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1 Introduction

Computing on Encrypted Data (COED) is an application for a number of different forms of privacy
enhancing technologies (PET). Within this field there are two main families of work: multiparty
computation (MPC) and fully homomorphic encryption (FHE). While both MPC and FHE allow
a set of parties to communally compute a function on their various secret inputs, the way that they
achieve this is starkly different.

In most cases, MPC distributes the secrets in a safe manner (such as secret sharing), allowing
each of the parties to perform computation on their own machine before communicating the results
with the other parties in the protocol. These systems allow obtaining high security guarantees at
the cost of high communication and computation complexity. A drawback as a result of this is that
each of the parties require a computationally powerful machine.

Contrasting, FHE allows for the delegation of these computationally expensive operations to a
third party server without revealing each party’s input or output, reducing the communication and
computation complexity of each of the participants at the cost of much lower security guarantees.
Multi-key FHE takes this a step further by allowing for these computations to happen in a situation
where each participating party has their own (unique) key.

Most FHE schemes achieve the combination of functionality and security by introducing noise,
which prevents an adversary from learning anything about the message in a ciphertext. To remove
the noise, the decryption step usually has a rounding function which ensures the correct retrieval
of the underlying message dependent on the amount of noise present in the ciphertext. With every
operation the noise grows: linearly for addition, but exponentially for multiplication. It will come
as no surprise that after a number of operations the noise can grow so large that the rounding func-
tion cannot reliably round back to the underlying message. To accommodate the size of arbitrary
computations a new protocol depending on the scheme was introduced called bootstrapping. While
this allowed for arbitrary computations to be executed, the bootstrapping protocol is often very
computationally expensive when compared to the arithmetic operations. One of the largest con-
straints with Multi-key FHE schemes is that the noise grows significantly faster and is often related
to the number of parties that participate in the protocol. As a result, these multi-key protocols
often require much larger parameter sets than their single-key counterparts.

A possible solution to this is multiparty FHE (MPFHE), which allows for a short burst of
communication using an MPC protocol so that the parties can agree on communal keys with which
to then outsource the computation to an evaluator while preserving the secrecy of their inputs both
to one another and to the evaluator. Thus, the parties, at the cost of some communication, reduce
the computational overhead of performing the FHE to that of the single key variant while still
allowing multiple parties to participate. While these constructions have been studied in the past,
they were often based on exotic assumptions or challenging to verify claims. In this paper we present
a framework which allows us to implement these constructions efficiently agnostic of the underlying
MPC an FHE protocols.

First, the MPC protocol is used to generate all keys required for the FHE protocol to follow.
Depending on the adopted FHE protocol the required key material can change, but in general we
need two sets of key material: key switching keys and bootstrapping keys. Secondly, the parties
input using ciphertexts under their own individual keys, which the server can then key switch to a
common key for the computation itself. Within the computation, the server can bootstrap using the
bootstrapping keys, and parties can also supply additional inputs without further communication
among the parties themselves, should that be needed. When outputting, the server can simply use
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the key switching keys for output, so the output ciphertext will be under the required key. Finally,
the parties can now decrypt the output.

Fig. 1: A bird’s eye overview of the MPFHE framework

Decryption poses some challenges of its own, so we provide some possible approaches that each
come with their own set of protocols and tradeoffs.

The first option, single-key decryption, is advantageous in that the parties need not communicate
to decrypt. However, there are some drawbacks. The first is that the server must perform as many key
switches as there are parties, which can be costly. The second is similar to the first, and that is that
as many key switching keys as there are parties must be computed during the MPC preprocessing.
The third is that the server must not collude with any party in this scenario, as else the server may
key switch any intermediate value, or even another party’s input to another key. The (colluding)
owner of that key could then learn any value of the computation they wish.

The second option, multi-key decryption, has the advantages of security. The server may be
considered semi-honest without breaking security. Furthermore, only a single key switching needs
to be computed during the server and only a single key switching key needs to be computed during
the MPC preprocessing. The downside is that the parties must communicate for both the input and
output of the protocol.

Because this framework allows for the use of a single key FHE protocol over the multi-key
variants, this directly combats the incredible noise growth and limitations that must be set on the
number of participating parties.

1.1 Our Contributions

A Framework, Multiparty FHE: We introduce a new framework for multiparty fully homomor-
phic encryption (MPFHE) which allows for the use of any single key FHE protocol featuring lin-
ear decryption (e.g. BGV/BFV [BGV12,FV12], TFHE [CGGI20], FHEW [MS18,GPvL23],FINAL
[BIP+22,JMPP24,PvLZ24]) in combination with a (semi-honest) MPC protocol to build a multi-
party FHE scheme: namely one that requires some communication during key generation, but after
which the server can perform the computation with the same complexity as the single key FHE
scheme.

An Instantiation, Multiparty FINAL: We instantiate our new framework by adapting FINAL
[BIP+22] to the new framework and provide an improvement compared to FINALLY [PvLZ24]
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with a 2.46-71.16x reduction in total key material. We also provide an analysis of the noise growth
and prove that this is still within the bounds of the lattice attacks known to affect NTRU.

An Implementation, Improving the State-of-the-Art: We provide a prototype implementation of
MP-FINAL, which we use to benchmark our results against other MPFHE protocols, which are
considered the current state of the art, [AKÖ23,PR23,KMS24].3

PvLZ [PvLZ24] PR [PR23] KMS [KMS24] AKÖ [AKÖ23] This work

Key size (GB) 5337 2.2 .285 .93 .75
Bootstrapping time (ms) - 900 5650 1800 88.6

Table 1: A brief overview of our results for k = 16 parties.

1.2 Related Work

To our knowledge, both our formalization of MPFHE and the structure of our framework
have not appeared in the literature before. Some existing concepts can be seen as precur-
sors, however. MPFHE can be interpreted as a relaxation of the multi-key FHE setting
(MKFHE)[LTV12,PvLZ24,CDKS19,Par21], where parties are now allowed communication during
the setup phase. This has the result that the set of parties has to be, and stay, fixed before the
start of the computation and key generation. Under a similar constraint, we find threshold FHE
(ThFHE) protocols[AKÖ23,AJL+12,KLSW21,MBH22], where a threshold MPC protocol attempts
to emulate a single FHE client and enable encryption and decryption when a threshold majority
of the parties is honest. Lastly, a line of work building constant-round MPC protocol from FHE
attempts to perform a constant-round, multiparty key generation phase, encryption and decryp-
tion inside an MPC protocol, with the main computation performed locally through FHE by all
parties[BGG+18,MTBH21].

2 Preliminaries

2.1 Notation

Let R be a ring and let F be a field. For a polynomial, g ∈ R[X] or g ∈ F[X], we denote by gi the
coefficient corresponding to the ith power of X. We denote vectors by lower-case bold letters, such
that a = (a1, . . . , an), and matrices by upper-case bold letters, M ∈ Mr×c(F), such that mM (i) is
the ith row of M and M(j) is the jth column of M. As both M(i) and M(j) are vectors a single
index can be given by M

(i)
j = M(j),i = Mi,j .

Throughout the paper we denote by R := Z[X]/⟨XN + 1⟩ the 2N -th cyclotomic ring, such
that N = 2κ for some κ ∈ N. Similarly, we can define RQ := R/QR, i.e. the cyclotomic ring
with coefficients in ZQ. Note that any element g ∈ R, R ∈ {R,RQ}, can be given as the smallest
polynomial of at most degree N in the appropriate coset of R. Hence, we can represent any element,
g ∈ R by a vector representation, ϕ(g) = (g0, . . . gN−1), and this representation is well-defined. As
Im(ϕ) ⊂ ZN , we can define the infinity norm of an element, g, as ∥g∥ = ∥ϕ(g)∥.
3 The code is available at https://github.com/KULeuven-COSIC/vinyl
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2.2 Distributions

For a random variable a we define a← Gσ as the action of sampling a from the discrete Gaussian
distribution over a ring R with variance σ2. Moreover, by Var(a) we denote the maximum variance
of a.

A random variable, V , is called α-subgaussian if the moment generating function fulfills the
following equation for some α and all t ∈ R:

E[exp(t · V )] ≤ 1

2
exp(α2 · t2).

We will use the fact Var(V ) ≤ α2 and the following property for a vector a := (a1, a2, . . . , an) for
our noise analysis:

Var(a) = max
i∈[n]

(Var(ai)) = max
i∈[n]

αi.

