the Arora-Ge algorithm for at most log q times, its running time is still in poly(m).
This completes the proof.

Lemma 40. Let q = pκ where p is prime and κ ≥ 2 is an integer. Let d, q′ be two integers such
that 1 < q′ < d < q, d! mod q ̸= 0, and q′|q. Then

⌊d/q′⌋! mod (q/q′) ̸= 0.

We postpone the proof of Lemma 40 to Appendix C.7.

Finally, we are able to prove Theorem 30. It is just an extension of Lemma 37 to arbitrary
composite moduli.

Proof of Theorem 30. We design the algorithm A as follows. By the Chinese Remainder Theorem,
there exists an index 1 ≤ j∗ ≤ ℓ such that d! mod p

κj∗
j∗ ̸= 0. Let the input LWE instance be

{(ai, bi = (⟨ai, s⟩ + ei) mod q}1≤i≤m. Let s′ := s mod p
κj∗
j∗ , a′i := ai mod p

κj∗
j∗ , b′i := bi mod p

κj∗
j∗ ,

e′i := ei mod p
κj∗
j∗ . Using Lemma 37, there is an algorithm A′ that runs in time poly(m) and

Pr
{ai,ei}i

[s′ ← A′(n,m, d, p
κj∗
j∗ , {(a′i, b′i)}1≤i≤m)] ≥ 1− 2p

κj∗N
j∗ · (1− σ(1− 1/pj∗))

m − p
κj∗n
j∗ /2m.

30

Denote by E1 the event that A′(n,m, d, p
κj∗
j∗ , {(a′i, b′i)}1≤i≤m) outputs s′. If E1 does not happen, we

let the algorithm A fail. Otherwise, we continue by computing

e′i = ei mod p
κj∗
j∗ = (bi − ⟨ai, s⟩) mod p

κj∗
j∗ = (b′i − ⟨a′i, s′⟩) mod p

κj∗
j∗ .

Note that d! mod p
κj∗
j∗ ̸= 0 cannot hold when d ≥ p

κj∗
j∗ , so we have

ei mod q = ei mod p
κj∗
j∗ = e′i.

Thus, for every 1 ≤ i ≤ m, we have the linear equation

⟨ai, s⟩ ≡ bi − ei (mod q),

where s is the only unknown. Solving these linear equations yields a solution set S ′ (see Appendix A
for details on solving linear equations over a ring). Let E2 denote the event that S ′ = {s}. By
Lemma 14,

Pr
{ai}i

[E2] =1− Pr
{ai}i

[∃s′ ̸= s s.t. s′ ∈ S ′] > 1− qn/2ℓm.

Finally, we have

Pr[s← A(n,m, d, q, {(ai, bi)}1≤i≤m)]

≥1− Pr[¬E1]− Pr[¬E2]

>1− 2p
κj∗N
j∗ · (1− σ(1− 1/pj∗))

m − p
κj∗n
j∗ /2m − qn/2ℓm

>1− 2qN · (1− σ/2)m − qn/2m−1,

and A runs in poly(m) time because it only calls A′ once and performs linear algebra operations on
up to m dimensions.

5 Weak PRFs do not exist in NC0[p] for prime p

In this section, we show that weak PRFs do not exist in NC0[p] for prime p.

We first prove that for any prime p, all Boolean circuits in NC[p] of depth k can be converted
into (p− 1)k-degree polynomials over Zp.

Theorem 41. For any prime p, for any Boolean circuit C in NC[p] of depth k with input x ∈ {0, 1}n,
there exists a GF (p) polynomial f(x1, x2, · · · , xn) with degree deg(f) ≤ (p− 1)k such that

f(x1, x2, · · · , xn) = C(x1, x2, · · · , xn).

Let us make two remarks about Theorem 41. First, for constant p, k, the degree deg(f) is in
O(1), and therefore the number of monomials in f is polynomial in n. Second, the polynomial
f(x1, x2, · · · , xn) in GF (p) outputs either 0 or 1 when the input x is binary. When the input
is not binary, the output of f may not be binary. The proof and more details are postponed to
Appendix B.1 and Appendix B.2.

31

Next we show a polynomial-time algorithm that distinguishes all constant-degree polynomials
on Zq from random functions, where the inputs and outputs are restricted to be binary and the
input queries are uniformly random. Here q can even be a composite number with possibly two
distinct prime factors. Let us remark that the attack also works when the inputs and outputs are
not binary. Here we only present the binary case since it suffices for our purpose.

Theorem 42. For any integer q ≥ 2, any constant-degree polynomial f over Zq that outputs a
binary output when the input is binary, there is a poly(n) time algorithm A and an m ∈ poly(n)
such that

Pr
x(1),...,x(m)←{0,1}n

[A({x(i), f(x(i))}1≤i≤m) = 1]

− Pr
x(1),...,x(m)←{0,1}n

[A({x(i),U({0, 1}))}1≤i≤m) = 1] ≥ 1− negl(n),
(30)

Proof. Let f(x) := f(x1, . . . , xn) be a polynomial over Zq such that deg(f) ≤ d, where d is a
constant. Then there are at most N = O(nd) different monomials in f . Let {gi(x)}i∈[N] denote the
set of all monomials (we assume {gi(x)}i∈[N] enumerates all monomials in certain fixed order, e.g.
g1(x) = 1, g2(x) = x1,..., gn+1(x) = xn, gn+2(x) = x21, etc.). Then f(x) can be written as a linear
combination of gi(x). Concretely, let the coefficients be ci ∈ Zq for i = 1, ..., N , and we have

f(x) =

N∑
i=1

cigi(x).

Note that the coefficients ci are not known to the algorithm.

Let m := N log2(q)+ω(log n) ∈ poly(n). We now design an algorithmA running in poly(n) time
that distinguishes f from a truly random function over random queries, i.e., A satisfies Eqn. (30).

A works as follows. On receiving {(x(i), y(i))}1≤i≤m, it first computes gj(x(i)) for every 1 ≤ i ≤
m, 1 ≤ j ≤ N . Then A considers the following linear system of equations of {zj}1≤j≤N

∀1 ≤ i ≤ m,
N∑
j=1

gj(x
(i))zj = y(i) mod q.

A outputs 1 if the linear system has at least one solution, outputs 0 otherwise.

• In the first case, that is, y(i) = f(xi), there is at least one solution: zj = cj for all 1 ≤ j ≤ N .

• In the second case, that is, y(i) ← U({0, 1}), we claim that with overwhelming probability,
the linear system of equations has no solution, i.e., for any z1, . . . , zN ∈ Zq, there exists
some i∗ such that

∑N
j=1 gj(x

(i∗))zj ̸= y(i
∗). We prove this by bounding the probability of its

32

complementary event:

Pr[∃z1, . . . , zN ∈ Zq,∀1 ≤ i ≤ m,
N∑
j=1

gj(x
(i))zj = y(i)]

≤
∑

z1,...,zN∈Zq

Pr[∀1 ≤ i ≤ m,

N∑
j=1

gj(x
(i))zj = y(i)]

=
∑

z1,...,zN∈Zq

∏
1≤i≤m

Pr[

N∑
j=1

gj(x
(i))zj = y(i)]

=
∑

z1,...,zN∈Zq

∏
1≤i≤m

1

2

= qN · 2−m,

where all probabilities are over y ← U({0, 1}m). Since we set m = N log2(q) + ω(log n), we
have

Pr[∀z1, . . . , zN ∈ Zq, ∃1 ≤ i∗ ≤ m,
N∑
j=1

gj(x
(i∗))zj ̸= y(i

∗)] ≥ 1− negl(n).

6 Candidate Weak PRFs

6.1 Weak PRFs at Least as Secure as LWE

In this subsection, we propose new LAM-based weak PRFs that are at least as secure as LWE.

Construction 43. Let n be the security parameter. For any two integers q1, q2 ≥ 2 such that
gcd(q1, q2) = 1, and q1/q2 is super-polynomial in n, define the function family Fq1,q2 :=

{
Fs : Zn

q1 → Zq2

}
s∈Zn

q1

as follows:
Fs(x) := (⟨s,x⟩ mod q1) mod q2. (31)

Theorem 44. Let n be the security parameter. For any B = poly(n), let DB be an arbitrary B-
bounded and balanced distribution. For any two integers q1, q2 ≥ 2 such that gcd(q1, q2) = 1, and
q1/q2 is super-polynomial in n, let Fq1,q2 be defined as in Construction 43. Assume the hardness of
DLWEn,m,q1,DB

for any m = poly(n). Then Fq1,q2 is a weak PRF family.

The proof of Theorem 44 is straightforward by Theorem 24.

6.2 Low-Depth Weak PRFs Candidates from LAM

In this subsection, we construct new candidate weak PRFs in NC0[p1, p2] for any distinct primes
p1, p2.

