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Abstract. The beyond unforgeability features formalize additional se-
curity properties for signature schemes. We develop a general framework
of binding properties for signature schemes that encompasses existing be-
yond unforgeability features and reveals new notions. Furthermore, we
give new results regarding various transforms: We show that the trans-
form by Cremers et al. (SP’21) achieves all of our security notions and
provide requirements such that this is also the case for the transform
by Pornin and Stern (ACNS’05). Finally, we connect our framework to
unforgeability notions.

1 Introduction

Signature schemes, key-encapsulation mechanisms, and authenticated encryp-
tion are among the most basic cryptographic primitives, achieving fundamental
security goals such as confidentiality, integrity, and authenticity. These security
goals are attained by showing constructions to achieve standard security notions,
such as existential unforgeability under chosen message attack (EUF-CMA) in
case of signature schemes. In practice, though, the aforementioned primitives
are seldom used as standalone primitives. They are commonly embedded into
larger, more complex protocols. The way a protocol makes use of a primitive
can open new attack vectors that are beyond what standard security, like, say,
EUF-CMA security, guarantees. The recent literature provides numerous exam-
ples for such attacks with severe effects: the “Facebook message franking at-
tack” [DGRW18], the “partitioning oracle attack” [LGR21], the “subscribe with
Google attack” [ADG+22], the “Let’s Encrypt attack” [Aye15], the “Dynam-
ically Recreatable Key attack” [JCCS19], and the “PQXDH re-encapsulation
attack” [BJKS24]. The list certainly does not end here as more attacks, against
other existing or future protocols are sure to be found. All of these attacks
were possible even for cryptographic primitives that were proven secure in the
standard sense, e.g., EUF-CMA security.

To deal with the problem, new security notions for authenticated encryption,
key-encapsulation mechanisms, and signature schemes were developed, with the
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goal of preventing attacks like in the aforementioned list. For authenticated en-
cryption and key-encapsulation, so-called committing and binding security, re-
spectively, prevent attacks like the ones described above. For signature schemes,
the so-called beyond unforgeability features or BUFF security notions were intro-
duced for this purpose. As of now, there are six BUFF security notions: S-CEO,
S-DEO, S-UEO, M-S-UEO, MBS, and NR. The first four are variants of exclu-
sive ownership notions, which, roughly speaking, ask if one can find a public
key that verifies a signature from a different public key—the different variants
cover various subtleties of this core idea. The notion MBS is related to the non-
repudiation property of signatures: it asks to find a public key and one signature
that verifies two distinct messages. The notion NR asks an adversary to morph
a signature of an unknown message for one public key, into a signature for the
same message but a different public key.

As mentioned earlier, there are no guarantees that the existing list of attacks
is complete—in fact, it seems even likely that more attacks will be found in the
future. Ideally, we would like to design and analyze cryptographic primitives
today, such that they withstand not just the known attacks but also the cur-
rently unknown attacks. To achieve that, we need security notions that cover
all different attack vectors that might be exploited in such (potentially still
unknown) attacks.3 For authenticated encryption and key-encapsulation mech-
anisms, we do have these security notions: Menda et al. [MLGR23] developed a
complete framework of security notions for committing security while Cremers
et al. [CDM24] did the same for key-encapsulation mechanisms. For signature
schemes, on the other hand, there is no formal framework covering the various
subtleties that might go wrong. While the BUFF security notions already catch
a number of these cases, the following question remains open:

Are the BUFF security notions complete?

1.1 Contribution

In this work, we address the aforementioned question. We apply the blueprint
of binding properties (as done in [CDM24] for key-encapsulation mechanisms)
to signature schemes. More precisely, the generic structure of each notion is
Am-B-T, which can be read as “B binds T in attack model Am”. Here, B and
T are subsets of {S,M,P}, which represent the signature, message, and public
key, respectively, while Am ∈ {Mal,Leak,Hon} represents one of three attack
models. By this, we obtain a total of 36 security notions. Removing notions
that are not meaningful in the context of signatures, leaves us with 15 security
notions—5 notion classes (on which we elaborate below) each of which can be
considered in the 3 different attack models (Mal, Leak, and Hon) which dif-
fer in how the keys are generated. Our 5 notion classes can be distinguished
as follows. There are 2 generalized notions: Am-S-M (does a signature bind

3 This means of course only security in a black-box sense, where the adversary has no
access to the internal workings—unlike, say, side-channel attacks.
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a message?) and Am-S-P (does a signature bind a public key?). There are 3
restricted notions: Am-[S,M]-P (do signature and message together bind a pub-
lic key?), Am-S-[M,P] (does a signature bind the pair of message and public
key?), and Am-[S,P]-M (do signature and public key together bind a message?).
These notions cover the existing BUFF security notions S-CEO, S-DEO, S-UEO,
M-S-UEO, and MBS.4 The notions S-CEO, S-DEO, and MBS correspond to the
restricted notion Am-[S,M]-P, Am-S-[M,P], and Am-[S,P]-M, respectively; an
interesting observation here, is that MBS is in a different attack model (Mal)
than S-CEO and S-DEO (which are Hon). The notions S-UEO and M-S-UEO
belong to the notion class Am-S-P, differing only in their attack model (Hon
and Mal).

Next to encompassing the existing BUFF notions, our approach aids the
identification of gaps: Out of our 15 notions, the prior BUFF notions S-CEO,
S-DEO, UEO, M-S-UEO, and MBS account for 5, while the remaining 10 have
not been considered before. Our new framework completes the picture in two
ways: Firstly, it introduces new variants of the existing BUFF notions in different
attack modes (e.g., MBS in the Hon and Leak model), and secondly, it reveals
the new notion class Am-S-M, that has not been considered before.

Alongside the introduction of the notions, we analyze their relations by show-
ing implications as well as separations. The known connection between S-CEO,
S-DEO, and S-UEO in the Hon model, transfers also to the other attack modes,
i.e., more generally we prove that Am-S-P decomposes into Am-[S,M]-P and
Am-S-[M,P]. Moreover, the new notions class Am-S-M exhibits such a relation
as well: namely Am-S-M holds if and only if Am-[S,P]-M and Am-S-[M,P] hold.
This reveals a connection between “MBS-like” and “S-DEO-like” notions that
is symmetric to the one between S-CEO and S-DEO. In particular, Am-S-[M,P]
occupies a special position in this context as it is part of both relations. An
illustration of this is provided in Fig. 1. This results in a hierarchy between
the notions, where Am-S-P and Am-S-M imply all other notion classes. Taking
into account the natural hierarchy Mal → Leak → Hon (in decreasing or-
der of strength), we observe that the two notions Mal-S-P and Mal-S-M yield
all others. When compared to the hierarchy in other frameworks for advanced
security notions, we observe the following: For authenticated encryption, com-
mitting security notions form a hierarchy [MLGR23], where it suffices to target
the strongest form as done, for instance, in [KSW24b, NSS23], in the context
of the NIST lightweight cryptography finalists [NIST15]. For key-encapsulation
mechanisms, the notions by Cremers et al. [CDM24] do not form such a hierar-
chy with one notion implying all others. Instead, the picture is similar to what
we observe in this work for signatures, that is, a few notions together imply
all others. Thus, to be certain, one needs to show security with respect to all
of these notions, e.g., as done in [KSW24a], which developed a variant of the
Fujisaki-Okamoto transform that achieves the required notions.

4 Note that NR is not included in the list. This is to be expected as it is a very different
notion with the concept of a message that is unknown to the adversary.
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Am-S-M
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Theorem 7Theorem 8

Fig. 1: Implications (arrows) and separations (crossed arrows) between the dif-
ferent attack models (upper part) and the different notion classes (lower part)
with the theorems that establish the results (or none for trivial implications).
The two notions Am-S-P and Am-S-M are the generalized notions while the
remaining three notions Am-[S,M]-P, Am-S-[M,P], and Am-[S,P]-M, are the re-
stricted notions.

After having established the framework with its various relations, we turn
towards achievability of the notions: For this we analyze the existing transforms
for obtaining BUFF security in the context of our new framework. We consider
the PS-1, PS-2, and PS-3 transforms from [PS05], as well as the BUFF-lite and
BUFF transforms from [CDF+21]. The PS-3 transform has a unique advantage
as it is the only one among the transforms that does not impose an increase in
the signature size. However, its security is tied to the absence of so-called weak
keys, which have appeared in previous works [PS05,CDF+21,DS24] with varying
characterizations. As of now, it is known that the PS-3 transform fulfillsHon-S-P
(i.e., S-UEO) security under the assumption that no weak keys exist. We address
these gaps as follows: We provide a new formalization of weak keys and prove
that a signature schemes for which these weak keys can be excluded achieves
all notions from our framework. Regarding the remaining transforms, we show
that the PS-1 and PS-2 transform yield a total of nine notations each—note
that they overlap in three notions and together cover the complete framework.
Lastly, we prove that the BUFF-lite (and thus in particular the BUFF) transform
attain all notions from our framework. This reveals that we do not require a
new transformation to achieve our notions as the BUFF(-lite) transform already
fulfills the task.

Finally, we demonstrate that a slight modification of our notions allows to
model the unforgeability notions—both existential and strong unforgeability.
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1.2 Related Work

The beyond unforgeability features message-bound signatures, exclusive owner-
ship (in its different forms), and non-resignability, were formalized in [CDF+21].
Message-bound signatures originate in [SPMS02], where the property was intro-
duced using the term “duplicate signatures”. The exclusive ownership notions
were introduced in [PS05] but the idea can be traced back further [BWM99,
MS04]. Non-resignability was first formalized in [CDF+21], based on an attack
from [JCCS19], but identified as flawed in [DFHS24]. The initial claims regarding
the non-resignability of the BUFF transform were restored in [DFH+24].

