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Abstract. Fully homomorphic encryption (FHE) is an appealing and
promising solution for privacy-preserving transformer inference to pro-
tect users’ privacy. However, the huge computational overhead makes it
unrealistic to apply FHE in real-world transformers for large language
models (LLM). Current FHE-based approaches to secure transformer
inference face significant performance challenges, with total latency ex-
ceeding 5 hours for 32-input batches.
The feedforward block, comprising a large-scale matrix multiplication
followed by a GELU evaluation, is widely recognized as one of the most
computationally intensive components in privacy-preserving transformer
inference. In the state-of-the-art system NEXUS [49], evaluating the feed-
forward block incurs a total latency of 5,378 seconds, processing up to
32 inputs per batch.
We aim to reduce the latency and propose LEAF, a low-latency evalu-
ation architecture for the feedforward block. LEAF introduces a novel
combination of fast matrix multiplication and an asymptotically efficient
algorithm for computing non-polynomial activations. When evaluated
on the BERT-base model, LEAF reduces total latency to 53.4 seconds,
offering a 100× speedup over the state-of-the-art method in the same
environment. Our implementations are available.3

Keywords: Fully homomorphic encryption · Large-language model · Privacy-
preserving AI · Non-polynomial function

1 Introduction

Fully homomorphic encryption (FHE), proposed by Gentry [17], enables eval-
uations of arbitrary functions on encrypted data without decryption. FHE has
been widely adopted in AI-as-a-Service scenarios to safeguard user privacy, while
achieving practical inference latency on relatively simple models. For example,

3 https://github.com/zhanglr3/LEAF-HE



DiNN [4] demonstrates an inference latency of 0.49 seconds on a basic back-
propagation network with a single hidden layer of 30 nodes. LoLa [6] further
reduces latency to 0.29 seconds for a network with 100 hidden nodes and reports
2.2 seconds for a convolutional neural network with two convolutional layers.
Progressing toward deeper architectures, SHE [33] reports a latency of approxi-
mately 2 minutes for privacy-preserving inference on ResNet-18 [23].

However, the substantial computational overhead of FHE presents a sig-
nificant barrier to its application in transformer-based large language models
(LLMs), such as GPT [43], BERT [11], and LLaMA [47]. Only one existing work
has explored the application of FHE to privacy-preserving transformer infer-
ence. NEXUS [49] uses CKKS scheme and reports an total latency exceeding 5
hours for 32-inputs batch in the BERT-base model, obtained by summing the
execution time of each individual operation on a 32-core CPU.

The feedforward block is one of the most computationally expensive com-
ponents in privacy-preserving transformer inference. It comprises two key oper-
ations: (1) large-scale plaintext-ciphertext matrix multiplication—of size 768 ×
3072 in BERT-base and 4096 × 14336 in LLaMA-3-8B—and (2) GELU acti-
vation function evaluation, applied to inputs of size 128 × 3072 in BERT-base
or 8 × 14336 in LLaMA-3-8B. NEXUS incurs a total latency of 5,378 seconds
for evaluating the feedforward layer, even when processing a batch of up to 32
inputs.4

There exist two main challenges to reduce the latency.

Matrix multiplication. Evaluating plaintext-ciphertext matrix multiplication
takes 45% of the runtime of evaluating feedforward block in NEXUS [49]. It
uses slot encoding to encode vector from CN/2 into one polynomial using the
isomorphism between CN/2 and the polynomial ring with degreeN . Based on slot
encoding, the encrypted matrix is packed into one or more CKKS ciphertexts.
The plaintext-ciphertext matrix multiplication is then performed on slots. The
performance of the algorithm is hindered by the large RLWE modulus and the
costly rotations of slots.

Non-polynomial function evaluation and bootstrapping. In CKKS-based schemes
such as NEXUS, non-polynomial functions are typically approximated using
polynomials, which are subsequently evaluated across all ciphertext slots. Achiev-
ing sufficient approximation accuracy often requires high-degree polynomials.
However, evaluating high-degree polynomials introduces significant computation
overhead: (1) it increases the multiplicative depth needed, requiring a very large
ciphertext modulus and thereby increasing the overall computational overhead;
(2) it often requires a bootstrapping step—either before or after the polynomial
evaluation—to refresh ciphertexts, further degrading performance. Bootstrap-
ping [17], which uses an encrypted secret key to “refresh” ciphertext with reduced
noise and restored multiplicative depth, is an essential part in FHE schemes to
achieve the capability of evaluating circuits with arbitrary depth. Due to its
high computational cost, bootstrapping is typically performed only when the

4 This result is obtained by running NEXUS’s open-source library on an Intel(R)
Xeon(R) Platinum 8480+ CPU at 2.0 GHz. Further details are provided in section 4.
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remaining multiplicative levels are insufficient to support further homomorphic
operations.

1.1 Our contribution

To overcome these limitations, we propose LEAF, a novel low-latency evaluation
architecture for feedforward block in privacy-preserving transformer inference.

For the matrix multiplication, LEAF adopts the efficient plaintext-ciphertext
matrix multiplication (PCMM) algorithm from [1] which leverages coefficient
encoding—a technique that maps each vector element to a polynomial coef-
ficient—to eliminate costly data movement across ciphertext slots. For non-
polynomial activation functions, LEAF introduces a new asymptotically efficient
evaluation technique that is compatible with the coefficient encoding framework.
Our non-polynomial evaluation algorithm achieves an amortized complexity of
Õ(1) polynomial multiplications per input, and support ciphertext refreshing
during the evaluation. This eliminates the need for separate bootstrapping pro-
cedures. Together, these innovations significantly reduce inference latency and
enable practical, scalable privacy-preserving inference for transformer models.

To demonstrate the practicality of our framework, we evaluate it on the
BERT-base model. Specifically, our approach takes a 128× 768 matrix as input
and encrypts it, then performs a matrix multiplication with a 768×3072 plaintext
weight matrix, and applies the GELU activation function to 128×3072 numbers
outputted by matrix multiplication and refreshes the resulting ciphertexts. This
entire pipeline is completed in just 53.4 seconds on a 56-thread server, while
NEXUS takes 5378 seconds in the same environment. These results underscore
the effectiveness of our solution in reducing the computational overhead in FHE-
based privacy preserving inference of transformer models.

Besides the algorithms and framework mentioned above, we also propose
some optimizations in each step to improve its efficiency. We implemented our
scheme using SEAL [44], and our implementations are available at Anonymous
GitHub.5

1.2 Technical Overview

Among lots of FHE schemes, the CKKS scheme [8] has emerged as one of the
most widely chosen approaches for privacy-preserving transformer inference, due
to its support for approximate arithmetic over encrypted complex numbers. A
key feature of CKKS is its ability to perform operations in a single-instruction-
multiple-data (SIMD) style, by packing multiple inputs into ciphertext slots,
enabling efficient computation over a large amount of data. NEXUS [49] and
another concurrent work THOR [41] use slot-encoded CKKS scheme in trans-
former inference. However, their performance is significantly constrained by the
use of extremely large ciphertext modulus. NEXUS, for example, employs a
1763-bit modulus and have high cost of frequent bootstrapping operations. As

5 https://anonymous.4open.science/r/HE-based-non-polynomial-eval-25E3
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illustrated in Figure 1(a)6, the complete evaluation of a feedforward block using
slot-encoded CKKS in NEXUS requires at least 30 multiplicative layers, leading
to a ciphertext modulus over one thousand bits and significant computational
cost.

MatrixMul on slots

ModRaise

C2S

EvalExp

ImgExt

S2C

GELU evaluation on slots

CKKS
Bootstrapping

MatrixMul on slots in next block

((a)) Feedforward evaluation in NEXUS

MatrixMul on coefficients and modulus switch

Coeff-encoded ciphertext -> BFV ciphertext 

Polynomial evaluation

S2C and modulus switch

Ring switch

MatrixMul on slots in next block

((b)) Feedforward evaluation in LEAF

Fig. 1: Comparison between NEXUS and LEAF

As illustrated in Figure 1(b), our scheme LEAF proposes a novel frame-
work to simplify the evaluation process and requires only 13 multiplicative lay-
ers—corresponding to a ciphertext modulus of less than 700 bits—thereby sig-
nificantly reducing computational overhead. The improvements come from two
aspects: (1) Using coefficient encoding instead of slot encoding, where each ele-
ment of the matrix is set to one coefficient of polynomial. our LEAF makes use of
the efficient matrix multiplication proposed by [1]. It eliminates costly slot rota-
tions compared with matrix multiplications using slot encoding. (2) LEAF draws
inspiration from the idea of functional bootstrapping [13,31,36]: to combine the
refreshing process and the functional evaluation process into one function to be
evaluated. Compared with NEXUS and THOR, although we need to move data
between coefficients and slots, our method LEAF requires less multiplicative lay-
ers and a much smaller ciphertext modulus. This can significantly improve the
efficiency of the whole scheme.

6 According to Section VI (Evaluation) in NEXUS [49], the plaintext-ciphertext matrix
multiplication needs 1 multiplicative layer, the CKKS bootstrapping requires 14
multiplicative layers, and the evaluation of GELU also needs 14 multiplicative layers.
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In addition, we significantly extend and optimize the functional bootstrap-
ping framework in [31]. While their method starts from LWE ciphertexts and
maps them to slot-encoded BFV ciphertexts for evaluation, and ends by extrac-
tion to obtain LWE ciphertexts, we address a different setting and introduce key
optimizations: First, we propose a new transformation algorithm that lifts many
low-level coefficient encoded RLWE ciphertexts in polynomial ring with small
degree (aligned with the output format of [1]) into one high-level slot-encoded
BFV ciphertext in ring with larger degree. We then follow the polynomial evalua-
tion and slot-to-coefficient (S2C) procedures in [31], but apply several optimiza-
tions to improve computational efficiency. To complete the process, we adopt
the ring-switching technique from [2], enabling us to return refreshed, evaluated
coefficient encoded RLWE ciphertexts in the original ring with smaller degree.

The transformation algorithm uses the fact that the decryption formula of
each element mi in the low-level coefficient encoded RLWE ciphertext can be
written as a linear operation b̄i + ⟨āi, sk⟩ mod q, where b̄i and vector āi are
extracted from the ciphertext and vector sk consists of the coefficients of the se-
cret key. By encrypting the RLWE secret key vector to a high-level slot encoded
BFV ciphertext, we can homomorphically evaluate the decryption formula to
get a high-level slot encoded BFV ciphertext by linear transformation (LT) al-
gorithm, which computes the multiplication between a matrix and an encrypted
vector. An important detail in this process is the arrangement of messages within
the BFV slots: they must follow an interleaved order. This layout is specifically
designed to align with the ring-splitting algorithm, ensuring that for any message
m originally in the i-th position of the j-th input RLWE ciphertext, the eval-
uation result GELU(m) remains in the i-th position of the j-th output RLWE
ciphertexts. This positional consistency is crucial for the correctness of subse-
quent matrix multiplication steps.

Finally, we present several optimizations to improve computational efficiency.
We categorize the BFV LT algorithm into two cases. The first is a specialized
variant that requires fewer ciphertext rotations and is tailored for matrices with
a specific structure—this form is leveraged in our transformation algorithm. The
second one supports general matrix structures and is employed during the S2C
process. Both algorithms are optimized using the Residue Number System (RNS)
to minimize computational latency. During the S2C process, we observe that the
decoding matrix can be precomputed and encoded in advance. By incorporating
this and other optimizations, we reduce the S2C latency from 137 seconds to 15
seconds compared to [32], under a single-threaded setting on the same machine.
We also design a parallel polynomial evaluation algorithm that leverages modern
multi-core CPUs to improve both asymptotic complexity and practical perfor-
mance. This optimization accelerates the evaluation by a factor of 5.5 compared
to [32].

1.3 Related works

Matrix multiplication in privacy-preserving transformer inference .
NEXUS, based on slot-encoded CKKS, proposes a ciphertext compression and
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decompression method in plaintext-ciphertext matrix multiplication to reduce
the communication cost, and applies column-packing to organize a batch of
inputs into slots of several ciphertexts. A concurrent work, THOR [41] also
applies slot-encoded CKKS in privacy-preserving transformer inference. It uses
a special “diagonal-packing” to organize the data from one matrix to vectors
when performing matrix multiplications. It requires more rotations across slots
in plaintext-ciphertext matrix multiplication. Recently, a line of works ( [1, 30])
propose more efficient matrix multiplication using coefficient encoding. Reported
in [1], it takes 0.42s and 1.7s for the product of two 256× 256 matrices and two
1024×1024 matrices in single thread. To see how it works, let M ∈ Zd×N

P be the
matrix to be encrypted. Based on coefficient encoding, we can encrypt the i-th
row of the matrix M into one RLWE ciphertext as two polynomials (ai, bi), for
i ∈ [d]. [1] proposed the construction of matrices (A,B) ∈ (Zd×N

Q )2 s.t. the i-th
row of A (resp. B) is the coefficients of polynomial ai (resp. bi). Then given a
plaintext matrix W with bounded elements, (WB,WA) is the RLWE ciphertext
of WM .