33

Construction 45. Let n be the security parameter. Let q1, q2 ≥ 2 be two constant integers such
that q1 is not a prime power, gcd(q1, q2) = 1, and (⌊q1/q2⌋)! mod q1 = 0. Let p be a prime number
such that p|q1. Let ℓ = Θ(n). We define the function family Gq1,q2,p := {gS : Zn

q1 → Zp}S∈Zn×ℓ
q1

as
follows:

gS(x) :=

(
ℓ∑

i=1

((⟨si,x⟩ mod q1) mod q2)

)
mod p.

That is, the mapping gS first computes an alternating-moduli instance (⟨si,x⟩ mod q1) mod q2
for every column si of S; then, it sums up all the ℓ instances over Zp to get the final output.

6.2.1 Computability in NC0[q1].

Here we prove the function gS is computable in NC0[q1]. We first show the following theorem, which
we prove later in Appendix B.3, Corollary 65.

Theorem 46. For any constants q1, q2 ≥ 2 and a prime p|q1, the function gS is computable in
NC0[q1].

Let us remark that Theorem 46 holds regardless of whether q1 is a prime power or not. As-
sume q1 = pα1

1 pα2
2 · · · p

αk
k for some constant positive integers α1, α2, · · · , αk and distinct primes

p1, p2, · · · , pk, and then we have NC0[q1] = NC0[p1, p2, · · · , pk] (the proof is given in Appendix B.4).
Specifically, when q1 = pα1

1 is a prime power, the function gS is computable in NC0[p1], where there
exist no weak PRFs according to the result in Section 5. Hence, the smallest safe parameter choice
is k = 2. Concretely, by selecting q1 = pα1

1 pα2
2 , we have gS is both computable in NC0[p1, p2] and

secure against the polynomial time attack in Section 5.

6.2.2 Security Analysis.

The security of our candidate weak PRF family Gq1,q2,p follows from the hardness of DLAMn,m,q1,q2

combined with an application of Lemma 16. However, the hardness of DLAMn,m,q1,q2 with constant
q1, q2 cannot be based on any existing assumptions. Therefore, we provide more evidence for the
security of Gq1,q2,p by analyzing some typical attacks in the following.

Arora-Ge Attack. The Arora-Ge algorithm can break LAM for certain parameter sets, po-
tentially leading to a key recovery attack on the weak PRF family. Note that for any LAM
sample (a, b = ⟨a, s⟩ mod q1 mod q2), we can find an integer e ∈ [⌊q1/q2⌉ + 1] such that b =
(⟨a, s⟩ − q2 · e) mod q1. Specifically, when ((q1 − 1) mod q2) < b < q2, we have e ∈ [⌊q1/q2⌉].

To apply the Arora-Ge attack to the LAM problem, we first collect a set of samples {(ai, bi)}1≤i≤m
with ((q1 − 1) mod q2) < bi < q2 for each 1 ≤ i ≤ m (this is achieved by discarding the samples
with 0 ≤ bi ≤ ((q1 − 1) mod q2) from an instance of LAMn,O(m),q1,q2). Then, for every i, compute

(a′i, b
′
i) := (−q−12 ai mod q1,−q−12 bi mod q1) = (−q−12 ai mod q1, ⟨−q−12 ai, s⟩+ ei) mod q1),

where q−12 ∈ Zq1 satisfies q−12 q2 mod q1 = 1. Then {(a′i, b′i)}1≤i≤m is a set of LWE samples with error
in [⌊q1/q2⌋]. Apply the Arora–Ge algorithm to this set. If (⌊q1/q2⌋)! mod q1 ̸= 0, the algorithm
succeeds in finding s. Otherwise, it learns nothing about s.

34

To summarize, the Arora-Ge algorithm solves the LAM problem when ⌊q1/q2⌋! mod q1 ̸= 0. In
our construction, we add a restriction on q1, q2 that ⌊q1/q2⌋! mod q1 = 0, so the Arora-Ge attack
does not work in our case.

Linear Cryptanalysis. Linear cryptanalysis [Mat93] is a type of attack that attempts to find
linear relationships between the bits of random input–output pairs. Previous works [Tak24,Vau03]
have shown that, for a general hypothesis class H = {h : X → Y}, proving exponential security
against both linear and differential1 cryptanalysis reduces to showing that the following value ϵH is
exponentially small:

ϵH := max
x∈X

Ex′←X
[
εH(x, x

′)2
]1/2

,

where for any x, x′ ∈ X ,

εH(x, x
′) :=

{∑
y,y′∈Y

∣∣Prh←H[h(x) = y, h(x′) = y′]− |Y|−2
∣∣ , if x ̸= x′∑

y∈Y
∣∣Prh←H[h(x) = y]− |Y|−1

∣∣ , if x = x′

Note that if H is pairwise independent, then εH(x, x
′) = 0 for distinct x, x′ ∈ X . Hence, ϵH can be

viewed as a measure of pairwise independence of H.

Instead of bounding ϵGq1,q2,p , we focus on another function family, which is formed by replac-
ing the domain of gS with Zn∗

q1 . Concretely, we define G∗q1,q2,p := {g∗S : Zn∗
q1 → Zp}S, where for

any x ∈ Zn∗
q1 , g∗S(x) := gS(x). By Lemma 15, we have that G∗q1,q2,p and Gq1,q2,p are statistically

indistinguishable given random queries. Therefore, we only need to bound ϵG∗q1,q2,p
.

Theorem 47. ϵG∗q1,q2,p
≤ 1/2O(n).

Proof. For any x,x′ ∈ Zn∗
q1 , let E be the event that there exists two invertible matrices U ∈

Zn×n
q1 ,V ∈ Z2×2

q1 such that U(x∥x′)V =

[
I
0

]
. We have for any fixed x, Prx′←Zn∗

q1
[E] = 1− 1/2O(n).

And for all z, z′ ∈ Zℓ
q1 ,

Pr
S←Zn×ℓ

q1

[STx = z ∧ STx′ = z′ | E]

= Pr
S←Zn×ℓ

q1

[STU

[
I
0

]
V = (z∥z′) | E]

= Pr
S←Zn×ℓ

q1

[ST ·
[
I
0

]
= (z∥z′)V−1 | E]

= Pr
S←Zn×ℓ

q1

[


s1(1), s1(2)
s2(1), s2(2)
. . . , . . .
sℓ(1), sℓ(2)

 = (z∥z′)V−1 | E]

=1/q2ℓ1 .

1Differential cryptanalysis does not apply to weak PRFs. [BR17]

35

Hence, when E happens, STx and STx′ are independent, which means g∗S(x) and g∗S(x
′) are also

independent. By Lemma 16, the statistical distance between g∗S(x) and U(Zp) is 1/2O(n). Therefore,
for y, y′ ∈ Zp, we have

| Pr
S←Zn×ℓ

q1

[g∗S(x) = y, g∗S(x
′) = y′ | E]− 1/p2| = 1/2O(n).

Finally, we have

ϵ2G∗q1,q2,p
= max

x∈Zn∗
q1

Ex′←Zn∗
q1
[εG∗q1,q2,p

(x,x′)2]

= max
x∈Zn∗

q1

(
Pr

x′←Zn∗
q1

[E] · Ex′←Zn∗
q1
[εG∗q1,q2,p

(x,x′)2 | E]

+ Pr
x′←Zn∗

q1

[¬E] · Ex′←Zn∗
q1
[εG∗q1,q2,p

(x,x′)2 | ¬E]
)

≤ max
x∈Zn∗

q1

Ex′←Zn∗
q1
[εG∗q1,q2,p

(x,x′)2 | E] + 1/2O(n)

= max
x∈Zn∗

q1

Ex′←Zn∗
q1
[
(∑
y,y′∈Zp

| Pr
S←Zn×ℓ

q1

[g∗S(x) = y, g∗S(x
′) = y′]− 1/p2|

)2 | E] + 1/2O(n)

≤ max
x∈Zn∗

q1

Ex′←Zn∗
q1
[(
∑

y,y′∈Zp

1/2O(n))2 | E] + 1/2O(n)

=1/2O(n).

Thus, ϵG∗q1,q2,p
is exponentially small, which means G∗q1,q2,p is exponentially secure against linear

cryptanalysis.

BKW Attack. When converting an LAM instance (A,b = (AT s mod q1) mod q2) into an LWE
instance, each entry of b can be expressed as:

bi ≡ ⟨ai, s⟩ − q2ei (mod q1).

Note that the probability that ei = ⌊q1/q2⌋ is smaller than the probability that ei = k for some
k < ⌊q1/q2⌋. This implies that the BKW algorithm [BKW03] provides a 2O(n/ logn) time attack
on the LAM problem with constant moduli. However, we do not know how to apply it directly to
Gq1,q2,p.

Algebraic Attacks. We show in Theorem 48 that when q has at least two distinct prime factors,
the MODq gate cannot be computed by any polynomials in ZN for an arbitrary N , even if N = q. We
emphasize that the MODq gate in the circuit NC0[q], whose output is binary, is not the same as the
modulo-q operation over the ring Zq, whose computability by polynomials over Zq is straightforward.
Our theorem aims to show that when q has at least two prime factors, not all circuits in NC0[q] can
be computed by low-degree polynomials (unlike for prime power q, Theorem 41 shows all circuits in
NC0[q] can be computed by low-degree polynomials). This gives some evidence that our weak PRF
candidates modulo composite, non-prime-power q are unlikely to be broken by algebraic attacks.

