
Multiparty Homomorphic Secret Sharing and More from LPN

and MQ

Geoffroy Couteau1, Naman Kumar2 and Xiaxi Ye3

1 Université Paris Cité, CNRS, IRIF
2 Oregon State University

3 Tsinghua University

Abstract. We give the first constructions of multiparty pseudorandom correlation generators, dis-
tributed point functions, and (negligible-error) homomorphic secret sharing for constant-degree poly-
nomials for any number of parties without using LWE or iO. Our constructions are proven secure under
the combination of LPN with dimension n, 2n samples, and noise rate nε−1 for a small constant ε, and
MQ with n variables and n1+δ equations.
As applications of our results, we obtain from the same assumptions secure multiparty computation
protocols with sublinear communication and silent preprocessing, as well as private information retrieval
for M servers and size-λd databases with optimal download rate and client-to-server communication
Md · λ3.

1 Introduction

Homomorphic Secret Sharing (HSS) is a primitive that allows two or more parties to perform a distributed
computation on private inputs. Informally, an N -party HSS scheme randomly splits an input x into N
shares on which the parties can then locally evaluate an arbitrary function f , with the outputs of the local
computations corresponding to a secret sharing of f(x), the computation on the private, shared input. First
introduced in [BGI16a], HSS can be viewed as the secret sharing analogue of homomorphic encryption.

The work of [BGI16a] introduced a 2-party HSS scheme for the class of Restricted Straight-line Mul-
tiplication (RMS) Programs under the decisional Diffie-Hellman (DDH) assumption, which are powerful
enough to encapsulate the general classes of NC1 circuits and polynomial-length branching programs.
Since then, a long line of work has extended their results to form HSS schemes with improved efficiency
[BGI17,BCG+17,ARS24], schemes from wider classes of assumptions [OSY21,RS21,ADOS22,BCG+19,CM21],
and more recently to schemes that support more than two parties [COS+22,BCM23,DIJL23,CK24]. Vari-
ous further works have shown the many applications of HSS to domains like sublinear secure computation,
Private Information Retrieval (PIR), generating correlated randomness and more.

1.1 HSS for multiple parties

While various works have attempted to extend the techniques of [BGI16a] to multiple parties, until recently
solutions to the general setting of N ≥ 3 parties remained limited to constructions that used FHE or iO.
This state of affairs was recently improved in two papers:

– In [DIJL23], the authors achieved an N -party HSS scheme that supports multivariate polynomials of
degree log/log log for any N under a sparse variant of the LPN assumption. Unfortunately, a critical
bottleneck inherent to their construction was the presence of inverse-polynomial correctness error, which
makes it unsuitable for several applications, such as direct compilation into a sublinear MPC protocol
(the authors of [DIJL23] do achieve a sublinear MPC protocol, however via a much less straightforward
route) or constructing pseudorandom correlation generators.

– In [CK24], the authors developed a multiparty HSS scheme for the class of XOR-AND of constant-degree
polynomials with no correctness error from a combination of the DDH/DCR and LPN assumptions
along with an assumption on the existence of a constant-depth pseudorandom generator. However, this
construction is limited to 8 parties.

In conclusion, non-FHE based techniques for multiparty HSS remain restricted to one of two construc-
tions: a general N -party HSS from the sparse-LPN assumption that has the caveat of an inverse-polynomial
correction error, or an HSS scheme for up to 8-parties using various combinations of assumptions along with
LPN and constant-depth PRGs.

1.2 Sublinear secure computation in the multiparty setting

HSS has been used extensively in the design of protocols for sublinear secure computation, where the goal
is to achieve per-party communication sublinear in the size of the circuit being computed. Traditional ap-
proaches to sublinear MPC relied on FHE. This state of affairs was changed in [BGI16a], who used HSS to
obtain a 2-party secure computation scheme that supports arbitrary layered Boolean circuits with commu-
nication complexity of O(s/log s) bits. Since then, numerous developments have resulted in a rich landscape
of constructions that imply sublinear MPC for arbitrary layered circuits. However the state of affairs for
N ≥ 3 parties is more limited.

– The work of [DIJL23] provides a construction of N -party sublinear MPC with O(s/log log s) communi-
cation for any N from the sparse-LPN assumption.

– The work of [ARS24] presents a general protocol for sublinear MPC with O(s/log log s) communication
based on a primitive called Succinct HSS; this scheme does not yield an N -party HSS as an intermediary,
however.

– A series of works based on the nesting approach [COS+22,BCM23,CK24] constructed sublinear MPC for
an increasing number of parties and culminated in a 10-party protocol with O(s/log log log s) communi-
cation from one of DDH/DCR/LWE, an assumption on the existence of constant-depth pseudorandom
generators and a superpolynomial variant of the LPN assumption.

1.3 Our contributions

In this work, we revisit the question of general HSS schemes for any N parties and improve upon this state
of affairs. Our techniques follow upon and significantly improve the nesting strategy for HSS construction
to yield improvements on many longstanding open problems. Our results form a culmination of a long line
of (theoretical) works on low-communication MPC initiated by [BGI16a], which solves several important
long-standing open problems (such as multiparty PIR without FHE or iO); expanding this technique to
N -party HSS has been stated as a major open problem in multiple works.

An N -Party Homomorphic Secret Sharing Scheme from LPN and MQ. Our first contribution is the con-
struction of an N -party HSS scheme that supports the class XOR-AND of constant-degree polynomials for
arbitrary constant N based on the (standard) Learning Parity with Noise (LPN) and the Multivariate
Quadratic (MQ) assumptions. Our scheme is the first HSS scheme for any arbitrary number of parties that
supports negligible correctness error (beyond schemes based on Spooky encryption [DHRW16] or iO); we
furthermore broaden the class of assumptions under which multiparty HSS can be constructed.

An N -Party Distributed Point Function Scheme from LPN and MQ. The key step in the construction of
our N -HSS scheme is an iterative construction of N -party distributed point functions with short key size.
Introduced in [BGI15], Distributed Point Functions (DPFs) form a significant subclass of general Function
Secret Sharing schemes that allow parties to obtain small keys corresponding to some function f that allow
distributed, local evaluation of their independent inputs to obtain output shares of the inputs evaluated on
f . DPFs have wide applicability to several MPC protocols including PIR and the generation of correlated
randomness. In this work, we improve upon known constructions of DPF to yield a new construction from
the LPN and MQ assumptions for any constant N number of parties and with low key size.

New PCGs for Constant-Degree Correlations. As an immediate application of our N -party HSS for constant-
degree polynomials, we obtain an N -party pseudorandom correlation generators for constant-degree corre-
lations from LPN and MQ. In turn, this implies the existence of secure computation protocols with silent
preprocessing for any constant-degree correlated randomness.

2

N -server PIR with Optimal Download Rate. Using our N -party distributed point function, we obtain from
the same assumptions an N -party private information retrieval scheme for databases of size λd with client-
to-server communication O(Nd · λ3) and optimal download rate. To our knowledge, this is the first general
multiparty PIR scheme that does not rely on advanced cryptographic primitives such as Spooky encryption
of iO. Our scheme can be extended to other flavors of PIR, such as PIR by keyword, and PIR with payloads.

Sublinear MPC for N parties. Our final contribution is a new sublinear MPC protocol for N parties from
superpolynomial variants of LPN and MQ, that significantly expands the number of assumptions from which
sublinear MPC is known. Concretely, our scheme achieves a communication complexity of O(s/log∗ s) per
party, owing to complex parameter setting introduced by the recursive nesting approach. Our scheme is
hence a direct improvement on the works of [CM21,CK24], directly reducing and streamlining the number
of assumptions required to get sublinear MPC from the nesting approach to parallel the 2-party protocol of
[CM21].

1.4 Organization

We provide an overview of our results in section 2. In section 4, we introduce the main building blocks on
which our constructions are based. In section 5, we introduce our nesting strategy, and our boosting strategy.
The outline of our work utilizes three kinds of results:

– Results imported from other work, such as Theorem 3. Here we import the theorem directly and provide
a citation to the proof.

– Generalizations of previous theorems from 2 to N parties, as in Theorem 4 and Theorem 5. Here we
provide a complete construction along with a formal proof of our generalization (the proof is a relatively
simple generalization of the original 2-party proof).

– New constructions, as in Theorem 7 and Lemma 2, where we provide a full, formal treatment of the
material.

Eventually, in section 6, we cover applications of our results: the first sublinear-communication M -server
PIR without FHE or iO in Section 6.1, and applications to silent MPC and low-communication MPC
in Section 6.2 and Section 6.3. Eventually, we sketch how our new results can be plugged in the framework
of [CM21] to yield a sublinear-communication M -party secure computation protocol from LPN and MQ.

2 Technical Overview

Starting with the seminal work of [BGI16a], multiple homomorphic secret sharing schemes have been intro-
duced [BGI17,BCG+17,BKS19,OSY21,RS21,ADOS22]. At a high level, all these schemes follow a common
recipe (formalized in particular in the framework of [ADOS22]). Unfortunately, this approach to building
HSS appears inherently stuck at the two-party barrier. This is due to the need for a non-interactive share
conversion methodology, which can take different shapes (such as distributed discrete logarithm [BGI16a],
conversion to shares over the integers [OSY21,RS21], rounding of shares [BKS19]) but works by design solely
in the two-party setting (this was proven to be inherent in [BDIR18]). An exception to the above is the recent
work of [DIJL23] which shows that, under the sparse LPN assumption, it is possible to build a multiparty
HSS scheme. At a high level, this leverages the linearity of LPN to remove the need for share conversion
in the first place, at the cost of introducing noise (the use of sparse matrices is crucial to control the noise
growth). This is a strong result, but it comes with some downsides: it is only known from sparse LPN, and
it only achieves HSS with imperfect correctness, which limits its applications (in particular, applications to
pseudorandom correlation generators [BCG+19] require negligible correctness error).

An alternative line of work, initiated in [COS+22,BCM23] and recently refined in [CK24], seeks to over-
come the two-party barrier via an approach called nesting. At a high level, the idea is the following: start
from an “external” 2-party HSS scheme (Share⋆,Eval⋆) for a function class F⋆, and an “internal” 2-party

3

HSS scheme (Share,Eval) for a function class F such that for any function f ∈ F , the function that evaluates
f on a share x, denoted g⋆ : x → Eval(f, x), belongs to the class F⋆ handled by the external scheme. Then
one gets a 4-party HSS scheme for F by evaluating the internal HSS scheme inside the external HSS scheme.
We sketch it below:

– Given an input x, share (x0, x1)← Share(x) using the internal scheme.

– Share (xb,0, xb,1)← Share⋆(xb) using the external scheme. Each of the four parties receives one share.

– To evaluate f on a share xb,b′ , define g⋆ : xb → Eval(f, xb) and run Eval⋆(g⋆, xb,b′).

More generally, if one starts from an N -party external HSS and an M -party internal HSS, one gets an
NM -party HSS. The main downside of this approach is that the complexity of evaluation blows up, as
the final scheme must now homomorphically evaluate the evaluation algorithm of the internal scheme, and
typically gets too complex to allow re-applying the nesting strategy. Hence, the first “nesting” construc-
tions [COS+22,BCM23] were limited to 4 parties. Very recently, the work of [CK24] constructed an im-
proved nesting strategy. At a high level, the approach of [CK24] starts from a simpler object—a 2-party
distributed point function (DPF)—whose evaluation fits in a much lower complexity class. As a result, they
managed to apply nesting twice, getting an 8-party DPF. Then, assuming LPN and using the compiler
of [BCG+19,CM21], this DPF can be compiled back to an 8-party HSS. However, here again the complexity
of the HSS scheme used in the nesting prevents pushing the limits further.

In light of this, it seems apparent that the nesting approach is inherently stuck at a small constant
number of parties; indeed, it was the general opinion among recent work that a different route is needed
to obtain N -party HSS. It is indeed not even apparent that there is anything to be found by working out
a recursive nesting. However, we break through this limitation via a careful ‘rescaling’ approach, where we
begin with a very carefully chosen parameter set (it is not even clear that this parameterization exists in the
first place, although it is feasible to work out the details), then perform a careful, recursive rescaling that
confines the exponential cost of nesting to the constant in the exponent. The precise rescaling technique is
the main technical contribution of our work and unlocks a wide variety of applications.

In the remainder of our work, we introduce a new notion of ‘programmability’ for multiple parties, and
show how our techniques can yield PCGs for any polynomial (instead of arbitrary constant) number of
parties.

2.1 Our approach in a nutshell

We revisit the nesting strategy laid out in [CK24] and show how to unlock its full power to enable an arbitrary
constant number of nesting. Our key insight is a powerful observation that is extremely simple in hindsight.
Abstracting out, the technique in the work of [CK24] starts from a (low-complexity) two-party DPF and
a (mild-complexity) 2-party HSS, which are combined to get a (mild-complexity) 4-party DPF. This result
can then be combined again with the 2-party HSS (as mild-complexity is “mild enough” to still fit in the
complexity class captured by the HSS) to get a high-complexity 8-party DPF, that is then converted (via
LPN [BCG+19,CM21]) into an 8-party HSS.

We follow a similar strategy, but get rid of the mild-complexity HSS by interleaving the combinations
with applications of the LPN-based DPF-to-HSS compilation. That is, our nesting strategy looks as follows:

1. Start from a low-complexity DPF (as guaranteed by [CK24]) and compile it directly to a low-complexity
2-party HSS via LPN. Note that the resulting HSS handles polynomials of a degree exponentially smaller
than the complexity of the original DPF.

2. Combine this 2-party HSS with an “exponentially scaled-down” low-complexity 2-party DPF, getting
a 4-party HSS for polynomials of degree “doubly-exponentially scaled down” compared to the original
DPF.

3. Repeat the above process any constant number of times n to obtain a 2n-party DPF. At the end, compile
the 2n-DPF back to a 2n-HSS via LPN.