Non-polynomial function evaluation. Evaluating common activations such
as ReLU, GELU, Sigmoid and Softmax in HE-encrypted ciphertexts has been
studied for many years to improve its efficiency and accuracy.

RLWE-based FHE schemes use polynomials to approximate non-polynomial
activations. Although they support SIMD operations which can evaluate lots of
inputs simultaneously, lots of efforts are required to improve the accuracy of the
approximation. Furthermore, evaluation of high-degree polynomials consumes
many multiplication levels, such that the expensive bootstrapping procedure may
be required to ensure that there are enough levels for the following evaluations.

Taylor series is a popular way to approximate functions like exponentiation.
exp(x) ≈ (1+ x

2n )
2n , x ≤ 0 is widely used in many works [35,49] as a part of the

softmax7 evaluation. However, for other popular activations, it may be difficult
to find a polynomial to approximate it accurately in a reasonable input range.

For the evaluation of GELU, Puma [12] first utilized the fact that GELU is
almost linear for x > 0 and x < −1, and designed a piece-wise approximation
using low-degree polynomials to approximate GELU. It divides GELU into 4
pieces and use a multi-party protocol “less than” [26, 34, 40] to indicate which
piece the input falls into. BumbleBee [35] followed Puma’s idea and proposed
some optimizations to reduce the communication overhead of the GELU protocol
by 5%. NEXUS [49] also used the piece-wise approximation but implements a
HE sign evaluation to obtain 4 encrypted bits b0, b1, b2, b3 where bi = 1 iff x
belongs to the i-th segment. It removed the multi-party protocol and achieved
non-interactive HE-based evaluation but the input range is limited to x ∈ [−8, 8],
which is usually not enough for the inference of real-world transformers. When
the input is > 8 or < −8, the error will become extremely large and make the

7 The definition of softmax function is softmax(xi) = exi∑m−1
j=0 e

xj
and commonly eval-

uated using softmax(xi) = exi−xmax∑m−1
j=0 e

xj−xmax
to achieve numerical stability [28].
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evaluation meaningless. A concurrent work, THOR [41] further improved it by
using a composition of two polynomials with degree 31 and 27, and leveraged the
famous Paterson-Stockmeyer algorithm [42] for efficient polynomial evaluation
and lower multiplicative depth.

LWE-based FHE schemes use homomorphic look-up-table (LUT) algorithm
to evaluate non-polynomial functions. The core idea of LUT is to encode the
“Table” containing the value of the non-polynomial function, so that we can
apply “blind rotate” on the ciphertext to locate the position of the desired
output. The algorithm is proposed by [39] and improved by many works [3,
4, 27, 36]. This kind of algorithms cannot support SIMD operations, making it
inefficient for applications like inference of transformers. Reported in [36], it took
about 0.9s for one LUT evaluation in single thread.

2 Preliminary

2.1 Notations

In this paper, we use Z to denote the set of all integers and use Zq to denote the
ring Z/qZ for some integer q ∈ Z. [N ] denotes the integer set {0, 1, ..., N − 1}.
We use polynomial ring R(N) = Z[X]/(XN +1) to denote the 2N -th cyclotomic

ring where N is a power of two. Similarly, let R(N)
q = R(N)/qR(N) for some

integer q ∈ Z.
For set S we write x

$← S to denote that, x is sampled uniformly random from

set S. If D is a distribution, we write x
$← D to denote that x is sampled from

distributionD. We use bold lowercase letter to denote (row) vector (e.g., v ∈ Zn).
Let vi or v[i] be the i-th element of vector v, so we write v = [v0, v1, ..., vn−1].
We use notations like m, a, b to denote the element in polynomial ring. The floor
function is written as ⌊·⌋. The ceiling function is written as ⌈·⌉. The rounding
function is written as ⌊·⌉.

The ring learning with errors (RLWE) problem [38] is widely used to design
homomorphic encryption schemes [5,8,9,13]. The secret s is chosen from polyno-

mial ring R(N)
Q . An RLWE sample (a, as+ e) ∈ (R(N)

Q )2 is generated by choosing

a
$← R(N)

Q and the error term e from the error distribution E. Here Q ≥ 2 is
an integer modulus. The decisional version is to distinguish between the RLWE
sample derived from some secret s and a sample from uniform distribution over

(R(N)
Q )2.

RLWE cryptosystem. The RLWE ciphertext of message m ∈ R(N)
P is defined

as RLWEs,Q(m) = (a, b) ∈ (R(N)
Q )2 where integer P is plaintext modulus and

integer Q > P is ciphertext modulus. We also use RLWE.ct(m) for short. The

polynomial a is uniformly sampled from polynomial ring R(N)
Q , the secret key

polynomial s and error polynomial e are small-norm polynomials and are sampled
from some specific distributions respectively. For simplicity, this paper presents
our scheme using a symmetric key scheme. The proposed approach is directly
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applicable in an asymmetric key scheme. RLWE ciphertext (a, b) satisfies that

b+ a · s =
⌊
Q
P

⌋
m+ e. The decryption of RLWE ciphertext is

Dec(s, (a, b)) =

⌊
b+ a · s (mod Q)

⌊Q/P ⌋

⌉
, (1)

where the rounding function is applied to each coefficient in the polynomial.

2.2 Coefficient encoding and fast plaintext-ciphertext matrix
multiplication

A way of encoding a vector from ZN
P a polynomial in the plaintext space R(N)

P

is to put all the integers as the coefficients of the polynomial:

Ecdc(·) : ZN
P → R

(N)
P ;m = [m0,m1, ...,mN−1] 7→ m :=

N−1∑
i=0

mix
i .

We call it coefficient encoding, and we can verify that:

Ecdc(m1 +m2) = Ecdc(m1) + Ecdc(m2) (mod P ).

Ecdc(β ·m) = β · Ecdc(m) (mod P ), for β ∈ ZP .

We also frequently apply its inverse: Ecd−1c (·) : R(N)
P → ZN

P . The inverse
generates the coefficient vector of the input polynomial, from low degree term to
high degree term. Using coefficient encoding, the line of works [1, 30] proposed
a fast plaintext-ciphertext matrix multiplication. Let M ∈ Zl×N

P is a matrix

and is encrypted into l RLWE ciphertexts RLWEs,Q(mi) = (ai, bi) ∈ (R(N)
Q )2,

∀i ∈ [l]. Here mi is the polynomial whose coefficients are the i-th row of M :

mi :=
∑N−1

j=0 mijx
j , i.e., applying Ecdc(·) on the i-th row of M . Then, ∀i ∈ [l]:

bi + ai · s =
⌊
Q

P

⌋N−1∑
j=0

mijx
j + ei (mod Q) . (2)

Write s =
∑N−1

j=0 sjx
j , bi =

∑N−1
j=0 bijx

j and ai =
∑N−1

j=0 aijx
j . Following the no-

tation in [1], let Toep(s) ∈ ZN×N
Q be the matrix whose i-th row is the coefficients

of polynomial xis mod (xN + 1):

Toep(s) =


s0 s1 ... sN−1

−sN−1 s0 ... sN−2
... ... ... ...
−s1 −s2 ... s0


Then Equation 2 can be rewrite in vector and matrix form (Lemma 3 in [1]),
omitting the error term ei:

[bi0, bi1, ..., bi,N−1]+[ai0, ai1, ..., ai,N−1]Toep(s) ≈
⌊
Q

P

⌋
[mi0,mi1, ...,mi,N−1] (mod Q) .
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Combining ∀i ∈ [l] we can obtain:

B +A · Tope(s) ≈
⌊
Q

P

⌋
M (mod Q) , (3)

where the i-th row of A ∈ Zl×N
Q is the coefficients of ai, i.e., [ai0, ai1, ..., ai,N−1].

B ∈ Zl×N
Q and M ∈ Zl×N

P have the same dimensions as A and are constructed

in the same way. Then, multiplying a plaintext matrix W ∈ Zd×l
P with M can

be obtained by

WB +WA · Tope(s) ≈
⌊
Q

P

⌋
WM (mod Q) .

Then for j ∈ [d], the j-th row of WB and WA form the RLWE ciphertext of the
j-th row of WM , under the coefficient encoded Ecdc(·). That is, (WB,WA) is
effectively d RLWE ciphertexts which uses coefficient encoding. The error term
is also multiplied by the plaintext matrix W . As stated in [1], both W and M
should have entry with small absolute values compared with Q. When dealing
with W ∈ Rd×l (each entry has a small absolute value), [1] encodes each wij

into Z by a proper scaling factor.

2.3 Slot encoding and BFV scheme

There exists another way to encode vectors to elements of a polynomial ring.
In this subsection we give the brief descriptions of the BFV scheme [14]. It is
widely used in homomorphic integer arithmetic. Let P be the plaintext mod-
ulus and Q > P be the ciphertext modulus. We apply the BFV setting when
N is a power of 2, and use SEAL [44] as the implementation of BFV scheme.

Then the plaintext space and ciphertext space are R(N)
P = ZP [X]/(XN +1) and

R(N)
Q = ZQ[X]/(XN +1), respectively. We further require that P ≡ 1(mod 2N).

It is a variant of RLWE scheme and its ciphertexts have the same form (a, b) ∈
(R(N)

Q )2. The encryption/decryption procedures are the same as in the RLWE
cryptosystem (Equation 1). We will use BFVs,Q(m) to denote BFV ciphertext

encrypting polynomial m ∈ R(N)
P and use BFV.ct(m) for short. Below we intro-

duce the main properties and functionalities of the encoding in BFV schemes
and refer the details to, e.g., [14], [18, 21].

To encrypt a vector m ∈ [m0, ...,mN−1] ∈ ZN
P , BFV scheme constructs a

polynomial m̃ ∈ R(N)
P to encode vector m. 8 More concretely, let ζ be the 2N -th

primitive root of unity of P . 9 Write ζ̄ = ζ−1 (mod P ), ζj := ζ5
j

and ζ̄j := ζ̄5
j

.
We set the polynomial m̃ so that:

∀i ∈ {0, 1, ..., N/2− 1},mi = m̃(ζi).

8 In this case where each slot only stores integer in ZP , [7] defined a simplified version
of BFV bootstrapping called thin bootstrapping, and we focus on thin bootstrapping
in this work. Please refer to [7] and [16] for more general BFV settings.

9 That is to say, ζ2N = 1 (mod P ) and ∀0 < l < 2N , ζl ̸= 1 (mod P ).
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∀i ∈ {N/2, ..., N − 1},mi = m̃(ζ̄i−N/2).

We call m̃ be the slot encoding of m:

Ecds(·) : ZN
P → R

(N)
P ;m = [m0,m1, ...,mN−1] 7→ m̃ .

We use plaintext slots or simply slots to represent the entries of vector m.
SIMD style addition and multiplication using slot encoding.Note that Ecds(·) :

m 7→ m̃ is a ring isomorphism. According to Chinese remainder theorem ( [45],
[16]):

m̃1+m̃2 = Ecds(m1+m2) = Ecds([m1,0+m2,0,m1,1+m2,1, ...,m1,N−1+m2,N−1]) ,

m̃1×m̃2 = Ecds(m1⊗m2) := Ecds([m1,0×m2,0,m1,1×m2,1, ...,m1,N−1×m2,N−1]) .

m1 ⊗m2 stands for the Hadamard product (also called the element-wise prod-
uct). Further, let cti be the ciphertext of polynomial m̃i, s.t. m̃i = Dec(cti), i =

1, 2. There exist functions add(·, ·),mul(·, ·) : (R(N)
Q )2 × (R(N)

Q )2 → (R(N)
Q )2

which satisfy:

Dec(add(ct1, ct2)) = m̃1 + m̃2 = Dec(ct1) + Dec(ct2) = Ecds(m1 +m2) ,

Dec(mul(ct1, ct2)) = m̃1 × m̃2 = Dec(ct1)×Dec(ct2) = Ecds(m1 ⊗m2) ,

where Dec(·) is Equation 1. This allows Single-Instruction-Multiple-Data (SIMD)
style evaluations on multiple encrypted data.