Theorem 48. Let N, q be positive integers such that q is not a prime power. Then there is no
polynomial in ZN [X] with a polynomial degree and polynomially many monomials that computes
MODq.

36

Proof. We prove by contradiction. Suppose that there is a polynomial fN in ZN [X] with polynomial
degree and polynomial monomials that computes MODq. Let p be a prime factor of N , define fp
as:

fp = fN mod p.

Then fp is a polynomial in Zp[X] with a polynomial degree and polynomially many monomials.
Note that MODq is a function from {0, 1}n to {0, 1}, then for any (x1, x2, · · ·xn) ∈ {0, 1}n,

fp(x1, x2, · · ·xn) = fN (x1, x2, · · ·xn) mod p = fN (x1, x2, · · ·xn).

Then fp computes MODq. Now we show that fp can be computed with an AC0[p] circuit of depth
2 and polynomial gates. The circuit is as follows:

• For each monomial xi1xi2 · · ·xik , compute it by an AND gate with unbounded fan-in xi1 ∧
xi2 ∧ · · · ∧ xik .

• Sum all monomials using a MODp gate. If a monomial is c · xi1xi2 · · ·xik , then we decompose
it to c copies of xi1xi2 · · ·xik and feed it into different input sectors of the MODp gate.

This indicates that MODq can be computed in AC0[p], which contradicts the following lemma
in [Raz87,Smo87]:

Lemma 49. Let p be a prime number and q is not a power of p. Then MODq is not in AC0[p].

This completes the proof.

6.3 Low-Depth Weak PRF Candidates from LWR

We also propose new candidate weak PRFs based on the LWR problem.

Construction 50. Let n be the security parameter. Let q1, q2 ≥ 2 be two constant integers such
that q1 is not a prime power, and (⌊q1/q2⌋)! mod q1 = 0. Let p be a prime number such that p|q1.
Let ℓ = Θ(n). We define the function family Lq1,q2,p :=

{
LS : Zn

q1 → Zp

}
S∈Zn×ℓ

q1

as follows:

LS(x) :=

(
ℓ∑

i=1

⌊
q2(⟨x, s⟩ mod q1)

q1

⌉
mod q2

)
mod p.

Remark 51. The choice of q1, q2 in this construction is more flexible than that in Construction 45,
since the security of LWR does not necessarily require gcd(q1, q2) = 1.

Similar to the LAM-based construction, Lq1,q2,p is a weak PRF family in NC0[q1] assuming the
hardness of DLWRn,m,q1,q2 for every m = poly(n). We omit the computability and security analysis
of Lq1,q2,p, which are similar to that of Gq1,q2,p.

Specifically, when q2|q1, we further propose a simpler candidate weak PRF family as follows.

Construction 52. Let n be the security parameter. Let q1, q2 ≥ 2 be two constant integers such that
q1 is not a prime power, q2|q1, and (q1/q2)! mod q1 = 0. We define the function family Kq1,q2 :={
Ks : Zn

q1 → Zq2

}
as:

Ks(x) :=

⌊
q2(⟨x, s⟩ mod q1)

q1

⌉
mod q2.

37

In this case, the output of Ks is uniformly distributed over Zq2 . We conjecture that K is a weak
PRF family with security subexponential in n. It is not exponentially secure since the BKW attack
works on LWR even if q2|q1. For example, let q1 = 6, q2 = 2. Then any instance of DLWRn,m,6,2

can be transformed to an instance of LWEn,m,6,U([3]). Modulo this LWE instance by 2, and we will
get a learning parity with noise (LPN) instance with noise rate 1/3. Thus, the BKW attack still
applies. We can follow the methodology in subsection 6.2 to analyze other properties of Kq1,q2 ,
i.e., (i) computablity in NC0[q1], (ii) security against linear cryptanalysis, (iii) security against the
Arora-Ge attack, and (iv) evidence of security against algebraic attacks.

Acknowledgments

We thank anonymous reviewers for their valuable comments.

References

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate
weak pseudorandom functions in AC0 ◦MOD2. In ITCS, pages 251–260. ACM, 2014.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Algebraic algorithms for LWE problems. ACM Commun. Comput. Algebra,
49(2):62, 2015.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In ICALP
(1), volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[APRR24] Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, and Peter Rindal. Im-
proved alternating-moduli prfs and post-quantum signatures. In CRYPTO (8), volume
14927 of Lecture Notes in Computer Science, pages 274–308. Springer, 2024.

[AR16] Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander
graphs. In TCC (B1), volume 9985 of Lecture Notes in Computer Science, pages 27–56,
2016.

[AR24] Irati Manterola Ayala and Håvard Raddum. Zeroed out: Cryptanalysis of weak prfs in
alternating moduli. IACR Cryptol. ePrint Arch., page 2055, 2024.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Correlated pseudorandom functions from variable-density LPN. In FOCS, pages 1069–
1080. IEEE, 2020.

[BCG+21] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Low-complexity weak pseudorandom functions in AC0[MOD2]. In CRYPTO (4), volume
12828 of Lecture Notes in Computer Science, pages 487–516. Springer, 2021.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In TCC (A1), volume 9562 of
Lecture Notes in Computer Science, pages 209–224. Springer, 2016.

38

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring
crypto dark matter: - new simple PRF candidates and their applications. In TCC (2),
volume 11240 of Lecture Notes in Computer Science, pages 699–729. Springer, 2018.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584. ACM, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
719–737. Springer, 2012.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In
Tutorials on the Foundations of Cryptography, pages 79–158. Springer International
Publishing, 2017.

[CCKK21] Jung Hee Cheon, Wonhee Cho, Jeong Han Kim, and Jiseung Kim. Adventures in
crypto dark matter: Attacks and fixes for weak pseudorandom functions. In Public Key
Cryptography (2), volume 12711 of Lecture Notes in Computer Science, pages 739–760.
Springer, 2021.

[DGH+21] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek
Sharma, and Greg Zaverucha. Mpc-friendly symmetric cryptography from alternat-
ing moduli: Candidates, protocols, and applications. In CRYPTO (4), volume 12828 of
Lecture Notes in Computer Science, pages 517–547. Springer, 2021.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[JMN23] Thomas Johansson, Willi Meier, and Vu Nguyen. Differential cryptanalysis of mod-
2/mod-3 constructions of binary weak prfs. In ISIT, pages 477–482. IEEE, 2023.

[LMN89] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. In FOCS, pages 574–579. IEEE Computer Society, 1989.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT, volume
765 of Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[NMSÜ25] Miguel Cueto Noval, Simon-Philipp Merz, Patrick Stählin, and Akin Ünal. On the
soundness of algebraic attacks against code-based assumptions. In EUROCRYPT (6),
volume 15606 of Lecture Notes in Computer Science, pages 385–415. Springer, 2025.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mat. Zametki, 41(4):598–607, 1987.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

39

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 77–82, 1987.

[STA20] Chao Sun, Mehdi Tibouchi, and Masayuki Abe. Revisiting the hardness of binary error
LWE. In ACISP, volume 12248 of Lecture Notes in Computer Science, pages 425–444.
Springer, 2020.

[Ste24] Matthias Johann Steiner. The complexity of algebraic algorithms for LWE. In EU-
ROCRYPT (3), volume 14653 of Lecture Notes in Computer Science, pages 375–403.
Springer, 2024.

[Tak24] Rustem Takhanov. Almost pairwise independence and resilience to deep learning at-
tacks. IACR Commun. Cryptol., 1(3):32, 2024.

[Vau03] Serge Vaudenay. Decorrelation: A theory for block cipher security. J. Cryptol.,
16(4):249–286, 2003.

[YS16] Yu Yu and John P. Steinberger. Pseudorandom functions in almost constant depth
from low-noise LPN. In EUROCRYPT (2), volume 9666 of Lecture Notes in Computer
Science, pages 154–183. Springer, 2016.

A Solving linear equations on a ring

In this section, we formalize a folklore method to solve any linear system of equations over Zq for
any non-prime q. By the Chinese Remainder Theorem, we only need to focus on the prime power
ring Zpκ . We first prove the following proposition.

Proposition 53. Let p be any prime number and m,n, κ be any positive integers. There exists a
polynomial-time algorithm that, for any matrix A ∈ Zm×n

pκ , finds invertible matrices L ∈ Zm×m
pκ ,R ∈

Zn×n
pκ such that

LAR = Λ,

where the matrix Λ ∈ Zm×n
pκ satisfies:

(i) For any 1 ≤ i ≤ m, 1 ≤ j ≤ n, if i ̸= j, then Λ(i, j) = 0.

(ii) For any 1 ≤ i ≤ min(m,n), if Λ(i, i) ̸= 0, then there exists an integer 0 ≤ αi < κ such that

Λ(i, i) = pαi

.

