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Abstract

In pairings-based cryptographic applications, final exponentiation with a large fixed exponent ensures
distinct outputs for the Tate pairing and its derivatives. Despite notable advancements in optimizing
elliptic curves with even embedding degrees, improvements for those with odd embedding degrees, par-
ticularly those divisible by 3, remain underexplored. This paper introduces three methods for applying
cyclotomic cubing in final exponentiation and enhancing computational efficiency. The first allows for
the execution of one cyclotomic cubing based on the final exponentiation structure. The second lever-
ages some existing seeds structure to enable the use of cyclotomic cubing and extends this strategy to
generate new seeds. The third allows generating sparse ternary representation seeds to apply cyclotomic
cubing as an alternative to squaring. These optimizations improve performance by up to 19.3% when
computing the final exponentiation for the optimal Ate pairing on BLS15 and BLS27, the target
elliptic curves of this study.

Keywords: Elliptic curves, pairings, final exponentiation, cyclotomic cubing, arithmetic.

1 Introduction

Pairings over elliptic curves are crucial for various cryptographic applications, e.g., identity-based encryp-
tion [7], short signatures [8], and tri-partite Diffie-Hellman [19]. Significant efforts [5, 6, 20] have been
dedicated to developing various families of elliptic curves tailored for pairing applications. Additionally,
Additionally, researchers have focused on optimizing the Miller loop [18, 28] and the final exponentia-
tion [16, 21, 26, 27], as these steps account for the majority of the computational complexity in pairings.
In [2–4], Barbulescu et al. introduced new parameters that resist an attack on the discrete logarithm prob-
lem (DLP) , which was proposed by Kim et al. in [23]. They also demonstrated that, at the 128-security
level, the Barreto-Lynn-Scott family of elliptic curves with an embedding degree k = 12 (BLS12) and the
Kachisa-Schaefer-Scott family of elliptic curves with k = 16 (KSS16) can offer a more efficient pairing than
the Barreto-Naehrig family (BN). Barbulescu et al. revealed that elliptic curve families with k = 9, 15, 27
might rival BLS12, KSS16, and (BN).

1



The final exponentiation consists of computing

pk − 1

r
=
pk − 1

Φk(p)
× Φk(p)

r
, where

ϕk is the k-th cyclotomic polynomial, the easy part consists of p
k−1
r , which is simple to compute, and the

hard part is Φk(p)
r , which demands effort. The hard part is carried out within a cyclotomic subgroup. The

central operation here is an exponentiation by a fixed integer known as the seed. This uses the square-and-
multiply (SM) method: it squares for each bit of the seed and multiplies when the bit is 1. If possible,
cyclotomic squaring should replace regular squaring to improve efficiency. It plays a crucial role in speeding
up the hard part of pairings over curves with even embedding degrees, such as BLS12, KSS16, and BLS24.
However, this operation is not available for curves with odd embedding degrees, such as BLS27. For these
curves, SM uses standard squaring and multiplication. Granger and Scott [16] found that techniques for
cyclotomic squaring could be adapted for curves with odd embedding degrees divisible by 3, leading to
cyclotomic cubing.Nanjo et al. [25] showed that cyclotomic cubing is 30% faster than regular cubing in Fp15
and more efficient than squaring plus multiplication in Fp15 and Fp27 . The structure of the hard part in
BLS curves, along with certain seed forms, enables partial cyclotomic cubing. This enhances optimization
while maintaining the efficiency of binary representation. In [25], the authors found that cyclotomic cubing
over Fp15 is not fast enough to replace SM with CM. Instead, it may be beneficial for seeds with sparse
ternary representations. This led us to explore it as an alternative to SM, aiming to leverage cyclotomic
cubing’s efficiency in pairings over BLS15 and BLS15.

Our contributions

This paper explores the use of the cyclotomic cubing in computing the final exponentiation of the optimal
Ate. We propose the following methods:

1. Direct Application of Cyclotomic Cubing: This method directly applies cyclotomic cubing by
leveraging the hard part’s structure in the final exponentiation over BLS curves.

2. Two Consecutive Active Bits (TCAB): An active bit refers to a 1 in the binary representation
of the seed. This method involves searching for a specific pattern of two consecutive active bits in the
seed in order to perform cyclotomic cubing.

3. Exponentiation using Sparse Ternary Representation: This method allows to generate new
sparse ternary seeds to apply cyclotomic cubing via the CM (cubing-and-multiply) method.