4

At this point, a reader familiar with [COS+22,BCM23,CK24] might wonder why this should work at
all: indeed, the limiting factor in all previous constructions was a very similar requirement of “exponential
downscaling”: roughly, to handle degree-d polynomials, these works already required HSS for (low-depth)
circuits of size λd, and adding one more layer would require handling super-exponentially-large circuits of size

λλd

([CK24] added one more layer by ensuring that the degree-d polynomial was itself already computing
a 2-party DPF in the first place). The core and surprising feature of our strategy is that it confines the
exponential downscaling to the constant in the exponent. Concretely, starting from a 2-party DPF over a

domain of size λcd , we get a 4-party DPF over a domain of size λd, that is compiled back to a 4-party HSS for

degree-d polynomials. Starting instead from a 2-party DPF over a domain of size λcc
d

yields a 4-party DPF

over a domain of size λcd , hence an 8-party DPF over a domain of size λd, hence an 8-party HSS for degree-d
polynomial, and so on. Given that the exponential loss is now confined to the constant in the exponent, one
can therefore repeat this process an arbitrary (constant) number of times n, by starting from a DPF over a
domain of size λ(c,d)↑n, where the notation (c, d) ↑ n denotes a size-n tower of exponents c with a d on top.
We provide a representation of the general strategy in fig. 1. We let DEG(n) denote the class of functions
computable by multivariate polynomials of total degree at most n.

PRG in DEG(c)

[CK24]

2-DPF(λd)
in DEG(cd)

2m-HSS for DEG(cd)
in DEG((c, d) ↑m− 1)

2m+1-DPF(λd) in
DEG((c, d) ↑m− 1)

[CM21]∗
[BCG+19]∗

LPN

2m+1-HSS for DEG(d)
in DEG((c, d) ↑m− 1)

redefine variable d← cd

initialize with the
trivial 1-HSS in

DEG(cd) for DEG(cd) *: only shown in the 2-party setting in these works, but easy to generalize

Fig. 1. Construction of a 2n-party DPF in the class DEG(cd) over the domain [λd]. The arrows in red denote the
primitives used to initialize the recursive construction process. The blue boxes denote the cryptographic assumptions
required for the construction, while the box in red indicates the target primitive. Due to the redefinition of d as cd,
each loop causes an exponential loss in the degree. Hence, to obtain a 2n-DPF over the domain [λd], the process must
be initialized with a 2-DPF over the domain [λ(c,d)↑n] computable in DEG(c(c,d)↑n).

2.2 Details on the concrete parameters

Before moving on to the concrete nesting strategy, we briefly overview the assumptions and the primitives
used in this work.

Assumptions. At a high level, we need to assume:

– The dual-F-LPN(k, q, t) assumption states that given a random matrix H ∈ F(q−k)×q and a random
vector e ∈ Fq with at most t nonzero entries, no polynomial time adversary can distinguish H · e from
random. When q = O(k) (as will be the case here), we note that the best known attacks on dual LPN
run in time 2Ω(t). Dual LPN is equivalent to the (more common) primal form, that asserts that A · s+ e

cannot be distinguished from random when A← Fq×k and s← Fk.

5

– The F-MQ(n,m) assumption with n variables and m equations asserts that it is infeasible to solve (in
polynomial time) a random system of m quadratic equations in n variables. In this work, we rely on a
flavor of MQ with m = n1+ε for an arbitrary constant ε > 0. We note that no polynomial-time attack is
known on MQ as long as m ≤ n2−δ for some constant δ > 0.

In this work, we actually rely on the conjectured hardness of distinguishing an MQ instance from ran-
dom (the decision version of the assumption), which is known to be polynomially reducible to the search
version [BGP06]. We note that LPN is also known to be polynomially reducible to its search version in our
parameter setting.

Primitives. Our nesting strategy alternates between three primitives:

– A 2m-party Distributed Point Function (DPF) over a domain D is a pair (Share,Eval) such that for any
point function fα,β (that evaluates to 0 on all inputs, except for fα,β(α) = β), Share(fα,β) produces a
2m-tuple of short keys (ki)i≤2m (whose description can grow polynomially with |α|, |β|, but not with
the size of the domain D). Informally, each strict subset of the keys hides α, β, yet the scheme allows
computing shares of fα,β on any input x: for all x ∈ D, it holds that

∑

i Eval(ki, x) = fα,β(x). Distributed
point function are a special case of Function Secret Sharing (FSS), where the shared function f can come
from a larger class.

– A 2m-party Homomorphic Secret Sharing (HSS) for a function class F is a dual notion to FSS: Share

allows sharing any input x into a 2m-tuple (x1, · · · , x2m) such that for any f ∈ F ,∑2m

i=1 Eval(xi, f) = f(x),
yet any strict subset of shares hides x.

– Eventually, a 2m-party Pseudorandom Correlation Generator (PCG) for an additive correlation C is
a pair of algorithms (Gen,Expand) such that Gen produces a 2m-tuple of short keys (ki)i≤2m , and
∑

i Expand(ki) = (r, C(r)) for some vector r (that is, each ki expands to a share of r and a share of
C(r)). Security states that even given any strict subset S of the keys (ki)i∈S , the strings (Expand(ki))i/∈S
must jointly look uniformly random conditioned on satisfying the correlation

∑

i Expand(ki) = (r, C(r)).

When C can be any n-variate degree-d polynomial, we say that the PCG is a PCG for n-variate degree-d
polynomial correlations.

Parameter selection. We now overview the concrete parameters of the nesting strategy. Our main ingre-
dient is a construction, introduced in [CK24], of a 2-party DPF over a domain of size λd (for an arbitrary
constant d) with key size ℓ = d · λ2 and evaluation procedure computable by an ℓ-variable multivariate
polynomial of degree cd. We call this a 2-DPF with parameters (λd, ℓ, cd). The construction requires the ex-

istence of a PRG G : {0, 1}λ → {0, 1}λ2+λ computable by a polynomial of degree c. In turn, such a PRG can
be constructed assuming the multivariate quadratic (MQ) assumption with λ variables and λ1+ε equations
(for any constant ε). For example, assuming MQ with λ1.42 equations (a relatively conservative assumption)
yields a construction with c = 4.

We first plug this 2-DPF in the compiler of [BCG+19]. Let λ denote the LPN dimension, 2λ be the code
length, and w = λ1/d denote the noise weight. With these parameters, the best known attacks on LPN run

in subexponential time 2Ω(λ1/d). Compiling the above 2-DPF with these LPN parameters yields a 2-party
HSS for λ-variate degree-d polynomials, with shares of size λ+ d · λ3.

Now, fix a new security parameter λ0, a constant d0, and consider the previous 2-DPF over a domain
of size λd0

0 with key size ℓ0 = d0 · λ2
0 and evaluation procedure computable by an ℓ0-variable multivariate

polynomial of degree cd0 . Define the following parameters:

d1 = 3cd0 λ1 = ℓ0 w1 = λ
1/d1

0

and apply the compiler using (λ1, 2λ1, w1)-LPN together with a 2-DPF with parameters (λd1

0 > λcd

1 , ℓ1 =
d1 · λ2

0, d2 = cd1). This yields a 2-party HSS for ℓ0-variate degree-cd0 polynomials, with shares of size λ1 +
λ0 · ℓ1 = O(λ3

0). This scheme is powerful enough to allow homomorphic evaluation of the (degree-cd0) DPF

6

evaluation procedure (on a key of length ℓ0), which yields a 4-party DPF with key size O(λ3
0) over a domain

of size λd0

0 . We continue the procedure by compiling back this 4-party DPF into a 4-party HSS, fix a 2-party
DPF over [λd0

0] with key size ℓ0 and degree d0 evaluation, and rescale the parameters of the 4-party HSS
appropriately to allow homomorphic evaluation of this DPF, obtaining an 8-party DPF. After m levels of this
recursive strategy, carefully tracking down the evolution of the parameters after each rescaling, we obtain:

Theorem 1 (informal). Fix integers m, d > 0. Assume the existence of a pseudorandom generator with
polynomial stretch that can be computed by a degree-c polynomial and the dual F-LPN(k, q = 2k, t) assumption
with k = O(λ3) and t = λεm,d where εm,c,d is a constant depending on (m, c, d). Then, there is a 2m-party
distributed point function over the domain [λd] with key size O(λ3) and whose evaluation algorithm can be
computed on all inputs by a degree-1/εm,c,d polynomial.

In the above (informal) theorem, εm,c,d is a tower of exponentials, roughly (but not exactly) a tower of
m c’s followed by a d on top.

2.3 Boosting to polynomially-many parties

The approach outlined in the previous section allows to construct 2n-party DPFs and HSS for constant-degree
polynomials, provided that n is a constant. We show how to boost the number of parties from constant
to an arbitrary polynomial, by generalizing a technique introduced in [BCG+19] to construct multiparty
pseudorandom correlation generators (PCGs) for degree-2 polynomials.

Let n be a constant and N = N(λ) be a polynomial. Consider a 2n-party DPF with key size ℓ over a
domain of size λd. We apply the following sequence of transformations:

– Using (λ, 2λ, λ1/d)-LPN, compile the DPF into a 2n-party HSS for λ-variate degree-d polynomials with
shares of size λ · ℓ.

– Via [BCG+19], there is a two-way equivalence between (2n-party) HSS and (2n-party) PCG for constant-
degree polynomials. Using the (simple) transformation from [BCG+19], we get a 2n-party PCG for all
degree-d correlations with seeds of length λ · ℓ.

From here, a core observation is that the PCG constructed this way satisfies programmability. Informally
speaking (and restricting our attention to the two-party setting for simplicity), programmability says the
following: consider three parties, Alice, Bob, and Carole, and let Alice and Bob receive PCG seeds a polyno-
mial correlation: from their seeds, Alice obtains pseudorandom vectors (rA, sA) and Bob obtains (rB , sB),
such that sA + sB = P (rA + rB), where P is some fixed constant-degree multivariate polynomial. Pro-
grammability then says that rA, rB have been computed deterministically (by Expand) from independent
sections ρA, ρB of the random tape of Gen. That is, Gen takes a random tape of the form R = (ρA, ρB , ρ) and
defines kA = (f(ρA), gA(R)) and kB = (f(ρB), gB(R)) for some functions f, gA, gB . Then, Expand computes
rA = GA(f(ρA)), rB = GB(f(ρB)) (where GA, GB are some specific PRGs). A consequence of this feature is
that a party share can be programmed to remain the same across multiple pairs of parties. Concretely, run-
ning Gen on the random tape R′ = (ρA, ρC , ρ

′) yields (kA, kC) = ((f(ρA), gA(R
′)), (f(ρC), gB(R

′))), implying
that Alice obtains from Expand a pair (rA, s

′
A) (and Bob obtains (rC , sC), with s′A + sC = P (rA + rC))

where rA is the same as Alice obtained in the instance with Bob.
Programmable PCGs are useful in that they allow correlating multiple 2-party PCG instances into a

single multiparty instance. They were introduced (and constructed) in [BCG+19] in the two-party setting.
In this work, we introduce and rely on a generalization of the notion for the multiparty setting, and we show
that our nesting-based construction satisfies this generalized notion of programmability to the 2m-party
setting.

Then, fix a polynomial M = M(λ) and let P denote an arbitrary M -variate degree-d polynomial. We will
construct an N -party PCG for distributing additive shares of (r, P (r)) for a pseudorandom r = (r1, · · · , rM).
Let (r(1), · · · , r(N)) denote the shares of r that the N parties will obtain. The main observation is the

following: because P has degree d, P (
∑N

i=1 ri) can be written as a sum of
(
N
d

)
≤ Nd polynomials Pk,

where each polynomial is associated to a fixed size-d subset Sk of the parties, and operates only on the

7

pseudorandom shares (r
(i)
j)i∈Sk

held by the parties in Sk. Then, we rely on a d-party programmable PCG

to share eack Pk. The d-party PCG security ensures that each r
(i)
j is pseudorandom, while programmability

guarantees that the same pair (i, j) corresponds to the same share r
(i)
j across all monomials, guaranteeing

that the correct correlation is obtained. This immediately yields an N -party PCG for degree-d M -variate
polynomial correlations, with keys of size O(Nd · ℓ), where ℓ denotes the key size of the d-party PCG.

Combining this construction with the 2m-party programmable PCG built on top of our 2m-party HSS,
we get an N -party pseudorandom correlation generators, that can be turned back into an N -party HSS via
the two-way equivalence of [BCG+19] (this two-way equivalence was only shown in the two-party setting, but
we prove in this work the straightforward extension to an arbitrary number of parties). Hence, we obtain:

Theorem 2 (informal). Fix integers m, d > 0 and polynomials N,M . Assume the existence of a pseu-
dorandom generator with polynomial stretch that can be computed by a degree-c polynomial and the dual
F-LPN(k, q = 2k, t) assumption with k = O(λ3) and t = λεm,d where εm,c,d is a constant depending on
(m, c, d). Then, there is an N -party homomorphic secret sharing scheme for the class of degree-d M -variate
polynomials, with shares of size O(Nd · λ3 +M).

3 Preliminaries

Notations. Given integers c, d,m, we let (c, d) ↑ m denote a tower of m c’s followed by a d at the top.

In particular, (c, d) ↑ 1 = cd, (c, d) ↑ 2 = cc
d

and so on. We define (c, d) ↑ 0 = d. We also introduced a
version where the exponents are scaled by a factor: given an integer b, we let (b, c, d) ↑ m be such that

(b, c, d) ↑ 1 = b · cd, (b, c, d) ↑ 2 = b · cb·cd , (b, c, d) ↑ 3 = b · cb·cb·c
d

, and so on. We say that a function
negl:N→ R+ is negligible if it vanishes faster than every inverse polynomial.

We typically denote matrices with capital letters (A,B,C) and vectors with bold lowercase (x,y). By
default, vectors are assumed to be column vectors. Given x and y two vectors, we write x⊗y to denote the
tensor product between x and y, x⊗2 for x ⊗ x, and more generally, x⊗n for the n-th tensor power of x,
x⊗ x⊗ · · · ⊗ x. We let x||y denote the (column) vector obtained by their concatenation. Given a vector x
of length |x|= n, the notation HW(x) denotes the Hamming weight x.

Circuits. An arithmetic circuit C with n inputs and m outputs over a field F is a directed acyclic graph
with two types of nodes: the input nodes are labeled according to variables {x1, · · · , xn}; the (computation)
gates are labeled according to a base B of arithmetic functions. In this work, we will focus on arithmetic
circuits with indegree two, over the standard basis {+,×}. C contains m gates with no children, which are
called output gates. An arithmetic circuit is layered if its gates can be partitioned into D = depth(C) layers
(L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1 for some i ≤ d− 1.

3.1 Learning Parity with Noise

Given a field F, Berr(F) denote the distribution which outputs a uniformly random element of F \ {0} with
probability r, and 0 with probability 1− r.