Furthermore, we employ the benefit of subgaussian variables called the Pythagorean Additivity
property, which means that given an α-subgaussian distribution χα, a β-subgaussian distribution
χβ , a ← χα, b ← χβ , and any t, s ∈ Z, it holds that Var(t · a + s · b) =

√
t2 · α2 + s2 · β2. Lastly,

for subgaussian random variables centered around zero, a, b ∈ R[X], it holds that Var(a · b) ≤
N · Var(ϕ(a)) · Var(ϕ(b)).

A specific distribution relevant to our use of NTRU will be the FINAL distribution, which is
1
2 -subgaussian:

Pr(fi = x) =


1
4 , x = −1
1
2 , x = 0
1
4 , x = 1

2.3 Gadget Decomposition

For fixed integers Q,B, let ℓ = ⌈logB(Q)⌉. The ℓ-dimensional column vector defined by gQ,B :=
(B0, . . . , Bl−1) is called the gadget vector. For any identity matrix Ik we can then define the gadget
matrix Gk,Q,B = Ik⊗gQ,B. To avoid confusion we will write g = gQ,B = G1,Q,B dropping parameters
if they are clear from context.

The gadget decomposition associated with a particular gadget vector g is a function, denoted
by g−1, such that for x ∈ ZQ, g−1(x) = (x0, . . . , xℓ−1) with |xi| < B/2. For the notation as inverse
to make sense, we require that g−1(x) · g = x holds. The gadget decomposition naturally extends
elementwise to vectors and polynomials.

2.4 Single-Key NGS

Within the bootstrapping, we will need single-key NGS, introduced in [BIP+22]. We introduce this
scheme, as well as properties of the noise generation.

Definition 2.1 (Single-Key NGS). Let λ be the security parameter. The NGS scheme consists of
four probabilistic polynomial time algorithms: Setup, KeyGen, SEnc, VEnc.

1. NGS.Setup(λ): Upon input of a security parameter λ, Setup returns the public parameters
(N,Q, ζ,B, ℓ).
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2. NGS.KeyGen(ζ,N): Upon input of N and ζ, KeyGen samples f ′ ← χN
ζ until f−1 = (4 · f ′+1)−1

exists in RQ. Then it outputs sk = f .
3. NGS.SEncsk(m): Given a ternary polynomial m, sample g ← χ, define ∆ = ⌊Q/4⌉, and output

c = g/f +∆m ∈ RQ.
4. NGS.VEncsk(m): Given a ternary polynomial m, sample gi ← χN . Define g := (g0, . . . , gℓ−1)

and g = (B0, . . . , Bℓ−1). Output c = g/f + gm ∈ Rℓ
Q.

The NGS scheme defines the external product of a scalar encryption c = g/f +∆m and a vector
encryption c = g/f + gm′ as

c⊡ c := g−1(c) · c.

Defining the noise of a scalar encryption c as err(c) := c · f − ∆m and of a vector encryption as
err(c) := c · f − gm, it can then be verified that the result of this operation is a scalar encryption
of m · m′ with noise term g−1(c) · g + g · m′. If we introduce the notation γ2 for the variance of
the noise of a fresh encryption, we can furthermore quantify the noise growth when performing a
sequence of external products.

Lemma 2.1 (Noise of a sequence of external products [BIP+22]). Let c0 = g0/f +∆ ·m0

be an NGS scalar ciphertext encrypting a binary polynomial m0 ∈ RQ, and let for each i ∈ [k]
ci = gi/f +∆ ·mi be an NGS vector ciphertext encrypting mi ∈ RQ. If ct = c0 ⊡k

i=1 ci, then

Var(err(ct)) ≤ N · ℓ · γ2 ·Σk
i=1Var(gi) + Var(g0) + 4 · ζ2.

Furthermore, if all ciphertexts are fresh, then

Var(err(ct)) ≤ (4 + ((k + 1) ·N · ℓ · γ2)) · ζ2.

2.5 Multi-key LWE

We recall here the multi-key FHE scheme based on the LWE-problem. We note that this simplifies
to single-key LWE by selecting k = 1.

Definition 2.2 (Multi-Key LWE). Let λ be the security parameter. Then, the Multi-Key LWE
scheme consists of the following 5 PPT algorithms: Setup,KeyGen,Enc,Dec, and NAND.

– MKLWE.Setup(λ): Upon input of a security parameter λ returns the public parameters (q, p, σ).
Denote by ∆ := q/4.

– MKLWE.KeyGen(σ): Upon input of the public parameters q, p, and σ, MKLWE.KeyGen randomly
samples si ∈ F2, i ∈ {0, . . . , n− 1} such that s = (s0, . . . , sn−1) ∈ Fn

2 .
– MKLWE.Encs(m): Upon input of a key s and a message m ∈ F2, MKLWE.Enc generates a← Zn

q ,
and e ← Gσ. Then, it computes b = a · s + ∆m + e. It then outputs a vector of length k + 1,
ct = (b, 0, . . . , 0,a, 0, . . . , 0) where a is in the position corresponding to the party generating the
encryption, i.e. Pi is in the ith position.

– MKLWE.NAND(ct1, ct2): Upon input of two ciphertexts of the form

cti = (bi,ai,1, . . . ,ai,k),

MKLWE.NAND outputs

ct =

(
5q

8
− b1 − b2,a1,1 + a2,1, . . . ,a1,k + a2,k

)
.
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We denote a ciphertext encrypting m under multiple keys (such as sk1, . . . , skk) as
MKLWE.Encsk1,...,skk(m).

– MKLWE.Dec(s1, . . . , sk, ct): Upon input of keys s1, . . . , sk and ciphertext ct of the form
(b,a1, . . . ,ak) MKLWE.Dec computes

m∗ =

⌊
b−

∑k
i=1 (ai · si)
∆

⌉
.

The MKLWE scheme is correct if

MKLWE.Dec(sk1, . . . , skk, (MKLWE.Encsk1,...,skk(m)) = m.

2.6 Key Switching

We briefly recall two forms of key switching: from (single-key) LWE and NGS to MKLWE, where
we note that for both the instantiation of MKLWE with a single key constitutes a key switch to
single-key LWE. We use the former in the input phase and the latter during the bootstrapping phase
of section 4.

Key Switching from LWE to MKLWE Based on [CDKS21], we describe a key switching method
from LWE to MKLWE. The key switching key generation is described in Figure 2, and the actual key
switching then takes place in Figure 3. The noise generated by applying the key switching procedure
can be quantified. Note that we generate a key switching key for each possible value of each ai,j .

Lemma 2.2 (KSLWE→MKLWE noise). Let c be an LWE encryption of m and let c′ be the output of
KSLWE→MKLWE with input c. Then, the following holds:

Var(err(c′)) ≤ n · ℓ · Var(err(ksk)) + Var(err(c)),

where Var(err(ksk)) is that of a fresh ciphertext.

Fig. 2: LWE to MKLWE key switching key generation

KSKGenLWE

Input: LWE keys s, s1, s2, . . . , sk. Public parameters (n, q,B).
Output: Key switching keys kski,j,v := MKLWE.Encs1,s2,...,sk (vsiB

j) for i ∈ [n], j ∈ [ℓ], v ∈ [B] with ∆ = 1

Key Switching from NGS to MKLWE For the second kind of key switching, we slightly modify
the procedure from [BIP+22]. We define the key switching key generation procedure KSKGenNGS

with the key switching procedure in Figure 4, and again quantify the noise growth of the operation.
The same idea as before applies where we keep MKLWE encryptions of the NGS key with a gadget
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Fig. 3: LWE to MKLWE key switching

KSLWE→MKLWE

Input: LWE ciphertext under key s: c = (b,a). Output of {kski,j,v}i,j,v := KSKGenLWE(s, s
′).

Output: (b′,a′)← (b,0)−
∑
i,j

kski,j,g−1(a)i,j

decomposition, and then rely on the linearity of decryption (for the 0th coefficient of the ciphertext).
To generate the key switching key kskNGS→MKLWE, from an NGS key f to an LWE key s, sample the
matrices Ai ← Z(N ·L)×n

q , e ← χσ, define f0 = (ϕ(f)0,−ϕ(f)N−1,−ϕ(f)N−2, . . . ,−ϕ(f)1) and P =
IN ⊗gq,Bksk

. Then the output becomes kskNGS→MKLWE = (b :=
∑

i∈[k]Ai · s+e+P · f0,A1, . . . ,Ak).