(iii) For any 1 ≤ i1 < i2 ≤ min(m,n), if Λ(i2, i2) ̸= 0, then

Λ(i1, i1) ̸= 0 and Λ(i1, i1) ≤ Λ(i2, i2),

where the comparison “≤” is done on Z.

40

Proof. Any element in Zpκ can be factored as the product of a unit of Zpκ and a power of p. (Note
that 0 = 1 · pκ.) So for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, we find a unit ui,j and an integer 0 ≤ ei,j ≤ κ
such that A(i, j) = ui,j · pei,j .

Without loss of generality, assume n ≤ m. Our goal is to find invertible matrices L ∈
Zm×m
pκ ,R ∈ Zn×n

pκ such that

Λ := LAR =

[
Λ′

0

]
,

where Λ′ = diag{pα1 , . . . , pαn} with 0 ≤ α1 ≤ · · · ≤ αn ≤ κ.

We prove this by induction.

• When m ≥ n = 1, we only need to show there exists an invertible matrix L ∈ Zm×m
pκ such

that
LA = [pα, 0, 0, . . . , 0]T

for some 0 ≤ α ≤ κ. Let
i∗ := argmin

1≤i≤m
ei,1.

We can assume i∗ = 1 without loss of generality, since when i∗ ̸= 1, we can swap the position
of A(i∗, 1) and A(1, 1), which can be done by multiplying on the left an invertible matrix to
A. Let u−11,1 be the inverse of u1,1 on Zpκ . The invertible matrix L is given by

L :=


u−11,1 0 0 . . . 0

−u−11,1 · u2,1 · pe2,1−e1,1 1 0 . . . 0

−u−11,1 · u3,1 · pe3,1−e1,1 0 1 . . . 0

.

−u−11,1 · um,1 · pem,1−e1,1 0 0 . . . 1

 .

Then we have LA = [pe1,1 , 0, 0, . . . , 0]T .

• When m ≥ n > 1, assume the conclusion holds for m− 1, n− 1. Let

(i∗, j∗) := argmin
1≤i≤m,1≤j≤n

ei,j .

Then we have A mod pei∗,j∗ = 0. We can assume i∗ = j∗ = 1 without loss of generality,
since when i∗, j∗ ̸= 1, we can swap the i∗th row and the first row by multiplying on the left
an invertible matrix to A, and swap the j∗th column and the first column by multiplying on
the right an invertible matrix to A.

Let

L0 :=


u−11,1 0 0 . . . 0

−u−11,1 · u2,1 · pe2,1−e1,1 1 0 . . . 0

−u−11,1 · u3,1 · pe3,1−e1,1 0 1 . . . 0

.

−u−11,1 · um,1 · pem,1−e1,1 0 0 . . . 1



41

R0 :=


1 −u1,2 · pe1,2−e1,1 −u1,3 · pe1,3−e1,1 . . . −u1,n · pe1,n−e1,1
0 1 0 . . . 0
0 0 1 . . . 0
.
0 0 0 . . . 1


Let α1 = e1,1. Then we have

L0AR0 =

[
pα1 0
0 A1

]
where A1 ∈ Z(m−1)×(n−1)

pκ satisfies A1 mod pα1 = 0.

By assumption, we have there exist invertible matrices L1 ∈ Z(m−1)×(m−1)
pκ ,R1 ∈ Z(n−1)×(n−1)

pκ

such that

L1A1R1 =

[
Λ′1
0

]
where Λ′1 = diag{pα2 , pα3 , . . . , pαn}, with 0 ≤ α2 ≤ · · · ≤ αn ≤ κ. Because A1 mod pα1 = 0,
we have pα2 mod pα1 = 0. So 0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ κ. Let

L := L0 ·
[
1 0
0 L1

]
,

R :=

[
1 0
0 R1

]
·R0,

Λ′ := diag{pα1 , pα2 , . . . , pαn}.

Then we have L,R are invertible, and

LAR =

[
Λ′

0

]
.

Now we show how to solve linear equations over the ring Zpκ .

Lemma 54. Let p, κ,m, n be any positive integers. There is an algorithm running in time poly(n,m, κ, log p)
that given input A ∈ Zm×n

pκ , b ∈ Zm
pκ , finds the set of solutions of Ax = b. That is, it finds X such

that
x ∈ X ⇔ Ax = b mod pκ.

Proof. Use Proposition 53, we can find

Λ := LAR =

[
Λ′ 0
0 0

]
,

where L ∈ Zm×m
pκ ,R ∈ Zn×n

pκ are invertible, and

Λ′ = diag{pα1 , pα2 , . . . , pαt}

42

for some 0 ≤ t ≤ min(m,n), 0 ≤ α1 ≤ α2 ≤ · · · ≤ αt < κ.

Let y = R−1x, z = Lb. We have Ax = b is equivalent to

Λy = z.

Assume z(i) = vi · pβi , where vi is a unit of Zpκ and 0 ≤ βi ≤ κ for every 1 ≤ i ≤ m. Let
αt+1 = · · · = αm = κ.

• If for all 1 ≤ i ≤ m, αi ≤ βi, we have

Y := {(v1 · pβ1−α1 + c1 · pκ−α1 , . . . , vn · pβn−αn + cn · pκ−αn)T | c1, . . . , cn ∈ Z}

is the solution set of Λy = z.

• Otherwise, the solution set of Λy = z is Y := ∅.

Finally, we have

X := {Ry | y ∈ Y}

is the solution set of Ax = b.

Corollary 55. Let m,n be any positive integers. There is an algorithm running in time poly(n,m, κ, log p)
that given A ∈ Zm×n

pκ , b ∈ Zm
pκ, and an integer n̄ ∈ [1, n], it finds the set X̄ ⊆ Zn̄

pκ such that

x̄ ∈ X̄ ⇔ ∃x ∈ Zn−n̄
pκ s.t. A

[
x̄
x

]
= b.

Proof. As is in the proof of Lemma 54, we find {αi}1≤i≤m, {βi}1≤i≤m, and an invertible matrix
R ∈ Zn×n

pκ .

• If for all 1 ≤ i ≤ m, αi ≤ βi, we have

Ȳ := {(v1 · pβ1−α1 + c1 · pκ−α1 , . . . , vn̄ · pβn̄−αn̄ + cn̄ · pκ−αn̄)T | c1, . . . , cn̄ ∈ Z}

is the set of ȳ such that

∃y ∈ Zn−n̄
pκ s.t. Λ

[
ȳ
y

]
= z.

• Otherwise, the solution set is Ȳ := ∅.

We divide R into two parts, that is, find R̄ ∈ Zn̄×n
pκ and R ∈ Z(n−n̄)×n

pκ such that R =

[
R̄
R

]
. Then

we have

X̄ := {R̄ȳ | ȳ ∈ Ȳ}

is the set of x̄ such that

∃x ∈ Zn−n̄
pκ s.t. A

[
x̄
x

]
= b.

43

B NC[q], Polynomials and Our wPRFs

For any integer d ≥ 0, a circuit C is in NCd[MOD2,poly], abbreviated as NCd[2], if it is of depth
O(logd n) and consists of the following gates: AND with fan-in 2, OR with fan-in 2, NOT, and
MOD2 with polynomial fan-in (namely, on input x ∈ {0, 1}s, where s ∈ poly(n), MOD2(x) outputs∑s

i=1 xi mod 2). Sometimes we omit d in the notation NC[2] and explicitly mention the depth
instead. Similarly, we define NCd[MODq] with an additional polynomial fan-in MODq gate (on
input x ∈ {0, 1}n, output 0 if and only if the number of 1s in x is multiple of q).

For any polynomial f , D(f) denotes the degree of f , and M(f) denotes the number of mono-
mials in the polynomial f . For an integer x, we use Bin(x) to denote the binary representation
of x. For k ∈ N+ and an integer 0 ≤ x < 2k, we use Bink(x) ∈ {0, 1}k to denote the binary
representation with fixed length k. That is, when x < 2k−1, we pad some 0s to Bin(x) to get
Bink(x) (for example, Bin4(5) = 0101). For a binary representation y, we use V (y) to denote the
integer value of y (for example, V (101) = 5). When computing a function using NC[q], we repre-
sent an integer in Zq using ⌈log q⌉ bits by its binary representation, and we use Bq to denote the
set {Bin⌈log q⌉(x)|x ∈ Z, 0 ≤ x < q}. That is, we use Bq to denote the set consisting of binary
representations of elements in Zq.

B.1 How to Compute NC[2] Circuits Using Low-Degree Polynomials

Theorem 56. For any circuit C in NC[2] of depth k with inputs x1, x2, · · · , xn, there exists a
function h(·) ∈ poly(n) and a GF (2) polynomial f(x1, x2, · · · , xn) with D(f) ≤ 2k, M(f) ≤ (h(n)+

2)2
k−1 − 2, such that

f(x1, x2, · · · , xn) = C(x1, x2, · · · , xn).

Remark: The upper bound of M(f) is the value of the following sequence ak, where a1 = h(n),

ak = (ak−1 + 2)2 − 2.

Proof. We prove by induction on k. Suppose that the theorem holds for k− 1, we consider the case
of k. We consider the output gate of C, for which there are 4 cases.

