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Abstract. GCM and CCM are block cipher (BC) based authenticated encryption modes. In multi-user (mu)

security, a total number of BC invocations by all users 𝜎 and the maximum number of BC invocations per

user 𝜎u are crucial factors. For GCM, the tight mu-security bound has been identified as
𝜎u𝜎
2
𝑛 + 𝑢𝑝+𝑢

2

2
𝑘 , where

𝑘 and 𝑛 are respectively the key and block sizes, 𝑢 is the number of users, 𝑝 is the number of offline queries.

In contrast, the CCM’s mu-security bound is still unclear. Two bounds of
𝑢𝜎2

u

2
𝑛 + 𝑢𝑝+𝑢

2

2
𝑘 and

𝜎2

2
𝑛 + 𝑢𝑝+𝑢𝜎

2
𝑘 have

been derived by Luykx et al. (Asiacrypt 2017) and Zhang et al. (CCS 2024), respectively, but both are not tight

and worse than the GCM’s bound. Moreover, methods to enhance mu security without disruptive changes in

the scheme have been considered for GCM, namely nonce randomization (NR) to improve offline security

and nonce-based key derivation (NKD) to improve online security, but their applicability to CCM has never

been discussed.

In this paper, we prove an improved mu-security bound of CCM, which is tight, and reaches the GCM’s

bound. We then prove that NR and NKD applied to CCM result in the same bounds for the case to GCM. An

important takeaway is that CCM is now proved to be as secure as GCM. Moreover, we argue that NR and

NKD can be insufficient for some applications with massive data, and propose a new enhancement method

called nonce-based and tag-based key derivation (NTKD) that is applied to GCM and CCM. We prove that

the resulting schemes meet such real-world needs.

Additional Key Words and Phrases: CCM, GCM, Multi-User Security, Security Proof, Nonce Randomization,

Nonce-Based and Tag-Based Key Derivation

1 Introduction
Privacy and message authenticity are two fundamental properties required for secure and reliable

information systems. An authenticated encryption (AE) scheme is a symmetric-key cryptosystem

that provides both properties and has been widely deployed, especially standard AE schemes,

AES-GCM [11], AES-GCM-SIV [13], ChaCha20-Poly1305 [28], and AES-CCM [10, 40]. Hence,

proving the security of these AE schemes is an important research topic.

Conventionally, AE security has been discussed only for a single user (su) with a fixed key. On

the other hand, in recent years, multi-user (mu) security, which ensures security for all users with

their own keys, has been discussed. In mu security, in addition to the behavior of each user, the total

amount of data for all users (𝜎) affects the security. The value of 𝜎 that can be processed securely

depends on the maximum message size and the maximum number of messages that each user can

process. A superior AE scheme ensures large 𝜎 without imposing strong limitations on each user.

Researchers have studied mu-security of widely standardised algorithms, including AES-GCM [3,

16, 24], AES-GCM-SIV [6], and ChaCha20-Poly1305 [9]. Mu-security impacts how the schemes are

used in real-world protocols. In particular, TLS, DTLS, and QUIC determine the rekeying intervals

of AES-GCM according to the mu-security limit [32, 33, 37]. Moreover, the ongoing discussion on

the usage limit of AEs, published as Internet-Draft [15], considers mu-security for other schemes,

including AES-CCM.
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Both GCM and CCM are block cipher (BC) modes that build an AE scheme by combining

encryption and message authentication code (MAC). GCM uses the counter (CTR) mode for

encryption and a polynomial-hash-based authentication for MAC. CCM uses the CTR mode for

encryption and CBC-MAC for MAC. Those can be computed efficiently with hardware accelerators

available in devices. GCM has been widely standardized e.g. by ISO/IEC 19772 [19] and NIST SP800-

38D [11]. GCM is used in many practical protocols, including Ethernet security [36], WPA3 Wifi

security protocol [41], IPSec [38], and TLS [35]. CCM was designed as a patent-free solution for the

IEEE 802.11 standard for wireless LANs [34, 39], andwas subsequently standardized as RFC 3610 [40]

and NIST SP800-38C [10]. Several practical systems now useCCM, such as ZigBee [44], IPSec [5, 17],

and Bluetooth [42]. In particular, TLS 1.3 defined in 2018 recommends AES-CCM [25, 32].