Polynomial evaluation. Let p be an polynomial in ZP [X], we are able to
homomorphically evaluate [p(m0), p(m1), ..., p(mN−1)] (mod P ) using the above
properties given a BFV ciphertext of Ecds(m). We use Eval(p, ·) to denote this
procedure.

The main difference between coefficient encoding and slot encoding is that
SIMD style multiplication is not supported. In BFV scheme, the conversion
between slot encoding and coefficient encoding are available. Given a vector m,
we will let m be the coefficient encoding: Ecdc(m), and we will let m̃ be the slot
encoding: Ecds(m).

Slot-to-Coefficient (S2C) Given the ciphertext BFV.ct which encrypts m̃: the
slot encoding of m, the operation S2C generates another BFV.ct which encrypts
the coefficient encoding of m: i.e., Ecdc(m) = m.

Coefficient-to-Slot (C2S) C2S is the reverse procedure of S2C. Given the
ciphertext BFV.ct which encrypts m: the coefficient encoding of m, the opera-
tion C2S generates another BFV.ct which encrypts the slot encoding of m: i.e.,
Ecds(m) = m̃.

2.4 Challenges in secure inference of transformer architecture

The transformer architecture [48] is now the most popular AI model architec-
ture. It is composed by matrix multiplications and non-polynomial functions
which will be approximated by polynomial. Then there is a problem of choosing
coefficient encoding or slot encoding.
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As discussed in Section 2.2, using coefficient encoding allows us to evalu-
ate very fast plaintext-ciphertext matrix multiplication (PCMM). Evaluating
multiplication between plaintext W and encrypted M can be obtained by two
plaintext-plaintext matrix multiplication WB and WA. According to [1], plain-
text matrix multiplications can be further accelerated by high-performance Basic
Linear Algebra Subprograms (BLAS) libraries. On the contrary, almost all pre-
vious works focus on slot encoding and evaluate matrix multiplication on slots
(e.g., [18, 19, 21, 25]). Using slot encoding cannot make use of the above fast
PCMM. These works use Linear Transformation (LT) which requires frequently
”rotating” the data on the encoded vector, and is much slower.

However, using coefficient encoding and fast PCMM has two limitations.
First, when the ring degree N is determined, the time performance of this matrix
multiplication depends heavily on the ciphertext modulus Q as we are computing
WA andWB where A,B ∈ Zl×N

Q . WhenQ is as large as thousands of bits (which
is very common in BFV schemes), the computational overhead grows rapidly.
Therefore [1] propose the fast matrix multiplication for Q below 80 bits.

Second, when applying the new PCMM to existing slot-encoded CKKS frame-
works like NEXUS [49], the latency of matrix multiplication is reduced, but it
introduces C2S and S2C to transform data between slot encoding and coefficient
encoding. It will bring extra time cost and offset much of the performance gain
achieved by the new PCMM. Although the new PCMM is much faster than
the traditional slot encoding matrix multiplication, it is difficult to apply it to
existing works about privacy-preserving inference of transformers.

3 Full flow of LEAF

In this section, we introduce the full flow of LEAF for feedforward block in
privacy-preserving transformer inference. LEAF consists of a fast coefficient
encoded matrix multiplication algorithm, and an asymptotically efficient non-
polynomial function evaluation algorithm which is compatible with the coeffi-
cient encoding framework. This novel framework (1) removes costly data move-
ment across ciphertext slots, (2) Combines function evaluation with bootstrap-
ping, reducing the size of ciphertext modulus and eliminating the need for sep-
arate bootstrapping procedure. Together, these innovations enable a 100× im-
provement in total latency over the state-of-the-art implementation (NEXUS [49])
in the same environment.

Our matrix multiplication component adopts the fast PCMM proposed in [1],
which was briefly reviewed in subsection 2.2. For a comprehensive description of
the algorithm and its performance characteristics, we refer the reader to [1]. In
this section, we focus on presenting our evaluation algorithm for non-polynomial
activation functions,and how it integrates with the fast PCMM from [1], which
outputs coefficient encoded RLWE ciphertexts.

We use lowercase letters p, q to denote the plaintext modulus, ciphertext
modulus respectively in the RLWE scheme which uses coefficient encoding. We
use n to denote the degree of polynomial ring in the RLWE scheme. We use
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uppercase letters P , Q > q, N > n denote the plaintext modulus, ciphertext
modulus and degree of polynomial ring respectively in the BFV scheme which
uses slot encoding. Let s ∈ Zq[X]/(Xn + 1) be the secret key of the RLWE
scheme. Let s ∈ ZQ[X]/(XN + 1) be the secret key of the BFV scheme.

3.1 Overview

Our non-polynomial evaluation algorithm takes d low-level coefficient encoded
RLWE ciphertexts procedured by PCMM [1] as input, and applies modulus
switching to switch the ciphertext modulus to a small q:

i ∈ [d], RLWEs,q(Ecdc(mi = [mi0, ...,min])) ,

and then evaluate a non-polynomial activation and refresh ciphertexts. Here
g(·) : Zp → Zp is the function we want to evaluate on each entry in mi. Finally
we output ct′i = RLWEs,q(Ecdc([g(mi0), ..., g(min)])), i ∈ [d] where ct′i is also a
coefficient encoded ciphertext and can be input to the next matrix multiplication.

Main idea. The idea comes from two observations. First, the decryption of one
element in the message vector mi can be written as a mod-q linear operation
between a vector extracted from the ciphertext polynomials and a vector consists
of the coefficients of the secret key. If we set q to the plaintext modulus of
BFV, i.e., q = P , and encrypt the “RLWE secret key coefficient vector” (from
Ecd−1c (s)) by BFV to get a high-level slot encoding BFV ciphertext, then we can
homomorphically evaluate decryption formulas to get a high-level slot encoding
BFV ciphertext of the noisy message by Linear Transformation (LT). In brief,
LT [18, 21] evaluates the multiplication between a matrix C and an encrypted
column vector xT . The output is a BFV ciphertext encrypting Ecds(CxT ).

Second, when evaluating a P − 1 degree polynomial derived through inter-
polation (e.g., [24, 31]) of a function f from ZP → ZP which maps the noisy
message to a refreshed message, we can reduce the noise in all slots simultane-
ously by the SIMD property of BFV ciphertext. More concretely, according to
the decryption algorithm of RLWE (Equation 1), the noise term is removed by
a “mod-then-floor” procedure, which can be seen as a function from ZP → ZP .
Furthermore, since f can be an arbitrary function from ZP → ZP , we can define
f that takes the noisy message as input and returns the result of an arbitrary
function g(·) of the refreshed message. We will elaborate the details of this in
Section 3.3.

In this section, we will introduce the details and also the optimizations we
proposed to improve the performance. Our algorithm consists of the following
steps:

– (Coefficient encoded RLWE ciphertexts → slot encoded BFV ciphertext)
This step switches N/n low-level coefficient encoded RLWE ciphertexts to
one high-level slot encoded BFV ciphertexts. Notice that this step is different
with the C2S procedure. Since the parameters of the RLWE scheme and BFV
scheme are different and the RLWE ciphertexts are in lower level, we cannot
directly apply C2S of BFV here. We propose the method in Section 3.2.

12



– (Evaluating arbitrary function on slot encoded BFV ciphertext)
It is evaluating a P − 1 degree polynomial fpoly(·) on BFV ciphertext,
where P is the BFV plaintext space. fpoly(·) is constructed according to the
arbitrary function g(·) that we want to evaluate, such as the non-polynomial
activation function. BFV ciphertext is in slot encoding so it supports SIMD
style polynomial evaluations. We will elaborate the steps and constructions
of fpoly(·) in Section 3.3.

– (Slot encoded BFV ciphertext → coefficient encoded BFV ciphertexts)
In Section 3.4, we perform S2C on the slot encoded BFV ciphertext to get
one coefficient encoded BFV ciphertext.

– (Coefficient encoded BFV ciphertext → coefficient encoded RLWE cipher-
texts)
By performing modulus switching and ring switching we obtain N/n coeffi-
cient encoded RLWE ciphertexts whose parameters are the same as the input
RLWE ciphertexts. After that, these RLWE ciphertexts are ready for the fol-
lowing plaintext-ciphertext matrix multiplication or other HE evaluations.
The details are in Section 3.5.

Figure 2 shows the flow of non-polynomial evaluation in LEAF.10 And the
detailed algorithm is included in Algorithm 4.

Fig. 2: Non-polynomial evaluation of LEAF. The ciphertexts are refreshed and
evaluated by function g(·) : ZP → ZP .

Noise analysis. According to [36], the analysis follows the widely used heuris-
tic assumption that the coefficients of each polynomial behave like independent

10 Other HE evaluations can include PCMM, addition, multiplication, etc.
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zero-mean random variables of the same variance [9], and central limit heuris-
tic [13]. We will include a lemma about the variance of (the coefficients of)
the noise term in each subsection. And we refer the detailed proof of these
lemmas to Appendix B. This variance can be used in Chebyshev’s inequality :

Pr[|X − EX| ≥ b] ≤ σ2

b2 to bound noise term. For correct decryption with over-

whelming probability, the noise term must be bounded by
⌊

Q
2P

⌋
given ciphertext

modulus Q and plaintext modulus P . Therefore, the variance of the noise term
should be bounded by

σ2 ≪
⌊
Q

2P

⌋2
≈ Q2

4P 2
. (4)

3.2 From coefficient encoded RLWE to slot encoded BFV

In this section, we show the algorithm that converts low-level coefficient encoded
RLWE ciphertexts to high-level slot encoded BFV ciphertexts.

Let a coefficient encoded RLWE ciphertext (a, b) ∈ (R(n)
q )2 encrypt a poly-

nomial Ecdc(m) under secret key s and let the noise term be e. let vector
a := Ecd−1c (a) ∈ Zn

q . Similarly we can have e, b, s ∈ Zn
q . The i-th element

of vector m is mi and we have αmi + ei = bi + Ecd−1c (as)[i] mod q, where
α = ⌊ qp⌋. Notice that as is a polynomial multiplication in the polynomial ring

R(n)
q , so the coefficient of xi in as is

∑i
j=0(ai−jsj)+

∑n−1
j=i+1(−an+i−jsj) mod q.

If we take it as an inner product, we get

αmi + ei = bi + ⟨a(i), s⟩ mod q, i ∈ [n] , (5)

where a(i) = [ai, ai−1, ..., a0,−an−1,−an−2, ...,−ai+1] can be obtained by the
permutation of coefficients in polynomial a.

Our packing technique is from the observation that bi + ⟨a(i), s⟩ is a linear
evaluation. If vector s is slot encoded and is encrypted to a BFV ciphertext,
then bi + ⟨a(i), s⟩ can be evaluated in slots. Note that the length of s is n,
the dimension in RLWE cryptosystem, which is below the degree N in BFV
cryptosystem. 11 As both n and N we used are power-of-2, so n|N .

Now we proceed to extend Equation 5 to multiple RLWE ciphertexts. Define
the packing key BFV.ctpacking := BFVs,Q(Ecds([s, s, ..., s])) by repeating s for
N/n times in N plaintext slots, where s is the BFV secret key. Algorithm 1 we
show how to pack N/n RLWE ciphertexts {RLWEs,q(Ecdc(mt)}t∈[N/n] into one
BFV ciphertext.

It is noteworthy to point out that A is packing data in a specific order. For
i ∈ [N/n], the sub-block Ai ∈ Zn×n

P is obtained by collecting a(i) in Equation 5
from all the N/n input RLWE ciphertexts. The purpose of this order is fit the
ring splitting algorithm, as elaborated in Section 3.5. Figure 3 shows how to
pack {mt}t∈[N/n] in one N -dimension vector.

11 For example, n is assigned to be at most 213 in [1], while popular parameter settings
of BFV usually choose N = 215 or 216.
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Algorithm 1 Pack N/n RLWE ciphertexts to 1 BFV ciphertext.

Input:
N/n RLWE ciphertexts {RLWEs,q(Ecdc(mt)) = (at, bt)}t∈[N/n].
Packing key BFV.ctpacking := BFVs,Q(Ecds([s, s, ..., s])).