1. AND. Suppose that the output gate of C is AND, then C can be expressed as C = C1 ∧ C2,
where C1, C2 are circuits of depth no larger than k − 1. Then, by the induction assumption,
there are polynomials f1, f2 corresponding to C1, C2, such that

f = f1f2.

Then
D(f) = D(f1) +D(f2) ≤ 2k,

M(f) ≤M(f1)M(f2) ≤ (M(f1) + 1)(M(f2) + 1) + 1 ≤ (h(n) + 2)2
k−1 − 2.

2. OR. Suppose that the output gate of C is OR, then C can be expressed as C = C1 ∨ C2,
where C1, C2 are circuits of depth no larger than k − 1. Then, by the induction assumption,
there are polynomials f1, f2 corresponding to C1, C2, such that

f = 1− (1− f1)(1− f2).

44

Then
D(f) = D(f1) +D(f2) ≤ 2k,

M(f) ≤ (M(f1) + 1)(M(f2) + 1) + 1 ≤ (h(n) + 2)2
k−1 − 2.

3. NOT. Suppose that the output gate of C is NOT, then C can be expressed as C = ¬C1, where
C1 is circuit of depth no larger than k − 1. Then there exists a polynomial f1 corresponding
to C1 such that

f = 1− f1.

Then
D(f) = D(f1) ≤ 2k−1,

M(f) ≤M(f1) + 1 ≤ (h(n) + 2)2
k−1 − 2.

4. MOD2. Suppose that the output gate of C is MOD2, then C can be expressed as C =
C1 ⊕ C2 ⊕ · · · ⊕ Cs, where Ci are circuits of depth no larger than k − 1, and s ≤ h(n). Then
there exists polynomials f1, f2, · · · , fs corresponding to C1, C2, · · · , Cs, such that

f = f1 + f2 + · · ·+ fs.

Then
D(f) = max

i
D(fi) ≤ 2k−1,

M(f) ≤
s∑

i=1

M(fi) ≤ h(n)((h(n) + 2)2
k−2 − 2) ≤ (h(n) + 2)2

k−1 − 2.

B.2 How to Compute NC[p] Circuits Using Low-Degree Polynomials

Theorem 57. For any Boolean circuit C in NC[p] of depth k with inputs x1, x2, · · · , xn ∈ {0, 1}n,
there exists a function h(·) ∈ poly(n) and a GF (p) polynomial f(x1, x2, · · · , xn) with D(f) ≤ (p−1)k,
M(f) ≤ ak, such that

f(x1, x2, · · · , xn) = C(x1, x2, · · · , xn).

Here ak satisfies a0 = 1, for k ≥ 0,

ak+1 = (h(n)ak + 1)p−1 + 1.

Remark: We can derive a upper bound for ak using the following fact:

ak+1 ≤ (h(n)ak + h(n))p−1 − 1 ⇒ ak+1 + 1 ≤ (h(n)(ak + 1))p−1.

Solve this recursive relation, we get

ak ≤ (h(n))−(p−1)/(p−2)
(
2h(n)(p−1)/(p−2)

)(p−1)k
− 1.

For constant k, ak is polynomial in n.

45

Proof. We prove by induction on k. Suppose that the theorem holds for k− 1, we consider the case
of k. We consider the output gate of C, for which there are 4 cases.

1. AND. Suppose the output gate of C is AND, then C can be expressed as C = C1∧C2, where
C1, C2 are circuits of depth no larger than k − 1. Then, by the induction assumption, there
are polynomials f1, f2 corresponding to C1, C2, such that

f = f1f2.

Then
D(f) = D(f1) +D(f2) ≤ (p− 1)k,

M(f) ≤M(f1)M(f2) ≤ a2k−1 ≤ ak.

2. OR. Suppose that the output gate of C is OR, then C can be expressed as C = C1 ∨ C2,
where C1, C2 are circuits of depth no larger than k − 1. Then, by the induction assumption,
there are polynomials f1, f2 corresponding to C1, C2, such that

f = 1− (1− f1)(1− f2).

Then
D(f) = D(f1) +D(f2) ≤ (p− 1)k,

M(f) ≤ (M(f1) + 1)(M(f2) + 1) + 1 ≤ (ak−1 + 1)2 + 1 ≤ ak.

3. NOT. Suppose that the output gate of C is NOT, then C can be expressed as C = ¬C1, where
C1 is circuit of depth no larger than k − 1. Then there exists a polynomial f1 corresponding
to C1 such that

f = 1− f1.

Then
D(f) = D(f1) ≤ (p− 1)k−1,

M(f) ≤M(f1) + 1 ≤ ak−1 + 1 ≤ ak.

4. MODp. Suppose the output gate of C is MODp, then C can be expressed as C =
MODp(C1, C2, · · · , Cs), where Ci are circuits of depth no larger than k − 1, and s ≤ h(n).
Then by the induction assumption, there exists polynomials f1, f2, · · · , fs corresponding to
Ci, 1 ≤ i ≤ h(n), such that

f∗ = f1 + f2 + · · ·+ fs,

f = 1 +

p−1∏
i=1

(i− f∗).

Now we prove that f computes MODp correctly. When f∗ ≡ i (mod p) for some 1 ≤ i ≤ p−1,
we have f ≡ 1 (mod p); when f∗ ≡ 0 (mod p), by Wilson’s theorem, we have f ≡ 1+(p−1)! ≡
1− 1 = 0. Note that Wilson’s theorem requires p to be a prime, and that is why our theorem
only applies to prime p.

Finally, we bound D(f) and M(f) as follows:

D(f) ≤ (p− 1)max
i

D(fi) ≤ (p− 1)k,

M(f) ≤ (
s∑

i=1

M(fi) + 1)p−1 + 1 ≤ (h(n)ak−1 + 1)p−1 + 1 = ak.

46

B.3 How to Compute Our wPRFs in NC0[q] for a General q

In this section, we show that for any integer q (not just for prime power) and any function m(·) :
Zq → {0, 1}t where we assume that we are given a poly(n) size truth table of m, then f(s) =
m(⟨s,a⟩ mod q) can be computed by a circuit in NC0[q].

Theorem 58. For any integer q and any function m(·) : Zq → {0, 1}t where a poly(n) size truth
table of m is given, f(s) = m(⟨s,a⟩ mod q) can be computed by a circuit in NC0[q] of depth ≤ 14.

To prove Theorem 58, we first show how to compute some functionalities in NC0[q].

Lemma 59. For any positive integers q1, q2 such that q1|q2, NC0[q1] ⊆ NC0[q2].

Proof. We only need to show that MODq1 ∈ NC0[q2]. We can compute MODp using MODq1 by
repeating each input for q1/p times. That is,

MODp(x1, x2, · · · , xn) = MODq1(x1, x1, · · · , x2, x2, · · · , xn, xn, · · · , xn),

where each xi appears for q1/p times in the input of MODq1 .

Definition 60 (Number to bits). Define NtB: {0, 1}ℓ → {0, 1}2ℓ−1 as follows: on input x1, x2, · · · , xℓ,
output 2ℓ − 1 bits y1, y2, · · · , y2ℓ−1, such that the number of 1s in yi is V (x).

This functionality can be implemented as follows: for i = 1, ..., ℓ: output xi for 2i−1 times.
This can be computed within depth 1.

Definition 61 (Map). Let m(·) : Zq → Zt
2 be any function on Zq. Define MAPm(·): Bq → Zt

2 as
MAPm(·)(x) 7→ m(V (x)).

We show that MAPm(·) can be computed in NC[q] with depth 4. The idea is: since we assume
a poly(n) size truth table of m is given, suppose it is given in the form of y, m(y) for all possible
inputs y. Suppose the real input is x, all what we need to do is to find the truth table entry where
x = y (this is done in Steps 1, 2 in our algorithm below).

Formally, suppose that the input is x. For any y ∈ Z⌈log q⌉2 , we construct circuits Cy(x) for
y ∈ Bq. Cy(x) tests whether x equals y, and outputs m(V (y)) if x = y. The implementation of Cy
is as follows:

1. Computes zy = MODq(NtB(x),y
∗), where y∗ consists of q − V (y) 1-bits (that is, y∗i = 1, i =

1, 2, · · · , q − V (y)). This can be computed within depth 2.

2. Computes δx,y := ¬zy within depth 1, where δx,y outputs 1 if x equals y, 0 otherwise.

3. Outputs αx,y := δx,y · m(V (y)) by computing α
(i)
x,y = δx,y ∧ m(V (y))(i) in parallel, i =

1, 2, · · · , t. This can be computed within depth 1.

47

To implement MAPm(·), we compute Cy(x) for each y ∈ Bq in parallel. For the i-th output bit
of MAPm(·)(x) (for i = 1, 2, · · · , t) , we compute β(i) = (

∑
y∈Bq α

(i)
x,y) mod q by a MODq gate. To

show the correctness, we have

β(i) = (
∑
y∈Bq

α
(i)
x,y) mod q = (

∑
y∈Bq

δx,y ∧m(V (y))(i)) mod q = m(V (x))i.