Lemma 2.3 (KSNGS→MKLWE noise [BIP+22]). Let c be a scalar NGS encryption of m with error
e and c′ be the output of ΠKSNGS→MKLWE

with input c. Then

Var(err(c′)) ≤ N · L · γ2 · Var(err(ksk)) + Var(err(c)),

where N is the NGS dimension and L = logB(Q) and Var(err(ksk)) is that of a fresh ciphertext.

Fig. 4: NGS to MKLWE key switching

KSNGS→MKLWE

Input: c, kskNGS→MKLWE

1. Parse (b,A)← kskNGS→MKLWE

2. y← g−1(ϕ(c))
3. for i in [k]:

– ai ← y ·Ai

4. b← y · b
5. Output c′ := (b,a1, . . . ,ak)

2.7 Modulus Switching

We implement the method of modulus switching LWE ciphertexts as in [BIP+22]. Recall the defi-
nition of the randomized rounding function from [DM15].

Definition 2.3 (Randomized Rounding Function). Let Q, q ∈ Z with 1 < q < Q. The ran-
domized rounding function [·]Q:q : ZQ → Zq is defined as [x]Q:q = ⌊q · x/Q⌋+B where B ∈ {0, 1} is
a Bernoulli random variable with Pr[B = 1] = (q · x/Q)− ⌊q · x/Q⌋.
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This extends element-wise to vectors, matrices and polynomials. Note that the rounding error is
ϵ-subgaussian. Modswitching LWE ciphertexts is done by applying the Randomized Rounding Func-
tion elementwise to the ciphertext. Denote by ModSwitch(c,Q, q) = [c]Q:q.

Lemma 2.4 (Modulus Switching Noise). For any LWE ciphertext c encrypting a message
m under the key s with noise η and modulus q, then the output of ModSwitch(c, Q, q) is an LWE
ciphertext c′ encrypting the same message under the same key but with modulus Q and noise bounded
by

Var(err(c′)) ≤ q2

Q2
η + (n+ 1)

√
2π.

Proof. Let c = (b,a) and ModSwitch(c, Q, q) = (b′,a′). For i ∈ 1, . . . , n, it holds that a′i =
q
Qai + ri

and b′ = q
Qb+ r0 for independent

√
2π-subgaussian rounding errors r0, r1, . . . , rn. The result follows

in a straightforward manner.

2.8 Multiparty Computation

One of the key features of our framework is the use of a Secure Multiparty Computation (MPC)
protocol to relieve, in large part or in full, the computationally complex Multi-Key FHE protocols
in favor of a Single-Key FHE protocol. For this we will define an MPC functionality as an arithmetic
black box. Leading up to the full functionality, we recall some important definitions of MPC.

The Adversary: Semi-honest and Full Threshold In MPC the adversary, A, can be defined
on several axes which define the powers of the adversary, [Lin20].

A first axis answers the question as to how the adversary behaves. In the case of semi-honest
corruption, we assume that the adversary can not instruct corrupted parties to break away from
protocol specification. This means that while the adversary gains access to all internal states of the
corrupted parties it can only use those states to learn more about the underlying private informa-
tion of honest parties. If the adversary exerts malicious corruption, however, it is allowed to force
corrupted parties to behave against protocol description and deviate arbitrarily. For the purposes of
this paper we will consider a semi-honest adversary. Due to the nature of FHE protocols and their
malleability, a maliciously secure assumption on the MPC protocol would be too strong for what
the FHE can later provide.

Another axis to consider is how many honest parties can be corrupted. Here we once again have
two options: In the honest majority case at most n/2 parties can be corrupted, where n is the total
number of parties. Alternatively, in the full threshold case we allow n − 1 parties to be corrupted
at any time. Again, for the purposes of this paper we will consider the full threshold adversary,
allowing corruption of all but one honest party.4

Secure Multiparty Computation With the behavior of the adversary in place we can now turn
to the MPC functionality that is secure against the semi-honest, full threshold adversary as defined.

The MPC protocol will be defined by five probabilistic polynomial time (PPT) algorithms:
Init, Input,Add,Multiply,Output. The exact description of which is given in Figure 5, [DPSZ12].
4 With some care and appropriate approaches to decryption, our protocols should generalize to arbitrary thresholds

and even arbitrary access structures.
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Fig. 5: The MPC Functionality, FMPC

The MPC Functionality as adapted from [DPSZ12]

The functionality runs with parties P = P1, . . . , Pn and an ideal adversary, A, that corrupts a set of parties,
U ⊂ P. All values are stored as (varID, x) where varID ∈ I for some index set of valid identifiers.

Init: Upon input of (init,K) from all parties, store the field or ring, K.
Input: Upon input of (input, Pi, varID, x) from party Pi and (input, Pi, varID) from all other parties, where varID

is a fresh identifier and x ∈ K store (varID, x).
Add: Upon input of (add, varIDx, varIDy, varIDz) from all parties, where varIDx, varIDy are already stored in

memory, retrieve the corresponding x and y and store (varIDz, x+ y).
Multiply: Upon input of (mult, varIDx, varIDy, varIDz) from all parties, where varIDx, varIDy are already stored

in memory, retrieve the corresponding x and y and store (varIDz, x · y).
Output: Upon input of (output, varID, i) from all parties, where varID is already stored in memory, retrieve

(varID, x) and output it to the environment. If the environment returns Deliver, then output x to all parties
if i = 0 or to Pi if i ̸= 0. Otherwise, abort.

Any MPC protocol that instantiates the MPC functionality, FMPC, correctly and obtains security
against an semi-honest, full threshold adversary can be used as an instantiation of the following
section. For optimization purposes, our key generation might be instantiated with “imperfect” and
single-purpose MPC protocols. For ease of exposition, we do not cover these cases explicitly, but in
many cases it will be possible to model these with only a resulting change in the noise of the MPC
outputs, which can then be carried forward through the rest of our results.

3 A Framework for LWE-based Multiparty FHE Schemes

In this section, we demonstrate the creation a multiparty FHE protocol from an MPC protocol and
an sk-FHE protocol with very minimal restrictions on either. As in Section 2.8 we require that the
MPC protocol is secure against a semi-honest, and full threshold adversary where the party set
comprises of the party set, P, and evaluator, E . We will now introduce the functionalities of single
key FHE, the multiparty functionality, and finally the multiparty protocol.

3.1 Single-Key FHE: Security versus Efficiency

One of the main benefits of the multiparty framework that we present is the ability to preprocess a
large amount of the key generation using an MPC protocol. This allows us to generate a common
key without any of the parties involved ever having access to this common key. However, this causes
an issue to arise when we arrive at the decryption phase of the protocol; We can not key switch
to the common key after the bootstrap as this is unknown to the parties involved. Hence, we must
amend the standard single-key FHE functionality to include a key switching functionality to key
switch from the unknown common key to the private keys of each of the parties. The functionality
for this can be found in Figure 6.

Any single-key FHE protocol extended with multi-key key switching and decryption which im-
plements the functionality securely will provide security against semi-honest corruption of each of
the parties and/or the server.
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Fig. 6: The single-key FHE Functionality with Multi-key Decryption

The sk-FHE functionality with multi-key decryption, FskFHE+

The functionality runs with k parties P1, . . . ,Pk and a semi-honest evaluator E .

Init(): Upon receiving Init from the party and the evaluator, the functionality initializes the database of single-
key encryptions S and the database of key switching keys KSK.

KeyGen: Upon input of KeyGen without further inputs from Pi, the functionality outputs an FHE key s to P.
EvalKeyGen(si): Upon input of EvalKeyGen(s) by Pi, the functionality generates keval and sends it to E .
KSKGen(s, s′): Upon input of KSKGen(s, s′), the functionality stores the tuple (s, s′, ksk) in KSK.
KS(c, ksk): Upon input of KS(c, ksk) where (c, s,m) ∈ S and (s, s′, ksk) ∈ KSK, the functionality stores

(c′, s′,m) ∈ S and outputs c′.
Enc(s,m): Upon input of Enc(s,m) from P, send Encs(m) to P.
Eval(f, keval, inputs): Upon input of Eval(f, keval, inputs) by P, where inputs is a set of encryptions of inputs each

under the same key s to the function f and keval was generated by EvalKeyGen(s), the functionality returns
f(m1, . . . ,mn) to the parties.