Alongside the introduction of the beyond unforgeability features, Cremers
et al. [CDF+21] analyzed the round-3 candidates in the NIST PQC standard-
ization process [NIST17]: Dilithium, Falcon, Rainbow, GeMSS, Sphincs+,
and Picnic. Later, Düzlü et al. [DFF24] and Düzlü and Struck [DS24] provided
new results for FALCON and SPHINCS∗, respectively. Aulbach et al. [ADM+24]
analyzed the signature schemes based on lattices, codes, isogenies, and multi-
variate equations, in the additional call for PQC-signatures by NIST [NIST22].
Kulkarni and Xagawa [KX24] did a similar analysis for the MPC-in-the-Head
signatures. Emura [Emu24] analyzed ECDSA while Fischlin et al. [FMT25] con-
sidered BUFF security for threshold signature schemes.

2 Preliminaries

In this section, we give the relevant background for this work. This entails the
definition of signature schemes, its standard security notions—existential and
strong unforgeability—and the BUFF notions5. By adversary, we mean an ef-
ficient, i.e., probabilistic polynomial-time algorithm with respect to a security
parameter λ. We typically consider the security parameter to be implicit and do
not state it explicitly. Furthermore, we write H to denote a random oracle that
is used in the transformations later.

Definition 1. A signature scheme S consists of three efficient algorithms:

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input a security
parameter and outputs a key pair (pk, sk).

Sign(sk, msg)→ sig: The signing algorithm takes as input a secret key sk and
a message msg, and outputs a signature sig.

Verify(pk, msg, sig)→ v: The verification algorithm takes as input a public key
pk, a message msg, and a signature sig, and it outputs a bit v.

A signature scheme is said to be correct, if, for any (pk, sk)←$ KeyGen(1λ) and
any message msg, Verify(pk, msg, Sign(sk, msg)) = 1 holds with overwhelming
probability.

Definition 2. A signature scheme S = (KeyGen, Sign, Verify) fulfills EUF-CMA
and SUF-CMA if for any efficient adversary A, its probability in winning the
corresponding game shown in Fig. 2 is negligible.
5 Except for non-resignability, which is not considered in this work.

5



Game EUF-CMA

(pk, sk)←$ KeyGen()

Q ← ∅

(msg, sig)← A
Sign(sk,·)(pk)

if (msg, ·) ∈ Q
return 0

return Verify(pk, msg, sig)

Game SUF-CMA

(pk, sk)←$ KeyGen()

Q ← ∅

(msg, sig)← A
Sign(sk,·)(pk)

if (msg, sig) ∈ Q
return 0

return Verify(pk, msg, sig)

Oracle Sign(sk, msg)

sig← Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 2: The notions EUF-CMA and SUF-CMA.

Definition 3. A signature scheme S = (KeyGen, Sign, Verify) fulfills S-CEO,
S-DEO, S-UEO, M-S-UEO, and MBS if for any efficient adversary A, its prob-
ability in winning the corresponding game shown in Fig. 3 is negligible.

3 Framework

In this section, we give a framework for binding properties of signature schemes.
We first introduce the various notions and subsequently show implications and
separations between them.

3.1 Notions

We deploy the systematic approach from [CDM24], i.e., we consider Am-B-T as
a generic structure for each notion. The generic notions are displayed in Fig. 4.

The components B and T describe which component(s)—represented by B—
bind which component(s)—represented by T. Since we are concerned with signa-
ture schemes, the relevant elements are the signature (S), the message (M), and
the public key (P), i.e., B,T ⊆ {S,M,P}. For instance, Am-S-P, formalizes that
the signature binds the public key. Speaking differently, it should be infeasible
to find a signature (the binding component B) that verfies under two different
public keys (the target component T). If B or T contain more than one element,
we use square brackets for clarification, e.g., Am-[S,M]-P and Am-S-[M,P].

The component Am describes the attack model and can take any value from
{Hon,Leak,Mal}. The attack models describes the kind of access the adver-
sary has to the key pairs. For Am = Mal (malicious setting), the adversary can
generate both key pairs (or the one key pair for notions which only allow for one
public key, i.e., notions with P ∈ B) itself. For Am = Hon (honest setting), the
adversary receives an honestly generated public key and can request signatures
via the signing oracle; breaking the binding property then needs to involve a
signature received from the signing oracle, i.e., an honestly generated signature.
For Am = Leak (leakage setting), the key pair is honestly generated, as in the
honest setting, but the adversary receives both public key and secret key—in
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Game S-CEO

Q ← ∅
(pk, sk)← KeyGen()

(sig, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

v← Verify(pk, msg, sig)

return Jv = 1 ∧ pk ̸= pkK

Game S-UEO

Q ← ∅
(pk, sk)← KeyGen()

(sig, msg, pk)← A
Sign(sk,·)(pk)

if (·, sig) /∈ Q
return 0

v← S.Verify(pk, msg, sig)

return Jv = 1 ∧ pk ̸= pkK

Oracle Sign(sk, msg)

sig← Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Game S-DEO

Q ← ∅
(pk, sk)← KeyGen()

(sig, msg, pk)← A
Sign(sk,·)(pk)

if ∃msg ̸= msg s.t. (msg, sig) ∈ Q
v0 ← 1

v1 ← Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1 ∧ pk ̸= pkK

Game M-S-UEO

(sig, msg, msg, pk, pk)← A()

v0 ← S.Verify(pk, msg, sig)

v1 ← S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1 ∧ pk ̸= pkK

Game MBS

(sig, msg, msg, pk)← A()

v0 ← Verify(pk, msg, sig)

v1 ← Verify(pk, msg, sig)

return Jmsg ̸= msg ∧ v0 = 1 ∧ v1 = 1K

Fig. 3: Security games S-CEO, S-DEO, S-UEO, M-S-UEO, and MBS.

particular the signing oracle is omitted as it becomes obsolete. We want to em-
phasize, that in our notions the attack models differ from [CDM24] in how the
target key pair is generated; the second key pair—if a notion asks for one—is
always chosen by the adversary, allowing it to be maliciously generated.6 This is
in contrast to the binding notions for key-encapsulation mechanisms [CDM24],
where the attack model is a directive for both keys. This difference stems from
the fact that for key-encapsulation mechanisms, the adversary tries to disrupt
the communication between two parties, whereas for signatures, the adversary
wants to claim a signature for itself.

Depending on the attack model, the notion Am-S-P corresponds to two
existing notions: For Am = Mal, it equals the notion M-S-UEO, while for
Am = Hon, it equals the notion S-UEO. On the other hand, for, Am = Leak,
the notion does not correspond to any existing notion from prior literature. Sim-

6 However, note that the attacker only ever has to output the public key—never the
secret one. In contrast, the initial notions from [PS05] required the adversary to also
output the secret key.
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Table 1: Overview of all possible binding notions. The rows correspond to dif-
ferent notion classes with the respective column describing the specific attack
model. Cells containing ✗ are notions that are not achievable. For the remain-
ing cells, a ⋆ denotes that the corresponding notion is new, while otherwise the
existing name of the notion displayed.

Am-B-T Mal Leak Hon

Am-S-M ⋆ ⋆ ⋆
Am-S-P M-S-UEO ⋆ UEO
Am-M-S ✗ ✗ ✗

Am-M-P ✗ ✗ ✗

Am-P-S ✗ ✗ ✗

Am-P-M ✗ ✗ ✗

Am-[S,P]-M MBS ⋆ ⋆
Am-S-[M,P] ⋆ ⋆ DEO
Am-[S,M]-P ⋆ ⋆ CEO
Am-M-[S,P] ✗ ✗ ✗

Am-[M,P]-S ✗ ✗ ✗

Am-P-[S,M] ✗ ✗ ✗

ilarly, our framework captures the remaining BUFF security notions.7 That is,
S-CEO and S-DEO correspond to Hon-[S,M]-P and Hon-S-[M,P], respectively,
while MBS equals Mal-[S,P]-M. When looking at prior literature, one can get
the impression that MBS is “on the same level” as S-CEO, S-DEO, and S-UEO,
while M-S-UEO corresponds to a stronger attack model. In light of our frame-
work, however, MBS is actually closer to M-S-UEO (as both are in the malicious
model) while the remaining notions are all in the honest model.

In total, one can consider a variety of 36 security notions: 12 combinations
for B and T (6 containing all S, M, and P, and 6 containing only two out of
those three) times the 3 attack models.

3.2 Unachievable Notions

Several of the notions turn out to be unachievable which we discuss here. We
describe simple attacks for Am = Hon, which restrict the adversary to using
the provided signing oracle. The attacks easily extend to Am ∈ {Leak,Mal}:
for Leak, the adversary can emulate the oracle with the secret key it receives
as input, whereas for Mal, the adversary can simply generate the key pair(s)
honestly and then proceed like in the Leak setting.