Output: BFV ciphertext BFVs,Q(Ecds(m̄)) for some m̄ ∈ ZN
P .

1: Construct matrix:

A ∈ ZN×N
P , A :=


A0 0 ... 0
0 A1 ... 0
...

. . .
...

0 ... 0 AN/n−1

 , (6)

where for i ∈ [N/n], each Ai ∈ Zn×n
P , and the t-th row in Ai is a

(i)
t =

[ati, at,i−1, ..., at0,−at,n−1,−at,n−2, ...,−at,i+1] derived from at in the t-th input
RLWE ciphertext.

2: Construct vector b̄ ∈ ZN
P : b̄ := [b̄0, b̄1, ..., b̄N/n−1] s.t. the t-th entry in b̄i is the i-th

coefficient of bt.
3: Return BFVs,Q(Ecds(m̄)) = Ecds(b̄) + LT (A,BFV.ctpacking).

Fig. 3: The relationship between {mt}t∈[N/n] and m̄.

The linear transformation, LT (A, ·), generates a BFV ciphertext encrypting
the multiplication between matrix A and the input encrypted vector, using slot
encoding. Therefore, if we write m̄ = [m̄0, m̄1, ..., m̄N/n−1], then we have m̄i =
b̄i + sAi mod q on slots. And the t-th entry of m̄i is:

m̄i[t] = b̄i[t] + ⟨a(i)
t , s⟩ = αmt[i] + et[i] mod q . (7)

A key observation of accelerating LT is that the square matrix A in Equa-

tion 6 has a special structure: A =

[
A00 0
0 A11

]
. It requires much fewer rotation

processes, compared the case of general matrix A′ ∈ ZN×N
P . We refer our detailed

implementations of linear transformation to Appendix A, Algorithm 5.
The analysis of the noise term is in Lemma 1.

Lemma 1. Let σ2
packingK be the variance of noise term in generating the packing

key. Let σ2
rotK be the variance of noise term in generating the rotation key. Then

the variance of noise term in the output of Algorithm 1 (BFVs,Q(Ecds(m̄))),
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denoted as σ2
1, is bounded by:

σ2
1 ≤ N2P 2σ2

packingK +
B2

12
N3P 2 ⌊logB Q⌋σ2

rotK .

RNS form and NTT algorithm. We use Residual Numbering System (RNS) [18,
29] and Number Theoretic Transform (NTT) [22] to optimize the polynomial
operations over the polynomial ring in LT as follows. RNS can handle the inte-
ger arithmetic that exceed the machine word size (e.g., over 64 bits). It is based
on the Chinese remainder theorem and it decompose huge integers into smaller
integers within 64 bits. NTT can help to convert the expensive polynomial mul-
tiplications to fast element-wise vector multiplications.

– We transform each polynomial encoding a vector from matrix A to NTT
domain by David Harvey’s NTT algorithm [22].

– In baby steps, we transfer the rotated ciphertexts to NTT domain by David
Harvey’s NTT algorithm.

– Therefore, the computations in giant step are in NTT domain, so the mul-
tiplications can be done in NTT domain directly, which is much faster than
in polynomial domain.

– After computing multiplications in giant step, we transfer ciphertexts back
from NTT domain to polynomial domain by applying the inverse of David
Harvey’s NTT. Rest computations are in the polynomial domain and it
returns the result ciphertext in polynomial form.

Details of optimized LT algorithm is shown in Appendix A, Algorithm 6. This
optimization saves 40% time compared to Algorithm 5.

To further accelerate LT, we implement a multi-thread enabled LT to make
use of powerful modern multi-core CPU, and the experimental results show that
at least 72% time is saved. It is noteworthy to point out that all the above
optimizations will not change the variance of the noise term.

3.3 SIMD polynomial evaluation on slot encoded BFV ciphertext

In this section, we first present the construction of the polynomial fpoly(x), then
propose our optimized homomorphic polynomial evaluation algorithm, together
with its asymptotic analysis.

Polynomial construction The purpose of bootstrapping in homomorphic en-
cryption schemes is to refresh the ciphertext and reduce the noise scale, so that
it is feasible to perform more homomorphic evaluations on the ciphertext. In
general, the bootstrapping procedure is done by homomorphically evaluate the
decryption algorithm. According to the coefficient encoded RLWE ciphertext,
the decryption algorithm of each m̄i[t] ∈ Zp in Equation 7 is:⌊

m̄i[t]

α

⌉
=

⌊
αmt[i] + et[i]

α

⌉
= ⌊mt[i] + et[i]/α⌉ , (8)
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where α = ⌊q/p⌋ and the decryption is correct when |et[i]| < α/2 =
⌊

q
2p

⌋
.

Therefore, our main task of bootstrapping is to homomorphically evaluate
Equation 8, on the BFV ciphertext encrypting (Ecds(m̄)). [32] proposes a special
polynomial fpoly(x) on ZP s.t. fpoly(m̄i) = αmi, and sets P = q, i.e. the
plaintext modulus of BFV is the same as the ciphertext modulus of RLWE.

Such a polynomial fpoly(x) always exists on R(N)
P = ZP [X]/(XN +1) for prime

P , as shown in Lemma 2.

Lemma 2 ( [24]). Let P be a prime. For any function f : ZP → ZP , one can
construct a polynomial fpoly(x) ∈ ZP [X] s.t. ∀x ∈ ZP , f(x) = fpoly(x):

fpoly(x) := f(0)−
P−1∑
i=1

xi
P−1∑
a=0

f(a)aP−1−i .

By choosing f(x) = α
⌊
x
α

⌋
and then the related fpoly(x) satisfies fpoly(m̄i[t]) =

αmt[i]. Given |et[i]| <
⌊

q
2p

⌋
, the noise term ei is removed and thus the ciphertext

is refreshed.
Note that f(x) can be arbitrary function from ZP to ZP . Thus, for any

function g(x) from Zp to Zp, we can choose f(x) = αg(⌊x/α⌋) and use Lemma 2
to construct fpoly(x). Then we have

fpoly(m̄i[t]) = f(αmt[i] + et[i]) = αg

(⌊
αmt[i] + et[i]

α

⌋)
= αg(mt[i]) ,

given |et[i]| <
⌊

q
2p

⌋
.

Real value functions Further, let r(x) : [−B,B]→ [−B,B] with ∆B ≤ P/2,
and let Zp contains −p/2, ..., 0, 1, ..., p/2− 1. We can construct g(x) : Zp → Zp,
x 7→ ⌊∆r(x/∆)⌉. This gives an evaluation of real function r(x) on discrete points.

Optimized homomorphic polynomial evaluation

Paterson-Stockmeyer algorithm [42]. Recall that in subsection 2.3, we are able
to homomorphically evaluate any polynomial p ∈ ZP [X] on each plaintext slot,
using the SIMD style add(·, ·) and mul(·, ·) of BFV scheme. However, the ho-
momorphic multiplication function mul(·, ·) between two ciphertexts is slow and
is one of the main bottleneck of FHE schemes. As a result, instead of naively
evaluating an polynomial, it is important and necessary to reduce the number of
ciphertext-ciphertext multiplications. The well-known Paterson-Stockmeyer al-
gorithm [42] has the desired property. It was designed to accelerate the compu-
tation of matrix polynomial by reducing the number of the expensive non-scalar
multiplication (e.g., matrix multiplication). It needs only O(

√
d) non-scalar mul-

tiplications to evaluate a polynomial with degree d. In the homomorphic eval-
uation scenario, Paterson-Stockmeyer only needs O(

√
d) ciphertext-ciphertext
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multiplications. Thus it is widely used in homomorphic schemes to evaluate
polynomial with encrypted input (e.g., [32, 36]). For completeness, we include
Paterson-Stockmeyer algorithm in Algorithm 2.

Algorithm 2 Paterson-Stockmeyer algorithm for polynomial evaluation [42].

1: Input: A degree-(d− 1) polynomial p = ad−1X
d−1 + ...+ a1X + a0. Data x to be

evaluated.
2: Output: p(x).
3: Let k := ⌈d⌉. Compute {x, x2, ..., xk}.
4: Use xk to compute {x2k, x3k, ..., xk2−k}.
5: Rewrite poly(x) in the following form using {x, x2, ..., xk} ∪ {x2k, x3k, ..., xk2−k}:

p(x) = (a0 + a1x + ... + ak−1x
k−1)

+ (ak + ak+1x + ... + a2k−1x
k−1)xk

+ ... + (ad−k + ad−k+1x + ... + ad−1x
k−1)xk2−k .

6: Evaluate each line of above and return the summation of all the results.

Paralleled polynomial evaluation algorithm. Note that in Algorithm 2, most
non-scalar multiplications are in line 3 and line 4 and they have a large por-
tion of the time cost of Algorithm 2. Current implementations (e.g., [32]) do
not apply optimization on them and only naively compute {x, x2, ..., xk} and

{x2k, x3k, ..., xk2−k}. We observe that if we can implement these two steps in
multi-thread, the efficiency of homomorphic polynomial evaluation can be hugely
improved. The concrete algorithm is proposed in Algorithm 3. Take k = 256 as a

Algorithm 3 Power(x, k): Multi-thread computation of {x, x2, ..., xk}.
1: Input: Positive integer k, data x.
2: Output: {x, x2, ..., xk}.
3: Define set Dl = {x, x2, ..., xl}. Initially D1 = {x}.
4: while l < k do
5: l := l × 2.
6: Use multi-thread to compute Dl = (Dl/2 × xl/2) ∪Dl/2, where Dl/2 × xl/2 is to

apply multiplication on each element of Dl/2.
7: end while
8: Return {x, x2, ..., xk} ⊆ D2⌈log k⌉ .

toy example in Power(x, k). At first we have D1 = {x}, D2 =
{
{x}×x

}
∪{x} =

{x2, x}. Moving forward we can obtain D4 = {x, x2, x3, x4} ,... , and finally
{x, x2, ..., x256}.
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Asymptotic analysis. Using Algorithm 2 can homomorphically evaluate degree
(d−1)-polynomial using only O(

√
d) ciphertext multiplications. Previous imple-

mentations of line 3 and line 4 in Algorithm 2 (e.g., [32,36]) compute x, x2, ..., xk

sequentially, and do not make use of parallel processing. One core has to perform
O(
√
d) ciphertext multiplications.

We propose Algorithm 3 that optimizes computing line Algorithm 3 and line
4 in Algorithm 2. Assume that we have a t-core CPU, then each core only needs
to do O(log t+ k/t) = O(log t+

√
d/t) ciphertext multiplications. 12

The analysis of the noise term is in Lemma 3.

Lemma 3. Let the input of our Paterson-Stockmeyer algorithm (Algorithm 2)
be from Algorithm 1, whose noise term has variance σ2

1. Let the polynomial being
evaluated has degree P − 1. Then the variance of noise term in the output of

Algorithm 2, denoted as σ2
2, can bounded by o( Q2

4P 2 ) given Q supports
⌈
log
√
P
⌉
+3

multiplication level.

3.4 From Slot-based BFV ct to Coeff-based BFV ct

The process Slot-to-Coefficient (S2C) is widely used in different FHE schemes
(e.g., [15,16]). Given a slot encoded BFV ciphertext of Ecds(m = [m0,m1, ...,mN−1]

T ),

S2C process outputs a BFV ciphertext encrypting Ecdc(m) = m =
∑N−1

i=0 mix
i.

It moves all the elements in plaintext slots to polynomial coefficients. Recall the
definition of Ecds(m) = m̃ =

∑N−1
i=0 m̃ix

i, we have for r ∈ [N/2]:

mr = m̃(ζr) =

N−1∑
i=0

m̃iζ
i
r, mr+N/2 = m̃(ζ̄r) =

N−1∑
i=0

m̃iζ̄
i
r . (9)

We can rewrite Equation 9 to m = U [m̃0, m̃1, ..., m̃N−1]
T by setting:

U =



1 ζ0 ... ζN−10

1 ζ1 ... ζN−11
...

...

1 ζN/2−1 ... ζN−1N/2−1
1 ζ̄0 ... ζ̄N−10
...

...