Definition 1 (LPN). For dimension k = k(λ), number of samples (or black length) q = q(λ), noise rate
r = r(λ), and field F = F(λ), the F-LPN(k, q, rq) assumption states that

{(A,b) | A←$ Fq×k, e←$ Berr(F)
q, s←$ Fk,b← A · s+ e}

≈c{(A,b) | A←$ Fq×k,b←$ Fq}.

Our construction will mostly rely on a variant of LPN, called exact LPN (denoted ×LPN) [JKPT12]. In
this variant, the noise vector e is not sampled from Berr(F)

q, but it is sampled uniformly from the set
HWrq(F

q) of length-q vectors over F with exact rq nonzero coordinates (while a sample from Berr(F)
q has

an expected number rq of nonzero coordinates). In the following, we will still use F-LPN(k, q, rq) to denote
the F-×LPN(k, q, rq) assumption. We will also base our construction on the following dual LPN assumption.

8

Definition 2 (Dual LPN). For dimension k = k(λ), number of samples (or block length) q = q(λ), noise
rate r = r(λ), and field F = F(λ), the dual-F-LPN(k, q, rq) assumption states that

{(H,b) | H ←$ F(q−k)×q, e←$ Berr(F)
q,b← H · e}

≈c{(H,b) | H ←$ F(q−k)×q,b←$ Fq}.

It is clear that solving dual LPN assumption is at least as hard as solving LPN.

3.2 Multivariate Quadratic Assumption

We represent a multivariate polynomial with n variables over a finite field Fq as Q[x], where

Q[x] =
∑

1≤j≤k≤n

αj,kxjxk +
∑

1≤j≤n

βjxj + γ.

Here x = (x1, . . . , xn) is a vector of n variables, and αj,k, βj , γ ∈ Fq are the coefficients to the corre-
sponding monomials. A multivariate quadratic system is a set of multivariate quadratic polynomials Let
R = (Ri)i∈[m] ∈ (Fn×n

q)m be m n× n matrices, L ∈ Fm×n
q be an m× n matrix, and d ∈ Fm

q be a vector. We

can write each polynomial as Qi[x] = x⊤ ·Ri ·x+Li ·x+di. We denote the system by S[x] = R[x]+L[x]+d.

Definition 3 (Multivariate Quadratic Assumption). Let n,m, q be parameters such that q is a prime,
χ is a distribution on (Fn×n

q)m and let H ⊆ Fq. We denote by MQ(n,m, q, χ,H) on an instance (S, S[x])
to be the multivariate quadratic problem, such that the goal of a solver is to output some x′ ∈ Fn

q such that
S[x′] = S[x], where S = (R,L,d) with R← χ,L← Fm×n

q ,d← Fm
q and x← Hn.

Let λ be the security parameter. For every constant c > 1 ∈ N, every efficiently computable and poly-
nomially bounded n,m, q : N → N, α : N → [−q/2, q/2] and every 0 < β ≤ [q/2] such that m = cn,
α = O(1), let Φα be the distribution over (Fn×n

q)m with each element sampled identically and independently
from discrete Gaussian distributions Dα’s with mean 0, standard deviation α, namely each Dα samples z
(mod q) ← N(0, α2), and let Hβ = [−β, β]. Then for every PPT solver A, there exists some negligible
function negl(·) such that the following holds for all sufficiently large λ:

Pr
S←MQ(n,m,q,Φα,Hβ),x←Hn

β

[x′ ← A(S, S[x]) : S[x′] = S[x]] < negl(λ).

3.3 Function Secret Sharing

A point function with input domain [D] and outputs in a group G is a function fα,β : [D] 7→ G such that
fα,β(x) = β if x = α, and 0 otherwise. Informally, a DPF is a pair of algorithms (Gen,Eval) which shares a
point function f into N shares (K1, · · · ,KN)← DPF.Gen(1λ, f) such that (correctness) on any input x, the
values (y1, · · · , yN) defined as yi ← DPF.Eval(i,Ki, x) form additive shares of f(x), and (security) for any
subset T ([N], the set of keys (Kσ)σ∈T computationally hides (α, β).

Definition 4 (Distributed point functions [GI14,BGI16b]). An N -party distributed point function
(DPF) scheme with input domain [D] and output domain an abelian group (G,+), is a pair of PPT algorithms
DPF = (DPF.Gen,DPF.Eval) with the following syntax:

– DPF.Gen(1λ, α, β), given security parameter λ and description of a point function fα,β, outputs N keys
(K1, · · · ,KN);

– DPF.Eval(i,Ki, x), given party index i ∈ [N], key Ki, and input x ∈ [D], outputs a group element yi ∈ G.

The scheme DPF should satisfy the following requirements:

9

– Correctness: For any (α, β) ∈ [D]×G and x ∈ [D], we have

Pr[(K1, · · · ,KN)←$ DPF.Gen(1λ, f) :
∑

i∈[N]

DPF.Eval(i,Ki, x) = f(x)] = 1.

– Security: For every set of corrupted parties T ([N], there exists a PPT simulator Sim such that for
any family fα,β = {fαλ,βλ

: [D(λ)] → Gλ}λ∈N of point functions over domain D(λ) and group Gλ, the
distributions

{(Kj)j∈T | (K1, · · · ,KN)←$ DPF.Gen(1λ, αλ, βλ)}
and

{(Kj)j∈T | (Kj)j∈T ←$ Sim(1λ, D(λ),Gλ)}
are computationally indistinguishable.

Given a DPF scheme (DPF.Gen,DPF.Eval), we denote by DPF.FullEval an algorithm which, on input a party
index i, and an evaluation key Ki, outputs the D-tuple (DPF.Eval(i,Ki, j))j≤D ∈ GD. Eventually, we say
that a distributed point function DPF is weakly efficient if the running time of DPF.Gen is allowed to depend
polynomially on the domain size D.

In this work, we will also rely on FSS for multi-point functions (MPFSS), which are essentially sums of point
functions. An MPFSS scheme for t-point functions can be obtain easily from t instances of a DPF.

3.4 Homomorphic Secret Sharing

We consider a definition of Homomorphic Secret Sharing with simulation-based security guarantee, with
“leakage” corresponding to the input length n.

Definition 5 (Homomorphic Secret Sharing [BGI16a]). An N -party Homomorphic Secret-Sharing
(HSS) scheme (with additive reconstruction) for a class F of functions over a finite field F is a pair of
algorithms HSS = (HSS.Share,HSS.Eval) with the following syntax and properties:

– Share(1λ, x): On input 1λ (the security parameter) and x ∈ Fn(λ) (the input), the sharing algorithm
Share outputs N input shares (x(1), . . . , x(N)).

– Eval(i, f, x(i)): On input i ∈ [N] (the party index), f ∈ F (the function to be homomorphically evaluated,
implicitly assumed to specify input and output lengths n,m), and x(i) (the i-th input share), the evaluation
algorithm Eval outputs the i-th output share y(i) ∈ Fm.

– Correctness: For any 1λ, input x ∈ Fn(λ), and any function f ∈ F ,

Pr

[

y(1) + · · ·+ y(N) = f(x) :
(x(1), . . . , x(N))←$ HSS.Share(1λ, x)
y(i) ←$ HSS.Eval(i, f, x(i)), i = 1 . . . N

]

= 1 .

– Security: For every set of corrupted parties T ([N], there exists a PPT algorithm Sim, such that for
every sequence of inputs x1, x2, . . . ∈ Fn(λ) the outputs of the following experiments Real and Ideal are
computationally indistinguishable:
• Real(1λ): run (x(1), . . . , x(N))←$ HSS.Share(1λ, xλ) and output (x(σ))σ∈T .
• Sim(1λ): output Sim(1λ, 1N , 1n).

We say that a homomorphic secret sharing scheme is compact if there exists a fixed polynomial p such
that for every input x, the size (in bits) of each share x(i) of x is at most O(|x|) + p(λ).

Remark 1 (Compact Single-function HSS). A single-function HSS is an HSS scheme for a singleton function
class. Let F be a (not necessarily singleton) function class. We say there exists compact single-function HSS
for any function in C, if for every f : Fn → Fm ∈ F there exists an HSS scheme HSSf for {f} such that the
circuit-size of HSSf .Share is a fixed polynomial in n (and otherwise independent of f).

This notion can be seen as a weakening of compact HSS for C where the function to be homomorphically
evaluated is known when running the sharing algorithm.

10

3.5 Pseudorandom Correlation Generators

Introduced in [BCG+19], pseudorandom correlation generators (PCG) allow to generate a short key for each
party Pσ which can be expanded to a long string Rσ. The correctness of PCG states that the expanded
long strings correctly satisfy the target correlation. The security of PCG requires that for any set T ([N]
of corrupted parties, given the keys (kσ)σ∈T , the distribution of expanded strings (Rσ̃)σ̃∈[N]\T using honest
values (kσ̃)σ̃∈[N]\T is indistinguishable from that of randomly sampled strings conditioned on satisfying the
target correlation. To define the security, we need to characterize the so-called reverse sampleable property.
The definitions are given as below.

Definition 6 (Correlation Generator). A PPT algorithm C is called a correlation generator for N
parties, if C on input 1λ outputs N elements in ({0, 1}n)N for n ∈ poly(λ).

Definition 7 (Reverse-sampleable Correlation Generator). Let C be an N -party correlation gener-
ator. We say C is reverse sampleable if there exists a PPT algorithm RSample such that for T ([N] the
correlation obtained via

(R′1, R

′
2, . . . , R

′
N)

∣
∣
∣
∣
∣
∣

(R1, R2, . . . , RN)←$ C(1λ),
R′σ := Rσ for σ ∈ T,

(R′σ̃)σ̃∈[N]\T ←$ RSample(T, (Rσ)σ∈T)

is computationally indistinguishable from C(1λ).

Definition 8 (Pseudorandom Correlation Generator(PCG)). Let C be a reverse-sampleable correla-
tion generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms (PCG.Gen,PCG.Expand)
with the following syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs N seeds (k1, k2, . . . , kN);

– PCG.Expand(σ, kσ) is polynomial-time algorithm that given party index σ ∈ [N] and a seed kσ, outputs a
bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{

(R1, R2, . . . , RN)

∣
∣
∣
∣

(k1, k2, . . . , kN)← PCG.Gen(1λ)
Rσ ← PCG.Expand(σ, kσ) for σ ∈ [N]

}

is computationally indistinguishable from C(1λ).
– Security. For any T ([N], the following two distributions

{

(kσ)σ∈T , (Rσ̃)σ̃∈[N]\T
(k1, k2, . . . , kN)← PCG.Gen(1λ)

Rσ̃ ← PCG.Expand(σ̃, kσ̃) for σ̃ ∈ [N] \ T

}

and

(kσ)σ∈T , (Rσ̃)σ̃∈[N]\T

(k1, k2, . . . , kN)← PCG.Gen(1λ)
Rσ ← PCG.Expand(σ, kσ) for σ ∈ T

(Rσ̃)σ̃∈[N]\T ← RSample(T, (Rσ)σ∈T)

are computationally indistinguishable, where RSample is the reverse sampling algorithm for correlation
C.

11

4 Conversions Between DPF, HSS, and PCG

In this section, we overview protocols for converting between DPF, PCG, and HSS. At a high level, the
DPF-to-PCG construction relies on the LPN assumption and yields a PCG for constant-degree polynomials
correlations; PCGs for constant-degree polynomials, in turn, can be shown to be equivalent to HSS for
constant-degree polynomials. Then, combining an M -party HSS for constant-degree polynomials with an
N -party DPF computable by a constant-degree polynomial yields an NM -party DPF.

All conversions discussed in this section have been introduced in previous works [BCG+19,CK24], albeit
sometimes only in the setting of two parties. We reproduce the constructions for completeness, generalize
them to the multiparty setting, and (when the original proof was restricted to two parties) prove their
security.

4.1 Low Complexity 2-party DPF

We start from a low-complexity 2-party DPF constructed in [CK24] presented in Protocol 1, which is built
based on the existence of PRGs computable by low degree polynomials. The construction of distributing a
point function fα,β : [λd]→ Fp of domain size λd is based on GGM tree structure following [BGI15,BGI16b].
As observed in [CK24], the resulting computation complexity of the evaluation algorithm for DPF is deter-
mined by the following two parameters,

– the depth of the evaluation tree and
– the degree of the using PRG.

Considering the first parameter, [CK24] makes use of a λ-ary GGM tree structure instantiated by a PRG
stretching λ bits into λ2 + λ bits rather than the original 2-ary GGM tree structure in [BGI15,BGI16b],
which leads to an evaluation tree of depth logλ λ

d = d. As for the second parameter, we require a PRG with
polynomial stretch is computable by a polynomial of constant degree c, which exists assuming the family of
Multivariate Quadratic (MQ) assumptions.

As a result, the constructed DPF for point functions of domain size λd has key length of O(d ·λ2) bits and
can be evaluated by a polynomial of constant degree cd, which will be referred as a 2-DPF with parameters
(λd, ℓ, cd) with ℓ denoting the key size. We present the construction in Protocol 1 whose functionality and
the computation complexity are concluded in Theorem 3 (Theorem 11 in [CK24]).

Theorem 3. Suppose that G : {0, 1}λ → {0, 1}λ·(λ+1) is a pseudorandom generator with polynomial stretch
which can be computed by a degree-c polynomial. Then the scheme (DPF.Gen,DPF.Eval) from Protocol 1 is
a 2-party DPF for the family of point functions {fα,β : [λd] → Fp | α ∈ [λd], β ∈ Fp} with the following
properties.

– DPF.Gen outputs N keys, each of d · λ · (λ+1)+ λ+ ⌈log2|Fp|⌉ bits, and involves at most 2d invocations
of G and O(dλ2) additional Boolean operations.

– DPF.Eval can be computed by polynomials of degree cd and involves at most d invocations of G.

Protocol 1: Compact Distributed Point Function

Parameters: Let G : {0, 1}λ → {0, 1}λ(λ+1) be pseudorandom generator computable by a degree-c
polynomial. Let Convert : {0, 1}λ → Fp be a map converting any λ-bit string to a pseudorandom field
element of Fp.
DPF.Gen(1λ, α, β,Fp):

1. Let α = (α1, . . . , αd) ∈ {0, 1}d·log λ be the decomposition of α into d substrings of log λ-bit length.

2. Sample random s
(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ.

3. Let t
(0)
0 = 0 and t

(0)
1 = 1.

4. For i = 1 to d do
(a) s10||t10||. . . ||sλ0 ||tλ0 ← G(s

(i−1)
0), s11||t11||. . . ||sλ1 ||tλ1 ← G(s

(i−1)
1).