Messages are not Binding. The message itself cannot bind anything, making the
notions Am-M-P, Am-M-S, and Am-M-[S,P] unachievable. The following attack

7 Note that our framework does not encompass the BUFF notion NR, which differs
significantly from the others due to the concept of an unknown message.
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Game Mal-B-T

(sig, sig, msg, msg, pk, pk)← A()

if Verify(pk, msg, sig) = ⊥
return 0

if Verify(pk, msg, sig) = ⊥
return 0

return J(∀x ∈ B.x = x)∧
(∃y ∈ T.y ̸= y)K

Game Leak-B-T

(pk, sk)←$ KeyGen()

(sig, sig, msg, msg, pk)← A(pk, sk)

if Verify(pk, msg, sig) = ⊥
return 0

if Verify(pk, msg, sig) = ⊥
return 0

return J(∀x ∈ B.x = x)∧
(∃y ∈ T.y ̸= y)K

Game Hon-B-T

(pk, sk)←$ KeyGen()

(sig, sig, msg, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if Verify(pk, msg, sig) = ⊥
return 0

return J(∀x ∈ B.x = x) ∧ (∃y ∈ T.y ̸= y)K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 4: Generic game for the three attack modes Mal, Leak, and Hon.

works against all three notions: the adversary is given a public key pk and a
matching sign oracle. Then, it generates a second key pair (pk, sk) using KeyGen

and picks an arbitrary message msg. The adversary, queries msg to the sign oracle
resulting in a signature sig, and computes sig as the signature of msg under
sk. These signatures will most likely differ and by correctness, they verify under
the respective public keys.

Public Keys are not Binding. Similarly to the message, also the public key itself
cannot bind anything. This makes the following notions unachievable: Am-P-M,
Am-P-S, and Am-P-[S,M]. An adversary receiving a public key pk, can simply
query two distinct messages msg and msg to the signing oracle receiving two
(likely to be different) signatures sig and sig.

Messages and Public Keys together are not Binding. Finally, messages and pub-
lic keys together also do not bind the signature. This shows that the notion
Am-[M,P]-S is unachievable. An adversary receiving a public key can query an
arbitrary message msg twice to the signing oracle to receive two different signa-
tures sig and sig.

The above results show that, in the context of signature schemes, only the
signature can bind other values. Thus, we can restrict our focus to notions where
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S ∈ B. Ignoring the attack model for now, this leaves us with 5 notion classes:
Am-S-[M,P], Am-[S,P]-M, Am-[S,M]-P, Am-S-M, and Am-S-P. Considering the
three attack models, we end with 15 binding notions (which cover the existing
BUFF security notions MBS, S-CEO, S-DEO, S-UEO, and M-S-UEO as dis-
cussed above). An overview is given in Table 1. This table shows which notions
are not achievable, which correspond to existing notions from the literature, and
which notions are new. Implications and separations between the different notion
classes and attack models are illustrated in Fig. 1. The generic notionsMal-B-T,
Leak-B-T, and Hon-B-T are depicted in Fig. 4, while all 15 individual notions
are given in Appendix B.

3.3 Implications

In this section we discuss the implications between the different notion classes
Am-S-P, Am-S-M, Am-[S,M]-P, Am-S-[M,P], and Am-[S,P]-M. In the following,
we will refer to the former two as the generalized notions, in the sense that they
are less restricted by only involving two out of the three components (signature,
message, and public key), and the latter three as the restricted notions.

There are some trivial implications from generalized notions to restricted
notions. For instance, if the signature binds the public key, then signature and
message together bind the public key. This yields the implication Am-S-P ⇒
Am-[S,M]-P. At the same time, if the signature bind any of the other two values
(message or signature), it also bind the pair of both, e.g.,Am-S-P⇒ Am-S-[M,P].
Overall, we obtain the following trivial implications:

Am-S-P⇒ Am-[S,M]-P Am-S-M⇒ Am-[S,P]-M

Am-S-P⇒ Am-S-[M,P] Am-S-M⇒ Am-S-[M,P]

An interesting aspect is that each generalized notion implies two restricted no-
tions; Am-[S,M]-P and Am-[S,P]-M are each implied by one of the two gener-
alized notions while Am-S-[M,P] is implied by both. It turns out, that the im-
plications also hold in the other direction, meaning that two specialized notions
together imply the generalized notion that implies them. This is formalized in the
following two theorems. Note that the first one was already shown in [CDF+21],
as it corresponds to the relation that S-CEO and S-DEO together imply S-UEO.
The second one is new, since the generalized notion Am-S-M is novel.

Theorem 4. For Am ∈ {Hon,Leak,Mal}, a signature scheme S is Am-S-P
secure if and only if it is both Am-[S,M]-P and Am-S-[M,P] secure.

Proof. The statement directly follows from the definitions of the notions: in
Am-S-P, the public keys have to differ, while the signatures must agree; the same
is true in Am-[S,M]-P and Am-S-[M,P], however, for the former the messages
have to be the same, and for the latter they have to be different. Since inAm-S-P,
no requirement is made for the messages, the combination of Am-[S,M]-P and
Am-S-[M,P] corresponds exactly to Am-S-P. ⊓⊔

10



Theorem 5. For Am ∈ {Hon,Leak,Mal}, a signature scheme S is Am-S-M
secure if and only if it is both Am-S-[M,P] and Am-[S,P]-M secure.

Proof. The statement directly follows from the definitions of the notions using
the same reasoning as done in the previous proof. ⊓⊔

Remark 6. Theorem 5 shows an interesting connection, namely that the exist-
ing BUFF security notions MBS (Am-[S,P]-M) and DEO (Am-S-[M,P]) together
imply our new notion Am-S-M. This means that MBS (Am-[S,P]-M) and DEO
(Am-S-[M,P]) exhibit the same relation to Am-S-M as CEO (Am-[S,M]-P) and
DEO (Am-S-[M,P]) exhibit towards UEO (Am-S-P). In prior works, the nomen-
clature clearly indicates a connection between CEO (Am-[S,M]-P) and DEO
(Am-S-[M,P]). On the other hand, MBS (Am-[S,P]-M) typically seems to be a
different security notion. Our framework reveals that MBS and DEO in fact are
related as well, which also shows that DEO plays a central role as it is connected
to both other restricted notions CEO and MBS—which itself are not directly
related.

3.4 Separations

The following two theorems show separations for notions of the same notion
class but different attack models (first separating honest and leakage setting,
followed by separating leakage and malicious setting). The first theorem shows
that security in the honest setting does not imply security in the leakage setting
while the second theorem shows that security in the leakage setting does not
yield security in the malicious setting. Clearly, to make the statements of the two
theorems not vacuous, we need schemes that satisfy the requirements. Looking
ahead, we will later see how to achieve all security notions, which thus shows
that there are schemes satisfying the requirements of Theorem 7 and Theorem 8.

The theorem below states that security for Hon notions does not imply
security for Leak notions. It relies on the signature scheme shown in Fig. 5. Here,
a random value x is added to the secret key while the output y of x under a one-
way function is added to the public key. Signatures have an additional component
z such that if z is a preimage of y, the signature will always be accepted. This
change does not affect security for Hon notions as honest signatures will always
have z = ⊥. For Leak notions, the adversary can easily obtain a preimage from
the secret key.

Theorem 7. Let S be a signature scheme, F be a one-way function, and S∗ be
the signature scheme displayed in Fig. 5. Then the following statements hold:

1. if S is Hon-[S,P]-M, then S∗ is Hon-[S,P]-M but not Leak-[S,P]-M
2. if S is Hon-S-[M,P], then S∗ is Hon-S-[M,P] but not Leak-S-[M,P]
3. if S is Hon-[S,M]-P, then S∗ is Hon-[S,M]-P but not Leak-[S,M]-P
4. if S is Hon-S-M, then S∗ is Hon-S-M but not Leak-S-M
5. if S is Hon-S-P, then S∗ is Hon-S-P but not Leak-S-P

11



Proof. Observe that S∗ is identical to S unless a signature contains the preimage
x of the value y appended to the public key in which case the special case for
verification is triggered which accepts the signature for any message. Note further
that honestly generated signatures never trigger the special case for verification.

Regarding the Hon notions, observe that an adversary A is restricted to hon-
estly generated signatures and hence every signature will be of the form (sig,⊥).
Hence the check z ̸= ⊥ will never succeed, i.e., A cannot trigger the special ver-
ification case. This establishes that S∗ inherits Hon-[S,P]-M, Hon-S-[M,P], and
Hon-[S,M]-P security from the underlying signature scheme S.

Regarding Leak-[S,P]-M, the following attack is possible. Given an honestly
generated key pair (pk∗, sk∗), with pk∗ = (pk, y) and sk∗ = (sk, x), an adver-
sary A can pick an arbitrary signature sig, set sig∗ ← (sig, x), and output
(sig∗, msg, msg) for arbitrary messages msg ̸= msg. Since F(x) = y, sig∗ triggers
the special case for verification which accepts irrespectively of the message, i.e.,
S∗.Verify(pk∗, ·, sig∗) = 1.

Regarding Leak-S-[M,P], the following attack is possible. Given an honestly
generated key pair (pk∗, sk∗), with pk∗ = (pk, y) and sk∗ = (sk, x), an adversary
A can pick an arbitrary signature sig, set sig∗ ← (sig, x). Furthmore, A sets
pk∗ ← (pk, y), for pk ̸= pk and outputs (sig∗, msg, msg, pk∗). By construction,
the public keys and messages are different, and, since F(x) = y, sig∗ triggers
the special case for verification which accepts irrespectively of the message, i.e.,
S∗.Verify(pk∗, msg, sig∗) = S∗.Verify(pk∗, msg, sig∗) = 1.

Regarding Leak-[S,M]-P, the above attack for Leak-S-[M,P] applies, with
the mere difference that A only picks a single message that it outputs.

Lastly, the above results together with Theorem 4 and Theorem 5 imply that
Leak-S-P and Leak-S-M are not fulfilled. ⊓⊔

Note that the theorem also holds without using a one-way function to “hide”
the value x in the public key. By using a one-way function, the transformed
scheme remains unforgeable. While not strictly necessary, one might wonder
how relevant the separation is, if the scheme does not achieve the minimum
security though, which is why we opted to make use of it.