Note that this proposal is applicable to any elliptic curve with an odd embedding degree divisible by 3.
However, in this paper we focus on the BLS15 and BLS27 elliptic curves, inspired by improvements in
[11]. We place particular emphasis on BLS27 due to its suitability for computing the Miller loop and
pairing products.

Organization of the paper

This paper is organized as follows: Section 2 establishes the mathematical background, focusing on arith-
metic operations in finite fields with extension degrees that are odd divisible by 3. We also recall pairings
over BLS15 and BLS27 elliptic curves. In Section 3, we present our techniques for applying cyclotomic cub-
ing to compute the final exponentiation of the optimal Ate pairing over BLS15 and BLS27. In Section 4,
we evaluate the pairing costs using new seeds presented in ternary representation. Finally, we summarize
our findings and suggest future research directions.

Notations

Let i ∈ N∗. For the remainder of this paper, we adopt the following notations:

• p a big prime number,
• E represents an elliptic curve defined over Fp,
• Mi indicates the cost of multiplication in Fpi ,
• Si represents the cost of squaring in Fpi ,
• Fi stands for a Frobenius operation in Fpi ,
• Ii signifies the cost of inversion in Fpi ,
• Cci

represents the cost of cyclotomic cubing in Fpi ,
• Ick

signifies the cost of cyclotomic inversion in Fpi ,
• For u ∈ Z, Eu denotes the cost of exponentiation by u,
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• Sec-level stands for the security level.

In this paper, we assume that M1 ≈ S1.

2 Background

Let k be a positive integer such that 3 | k. This section presents the fundamental aspects of arithmetic over
Fpk , focusing on cases where k is odd and divisible by 3. Additionally, it recalls pairings over elliptic curves
with an embedding degree k. For more detailed information, the reader is referred to [1, 4, 11, 22, 25].

2.1 Costs of arithmetic operations over Fpk

We assume that 3 | k, therefore Fpk is represented as follows:

Fpk = F
p

k
3
[x]/(x3 − ξ),

where ξ is a cubic non-residue in F
p

k
3
.

The costs of Mk, Sk, Fk, and Ik are well studied in the literature [1]. Therefore, we will only recall them
in Table 1. However, we will detail in this section the costs of cyclotomic inversion and cyclotomic cubing.
Let us just recall the cyclotomic subgroup.
Definition 1. The cyclotomic subgroup of Fpk is given in [13] by:

GΦk(p) = {α ∈ F∗
pk ;α

Φk(p) = 1}, (1)

where ϕk is the k − th cyclotomic polynomial. The order of GΦk(p) is Φk(p).
Since this paper focuses on the fields Fp15 and Fp27 , we recall that Fouotsa et al. demonstrated in [11]

that the costs of cyclotomic inversion over Fp15 and Fp27 are given as follows:

Ic15 = 3M5 + 3S5 and Ic27 = 3M9 + 3S9.

The detailed method for performing this operation is provided in [25]. According to Nanjo et al., the cost
of cyclotomic cubing over Fpk is given by:

Cck
= 5M k

3
+ 4S k

3
+ 3m k

3 ,ξ
+ 9A k

3
+ a k

3 ,1
+ 4h k

3
,

where m k
3 ,ξ

, a k
3 ,1

, h k
3
, A′

k
3

, and A k
3
represent the costs of a multiplication by ξ, an addition by 1, a shift

operation, a multiplication by 2, and an addition in F
p

k
3
, respectively.

The additions and shift operations are often neglected, leading to the following cost:

Cck
= 5M k

3
+ 4S k

3
+ 3m k

3 ,ξ
.

Similar to the costs of multiplication and squaring in Fpk , the cost of cyclotomic cubing depends on the
multiplication by ξ. We can choose to either include or neglect this multiplication. If included, the costs
of cyclotomic cubing in Fp15 and Fp27 are as follows:

Cc15 = 5M5 + 4S5 + 3m5,ξ and Cc27 = 5M9 + 4S9 + 3m9,ξ.

If neglected, the costs are as follows:

Cc15 = 5M5 + 4S5 and Cc27 = 5M9 + 4S9.

We will disregard multiplications by ξ throughout this paper for the following reasons:

• Several works, including those of Aranha et al. [1], overlook multiplications by ξ when assessing
multiplication and squaring costs in Fpk . They use costs derived from previous real implementations.