Thus we can compute MAPm(·) in NC[q] with depth 4.

Definition 62 (Counting MODq). Define CMODq: {0, 1}n → Bq as follows: Given inputs x1, x2, · · · , xn,
output a binary representation w ∈ Bq, such that

V (w) = (
n∑

i=1

xi) mod q.

CMODq can be implemented similarly to MAP, where we replace NtB(x) with input bits for
CMODq. The implementation is as follows. Given input x, for any y ∈ Bq, we construct the
following circuits Cy(x) for y ∈ Bq:

1. Computes zy = MODq(x,y
∗), where y∗ consists of q − V (y) 1-bits (that is, y∗i = 1, i =

1, 2, · · · , q − V (y)). This can be computed within depth 1.

2. Computes δx,y := ¬zy within depth 1, where δx,y outputs 1 if x equals y, 0 otherwise.

3. Outputs αx,y := δx,y · y by computing α
(i)
x,y = δx,y ∧ y(i) in parallel, i = 1, 2, · · · , t. This can

be computed within depth 1.

To implement CMODq, we compute Cy(x) for each y ∈ Bq in parallel. For the i-th output bit of
CMODq(x) (for i = 1, 2, · · · , ⌈log q⌉) , we compute β(i) = (

∑
y∈Bq α

(i)
x,y) mod q by a MODq gate.

For the same reason as MAPm(·), we can show the correctness of the implementation. Therefore,
CMODq can be implemented in depth 3.

Definition 63 (Addition of n numbers mod q). Define ADDn,q : Bnq → Bq as

ADDn,q(x1,x2, · · · ,xn) 7→ Bin⌈log q⌉(
n∑

i=1

V (xi) mod q).

This can be implemented as CMODq(NtB(x1),NtB(x2), · · · ,NtB(xn)) within depth 4.

Definition 64 (Multiplication of 2 numbers mod q). Define MULTq: B2q → Bq as

MULTq(x,y) 7→ Bin⌈log q⌉(V (x)V (y) mod q).

The multiplication gate MULTq can be implemented by adding y for V (x) times. We first
compute NtB(x) to generate ℓ = 2⌈log q⌉− 1 bits α1, α2, · · · , αl such that

∑l
i=1 αi = V (x). For each

αi, we compute a zi ∈ Bq as follows:

• If αi = 0, then we set zi = Bin⌈log q⌉(0) (that is, ⌈log q⌉ many 0s).

48

• If αi = 1, then we set zi = y.

This can be implemented with the following gates: zi,j = yj∧αi for i = 1, 2, · · · , ℓ, j = 1, 2, · · · , ⌈log q⌉.
Finally, we compute

MULTq(x,y) = ADDl,q(z1, z2, · · · , zℓ).

The total depth required to implement MULTq is 6.

Now we prove Theorem 58.

Proof. The function f(s) = m(⟨s,a⟩ mod q) can be implemented as:

• Parallel compute zi = MULTq(ai, si) with depth 6.

• Compute the sum α = ADDn,q(z) with depth 4.

• Compute MAPm(·)(α) with depth 4.

Thus, f(s) can be implemented by NC[q] circuit of depth ≤ 14.

Note that both the LAM and the LWR functions are maps with poly(n) size truth table, and for
any p that is a factor of q1, CMODp is computable in NC[q1] (by Lemma 59), then as a corollary, our
candidate wPRFs can be computed in NC0[q1]. This exactly proves Theorem 46 in Subsection 6.2.

Corollary 65 (Theorem 46). For any constants q1, q2 ≥ 2 and a prime p|q1, the function gS is
computable in NC0[q1].

B.4 How to Reduce NC[q] for composite q to Smaller Moduli

We first show that for q = pk, NC0[q] = NC0[p]. Let us start from showing how to implement
MODpk using MODp.

Definition 66 (Rounding by p). Define Rbyp:{0, 1}n → {0, 1}n as follows: Given an input x ∈
{0, 1}n such that the number of 1s in x is t, Rbyp outputs a vector y ∈ {0, 1}n such that the number
of 1s in y is ⌊t/p⌋.

Rbyp is useful for providing the carries when adding numbers mod modpk. Rbyp can be imple-
mented as follows. For i = 1, ..., n, let

Σi := MODp(x1, x2, · · · , xi).

We define Σ0 = 0. Then we compute yi = Σi−1∧ (¬Σi), i = 1, 2, · · · , n. This can be computed with
a NOT gate and an AND gate. Therefore, the Rbyp functionality can be implemented by a depth-3
NC[p] circuit.

Lemma 67 (Correctness of Rbyp). y defined above satisfies: the number of 1s in y is ⌊t/p⌋.

49

Proof. Define Γi as
Γi = (x1 + x2 + · · ·+ xi) mod p, i = 1, 2, · · ·n,

and Γ0 = 0. For i ∈ [p], let Si := {j|1 ≤ j ≤ n,Γj−1 + 1 ≡ Γj ≡ i (mod p)}. Then, since we
compute yi by Σi−1 ∧ (¬Σi), the number of 1s in y equals the size of S0. Let S = ∪p−1i=0Si, and
i1 < i2 < · · · < ik be all elements in S. We know that xi = 1 if and only if Γi−1 + 1 ≡ Γi (mod p),
therefore |S| = t. By induction, iℓ ∈ Sℓ mod q. Then we have the following relations:

p−1∑
i=0

|Si| = |S| = t, (32)

|S1| ≥ |S2| ≥ · · · ≥ |Sp−1| ≥ |S0| ≥ |S1| − 1. (33)

By (32) and (33), we get |S0| = ⌊t/p⌋.

Lemma 68. Let k be any positive integer. MODpk can be computed in NC[p] with depth ≤ 3k.

Proof. Let x1, x2, · · · , xn denote the input, and suppose the number of 1s in the input is t. We
sequentially compute the sequences Yi (for i = 1, 2, · · · , k) as follows:

• Y1 = (x1, x2, · · · , xn).

• Yi = Rbyp(Yi−1).

We know Yi can be computed in NC[p] within depth 3i − 3, and by the functionality of Rbyp, the
number if 1s in Yi is ⌊t/pi−1⌋. Thus, the functionality MODpk can be computed as follows:

MODpk(x1, x2, · · · , xn) = ∨ki=1MODp(Yi).

Now we have the following facts:

1. For any integers q1, q2 such that q2|q1, NC0[q2] ⊆ NC0[q1] (by Lemma 59).

2. For any integer p and constant k, NC0[pk] = NC0[p] (by Lemma 68).

3. For any integers q1, q2 such that gcd(q1, q2) = 1, NC0[q1q2] = NC0[q1, q2]. This follows from
Lemma 59 and the fact that MODq1q2 = ¬((¬MODq1) ∧ (¬MODq2)).

Therefore, for constant positive integers α1, α2, · · · , αk and distinct primes p1, p2, · · · , pk, we
have the following relations:

NC0[pα1
1 pα2

2 · · · p
αk
k] = NC0[pα1

1 , pα2
2 , · · · , pαk

k] = NC0[p1, p2, · · · , pk].

50

C Other Omitted Proofs

C.1 Proof of Lemma 13

Proof. Let α be the smallest integer such that pα · x ≡ 0 (mod pκ).

• If pα · b ̸≡ 0 (mod pκ), we have

Pr
a←Zn

pκ

[⟨a,x⟩ ̸≡ b (mod pκ)] ≥ Pr
a←Zn

pκ

[pα · ⟨a,x⟩ ̸≡ pα · b (mod pκ)]

= Pr
a←Zn

pκ

[0 ̸≡ pα · b (mod pκ)]

=1

• If pα · b ≡ 0 (mod pκ), then we may write b ≡ pκ−α · b′ (mod pκ). Because x ̸= 0, we have
α ≥ 1, and there exists some y ∈ Zpκ such that x = pκ−α ·y and y mod p ̸= 0. Let j∗ ∈ [1, n]
be some index for which y(j∗) mod p ̸= 0. Then

Pr
a←Zn

pκ

[⟨a,x⟩ ̸≡ b (mod pκ)] = Pr
a←Zn

pκ

[pκ−α⟨a,y⟩ ̸≡ pκ−α · b′ (mod pκ)]

≥ Pr
a←Zn

pκ

[pκ−1⟨a,y⟩ ̸≡ pκ−1 · b′ (mod pκ)]

= Pr
a←Zn

pκ

[⟨a,y⟩ ̸≡ b′ (mod p)]

= Pr
a←Zn

pκ

[a(j∗)y(j∗) ̸≡ b′ −
∑

1≤j≤n
j ̸=j∗

a(j)y(j) (mod p)]

=1− 1/p,

where the last “=” is due to

∀r ∈ Z, Pr
a(j∗)←Zpκ

[a(j∗)y(j∗) ̸≡ r (mod p)] = 1− 1/p.