The next theorem establishes the separation between the leakage setting and
the malicious setting and relies on the signature scheme shown in Fig. 6. Here,
both public keys and signatures have a trailing bit. For honestly generated keys
and signature, the bits are 1. Honestly generated public keys can only verify
signatures with a trailing 1, in which case the normal verification algorithm
is done. Malicious public keys (having a trailing 0) will accept any malicious
signature (also having a trailing 0). If the trailing bits of public key and signature
are different, verification will always fail. In the leakage setting, the adversary
receives an honestly generated key pair, which will have a trailing 1 and thus can
never trigger the special case of verification. However, in the malicious setting,
the adversary can simply choose public key and signature with trailing 0s to
trigger the special verification check.

Theorem 8. Let S be a signature scheme and S∗ be the signature scheme dis-
played in Fig. 6. Then the following statements hold:
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1. if S is Leak-[S,P]-M, then S∗ is Leak-[S,P]-M but not Mal-[S,P]-M
2. if S is Leak-S-[M,P], then S∗ is Leak-S-[M,P] but not Mal-S-[M,P]
3. if S is Leak-[S,M]-P, then S∗ is Leak-[S,M]-P but not Mal-[S,M]-P
4. if S is Leak-S-M, then S∗ is Leak-S-M but not Mal-S-M
5. if S is Leak-S-P, then S∗ is Leak-S-P but not Mal-S-P

Proof. Regarding the Leak notions, observe that the honestly generated public
key that an adversary A obtains will have a trailing 1. By construction, this
public key can only verify signatures that have a trailing 1 as well. In this
case, however, S∗ is identical to S, hence Leak-[S,P]-M, Leak-S-[M,P], and
Leak-[S,M]-P security of S∗ is inherited from the respective security of S.

Regarding the Mal notions, observe that S∗ accepts everything if both pub-
lic key and signature have a trailing 0. An adversary A can pick two differ-
ent public keys pk∗ ← (pk, 0) and pk∗ ← (pk, 0) and an arbitrary signature
sig∗ ← (sig, 0), all with a trailing 0. By construction, S∗.Verify(pk∗, ·, sig∗) =
S∗.Verify(pk∗, ·, sig∗) = 1, irrespective of the message. Depending on the exact
notion, A outputs (sig∗, msg, msg, pk∗) (Mal-[S,P]-M), (sig∗, msg, msg, pk∗, pk∗)
(Mal-S-[M,P]), or (sig∗, msg, pk∗, pk∗) (Mal-[S,M]-P) to break the correspond-
ing security notion.

The above results together with Theorem 4 and Theorem 5 imply that
Leak-S-P and Leak-S-M are not fulfilled. ⊓⊔

The following theorems show separations between the various restricted no-
tions. In particular, we show the following separation:

Am-S-[M,P] ⇏ Am-[S,M]-P Am-S-[M,P] ⇏ Am-[S,P]-M

Am-[S,M]-P ⇏ Am-S-[M,P] Am-[S,P]-M ⇏ Am-S-[M,P]

The proofs are deferred to Appendix A. The first two separations (Am-S-[M,P] ⇏
Am-[S,M]-P and Am-[S,M]-P ⇏ Am-S-[M,P]) are due to [CDF+21]; we merely
recast them in our framework and argue that they hold for all three attack
models (the corresponding results in [CDF+21] consider only theHon case where
Am = Hon). For the third separation, we give a new construction. For the forth
separation, we do not use an artificial signature scheme but UOV, leveraging
the results by Aulbach et al. [ADM+24]. For all separations, the proofs hold
regardless of the attack model.

Theorem 9 (Am-S-[M,P] ⇏ Am-[S,M]-P). There exists a signature scheme
that is Am-S-[M,P] but not Am-[S,M]-P.

Theorem 10 (Am-[S,M]-P ⇏ Am-S-[M,P]). There exists a signature scheme
that is Am-[S,M]-P but not Am-S-[M,P].

Theorem 11 (Am-S-[M,P] ⇏ Am-[S,P]-M). There exists a signature scheme
that is Am-S-[M,P] but not Am-[S,P]-M.

Theorem 12 (Am-[S,P]-M ⇏ Am-S-[M,P]). There exists a signature scheme
that is Am-[S,P]-M but not Am-S-[M,P].
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KeyGen∗()

(pk, sk)←$ KeyGen()

x←$ X
y ← F(x)

sk
∗ ← (sk, x)

pk
∗ ← (pk, y)

return (pk∗, sk∗)

Sign∗(sk∗, msg)

(sk, x)← sk
∗

sig←$ Sign(sk, msg)

sig
∗ ← (sig,⊥)

return sig
∗

Verify∗(pk∗, msg, sig∗)

(pk, y)← pk
∗

(sig, z)← sig
∗

if Jz ̸= ⊥ ∧ F(z) = yK
return 1

return Verify(pk, msg, sig)

Fig. 5: Separation example for Hon-B-T ⇏ Leak-B-T (Theorem 7).

KeyGen∗()

(pk, sk)←$ KeyGen()

pk
∗ ← (pk, 1)

return (pk∗, sk)

Sign∗(sk, msg)

sig←$ Sign(sk, msg)

sig
∗ ← (sig, 1)

return sig
∗

Verify∗(pk∗, msg, sig∗)

(pk, b)← pk
∗

(sig, d)← sig
∗

if Jb ̸= dK
return 0

if Jb = 0 ∧ d = 0K
return 1

if Jb = 1 ∧ d = 1K
return Verify(pk, msg, sig)

Fig. 6: Separation example for Leak-B-T ⇏ Mal-B-T (Theorem 8).

4 Analysis of Transformations

In this section, we analyze the existing transformations that achieve (partial)
BUFF security with respect to our expanded framework. There are a total of
five transformations: PS-1, PS-2, PS-3, BUFF-lite, and BUFF. We start with
a description of these transforms and the known results regarding the BUFF
notions they achieve in Section 4.1. Out of these transforms, only one—the PS-3
transform—does not increase the signature size, which offers a significant benefit.
Thus, we start with the analysis of the PS-3 transform in Section 4.2, and analyze
the signature-increasing transforms, i.e., the PS-1, PS-2, BUFF-lite, and BUFF
transform in Section 4.3. Lastly, in Section 4.4, we give an updated overview of
the results for the transformations with respect to our new framework.

Whenever we give an overview of existing results in the following, we will
use the BUFF nomenclature from prior works and assign our new notation in
brackets. Otherwise, we will stick to our new naming convention.

4.1 Overview of the existing Transformations

Firstly, there are three transformations that were introduced in [PS05] and fur-
ther analyzed in [CDF+21]: PS-1, PS-2, and PS-3. For a signature scheme S,
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Sign∗(sk, msg)

sig← Sign(sk, msg)

h← H(msg)

sig
∗ ← (sig, h)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, h)← sig
∗

h← H(msg)

v← Verify(pk, msg, sig)

return Jv = 1 ∧ h = hK

Sign∗(sk, msg)

sig← Sign(sk, msg)

h← H(pk)

sig
∗ ← (sig, h)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, h)← sig
∗

h← H(pk)

v← Verify(pk, msg, sig)

return Jv = 1 ∧ h = hK

Sign∗(sk, msg)

h← H(pk, msg)

sig← Sign(sk, h)

return sig

Verify∗(pk, msg, sig)

h← H(pk, msg)

v← Verify(pk, h, sig)

return Jv = 1K

Fig. 7: Transforms PS-1 (left), PS-2 (middle), and PS-3 (right).

the signature after application of the PS-1 transform (shown in Fig. 7) is sig =
S.Sign(sk, msg)||H(msg) and it was proven that—out of the BUFF notions—the
resulting scheme achieves S-DEO (Hon-S-[M,P]) and MBS (Mal-[S,P]-M). For
the PS-2 transform (shown in Fig. 7), the signature is sig = S.Sign(sk, msg)||H(pk)
and a transformed scheme achieves M-S-UEO (Mal-S-P). For the PS-3 trans-
form (shown in Fig. 7), the signature is computed as sig = S.Sign(sk,H(msg, pk))
and the transform achieves S-UEO (Hon-S-P) security requiring some additional
assumption related to weak keys.

Next to this, [CDF+21] introduced two further transforms: the BUFF-lite and
the BUFF transform. For the BUFF-lite transform (shown in Fig. 8), signatures
are of the form sig = S.Sign(sk, msg)||H(msg, pk) and M-S-UEO (Mal-S-P)
and MBS (Mal-[S,P]-M) are achieved. The BUFF transform (shown in Fig. 8)
computes signatures as sig = S.Sign(sk,H(msg, pk))||H(msg, pk) and achieves
M-S-UEO (Mal-S-P), MBS (Mal-[S,P]-M) and NR. An overview of the existing
positive results for the different transforms is given in Table 2.

To summarize, all of the transforms either append a hash value to the signa-
ture (PS-1, PS-2, and BUFF-lite) or sign not the message but the hash of message
and public key (PS-3)—or do both (BUFF). In particular, for all transforms, the
signing time increases while for all except PS-3 also the signature size increases.

4.2 Analysis of the PS-3 Transform

The PS-3 transform is of special interest, as it is the only transform that does
not increase the signature size. At the same time, its analysis is the most in-
volved, as so-called weak keys have to be taken into account. This observation
has been made in various prior works, starting with the very first paper [PS05].
Here, a property for signatures schemes is defined, which requires that for each
public key pk and signature sig—that have passed some basic correctness tests
implemented by the verifier—the fraction of messages msg in the message space
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Sign∗(sk, msg)

sig← Sign(sk, msg)

h← H(pk, msg)

sig
∗ ← (sig, h)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, h)← sig
∗

h← H(pk, msg)

v← Verify(pk, msg, sig)

return Jv = 1 ∧ h = hK

Sign∗(sk, msg)

h← H(pk, msg)

sig← Sign(sk, h)

sig
∗ ← (sig, h)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, h)← sig
∗

h← H(pk, msg)

v← Verify(pk, h, sig)

return Jv = 1 ∧ h = hK

Fig. 8: Transforms BUFF-lite (left) and BUFF (right).