• In the context of computational efficiency, cyclotomic cubing in Fpk is comparable to both squaring and
multiplication. Therefore, we propose that the most balanced approach is to impose the same constraints
on all three operations, particularly with respect to multiplication by ξ.

• In practical applications, there exists ξ ∈ F
p

k
3
such that multiplication by ξ incurs a low cost.

In the following Table 1 we provide a summary of operations in Fp3 , Fp9 , Fp15 and Fp27 .
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Fields Operations Costs

Fp3

Multiplication M3

Squaring S3

Inversion I3
Fronenius F3

6M1

5S1

37M1

2M1

Fp5

Multiplication M5

Squaring S5

Inversion I5
Fronenius F5

13M1

13S1

73M1

4M1

Fp9

Multiplication M9

Squaring S9

Inversion I9
Fronenius F9

Cyclotomic inversion Ic9
Cyclotomic cubing Cc9

36M1

27M1

106M1

8M1

3 × 6M1 + 3 × (2M1 + 3S1) ≈ 33M1

5 × 6M1 + 4 × 5S1 ≈ 50M1

Fp15

Multiplication M15

Squaring S15

Inversion I15

Fronenius F15

Cyclotomic inversion Ic15
Cyclotomic cubing Cc15

78M1

65M1

229M1

14M1

3 × 13M1 + 3 × 13S1 ≈ 78M1

5 × 13M1 + 4 × 13S1 ≈ 117M1

Fp27

Multiplication M27

Squaring S27

Inversion I27

Fronenius F27

Cyclotomic inversion Ic27
Cyclotomic cubing Cc27

216M1

153M1

536M1

26M1

3 × 36M1 + 3 × (18M1 + 9S1) ≈ 189M1

5 × 36M1 + 4 × (18M1 + 9S1) ≈ 288M1

Table 1: The costs of all operations in extension fields Fpi , for i ∈
{3, 5, 9, 15, 27}.

2.2 Pairings

Let E be an elliptic curve defined over Fp, r be a large prime factor of #E(Fp) and k be the smallest
positive integer such that r | (pk− 1). Let P ∈ E(Fp)[r] be of order r, and let fr,P be the rational function
with the following divisor (for details about divisors, see [22]):

Div(fr,P ) = r(P )− r(P∞).

Let Q ∈ E(Fpk)[r] of order r, and let µr denote the group of r-th roots of unity in F∗
pk . The optimal Ate

pairing is defined by:
eo : G2 ×G1 −→ G3

(Q,P ) 7−→ ft−1,Q(P )
pk−1

r

and it can be computed in log2(r)
φ(k) + ϵ(k) basic Miller iterations, where

• ϵ(k) ≤ log2(k).
• πp is the Frobenius map that is defined by:

πp : E(Fp)→ E(Fp)
(x, y) 7−→ πp(x, y) = (xp, yp)

• G1 = E(Fp)[r] ∩Ker(πp − 1) = E(Fp)[r].
• G2 = E(Fp)[r] ∩Ker(πp − p).
• G3 = {µ ∈ Fpk | µr = 1}.
• t is the trace of πp.

The computation of pairing consists of two stages. The first stage involves calculating the function
ft−1,Q(P ) using the Miller algorithm [24]. The second stage, known as the final exponentiation, involves

raising ft−1,Q(P ) to the power of p
k−1
r . It consists of two phases: the easy part and the hard part. The easy

part is straightforward to compute, whereas the hard part is more complex and demanding. Several meth-
ods have been proposed for performing this calculation [11, 12, 14, 15, 26]. In particular, Zhang et al. [29]

used a recursion relation to expand ϕk(p)
r in base p and compute the hard part of the final exponentiation

for k = 27. Hayashida et al. generalized the method of Zhang et al. to arbitrary embedding degrees using
a homogeneous cyclotomic polynomial constructed from a cyclotomic polynomial. In the next section, we
will focus on calculating the optimal Ate pairing over elliptic curves with embedding degrees 15 and 27.
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2.3 Optimal Ate pairing over BLS15 and BLS27

A BLS curve is a pairing-friendly elliptic curve over a finite field Fp defined by the equation y2 = x3 + b,
where b ∈ Fp is a nonzero constant.