1 ζ̄N/2−1 ... ζ̄N−1N/2−1


∈ ZN×N

P . (10)

12 We can verify this by checking each iteration in the while loop. For some l, in that
round l/2 ciphertext multiplications are required, and they can be evaluated inde-
pendently. In the round where l/2 ≤ t, each core performs at most one ciphertext
multiplication. In the round where l/2 > t, each core performs O( l

2t
) ciphertext mul-

tiplications. By summing up, we obtain a total number of ciphertext multiplications

O(log t) + O(k/t) = O(log t +
√
d/t) as by definition k =

⌈√
d
⌉
.
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Then the S2C process outputs a slot encoded BFV ciphertext encrypting Ecds(UmT ).
This can be done by LT using BFV.ct(Ecds(m)) and plaintext matrix U . In-
stead of storing U in matrix form, we can pre-compute the encoding of U , which
can save a lot of time in the LT algorithm. We refer the detailed slot encoding
algorithm of U to Algorithm 8 in Appendix A.3. Let the result of Algorithm 8 be
EcdLT (U), which contains N BFV ciphertext encrypting the (upper) diagonals
of U in slot encoding.

Combining all the optimizations, our optimized linear transformation algo-
rithm for S2C process is shown in Algorithm 9 in Appendix A.3. Compared
with the state-of-the-art S2C implementation [31], our optimized S2C process
reduced the latency from 137s to 15s when running in the same machine with
same parameters (Both are evaluated in single-thread setting).

The analysis of the noise term is in Lemma 4.

Lemma 4. Let the input of our S2C process be from Algorithm 2, whose noise
term has variance σ2

2. The variance of noise term in the output of S2C, denoted
as σ2

3, is bounded by:

σ2
3 := N2P 2σ2

2 + (
√
N/2 +N2P 2)

B2

12
N ⌊logB Q⌋σ2

rotK .

3.5 From one coefficient encoded BFV to N/n coefficient encoded
RLWE ct

After the S2C process, we obtain a BFV ciphertext in coefficient encoding. Let
this BFV ciphertext be BFVs,Q(Ecdc(m)) for some vector m ∈ ZN

P . In this sec-
tion we split BFVs,Q(Ecdc(m)) into N/n coefficient encoded RLWE ciphertext
{RLWEs,q(Ecdc(mt)}t∈[N/n]. In brief, the flow in this section is:

BFVs,Q(Ecdc(m))→BFVs,q′(Ecdc(m))→
BFVs′,q′(Ecdc(m))→ {RLWEs,q′(Ecdc(mt)}t∈[N/n] .

Modulus switch. The first arrow, modulus switch, converts a BFV ciphertext
(a, b) with ciphertext modulus Q into another one with ciphertext modulus q′ <
Q. The modulus switch is simply done by (a, b) 7→ (⌊q′a/Q⌉ , ⌊q′b/Q⌉).

Ring Switch. The second arrow is key switch and ring switch from [2]. Define the
key switching key kss→s′ := BFV.cts′,Q(s), i.e., the BFV ciphertext encrypting

the previous secret key s =
∑N−1

i=0 s[i]xi ∈ R(N)
P using the new secret key. The

new secret key, s′ :=
∑N−1

i=0 s′[i]xi ∈ R(N)
P , is derived from the RLWE secret key

s =
∑n−1

i=0 s[i]xi ∈ R(n)
q′ . s′ has coefficients that satisfy:

s′[i] = s[i/(N/n)], for i mod N/n = 0; s′[i] = 0, otherwise.

The key switching key is pre-generated in the set-up process. Using the key
switching algorithm, we can convert BFVs,Q(Ecdc(m)) to BFVs′,Q(Ecdc(m)).
We refer the detailed key switching algorithm to [2].
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For the last arrow, we have to convert the ciphertext (a, b) from (R(N)
q′ )2 to

N/n RLWE ciphertexts {(at, bt)}t∈[N/n] from (R(n)
q′ )2. In brief, the ring switch-

ing algorithm is re-arranging all the coefficients in (a, b) to the coefficients

of {(at, bt)}t∈[N/n]. Let a :=
∑N−1

i=0 a[i]xi. We can arrange the coefficients of

at :=
∑n−1

i=0 at[i]x
i as at[i] = a[iN/n + t]. bt :=

∑n−1
i=0 bt[i]x

i,∀t ∈ [N/n] is
derived from b in the same way.

The analysis of the noise term is in Lemma 5.

Lemma 5. Let the BFV ciphertext from S2C have noise term with variance σ2
3.

The variance of noise term after ring switching, denoted as σ2
4, is bounded by:

σ2
4 := σ2

3

(q′)2

Q2
+ σ2

ks,

where σ2
ks is the variance generated by key switching process.

3.6 Full Flow

In this section, we present the full flow of LEAF in Algorithm 4.

Correctness analysis. Correctness of our scheme requires that the decryption
of k-th RLWE ciphertext output by Algorithm 4 equals to

Ecdc([g((WM)k[0]), ..., g((WM)k[n− 1])]) ,

i.e., the j-th coefficient in the decrypted message is g((WM)k[j]), j ∈ [n], k ∈ [d].
The correctness of matrix multiplication is proved in [1]. The correctness of
Equation 7 is guaranteed by the LT algorithm in Algorithm 6. The correctness
of the polynomial construction is given by Lemma 2. The correctness of S2C
can be derived by Equation Equation 9 and the correctness of the LT algorithm
in Algorithm 9. The correctness of remaining steps like modulus switch and
ring switch is guaranteed by the correctness of BFV scheme. Please refer to [2]
for more details. By ensuring the correctness of each component, we show that
Algorithm 4 will generate the correct output. We conclude that our failure rate
of decryption is negligible by our choice of parameters as in Section 4.

Efficiency analysis. In this section, we focus on analyzing the amortized num-
ber of polynomial multiplications per non-polynomial function evaluation for
one input. For the complexity analysis of matrix multiplication, no polynomial
multiplication is needed. Please refer to [1, 30] for more details. Algorithm 1
involves O(

√
N) rotations and O(N) plaintext-ciphertext multiplications. Algo-

rithm 9 has the same asymptotic analysis with Algorithm 1. Algorithm 2 involves
O(
√
P ) ciphertext-ciphertext multiplication and O(P ) plaintext-ciphertext mul-

tiplications. In the full flow, all three algorithms are performed z times together
with z ring switches to evaluate GELU on d× n inputs.

Rotation is done via Galois automorphism which takes poly(L) polynomial
multiplications, where L is the multiplicative depth. Each ring switch needs
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Algorithm 4 Full flow of our scheme LEAF.

Input:
l coefficient encoded RLWE ciphertexts {RLWE.cti}i∈[l] each encrypting the i-th
row mi of matrix M ∈ Rl×n, where RLWE.cti = (ai, bi) ∈ RLWEs,q′(Ecdc(mi :=

[mi1, ...,min])) ∈ (R(n)

q′ )2.
Packing key: BFV.ctpacking ∈ BFVs,Q(Ecds([s, s, ..., s])).
The non-polynomial function being evaluated g(·) : Zp → Zp.
Plaintext matrix W ∈ Zd×l

p obtained by encoding weight matrix to integers.
Output:

d refreshed RLWE ciphertexts in coefficient encoding, (WM)k is WM ’s k-th row:

RLWEs,q′
(
Ecdc(g((WM)k))

)
, where g((WM)k) := [g((WM)k[0]), ..., g((WM)k[n−1])] .

1: Perform matrix multiplication on {RLWE.cti}i∈[l] and W to obtain d RLWE.ctk,

where RLWE.ctk ∈ RLWEs,q′(Ecdc((WM)k)) ∈ (R(n)

q′ )2, k ∈ [d].

2: Perform modulus switch on d RLWE.ctk from input ciphertext modulus q′ to q,
where we have q = P , the plaintext modulus of the BFV scheme.

3: Let z = ⌈d/(N/n)⌉.
4: Apply Algorithm 1 z times to pack d coefficient encoded RLWE ciphertexts into z

slot encoded BFV ciphertexts: {BFVs,Q(Ecds(m̄j))}j∈[z].
5: Construct fpoly(x) using Lemma 2 with f(x) := αg(

⌊
x
α

⌋
).

6: Evaluate fpoly(x) on BFVs,Q(Ecds(m̄j))) using Algorithm 2 for j ∈ [z]. If we
write g(·) with vector input: g(x) := [g(x0), g(x1), ..., g(xN−1)], the result is
BFVs,Q′(Ecds(αg(⌊m̄j/α⌋))), j ∈ [z].

7: Perform S2C process from Algorithm 9 z times to obtain z coefficient encoded
BFV.ctcoeff,j := BFVs,Q′(Ecdc(αg(⌊m̄j/α⌋))), j ∈ [z].

8: Perform modulus switch on z BFV.ctcoeff,j from Q′ to q′. The result is BFV.ctj ∈
RLWEs,q′(Ecdc(αg(⌊m̄j/α⌋))), j ∈ [z].

9: Perform z ring switch on {BFV.ctcoeff,j}j∈[z]: from (R(N)

q′ )2 to (R(n)

q′ )2. Each ring
switch will output N/n coefficient encoded RLWE ciphertexts, so there are totally
d RLWE ciphertexts. The result is RLWEs,q′(Ecdc(g((WM)k))), k ∈ [d].

10: Return d refreshed RLWE ciphertexts, each encrypting Ecdc(g((WM)k)), k ∈ [d]
with RLWE secret key s and ciphertext modulus q′.

a key switch which also takes poly(L) polynomial multiplications. Ciphertext-
ciphertext multiplication requires a tensor product between two ciphertexts fol-
lowed by a relinearization process, which also takes poly(L) polynomial mul-
tiplications in total ( [14]). Plaintext-ciphertext multiplication is much simpler
and only needs O(L) polynomial multiplications. Regarding to parameters, we
have P > 2N + 1 to guarantee that there is a primitive 2N -th root of unity,
and O(L) = O(logP ) to guarantee that there are enough depth for evaluating
polynomial and performing LTs. Therefore, the total number of polynomial mul-
tiplication to evaluate d × n inputs is in Equation 11. Thus, Õ(dn) polynomial
multiplications are required to evaluate non-polynomial function on dn inputs.
The amortized cost is quasi-constant number Õ(1) of polynomial multiplications.
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Security analysis. Since we do not modify the key generation algorithms and
encryption algorithms for RLWE cryptosystem and BFV scheme, the security
of our scheme can be easily derived from the semantic security of RLWE cryp-
tosystem and BFV scheme.

TotalNumber = z × (O(
√
N) ·O(poly(l)) +O(N) ·O(L))× 2

+ z × (O(
√
P ) ·O(poly(L)) +O(P ) ·O(L)) + z ×O(poly(L))

= z × (O(
√
N) ·O(poly(logN)) +O(N) ·O(logN))× 2

+ z × (O(
√
N) ·O(poly(logN)) +O(N) ·O(logN)) + z ×O(poly(logN))

= z × ((O(
√
Npoly(logN)) +O(N logN))× 3 +O(poly(logN)))

= O(z(
√
Npoly(logN) +N logN)) = Õ(zN) = Õ(dn)

(11)

4 Evaluation results

In this section, we report our evaluation results. We implemented our algorithm
in C++. We use SEAL [44] for BFV scheme, OpenSSL [46] and LAC [37] for
secure random number generation, OpenBLAS13 for implementing matrix mul-
tiplication algorithm in [1] and OpenMP [10] for multi-thread programming. We
benchmark our scheme on two platforms: Macbook Pro with Apple M3 Max
chip and Intel(R) Xeon(R) Platinum 8480+ at 2.0 GHz.

Parameter setting. In our evaluations, we choose coeff-encoded RLWE pa-
rameters of non-polynomial function evaluation as follows: Degree of polynomial
ring in RLWE n = 1024, plaintext modulus p = 512, and ciphertext modulus
q = 65537. Notice that in real world applications, if the input coeff-encoded
RLWE ciphertexts are in larger ciphertext modulus and higher polynomial ring,
we can apply modulus switch and ring switch first. And BFV parameters as
follows: degree of polynomial ring N = 32768, plaintext modulus = LWE ci-
phertext modulus P = q = 65537, and ciphertext modulus logQ = 669. 14 For
the parameter setting of the matrix multiplication, we refer the reader to [1] for
more details.

Failure rate. Our choice of parameters satisfies that output RLWE cipher-
texts can be correctly decrypted, which requires the error term in ciphertexts

is larger than
⌊

q
2p

⌋
with tiny probability. The error term in output ciphertexts

is a Gaussian distribution [36], so we can analyze the bound of error terms in
output ciphertexts by their standard deviation. By running our full scheme with

13 https://github.com/OpenMathLib/OpenBLAS
14 Q consists of a set of at most 63 bits primes generated by SEAL library
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3200 coeff-encoded RLWE ciphertexts (encrypts 3,276,800 messages in total),
the standard deviation of error terms in output ciphertexts is in (7, 10). Thus,

we choose q and p such that
⌊

q
2p

⌋
=
⌊

65537
2×512

⌋
> 64, which ensures that the

probability of the event that the error term is larger than
⌊

q
2p

⌋
is less than 2−30.