Dec(c, s): Upon input of Dec(c, s), if there is a stored tuple (s,m, c) for some m, return m. Else, return ⊥.
MKKSKGen(s, {s′i}i): Upon input of MKKSKGen(s, {s′i}i), the functionality stores the tuple (s, {s′i}i, ksk) in

KSK.
MKKS(c, ksk): Upon input of MKKS(c, ksk) where (c, s,m) ∈ S and (s, {s′i}i, ksk) ∈ KSK, the functionality stores

(c′, {s′i}i,m) ∈ S and outputs c′.
MKDec(c, {si}i): Upon input of MKDec(c, {si}i) by a subset of parties P ⊆ {P1, . . . ,Pk} where each call

has the same input ciphertext c but potentially different sets of keys ({si}i)j . If (c, {sl}l,m) ∈ S and
{sl}l = ⋓j({si}i)j , return m to all parties that called MKDec with c as an input.

One of the improvements that one could provide is to simplify the protocol by replacing the
multi-key key switching by a parallel execution of single-key key switching from the unknown com-
mon key to the private key of each of the parties. This would significantly reduce the noise level
and computational load on the server. However, this introduces a problem; At any point an adver-
sary which corrupts a single party and the server can choose to key switch any private input or
intermediate values to the private key of the corrupted party and decrypt to obtain the underlying
plaintext.

In Figure 7, you can find the standard single-key FHE functionality supporting this version of
the protocol, however due to the attack described above we must assume that the server can not
collude with the parties.

3.2 Generalized Multiparty FHE

In this section we will formulate the multiparty FHE functionality to accommodate both the multi-
key and single-key decryption situations discussed above. We will present each of them, focusing
first on those parts that overlap and then following each of the diverging paths. Finally, we will
show that this produces a secure protocol under specific, but not wildly restrictive, assumptions.

The multiparty FHE functionality contains 10 PPT algorithms:
Init,KeyGenMPC,KeyGenFHE,Enc,Dec, Input,KStoComm,KSfromComm,Eval, and Output. Upon in-
put of a set of parties, P = P1, . . . , Pn, an evaluator, E , and an ideal adversary A that corrupts a
set of parties, U ⊂ P, FmpFHE+ can do the following:
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Fig. 7: The single-key FHE Functionality

The sk-FHE functionality, FskFHE

The functionality runs with a single honest party P and a semi-honest evaluator E .

Init(): Upon receiving Init from the party and the evaluator, the functionality initializes the database of encryp-
tions S and the database of key switching keys KSK.

KeyGen: Upon input of KeyGen without further inputs from P, the functionality outputs an FHE key s to P.
EvalKeyGen(s): Upon input of EvalKeyGen(s) by P, the functionality generates keval and sends it to E .
KSKGen(s, s′): Upon input of KSKGen(s, s′), the functionality stores the tuple (s, s′, ksk) in KSK.
KS(c, ksk): Upon input of KS(c, ksk) where (c, s,m) ∈ S and (s, s′, ksk) ∈ KSK, the functionality stores

(c′, s′,m) ∈ S and outputs c′.
Enc(s,m): Upon input of Enc(s,m) from P, send Encs(m) to P.
Eval(f, keval, inputs): Upon input of Eval(f, keval, C) by E , where C := {ci}i is a set of encryptions such that

(s, ci,mi) ∈ S), mi are inputs to the function f and keval was generated by EvalKeyGen(s), the functionality
stores (s, c′, f(m1, . . . ,mn) and returns c′ to E .

Dec(c, s): Upon input of Dec(c, s), if there is a stored tuple (s,m, c) for some m, return m. Else, return ⊥.

– Init allows the functionality to initialize any variables that it may need. This includes, if necessary,
the instantiation of the FHE and MPC protocols.

– KeyGenFHE allows a party, Pi, to generate the private FHE key, si, for their own use.
– KeyGenMPC allows for the generation of the (unknown) communal key. As this is the main branch

of the diverging paths we will discuss these in detail later.
– Enc behaves in line with FHE Encryption, taking in a message, m, and a private key, sk, and

outputting a ciphertext, c.
– Dec behaves in line with FHE Decryption, taking in a ciphertext, c, and a private key, sk, or a

set of private keys, {ski}i∈I , and outputs the underlying plaintext, m.
– Input formalizes the communication of a ciphertext to the evaluator, E .
– KStoComm is a key switching algorithm allowing the server to switch from a base key to the

(unknown) communal key.
– KSfromComm is a key switching algorithm allowing the server to switch from the (unknown)

communal key to a key or set of keys.
– Eval allows the evaluator, E , to evaluate a given function, f , on given inputs, {ci}i∈I .
– Output formalizes the communication of an output to the parties, P.

The detailed functionality with multi-key decryption, FmpFHE+, can be found in Figure 8 while the
detailed functionality without multi-key decryption, FmpFHE, can be found in Figure 9.

The communal key is generated by all parties and, as such, will use an MPC protocol in the
implementation. The generation of this key is identical to the generation of a single-key FHE key,
however remains secret from each of the parties, along with key switching keys from each of the
private keys of the parties to this (unknown) communal key. Additionally, it also generates key
switching keys from the communal key to some combination of the secret keys of the parties.
However, this depends on the version of the functionality that we seek to realize:

In the case of FskFHE+, decryption is done communally using MPC. This requires the existence
of a multi-key encryption scheme which can be key switched to, and as such the key switching is
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Fig. 8: The Multiparty-FHE Functionality with Multi-key Decryption

The mp-FHE functionality with multi-key decryption, FmpFHE+

The functionality runs with parties P = P1, . . . , Pn, an evaluator E and an ideal adversary, A, that corrupts a
set of parties, U ⊂ P. All values are stored as (varID, x) where varID ∈ I for some index set of valid identifiers.

Init(K): Upon receiving Init from all parties and the evaluator, the functionality initializes the database of
encryptions S and stores the field or ring, K.

KeyGenFHE : Upon input of KeyGenFHE without further inputs from Pi, the functionality outputs an FHE key si
to Pi.

KeyGenMPC: Upon input of (KeyGenMPC, i, si) from each party, the functionality then generates and stores the
required communal keys kcom. Furthermore, the functionality generates and outputs the input, output, and
evaluation keys kinput, keval, koutput to E .

Enc(s,m): Upon input of Enc(s,m) by Pi, generate some c, store (s,m, c) ∈ S, return c to Pi.
Input(c): Upon input of Input(c) from party Pi, send c to E .
KStoComm(c): Upon input of KStoComm(c) by E , the functionality checks whether (s, c,m) ∈ S with s /∈ kcom. If so,

the functionality stores (c′, s′,m) ∈ S, where s′ ∈ kcom and outputs c′ to E .
KSfromComm(c): Upon input of KSfromComm(c) by E , the functionality checks whether (s, c,m) ∈ S with s ∈ kcom. If

so, the functionality stores ({si}i∈[k], c
′,m) ∈ S, outputs c′ to E .

Eval(f, keval, C): Upon input of Eval(f, keval, C) by E where f is some function, keval are the evaluation keys, and
C is the set of ciphertexts to be used as inputs, such that ∀ci ∈ C, (s, ci,mi) ∈ S with s ∈ kcom, and keval was
generated by EvalKeyGen(s), the functionality stores (c′, s, f(m1, . . . ,mn)) ∈ S and sends c′ to E .

Output(c, i): Upon input of Output(c, i) by E , the functionality outputs c to Pi.
Dec(c, si): Upon input of Dec(c, si) by each Pi, if there is a stored tuple ({si}i∈[k], c,m) for some m, return m

to all parties.

done to this multi-key scheme. KeyGenFHE then also only includes the generation of this single key
switching key instead of one per party.

In the case of FskFHE, decryption is done by key switching the output k times, once to each
party’s secret key, which parties can then decrypt individually. Communal key generation includes
the generation of key switching keys from the communal secret key to each of the individual secret
keys of the parties.

3.3 The Framework in Practice

In Figure 11, we provide a protocol implementing our mp-FHE functionality. We argue now that
this construction faithfully implements the functionality and that the security of this construction
only relies on the security of the underlying MPC and FHE protocols. We will make this argument
by first arguing that ΠmpFHE+ implements FmpFHE+.

Consider ΠmpFHE+ and note that Init,KeyGenFHE,Enc,KStoComm, and KSfromComm are trivially
implemented as they are drawn directly from FMPC and FskFHE+. Moreover, Input and Output are
just sending a single message, hence also trivially fulfilled. This means that the only two algorithms
that remain are Dec and KeyGenMPC.