51

C.2 Proof of Lemma 14

Proof. For any x′ ∈ Zn
q such that x′ ̸= x, let ∆x = x′ − x ̸= 0. We have

Pr
{ai}i

[∀1 ≤ i ≤ m, ⟨ai,x′⟩ = bi]

= Pr
{ai}i

[∀1 ≤ i ≤ m, ⟨ai,x′⟩ = ⟨ai,x⟩]

= Pr
{ai}i

[∀1 ≤ i ≤ m, ⟨ai,∆x⟩ = 0]

=

m∏
i=1

Pr
ai

[⟨ai,∆x⟩ = 0]

=
m∏
i=1

ℓ∏
j=1

Pr
ai

[⟨ai,∆x⟩ mod p
κj

j = 0]

≤
m∏
i=1

ℓ∏
j=1

(1/pj)

≤2−ℓm,

where the fourth “=” uses the Chinese Remainder Theorem, and the first “≤” uses Lemma 13.
Then,

Pr
{ai}i

[∃x′ ∈ Zn
q , (x′ ̸= x) ∨ (∀1 ≤ i ≤ m, ⟨ai,x′⟩ = bi)]

≤
∑

x′∈Zn
q , x

′ ̸=x

Pr
{ai}i

[∀1 ≤ i ≤ m, ⟨ai,x′⟩ = bi]

≤
∑

x′∈Zn
q , x

′ ̸=x

2−ℓm

<qn/2ℓm

C.3 Proof of Lemma 15

Proof. For any prime factor p of q, we have Pr[∀1 ≤ i ≤ n, p|xi] = 1/pn. Then by union bound,

Pr
x1,··· ,xn

[gcd(q, x1, x2, · · · , xn) ̸= 1] ≤
∑

p|q, p prime

Pr
x1,··· ,xn

[∀1 ≤ i ≤ n, p|xi] ≤
∑

p|q, p prime

1

pn
< ζ(n)− 1,

where we introduce the Riemann zeta function by ζ(n) :=
∑∞

i=1 1/i
n. By Euler’s product formula,

ζ(n) =
∏

p prime

1

1− p−n
<

1

1− 2−n
.

Therefore,

Pr
x1,··· ,xn

[gcd(q, x1, x2, · · · , xn) ̸= 1] <
1

1− 2−n
− 1 < 2−n.

52

C.4 Proof of Lemma 16

Proof. We define f(n) as:
f(n) = max

y1,y2∈[q]
(Qn(y1)−Qn(y2)).

Then f(1) ≤ 1, and ∀y1, y2 ∈ [q], Qn(y1)−Qn(y2) ≤ f(n).

Our goal is to show that f(n) ≤ (1− c)n−1 for all sufficiently large n.

For Qn, we have the following recursive formula: for all t ∈ [q],

Qn(t) =

p−1∑
i=0

P(i mod p)Qn−1((t− i) mod q)

Since p ≥ q, there exists {αj,i ≥ c}i,j∈[q] such that ∀j ∈ [q],
∑q−1

i=0 αj,i = 1, and for all t ∈ [q],

Qn(t) =

q−1∑
i=0

αt,iQn−1(i).

For any t1, t2 ∈ [q], we have

Qn(t1)−Qn(t2) =

q−1∑
i=0

(αt1,i − αt2,i)Qn−1(i)

=
∑
i∈S+

βt1,t2,iQn−1(i)−
∑
j∈S−

γt1,t2,jQn−1(j)

≤

∑
i∈S+

βt1,t2,i

Qn−1(i
∗)−

∑
j∈S−

γt1,t2,j

Qn−1(j
∗),

where S+ ⊆ [q] is the set of i such that βt1,t2,i = αt1,i − αt2,i ≥ 0, and S− ⊆ [q] is the set of j such
that −γt1,t2,j = αt1,j − αt2,j < 0. i∗ is the index such that Qn−1(i

∗) = maxi∈S+ Qn−1(i), j∗ is the
index such that Qn−1(j

∗) = minj∈S− Qn−1(j). Note that S+ ∪ S− = [q]. We have∑
i∈S+

βt1,t2,i −
∑
j∈S−

γt1,t2,j

=
∑
i∈S+

(αt1,i − αt2,i) +
∑
j∈S−

(αt1,j − αt2,j)

=
∑

i∈S+∪S−

αt1,i −
∑

i∈S+∪S−

αt2,i

=1− 1 = 0

Note that S+ ̸= ∅. Otherwise, αt1,i < αt2,i,∀i ∈ [q], which contradicts the fact that
∑q−1

i=0 αt1,i =∑q−1
i=0 αt2,i = 1. Suppose i∗ ∈ S+, then we have

∑
i∈S+

βt1,t2,i =
∑
i∈S+

αt1,i −
∑
i∈S+

αt2,i ≤
q−1∑
i=0

αt1,i − αt2,i∗ ≤ 1− c.

53

Then for any t1, t2 ∈ [q], we have:

Qn(t1)−Qn(t2) ≤
∑
i∈S+

βt1,t2,i(Qn−1(i
∗)−Qn−1(j

∗)) ≤
∑
i∈S+

βt1,t2,if(n− 1) ≤ (1− c)f(n− 1).

Therefore,
f(n) ≤ (1− c)f(n− 1),

which means
f(n) ≤ (1− c)n−1, ∀n ≥ 1.

C.5 Proof of Corollary 32

We only need to prove Lemma 69 in the following. The proof of Corollary 32 is a simple combination
of Lemma 31 and Lemma 69.

Lemma 69. Let q = pκ, where p is prime and κ is some positive integer. Let d ∈ [1, q) be an
integer. Let χd,σ be a σ-thresholded distribution on [d] for some 0 < σ ≤ 1/d. Let n,m be positive
integers. Let {(ai, bi = (⟨ai, s⟩+ ei) mod q)}1≤i≤m be an instance of LWEn,m,q,χd,σ

, and let

S ← Arora_Ge(n,m, d, q, {(ai, bi)}1≤i≤m).

Then for any s′ ∈ Zn
q satisfying s′ ≡ s (mod q/ gcd(d!, q)), we have s′ ∈ S.

Proof. Let P ′i (y), P̃
′
i (ỹ) be as defined in Eqns. (15), (18). Let Y, Ỹ be as defined in Eqns. (19) , (20),

and Fs be the mapping from Lemma 33. Since s ∈ S, there exists some y∗ = (y∗T(1),y
∗T
(2), . . . ,y

∗T
(d))

T ∈
Y such that y∗(1) = s. Let ỹ∗ := (ỹ∗T(1), ỹ

∗T
(2), . . . , ỹ

∗T
(d))

T := Fs(y
∗) ∈ Ỹ. Then we have

ỹ∗(1) ≡ s− y∗(1) ≡ 0 (mod q).

For any v ∈ Nn s.t. 1 ≤ ∥v∥1 ≤ d, define

∆ỹv :=

{
s(j)− s′(j), ∃1 ≤ j ≤ n, 1 ≤ k ≤ d s.t. v = kδj

0, otherwise. (34)

For each 1 ≤ k ≤ d, let ∆ỹ(k) denote the vector formed by sorting {∆ỹv}∥v∥1=k in reverse lexico-
graphical order of v. Then we have ∆ỹ(1) = s− s′. Let ∆ỹ := (∆ỹT

(1),∆ỹT
(2), . . . ,∆ỹT

(d))
T .

By Lemma 70 (stated below), we have P̃ ′i (∆ỹ) ≡ 0 (mod q). Since ỹ∗ ∈ Ỹ, it follows that
P̃ ′i (ỹ

∗) ≡ 0 (mod q). Define ỹ′∗ := (ỹ′∗T(1) , ỹ
′∗T
(2) , . . . , ỹ

′∗T
(d))

T := ỹ∗+∆ỹ. Then ỹ′∗(1) ≡ s− s′ (mod q),
and

P̃ ′i (ỹ
′∗) ≡ P̃ ′i (ỹ

∗) + P̃ ′i (∆ỹ) ≡ 0 (mod q).

Hence ỹ′∗ ∈ Ỹ. By Lemma 33, there exists y′∗ = (y∗T(1),y
∗T
(2), . . . ,y

∗T
(d))

T ∈ Y such that

y′∗(1) ≡ s− ỹ′∗(1) ≡ s′ (mod q).

So we have s′ ∈ S.

54

Lemma 70. Adopting the notation in the statement and proof of Lemma 69, we have

∀1 ≤ i ≤ m, P̃ ′i (∆ỹ) ≡ 0 (mod q),

where P̃ ′i (ỹ) is defined in Eqn. (18).

Proof. For any integers t, k, l such that t ≥ 1, 0 ≤ k < t, 0 ≤ l ≤ t − 1, let wt,k,l be as defined in
Eqn. (21). We have

P̃ ′i (∆ỹ) ≡
d∑

k=1

wd,d−k,ei
∑
v∈Nn

∥v∥1=k

(
k

v

)
avi ∆ỹ∗v.