4.1 Experimental setup

We primarily compare our work with two open-sourced works: NEXUS [49] and
PEGASUS [36]. The concurrent work, THOR [41], also implements FHE-based
transformer inference by slot-encoded CKKS scheme, but they do not yet have
open source codes and the results in their paper were run in a GPU environment.
Therefore, we do not include the comparison with THOR in this section.

NEXUS15 evaluates all components (such as matrix multiplication, non-
linear activations, and bootstrapping) of a transformer in slot-encoded CKKS
scheme. PEGASUS16 evaluates linear functions in slot-encoded CKKS and non-
polynomial functions in FHEW-type ciphertext by homomorphic look-up-table
(LUT) algorithm. It switches the slot-encoded CKKS ciphertext to a set of
FHEW ciphertexts first, then uses LUT to do the evaluation, and repacks to slot-
encoded CKKS ciphertext at the end. Both the CPU implementations of NEXUS
and the implementation of PEGASUS use SEAL library, which is the same as
our implementation. For the choice of non-polynomial function, we choose GELU
function in all implementations, which is one of the most popular activation in
transformers and also other neural networks.

The results of microbenmarks are run in Macbook Pro with Apple M3 Max
chip and focus on single-thread setting. The results of evaluating feedforward
layer in BERT base are run in Intel(R) Xeon(R) Platinum 8480+ at 2.0 GHz,
and we set the number of threads to 56. All results are averaged over 10 runs.

4.2 Microbenchmarks

In this section, we report the performance of GELU evaluation in NEXUS, PE-
GASUS and our non-polynomial evaluation scheme. The flows of evaluation
algorithms are shown in Figure 4. NEXUS’s GELU evaluation follows the clas-
sic slot-encoded CKKS evaluation algorithm, which consists of a polynomial
evaluation process to approximate GELU function and a bootstrapping process
to ensure the ciphertext can be used in further computations. Notice that the
bootstrapping process can be placed either before or after the polynomial eval-
uation process, depending on the use case, and the time costs are same in this
microbenchmark. PEGASUS’s GELU evaluation pre-computes a “table” con-
taining the value of non-polynomial function, then applies the LWE-based LUT
algorithm to evaluate the non-polynomial function and refresh it. Our GELU
evaluation also pre-computes a “table” of non-polynomial function, but we en-
code it into a polynomial and use BFV to evaluate the polynomial in all slots.

15 https://github.com/zju-abclab/NEXUS
16 https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
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Fig. 4: GELU evaluation algorithms

Accuracy comparison. We set the rounding parameter s = 16 in our scheme,
so that the input range of GELU function is from −256

s = −16 to 255
s = 15.9375.

Figure 5 shows comparisons among real GELU output (red line), NEXUS GELU
output (blue line) and our GELU output (orange line) in the input range [−16, 16]
and comparisons between absolute errors of NEXUS’s GELU evaluation (blue
line) and our GELU evaluation (orange line). 17.

Outputs of our GELU evaluation are close to real GELU values for all inputs
(the average absolute error of our GELU evaluation is 0.025), while the output
of NEXUS’s GELU evaluation introduces a huge error when x < −8 or x > 8.
One key advantage of our GELU evaluation algorithm is its ability to flexibly
expand the input range by selecting smaller value of s. This adjustment results
in only a slight increase in error, avoiding the significant inaccuracies observed
with the approximation method used by NEXUS.

Efficiency comparison. We take one CKKS/BFV ciphertext with 32768
slots as input and report the performance in Table 118 All results are in the
same single-thread environment. Besides the improvement on accuracy and the
flexibility of expand the input range, our algorithm is also 3.7 times faster than
NEXUS’s classic slot-encoded CKKS evaluation algorithm. PEGASUS is able
to achieve the same accuracy and input range with ours, but it is more than
300 times slower than ours, i.e., the LWE-base LUT algorithm, which does not
support SIMD operations, is inefficient for the use case with large number of
inputs.

In order to show the optimizations we proposed in section subsection 3.2
Algorithm 3, we also tested our scheme in 20-thread setting and get 0.6ms as
the amortized time per input.

– Total time: 19.6s. Number of input: 32768

17 PEGASUS’s GELU evaluation has similar accuracy result with ours since we both
use a pre-computed table to store the desired output value but use different way to
“look up” the table.

18 PEGASUS’s implementation uses 256 as the default input size.
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((a)) Real GELU value ((b)) NEXUS and our GELU values

((c)) Absolute error of GELU evaluations ((d)) Absolute error of our GELU evalua-
tion

Fig. 5: Output of GELU values and error analysis

– LT time: 2.2s. Polynomial evaluation time: 13.1s. S2C time: 4.3s. Switches
time: 0.005s

Notice that this result only considers the non-polynomial evaluations. Our
algorithm can take the output of the faster coeff-encoded RLWE matrix mul-
tiplication scheme [1] as input directly, making it more suitable for evaluating
“matrix multiplication + non-polynomial activation” , which is the common case
in secure transformer inference.

4.3 Feed forward layer in BERT base

In this section, we report the performance of using our scheme in the feed forward
layer of BERT base model inference. The feed forward layer takes matrix as
input. It first multiply a matrix to the input, and then evaluate the activation
on every entry.

In order to measure the total time cost, we implement [1]’s matrix multiplica-
tion algorithm by using OpenBLAS library. The size of input to the feedforward
layer is 128×768. [1]’s matrix multiplication algorithm will first encrypt it to 768
coeff-encoded RLWE ciphertexts where i-th ciphertext encrypts the i-th column
of the input. In order to make better use of slots in these RLWE ciphertexts, [1]’s
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Algorithm NEXUS [49] PEGASUS [36] Our scheme

Amortized time per input 8.5ms 749ms 2.3ms

Total time 277.8s 191.74s 76.6s

Number of inputs 32768 256 32768

Breakdown time cost

Bootstrapping: 262s S2C: 0.54s LT: 7.6s
Polynomial eval: 15.8s Extraction: 6.15s Polynomial eval: 54s

LUT: 162.7s S2C: 15s
LT: 22.35s Switches: 0.01s

Table 1: Microbenchmark: Performance of NEXUS, PEGASUS and our non-
polynomial evaluation algorithms.

algorithm may batch some inputs together. The batch size does not affect the
performance of our scheme since our algorithm always makes use of all BFV
plaintext slots during the evaluation.

After evaluating the matrix multiplication, [1]’s algorithm will output 3072
coeff-encoded RLWE ciphertexts, each of which encrypts the i-th column of the
multiplication result. The algorithm flow and breakdown time costs are listed
in Table 2. The algorithm takes 53.4 seconds in total to evaluate the matrix
multiplication, GELU function and refresh the ciphertexts in real BERT base
model.

Procedure Ciphertext Time cost

Input
RLWE.cti ∈ RLWEs,q′(Ecdc(mi)), i ∈ [768],

W ∈ R3072×768, and fpoly(x) constructed by Lemma 2
-

Pt-ct matrix
multiplication [1]

RLWE.cti ∈ RLWEs,q′(Ecds((WM)i)), i ∈ [3072] 0.18s

Mod Switch q′ → q RLWE.cti ∈ RLWEs,q(Ecds((WM)i)), i ∈ [3072] 0.0025s

Coeff-encoded RLWE
to slot-encoded BFV

3072× 128/32768 = 12 BFV ct,
where BFV.cti ∈ BFVs,Q(Ecds(m̄i)), i ∈ [12]

6.4s

Polynomial
evaluation

BFV.cti ∈ BFVs,Q′(Ecds(GELU(m̄i))), i ∈ [12] 42.8s

Slot-encoded BFV to
coeff-encoded BFV

BFV.cti ∈ BFVs,Q′(Ecdc(GELU(m̄i))), i ∈ [12] 4.02s

Switches RLWE.cti ∈ RLWEs,q(Ecdc(GELU((WM)i))), i ∈ [3072] 0.0038s

Table 2: Evaluating feedforward layer of BERT base by our scheme

For comparison, we also report the performance of evaluating feedforward
layer of BERT base by NEXUS. NEXUS supports to batch up to 32 inputs in
one evaluation process.19 Before entering the feedforward layer, ciphertexts out-
putted by the layernorm are in low levels. In order to have enough multiplica-
tive levels to support GELU evaluation (consumes 10+ levels), bootstrapping
procedure is needed either at the start of feedforward evaluation or after the

19 More details of the parameter setting can be found in Section VI of NEXUS [49].
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first matrix multiplication in feedforward evaluation. According to Table IV in
NEXUS [49], if we put the bootstrapping at the start of feedforward evaluation,
then it needs to bootstrap 768× 128 slots for each input, but the matrix multi-
plication has to be done in higher level which is slower than evaluating in lower
level. Otherwise, if we put the bootstrapping after the matrix multiplication,
although the matrix multiplication can be evaluated in low level, it needs to
bootstrap 3072 × 128 slots. Bootstrapping is considered to be slower than the
matrix multiplication, therefore we will follow NEXUS’s framework that boot-
strapping the output of layernorm first then evaluating the matrix multiplication
and GELU function.

The evaluation flow and breakdown time costs are listed in Table 3. Eval-
uating the bootstrapping, matrix multiplication, and GELU activation in the
same model using NEXUS requires a total of 5,378 seconds, which is over 100×
slower than our approach. All experiments were conducted on the same machine
using 56 threads. While NEXUS supports batching of up to 32 inputs, the total
latency remains constant at 5,378 seconds regardless of the batch size, resulting
in an amortized latency of at least 168 seconds per input. Even under its most fa-
vorable configuration (i.e., full-batch mode), our method remains over 3× faster
than NEXUS in feedforward block evaluation within a real BERT model.

Procedure Ciphertext Time cost

Input 768 CKKS cti ∈ CKKS(Ecds(mi)), i ∈ [768], W ∈ R3072×768 -

Bootstrapping 768 CKKS cti ∈ CKKS(Ecds(mi)), i ∈ [768] 2145s

Pt-ct matrix
multiplication

768 CKKS cti ∈ CKKS(Ecds((WM)i), i ∈ [3072] 2435s

GELU evaluation 768 CKKS cti ∈ CKKS(Ecds(GELU((WM)i))), i ∈ [3072] 798s

Table 3: Evaluating feedforward layer of BERT base by NEXUS

5 Conclusion and discussion

LEAF significantly reduces total latency by leveraging coefficient encoding in
two key ways. First, it adopts the efficient coefficient-encoded matrix multiplica-
tion technique from [1], which eliminates costly data movement across ciphertext
slots typically associated with slot-encoded matrix operations. Second, LEAF in-
tegrates ciphertext refreshing directly into the non-polynomial evaluation phase
by utilizing the BFV scheme to evaluate an interpolated polynomial over a pre-
computed function value table. This approach avoids the overhead of a separate
bootstrapping procedure, resulting in a more streamlined and efficient compu-
tation pipeline.

An interesting direction for future work is exploring (1) the transformation
of low-level coefficient encoding RLWE ciphertexts into high-level slot encoding
CKKS ciphertexts and (2) the choice of a lower-degree polynomial to evalu-
ate non-polynomial activations and refresh ciphertexts more efficiently and ac-
curately. This approach may further improve overall performance in privacy-
preserving transformer inference since evaluating a low-degree polynomial in
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CKKS is considered faster than evaluating a P − 1 degree polynomial in BFV,
where P is the plaintext modulus of BFV. The main challenge of this potential
solution is to ensure the accuracy in a large input range and the ability of refresh
the input RLWE ciphertexts.
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Appendix

A Linear Transformation (LT) in BFV

A.1 Rotation

This procedure ”rotates” the plaintext slots in vector m. This allows integer
arithmetic across different plaintext slots. More concretely, we first rewrite row
vector m = [m0,m1, ...,mN−1] ∈ ZN

P in two row vectors with same length:

m :=

[
m1 := [m0,m1, ...,mN/2−1]

m2 := [mN/2,mN/2+1, ...,mN−1]

]
.