The Dec Algorithm Upon input of (Dec, c, si) by a subset of parties, A ∈ P, the parties instantiate
FMPC and run MKDec as described in FskFHE+ in MPC. As FMPC receives a ciphertext, ci, and
a set of keys, {si}Pi∈A from each party it can first check if ci = cj for all i, j. If this is not the
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Fig. 9: The Multiparty-FHE Functionality

The mp-FHE functionality, FmpFHE

The functionality runs with parties P = P1, . . . , Pn, an evaluator E and an ideal adversary, A, that corrupts a
set of parties, U ⊂ P. All values are stored as (varID, x) where varID ∈ I for some index set of valid identifiers.

Init(K): Upon receiving Init from all parties and the evaluator, the functionality initializes the database of
encryptions S and stores the field or ring, K.

KeyGenFHE : Upon input of KeyGenFHE without further inputs from Pi, the functionality outputs an FHE key si
to Pi.

KeyGenMPC: Upon input of (KeyGenMPC, i, si) from each party, the functionality then generates and stores the
required communal keys kcom. Furthermore, the functionality generates and outputs the input, output, and
evaluation keys kinput, keval, koutput to E .

Enc(s,m): Upon input of Enc(s,m) by Pi, generate some c, store (s,m, c) ∈ S, return c to Pi.
Input(c): Upon input of Input(c) from party Pi, send c to E .
KStoComm(c, kinput): Upon input of KStoComm(c, kinput) by E , the functionality checks whether (c, s,m) ∈ S with

s /∈ kcom. If so, the functionality stores (c′, s′,m) ∈ S, where s′ ∈ kcom and outputs c′ to E .
KSfromComm(c, koutput): Upon input of KSfromComm(c, koutput) by E , the functionality checks whether (c, s,m) ∈ S

with s ∈ kcom. If so, the functionality stores (c′, si,m) ∈ S, outputs c′ to E .
Eval(f, keval, C): Upon input of Eval(f, keval, C) by E where f is some function, keval are the evaluation keys, and

C is the set of ciphertexts to be used as inputs, the functionality stores (c′, s, f(m1, . . . ,mn)) ∈ S and sends
c′ to E .

Output(c, i): Upon input of Output(c, i) by E , the functionality outputs c to Pi.
Dec(c, s): Upon input of Dec(c, s), if there is a stored tuple (s,m, c) for some m, return m. Else, return ⊥.

case it aborts. Otherwise, it calls MKDec to see if the tuple (c, {si}Pi∈A,m) exists. As the parties
in A only hold their own keys, the only ciphertexts for which MKDec will contain such a tuple
are those which (a subset of) the parties in A called to encrypt. Hence, they are also allowed to
obtain the decryption. Otherwise, the parties in A will not hold the required keys to decrypt, and
so sl ̸⊂ {si}Pi∈A and so the tuple does not exist. In the latter case, the parties in A learn nothing
as required. Hence, we can conclude that ΠmpFHE+.Dec correctly implements FmpFHE+.Dec.

The KeyGenFHE and Enc Algorithm An equivalent argument can be made to show the equivalent
conditions for FmpFHE.KeyGenFHE and Enc, and as such we make the argument for KeyGenFHE and
leave the other as an exercise. Upon calling KeyGenFHE in FmpFHE+, a party would expect a key si.
When running the protocol, the party instead calls FskFHE+.KeyGen, which returns the same result.

The KeyGenMPC Algorithm Upon input of (KeyGenMPC , i, si) by each party Pi in the func-
tionality, the expected output is that the functionality stores the communal key s, and outputs
kinput, keval, and koutput to the server E .

In the protocol however, the parties all run the MPC protocol. We argue that collectively using
the MPC protocol to generate the secret key and not outputting it is equivalent to the function-
ality storing the secret key. There are three places where the functionality uses the stored key s:
KStoComm, KSfromComm, and Eval. Each of these is equivalent to the server possessing the correct
keys used during the appropriate calls to FskFHE+. In KStoComm the check is equivalent to the server
possessing the right keyswitching key in the protocol as the only way to perfrom KStoComm is to pass
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Fig. 10: The Multiparty-FHE Protocol

The mp-FHE protocol, Πmp in the FskFHE,FMPC-Hybrid Model

The protocol runs with parties P = P1, . . . , Pk and an evaluator E . All values are stored as (varID, x) where
varID ∈ I for some index set of valid identifiers.

Init(K): The parties call FMPC.Init(K) and FskFHE.Init.
KeyGen : The party calls FskFHE.KeyGen.
KeyGen(si): The parties run FMPC.Input, followed by a mix of FMPC.Add and FMPC.Multiply such that the

following is computed:
– s← FskFHE.KeyGen
– for i ∈ [k]:
• kski ← FskFHE.KSKGen(si, s)
• ksk′i ← FskFHE.KSKGen(s, si)

– keval ← FskFHE.EvalKeyGen.
Finally, the parties run FMPC.Output so that E gets kinput := {kski}i, keval, koutput := {ksk′i}i.

Enc(s,m): The party calls FskFHE.Enc(s,m).
Input(c): The party sends c to E .
KStoComm(c): The evaluator calls FskFHE.KS(c, ksk) where ksk is the appropriate element of kinput.
KSfromComm(c): The evaluator calls FskFHE.KS(c, ksk) where ksk is the appropriate element of koutput.
Eval(f, keval, C): The evaluator calls FskFHE.Eval(f, keval, C).
Dec(c, s): The party calls FskFHE.Dec(c, s).

FskFHE+.KS a keyswitching key to the communal key s. Such keys are also generated and stored by
E in kinput. In KSfromComm, the check is likewise equivalent to E possessing the correct ksk for the
call to FskFHE+.MKKS with a ksk from k. The only such key is stored in koutput, generated during
the MPC protocol. Finally, in Eval, the check is equivalent to the server possessing keval as this is
generated using FskFHE+.EvalKeyGen called in MPC, with s as input.

The generation of the remaining keys is indistinguishable, as will be demonstrated in the algo-
rithm in which they are used.

The Input Algorithm The server receives the input ciphertext in both cases.

The Output Algorithm The appropriate party receives the output ciphertext in both cases.

The KStoComm Algorithm In the functionality, this protocol returns a keyswitched ciphertext
⇐⇒ (s,c,m) is a stored ciphertext and that s /∈ kcom. If so, (s’,c’,m) is stored and c′ is output to E .

In the protocol, the check that (s, c,m) is a stored ciphertext is performed by FskFHE+.KS and
the check that s /∈ kcom is equivalent to E passing the correct ksk as E will possess this key (and
thus the check (s, s′, ksk) ∈ KSK will pass) ⇐⇒ this ksk is generated in KeyGenMPC as generating
others outside the protocol would require the knowledge of s, which E does not have. The only such
keys generated are those to s, the communal key.

The KSfromComm Algorithm In the functionality, this algorithm returns a keyswitched ciphertext
⇐⇒ (s,c,m) is a stored ciphertext and that s ∈ kcom. If so, ({si}i, c′,m) is stored and c′ is output
to E .
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Fig. 11: The Multiparty-FHE Protocol With Multikey Decryption

The mp-FHE protocol with multikey decryption, ΠmpFHE+ in the FskFHE+,FMPC-Hybrid Model

The protocol runs with parties P = P1, . . . , Pk and an evaluator E . All values are stored as (varID, x) where
varID ∈ I for some index set of valid identifiers.

Init(K): The parties call FMPC.Init(K) and FskFHE+.Init.
KeyGen : The party calls FskFHE+.KeyGen.
KeyGen(si): The parties run FMPC.Input, followed by a mix of FMPC.Add and FMPC.Multiply such that the

following is computed:
– s← FskFHE+.KeyGen
– for i ∈ [k]:
• kski ← FskFHE+.KSKGensi, s

– koutput ← FskFHE+.MKKSKGen(s, {si}i∈[k]

– keval ← FskFHE.EvalKeyGen.
Finally the parties run FMPC.Output so that E gets kinput := {kski}i, keval, koutput := {ksk′i}i.

Enc
(
s,m): The party calls FskFHE+.Enc

(
s,m).

Input(c): The party sends c to E .
KStoComm(c, kinput): The evaluator calls FskFHE+.KS(c, ksk) where ksk is the appropriate element of kinput.
KSfromComm(c, koutput): The evaluator calls FskFHE+.MKKS(c, ksk) where ksk is the appropriate element of koutput.
Eval(f, keval, C): The evaluator calls FskFHE.Eval(f, keval, C).
Output(c, i): The evaluator sends c to Pi.
Dec(c, s): The parties instantiate FMPC to execute FskFHE+.MKDec(c, sii) and output to all parties.