Table 2: Positive results from prior works [PS05, CDF+21] regarding the five
existing transforms. The asterisks in the PS-3 column indicate that the results
are tied to an assumption (absence of weak keys).

PS-1 PS-2 PS-3 BUFF-lite BUFF

M L H M L H M L H M L H M L H

Am-S-M

Am-[S,P]-M ✓ ✓ ✓

Am-S-[M,P] ✓ ✓ ✓⋆ ✓ ✓

Am-[S,M]-P ✓ ✓⋆ ✓ ✓

Am-S-P ✓ ✓ ✓⋆ ✓ ✓ ✓ ✓

for which Verify(pk, msg, sig) = 1, is negligible. Note that this property is not
restricted to honestly generated keys, but also comprises ones outside the image
of key generation—as such can also be chosen by an adversary in the S-UEO
(Hon-S-P) game. Under this assumption, the PS-3 transform suffices to achieve
S-UEO (Hon-S-P)8 security.

In [CDF+21], weak keys are informally described as keys that verify multiple
or even all messages and it is shown that—contrary to the intuition—weak keys
cannot only occur outside of HGK. This means that it does not suffice for the
verifier to check whether a key is in the image of KeyGen to obtain S-UEO
(Hon-S-P) just from the PS-3 transform. In particular, it seems that one cannot

8 In [PS05] the slightly weaker notion UEO is considered, where the adversary is not
provided access to a signing oracle but only a single pair of message and signature
instead. However, in [CDF+21] it was shown that all results from [PS05] regarding
UEO security transfer to the stronger notion S-UEO.
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get around weak keys when analyzing the PS-3 transform. Next to the S-UEO
(Hon-S-P) results, [CDF+21] also describe that the remaining BUFF properties
M-S-UEO (Mal-S-P), MBS (Mal-[S,P]-M), and NR9 cannot be achieved by the
PS-3 transform without any additional assumptions.

In [DS24], the connection between MBS (Mal-[S,P]-M) and weak keys (as
they are characterized in [CDF+21]) is brought to attention: as MBS (Mal-[S,P]-M)
excludes that an adversary can find a public key that verifies two messages for
the same signature, it especially prevents the adversary from finding a public
key that verifies many messages. Under the assumption that the underlying sig-
nature scheme, i.e., before applying PS-3, achieves MBS (Mal-[S,P]-M), [DS24]
shows that the PS-3 transform suffices to achieve achieve S-UEO (Hon-S-P) and
wNR while maintaining MBS (Mal-[S,P]-M). However, there are two disadvan-
tages: First, the resulting bound for S-UEO (Hon-S-P) is quite loose, which
leaves room for improvement. Second, the result comes with an explicit counter
example that PS-3 does not achieve M-S-UEO (Mal-S-P) security.

While MBS (Hon-[S,P]-M) excludes weak keys as defined in [CDF+21],
it does not exclude the existence of public keys pk and pk for which, given
two random messages msg and msg, one can find a signature sig such that
Verify(pk, msg, sig) = 1 and Verify(pk, msg, sig) = 1 hold with non-negligible
probability. Then the following M-S-UEO (Mal-S-P) attack against a PS-3-
transformed scheme is possible—even if the underlying scheme fulfilled MBS
(Hon-[S,P]-M) security—: Firstly, pick two keys pk and pk with the described
property; secondly choose arbitrary msg and msg and compute h = H(pk, msg)
and h = H(pk, msg); thirdly, determine sig such that Verify(pk, h, sig) = 1
and Verify(pk, h, sig) = 1. In [DS24], it is shown that such keys exist for the
multivariate signature scheme UOV [BCD+23].

In summary, the security of PS-3-transformed schemes regarding the var-
ious notions we consider (and introduce) in this work, is quite unclear. The
PS-3 transform achieves Hon-S-P (under some conditions related to weak keys)
while it generally does not achieve Mal-S-P. Furthermore, it is known that
the PS-3 transform maintains Mal-[S,P]-M security of the underlying signature
scheme (which then also yields the required conditions to achieve Hon-S-P).
The situation for several other notions (Mal-[S,M]-P, Mal-S-[M,P], Leak-S-P,
Leak-[S,M]-P, Leak-S-[M,P]) is unclear at the moment.

In the following we will give an updated formal weak key definition and
prove that for a scheme without such weak keys, the PS-3 transform suffices to
achieve all notions from our framework introduced in Section 3. In particular,
this definition covers also the kind of keys that allow the Mal-S-P attack against
UOV in [DS24]. Also, while our result requires a scheme-specific analysis to check
for weak keys, it can yield better bounds.

In the following we give a rigorous definition of weak keys.

9 Note that this result is with respect to the old non-resignability definition, which
has been been proven faulty [DFHS24].
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Definition 13. For a signature scheme S, we call a public key pk ∈ PK of this
scheme weak if, there is an adversary A such that the probability

Pr[Verify(pk, msg, sig) = 1 | sig← A(pk, msg), msg←$M]

is non-negligible.

Compared to the literature, our weak key definition is closest to the one
from [PS05]. Here, a scheme is said to have no weak keys if for each public key
pk and signature sig, the fraction of messages msg in the message space for
which Verify(pk, msg, sig) = 1, is negligible. However, this definition does not
involve an adversary, but is a general property of the signature scheme.

Regarding the relation between the notions, one easily observes that weak
keys by definition of [PS05] are also weak in our setting, while we will prove the
converse to be false. In the following, we show that, while being harder to fulfill,
our definition allows to achieve all notions from our framework. In contrast, we
prove that the weak key definition following [PS05] is not sufficient. We consider
the transform T described in Fig. 9 that adapts signing by appending ⊥ to each
signature. Further, verification of a message msg and a signature sig∗ = (sig, b)
works as follows: if b = ⊥, Verify of the underlying schemes is called, if b ̸= ⊥,
output 1 if and only if b = msg and 0 otherwise. We consider a signature scheme
S that has no weak keys according to the definition of [PS05] and observe that
this property is preserved after application of the transform from Fig. 9. This is
due to the fact that T (S) verifies only exactly one message more for each pair of
public key and signature. In particular, if the fraction of messages verifying a pair
of public key and signature was negligible before application of the transform,
that will also be the case after. In contrast, for the transformed scheme T (S)
all keys are weak by our definition: Given a public key and a random message
msg, the adversary can always output sig∗ = (sig, msg) for an arbitrarily chosen
sig. By definition of the transform, sig∗ will verify for the message msg via the
special verification case. In summary, this shows that weak keys in our definition
are not necessarily weak in the definition by [PS05] and thus our definition is
strictly stronger.

Next, we argue why this stronger definition is necessary for achieving all
notions from the new framework. For this, we consider the above scheme af-
ter additionally applying the PS-3 transform. Note that this scheme still has
no weak keys as defined in [PS05]. The following Leak-[S,M]-P attack against
PS-3[T[S]] is possible: Given (pk, sk), the adversary chooses a random message
msg, signature sig, and public key pk ̸= pk. Then, sig∗ = (sig, msg) will verify
under both pk and pk.10

Remark 14. Definition 13 could also be formulated in a way that does not com-
pletely exclude the existence of weak keys, but instead just requires that it is
computationally hard to find such keys. While the latter variant would be more

10 Note that this attack does not apply against Hon-S-[M,P], as the signature has to
stem from an query to the sign oracle (and hence will be of the form sig∗ = (sig,⊥)).
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general, we opt for the former one, as in all examples we are aware of, there are
either no weak keys or the ones that exist are easy to find.

Note that, our weak key definition is not restricted to keys in the image of
KeyGen as an adversary in the Mal games can choose also maliciously generated
keys. In the following we give a number of examples for schemes with weak keys:
The Schnorr signature scheme [Sch91] has two weak keys that lie outside the
image of KeyGen, while for Lyubashevsky’s signature scheme [Lyu12] and the
multivariate signature scheme UOV [BCD+24], also weak keys inside the image
exist.

Weak Keys of the Schnorr Signature Scheme. The Schnorr signature scheme
is displayed in Fig. 10. For a weak key pk = Z of the Schnorr signature
scheme, there has to be an adversary A, such that, given pk and an arbitrary
message msg, A finds a signature sig = (e, s) with Verify(pk, msg, sig) = 1, i.e.,
H(msg, gsZ−e) = e with non-negligible probability. Firstly note that by varying
e also the target value of the hash computation is changed (i.e., this is a moving
target). On the other hand, for some fixed e, the problem of finding a matching
s requires solving a discrete logarithm problem.

However, the cases pk = Z ∈ {0, 1} represent exceptions, in which the moving
target problem can be bypassed—note that these values never occur during
honest key generation as honestly generated keys are of the form pk = Z = gz

for z ←$ [q − 1] and g a generator of order q. Simply put, for pk = Z ∈ {0, 1},
e does not influence the value of gsZ−e. Given a random message msg, the
adversary chooses a random value for s, computes H(msg, gs) and sets e to be
the result of the latter computation. Then H(msg, gsZ−e) = e will hold, i.e., the
signature (s, e) verifies.

So in conclusion, the Schnorr signature scheme has two weak keys, namely
pk = Z ∈ {0, 1}, which are not in the image of KeyGen.