12

(b) Set Keep← αi.

(c) Set sKeepCW ←$ {0, 1}λ and sjCW ← sj0 ⊕ sj1 for other j ∈ [λ].

(d) Set tKeepCW ← tKeep0 ⊕ tKeep1 ⊕ 1 and tjCW ← tj0 ⊕ tj1 for other j ∈ [λ].

(e) CW(i) ← s1CW||t1CW||. . . ||sλCW||tλCW.

(f) s
(i)
σ = sKeepσ ⊕ t

(i−1)
σ · sKeepCW for σ ∈ {0, 1}.

(g) t
(i)
σ = tKeepσ ⊕ t

(i−1)
σ · tKeepCW for σ ∈ {0, 1}.

5. CW(d+1) ← β − Convert(s
(d)
0)− Convert(s

(d)
1) ∈ Fp.

6. Let kσ = s
(0)
σ ||CW(1)||. . . ||CW(d+1) for σ ∈ {0, 1}.

7. Return (k0, k1).

DPF.Eval(b, kσ, x) :

1. Let x = (x1, . . . , xd) ∈ {0, 1}d log λ be the decomposition of x into substrings of length log λ.

2. Parse kσ = s
(0)
σ ||CW(1)||. . . ||CW(d+1) and let t0 = σ.

3. For i = 1 to d do
(a) Parse CW(i) = s1CW||t1CW||. . . ||sλCW||tλCW.

(b) τ (i) ← G(s(i−1))⊕ (t(i−1) · CW(i)).
(c) Parse τ (i) ← s1||t1||. . . ||sλ||tλ.
(d) Set s(i) ← sxi and t(i) ← txi .

4. Return Convert(s(d)) + t(d) · CW(d+1) ∈ Fp.

4.2 From N-party DPF to N-party PCG

Starting from the building block of an N -party DPF, it is immediately observed that applying the approach
of [BCG+19] results in an N -party PCG for arbitrary constant degree correlations. Based on this PCG, we
will derive a single-circuit N -party HSS scheme for constant degree polynomials.

Building on the work of [CM21], our HSS scheme requires a PCG for the tensor powers correlation:

Definition 9 (tensor power correlation). The tensor power correlation is parametrized with a string
length n and a (constant) tensor power tpp. The correlation generates additive shares of

(1||r)⊗tpp, where r ∈ Fn
p is pseudorandom.

It is clear that such a tensor power correlation is a reverse-sampleable correlation as after fixing a set
of shares {shareσ}σ∈T for any set T ([N] (w.l.o.g, suppose N 6∈ T), the rest of shares can be reverse-
sampled by sampling r, randomly sampling N−|T |−1 shares as {shareσ̃}σ̃∈[N−1]\T , and computing shareN ←
(r⊗j)tppj=1 −

∑

σ∈[N−1] shareσ.

To construct a PCG compressing such a correlation, following [BCG+19], the idea is to first distribute
constant degree correlation over a sparse vector based on multi-point DPF and then take advantage of the
linearity of the dual-LPN assumption to convert this into a constant degree correlation over pseudorandom
vectors. Moreover, to satisfy the correctness, we use pairwise PRG seeds to randomize their DPF shares.
The security of this construction relies on the dual-LPN assumption, the security of the underlying DPF,
along with the security of PRG. We describe the PCG for tensor power correlation in Protocol 2 and state
its functionality and property in Theorem 4 below.

Protocol 2: N -party PCG for the Tensor Power Correlation from N -party DPF

Parameters: 1λ, n, n′, t, p, tpp ∈ N, where n′ > n. Let C be a code generation algorithm such that

Hn′,n ←$ C(n′, n,Fp) is a random parity-check matrix. Let PRG : {0, 1}λ → F
(1+n)tpp

p be a PRG.
PCG.Gen(1λ) :

13

1. Pick a random t-sparse vector e ←$ HWt(F
n′

p). Let f : [(1 + n′)tpp] → Fp be the multi-point
function with (1 + t)tpp points, where f(i) returns the i-th coordinate of (1||e)⊗tpp.

2. Compute (K fss
1 ,K fss

2 , . . . ,K fss
N)←$ MPFSStpp.Gen(1

λ, f).
3. For every i, j ∈ [N] with i < j, sample PRG seeds sij ←$ {0, 1}λ.
4. For all σ ∈ [N], let kσ ← (n,K fss

σ , {sjσ}1≤j<σ, {sσj}σ<j≤N).
5. Output (kσ)σ∈[N].

PCG.Expand(σ, kσ) :

1. On input (σ, kσ), parse kσ as (n,K fss
σ , {sjσ}1≤j<σ, {sσj}σ<j≤N).

2. For every j 6= σ, compute tσj = PRG(sσj) if σ < j and tjσ = PRG(sjσ) otherwise.

3. Compute vσ ← MPFSStpp.FullEval(σ,K
fss
σ). \\ Note that vσ ∈ F

(1+n′)tpp

p .

4. Output zσ ← (Diag(1, Hn′,n))
⊗tpp ·vσ+

∑

1≤j<σ tjσ−
∑

σ<j≤M tσj . \\ Note that zσ ∈ F
(1+n)tpp

p

and (1||r)⊗tpp =
∑

σ∈[N] zσ.

Theorem 4. Let DPFtpp be an N -party distributed point function for the family of point functions {fα,β :
[(1 + n′)tpp] → Fp | α ∈ [(1 + n′)tpp], β ∈ Fp} with key size ℓ and MPFSStpp be an N -party multi-point
FSS scheme instantiated with (1 + t)tpp invocations of DPFtpp for some sparseness parameter t. Let PRG :

{0, 1}λ → F
(1+n)tpp

p be a secure PRG. Suppose the assumption Fp-LPN(n
′ − n, n′, t) holds.

Then PCG = (PCG.Gen,PCG.Expand) in Protocol 2 is an N -party PCG for degree-tpp tensor power
correlation, (1||r)⊗tpp where r ∈ Fn

p , with the following properties.

– PCG.Gen generates N seeds, each of size (1 + t)tpp · ℓ+ (N − 1) · λ.
– PCG.Expand involves (1 + t)tpp invocations of DPFtpp.FullEval, N − 1 invocations of PRG, along with

O((n ·n′)tpp) arithmetic operations over Fp. If DPFtpp.Eval can be computed by a polynomial of degree d,
then PCG.Expand can also be computed by polynomials of degree d.

Proof (Proof of Theorem 4).

Correctness. Let C denote the degree-tpp tensor power distribution. By correctness of MPFSStpp and multi-
linearity of the tensor product, we have that

∑

σ∈[N]

zσ =
∑

σ∈[N]

((Diag(1, Hn′,n)
⊗tpp) · vσ +

∑

1≤j<σ

tjσ −
∑

σ<j≤M

tσj)

= (Diag(1, Hn′,n)
⊗tpp) ·

∑

σ∈[N]

vσ +
∑

i<j

(tij − tji)

= (Diag(1, Hn′,n)
⊗tpp) · (1||e)⊗tpp = (Diag(1, Hn′,n) · (1||e))⊗tpp = (1||r)⊗tpp.

Then we have
{

(zσ)σ∈[N]
(kσ)σ∈[N] ← PCG.Gen(1λ),
zσ ← PCG.Expand(σ, kσ) for every σ ∈ [N]

}

≈c

(zσ)σ∈[N]

e←$ HWt(F
n′

p), r← Hn′,n · e,
Sample (zσ)σ∈[N] ←$ (F

(1+n)tpp

p)N

such that
∑

σ∈[N] zσ = (1||r)⊗tpp

≈c

(zσ)σ∈[N]

r←$ Fn
p ,

Sample (zσ)σ∈[N] ←$ (F
(1+n)tpp

p)N

such that
∑

σ∈[N] zσ = (1||r)⊗tpp

= C(1λ),

where the first indistinguishability comes from the security of PRG and the second indistinguishability holds
due to the hardness of Fp-LPN(n

′ − n, n′, t), which completes the PCG correctness of PCG.

14

Security. Let T ([N] denote the set of corrupted parties. By definition of PCG security, we aim to prove given
corrupted parties’ seeds (kσ)σ∈T , the distribution of expanded honest parties’ shares, (zσ)σ∈T , using honest
parties’ seeds is indistinguishable from that generated by using reverse sampling algorithm, conditioned on
expanded corrupted parties’ shares, (zσ)σ∈T . Formally, the goal is to prove the following two distributions,

Dreal ,

{

(kσ)σ∈T , (zσ̃)σ̃∈[N]\T
(k1, k2, . . . , kN)← PCG.Gen(1λ)
(zσ̃)← PCG.Expand(σ̃, kσ̃) for every σ̃ ∈ [N] \ T

}

and

Dsim ,

(kσ)σ∈T , (zσ̃)σ̃∈[N]\T

(k1, k2, . . . , kN)← PCG.Gen(1λ)
(zσ)← PCG.Expand(σ, kσ) for every σ ∈ T
(zσ̃)σ̃∈[N]\T ← RSample(T, (zσ)σ∈T)

,

are computationally indistinguishable, which will be proved using hybrid arguments.

Hyb0: In this hybrid, we consider the real world distribution Dreal defined above.

Hyb1: In this hybrid, instead of computing shares (zσ̃)σ̃∈[N]\T of honest parties by expanding their
PCG seeds, we compute them by random sampling up to preserving

∑

σ̃∈[N]\T zσ̃ = (1||r)⊗tpp −∑

σ∈T zσ.
Concretely, we consider the following distribution

D1 ,

(kσ)σ∈T , (zσ̃)σ̃∈[N]\T

(k1, k2, . . . , kN)← PCG.Gen(1λ),
zσ ← PCG.Expand(σ, kσ) for every σ ∈ T,

Sample (zσ̃)σ̃∈[N]\T ←$ (F
(1+n)tpp

p)N−|T |

such that
∑

σ̃∈[N]\T zσ̃ = (1||r)⊗tpp −∑

σ∈T zσ

,

where r is computed inside PCG.Gen(1λ). The distributions of D1 and Dreal are computationally indistin-
guishable because of the security of PRG.

Hyb2: In this hybrid, instead of invoking PCG.Gen(1λ), we compute (K fss
σ)σ∈T using theMPFSS simulator

Sim(1λ, T, · · ·). Concretely, we consider the following distribution

D2 ,

(kσ)σ∈T ,
(zσ̃)σ̃∈[N]\T

(K fss
σ)σ∈T ← Sim(1λ, T, · · ·),

sij ←$ {0, 1}λ for every i, j ∈ [N] with i < j, (i ∈ T) ∨ (j ∈ T),
kσ ← (n,K fss

σ , {sjσ}1≤j<σ, {sσj}σ<j≤N) for every σ ∈ T,
zσ ← PCG.Expand(σ, kσ) for every σ ∈ T,

e←$ HWt(F
n′

p), r← Hn′,n · e,
Sample (zσ̃)σ̃∈[N]\T ←$ (F

(1+n)tpp

p)N−|T |

such that
∑

σ̃∈[N]\T zσ̃ = (1||r)⊗tpp −∑

σ∈T zσ

.

The distributions of D2 and D1 are computationally indistinguishable due to the security of MPFSS.

Hyb3: In this hybrid, instead of computing r by compressing a sparse vector, we randomly sample
r′ ←$ Fn

p . Concretely, we consider the following distribution

D3 ,

(kσ)σ∈T ,
(zσ̃)σ̃∈[N]\T

(K fss
σ)σ∈T ← Sim(1λ, T, · · ·),

sij ←$ {0, 1}λ for every i, j ∈ [N] with i < j, (i ∈ T) ∨ (j ∈ T),
kσ ← (n,K fss

σ , {sjσ}1≤j<σ, {sσj}σ<j≤N) for every σ ∈ T,
zσ ← PCG.Expand(σ, kσ) for every σ ∈ T,
r←$ Fn

p ,

Sample (zσ̃)σ̃∈[N]\T ←$ (F
(1+n)tpp

p)N−|T |

such that
∑

σ̃∈[N]\T zσ̃ = (1||r)⊗tpp −∑

σ∈T zσ

.

The distributions of D3 and D2 are computationally indistinguishable due to the hardness of Fp-LPN(n
′ −

n, n′, t).

15

Hyb4: In this hybrid, instead of computing (kσ)σ∈T by using Sim(1λ, T, · · ·), we compute them by invoking
an independent instance of PCG.Gen. Concretely, we consider the following distribution

D4 ,

(kσ)σ∈T , (zσ̃)σ̃∈[N]\T

(k1, k2, . . . , kN)σ∈T ← PCG.Gen(1λ),
zσ ← PCG.Expand(σ, kσ) for every σ ∈ T,
r←$ Fn

p ,

Sample (zσ̃)σ̃∈[N]\T ←$ (F
(1+n)tpp

p)N−|T |

such that
∑

σ̃∈[N]\T zσ̃ = (1||r)⊗tpp −∑

σ∈T zσ

.

The distributions of D4 and D3 are computationally indistinguishable due to the security of MPFSS.
Since the distributions of D4 and Dsim are identical, we prove the PCG security of PCG. The properties

of PCG follow immediately from the construction. ⊓⊔

4.3 From N-party PCG to N-party HSS

Also observed in [BCG+19], starting from an N -party PCG for constant degree polynomial correlations,
one can construct an N -party HSS which allows to distributively evaluate constant degree polynomials. In
particular, given a public vector P : Fn

p → Fm
p of m degree-d polynomials in n variables and shares of a secret

input x ∈ Fn
p , all parties aim to compute their shares of P(x) by locally evaluating P on their HSS shares.

The idea is that all parties first invoke PCG for degree-d tensor power correlation to obtain their shares
of (1||r)⊗d with a pseudorandom r. For each party, include x′ ← x + r together with its PCG seed as its

HSS share. Define P̂(·) such that P̂(X) = P(X− r). As a result, all parties additively share the coefficients

of P̂(·), which are public linear combinations of elements in (1||r)⊗d. Then all parties can locally compute

their additive shares of P(x) based on their HSS shares by observing that P(x) = P(x′ − r) = P̂(x′) with
x′ known to all parties.

The security of such an HSS scheme stems out from the security of the underlying PCG for tensor power
correlations. In more details, given corrupted parties’ PCG seeds, r is still pseudorandom so that the secrecy
of the input x can be protected. We present the construction in Protocol 3 and conclude its functionality
and properties in Theorem 5.