In the protocol, the check that (s, c,m) is a stored ciphertext is performed by FskFHE+.MKKS
and the check that s ∈ kcom is equivalent to E passing the correct ksk as E will possess this key
(and thus the check (s, {si}i, ksk) ∈ KSK will pass) ⇐⇒ this ksk is generated in KeyGenMPC as
generating others outside the protocol would require the knowledge of s, which E does not have.
The only such keys generated are those from s, the communal key.

The Eval Algorithm In the functionality, this algorithm returns c′ encrypting f(m1, . . . ,mn) with
the appropriate data stored ⇐⇒ all input ciphertexts ci are in S with the same associated key s,
and keval was generated by FmpFHE+.EvalKeyGen using s as input.

In the protocol, the same checks are performed by FskFHE+.Eval, and the same things are stored
and returned by the same call to FskFHE+.Eval

To show that security holds note that ΠmpFHE+ inherits most of its security guarantees from
the hybrid construction and the underlying FMPC and FskFHE+. The only consideration that is left
to make are the generation and handling of the common key. The main issue is that we generate
the secret key that is used to perform the entire computation in MPC. However, as this value is
intermediate within the MPC, the only way to learn it is to either have all parties collude, which
is impossible as at most n− 1 parties can be corrupt, or to extract the key from the key switching
keys. Since the key switching keys are opened only to the evaluator, E , who doesn’t simultaneously
know all of the parties’ private keys this would break the security of FskFHE+.

A similar argument for security and that ΠmpFHE implements FmpFHE can be made.
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3.4 Practical Considerations for the Choice of MPC and FHE Schemes

There are a number of considerations to consider when choosing the MPC and FHE protocols which
realize the functionalities given above in a practical setting.

The FHE protocol needs to have an efficient key switching protocol of which the keys do not
depend on the ciphertext, as the generation of keys midway through the FHE protocol would
require another execution of the MPC protocol. In order to have have security against a server
colluding with a player, i.e. FmpFHE+, the FHE scheme needs a sister multi-key protocol or the
ability to support multi-key key switching and decryption with specialized dedicated algorithms.
A general class of FHE protocols that support this include the linear decryption FHE protocols,
[COS+22], such as BGV [BGV12], BFV [FV12], and TFHE [CGGI16,CGGI20], as well as FINAL
[BIP+22,JMPP24,PvLZ24] in particular.

The MPC protocol has far less stringent requirements on it. All we require is a full threshold
protocol which is secure against semi-honest adversaries. Security against a malicious adversary
would only provide marginal benefits, as a single malicious entity, server or party, could perform a
trivial denial of service attack against the FHE protocol. Examples of these (and overperforming)
are plentiful, e.g. GMW [GMW91], SPDZ [DPSZ12], and BGW [BGW88].

4 A Case Study: Multiparty FINAL

To exemplify the above generic construction ΠmpFHE+, we now present an adaptation of FI-
NAL [BIP+22] to the multiparty setting as a specific instantiation. In this setting, we also show
some of the optimization techniques that may become possible when the underlying single-key FHE
scheme is no longer a black box. In section 5, we then implement this instantiation and evaluate
how it scales with the number of parties.

4.1 Key Generation

We use MPC during preprocessing to compute the keys used during the protocol. Note that while
some communal LWE and NGS keys theoretically exist, we never reveal these values. Instead, we
compute the key switching keys from the individual party’s LWE keys to the communal LWE key, as
the key switching keys from the communal NGS ciphertext to the communal LWE key, and the key
switching key from the single communal LWE key to multi-key LWE under all of the participating
parties’ keys.

In our protocol, we require the generation of several keys during the MPC:

– For each party Pi where i ∈ [k], the key switching key from their LWE key si to the communal
LWE key s.

– The key switching key from the communal NGS key f to the communal LWE key s.
– The bootstrapping keys bski for i ∈ [n] which allows for an indirect key switch from sk-LWE to

NGS.
– One of the following sets of key switching keys for decryption:
• The key switching keys from the communal LWE key s to single-key LWE under each party’s

key si.
• The key switching key from the communal LWE key s to multi-key LWE under all parties’

keys s1, . . . , sk.
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Fig. 12: The algorithm for computing the bootstrapping keys

The Bootstrapping Key Generation Algorithm, ΠKeyGen

Input: Each party Pi inputs their LWE key si. The Security parameter λ. A boolean IsMKDec.
Output: The key switching keys kski from si to s for all i ∈ [k].

The key switching key kskNTRU→LWE from f to s.
The key switching key kskout from s to s1,...,k.

Algorithm:

1. (N,Q, ζ,B, l)← NGS.Setup(λ)
2. (q, p, σ)← MKLWE.Setup(λ)
3. s← LWE.KeyGen(σ).
4. f ← NGS.KeyGen(ζ,N).
5. A

$←− Fq.
6. e

$←− χσ.
7. kskNTRU→LWE ← (A, b := A · s+ e+G · ϕ(f)).
8. for i ∈ [k] do:

(a) kski ← KSKGenLWE(si, s).
9. for i in [n] do:

(a) gi
$←− Rn

(b) bski ← gi
f

+ gsi.
10. if IsMKDec:

(a) kskout ← KSKGenMKLWE(s, (s1, . . . , sn)).
11. else:

(a) for i in [k]:
i. kskout,i ← [KSKGenLWE(s, si)].

12. Output kski, kskout, kskNTRU→LWE.

To compute the bootstrapping keys, we run the algorithm in Figure 12 in MPC to generate the
keys listed above. We note that the communal secret keys s and f are known to no-one, as these
are never output from the MPC. Thus, the server, using the keys generated by this process, has the
ability to do the following without compromising security:

– key switch a ciphertext of the form LWE.Encsi(m) to LWE.Encs(m), used during the input phase.
– key switch a ciphertext of the form NTRU.Encf (m) to LWE.Encs(m), used during the bootstrap-

ping.
– one of the following for use during the output phase:

• key switch a ciphertext of the form LWE.Encs(m) to MKLWE.Encs1,...,sk(m).
• key switch a ciphertext of the form LWE.Encs(m) to LWE.Encsi(m) for any i.

The noise of the key switching keys is that of a fresh ciphertext, see section 2.5.
Once the parties have generated their shares of the key switching keys kski, they then send this

key switching key to the server along with their input encrypted under their own LWE key si. The
server then key switches to the communal key s using the key switching from single-key LWE to
single-key LWE in section 2.6 with key switching key kski.

19



4.2 Bootstrapping

In this section we introduce the bootstrapping. This is almost exactly the bootstrapping in [BIP+22],
except for the fact that we explicitly describe the LWE based version alluded to in FINAL.

The bootstrapping has the following structure. First, there’s a minor step doing some prepro-
cessing. Second, a blind rotation is done using CMux gates. This homomorphically decrypts the
preprocessed ciphertext, providing an NGS ciphertext of the same message. Third, this NGS ci-
phertext is key switched back to an LWE ciphertext. Finally, the modulus is switched back to the
LWE modulus from the NGS modulus. Each step is covered in more detail in what follows.

Fig. 13: Bootstrapping a Single-Key LWE Ciphertext

The Bootstrapping Algorithm, ΠBS

Input: ct = (b,a), an LWE ciphertext encrypting m. The output of KSKGenNGS→LWE(f, s) =: kskNGS→LWE.
Output: ct′, an LWE ciphertext encrypting the same m.

1. b←
⌊

2·N·b
q

⌉
2. a←

(⌊
2·N·(−a)

q

⌉)
3. ACC←

⌊
Q
8

⌉
·XN/2 ·

∑N−1
i=0 Xi

4. ACC← ACC⊡ g ·Xb

5. for i← 0 to n− 1 do
(a) cmux ← CMuxi(ai)
(b) ACC← ACC⊡ cmux

6. ACC← ACC+
⌊
Q
8

⌉
·
∑N−1

i=0 Xi

7. ACC← ModSwitch(ACC, Q, q)
8. ct′ ← KSNGS→LWE(ACC, kskNGS→LWE)

As in [BIP+22] and [PvLZ24], the first step of the bootstrapping is to convert the input LWE
ciphertext to an NGS ciphertext. This is done via a series of binary CMux gates, described in
[CGGI20]. The binary CMux is defined as

CMuxi(c) = g+ (Xc − 1) · NGS.VEncf (si).