Weak Keys in Lyubashevsky’s Signature Scheme. We consider Lyubashevsky’s
signature scheme [Lyu12] as described in Fig. 11 based on the SIS problem. For
a weak key pk = (A, T ) of this signature scheme, there has to be an adversary A,
such that, given pk and an arbitrary message msg,A finds a signature sig = (z, c)
with Verify(pk, msg, sig) = 1, i.e., ||z|| ≤ ησ

√
m and c = H(Az − Tc, msg). As

for the Schnorr signature scheme, varying c changes the target of the hash
computation (i.e., this is again a moving target problem) and for a fixed c,
finding a matching short z requires solving an SIS problem.

Thus, there are two types of weak keys: Those for which we can circumvent
the moving target problem and those for which the SIS problem is not hard. For
the former, all public keys of the form (A, 0) for A ∈ Zn×m

q act as weak keys: for
T = 0, c does not influence the value of Az − Tc and thus c can be chosen after
the hash is computed. Note that this works analogously to the attack described
for the Schnorr signature scheme. Further, we observe that these keys lie in the
image of KeyGen as for S = 0 all (A, 0) with A ∈ Zn×m

q can occur as public keys.
However, it is extremely unlikely for such a key to be the result of an honest
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key generation and these cases are easily excluded by checking whether T = 0
during verification.

The other type of weak keys cannot be described as concretely: It comprises
all public keys (A, T ) for which A cannot yield hard SIS instances. Then, one can
choose arbitrary x ∈ Zm and msg, compute c = H(x, msg), and solve Az = x−Tc
for z. Note that these type of weak keys do not exist for the Schnorr signature
scheme, where the generator g is a public parameter and not part of the public
key (as is the case for the matrix A). Similarly, if A was a public parameter in
Lyubashevsky’s scheme, these weak keys could be prevented.

Weak Keys of the UOV Signature Scheme. UOV is a multivariate signature
scheme that can be seen to have weak keys as defined in Definition 13 using
the results from [DS24]. They show that for UOV, one can construct two pub-
lic keys pk and pk, such that for randomly chosen messages msg and msg, the
probability of finding a signature sig such that Verify(pk, msg, sig) = 1 and
Verify(pk, msg, sig) = 1 is non-negligible.

On a high-level, a UOV secret key is a matrix O ∈ K(n−m)×m (for K a finite
field), that defines the so-called oil space as its image. The public key consists of
n quadratic polynomials p1, . . . , pn which map the oil space to zero. Note that
to each pi, one can associate a matrix

Pi =

(
P

(1)
i P

(2)
i

0 P
(3)
i

)
(1)

with P
(1)
i ∈ K(n−m)×(n−m), P

(2)
i ∈ K(n−m)×m, and P

(3)
i ∈ Km×m such that

pi(x) = x⊤Pix for any x ∈ Kn, and P
(1)
i and P

(3)
i are upper triangular matrices.

To sign a message msg, a vector s ∈ Kn such that s⊤Pis = H(msg) is determined
using the oil space. Verification then checks whether this equation holds.

The key idea of finding pk and pk as described above is then to pick a very
large oil space (more precisely, O ∈ K(n−2m)×2m) and two different public keys
which map this oil space to zero. Note that for the associated matrices (as
shown in Eq. (1)), the dimensions of the submatrices will be different, namely

P
(1)
i ∈ K(n−2m)×(n−2m), P

(2)
i ∈ K(n−2m)×2m, and P

(3)
i ∈ K2m×2m. Then, given

two messages msg, msg and the corresponding targets H(msg), H(msg), this choice
of public keys allows to find a signature sig that verifies both targets with non-
negligible probability.

In particular, public keys that are obtained like this, are weak by our defini-
tion. Note that large oil spaces as described above can never result from honestly
generated secret keys as the matrix O is always chosen of dimension (n−m)×m
during KeyGen. However, it is possible for an honestly generated public key to
map a larger space to zero than the oil space defined by the corresponding secret
key. In particular, the public keys we describe above can be the result of KeyGen
(though, it is unlikely).

So in conclusion, this shows that UOV has weak keys in the image of KeyGen.
One should be aware that, compared to the analysis we give for Schnorr and
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KeyGen∗()

(pk, sk)←$ KeyGen()

return (pk, sk)

Sign∗(sk, msg)

sig←$ Sign(sk, msg)

sig
∗ ← (sig,⊥)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, z)← sig
∗

if z = ⊥
return JVerify(pk, msg, sig)K

if z = msg

return 1

else return 0

Fig. 9: Transform T used to separate our weak key definition from [PS05].

KeyGen()

z ←$ [q − 1]

Z ← gz

sk← z

pk← Z

return (pk, sk)

Sign(sk, msg)

z ← sk

k ←$ [q − 1]

r ← gk

e← H(msg, r)

s← k + ze

return sig← (e, s)

Verify(pk, msg, sig)

(e, s)← sig

Z ← pk

r ← gsZ−e

if H(msg, r) ̸= e

return 0

return 1

Fig. 10: Schnorr signature scheme. Here, q is a prime and g is a generator of
the cyclic group of order q underlying the signature scheme.

Lyubashevsky’s scheme, this does not provide a complete description of UOV’s
weak keys—there might be more inside as well as outside the image of KeyGen.

Weak-Key-Checking. Depending on the scheme, efficient checks to exclude the
existence of weak keys can be possible.11 We formalize this by defining a function
WK that takes as input a public key pk and outputs 1 if pk is a weak key and 0
otherwise. For a signature scheme S, we say that S deploys weak-key-checking if
the verification algorithm is modified to additionally run WK on the given public
key and reject if the output is 0.

From our examples, the Schnorr signature scheme allows such checking. In
the case of Schnorr signatures, none of the keys in the image of KeyGen are
weak, i.e., it suffices to check whether a key is honestly generated to exclude
weak keys. The latter can be done by defining WK(pk) to be 1 if pk ∈ {0, 1} and
0 otherwise.

The following theorem shows that a PS-3-transformed signature schemes that
deploys weak-key-checking, achieves all of the notions from our framework.

Theorem 15. If applied to a signature scheme that deploys weak-key-checking,
the PS-3 transform produces a signature scheme that fulfills all 15 notions shown
in Table 1.
11 Note that [PS05] also mentions “basic correctness checks” which are implemented

by the verifier.
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KeyGen()

S ←$ {−d, . . . , 0, . . . , d}m×k

A←$ Zn×m
q

T ← AS

sk← S

pk← (A, T )

return (pk, sk)

Sign(sk, msg)

S ← sk

y ←$ Dm
σ

c← H(Ay, msg)

z ← Sc+ y

With probability p:

return sig← (z, c)

Otherwise restart

Verify(pk, msg, sig)

(z, c)← sig

if ||z|| > ησ
√
m

return 0

c′ ← H(Az − Tc, msg)

return Jc = c′K

Fig. 11: Lyubashevsky’s signature scheme based on the SIS problem as described
in [Lyu12]. Here, d, n,m, k, q, σ ∈ N and η,M ∈ R are parameters of the scheme.
Further, Dm

σ and Dm
Sc,σ denote the discrete Gaussian distribution over Zm with

standard deviation σ, centered in 0 and Sc, respectively. Lastly, the probability
p used in Sign is computed as p = min

(
Dm

σ (z)(MDm
Sc,σ(z))

−1, 1
)
.

Proof. Denote by S the signature scheme after the PS-3 transform is applied. We
show that S achieves Mal-[S,P]-M and Mal-S-P security, which then implies all
other notions by our prior results.

In order to break Mal-[S,P]-M, the adversary has to find two different
messages msg ̸= msg, a signature sig, and a public key pk such that both
S.Verify(pk,H(pk, msg), sig) = 1 and S.Verify(pk,H(pk, msg), sig) = 1. In or-
der to compute H(pk, msg) and H(pk, msg), the adversary has to fix the public
key and messages, which leaves only the signature free to choose. Due to the
weak-key-checking, a weak public key will never verify, i.e., we can assume that
pk is not a weak key. In particular, even given only one of the random mes-
sages (e.g., H(pk, msg)), the probability that an adversary finds sig such that
S.Verify(pk,H(pk, msg), sig) = 1 is negligible—which is then also true for the
Mal-[S,P]-M advantage.

In the Mal-S-P game, the adversary has to find two different public keys
pk ̸= pk, two messages msg, msg (not required to differ) and a signature sig such
that S.Verify(pk,H(pk, msg), sig) = 1 and S.Verify(pk,H(pk, msg), sig) = 1.
Then, again using weak-key-checking, the same reasoning as above applies. ⊓⊔

Remark 16. Note that the assumptions of the above theorem also yield wNR se-
curity. More precisely, for a signature scheme that deploys weak-key-checking, its
PS-3-transformed version fulfills wNR. In the wNR the adversary is given a public
key pk and a signature sig of a randomly chosen message msg, which the adver-
sary does not receive. The adversary has to find a different public key pk and a
(potentially different) signature sig such that Verify(pk,H(pk, msg), sig) = 1.
If the adversary chooses pk to be a weak key, verify will never succeed due to the
weak-key checking—hence, we can assume that pk is not a weak key. Then, the
probability that the adversary finds sig with Verify(pk,H(pk, msg), sig) = 1
for H(pk, msg) random (and unknown), is negligible.
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Out of our 15 binding notions, two restrict the adversary two honestly gener-
ated public keys: Leak-[S,P]-M and Hon-[S,P]-M. The following corollary states
that the PS-3 transform satisfies these notions if the underlying signature scheme
is unforgeable. The reason is that unforgeability effectively rules out that the tar-
get public key is a weak key.