Protocol 3: N -party HSS from N -party PCG

Parameters: 1λ, n, p ∈ N. Let P : Fn
p → Fm

p be a public vector of m degree-d polynomials in n
variables.
HSS.Share(1λ,x):

1. Compute (kσ)σ∈[N] ← PCG.Gen(1λ). \\ Note that kσ expands to additive shares of

(1||r)⊗d, where r ∈ Fn
p is pseudorandom.

2. Set x′ ← x+ r and sσ ← (kσ,x
′) for σ ∈ [N].

3. Output {sσ}σ∈[N].

HSS.Eval(σ, sσ,P): on input party index σ ∈ [N], share sσ, and a vector P of m degree-d polynomials
in n variables, compute an additive share shσ of P (x).

1. Parse sσ as (kσ,x
′).

2. Compute σ-th additive share shσ of P(x′ − r) via PCG.Expand(œ, kœ) and x′. \\ Recall

P(x′ − r) = P(x) can be viewed as a degree-d multivariate polynomial in x′

with coefficients being linear combinations of elements in (1||r)⊗d which are

additively shared by all parties.

16

Theorem 5. Let PCG = (PCG.Gen, PCG.Expand) be an N -party PCG for degree-d tensor powers correlation
(1||r)⊗d where r is pseudorandom and output seeds with each of size ℓ.

Then HSS = (HSS.Share,HSS.Eval) in Protocol 3 is a secure N -party, single-circuit HSS scheme for
general degree-d multivariate polynomials over Fp with the following properties.

– HSS.Share outputs N shares, with each of size n+ ℓ.
– HSS.Eval can be computed by a polynomial of degree D if PCG.Expand can be computed by a polynomial

of degree D.

Proof (Proof of Theorem 5). As for the correctness, by correctness of PCG, we have that
∑

σ∈[N] shσ =

P(x′ − r) = P(x). We then consider the security. For any set T ([N] of corrupted parties, for any secret
input x ∈ Fn

p , the real world distribution is as below

Dreal ,
{
(sσ)σ∈T (s1, s2, . . . , sN)← HSS.Share(1λ,x)

}
.

We construct a PPT simulator Sim(1λ, 1N , 1n) which works as follows.

– Sim invokes PCG to generate the seeds: (k1, k2, . . . , kN)← PCG.Gen(1λ).
– Randomly sample x′ ←$ Fn

p .
– For every σ ∈ T , set sσ ← (kσ,x

′). Output (sσ)σ∈T .

We then prove the effectiveness of the simulator using the following hybrid arguments.
Hyb0: In this hybrid, we consider the real world distribution Dreal defined above and notice that

Dreal ≡

(sσ)σ∈T

(k1, k2, . . . , kN)← PCG.Gen(1λ),
zℓ ← PCG.Expand(ℓ, kℓ) for every ℓ ∈ [N],
(1||r)⊗d ←∑

ℓ∈[N] zℓ,

x′ ← x+ r,
sσ ← (kσ,x

′) for every σ ∈ T

.

Hyb1: In this hybrid, instead of computing r from expanded tensor power correlation using PCG seeds,
we randomly sample r←$ Fn

p . Concretely, we consider the following distribution

D1 ,

(sσ)σ∈T

(k1, k2, . . . , kN)← PCG.Gen(1λ),
zσ ← PCG.Expand(σ, kσ) for every σ ∈ T,
(zσ̃)σ̃∈[N]\T ← RSample(T, (zσ)σ∈T),
(1||r)⊗d ←

∑

ℓ∈[N] zℓ,

x′ ← x+ r,
sσ ← (kσ,x

′) for every σ ∈ T

≡

(sσ)σ∈T

(k1, k2, . . . , kN)← PCG.Gen(1λ),
r←$ Fn

p ,x
′ ← x+ r,

sσ ← (kσ,x
′) for every σ ∈ T

.

The distributions of D1 and Dreal are computationally indistinguishable due to the PCG security of PCG.
Hyb2: In this hybrid, instead of computing x′ as x + r with r ∈ Fn

p sampled uniformly at random, we
directly sample x′ uniformly at random. Concretely, we consider the following distribution

D2 ,

(sσ)σ∈T

(k1, k2, . . . , kN)← PCG.Gen(1λ),
x′ ←$ Fn

p ,
sσ ← (kσ,x

′) for every σ ∈ T

.

The distributions of D2 and D1 are identical because r is sampled uniformly at random and unkown to the
adversary.

Since Hyb2 already generates the distribution the same way as Sim does, we prove the HSS security of
HSS. Two properties of HSS immediately follow from our construction. ⊓⊔

17

4.4 From N-party DPF and M-party HSS to N · M-party DPF

Following [CK24], we apply the nesting approach to construct an N ·M -party DPF from an N -party DPF
and an M -party HSS allowing to homomorphically evaluate a class of functions that includes the evaluation
algorithm of the N -party DPF. In particular, we first apply the N -party DPF to generate N DPF keys that
allow to locally evaluate the secret point function and then make use of the M -party HSS to secret share
each DPF key into M shares. The security of the resulting N ·M -party DPF comes from the security of
N -party DPF as well as the security of M -party HSS.

We present the construction in Protocol 4 and conclude its functionality and properties in Theorem 6
(Theorem 12 in [CK24]).

Protocol 4: NM -party DPF from N -party DPF and M -party HSS

Parameters: Let DPF = (DPF.Gen,DPF.Eval) be an N -party DPF with domain [D], output group
G, and share size ℓ. Let HSS = (HSS.Share,HSS.Eval) be an M -party HSS for a class of functions F
such that for every x ∈ [D], i ∈ [N], the function fi,x : s 7→ DPF.Eval(i, s, x) belongs to F .
DPF∗.Gen(1λ, α, β,G): Let (s1, . . . , sN) ← DPF.Gen(1λ, α, β,G). Then set (ki,1, . . . , ki,M) ←
HSS.Share(1λ, si) for i ∈ [N] and output (ki,j)i∈[N],j∈[M].
DPF∗.Eval((i, j), ki,j , x): Define fi,x : s 7→ DPF.Eval(i, s, x). Output HSS.Eval(j, fi,x, ki,j).

Theorem 6. Let DPF = (DPF.Gen,DPF.Eval) be an N -party DPF for the family of point functions {fα,β :
[D] → Fp | α ∈ [D], β ∈ Fp} such that DPF.Eval can be computed by a constant-degree polynomial. Let
HSS = (HSS.Share,HSS.Eval) be an M -party HSS scheme with share size ℓ for a class of functions F such
that for every x ∈ [D], i ∈ [N], the function fi,x : s 7→ DPF.Eval(i, s, x) belongs to F .

Then the scheme DPF∗ = (DPF∗.Gen,DPF∗.Eval) from Protocol 4 is an N ·M -party DPF for the family
of point functions {fα,β : [D]→ Fp | α ∈ [D], β ∈ Fp} with the following properties.

– DPF∗.Gen outputs N ·M keys, each of size ℓ.
– DPF∗.Eval viewed as a function with the DPF key as its input can be evaluated by the class F∗ of functions

that includes {s 7→ HSS.Eval(j, g, s) | j ∈ [M], g ∈ F}.

5 Multiparty DPF and HSS via Iterative Nesting

Using the building blocks overviewed in section 4, we present our main results: an iterative nesting approach
to construct 2m-party DPF, HSS, and PCG for any constant m, and a boosting approach to boost the
number of parties to an arbitrary polynomial N .

5.1 Towards 2m-party DPF via iterative nesting

In this section we outline how the previous results can be combined to yield a 2m-party DPF, starting from
the building block of a 2-party DPF, instantiating the nesting technique of [CK24] as outlined in section 4.4.
While [CK24] instantiated this template using HSS for log-depth circuits from a variety of assumptions
(including DDH, DCR and LWE), our following scheme utilizes HSS for constant-depth circuits constructed
via a 2m−1-party DPF and the LPN assumption with constant number of samples. For starters, we see how
the technique so described can be used to construct a 4-party DPF.

– From Theorem 3, we get a 2-party distributed point function DPF for functions with domain size [λd]
whose key is of O(d · λ2) bits and and whose evaluation function can be computed by degree-cd polyno-
mials. As per our nesting strategy, the first step is to use a 2-party HSS scheme to create HSS shares of
the two DPF shares (k0, k1) output by DPF.Eval. To do this, we require an HSS scheme that supports
the evaluation of circuits that can be computed by degree-cd polynomials.

18

– We can iteratively construct such an HSS scheme for degree-cd polynomials using our template. To do
this, we start by constructing a 2-party PCG for the tensor powers correlation with tpp = cd as per
Theorem 4. Our PCG outputs shares of all tensor powers of a length-n pseudorandom vector r. Since
we wish to obtain HSS shares of inputs to DPF.Eval, we set n = O(λ2). Such a PCG requires a second
DPF (which we term DPF′) with domain [(n′)tpp]. Setting n = O(n′) (which corresponds to LPN with

linear number of samples), it follows that the domain of DPF′ is [O(λ2)c
d

], which is still polynomial in

λ. As per Theorem 3, DPF′ can be evaluated by a polynomial of degree ≈ c2c
d

. Hence, from Theorem 4,
assuming F-LPN(O(λ2), O(λ2), t), we obtain a 2-party PCG for the tensor powers correlation whose key

size is O(t2c
d ·λ2) and whose expand function involves O(t2c

d ·λ2cd) PRF calls and O((n ·n′)cd) arithmetic

computations. Furthermore, this PCG can be evaluated by a polynomial of degree (close to) c2c
d

.
– Based on Theorem 5, the previous PCG gives us a 2-party HSS for degree-d polynomials with n variables

whose share size is O(t2c
d · λ2) and its evaluation function is computable by a degree-c2c

d

polynomial.
– Combining the above with Theorem 6, we obtain a 4-party DPF for point functions with domain size

[λd], key size O(t2c
d · λ2) bits and evaluation function computable by degree-c2c

d

polynomials.

Note that the above technique can be applied using any M -party HSS scheme to yield a 2M -party DPF.
By Theorem 6, it follows that both the share size and the computational complexity of DPF.Eval for the
resultant DPF is inherited from the M -party HSS scheme.

5.2 Full construction

We now state an analyze the inductive construction sketched in the previous section.

Theorem 7. Fix integers m, d > 0. Assume the existence of a pseudorandom generator G : {0, 1}λ →
{0, 1}λ·(λ+1) that can be computed by a degree-c polynomial and define d2m,d = (1/3) · (3, c, d) ↑ m. Then

assuming in addition the dual F-LPN(λ3/2+ 1, λ3, λ1/(2d
2m−1,d)) assumption, there exists a secure, 2m-party

distributed point function DPF that supports the family of point functions fα,β : [λd]→ Fp with the following
characteristics:

– The key size is ℓ2m,d = O(λ3).
– DPF.Gen can be computed using 6d2m,d calls to G and 3λ2·d2m,d+m·poly(λ) additional Boolean operations

(where the exponent in poly is independent of c, d,m).
– For any input x ∈ [λd], DPF.Eval(·, x) can be computed by a degree-d2m,d polynomial.

Proof. Our construction follows the outline provided in the section above. Let DPF = (DPF.Gen,DPF.Eval)
be the low-complexity distributed point function of Protocol 3 that supports the family of point functions
fα,β : [λd]→ Fp and has key size ℓ2,d = O(d · λ2) ≤ λ3/2− 1 (where the inequality holds for any constant d,
for a large enough λ). The evaluation function of this DPF can be computed by a degree-cd polynomial. We
will prove the above proposition by induction. It is easy to see that DPF satisfies the proposition for m = 1.

In order to obtain a 2m+1-party DPF, we begin by constructing a 2m-party HSS scheme for degree-
cd = d2,d polynomials. Inductively, let DPF2m,3cd be a 2m-party distributed point function that supports the

family of point functions fα,β : [λ3cd]→ Fp which has key size ℓ2m,3cd and can be evaluated by a degree-d2m,3cd

polynomial. By Theorem 4, assuming the hardness of the Fp-LPN(λ
3/2+1, λ3, t2m,3cd = λ1/(2m·d2,d)−1) and

using the fact that 2ℓ2,d + 1 ≤ λ3/2, DPF2m,3cd can be bootstrapped into a PCG for degree-cd ℓ2,d-variate

correlations with seeds of size at most λ1/2m · ℓ2m,3cd (using λ = (1 + t)c
d

) and that can be evaluated by
a degree-d2m,3cd polynomial. Then, Theorem 5 then immediately implies a 2m-party HSS scheme for ℓ2,d-

variate polynomials of degree-cd with share size ℓ2,d + λ1/2m · ℓ2m,3cd such that HSS.Eval can be computed
by a degree-d2m,3cd polynomial.

Now, using Theorem 6, we obtain a 2m+1-party DPF DPF∗ = (DPF∗.Gen,DPF∗.Eval) over the domain
[λd] with key size ℓ2m+1,d = ℓ2,d + λ1/2m · ℓ2m,3cd and such that for each i ∈ [2m+1] and each x ∈ [λd] the
function k 7→ DPF∗.Eval(i, k, x) belongs to the family of degree-d2m,3cd polynomials. We therefore obtain the
following inductive relations:

19

– ℓ2m+1,d = ℓ2,d + λ1/2m · ℓ2m,3cd with ℓ2,d = dλ2,
– d2m+1,d = d2m,3cd with d2,d = cd.

We show that there exists a constant γ(c, d,m) such that ℓ2m,d ≤ γ(c, d,m)·λ
∑m−1

i=0
1/2i+1 ≤ γ(c, d,m)·λ3.

Indeed, we have ℓ2,d = γ(c, d, 1) · λ2 by defining γ(c, d, 1) := d, and by induction, if ℓ2m,d ≤ γ(c, d,m) ·
λ
∑m−1

i=0
1/2i+1, then

ℓ2m+1,d = ℓ2,d + λ · ℓ2m,3cd ≤ dλ2 + λ1/2m · γ(c, 3cd,m) · λ
∑m−1

i=0
1/2i+1

≤ γ(c, d,m+ 1) · λ
∑m

i=0
1/2i+2,

by setting for instance γ(c, d,m+1) := d+γ(c, 3cd,m). For d2m,d, we obtain a closed form using the iterated
exponential notation:

d2m,d =
(3, c, d) ↑m

3
.