Note that g is a noiseless NGS encryption of 1, and recall that bski = NGS.VEncf (si). We note that

CMuxi(ci) = g(1 +Xcisi − si) +
g

fi
(Xci − 1) = NGS.VEncf (X

ci·si),

with noise g(Xci − 1). The last equality holds due to the following:

– If si = 0, then Xcisi = X0 = 1 and 1 +Xcisi − si = 1.
– If si = 1, then Xcisi = Xci and 1 +Xcisi − si = Xci .

As ci ∈ F2, Xcisi ∈M. We give the following lemma to bound the noise generated by a CMux gate.

Lemma 4.1. Let Ebski = Var(err(bski)) and let ECMuxi be the noise of the output of the CMux gate.
Then ECMuxi ≤ 2 · Ebski.
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Proof. Follows from lemma 7 of [PvLZ24].

Given as input the LWE ciphertext LWE.Encs(m) parsed as (b,a), the first step of the boot-
strapping is to preprocess this to obtain:

c0 :=

⌊
2 ·N · b

q

⌉
,

c1 :=

⌊
2 ·N · (−a)

q

⌉
.

We now would like to perform the following multiplication:

g ·Xc0 ·
∏
i∈[k]

CMuxi(c1,i) = NGS.VEncf (X
∆·m+e),

where we note that g · Xc0 = NGS.VEnc(Xc0) with noise 0. The difficulty in performing such
a multiplication is that there’s no way to directly perform multiplications between NGS vector
encryptions. Thus, we add a scalar NGS encryption called the accumulator on the left side of the
computation to allow for the use of the external product defined in section 2.4.

The accumulator is defined as

ACC :=

⌊
Q

8

⌉
·XN/2 ·

N∑
i=0

Xi mod (XN + 1).

Using this well-known technique [GPvL23,MS18,CGGI20], the following lemma can be proven:

Theorem 4.1 ([BIP+22] Section 5.1 ). Let ct = (b,a) and let c0, c1, bski, and ACC be defined
as above. Then

c′ := (ACC⊡ c0)⊡i CMuxi(c1,i) +

⌊
Q

8

⌉
·
N−1∑
i=1

Xi = NGS.SEncf (m),

with ∆ = Q
4 , such that Var(err(c′)) ≤ (n+ 1) ·N · l · γ2.

Proof. First, we prove correctness, and after we will bound the noise generated. Recall that the
accumulator is given by the following:

ACC =

⌊
Q

8

⌉
·XN/2 ·

N−1∑
i=0

Xi.

Then using the external product in the first step obtains

ACC⊡ g ·Xb =

⌊
Q

8

⌉
·XN/2+b ·

N−1∑
i=0

Xi.

Then applying the CMux once more for each i ∈ [n] results in

ACC =

⌊
Q

8

⌉
·
N−1∑
i=0

Xi ·X
⌊
2N
q

b
⌉
·

n∏
i=1

X

⌊
2N
q

aisi

⌉
.
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Note that b −
∑n

i=0 aisi = ∆ ·m + e. Since after applying a boolean gate, ∆ =
⌊ q
2

⌉
, the following

holds:
2 ·N
q

(∆ ·m+ e) = N · (m+
e

∆
).

Due to our assumptions regarding the error bound, i.e. that
⌊
e
∆

⌉
= 0, we obtain:

ACC =

⌊
Q

8

⌉
·XN/2 ·

N−1∑
i=0

Xi · (−1)m.

We are only interested in the value of the 0th coefficient. Observe that the 0th coefficient is at
i = N/2, obtaining XN/2 ·XN/2 = XN = −1. This results in

ACC =

⌊
Q

8

⌉
− 1 · (−1)m.

Note that this is a valid encryption NGS.SEnc(2m− 1). By adding a noiseless encryption of 1 using
∆ = ⌊Q/8⌉, and observing that in the remainder we use ∆ = ⌊Q/4⌉, we obtain:

ACC = NGS.SEnc(m)

as desired.
We now bound the noise. As there are n+1 total CMux multiplications, we obtain from Lemma

2.1 that the noise of this sequence is bounded by

Var(err(c′)) ≤ (n+ 1) ·N · l · γ2 · Var(err(CMuxi(ai))) + Var(err(T (X))).

By Lemma 4.1, note that Var(err(CMuxi(ai))) ≤ 2 · Var(g), thus:

Var(err(c′)) ≤ (n+ 1) ·N · l · γ2.

Now that we have the results from Theorem 4.1, we can key switch from NGS to LWE using the
key switching protocol from [BIP+22], recalled in section 2.6. Doing so produces an LWE ciphertext
of the same message as was input, however this encryption is under the NGS modulus Q.

Thus, we must still switch back to the LWE modulus q before we once again have a ciphertext
of the same form as the input of the bootstrapping. We use the modulus switching from section 2.7.

Now the bootstrapping is complete, the following holds:

Theorem 4.2. Let P be the set of k participating parties. Let c := LWE.Encs(m). Then ΠBS outputs
c′ = LWE.Encs(m) with noise bounded by:

Var(err(ΠBS(c))) = Var(err(ΠKS(ΠMS(ACC))))

≤ N · L · γ2 · σ2 +
q2

Q2
· (n+ 1) ·N · l · γ2 + (n+ 1) ·

√
2π.

Proof. By theorem 4.1, the error after step 6 is given by

Var(err(ACC)) ≤ (n+ 1) ·N · l · γ2.
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As this is the final step using the NGS scheme, this is also the bound for the noise while working in
this scheme.

By lemma 2.4, it is known that the noise introduced by the modulus switching algorithm is
bounded by:

Var(err(ΠMS(ACC))) ≤
q2

Q2
(Var(err(ACC)) + (n+ 1)

√
2π

≤ q2

Q2
· (n+ 1) ·N · l · γ2 + (n+ 1)

√
2π.

Thus, via lemma 2.3 the theorem is proven:

Var(err(ΠBS(c))) = Var(err(ΠKS(ΠMS(ACC))))

≤ N · L · γ2 · Var(err(ksk)) + Var(err(ΠMS(ACC)))

≤ N · L · γ2 · σ2 +
q2

Q2
· (n+ 1) ·N · l · γ2 + (n+ 1) ·

√
2π.

4.3 Heuristics

Denote by EBS = Var(err(ΠBS(c))). This noise, obtained after bootstrapping, behaves as a Gaussian
distribution. Thus, we can apply the Central Limit Theorem and its heuristic to conclude that
∥err(ΠBS(c))∥ ≤ 6 ·

√
EBS .

From Theorem 4.2, we can conclude that

∥err(ctNGS)∥ ≤ 6 ·

√
N · L · γ2 · σ2 +

q2

Q2
· (n+ 1) ·N · l · γ2 + (n+ 1) ·

√
2π. (1)

Theorem 4.3. If the NGS ciphertexts of the protocol in Figure 13 satisfy equation 1 except with
negligible probability and Q = O(N log(N)), then these ciphertexts can be decrypted, except with
negligible probability.

Proof. As n = O(N), {l, L} = O(logQ) = O(logN) and {γ2, σ2} ∈ O(1), we have that the noise of
NGS ciphertexts in the protocol in Figure 13 are O(N log(N)) except with negligible probability by
Eq 1. We require this noise to be less than Q/4 for correct decryption, thus it is sufficient to select
Q = O(N log(N)).

4.4 Decryption

After bootstrapping, the server holds an LWE ciphertext of the output encrypted under s. If this
isn’t the end of the protocol, the server then continues the computation, bootstrapping as needed.
If this is the end of the protocol, then the server must perform some kind of keyswitching before
sending the output ciphertext back to the parties.

For this keyswitching and its associated decryption, we have a number of options. The first is
to have the server key switch from the common key to a multi-key ciphertext under the individual
keys for all the parties, then decrypting as in ΠmpFHE+. The second is to key switch to single-key
LWE once for each party as in ΠmpFHE (Figure 10). We briefly discuss the ramifications of each of
these options in this section.
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We first discuss the option of key switching to multi-key. The upsides of this are that there’s
only a single key switch required and that the server cannot collaborate with a single user to prevent
the other users from obtaining the output. The downside is that all the parties must once again
collaborate at the end of the protocol to obtain the output.

Second, we discuss the option of key switching once each for each party’s key. The upside is that
none of the parties need interact with each other once the keys are agreed upon in the preprocessing.
However, this leaves the door open to a trivial attack in which the server can allow any party to
read any intermediate value or even the output of the computation by simply key switching to
that party’s individual key and send the desired ciphertexts their way. Furthermore, this requires k
executions of the key switching procedure, though this is amortized over the cost of the computation
as a whole.