≡
d∑

k=1

wd,d−k,ei

n∑
j=1

(
k

kδj

)
a
kδj
i ∆ỹ∗kδj

≡
d∑

k=1

wd,d−k,ei

n∑
j=1

ai(j)
k(s′(j)− s(j))

≡
n∑

j=1

(s′(j)− s(j))
d∑

k=1

wd,d−k,eia(j)
k

≡
n∑

j=1

(s′(j)− s(j))
∏
η∈[d]

(ai(j) + (ei − η)) (mod q)

Since
s′ ≡ s (mod q/gcd(d!, q)),

it follows that
∀1 ≤ j ≤ n, s′(j)− s(j) ≡ 0 (mod q/gcd(d!, q)).

Meanwhile, by Proposition 71 (stated below), we have

∀1 ≤ j ≤ n,
∏
η∈[d]

(ai(j) + (ei − η)) ≡ 0 (mod d!).

As a result,
1 ≤ j ≤ n, (s′(j)− s(j))

∏
η∈[d]

(ai(j) + (ei − η)) ≡ 0 (mod q),

which implies
P̃ ′i (∆ỹ∗) ≡ 0 (mod q).

This completes the proof.

Proposition 71. For any x ∈ Z, d ∈ N+,∏
η∈[d]

(x− η) ≡ 0 (mod d!)

55

Proof. Without loss of generality, assume 0 ≤ x < d!. Define fd(x) :=
∏

η∈[d](x− η). It suffices to
prove fd(x) ≡ 0 (mod d!).

• When 0 ≤ x < d, there exists some η ∈ [d] such that x− η = 0, so fd(x) = 0.

• When d ≤ x < d!, we have
fd(x)

d!
=

x!

(x− d)!d!
=

(
x

d

)
is an integer, so it holds that fd(x) ≡ 0 (mod d!).

C.6 Proof of Lemma 33

Proof. We have

(s− z)v =

n∏
j=1

(s(j)− z(j))v(j)

=
∑

0≤t≤v

n∏
j=1

(−1)t(j) ·
(
v(j)

t(j)

)
· s(j)v(j)−t(j) · z(j)t(j)

=sv +
∑

0<t≤v
(−1)∥t∥1

(
v

t

)
sv−tzt

where we adopt the shorthand
(
v
t

)
:=
∏n

j=1

(v(j)
t(j)

)
. For every x = (xT

(1),x
T
(2), . . . ,x

T
(d))

T = (xδ1 , xδ2 , . . . , xdδn)
T ∈

ZN
q , define

fs(x,v) := (sv +
∑

0<t≤v
(−1)∥t∥1

(
v

t

)
sv−t · xt) mod q,

and then let
Fs(x) := (fs(x, δ1), fs(x, δ2), . . . , fs(x, dδn))

T .

A direct calculation shows that

Fs((z
δ1 , zδ2 , . . . , zdδn)T) = ((s− z)δ1 , (s− z)δ2 , . . . , (s− z)dδn)T mod q.

Since for all 1 ≤ i ≤ m,
P̃i(z̃)

∣∣
z̃=s−z ≡ Pi(z) (mod q),

it follows that
P̃ ′i (ỹ)

∣∣
ỹ=Fs(y)

≡ P ′i (y) (mod q).

For any y∗ ∈ Y, let ỹ∗ := Fs(y
∗), and then we have P̃ ′i (ỹ

∗) ≡ P ′i (y
∗) ≡ 0 (mod q), which means

ỹ∗ ∈ Ỹ. Hence, Fs is a mapping from Y to Ỹ.

Then we show Fs is a bijection. We first express fs in the vector form. For every v ∈ Nn such
that 0 < ∥v∥ ≤ d, define a vector µs,v = (µs,v,δ1 , µs,v,δ2 , . . . , µs,v,dδn)

T ∈ ZN
q such that

fs(x,v) ≡ sv + ⟨µs,v,x⟩ (mod q).

56

Notably, µs,v,v = ±1, and µs,v,v′ = 0 for every v′ such that v′ ̸= v and ∥v′∥1 ≥ ∥v∥1.
Let Ms = (µs,δ1 ,µs,δ2 , . . . ,µs,dδn)

T . Then Ms is a lower-triangular matrix with each diagonal
entry being ±1. Consequently, Ms is invertible. Moreover,

Msx+ (sδ1 , sδ2 , . . . , sdδn)T

≡(⟨µs,δ1 ,x⟩+ sδ1 , ⟨µs,δ2 ,x⟩+ sδ2 , . . . , ⟨µs,dδn ,x⟩+ sdδn)T

≡(fs(x, δ1), fs(x, δ2), . . . , fs(x, dδn))T

≡Fs(x) (mod q),

showing that Fs is indeed a bijection.

Finally, we verify that if Fs(y
∗) = ỹ∗, then ỹ∗(1) = s− y∗(1). In fact,

∀1 ≤ j ≤ n, ỹ∗δj ≡ fs(y
∗, δj) ≡ s(j)− y∗δj (mod q).

This establishes ỹ∗(1) ≡ s− y∗(1) (mod q), completing the proof of Lemma 33.

C.7 Proof of Lemma 40

Proof. Since d > q′, we have d− d/q′ > q′− 1,, and thus d−⌊d/q′⌋ ≥ q′. Then, there must exist an
integer x ∈ (⌊d/q′⌋, d] such that q′ | x. Consequently, we have:

⌊d/q′⌋! | (d!/x) | (d!/q′).

This implies
gcd(⌊d/q′⌋!, q/q′) ≤ gcd(d!/q′, q/q′) = gcd(d!, q)/q′.

Since d! mod q ̸= 0, we know that gcd(d!, q) < q. Thus

gcd(⌊d/q′⌋!, q/q′) ≤ gcd(d!/q′, q/q′) < q/q′,

which means ⌊d/q′⌋! mod (q/q′) ̸= 0.

D The output of Arora-Ge Algorithm when q = pκ

Table 3 shows what we learn by running the Arora-Ge algorithm once on LWEn,m,q,χd,σ
. For certain

q and d, we indicate in the table that the output is s mod u, if the Arora-Ge algorithm outputs the
set {s′ ∈ Zn

q | s′ ≡ s (mod u)}, where s is the secret of the input LWE instance and u is a positive
integer. Notably, when the output is s mod 1, it means the algorithm outputs the set Zn

q , i.e., we
learn nothing about s.

57

q d output q d output q d output q d output
2 1 s mod 2 16 6 s mod 1 64 7 s mod 4 27 5 s mod 9

2 2 s mod 1 32 1 s mod 32 64 8 s mod 1 27 6 s mod 3

4 1 s mod 4 32 2 s mod 16 3 1 s mod 3 27 7 s mod 3

4 2 s mod 2 32 3 s mod 16 3 2 s mod 3 27 8 s mod 3

4 3 s mod 2 32 4 s mod 4 3 3 s mod 1 27 9 s mod 1

4 4 s mod 1 32 5 s mod 4 9 1 s mod 9 81 1 s mod 81

8 1 s mod 8 32 6 s mod 2 9 2 s mod 9 81 2 s mod 81

8 2 s mod 4 32 7 s mod 2 9 3 s mod 3 81 3 s mod 27

8 3 s mod 4 32 8 s mod 1 9 4 s mod 3 81 4 s mod 27

8 4 s mod 1 64 1 s mod 64 9 5 s mod 3 81 5 s mod 27

16 1 s mod 16 64 2 s mod 32 9 6 s mod 1 81 6 s mod 9

16 2 s mod 8 64 3 s mod 32 27 1 s mod 27 81 7 s mod 9

16 3 s mod 8 64 4 s mod 8 27 2 s mod 27 81 8 s mod 9

16 4 s mod 2 64 5 s mod 8 27 3 s mod 9 81 9 s mod 1

16 5 s mod 2 64 6 s mod 4 27 4 s mod 9

Table 3: Calling Arora-Ge Once for LWE

58

	Introduction
	Main contributions
	Overview of Arora-Ge on LWE with prime power modulus

	Preliminary
	Hardness of Learning with Alternating Modulus
	Search to Decision Reduction for LAM with Binary Secrets
	Reduction from Search-LWE to Search-LAM
	Reduction from Decisional-LWE to Decisional-LAM
	Reduction from Search-LAM to Search-LWE

	Arora-Ge Algorithm for LWE with Composite Modulus
	The Algorithm
	The Solution Space of the Algorithm
	The Recursive Arora-Ge Algorithm

	Weak PRFs do not exist in NC0[p] for prime p
	Candidate Weak PRFs
	Weak PRFs at Least as Secure as LWE
	Low-Depth Weak PRFs Candidates from LAM
	Computability in NC0[q1].
	Security Analysis.

	Low-Depth Weak PRF Candidates from LWR

	Solving linear equations on a ring
	NC[q], Polynomials and Our wPRFs
	How to Compute NC[2] Circuits Using Low-Degree Polynomials
	How to Compute NC[p] Circuits Using Low-Degree Polynomials
	How to Compute Our wPRFs in NC0[q] for a General q
	How to Reduce NC[q] for composite q to Smaller Moduli

	Other Omitted Proofs
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Corollary 32
	Proof of Lemma 33
	Proof of Lemma 40

	The output of Arora-Ge Algorithm when q=p