We now turn to the complexity of DPF∗.Gen. Let c2m,d denote the cost of DPF2m,d (counted as a number
of calls to G and a number of additional Boolean operations). By Theorem 4, we build a 2m-party PCG

using (t2m,3cd +1)3c
d

= λ1/2m calls to DPF2m,d. The conversion to a 2m-party HSS only incurs an additional
poly(ℓ2,d) = poly(λ) cost for stretching r ∈ Fℓ2,d and computing x+r, and DPF2m+1,d is obtained by running
HSS.Share on the keys of DPF. Therefore, we have

c2m+1,d = λ1/2m · c2m,3cd + poly(λ).

Furthermore, for m = 1, c2,d is the cost of DPF given by theorem 3: c2,d = (2d,O(dλ2)) (2d invocations of
G and O(dλ2) additional Boolean operations). Solving the inductive relation yields

c2m,d = (6d2m,d, λ
2 · d2m,d +m · poly(λ)).

It remains to pinpoint the flavor of LPN used in the construction. In short, we proved that if (1) there

exists a 2m-party DPF over a domain of size λ3cd and (2) the F-LPN(λ3/2 + 1, λ3, t2m,3cd = λ1/(2m·d2,d) − 1)
assumption holds, then there exists a 2m+1-party DPF over a domain of size λd. By induction, we build a
2m+1-party DPF from the existence of a 2-party DPF over a domain of size λ(c,d)↑m assuming the hardness

of F-LPN(λ3/2+1, λ3, λ1/(2m−j ·d
2j ,d)−1) for j = 1 to m. All these assumptions are implied by F-LPN(λ3/2+

1, λ3, λ1/(2d2m,d) − 1) (as 2m−(j+1)d2j+1,d ≫ 2m−jd2j ,d), which concludes the proof.

5.3 Boosting the number of parties

Observe that since we are only able to derive a multiparty DPF within a constant number of parties, using
the technique described in section 4.2 can merely result in PCG among a constant number of parties. To
obtain a PCG for a polynomial number of parties, we apply a general transformation that originally appears
in [BCG+19,BCG+20] which is used to build an M -party PCG for bilinear correlations upon a 2-party
PCG for bilinear correlations that satisfies an additional programmability property. The idea is that to
additively share all the “cross terms”, we need to execute M · (M − 1) pairwise instances of the underlying
2-party PCGs. Importantly, to guarantee the consistency which allows each party to obtain the same share
among different 2-party PCG instances, we further require the base 2-party PCG to satisfy the so-called
programmability property, making it possible to “reuse” the inputs without compromising security. Adapting
to our application, we formally define the programmable property of multiparty PCGs for constant-degree
correlations as follows.

Definition 10 (Programmable PCG). A tuple of algorithms PCG = (PCG.Gen,PCG.Expand) following
the syntax of a standard PCG, but where PCG.Gen(1λ) takes additional random inputs (ρ1, ρ2, . . . , ρd) with
ρσ ∈ {0, 1}∗ for each σ ∈ [d], is a d-party programmable PCG for degree-d correlation denoted by Cnd , where
each party Pσ takes Rσ ∈ Fn

p and Sσ ∈ Fnd

p , with Sσ denoting the σ-th additive share of the tensor product

vector
⊗

i∈[d] Ri ∈ Fnd

p , if the following holds:

20

– Correctness. The correlation obtained via:

((R1,S1), . . . , (Rd,Sd))

ρ1, . . . , ρd ←$ {0, 1}∗
(kσ)σ∈[d] ←$ PCG.Gen(1λ, ρ1, . . . , ρd)

(Rσ,Sσ)←$ PCG.Expand(σ, kσ) for every σ ∈ [d]

is computationally indistinguishable from Cnd (1λ).
– Programmability. There exist public efficiently computable functions φσ : {0, 1}∗ → Fn

p for each σ ∈ [d]
such that

Pr

ρ1, . . . , ρd ←$ {0, 1}∗,
(k1, . . . , kd)←$ PCG.Gen(1λ, ρ1, . . . , ρd),

(R1,S1)← PCG.Expand(1, k1),
...

(Rd,Sd)← PCG.Expand(d, kd)

:

R1 = φ1(ρ1),
...

Rd = φd(ρd)

≥ 1− negl(λ).

– Programmable Security. For any T ([d], the distributions

{

({kσ}σ∈T , (ρ1, . . . , ρd))
(ρi)i∈[d] ←$ {0, 1}∗
(ki)i∈[d] ←$ PCG.Gen(1λ, ρ1, . . . , ρd)

}

and {

({kσ}σ∈T , (ρ1, . . . , ρd))
(ρi)i∈[d], (ρ̃σ̃)σ̃∈[d]\T ←$ {0, 1}∗
(ki)i∈[d] ←$ PCG.Gen(1λ, (ρσ)σ∈T , (ρ̃σ̃)σ̃∈[d]\T)

}

are computationally close.

We first observe that by changing the definition of the underlying multi-point function according to the
programmed inputs, the previously constructed multiparty PCG for constant degree correlations based on
multiparty DPFs in section 4.2 can be adapted to satisfy the programmability property defined above. We
formally state this in Lemma 1 and explicitly show the construction in Protocol 5.

Lemma 1. Setting N = tpp = d, Protocol 2 can be adapted to a d-party programmable PCG for degree-d
correlation Cnd , as per Definition 10.

Proof (Proof of Lemma 1). To allow programmability, we slightly tweak the construction in Protocol 2 and
describe the construction in Protocol 5. Intuitively, we change the definition of the multi-point function in
PCG.Gen to accord with the programmed inputs.

Protocol 5: Programmable d-party PCG for degree-d Correlation Cnd from d-party DPF

Parameters: 1λ, n, n′, t, p, d ∈ N, where n′ > n. Let C be a code generation algorithm such that

Hn′,n ←$ C(n′, n,Fp). Let PRG : {0, 1}λ → Fnd

p be a PRG.

PCG.Gen(1λ, ρ1, . . . , ρd) :

1. For each σ ∈ [d], interpret ρσ as a t-sparse vector eσ ∈ Fn′

p .

2. Let f : [(n′)d] → Fp be the multi-point function with td points, where f(i) returns the ith

coordinate of
⊗d

j=1 ej .

3. Compute (K fss
1 ,K fss

2 , . . . ,K fss
d)←$ MPFSSd.Gen(1

λ, f).a

4. For every i, j ∈ [d] with i < j, sample PRG seeds sij ←$ {0, 1}λ.
5. For each σ ∈ [d], let kσ ← (n, ρσ,K

fss
σ , {sjσ}1≤j<σ, {sσj}σ<j≤d).

6. Output (kσ)σ∈[d].

PCG.Expand(σ, kσ) :

1. On input (σ, kσ), parse kσ as (n, ρσ,K
fss
σ , {sjσ}1≤j<σ, {sσj}σ<j≤d) and interpret ρσ as eσ.

21

2. For evert j 6= σ, compute tσj = PRG(sσj) if σ < j and tσj = PRG(sjσ) otherwise.

3. Compute vσ ← MPFSSd.FullEval(σ,K
fss
σ). \\ Note that vσ ∈ F

(n′)d

p .

4. Compute Rσ ← Hn′,n · eσ and Sσ ← (Hn′,n)
⊗d · vσ +

∑

1≤j<σ tjσ −
∑

σ<j≤d tjσ. \\ Note that

Sσ ∈ (Fn
p)

d and
∑

σ∈[d] Sσ =
⊗d

σ=1 Rσ.

5. Output (Rσ,Sσ).

a

MPFSSd is an instance of distributed multi-point function with domain size (n′)d.

According to our construction, for each φσ : {0, 1}∗ → Fn
p and ρ ∈ {0, 1}∗, φσ(ρ) first interprets ρ as a t-

sparse vector e ∈ Fn′

p and then computes R = Hn′,n ·e. The correctness property follows from the correctness
of the underlying MPFSSd, the LPN assumption, and the security of PRG. The programmability holds due
to our definition of (φσ)σ∈[d]. The programmable security stems out from the security of the underlying
MPFSSd which guarantees that for any set T ([d] of corrupted parties, the generated FSS keys of corrupted
parties, (K fss

σ)σ∈T , do not leak any information of (ρσ̃)σ̃∈[d]\T . We omit the formal proof as it is almost the
same as that of Theorem 4 which constructs N -party PCG for tensor power correlations from N -party DPF.

Based on such a programmable D-party PCG for degree-D correlation, we then present a general transfor-
mation to derive an M -party PCG construction for degree-D correlation. Such an M -party PCG compresses
the correlation CND,M , where each party Pσ takes the σ-th additive share of N random elements r1, r2, . . . , rN
together with all degree-D monomials in r1, r2, . . . , rN . Alternatively, with this M -party PCG, fixing an
arbitrary N -variate polynomial P (r1, r2, . . . , rN) of degree D, all parties are able to obtain their additive
shares of r1, r2, . . . , rN and P (r1, r2, . . . , rN), which will be denoted by additive correlation CP,M . It is clear
that CP,M is a reverse-sampleable correlation.

At a high-level, letting r = (r1, . . . , rN), the transformation works by invoking D-party PCG for degree-
D correlation for every D-tuple τ = (j1, . . . , jD) ∈ [M]D to generate short seeds which expand to additive

shares of
⊗D

ℓ=1 rjℓ , where (rσ)σ∈[M] forms an additive share of r. We emphasize that, while D is restricted to
be a constant because the length of the seeds generated by D-party PCG will explode as the degree increases,
M can be polynomials in security parameter λ, which benefits from our construction based on programmable
PCGs and the programmability is used to maintain the consistency across different monomials. We show such
a transformation in Protocol 6 and summarize its functionality and computation complexity in Lemma 2.
For each D-tuple τ ∈ [M]D, we abuse the notation as σ ∈ τ if there is a component in τ equal to σ.

Protocol 6: M -party PCG from D-party PCG

Parameters: Let PCGD = (PCGD.Gen,PCGD.Expand) be a programmable D-party PCG for degree-
D correlation CND with each key of size sD(λ). Let P : GN → G be an N -variable degree-D polynomial
defined as (r1, r2, . . . , rN) 7→ ∑

τ1=(i1,i2,...,iD)∈[N]D cτ1 · ri1ri2 · · · riD . Here we treat P as a linear
combination of degree-D monomials in N variables for simplicity.
PCGM .Gen(1λ) :

1. For each σ ∈ [M], sample random ρσ ←$ {0, 1}∗ as specified by programmability property.
2. For every D-tuple (j1, j2, . . . , jD) ∈ [M]D denoted by τ2, run (kj1τ2 , k

j2
τ2 , . . . , k

jD
τ2) ←$

PCGD.Gen(1λ, ρj1 , ρj2 , . . . , ρjD).
3. For every i, j ∈ [M] with i < j, sample PRG seed sij ←$ {0, 1}λ.
4. For each σ ∈ [M], output kσ = ({sjσ}1≤j<σ, {sσj}σ<j≤M , {kστ2}{τ2∈[M]D | σ∈τ2}).

PCGM .Expand(σ, kσ):

1. Parse kσ as ({sjσ}1≤j<σ, {sσj}σ<j≤M , {kστ2}{τ2∈[M]D | σ∈τ2}).
2. For every j 6= σ, compute tσj = PRG(sσj) if σ < j and tjσ = PRG(sjσ) otherwise.

22

3. For D-tuple (j1, j2, . . . , jD) ∈ [M]D denoted by τ2 such that jℓτ2 (σ) = σ for some ℓτ2(σ) ∈ [D],
compute (Rτ2,σ,Sτ2,σ) ← PCGD.Expand(ℓτ2(σ), k

σ
τ2). Notice that by programmability, Rτ2,σ =

φ(ρσ) , rσ ∈ FN
p . Let Sτ2,σ = (Sτ2,σ,τ1)τ1∈[N]D .

4. Output rσ and zσ =
∑

τ1∈[N]D cτ1 ·
∑

{τ2∈[M]D | σ∈τ2}
Sτ2,σ,τ1 +

∑

1≤j<σ tjσ −
∑

σ<j≤M tσj .

Lemma 2. Let PCGD = (PCGD.Gen,PCGD.Expand) be a programmable PCG for degree-D correlation CND
with each key of size sD(λ). Then the construction PCGM = (PCGM .Gen,PCGM .Expand) in Protocol 6 is an
M -party PCG for additive degree-D correlation CP,M (specified by an N -variable polynomial P : GN → G

which is a linear combination of degree-D monomials in N variables) with the following properties.

– PCGM .Gen(1λ) runs MD executions of PCGD.Gen, outputs key (kσ)σ∈[M], each kσ has size O(MD−1) ·
sD(λ) + (M − 1) · λ bits.

– PCGM .Expand(σ, kσ) runs O(MD−1) executions of PCGD.Expand and makes (M − 1) evaluations of a
pseudorandom generator.

Proof (Proof of Lemma 2).

Correctness. We first focus on the correctness. By our construction, each ρj is sampled uniformly at
random. Since r =

∑

j∈[M] rj =
∑

j∈[M] φ(ρj), then r = (ri)i∈[N] is random and (r1, r2, . . . , rM) forms a
random additive sharing of r by the correctness and programmability of PCGD. Moving to the distribution
of (zσ)σ∈[M], by correctness and programmability of PCGD, we know that for every D-tuple (i1, i2, . . . , iD) ∈
[N]D denoted by τ1 and D-tuple (j1, j2, . . . , jD) ∈ [M]D denoted by τ2, the following holds except with
negligible probability

D∑

ℓ=1

Sτ2,jℓ =

D⊗

ℓ=1

Rτ2,jℓ =

D⊗

ℓ=1

rjℓ ,

where we have (kjℓτ2)ℓ∈[D] ← PCGD.Gen(1λ, ρj1 , . . . , ρjD) and (Rτ2,jℓ ,Sτ2,jℓ)← PCGD.Expand(jℓ, k
jℓ
τ2) for each

ℓ ∈ [D], which means with overwhelming probability,

M∑

σ=1

zσ =

M∑

σ=1

(
∑

τ1∈[N]D

cτ1 ·
∑

{τ2∈[M]D | σ∈τ2}

Sτ2,σ,τ1 +
∑

1≤j<σ

tjσ −
∑

σ<j≤M

tσj)

=
∑

τ1∈[N]D

cτ1 ·
M∑

σ=1

∑

{τ2∈[M]D | σ∈τ2}

Sτ2,σ,τ1 +
∑

i<j

(tij − tji)

=
∑

τ1∈[N]D

cτ1 ·
∑

τ2∈[M]D

D∑

ℓ=1

Sτ2,jℓ,τ1

=
∑

τ1∈[N]D

cτ1 ·
∑

τ2∈[M]D

(

D⊗

ℓ=1

rjℓ)τ1 =
∑

τ1∈[N]D

cτ1 · (
D⊗

r)τ1

=
∑

τ1∈[N]D

cτ1 ·
∏

i∈τ1

ri = P (r1, r2, . . . , rN).