We divide m into two parts because the ”rotations” are happening inside m1 or
m2, instead of rotating all the N elements m0,m1, ...,mN−1 as a loop. 20 Most
previous works do not make full use of plaintext slots (as described in [32]).
For example, when choosing m2 = 0, they only need to care about half part
of m (i.e., m1). Then the algorithms of rotation process and linear transfor-
mation process are much simpler, because the rotations are effectively rotating
m0,m1, ...,mN/2−1 as a loop. However, half of the slots are wasted.

In this work, we manage to make use of all plaintext slots in BFV scheme,
and propose the corresponding algorithms for rotation process and linear trans-
formation process.

Let l ∈ [N2 ]. Define ϕl : R → R, X 7→ X5l for some polynomial ring R. Then
we can verify that

ϕl(Ecds(m)) = Ecds

([
m←l

1 := [ml,ml+1, ...,mN/2−1,m0, ...,ml−1]
m←l

2 := [ml+N/2,ml+N/2+1, ...,mN−1,mN/2, ...,ml+N−1]

])
according to our definition of Ecds(·). For simplicity we define function rotvecl (·)
on vector space: ZN

P → ZN
P s.t.

rotvecl (m) =

[
m←l

1 := [ml,ml+1, ...,mN/2−1,m0, ...,ml−1]
m←l

2 := [ml+N/2,ml+N/2+1, ...,mN−1,mN/2, ...,ml+N−1]

]
.

Next we can define rotation to be a function on BFV ciphertext space

(R(N)
Q )2. Let ct = (a, b) be the BFV ciphertext of Ecds(m). Define rotl :

(R(N)
Q )2 → (R(N)

Q )2 and it first maps (a, b) to (ϕl(a), ϕl(b)). However, it is wor-
thy to notice that (ϕl(a), ϕl(b)) is a BFV ciphertext of polynomial ϕl(Ecds(m))
under secret key ϕl(s) instead of s, so it remains to add a key switch process on
(ϕl(a), ϕl(b)) at the end of rotation function rotl(ct).

Let ct = (a, b) = BFVs,Q(Ecds(m)). In this paper we frequently apply the
following kinds of rotations:

20 Briefly speaking, this is because that multiplicative group Z∗
2N is not a cyclic group

for power-of-2 integer N > 2. In general, the rotation process of BFV scheme can
be seen as rotation of slots on hypercube. Please refer to [16, 20, 21] for the math
details.
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– For l ∈ [N2 ], we construct procedure rotl(·) to generate a BFV ciphertext
rotl(ct) encrypting:

Ecds

([
m←l

1 := [ml,ml+1, ...,mN/2−1,m0, ...,ml−1]
T

m←l
2 := [ml+N/2,ml+N/2+1, ...,mN−1,mN/2, ...,ml+N−1]

T

])
= Ecds(rot

vec
l (m)) . (12)

– For l >= N
2 , perform rotl mod N/2(·).

– Let ϕ−1(·) : X 7→ X−1. Define rot−1(·) similarly as above. We can verify
that rot−1(ct) is encrypting:

Ecds

([
m2 := [mN/2,mN/2+1, ...,mN−1]

T

m1 := [m0,m1, ...,mN/2−1]
T

])
.

Further, we can define rot−l = rotl ◦ rot−1, for l ∈ [N2 ].

A.2 Linear transformation

Rotation procedures make it possible to evaluate functions across different plain-
text slots in m, and thus it is possible to homomorphically evaluate multiplica-
tion between a plaintext matrix A and vector m. While previous works does not
specify how to make full use of plaintext slots, we propose new linear transfor-
mation algorithm for this case.

We first focus on a special family of square matrices, and propose a faster
“1-baby-step 1-giant-step” linear transformation for these matrices in Algorithm
5. Define a family of square matrices as

A :=

{
A ∈ ZN×N

P | A =

[
A1 0
0 A2

]
, A1, A2 ∈ ZN/2×/N/2

P

}
. (13)

Define vectors αr ∈ ZN
P for r ∈ [N ] s.t. its j-th entry is αr[j] = A[j, r +

j (mod N)]. Then it can be verified that when A ∈ A:

AmT =

N−1∑
r=0

αr ⊗ rotvecr (m) .

Note that AmT (mod P ) is a valid input to Ecds(·). If we compute the above

in R(N)
P :

Ecds(AmT ) =

N−1∑
r=0

Ecds(αr)× Ecds(rot
vec
r (m)) . (14)

Again, let ct be the BFV ciphertext of Ecds(m). Combine Equation 12 and
Equation 14, we can homomorphically evaluate AmT given input ct. Therefore,

for A ∈ A there exists a procedure LTA(A, ·) defined on (R(N)
Q )2 s.t. LTA(A, ct)

is encrypting Ecds
(
AmT

)
.
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Homomorphic rotation process rotl(·) on ciphertext is expensive. It is a stan-
dard technique to apply baby-step-giant-step in linear transformation. The num-
ber of homomorphic rotation process is reduced from N to O(

√
N) (e.g. [36]).

We first include the “1-baby-step 1-giant-step” linear transformation algorithm
LT 1−bs−1−gs
A in Algorithm 5 and its RNS optimization version in Algorithm 6.

For the sake of simplicity, throughout this paper we focus on linear transfor-
mation on square matrix. Our linear transformation process can be applied to
general matrix as well (e.g., [36]).

Algorithm 5 1-baby-step 1-giant-step linear transformation for matrix family
A in BFV/BGV

1: Input: Let ct be the BFV ciphertext encrypting Ecds(m). A plaintext matrix
A ∈ A.

2: Output: Let LTA(A, ct) be the BFV ciphertext encrypting Ecds(AmT ).
3: Define vectors αr ∈ ZN

P for r ∈ [N ] s.t. its j-th entry is

αr[j] = A[j, r + j (mod N)].

4: Baby-step: Let B =
⌈√

N
⌉
. Compute rotb(ct) for b ∈ [B].

5: Giant-step: Let G = ⌈N/B⌉. Compute

c̃t =
∑
g∈[G]

rotBg

 ∑
b∈[B]

Ecds(rotvecN−Bg(αBg+b)) · rotb(ct)


6: Return c̃t.

Then we show the “2-baby-step 1-giant-step” linear transformation algorithm
LT 2−bs−1−gs for general matrices in Algorithm 7. The RNS optimization version
of it will be discussed in subsection A.3 and used in our S2C process.

A.3 Pre-computation of S2C

The output of S2C process is also a coefficient encoded BFV ciphertext en-
crypting Ecdc(m). In fact, the S2C process is a linear transformation between
matrix U and encrypted vector m. Note that the output of S2C process is a
BFV ciphertext of polynomial

∑N−1
i=0 mix

i, which slot-encodes vector UmT by
the definition of Ecds(·). Let ct be this BFV ciphertext. Then the linear trans-
formation LT (U,Ecds(m)) outputs exactly the desired result of S2C process.
Notice that matrix U do not satisfies Equation 13, therefore the “1-baby-step
1-giant-step” LT (Algorithm 5) cannot be applied to obtain BFV ciphertext of
Ecds(UmT ).

Fortunately, U is a pre-known matrix. Instead of storing U in a matrix form,
we pre-compute vectors α1, ...,αN according to line 3 of Algorithm 5, and rotate
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Algorithm 6 Optimized Linear Transformation with 1-baby-step 1-gaint-step
for matrix family A in BFV/BGV

1: Input: Let ct be the BFV ciphertext of Ecds(m). A plaintext matrix A ∈ A.
2: Output: Let LTA(A, ct) be the BFV ciphertext of Ecds(AmT ).
3: Define vectors αr ∈ ZN

P for r ∈ [N ] s.t. its j-th entry is

αr[j] = A[j, r + j (mod N)].

4: Baby-step: Let B =
⌈√

N
⌉
. Compute rotb(ct) for b ∈ [B].

5: Compute NTT (rotb(ct)) for b ∈ [B].
6: Giant-step: Let G = ⌈N/B⌉. Compute

c̃t =
∑
g∈[G]

rotBg

INTT (
∑
b∈[B]

NTT (Ecds(rotvecN−Bg(αBg+b)))⊗NTT (rotb(ct)))


7: Return c̃t.

Algorithm 7 2-baby-step 1-gaint-step linear transformation for general matrix
in BFV/BGV

1: Input: Let ct be the BFV ciphertext of Ecds(m). A plaintext matrix A ∈ A.
2: Compute {Ecds(bi)}i∈[N ] ← EcdLT (A) in Algorithm 8.
3: Output: Let LTA(A, ct) be the BFV ciphertext of Ecds(AmT ).

4: Define d =
⌈√

N/2
⌉
.

5: Baby-step-1: Compute rotid(ct) for i ∈ [d].
6: Baby-step-2: Compute rot−id(ct) for i ∈ [d].
7: Define G = ⌈

√
N/2⌉, H = ⌈N/(2G)⌉.

8: Giant-step: Compute

c̃t =
∑
g∈[G]

rotHg

( ∑
h∈[H]

Ecds(b2Hg+h) · rotb(ct)+

Ecds(b2Hg+H+h) · rot−b(ct)

)

9: Return c̃t.
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then encode them by line 5 of Algorithm 5. Therefore, we first encode the matrix
U by Algorithm 8 and get EcdLT (U), then apply the “2-baby-step 1-giant-step”
LT algorithm (Algorithm 7) for general matrix here.

Algorithm 8 Matrix encoding algorithm for LT in BFV (EcdLT (·))
1: Input: A plaintext matrix U ∈ ZN×N

P , where P is the plaintext modulus and N
is the degree of the polynomial ring.

2: Output: A set of encoded vectors {Ecds(bi)}i∈[N ].

3: Define d =
⌈√

N/2
⌉
.

4: for each i ∈ [d] do
5: for each j ∈ [2d] do
6: Define vector bi∗2d+j ∈ ZN

P s.t. its k-th entry :
7: for each k ∈ [N ] do
8: Define rowind = (k − i) mod N/2 ∈ [−N/4, N/4).
9: Compute rowind + = N/2 if rowind < 0. and rowind + = N/2 if k ≥ N/2.

10: Define colind = k + jd mod N/2 ∈ [−N/4, N/4).
11: Compute colind + = N/2 if (k ≥ N/2) ∧ (j < d). and colind + = N/2 if

(k < N/2) ∧ (j ≥ d).
12: The k-th entry is then:

bi∗2d+j [k] = U [rowind][colind]

13: end for
14: Compute Ecds(bi∗2d+j).
15: end for
16: end for
17: Return {Ecds(bi)}i∈[N ]

Combining all the optimizations, our optimized linear transformation algo-
rithm for S2C process is shown in Algorithm 9. Compared with the state-of-the-
art S2C implementation [31], our optimized S2C process reduced the latency
from 137s to 15s when running in the same machine with same parameters.

B Noise analysis

In this section we analysis the noise scale of rotation and linear transformation in
the form of variance, which together can provide the correctness of our full flow in
Algorithm 4. The variance can be used in Chebyshev’s inequality: Pr[|X−EX| ≥
b] ≤ σ2

b2 to bound noise term or error term. It is required that |err| ≤
⌊

Q
2P

⌋
for ciphertext modulus Q. Therefore, the variance of the error term should be
bounded by

σ2 ≪
⌊
Q

2P

⌋2
≈ Q2

4P 2
. (15)

To begin with, we include the following lemma from [36].
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Algorithm 9 Optimized Linear Transformation with 2-baby-step 1-gaint-step
for general matrix in BFV/BGV.

1: Input: Let ct be the BFV ciphertext of Ecds(m). A matrix U ∈ ZN×N
P .

2: Pre-compute {Ecds(bi)}i∈[N ] ← EcdLT (U) in Algorithm 8.
3: Pre-compute NTT (Ecds(bi)) for i ∈ [N ].
4: Output: Let LT (U, ct) be the BFV ciphertext of Ecds(UmT ).
5: Define d =

√
N/2.

6: Baby-step-1: Compute rotid(ct) for i ∈ [d].
7: Compute NTT (rotid(ct)) for i ∈ [d].
8: Baby-step-2: Compute rot−id(ct) for i ∈ [d].
9: Compute NTT (rot−id(ct)) for i ∈ [d].

10: Define G = ⌈
√

N/2⌉, H = ⌈N/(2G)⌉.
11: Giant-step: Compute

c̃t =
∑
g∈[G]

rotHg

(
INTT (

∑
h∈[H]

NTT (Ecds(b2Hg+h))⊗NTT (rotb(ct))+

NTT (Ecds(b2Hg+H+h))⊗NTT (rot−b(ct)))

)

12: Return c̃t.