BLS15

The BLS15 family consists of parametrized elliptic curves with an embedding degree of 15, defined in [10]
by the following parameters:  p = u12−2u11+u10+u7−2u6+u5+u2+u+1

3 ,
r = u8 − u7 + u5 − u4 + u3 − u+ 1,
t = u+ 1,

where the seed u is chosen so that p and r are both prime integers, ensuring a secure and efficient BLS15
elliptic curve for pairing. The optimal Ate pairing over BLS15 is given by:

eo : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p15−1

r ,

where the elevation of Miller’s result to the power (p5 − 1)(p2 + p + 1) is called the easy part of the

final exponentiation. However, the result of the easy part power Φ15(p)
r is called the hard part of the final

exponentiation. In [17], for efficiency reasons, they proposed to use a multiple of the hard part of final
exponentiation instead of considering the final exponentiation. Note that, that an exponent of pairing is a

pairing. In this context, they considered 3.Φ15(p)
r , where it is developed as follows:

3.
Φ15(p)

r
= (u− 1)2(u2 + u+ 1) +

7∑
i=0

λi(u)p
i(u) + 3,

where λ7 = 1, λ6 = uλ7−1, λ5 = uλ6, λ4 = uλ5+1, λ3 = uλ4−1, λ2 = uλ3+1, λ1 = uλ2, and λ0 = uλ1−1.

BLS27

The BLS27 family consists of parametrized elliptic curves with an embedding degree of 27, as described
in [29] by the following parameters:  r(u) = u18+u9+1

3 ,
p(u) = (u− 1)2r(u) + u,
t(u) = u+ 1.

The seed u is selected to guarantee that p and r are prime integers, providing a secure and efficient BLS27
elliptic curve for pairing. The optimal Ate pairing over BLS15 is given by:

eo : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p27−1

r ,

Raising Miller’s result to the power (p9−1) is known as the easy part of the final exponentiation. However,

the elevation the easy part by Φ27(p)
r defines the hard part of the final exponentiation and it is developed

as follows:
(u− 1)2(u2 + pu+ p2)(u6 + p3u3 + p6)(u9 + p9 + 1) + 3.

3 Applying cyclotomic cubing in final exponentiation
computation

This section demonstrates the applicability of cyclotomic cubing for final exponentiation in two cases: a
seed-independent case and a seed-dependent binary representation case.
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3.1 Direct application

Description

Inspired by the work of Nanjo et al. [25], we apply cyclotomic cubing to compute the hard part of the final

exponentiation in the BLS family. In fact, for all BLS curves, ϕk(p)
r is given in [17] in the form ψk,p,u+3,

where ψk,p,u ∈ Z. Let α ∈ GΦk(p), the computation of the hard part simplifies to αψk,p,u+3 = αψk,p,uα3.
The computation of α3 consists in cyclotomic cubing instead of a multiplication and squaring. This results
in a fixed computational gain expressed as (Mk + Sk)−Cck

.

Application

The computation of α3 using cyclotomic cubing allows us to save few operations in Fp. Indeed;

• for BLS15; α3 costs Cc15 instead of M15 + S15, therefore, we gain

(M15 + S15)−Cc15 ≈ 26M1,

• for BLS27; α3 costs Cc27 instead of M27 + S27, therefore, we gain

(M27 + S27)−Cc27 ≈ 81M1.

We consider the above gains when comparing the costs of the final exponentiation over BLS15 and BLS27
using the method SM and our upcoming methods. As outlined in [17], these costs are determined under
SM as follows:

I15 + 19×M15 + S15 + 10× F15 + Ic15 + 2×Eu−1 + 9×Eu, (2)

and
I27 + 9×M27 + S27 + 6× F27 + 2×Eu−1 + 17×Eu. (3)

These costs will be performed as follows under our upcoming methods:

I15 + 18×M15 +Cc15 + 10× F15 + Ic15 + 2×Eu−1 + 9×Eu, (4)

and
I27 + 8×M27 +Cc27 + 6× F27 + 2×Eu−1 + 17×Eu (5)

In this section, we present a new method of applying the cyclotomic cubing called ”Two Consecutive Active
Bits”.

3.2 Two Consecutive Active Bits (TCAB)

For some existing seeds in the literature, the binary representation contains two consecutive active bits
with a particular form. This allows us to apply cyclotomic cubing in exponentiation within the cyclotomic
subgroup. This form can occur in the least, middle, or most significant bits of the seed. Since the first two
cases yield no gain, we focus exclusively on the last one.
This section explores possible seed forms suitable for TCAB, along with existing examples. We also
generate new seeds that are useful for the TCAB method.