Corollary 17. Applying the PS-3 transform to an EUF-CMA secure signature
scheme, yields a scheme that fulfills Leak-[S,P]-M and Hon-[S,P]-M.

Proof. Firstly note, that a signature scheme that fulfills EUF-CMA security
can have only negligible many weak keys. Since the key pairs in the notions
Leak-[S,P]-M and Hon-[S,P]-M are honestly generated, the probability of the
adversary playing against a weak key is negligible. Then the same reasoning as
in the proof of Theorem 15 yields security. ⊓⊔

4.3 Analysis of Signature-increasing Transformations

Analysis of the PS-1 and PS-2 Transforms. Since the PS-1 and the PS-2 trans-
form append the hash of the message H(msg) or the hash of the public key H(pk),
respectively, to the signature, they achieve all notions for which the adversary
has to choose two different messages or public keys, respectively. In particular,
this does not depend on the adversarial model. The corresponding theorems are
written below.

Theorem 18. Application of the PS-1 transform yields a signature scheme that
fulfills Am-S-M, Am-[S,P]-M, and Am-S-[M,P] for Am ∈ {Hon,Leak,Mal}.
Theorem 19. Application of the PS-2 transform yields a signature scheme that
fulfills Am-S-P, Am-S-[M,P], and Am-[S,M]-P for Am ∈ {Hon,Leak,Mal}.

Analysis of the BUFF-lite and BUFF Transform. The following theorem shows
that the BUFF-lite transform achieves all the new notion in our framework. From
this, we can follow that the BUFF transform achieves all these notions as well.
Thus, the only difference between the transformations still lies in whether NR
is achieved—as was the case for the original BUFF notions.

Theorem 20. Application of the BUFF-lite transformation produces a signature
scheme that fulfills all 15 notions shown in Table 1.

Proof. By [CDF+21, Theorem 5.5], a BUFF-lite transformed signature scheme
fulfills M-S-UEO and MBS, i.e., Mal-S-P and Mal-[S,P]-M security in our
notation. Using Theorem 4, Mal-S-P security implies that Mal-S-[M,P] and
Mal-[S,M]-P hold. Furthermore, Theorem 5 shows that Mal-S-[M,P] together
with Mal-[S,P]-M yields Mal-S-M security. Thus, all five of the Mal notions
hold after the BUFF-lite transform is applied and hence also all of the corre-
sponding weaker Hon and Leak notions are fulfilled. ⊓⊔
Remark 21. Note that the above proof boils down to the fact that Mal-S-P and
Mal-[S,P]-M imply all other notions.

Corollary 22. Application of the BUFF transformation produces a signature
scheme that fulfills all 15 notions shown in Table 1.
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4.4 Updated Overview of Transformations

After the analysis conducted in the prior two sections, we can now give an
updated overview of the properties achieved by the different transformations.
Starting with the PS-3 transform, we gave a new formalization of weak keys. If
these keys do not exist for a signature scheme or can be excluded by additional
check during verification, we showed that the PS-3 transform suffices to achieve
all notions from our framework. An overview of the existing and new results
regarding the PS-3 transform is given in Fig. 12.

Then, for the signature-increasing transforms, i.e., PS-1, PS-2, BUFF-lite,
and BUFF, we also gave an updated analysis: Next to the particular BUFF
notions that were already known to be achieved by the transforms, a number
of new notions from our framework can be achieved. More precisely, the PS-1
transform achieves all notions Am-B-T for which M ∈ T, i.e., a total of nine
notions. Analogously, the PS-2 transform yields all notions Am-B-T for which
P ∈ T, i.e., again a total of nine notions. This might seem surprising at first
glance, as for the original BUFF notions PS-2 achieved more notions (CEO,
DEO, M-S-UEO) than PS-1 (DEO, MBS). However, in view of the completed
picture for the notions, we see that PS-2 also achieves the previously unknown
notion Mal-S-M. Thus, it makes sense that the two transforms symmetrically
provide coverage of all notions: PS-1 covers all notions for which the message is
bound (as H(msg) is appended to the signature) and PS-2 achieves all notions
for which the public key is bound (as H(pk) is appended to the signature). In
particular, the transforms cross over in the three notions where both message
and public key are bound. Lastly, we showed that the BUFF-lite and the BUFF
transform not only yield all of the BUFF notions but also all notions from our
new framework. In particular, this implies that no new transforms need to be
developed in order to obtain the complete framework. An illustration of the
new results regarding the PS-1, PS-2, BUFF-lite, and BUFF transform is given
in Fig. 13.

Lastly, when comparing the PS-3 and the BUFF(-lite) transform, we observe
that both can be considered for achieving all notions: While the BUFF(-lite)
transform can be applied to any signature scheme, this comes at the cost of sig-
nature expansion; for the PS-3 transform this drawback is not present, however,
a scheme-specific analysis of weak keys—according to our new definition—is
necessary.

5 Unforgeability in our new Framework

In Section 3, we excluded several notions, arguing that they are unachievable.
On of these notions was Hon-P-M. We showed that one can just query two
different messages to the signing oracle and thus break the notion. In this sec-
tion, we consider an adapted variant and discuss its connection to unforgeability.
This variant, denoted by Hon-P-M∗, agrees with Hon-P-M except for the fol-
lowing: While one of the message signature pairs outputted by the adversary
has to stem from a Sign query, the second message is not allowed to have been
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PS-3 [This Work]

PS-3 [DS24]

PS-3 [PS05]

Mal-S-M Leak-S-M Hon-S-M

Mal-[S,P]-M
(MBS)

Leak-[S,P]-M Hon-[S,P]-M

Mal-S-[M,P] Leak-S-[M,P]
Hon-S-[M,P]

(S-DEO)

Mal-[S,M]-P Leak-[S,M]-P
Hon-[S,M]-P

(S-CEO)

Mal-S-P
(M-S-UEO)

Leak-S-P
Hon-S-P
(S-UEO)

Fig. 12: Existing and new results regarding the PS-3 transform. Note that
the result from [DS24] assumes that the underlying signature scheme achieves
Mal-[S,P]-M security.

Mal-S-M Leak-S-M Hon-S-M

Mal-[S,P]-M
(MBS)

Leak-[S,P]-M Hon-[S,P]-M

Mal-S-[M,P] Leak-S-[M,P]
Hon-S-[M,P]

(S-DEO)

Mal-[S,M]-P Leak-[S,M]-P
Hon-[S,M]-P

(S-CEO)

Mal-S-P
(M-S-UEO)

Leak-S-P
Hon-S-P
(S-UEO)

P
S
-1

P
S
-2

B
U
F
F
(-
lit
e)

Fig. 13: Our results regarding the transforms PS-1, PS-2, BUFF-lite, and BUFF.
The brackets denote that PS-1 and PS-2 achieve the upper 9 and lower 9 notions,
respectively, while BUFF(-lite) achieve all 15 notions.
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queried. Due to this change, the notion Hon-P-M∗ (shown in Fig. 15) corre-
sponds to EUF-CMA. More generally, in the following an asterisk appended to
message/signature denotes that the second message/signature outputted by the
adversary is not allowed to have been query/response to the Sign oracle.

Analogously to Theorem 4 and Theorem 5, we can also break downHon-P-M∗

in the two notions Hon-[S,P]-M∗ and Hon-P-[S∗,M∗]. The latter notion is also
part of a second relation: Hon-P-[S∗,M∗] and Hon-[M,P]-S∗ are equivalent to
Hon-P-S∗. All of the new notions are described in detail in Fig. 15 and Fig. 16.

Note that—additionally to Hon-P-M∗ agreeing with EUF-CMA—strong un-
forgeability arises as the combination of Hon-P-M∗ and Hon-[M,P]-S∗: the for-
mer is EUF-CMA as just discussed, while the latter asks to find two signa-
tures for the same message, i.e., exactly the difference between EUF-CMA and
SUF-CMA. Further, observe that all of the new notions in Fig. 15 and Fig. 16 did
not exist in our framework previously (due to not being achievable)—with the
exception of Hon-[S,P]-M. Due to the fact that Hon-[S,P]-M∗ is more restricted,
Hon-[S,P]-M implies Hon-[S,P]-M∗. However, the converse is not true, as an ad-
versary against Hon-[S,P]-M can output a message that was queried to the Sign
oracle before, while an adversary against Hon-[S,P]-M∗ cannot. For example,
consider a Hon-[S,P]-M adversary that makes the following Sign queries:

Sign(sk, msg1) = sig1

Sign(sk, msg2) = sig2

If the adversary then notices that msg1 also verifies for sig2, i.e.,

Verify(pk, msg1, sig2)) = Verify(pk, msg2, sig2)) = 1 ,

the adversary can break Hon-[S,P]-M by outputting (sig2, msg1, msg2). How-
ever, the adversary cannot break Hon-[S,P]-M∗ as both messages have been
queried to Sign. An overview of all relations is given in Fig. 14.
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Hon-P-S∗

Hon-[M,P]-S∗Hon-P-[S∗,M∗]Hon-[S,P]-M∗

Hon-P-M∗

+ +

EUF-CMA SUF-CMA

+=

Fig. 14: Implications between the modified notions and their relation to unforge-
ability.