Lemma 6 (Appendix D in Pegasus [36]).

1. Let polynomials a, b have degree n, assuming whose coefficients are iid re-
spectively. The variances of the coefficients are σ2

a and σ2
b respectively. Then

the variance of a+ b is σ2
a + σ2

b . The variance of ab is nσ2
aσ

2
b .

2. If the coefficient is uniformly random over [0, B), then its variance is B2/12.

Proof. According to [36], the analysis follows the widely used heuristic assump-
tion that the coefficients of each polynomial behave like independent zero-mean
random variables of the same variance [9], and central limit heuristic [13]. a+ b
case is trivial. If we write c := ab into:

c =

n−1∑
i=0

cix
i =

n−1∑
i=0

aix
i
n−1∑
i=0

bix
i mod(xn + 1) ,

we have ck =
∑

i+j=k aibj −
∑

i+j=k+n aibj . The variance of ck for every k is

nσ2
aσ

2
b . The second part follows directly by uniform distribution, and is widely

used in ciphertext error variance.
⊓⊔

B.1 Rotation

Given BFV ciphertext (a, b) ∈ (R(N)
Q )2 under secret key s, the rotation pro-

cess first computes (ϕl(a), ϕl(b)), which is a BFV ciphertext under secret key
ϕl(s). Therefore, it remains to apply a key switch process on (ϕl(a), ϕl(b)). For
completeness, we include the building blocks of key switch process here.
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Extended RLWE. For plaintext message m ∈ R(N)
P and a base B, define the

extended RLWE ciphertext under secret key s:

R̃LWE(m) := {RLWEs,Q(B
dm) := (ad, bd)}d∈[⌊logB Q⌋] .

Here we point out that (ad, bd) satisfies

ads+ bd = Bdm+ ed (mod Q) .

Extended RLWE ciphertexts can help to reduce the noise scale in the multipli-
cation between plaintext and ciphertext: e.g., [21] and Algorithm 10 from [36].

Algorithm 10 Multiplication between plaintext and extend RLWE ciphertext.
(⋄)

1: Input: Plaintext polynomial c ∈ R(N)
Q . Extended RLWE ciphertext R̃LWE(m) for

polynomial m. Base B.
2: Output: RLWE ciphertext RLWEs,Q(cm). We write RLWEs,Q(cm) = c ⋄

R̃LWE(m).

3: Write polynomial c ∈ R(N)
Q to

c =

⌊logB Q⌋∑
d=0

Bd · cd ,

where each polynomial cd has B-bounded coefficients.

4: Let R̃LWE(m) := {RLWEs,Q(Bdm)}d∈[⌊logB Q⌋], in which we write (ad, bd) ∈
RLWEs,Q(Bdm).

5: Return ⌊logB Q⌋∑
d=0

adcd,

⌊logB Q⌋∑
d=0

bdcd

 .

For rotation process rotl(·), define rotation key to be the extended RLWE ci-

phertext R̃LWE(ϕl(s)) under secret key s. The rotation process rotl(·) on RLWE

ciphertext (a, b) ∈ (R(N)
Q )2 finally outputs (0, ϕl(b)) + ϕl(a) ⋄ R̃LWE(ϕl(s)).

Lemma 7. Let σ2 be the variance of error in generating rotation key R̃LWE(ϕl(s)).
Let ct be a RLWE ciphertext whose error term has variance σ2

in. Then the vari-

ance of error term in rotl(ct) is σ2
in + B2

12 N ⌊logB Q⌋σ2.

Proof. Let ct = (a, b) encrypting m and set D = ⌊logB Q⌋. ct satisfies as+ b =
m+ e+ hQ. Here h is some polynomial and e is the error term. By definition we

can write R̃LWE(ϕl(s)) = {RLWEs,Q(B
dϕl(s)}d∈[D] = {(ad, bd)}d∈[D]. And by

the definition of extended RLWE scheme,

ads+ bd = Bdϕl(s) + ed + hd ·Q, ∀d ∈ [D] .
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Here hd is some polynomial, and ed is the error term with variance σ2.

To apply Algorithm 10, we write ϕl(a) =
∑

d∈[D] ādB
d. Then Algorithm 10

outputs (
D∑

d=0

adād,

D∑
d=0

bdād

)
.

Let us say applying s to ciphertext (a, b) outputs as + b. By applying s to

(0, ϕl(b)) + ϕl(a) ⋄ R̃LWE(ϕl(s)) we have(
D∑

d=0

ad · ād

)
s+

D∑
d=0

bd · ād + ϕl(b) =

D∑
d=0

(ads+ bd) · ād + ϕl(b)

=

D∑
d=0

(ādB
dϕl(s) + āded + ādhdQ) + ϕl(b)

= ϕl(a)s+ ϕl(b) +

D∑
d=0

(āded + ādhdQ)

= ϕl(m) + ϕl(e) + ϕl(h)Q+

D∑
d=0

(āded + ādhdQ) .

After mod Q on both sides, it becomes ϕl(m) + ϕl(e) +
∑D

d=0(āded). Finally,
by the heuristic assumption that a has uniformly-random coefficient on ZQ, ād
has uniformly-random coefficient in [0, B). By applying Lemma 6, the variance

of ād is B2/12. Note that ϕl(·) will not change variance. So ϕl(e) +
∑D

d=0(āded)

has variance σ2
in + B2

12 N ⌊logB Q⌋σ2.

⊓⊔
We can set σ2

rot :=
B2

12 N ⌊logB Q⌋σ2.

B.2 Linear transformation

We first analyze the variance of error in the Linear transformation Algorithm 5.

Lemma 8. Let σ2 be the variance of error in generating rotation key R̃LWE(ϕl(s)).
Let ct be a RLWE ciphertext whose error term has variance σ2

in. Then the vari-

ance of error term in LTA(A, ct) is at most N2P 2σ2
in + B2

12 N
3P 2 ⌊logB Q⌋σ2, if

A ∈ ZN×N
P .

Proof. 1. Input: We use σ2
in to represent the variance of error in input cipher-

text.

2. Baby-step: Rotations are applied to input ciphertext. By Lemma 7, each
rotd(ct) has error term with variance σ2

in + σ2
rot.
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3. Giant-step: Assume
√
N is integer. From Algorithm 5, the function is com-

posed by two rotations:

c̃t =
∑

g∈[
√
N ]

rot√Ng

 ∑
b∈[
√
N ]

Ecds(rot
vec
N−
√
Ng

(α√Ng+b)) · rotb(ct)


First, the inner rotation rotb(ct) adds an error term with variance σ2

rot.

Next, multiplying polynomial Ecds(rot
vec
N−
√
Ng

(α√Ng+b)) from R(N)
P leads

to a factor of NP 2 to the variance of error term. The summation leads to
another factor of

√
N . Finally, the outside rotation rot√Ng(·) adds another

error term with variance σ2
rot, and the outermost summation leads to a factor

of
√
N .

In summary, the total variance increased is
√
N

(
σ2
rot +

√
N · NP 2(σ2

in +

σ2
rot)

)
. By computing σ2

rot from Lemma 7, the variance of error term after linear

transformation LTA(A, ct) is bounded by

√
N

(
σ2
rot+
√
N ·NP 2(σ2

in+σ2
rot)

)
= N2P 2σ2

in+(N2P 2+
√
N)

B2

12
N ⌊logB Q⌋σ2 .

⊓⊔
Similarly, we can compute the variance of error term after linear transfor-

mation for general square matrix e.g., LT (U, ct) in Algorithm 7. Recall that
from Algorithm 7, the main differences are there are more baby-steps, and the
computations in giant-step are changed:

c̃t =
∑
g∈[G]

rotHg

( ∑
h∈[H]

Ecds(b2Hg+h) · rotb(ct) + Ecds(b2Hg+H+h) · rot−b(ct)
)

(16)

Then the total variance increased is
√
N/2

(
σ2
rot +2

√
N/2 ·NP 2(σ2

in + σ2
rot)

)
.

Lemma 9. Let σ2 be the variance of error in generating rotation key R̃LWE(ϕl(s)).
Let ct be a RLWE ciphertext whose error term has variance σ2

in. Then the vari-
ance of error term in LT ′(A, ct) is at most

√
N/2

(
σ2
rot+2

√
N/2·NP 2(σ2

in+σ2
rot)

)
= N2P 2σ2

in+(
√

N/2+N2P 2)
B2

12
N ⌊logB Q⌋σ2 .

By Chebyshev’s inequality and Equation 15, the output ciphertext can be de-
crypted with overwhelming probability if

N2P 2σ2
in + (N2P 2 +

√
N/2)

B2

12
N ⌊logB Q⌋σ2 ≪ Q2

4P 2
. (17)
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B.3 Noise analysis of Algorithm 4

Now we are ready to provide the noise analysis of Algorithm 4 in the form of
variance, and finish the proofs of Lemma 2,3,4 and 5. For the sake of simplicity
we set d = N/n as Algorithm 4 is the same in d/(N/n) parts.

– (Coefficient encoded RLWE ciphertexts → slot encoded BFV ciphertext)
Let the input RLWE ciphertexts be (ai, bi) ∈ RLWEs,q′(Ecdc([mi1, ...,min])) ∈
(R(n)

q′ )2, for i ∈ [N/n]. After Algorithm 1 the noise terms of these RLWE ci-
phertexts will be moved to BFV slots, and later will be cleared by the SIMD
evaluation of fpoly(·). Therefore, the noise term in the output BFV cipher-
text of Algorithm 1 comes from the linear transformation. By Lemma 8, the

variance of the noise term is σ2
1 ≤ N2P 2σ2

packingK+ B2

12 N
3P 2 ⌊logB Q⌋σ2

rotK ,

where σ2
packingK is the variance in generating the packing key, and σ2

rotK is
the variance in generating the rotation key.

– (Evaluating arbitrary function on slot encoded BFV ciphertext)
In this step, fpoly(·), which is a P − 1 degree polynomial, is evaluated in
HE. The multiplication depth to evaluating it, according to the Paterson-

Stockmeyer algorithm, is
⌈
log
√
P
⌉
+2. Let the noise variance in the output

be σ2
2 . Then we must have σ2

2 ≪
Q2

4P 2 according to Equation 15. More con-

cretely, we will choose a larger Q s.t. σ2
2 ≪

Q2

8P 2p2N2 . This will only increase
the bit-length of Q by several bits. In fact, we are increasing Q so that two
more levels are supported, for the previous LT and the later S2C. According
to the instruction in BFV [14], SEAL [44] and σ2

1 , the result can be correctly
decrypted for Q s.t. logQ = 669, supporting 13 levels.

– (Slot encoded BFV ciphertext → coefficient encoded BFV ciphertexts)
We perform S2C to the previous output. By Lemma 9, the noise variance in
the output is

σ2
3 := N2P 2σ2

2 + (
√
N/2 +N2P 2)

B2

12
N ⌊logB Q⌋σ2

rotK .

– (Coefficient encoded BFV ciphertext → coefficient encoded RLWE cipher-
texts)
This part contains three steps. First is modulus switching from Q to q′. The
noise variance is from σ2

3 to σ2
3(q
′)2/Q2. Next is key switching from s to s′.

This step adds noise of σ2
ks to σ2

3(q
′)2/Q2, where σ2

ks is the variance in from
key switching. The last step is ring switching, which is a re-arrangement of
coefficients and it does not affect variance.
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In conclusion, using our choice of σ2
2 , the variance in the noise terms in the final

output ciphertexts is

σ2
3(q
′)2/Q2 + σ2

ks =
(q′)2

Q2
N2P 2σ2

2 +
(q′)2

Q2
(
√
N/2 +N2P 2)

B2

12
N ⌊logB Q⌋σ2

rotK + σ2
ks

≪ (q′)2

Q2

Q2

8p2
+

(q′)2

Q2
(
√
N/2 +N2P 2)

B2

12
N ⌊logB Q⌋σ2

rotK + σ2
ks

≤ (q′)2

4p2
.

σ2
ks is much smaller than (q′)2

4p2 . Note that the final output ciphertexts have plain-

text modulus p and ciphertext modulus q′, so it can be correctly decrypted.
When evaluating real value function r(x) : [−B,B]→ [−B,B] where ∆B ≤

P/2, there exists another additive error maxx∈[−B,B] |r( ⌊∆x⌉
∆ ) − r(x)|. This er-

ror is from the approximation of r(x) using fpoly(x). If r(x) is an L-Lipschitz
function, then this additive error is at most L/(2∆).
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