Description

Let h be the Hamming weight of the seed u. Then, u is expressed as:

u = 2s1 + 2s2 + · · ·+ 2sh−1 + 2sh ,

where s1, . . . , sh ∈ N satisfy s1 < s2 < · · · < sh−1 < sh. Based on the value of sh − sh−1, we identify two
possible cases where we can apply cyclotomic cubing. The first case arises when sh − sh−1 = 1, while the
second occurs when sh − sh−1 = 3. Consequently, the seed u can be expressed as follows:

u = 2s1 + 2s2 + · · ·+ 2sh−2 + 2sh−1 × 3c,

where

c =

{
1, if sh − sh−1 = 1,
2, if sh − sh−1 = 3.

6



This leads to the following expression for α ∈ Gϕk(p):

αu = α2s1+2s2+···+2sh−2
(α2sh−1

)3
c

.

Using the current method, computing αu costs:

sh−1Sk + (h− 2)Mk + cCck
,

whereas using (SM) method incurs:
shSk + (h− 1)Mk.

Table 2 presents the gains from using TCAB over SM.

sh − sh−1 1 3
Gain Sk +Mk −Cck 3Sk +Mk − 2Cck

Table 2: The gain of using TCAB instead of
SM.

Examples

We examine literature seeds where TCAB applies to BLS15 and BLS27 and identify the following ones:

• For BLS15, the found seed is

ue15.190 = 26 + 259 + 262 + 273 + 274,

which is proposed in [1] and corresponds to the 190-bit security level. The costs of TCAB and SM
applied to ue15.190 are

3M15 + 73S15 +Cc15 = 5096M1 and 4M15 + 74S15 = 5122M1.

• For BLS27, the only identified seeds at the security levels 192 and 256 bits are

ue27.192 = −25+28+212+216+221 + 222 from [4] and ue27.256 = −23+28+225+227 + 228 from [29].

The costs of TCAB and SM applied to the seeds ue15.190 , ue27.192 , and ue27.256 , are given in Table 3.

Seeds
Methods

TCAB SM
ue15.190 3M15 + 73S15 +Cc15 = 5096M1 4M15 + 74S15 = 5122M1

ue27.192 4M27 + 21S27 +Cc27 + Ic27 = 4554M1 5M27 + 22S27 + Ic27 = 4635M1

ue27.256 3M27 + 27S27 +Cc27 + Ic27 = 5256M1 4M27 + 28S27 + Ic27 = 5337M1

Table 3: A cost comparison of TCAB and SM applied to the Seeds ue15.190 ,
ue27.192 , and ue27.256 .

New seeds

We aimed to generate new seeds suitable for TCAB while adhering to the following constraints:

1. Following the recommendations of Barbulescu and Duquesne [2] for discrete logarithm computation
over the field Fpk concerning the size of pk.

2. Generating binary seeds to avoid additional cyclotomic inversion costs.
3. Produce odd seeds or those whose least significant active bit is equal to 2, guaranteeing Eu−1 ≤ Eu.
4. Generate more efficient seeds considering the seed sizes from [4, 11].

7



• New seed for TCAB at the 128−bit security level

- Case of k = 15
We generated the seed

u = 2 + 212 + 226 + 228 + 229

which yields a prime p with 355 bits and a prime r with 238 bits. The cost of exponentiation in GΦ15(p)

by this seed using TCAB is
3M15 + 28S15 +Cc15 = 2171M1.

Notably, the exponentiation in GΦ15(p) by u− 1 incurs the same cost. Using expression (4), we apply
TCAB to the seed u, demonstrating that the final exponentiation cost for the optimal Ate pairing
over BLS15 is

229M1 +18× (78M1) + 117M1 +10× (14M1) + 78M1 +2× (2171M1) + 9× (2171M1) = 25849M1

- Case of k = 27
We generated the seed

u = 2 + 29 + 212 + 215,

resulting in a 303-bit prime p and a 272-bit prime r. Using TCAB, the cost of exponentiation by u
or u− 1 in GΦ27(p) is

2M27 + 12S27 + 2Cc27 = 2844M1.

Applying TCAB to the current seed and using the expression (5), the final exponentiation over
BLS27 is

536M1 + 8× (216M1) + 288M1 + 6× (26M1) + 2× (2844M1) + 17× (2844M1) = 56744M1.

• New seeds for TCAB at the 192−bit security level

- Case of k = 15
We determined the seed

u = 1 + 29 + 216 + 268 + 271,

leading to an 853-bit prime p and a 570-bit prime r. Using TCAB, the costs of exponentiation in
GΦ15(p) by u and u− 1 are

3M15 + 68S15 + 2Cc15 = 4888M1 and 2M15 + 68S15 + 2Cc15 = 4810M1.