A Note on Breaking the Black Box We also note that an improvement can be made to this
instantiation by breaking the black box of the decryption. In this improvement, instead of generating
a keyswitching key from sk-LWE to mk-LWE, you instead have the parties generate a keyswitching
key from sk-NGS to mk-LWE, and then replace the keyswitch in the final bootstrapping with a
keyswitch to mk-LWE instead. This saves the effort of an extra keyswitch. However, we choose to
not do this to faithfully implement our functionality.

Theorem 4.4. Let c be the output of a freshly bootstrapped ciphertext and let c′ be the output of
KSLWE→MKLWE(c, ksk). Then:

Var(err(c′)) ≤ 2 ·N · L · γ2 · σ2 +
q2

Q2
· (n+ 1) ·N · l · γ2 + (n+ 1) ·

√
2π).

Furthermore, c′ decrypts correctly with overwhelming probability if q = O(n2)

Proof. The noise bound follows directly from Theorem 4.2 and Lemma 2.2. We use the Central
Limit Theorem heuristic to conclude that

∥err(c′)∥ ≤ 6 ·
√
Var(err(c′)).

As N = O(n), {l, L} = O(log n),
{

q2

Q2 , γ, σ
}
= O(1),

∥err(c′)∥ = O(n log n).

The correct decryption follows as O(n log n) < O(n2).

4.5 Key Compression

We observe that in practice, storing the key switching keys comes at a noticeable cost in memory
usage. Storing a single kskLWE→LWE incurs a total of n · ℓ · B · (n + 1) · log q bits of storage, with
kskNTRU→LWE, kskNTRU→MKLWE and kskLWE→MKLWE following similar patterns. Following ideas from
[CDKS21,CNT12], we can compress the constituent LWE ciphertexts by sampling a single random
seed of length λ that can be expanded into the (public, uniformly random) a component of the
ciphertext. This in turn leads to only n · ℓ ·B · log q+ λ bits of storage needed for a kskLWE→LWE. In
MPC, the key generation is still easily achieved by establishing and opening the random seed, after
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which the parties can locally expand the seed and consider the resulting values as public information.
The same random seed can be used for all different required key switching keys, as long as distinct
randomness is extracted from it for each key.

Similarly, when parties need to send many inputs to the server, it may be beneficial to apply the
same technique to the LWE ciphertexts encrypted under si, reducing the cost of sending t inputs
from t · (n+1) · log q to only t · q+ λ bits. In either of these cases, the impact on the computational
cost would be minor in comparison to the rest of the scheme. Where needed for performance,
the expansion can still be performed a single time up-front and stored in memory, keeping the
improvement of this compression confined to the amount of data communicated over the network.

5 Implementation

In order to show the practicality and correctness of our construction, we implement the multi-
party version of FINAL as described in Section 4. Note that this is a prototype implementation
and does not realize the full capabilities of FINAL (i.e. our bootstrapping takes 88.6ms while the
original implementation manages to do this in 48ms). Using similar adaptations any alternative
implementation can be modified to provide multiparty functionality.

As we treat the MPC preprocessing and key generation as a black box, our implementation
implements the ideal functionality directly as a single program, and does not try to emulate network
communication or any specific MPC protocols. Our benchmarks use the original parameter from
[BIP+22] with minor adjustments to the noise parameters in the LWE scheme, i.e. σ = 3.5 instead
of σ = 4.39. This change does not affect the security level and, according to [APS15], still provides
a security level of > 2110 as guaranteed by FINAL. Moreover, this guarantees that the decryption
error of MPFHE FINAL is < 2−75 in the NGS scheme and 2−40 in the LWE scheme. Note that
these changes do not obstruct the improvements to FINAL as suggested in [JMPP24].

Due to the application of the framework, the only limitation that the number of parties can
impose on the scalability of the scheme is the number and size of the key switching keys. As can
be seen in Table 3, we note that the storage of the key material is not restrictive requiring at most
22.7GB when the protocol is executed by 512 parties. While this is not part of our implementation,
we recall that the memory footprint of the key switching keys could be significantly reduced by
generating random seeds in the key generation algorithm that can be expanded into full LWE
samples. Additionally, the work and time required for the multiparty key generation naturally scales
linearly with the number of parties.

Concretely, our implementation generates the communal LWE and NGS keys s and f (but does
not output these), and the associated evaluation keys for the regular FINAL protocol. Additionally,
it generates k input keys si, one per party, along with the key switching keys ksksi→s and a (NGS to
LWE) key switching key kskf→s1...k for the output, which will both be part of the evaluation keys for
the server. Evidently, each party receives their personal key si. Inputs are provided by the parties as
LWE encryptions under their personal keys,5 which the server can transform into encryptions under
s through ksksi→s followed by a single bootstrap operation for noise management. From there, any
choice of logic gates can be executed by following the single-key scheme. Output towards the parties
is performed by executing a final bootstrap operation on the relevant bits, where the final key
switching step makes use of kskf→s1...k instead of the usual kskf→s. We take this approach, rather

5 Observe that here too, network communication could be reduced (in the case of many inputs) by compressing the
ciphertexts into a single random seed with one extra field element per input.
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than performing a key switch from s so s1...k, to limit the final output noise and prevent decryption
failures. Depending on the specific application,6 this need not be a separate bootstrap operation,
but could this be integrated into the bootstrap associated with the operation the computed the
output bit. The decrypt these final MKLWE ciphertexts, we simply assume all parties are present
and can decrypt in a round-robin fashion.

Performance

The benchmarks were performed single-threaded, on a laptop with 64 GB of RAM and an Intel Core
Ultra 7 155H CPU. As we do not aim for our implementation to be specifically optimized for running
time, we focus in our presentation of these benchmarks on the effect of scaling to higher numbers of
parties, and as such do not aim for minute control on timing fluctuations and the potential impact
of other running processes on the machine. In particular, we aim to show that key generation, as
well as output and decryption operations scale linearly with the number of parties, while everything
else performs at a constant cost similar to what we observe in our single-key FINAL figures.

In table 2, we first summarize a few running times of our implementation of the single-key FINAL
scheme. Then, we present our measurements of multiparty key generation, input, gate evaluation,
output, and multi-key decryption for 2, 4, 8, 16 and 32 parties in Figures 14, 15, 16, 17, and 18
respectively. The implementation is not limited to the number of parties being a power of two,
and can scale to arbitrarily many parties without any increase in the parameters, but these choices
should give a clear overview of the scaling behavior for our scheme.

As we expect, we observe that input and gate evaluation timings are in line with a single-key
bootstrap, with some minor overhead to perform the key switch or addition of the two ciphertexts
respectively. For key generation, output and decryption, we observe a linear scaling in the number
of parties, matching the expected extra costs of needing MKLWE with one key per party and the
generation of key switching keys per party.

In table 3 and table 4, we compare the size of our required key material and the time necessary
to perform a single bootstrap to prior work. We also again remark that our implementation is
less performant than the original implementation of the FINAL scheme, but that this is purely
an artifact of the implementation itself and replacing our inner single-key FHE implementation
with the more performant version would be possible without any further changes to the key size,
parameter choices, or security analysis.

Protocol Key Size in GB
k 2 4 8 16 32 64 128 256 512

PvLZ [PvLZ24] .32 4.5 119 5337 - - - - -
PR [PR23] .42 .63 1.1 2.2 - - - - -

KMS [KMS24] .215 0.285 .25 .285 .321 - - - -
AKÖ [AKÖ23] .08 .24 .66 .93 2.0 4.1 9.1 37 80

This work .13 .22 .39 .75 1.45 2.87 5.7 11.4 22.7

Table 3: A comparison of total key material in GB where k is the number of participating parties,
[PR23] counts only the size of bsk and not ksk.

6 For instance, when output bits cannot be used as inputs to later boolean gate.
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LWE.Enc LWE.Dec Bootstrap Key gen
178 µs 1.39 µs 88.65 ms 3.43 s

Table 2: An overview of our running times
for basic operations in the single-key FINAL
scheme.
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Protocol Bootstrap time in ms
k 2 4 8 16 32 64 128 256 512

PvLZ [PvLZ24] No Implementation Data available
PR [PR23] 200 330 460 900 - - - - -

KMS [KMS24] 240 880 2230 5650 13940 - - - -
AKÖ [AKÖ23] 190 560 1200 1800 4300 8600 18000 - -

This work 88.6 (Ours) / 48 (Original, [BIP+22])

Table 4: A comparison of time required to perform a bootstrapping operation, where k is the number
of participating parties.
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