Moreover, from pairwise pseudorandom offsets tij which are independent of {ρj}j∈[M], (
∑

1≤j<σ tjσ −∑

σ<j≤M tσj)σ∈[M] forms a random additive sharing of 0 and thus (zσ)σ∈[M] forms a random additive sharing
of P (r1, r2, . . . , rN), which completes the correctness.

Security. Now we focus on the security. Let T ([M] denote the set of corrupted parties. By definition
of PCG security, we aim to prove given corrupted parties’ keys (kσ)σ∈T , the distribution of expanded honest
parties’ shares, (rσ̃, zσ̃)σ̃∈[M]\T , using honest parties’ keys is indistinguishable from that generated by using

23

reverse sampling algorithm, conditioned on expanded corrupted parties’ shares, (rσ, zσ)σ∈T . Formally, the
goal is to prove the following two distributions,

Dreal ,

{

(kσ)σ∈T , (rσ̃, zσ̃)σ̃∈[M]\T
(k1, k2, . . . , kM)← PCGM .Gen(1λ)
(rσ̃, zσ̃)← PCGM .Expand(σ̃, kσ̃)∀σ̃ ∈ [M] \ T

}

and

Dsim ,

(kσ)σ∈T , (rσ̃, zσ̃)σ̃∈[M]\T

(k1, k2, . . . , kM)← PCGM .Gen(1λ)
(rσ, zσ)← PCGM .Expand(σ, kσ)∀σ ∈ T
(rσ̃, zσ̃)σ̃∈[M]\T ← RSample(T, (rσ, zσ)σ∈T)

,

are computationally indistinguishable. We first observe that due to the pairwise secret pseudorandom offsets
ti′j′ = PRG(si′j′), given (kσ)σ∈T and (rσ̃)σ̃∈[M]\T , the joint distribution of (zσ̃)σ̃∈[M]\T is indistinguishable
from random, up to the preserved sum

∑

σ̃∈[M]\T zσ̃ as required.

It then remains to show that given (kσ)σ∈T , the expanded honest values (rσ̃)σ̃∈[M]\T are pseudorandom.
It is sufficient to consider an extreme case, where all but one party σ ∈ [M] is corrupted. By the correctness
and programmability of the underlying PCGD, it suffices to prove the following two distributions,

Dreal′ ,

{

kστ2
τ2 ∈ [M]D,
σ ∈ τ2, σ 6= σ

}

, φ(ρσ)

ρσ ← {0, 1}∗,
(ρσ)σ 6=σ ← {0, 1}∗,{

kστ2

∣
∣
∣
∣

τ2 ∈ [M]D,
σ ∈ τ2

}

← Seeds(ρσ, (ρσ)σ 6=σ)

and

Dsim′

,

{

kστ2
τ2 ∈ [M]D,
σ ∈ τ2, σ 6= σ

}

, φ(ρσ)

ρσ ← {0, 1}∗,
(ρσ)σ 6=σ ← {0, 1}∗,{

kστ2

∣
∣
∣
∣

τ2 ∈ [M]D,
σ ∈ τ2

}

← Seedsσ((ρσ)σ 6=σ)

,

are computationally indistinguishable, where

– Seeds is an efficiently computable algorithm that runs Step 2 of PCGM .Gen with programmed inputs
(ρσ, (ρσ)σ 6=σ) fed to it and outputs all the seeds generated by invoking PCGD.Gen.

– Seedsσ is an efficiently computable algorithm that runs Step 2 of PCGM .Gen with programmed inputs
(ρi,σ)i∈[N],σ 6=σ fed to it except for each invocation of PCGD.Gen labeled with τ2 = (j1, . . . , jD) such that
jℓ = σ for some ℓ ∈ [D], Seeds′ uses a fresh randomness ρ̃τ2,σ instead of using the corresponding ρσ to
generate the keys. After running all the invocations of PCGD.Gen, Seedsσ outputs all the seeds generated.

We will prove this using a sequence of hybrid arguments, where we may replace each invocation of PCGD.Gen
using honest ri,σ̃ with fresh randomness one at a time. Intuitively, we will reduce such an indistinguishability
to the programmable security of PCGD though the reduction will lose a factor of O(MD−1) in advantage. In
particular, for the k-th hybrid, the hybrid distribution Dk is defiend as follows.

– Pick randomness ρσ, (ρσ)σ 6=σ.
– Run Seeds with programmed inputs (ρσ, (ρσ)σ 6=σ) except that, for the first k invocations of PCGD.Gen

labeled with τ2 = (j1, . . . , jD) such that jℓ = σ for some ℓ ∈ [D], PCGD.Gen will use a fresh randomness
ρ̃τ2,σ rather than ρσ to generate the seeds.

– Output {kστ2 | τ2 ∈ [M]D, σ ∈ τ2, σ 6= σ}, φ(ρσ).

Given a distinguisher A for Dk and Dk+1, we can construct a distinguisher B for the programmable security
property of PCGD, with the same advantage. In particular, supposing the (k+1)-th invocation of PCGD.Gen
is labeled with τ ′2 = (j′1, . . . , j

′
D) with j′ℓ = σ for some ℓ ∈ [D], B receives (kστ ′

2

)σ∈τ ′

2
,σ 6=σ and (ρj′ℓ)ℓ∈[D] from

its experiment. Then B works as follows to simulate the view of A.

– B additionally samples (ρσ)σ∈[M],σ 6∈τ ′

2
.

24

– B runs Seeds with programmed inputs (ρσ)σ 6=σ except that, for the first k invocations of PCGD.Gen
labeled with τ2 such that jℓ = σ for some ℓ ∈ [D], PCGD.Gen will use a fresh randomness ρ̃τ2,σ rather
than ρσ to generate the seeds and B does not run the invocation of PCGD.Gen labeled with τ ′2.

– B obtains {kστ2 | τ2 ∈ [M]D, σ ∈ τ2 such that τ2 6= τ ′2, σ 6= σ}, φ(ρσ) as well as the values of (kστ ′

2

)σ∈τ ′

2
,σ 6=σ

received from its experiment and forwards them to A.

B forwards the reply of A to its own experiment. Notice that if B obtains the real ρσ from its own experiment,
then the resulting distribution is identical to Dk, whereas if B obtains a simulated ρσ, B simulates Dk+1.
Therefore, B successfully breaks the programmable security of PCGD, whenever A successfully distinguishes
Dk and Dk+1.

Since there are only O(MD−1) invocations of PCGD.Gen labeled with τ2 = (j1, . . . , jD) such that jℓ = σ
for some ℓ ∈ [D], the distributions of Dreal′ and Dsim′

are computationally indistinguishable, where such
an indistinguishability is reduced to the programmable security of PCGD with O(MD−1) as the reduction
factor. By previous analysis, we prove the PCG security of PCGM . ⊓⊔

5.4 Corollaries

We spell out some corollaries of our results of the previous section. First, combining lemma 2 (M -party
PCG from d-party programmable PCG) with lemma 1 (d-party programmable PCG from d-party DPF) and
theorem 7 (setting m = log2(d) + 1), we get:

Corollary 1. Fix integers m, d > 0 and polynomials M,N . Assume the existence of a pseudorandom gen-
erator G : {0, 1}λ → {0, 1}λ·(λ+1) that can be computed by a degree-c polynomial and define d2m,d =
(1/3) · (3, c, d) ↑ m. Then assuming in addition the dual F-LPN(λ3/2 + 1, λ3, λ1/(2dd,d)) assumption, there
exists an M -party pseudorandom correlation generator (PCG.Gen,PCG.Expand) for any degree-d length-
N tensor power correlation with keys of size O(Md−1 · λ3), and where PCG.Gen can be computed using
6dd,d ·O(Md) = O(Md) calls to G and O(Md · λ3) additional operations.

Via theorem 5, this PCG can be converted to an M -party HSS for N -variate degree-d polynomials with
shares of size N +O(Md−1 · λ3):

Corollary 2. Fix integers m, d > 0 and polynomials M,N . Under the same assumptions as corollary 1,
there exists an M -party HSS HSS for degree-d N -variate correlations with keys of size N + O(Md−1 · λ3)
where HSS.Share can be computed using O(Md) calls to G and O(N ·poly(λ)+Md ·λ3) additional operations.

Eventually, using theorem 6 to combine this HSS with the 2-party DPF of theorem 3, we get:

Corollary 3. Fix integers m, d > 0 and a polynomial M . Under the same assumptions as corollary 1, there

exists a 2M -party distributed point function over a domain of size λd with keys of size O(M cd−1 · λ3).

We note that the last corollary is meaningful for values of M significantly smaller than λ (since there
always exists a trivial multiparty DPF with keys of size O(λd): it suffices to share the truth table of the
point function). In particular, for any M = polylog(λ), it yields an M -party DPF with key size Õ(λ3).

6 Applications

6.1 Private information retrieval

A 2-round M -server private information retrieval [CGKS95,KO97] involves M servers S1, · · · , SM , each

holding a copy of a string z ∈ {0, 1}λd

(the database) and a client C holding an integer i ∈ [λd] (the
query). The client C sends a single message to each server, and the servers send a single message back to
the client (in particular, the servers do not communicate). Formally,

25

Definition 11 (2-round M-server PIR). Fix a constant d. A 2-round M -server private information
retrieval scheme for databases of size λd is a triple of algorithms (Query,Answer,Output) with the following
syntax:

– Query(i) : on input i ∈ [λd], output an M -tuple (q1, · · · , qM) of queries.

– Answer(q, z) : on input q and a database z ∈ {0, 1}λd

, output an answer a.
– Output(a1, · · · , aM) : on input an M -tuple (a1, · · · , aM), output a bit b.

A PIR must be correct and private:

Correctness: there exists a negligible function µ such that for every λ ∈ N, z ∈ {0, 1}λd

, i ∈ [λd], and every
(q1, · · · , qM) in the support of Query(i), denoting aj = Answer(qj , z) for j = 1 to M , it holds that

Pr[Output(a1, · · · , aM) = zi] ≥ 1− µ(λ).

Security: there exists a negligible function µ such that for every PPT adversary A, large enough λ ∈ N,
j ∈ [M], (i0, i1) ∈ [λd]2, and z ∈ {0, 1}n:

|Pr[A((q0k)k∈[m]\{j}) = 1]− Pr[A((q1k)k∈[m]\{j}) = 1]|≤ µ(λ, n),

where the probability is over the choice of (qb1, · · · , qbM)← Query(ib) for b = 0, 1 and the random coins of
A.

The main measure of the efficiency of a PIR scheme is its communication complexity, which is the
maximum number of bits exchanged between the user and the servers. We call upload communication the
maximum size of any query qj over any query i, server index j, and random coins for Query. We say that
a scheme has optimal download rate and additive reconstruction if |aj |= 1 for j = 1 to m (for all possible

databases and queries) and Output(a1, · · · , aM) =
⊕M

j=1 aj .
The study of private information retrieval has a long history. In our definition above, we focus on the

setting of maximum corruption (up to M − 1 servers might collude). It is well known that an M -party
DPF over a domain of size λd (and range {0, 1}) immediately implies a 2-round M -party PIR with optimal
download rate and additive reconstruction. The construction proceeds as follows:

– Query(i): define the point function f = fi,1 that evaluates to 1 on i and output (q1, · · · , qM) ←
DPF.Share(f).

– Answer(q, z) : parse q as a key for DPF. Set v = (DPF.Eval(q, x))x∈[λd]. Return a = 〈v, z〉 mod 2 (〈·〉
denotes the inner product).

We refer the reader to [GI14] for the formal construction and security analysis. Plugging our construction
of multiparty DPF from corollary 3, we get:

Corollary 4. Fix an integers d > 0 and a polynomial M . Assume the existence of a pseudorandom generator
G : {0, 1}λ → {0, 1}λ·(λ+1) that can be computed by a degree-c polynomial and define ∆ = (2/3) · (3, c, d) ↑
log2(d). Then assuming in addition the dual F-LPN(λ3/2 + 1, λ3, λ1/∆) assumption, there exists a 2-round
M -party private information retrieval scheme for databases of size λd with upload rate O(Md−1 ·λ3), optimal
download rate, and additive reconstruction.

As shown in [GI14], the construction of PIR from DPF can be extended to other settings, such as PIR
by keywords (where the client wants to know whether a word w matches any entry from a database of λd

words held by M client) and PIR by keywords with payloads (where the client receives a payload pi if w
matches the word wi in the database). We omit the list of straightforward (similar) corollaries.

Remark 2. The LPN and MQ assumptions both require the parties to agree on random matrices. There are
several ways to deal with this technicality:

26

– If the parties are given access to a common random string, they can agree on these matrices with no
communication. In this case, the definition of PIR must be slightly modified to account for the use of a
CRS, to let the adversary choose the database z after seeing the CRS.

– Alternatively, the parties can rely on the random oracle model to locally generate these matrices.
– Eventually, the parties can use fixed matrices, or matrices that can be sampled using a small number of

random coins (e.g. by defining the matrices to be the output of a PRG). In this case, the security of the
protocol relies on the LPN and MQ assumptions with respect to these specific matrices. We note that
instantiating the matrices in LPN via a pseudorandom generator is a a very common assumption, made
e.g. in most code-based signatures schemes [FJR22,CCJ23].

6.2 Secure computation with silent preprocessing

As an immediate consequence of our PCG for constant degree correlations, we also obtain the first (M -party)
PCG for generating authenticated Beaver triples. Plugging this PCG in a maliciously-secureM -party protocol
from authenticated Beaver triples (e.g. SPDZ [DPSZ12]) This implies a maliciously secure computation
protocol with silent preprocessing, where the preprocessing communication scales as O(M3 ·poly(λ)), from the
hardness of LPN and the existence of constant-degree PRGs. Previous works required either LWE [DHRW16],
the DCR assumption on top of MQ and LPN [BCM23,CK24], or required ring-LPN and had a preprocessing
communication scaling as O(M4 · poly(λ) · √s) for circuits of size s [AS22]. We omit the (straightforward)
corollary.