Applying TCAB to the seed u and using the expression (4), the cost of the final exponentiation of
optimal Ate pairing over the BLS15 curve is

229M1 +18× (78M1)+ 117M1 +10× (14M1)+ 78M1 +2× (4810M1)+ 9× (4888M1) = 55580M1.

- Case of k = 27
We found the seed

u = 1 + 211 + 220 + 223 + 224,

resulting in a 492-bit prime p and a 443-bit prime r. This seed results in an exponentiation in GΦ27(p)

with the following cost:
3M27 + 23S27 +Cc27 = 4455M1.

The exponentiation by u− 1 in GΦ27(p) costs 4239M1. Using the expression (5) and applying TCAB
to the current seed, the cost of the final exponentiation of optimal Ate pairing over the BLS27 curve is

536M1 + 8× (216M1) + 288M1 + 2× (4239M1) + 17× (4455M1) + 6× (26M1) = 86921M1.

• New seeds for TCAB at the 256−bit security level (k = 27)
We generated the seed

u = 2 + 241 + 245 + 248

which results in a 963-bit prime p and an 866-bit prime r. Applying TCAB, the cost of exponentiation
in GΦ27(p) by u or u− 1 is

2M27 + 45S27 + 2Cc27 = 7893M1.
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Based on the expression (5), the cost of the final exponentiation of optimal Ate pairing over the curve
BLS27 by applying TCAB to the seed u is

536M1 + 8× (216M1) + 288M1 + 2× (7893M1) + 17× (7893M1) + 6× (26M1) = 152675M1.

Table 4 presents all newly generated seeds, including the curve embedding degree, the prime p size, the
security level, and the curve equation coefficient b.

Seed k Size(p) Size(pk) Sec-level b DL algorithm

2 + 212 + 226 + 228 + 229 15 355 5323 128 16 SexTNFS

2 + 29 + 212 + 215 27 303 8160 128 16 SexTNFS

1 + 29 + 216 + 268 + 271 15 853 12787 192 1 exTNFS

1 + 211 + 220 + 223 + 224 27 492 13265 192 2 SexTNFS

2 + 241 + 245 + 248 27 963 25975 256 3 exTNFS

Table 4: New valid seeds for TCAB use.

Comparison

We evaluate TCAB and SM on new seeds, emphasizing TCAB’s benefits. Table 5 compares final expo-
nentiation complexity for optimal Ate pairing on BLS15 and BLS27 using both methods, computed via
(4) and (5) for TCAB, and (2) and (3) for SM.

Seed k Method
Complexity

Ik Mk Sk Cck
Ick Fk

2 + 241 + 245 + 248 27
TCAB 1 46 855 39 0 6

SM 1 66 913 0 0 6

1 + 211 + 220 + 223 + 224 27
TCAB 1 63 437 20 0 6

SM 1 83 457 0 0 6

1 + 29 + 216 + 268 + 271 15
TCAB 1 49 748 23 1 10

SM 1 61 782 0 1 10

2 + 29 + 212 + 215 27
TCAB 1 46 228 39 0 6

SM 1 66 286 0 0 6

2 + 212 + 226 + 228 + 229 15
TCAB 1 51 308 12 1 10

SM 1 63 320 0 1 10

Table 5: Comparison of the final exponentiation complexity over
BLS15 and BLS27 using TCAB and SM applied to the new seeds.

We compare the final exponentiation cost over BLS15 and BLS27 elliptic curves in Table 6 when
applying TCAB and SM using Tables 1 and 5. Additionally, we evaluate TCAB’s gain over SM.

Seed k Method Cost Gain (TCAB/SM)

2 + 241 + 245 + 248 27
TCAB 152675M1 1962M1

SM 154637M1

1 + 211 + 220 + 223 + 224 27
TCAB 86921M1 1085M1

SM 88006M1

1 + 29 + 216 + 268 + 271 15
TCAB 55580M1 377M1

SM 55957M1

2 + 29 + 212 + 215 27
TCAB 56744M1 1962M1

SM 58706M1

2 + 212 + 226 + 228 + 229 15
TCAB 25849M1 312M1

SM 26161M1

Table 6: Comparison of the cost of the final exponentiation for pair-
ings over BLS15 and BLS27 using TCAB and SM with new seeds.
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We compare, Table 7, final exponentiation costs for optimal Ate pairing on BLS15 and BLS27, applying
TCAB to new seeds and SM to existing ones [4, 11].