Game Hon-P-M∗

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, sig, msg, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if (msg, ·) ∈ Q
return 0

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-P-S∗

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, sig, msg, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if (·, sig) ∈ Q
return 0

if sig = sig

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Fig. 15: Modified (generalized) notions related to unforgeability.
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Game Hon-[S,P]-M∗

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, msg, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if (msg, ·) ∈ Q
return 0

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-[M,P]-S∗

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, sig, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if (·, sig) ∈ Q
return 0

if sig = sig

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-P-[S∗,M∗]

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, sig, msg, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if (msg, ·) ∈ Q
return 0

if (·, sig) ∈ Q
return 0

if msg = msg

return 0

if sig = sig

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 16: Modified (restricted) notions related to unforgeability.
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KSW24a. Juliane Krämer, Patrick Struck, and Maximiliane Weishäupl. Binding se-
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A Proofs

A.1 Proof of Theorem 9

Proof. Let S be a signature scheme that is both Am-S-[M,P] and Am-[S,M]-P.
Let further S∗ be the signature scheme displayed in Fig. 17.

To break Am-[S,M]-P, consider an adversary that receives an honestly gener-
ated public key pk∗ = (pk, 1), queries msg∗ to its signing oracle, and receives a sig-
nature sig∗ = (sig, 0). By outputting pk∗ = (pk, 0), Verify∗(pk∗, msg∗, sig∗)
will output 1 via the normal verification check while Verify∗(pk∗, msg∗, sig∗)
will output 1 via the special verification check; therefore this adversary breaks
Am-[S,M]-P for Am ∈ {Mal,Leak,Hon}.

Regarding Am-S-[M,P], note that any public key with a trailing 0 can only
verify exactly one message, that is, msg∗. Any Am-[S,M]-P adversary there-
fore needs to output a public key having a trailing 1 in which case the sig-
nature scheme is equal to the underlying signature scheme, thus inheriting its
Am-[S,M]-P security for Am ∈ {Mal,Leak,Hon}. ⊓⊔

A.2 Proof of Theorem 10

Proof. Let S be a signature scheme that is both Am-[S,M]-P and Am-S-[M,P].
Let further S∗ be the signature scheme displayed in Fig. 18.
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KeyGen∗()

(pk, sk)←$ KeyGen()

pk
∗ ← (pk, 1)

return (pk∗, sk)

Sign∗(sk, msg)

sig←$ Sign(sk, msg)

if msg = msg∗

sig
∗ ← (sig, 0)

else

sig
∗ ← (sig, 1)

return sig
∗

Verify∗(pk∗, msg, sig∗)

(pk, b)← pk
∗

(sig, d)← sig
∗

if b = 0 // Dishonest key

return Jd = 0 ∧ msg = msg∗K
if b = 1

return Verify(pk, msg, sig)

Fig. 17: Separation example for Am-S-[M,P] ⇏ Am-[S,M]-P (Theorem 9).

KeyGen∗()

(pk, sk)←$ KeyGen()

pk
∗ ← (pk, 1)

return (pk∗, sk)

Sign∗(sk, msg)

sig←$ Sign(sk, msg)

if msg = msg∗

sig
∗ ← (sig, 0)

else

sig
∗ ← (sig, 1)

return sig
∗

Verify∗(pk∗, msg, sig∗)

(pk, b)← pk
∗

(sig, d)← sig
∗

if b = 0 ∧ d = 0

return Jmsg = msg∗∗K
if b = 0 ∧ d = 1

return 0

if b = 1 ∧ d = 0

return Jmsg = msg∗ ∧ Verify(pk, msg, sig)K
if b = 1 ∧ d = 1

return Verify(pk, msg, sig)

Fig. 18: Separation example for Am-[S,M]-P ⇏ Am-S-[M,P] (Theorem 10).

To break Am-S-[M,P], consider an adversary that receives an honestly gen-
erated public key pk∗ = (pk, 1), queries msg∗ to its signing oracle, and receives
a signature sig∗ = (sig, 0). By outputting (sig∗ = (sig, 0), msg∗, msg∗∗, pk∗ =
(pk, 0)), Verify∗(pk∗, msg∗, sig∗) will output 1 via the special verification check
(third if condition) while Verify∗(pk∗, msg∗∗, sig∗) will output 1 via the other
special verification check (first if condition); thus this adversary breaksAm-S-[M,P]
for Am ∈ {Mal,Leak,Hon}.

Regarding Am-[S,M]-P, observe that signatures with a trailing 0 can ver-
ify exactly two messages (msg∗ and msg∗∗) but only under distinct public keys
(verification of msg∗ and msg∗∗ requires a public key with a trailing 1 and 0, re-
spectively). Thus, any successful Am-[S,M]-P needs to output a signature with a
trailing 1. However, in this case, the transformed signature scheme is equivalent
to the underlying signature scheme and thus inherits its Am-[S,M]-P security.

⊓⊔
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KeyGen∗()

(pk, sk)←$ KeyGen()

return (pk, sk)

Sign∗(sk, msg)

sig←$ Sign(sk, msg)

sig
∗ ← (sig, pk)

return sig
∗

Verify∗(pk, msg, sig∗)

(sig, z)← sig
∗

if z ̸= ⊥
return Jz = pkK

if z = ⊥
return Verify(pk, msg, sig)

Fig. 19: Separation example for Am-S-[M,P] ⇏ Am-[S,P]-M (Theorem 11).

A.3 Proof of Theorem 11

Note that the separation example for this proof is a signature scheme that is not
unforgeable. This is to be expected as our separations apply to all attack models
and the notion Hon-[S,P]-M, i.e. Am-[S,P]-M in the Hon setting, is related to
unforgeability. We elaborate further on this connection in Section 5.

Proof. Let S be a signature scheme that is both Am-[S,P]-M and Am-S-[M,P].
Let further S∗ be the signature scheme displayed in Fig. 19.

Firstly, we show that the signature scheme S∗ is not Am-[S,P]-M. An adver-
sary A, receiving a public key pk, can simply ask for any signature and receive
sig∗ = (sig, pk). By construction, sig∗ verifies under pk for any message, i.e.,
A can simply output (sig, msg, msg, pk).

To show that S∗ is Am-S-[M,P], observe that signatures (sig, z) for z ̸= ⊥
verify only under public key z—in which case they verify any message though.
This makes it impossible to break Am-S-[M,P] via this special verification step,
as A needs to provide a signature and two distinct public keys that verify this
signature. For signatures (sig, z) with z = ⊥, S∗ is equal to the underlying
signature scheme and thus maintains its Am-S-[M,P] security. ⊓⊔

A.4 Proof of Theorem 12

Proof. The result follows from [ADM+24], which shows that UOV [BCD+24]
achieves MBS, i.e., it is Am-[S,P]-M for Am ∈ {Mal,Leak,Hon}, but not
S-DEO, i.e., it is not Am-S-[M,P] for Am ∈ {Mal,Leak,Hon}. ⊓⊔

B Explicit Security Notions

In this section, we give the individual security games for all 15 notions: Am-S-M
in Fig. 20, Am-[S,P]-M in Fig. 21, Am-S-[M,P] in Fig. 22, Am-[S,M]-P in Fig. 23,
and lastly Am-S-P in Fig. 24.
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Game Mal-S-M

(sig, msg, msg, pk, pk)← A()

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Leak-S-M

(pk, sk)← S.KeyGen()

(sig, msg, msg, pk)← A(pk, sk)

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-S-M

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, msg, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 20: The notions Mal-S-M, Leak-S-M, and Hon-S-M.

Game Mal-[S,P]-M

(sig, msg, msg, pk)← A()

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Leak-[S,P]-M

(pk, sk)← S.KeyGen()

(sig, msg, msg)← A(pk, sk)

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-[S,P]-M

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, msg, msg)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if msg = msg

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 21: The notions Mal-[S,P]-M, Leak-[S,P]-M, and Hon-[S,P]-M.
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Game Mal-S-[M,P]

(sig, msg, msg, pk, pk)← A()

if msg = msg ∨ pk = pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Leak-S-[M,P]

(pk, sk)← S.KeyGen()

(sig, msg, msg, pk)← A(pk, sk)

if msg = msg ∨ pk = pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-S-[M,P]

Q ← ∅
(pk, sk)←$ S.KeyGen()

(sig, msg, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if msg = msg ∨ pk = pk

return 0

v0 ← S.Verify(pk, msg, sig)

v1 ← S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 22: The notions Mal-S-[M,P], Leak-S-[M,P], and Hon-S-[M,P].

Game Mal-[S,M]-P

(sig, msg, pk, pk)← A()

if pk = pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Leak-[S,M]-P

(pk, sk)← S.KeyGen()

(sig, msg, pk)← A(pk, sk)

if pk = pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-[S,M]-P

Q ← ∅
(pk, sk)←$ S.KeyGen()

(sig, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if pk = pk

return 0

v1 ← S.Verify(pk, msg, sig)

v2 ← S.Verify(pk, msg, sig)

return Jv1 = 1 ∧ v2 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 23: The notions Mal-[S,M]-P, Leak-[S,M]-P, and Hon-[S,M]-P.
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Game Mal-S-P

(sig, msg, msg, pk, pk)← A()

if pk ̸= pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Leak-S-P

(pk, sk)← S.KeyGen()

(sig, msg, msg, pk)← A(pk, sk)

if pk ̸= pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Game Hon-S-P

Q ← ∅
(pk, sk)← S.KeyGen()

(sig, msg, msg, pk)← A
Sign(sk,·)(pk)

if (msg, sig) /∈ Q
return 0

if pk ̸= pk

return 0

v0 = S.Verify(pk, msg, sig)

v1 = S.Verify(pk, msg, sig)

return Jv0 = 1 ∧ v1 = 1K

Oracle Sign(sk, msg)

sig← S.Sign(sk, msg)

Q ← Q∪ {(msg, sig)}
return sig

Fig. 24: The notions Mal-S-P, Leak-S-P, and Hon-S-P.
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