6.3 M-party MPC with low communication

In this section, we show that our results give rise to an MPC protocol with communication smaller than
the circuit size for all layered circuits. In contrast with the result of [DIJL23], that provides a dedicated
construction of sublinear MPC from their sparse-LPN-based multiparty HSS, our result is obtained by
simply invoking existing results that generically obtain sublinear MPC given a suitable PCG. This simplicity
is a conceptual advantage over the approach of [DIJL23]. In [DIJL23], the authors had to rely on a dedicated
approach because their multiparty HSS scheme has non-negligible correctness error, and as a consequence
does not imply a PCG. We start by representing on FC the ideal functionality for securely evaluating a
layered arithmetic circuit C.

Functionality 1: FC

– Parameters. An arithmetic circuit C with n inputs over a finite field F.
– Parties. An adversary A and N parties P1, · · · , PN . Each party Pℓ has nℓ ∈ [0, n] inputs over F,

with
∑

ℓ≤N nℓ = n.

1. On input a message (input,xℓ) from each party Pℓ where xℓ ∈ Fpℓ , set

x← x1||· · · ||xN ∈ Fn.

2. Compute y ← C(x). Output y to all parties, and terminate.

Functionality 2: FCorr

– Parameters. For every i = 0, . . . , ⌈d/k⌉ − 1, functionality is parameterised with subsets
(U in

i,j , Ui,j)1≤j≤⌈si+1/β⌉ and (V in
i,j , Vi,j)1≤j≤⌈mi/β⌉.

– Parties. An adversary A and N parties P1, · · · , PN .

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, D) with D ([N] from A, set H ← [N] \D and store (H,D).

27

2. On input a message input with from each party Pℓ, send ready to A.
3. Setup input masks: On input a message (setinputshare, (rin,ℓ)ℓ∈D) from A with ∀ℓ ∈ D, rin,ℓ ∈ Fn,

sample (rin,ℓ)ℓ∈H ← (Fn)|H|, and set rin ←
∑

ℓ∈[N] rin,ℓ.

4. For i = 1 to ⌈d/k⌉ − 1:
(a) Setup masks for the computation gates of the first layer of the i-th chunk: On input a message

(setblockshare, i, (ri,ℓ)ℓ∈D) from A with ∀ℓ ∈ D, ri,ℓ ∈ Fsi , sample (ri,ℓ)ℓ∈H ← (Fsi)|H|, and
set rin ←

∑

ℓ∈[N] rin,ℓ.

(b) Setup evaluation of the computation gates on the final layer of the i-th chunk:
– For j = 1 to ⌈si+1/β⌉, set:

π(i,j) ←
(
1 || rin[U in

i,j] || ri[Ui,j]
)⊗2k

.

– Wait for a message (setshare, (i, j), (π
(i,j)
ℓ)ℓ∈D) from A with π

(i,j)
ℓ ∈ Fδ;

– Compute uniformly random shares (π
(i,j)
ℓ)ℓ∈|H| of π

(i,j) −
∑

ℓ∈D π
(i,j)
ℓ .

(c) Setup evaluation of the output gates in the i-th chunk:
– For j = 1 to ⌈mi/β⌉, set:

π(i,j) ←
(
1 || rin[V in

i,j] || ri[Vi,j]
)⊗2k

.

– Wait for a message (setoutputshare, (i, j), (π
(i,j)
ℓ)ℓ∈D) from A with π

(i,j)
ℓ ∈ Fδ;

– Compute uniformly random shares (π
(i,j)
ℓ)ℓ∈|H| of π

(i,j) −
∑

ℓ∈D π
(i,j)
ℓ .

5. Output (rin,ℓ, (ri,ℓ, (π
(i,j)
ℓ)1≤j≤⌈si+1/β⌉, (π

(i,j)
out,ℓ)1≤j≤⌈mi/β⌉)0≤i<⌈d/k⌉) to each party Pℓ.

Theorem 8 (Theorem 12 from [CM21]). Let k ≤ log log s − log log log s. There exists a protocol ΠC

which (perfectly) securely implements the N -party functionality FC in the FCorr-hybrid model, against a static,
passive, nonaborting adversary corrupting at most N − 1 out of N parties, with communication complexity
upper bounded by N ·

(
O(n+m) + s

k

)
· log|F|.

represent in FCorr the ideal corruptible4 functionality for distributing (function-dependent) correlated
randomness between the parties. The ideal functionality FCorr (which is reproduced verbatim from [CM21],
with the authorization of the authors) samples a complex subset tensor powers correlation, where the parties
receive shares of the tensor powers of strings derived from a pseudorandom r, where the strings are of the
form (1||rS) for size-2k subsets S determined by the topology of the circuit. It is a straightforward observation
that a PCG for the 2k-th tensor power correlation immediately implies a PCG for the (much more complex

and circuit-dependent) subset tensor power correlation defined in FCorr, simply because (1||r)⊗2k contains
all size-2k products of entries of (1||r), hence the substring tensor power correlation outputs effectively a

subset of the entries of (1||r)⊗2k .5
Then, [BCG+19, Theorem 19] proves that given an ideal functionality that distributes the seeds of

a PCG for a reverse-samplable correlation, the simple (no communication) protocol that lets the parties
locally stretch their seeds into a pseudorandom correlation securely instantiates (in the malicious setting)
the ideal corruptible functionality that distributes the corresponding correlation.

It remains to securely instantiate the functionality that distributes outputs of PCG.Gen, where PCG

is the construction from corollary 1. Using generic secure computation (e.g. GMW) with communication

4 A functionality that distributes additive shares is corruptible if it lets the adversary define the outputs of the
corrupted parties, and samples the honest parties’ outputs to be consistent with the corrupted parties’ outputs.

5 The point of considering this more convoluted correlation in [CM21] is that when k = ω(1), storing this correlation
does not require storing a superpolynomial amount of correlated randomness, while for a circuit with s gates, the

PCG’s output for the tensor power correlation grows as s2
k

. However, for the case of k = O(1) which we consider
here, using the tensor power correlation directly suffices.

28

and computation O(M · s · poly(λ)) for M -party secure computation of a circuit of size s, M parties can
securely compute the O(Md) invocations of G and O(Md · λ3) additional operations using poly(λ) ·Md bits
of communication. Combining Theorem 19 from [BCG+19] with theorem 8 and our PCG (corollary 1) with
the (generic) approach to distributively generate PCG keys sketched above, we get:

Theorem 9. There exists a universal constant θ such that for any constant k, there exists a protocol ΠC

which securely implements the M -party functionality FC in the standard model against a static, passive
adversary corrupting at most M − 1 out of M parties, with communication complexity upper bounded by

M ·
(

O(n+m) +
s

k

)

· log|F|+poly(λ) ·Mθ·k.

Remark 3. The protocol obtained in theorem 9 is in the preprocessing model : after a one-time preprocessing
phase (independent of the inputs) with total communication poly(λ) ·Mθ·k, the parties can securely compute
an arbitrary layered arithmetic circuit C over F using total communication

(
N ·O(n+m) + s

k

)
· log|F|.

Furthermore, the online phase is non-cryptographic: it does not require any cryptographic primitives. This
distinguishes this protocol from previous sublinear multiparty computation protocols based on FHE that
require the parties to use cryptographic computations after the inputs have been defined.

6.4 N-party MPC with Sublinear Communication

The protocol outlined in the previous section falls short of providing truly sublinear communication: for any
constant k, it communicates s/k field elements per parties. In this section, we sketch how to extend our
results to obtain an N -party MPC protocol with total communication sublinear in the size of the circuit
where N is any constant number of parties. Our protocol follows the technique of [CM21] to instantiate a
PCG for the subset tensor powers correlation using the N -party HSS scheme outlined in Subsection 5.1.

We provide a sketch of our argument below. A formal proof of the theorem follows from a straightforward
parametrization process which nevertheless involves importing a very large number of lemmas from [CM21],
and hence it has been omitted. A complete treatment of this proof can be found in the full version of this
work.

We now sketch how to obtain a low-communication, single-circuit N -party PCG for the stp correlation,
which is sufficient to obtain an N -party protocol for evaluating arbitrary layered circuits with sublinear

computation. The stp correlation is parametrized by a vector length w, subsets (Si)1≤i≤ns ∈
(
[w]
≤K

)ns
, a tensor

power tpp and generates shares of (r, ((1F‖r[Si])
⊗tpp)1≤i≤ns), where r ∈ Fw is random. We provide a formal

definition of the ideal functionality that generates this correlation on FCorr. Our PCG is instantiated by the
generic compiler of [CM21], which takes as input any N -party DPF with domain size λd and key size poly(λ)
and outputs a PCG PCGstp via the transformation in Fig. 7 of [CM21]. A series of theorems starting from
Theorem 15 to Theorem 20 of [CM21] then culminates in a proof that under the superpolynomial variant of
LPN such a PCG is sufficient to obtain sublinear MPC for layered circuits. We now consider the application
of this compiler to our DPF presented in Theorem 7. The bottleneck of the approach is the communication
and computation of the resultant MPFSS scheme formed by adding together several instances of the DPF.

– Communication: The key size of our 2m-DPF is O(λ3) = poly(λ). This is sufficient for the purpose of
the compiler.

– Computation: The evaluation algorithm of our 2m-DPF can be computed by a degree-d2m,d polynomial
where d2m,d = (1/3) · (31/dc, d) ↑ m. This is polynomial for constant m. However, Section 6 of [CM21]
shows that when the compiler is instantiated by the DPF of Theorem 7, the resulting total computation
involves a term of the form (log s)d2m,k where k is the sublinearity factor, which needs to be in ω(1).
Since we require (log s)d2m,k ≤ sO(1), it follows that the exact upper bound for the sublinearity factor is
dependent on 2m, ie. the number of parties. If we let itlog(k, x) represent the kth iterated logarithm of x,
that is

itlog(k, x) = log(log(. . . (log(x)) . . .))
︸ ︷︷ ︸

k times

,

29

we get that for 2m parties, k ≤ itlog(m+ 1, s)− itlog(m+ 2, s) +O(1). To remove dependence on m, we
note that log∗(x) = o(itlog(n, x)) for any constant value of n. Hence, we can set k = O(log∗(s)) or any
arbitrarily slow-growing function in o(itlog(n, x)), such as the inverse Ackermann function.

– Assumption: As in [CM21], setting parameters requires a superpolynomial flavor of the LPN assump-
tion formed by setting λ = o(λ′) for some suitable λ′. However, instantiating the low-degree PRG with
any compatible assumption —MQ, in our case— requires λMQ = λLPN, and hence we require a super-
polynomial flavor of the MQ assumption as well.

We conclude with the following corollary of Theorem 7.

Theorem 10. Let C be a layered arithmetic circuit of size s with n inputs and m outputs. For any constant
N , there exists a protocol Π′C which securely implements the N -party functionality FC in the standard model
against a static, passive adversary corrupting at most N−1 out of N parties, with communication complexity
upper bounded by

(

O(n+m) +
s

log∗ s

)

· log|F|+poly(λ).

References

ADOS22. Damiano Abram, Ivan Damg̊ard, Claudio Orlandi, and Peter Scholl. An algebraic framework for silent
preprocessing with trustless setup and active security. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 421–452. Springer, Cham, August 2022.

ARS24. Damiano Abram, Lawrence Roy, and Peter Scholl. Succinct homomorphic secret sharing. In Marc Joye and
Gregor Leander, editors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 301–330. Springer,
Cham, May 2024.

AS22. Damiano Abram and Peter Scholl. Low-communication multiparty triple generation for SPDZ from ring-
LPN. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177
of LNCS, pages 221–251. Springer, Cham, March 2022.

BCG+17. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic secret sharing:
Optimizations and applications. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 2105–2122. ACM Press, October / November 2017.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer, Cham,
August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudo-
random correlation generators from ring-LPN. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 387–416. Springer, Cham, August 2020.

BCM23. Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear-communication secure multiparty compu-
tation does not require FHE. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II,
volume 14005 of LNCS, pages 159–189. Springer, Cham, April 2023.

BDIR18. Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage resilience of
linear secret sharing schemes. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,

Part I, volume 10991 of LNCS, pages 531–561. Springer, Cham, August 2018.
BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc

Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer, Berlin,
Heidelberg, April 2015.

BGI16a. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Berlin, Heidelberg, August 2016.

BGI16b. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

BGI17. Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing rounds, communi-
cation, and computation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,

Part II, volume 10211 of LNCS, pages 163–193. Springer, Cham, April / May 2017.

30

BGP06. Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A practical stream cipher with provable
security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 109–128. Springer,
Berlin, Heidelberg, May / June 2006.

BKS19. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without FHE. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
3–33. Springer, Cham, May 2019.

CCJ23. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from regular syndrome decoding
in the head. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 532–563. Springer, Cham, April 2023.

CGKS95. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In 36th

FOCS, pages 41–50. IEEE Computer Society Press, October 1995.
CK24. Geoffroy Couteau and Naman Kumar. 10-party sublinear secure computation from standard assumptions.

In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part IX, volume 14928 of LNCS, pages
39–73. Springer, Cham, August 2024.

CM21. Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for secure computation under quasi-
polynomial LPN. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II,
volume 12697 of LNCS, pages 842–870. Springer, Cham, October 2021.

COS+22. Ilaria Chillotti, Emmanuela Orsini, Peter Scholl, Nigel P. Smart, and Barry van Leeuwen. Scooby: Im-
proved multi-party homomorphic secret sharing based on FHE. In Clemente Galdi and Stanislaw Jarecki,
editors, SCN 22, volume 13409 of LNCS, pages 540–563. Springer, Cham, September 2022.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its applications.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
93–122. Springer, Berlin, Heidelberg, August 2016.

DIJL23. Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic secret sharing and
sublinear MPC from sparse LPN. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,

Part II, volume 14082 of LNCS, pages 315–348. Springer, Cham, August 2023.
DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-

what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Berlin, Heidelberg, August 2012.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signatures
from zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 541–572. Springer, Cham, August 2022.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658. Springer, Berlin,
Heidelberg, May 2014.

JKPT12. Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments and efficient zero-
knowledge proofs from learning parity with noise. In Xiaoyun Wang and Kazue Sako, editors, ASI-

ACRYPT 2012, volume 7658 of LNCS, pages 663–680. Springer, Berlin, Heidelberg, December 2012.
KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database, computationally-

private information retrieval. In 38th FOCS, pages 364–373. IEEE Computer Society Press, October
1997.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret sharing
and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,

Part I, volume 12696 of LNCS, pages 678–708. Springer, Cham, October 2021.
RS21. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and applications.

In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 687–717,
Virtual Event, August 2021. Springer, Cham.

31

	Multiparty Homomorphic Secret Sharing and More from LPN and MQ