Seed k Sec-level Complexity Gain

2 + 212 + 226 + 228 + 229

(This work) 15 128
I15 + 51M15 + 308S15 + 12Cc15 + Ic15 + 10F15 = 25849M1 1040M1(3.9%)

22 + 25 + 219 + 231

[11]
I15 + 54M15 + 342S15 + Ic15 + 10F15 = 26889M1

1 + 211 + 220 + 223 + 224

(This work) 27 192
I27 + 63M27 + 437S27 + 20Cc27 + 6F27 = 86921M1 4527M1(5%)

1 + 24 + 214 + 217 + 225

[11]
I27 + 83M27 + 476S27 + 6F27 = 91448M1

2 + 241 + 245 + 248

(This work) 27 256
I27 + 46M27 + 855S27 + 39Cc27 + 6F27 = 152675M1 14355M1(8.6%)

1 + 29 + 228 + 242 + 251

[11]
I27 + 83M27 + 970S27 + 6F27 = 167030M1

Table 7: Comparison of our seeds and existing ones based on final exponentiation cost over BLS15 and
BLS27.

Table 7 leads to the following findings:

• At the 256-bit security level, our seed outperforms [11] in efficiency while exhibiting slightly lower
security.

• At the 128-bit and 192-bit security levels, our seed ensures both security and efficiency.

Despite modest gains, this section confirms cyclotomic cubing’s applicability in final exponentiation with
binary seeds. To improve them, the next section explores generating sparse ternary seeds.

4 Exponentiation using the sparse ternary representation

This section focuses on enhancing the computation of the final exponentiation of optimal Ate pairing by
generating sparse ternary seeds and applying cyclotomic cubing.

4.1 Cubing and multiplication (CM)

To benefit from using ternary representation, we introduce an alternative to SM that replaces squaring
with cubing. Given a seed u, its ternary representation is:

tern(u) = (t0t1 · · · tn−1)3,

where ti ∈ {0, 1, 2}, and

u =

n−1∑
i=0

ti3
i,

with n denoting its length. Let k ∈ N∗ such that 3 | k and α ∈ GΦk(p) ⊂ Fpk . To exploit cyclotomic cubing
and ternary sparsity, αu is computed using ’cubing and multiply’ (CM), detailed in Algorithm 1. This
method applies one cyclotomic cubing per digit and multiplies when the digit is nonzero.

Algorithm 1 CM (Cubing and multiplication)
Input: Parameter u = (t0, t1, · · · , tn)3, α ∈ GΦk(p) ⊂ F

pk

Output: αu.

1. r = 1,
2. β = α2,//If the ternary representation of u contains 2
3. for j = n− 1 down to 0 do
3.1 r ← r3,
3.2 if tj = 1 then r ← rα,
3.3 if tj = 2 then r ← rβ.

4. return r.
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4.2 Generating new sparse ternary seeds

We aim to generate novel sparse ternary seeds while adhering to the following constraints:

1. Following the security requirements outlined in [2], which address the size of pk,
2. Each new seed must have its least significant bit set to 1, ensuring the reduction of the cost associated

with Eu−1,
3. The newly proposed seeds should maintain competitiveness in terms of final exponentiation cost when

compared to the seeds presented in [11].

We denote our seeds by ut and those of [11] by ub. Let ht and hb be the ternary and binary Hamming
weights of ut and ub. Exponentiation in Gϕk(p) by ut using CM costs:

ct = (ht − 1)Mk + Sk + (log3(ut)− 1)Cck
.

With SM, exponentiation by ub in Gϕk(p) costs:

cb = (hb − 1)Mk + (log2(ub)− 1)Sk.

For each security level, we construct sparse ternary seeds that ensure ct < cb. We have generated the
following seeds:

• For 128-bit security with curve BLS15:

1 + 32 + 35 + 310 + 316.

• For 192-bit security with curve BLS27:

1 + 2× 39 + 311.

• For 256-bit security with curve BLS27:

1 + 3 + 2× 320 + 2× 326.

4.3 Comparison

In this section, we conduct the comparison as follows:

1. Table 8 highlights the security properties of our new ternary seeds versus those proposed in [11].

Seed Sec-level Size(p) Size(r) Size(pk) DL Alg

1 + 32 + 35 + 310 + 316
128

303 203 4542 exTNFS

22 + 25 + 219 + 231 [11] 371 249 5557 SexTNFS

1 + 2 × 39 + 311
192

353 318 9529 exTNFS

1 + 24 + 214 + 217 + 225 [11] 511 410 13461 SexTNFS

1 + 3 + 2 × 320 + 2 × 326
256

851 766 22976 exTNFS

1 + 29 + 228 + 242 + 251 [11] 1019 883 27499 SexTNFS

Table 8: Comparison of security properties of our ternary seeds with binary
seeds in [11]. k = 27 for Sec-level= 256 or 192 and k = 15 for Sec-
level= 128.

2. Table 9 compares the cost of exponentiation in Gϕ15(p) and Gϕ27(p) applying CM our new ternary seeds
and SM to those proposed in [11].
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Seed k Sec-level Method Cost Gain

1 + 32 + 35 + 310 + 316
15 128

CM 4M15 + 16Cc15 = 2184M1 65M1

22 + 25 + 219 + 231 [11] SM 3M15 + 31S15 = 2249M1

1 + 2 × 39 + 311
27 192

CM 2M27 + S27 + 11Cc27 = 3753M1 936M1

1 + 24 + 214 + 217 + 225 [11] SM 4M27 + 25S27 = 4689M1

1 + 3 + 2 × 320 + 2 × 326
27 256

CM 3M27 + S27 + 26Cc27 = 8289M1 378M1

1 + 29 + 228 + 242 + 251 [11] SM 4M27 + 51S27 = 8667M1

Table 9: Comparison of the cost of exponentiation by the ternary seeds and the seeds
of [11] in Gϕ15(p) and Gϕ27(p).

Since the gains are positive in Table 9, we extend the comparison to the final exponentiation cost of
the optimal Ate pairing over BLS15 and BLS27. Applying CM to our seeds, we compute the final
exponentiation costs as follows:

• At 128-bit security level, with the seed

u = 1 + 32 + 35 + 310 + 316,

expression (2) gives the cost over BLS15:

229M1 +18× (78M1) + 117M1 + (78M1) + 10× (14M1) + 2× (2106M1) + 9× (2184M1) = 25836M1.

• At 192-bit security level, with the seed

u = 1 + 2× 39 + 311,

expression (5) yields the cost over BLS27:

536M1 + 8× (216M1) + 288M1 + 6× (26M1) + 2× (3537M1) + 17× (3753M1) = 73583M1.

• At 256-bit security level, with the seed

u = 1 + 3 + 2× 320 + 2× 326

the cost over BLS27 amounts to:

536M1 + 8× (216M1) + 288M1 + 6× (26M1) + 2× (8073M1) + 17× (8289M1) = 159767M1.

Table 10 compares the costs of our seeds with those from [11], highlighting their gains.

Seeds k Sec-level Cost Gain

1 + 32 + 35 + 310 + 316

(This work) 15 128
25836M1 1053M1(3.9%)

22 + 25 + 219 + 231

[11]
26889M1

1 + 2 × 39 + 311

(This work) 27 192
73583M1 17865M1(19.3%)

1 + 24 + 214 + 217 + 225

[11]
91448M1

1 + 3 + 2 × 320 + 2 × 326

(This work) 27 256
159767M1 7263M1(4.3%)

1 + 29 + 228 + 242 + 251

[11]
167030M1

Table 10: Comparison of the final exponentiation costs and the
gain offered by our seeds

Though slightly less secure than those in [11], our seeds are more efficient and remain exTNFS-secure.
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5 Conclusion

In this paper, we demonstrated the applicability of cyclotomic cubing for computing the final exponen-
tiation of optimal Ate pairing through a two step approach. The first step involves a direct application,
culminating in a formula to calculate the cost of the final exponentiation over BLS15 and BLS27. The
second step introduces the TCAB method, which applies cyclotomic cubing using a particular structure
in the seed’s binary representation. To further explore the use of cyclotomic cubing in calculating the fi-
nal exponentiation for BLS15 and BLS27, we endeavored to generate novel sparse ternary representation
seeds. While these new seeds exhibit slightly lower security compared to existing ones, they offer enhanced
efficiency. The challenge with sparse ternary representation seeds stems from the lack of sparsity in their
binary representations, which undermines the efficiency of the Miller algorithm. Consequently, advance-
ments in cyclotomic cubing and the finding of a ternary based alternative to the double and add method
[9] are crucial to overcome this limitation.
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