GCM’s mu-security bound has been already identified. With a BC with 𝑛-bit block and 𝑘-bit

key, Hoang et al. [16] in their work show that the GCM’s mu-security bound is represented by

𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 +Advmuprp

𝐸
, wherein 𝑡 is the tag length, 𝑞d is the number of decryption queries, 𝜎 is the total

number of BC invocations in online queries (queries to the encryption and decryption oracles), 𝜎u
is the upper bound of the number of BC invocations in online queries for each user, and Advmuprp

𝐸

is the mu-pseudorandom-permutation (mu-PRP) advantage of 𝐸, the underlying BC. Assuming

that
𝑞
d

2
𝑡 ≤ 𝜎u𝜎

2
𝑛 , the bound matches the collision finding attack on CTR and is tight regarding online

security.
1

CCM’s mu-security bound is, however, still unclear. Jonsson [21] proved that CCM’s su-security

bound in the ideal cipher (IC) model is
𝜎2

2
𝑛 + 𝑞d

2
𝑡 + 𝑝

2
𝑘 , wherein 𝑝 is the number of offline queries to

IC. The aforementioned Internet-Draft document [15] evaluates mu-security of AES-CCM with a

generic bound, i.e., an mu-bound obtained from an su-bound with a hybrid argument. The generic

mu-bound is given by
𝑢𝜎2

2
𝑛 + 𝑢𝑞d

2
𝑡 + 𝑢𝑝+𝑢𝜎

2
𝑘 , which is degraded from the su-bound by the number of

users 𝑢.

Such a generic mu-bound is not guaranteed to be tight, and improving it with dedicated proofs

has been the central research challenge [24, 43]. Luykx et al. [24] showed a condition on deriving

an mu-bound from an su-bound without security degradation, providing the improved mu-bound

of CCM, given by
𝑢𝜎2

u

2
𝑛 + 𝑞d

2
𝑡 + Advmuprp

𝐸
. In the IC model, Advmuprp

𝐸
is bounded by

𝑢𝑝+𝑢2

2
𝑘 .

At CCS 2024, Zhang et al. [43] showed another mu-bound of CCM;
𝜎2

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢𝜎

2
𝑘 . They showed

the tightness of the bound under some conditions. The second term
𝑞
d

2
𝑡 is tight with generic forgery

attacks that exhaustively guess the tags. The third term
𝑢𝑝+𝑢𝜎

2
𝑘 corresponds to attacks with offline

queries, and this is tight when the offline query overwhelms the online query, i.e., 𝜎 ≤ 𝑝 . In contrast,

the first term
𝜎2

2
𝑛 is proved to be tight only in the extreme case with 𝜎u ≈ 𝜎 , i.e., an adversary sends

all online queries to a single user. This case is essentially equivalent that the adversary performs an

su-attack even the access to multi-users is given, thus it does not demonstrate truly meaningful

tightness w.r.t. mu-security.

Which of
𝑢𝜎2

u

2
𝑛 and

𝜎2

2
𝑛 is better depends on parameters 𝑢, 𝜎u, and 𝜎 ; Zhang et al.’s

𝜎2

2
𝑛 is better

than Luykx et al’s
𝑢𝜎2

u

2
𝑛 in the extreme cases with 𝑢 ≈ 𝜎 (e.g., 𝜎u = 𝜎3/4

and 𝑢 ≈ 𝜎), but Zhang et al’s
bound is worse in other cases, such as 𝜎 ≈ 𝑢𝜎u, i.e. each of𝑢 users is queried with 𝜎u BC invocations.

However, both bounds have critical problems. Zhang et al.’s
𝜎2

2
𝑛 indicates that CCM’s security is

broken when 𝜎 reaches the birthday bound, and this cannot be avoided no matter how strong

limitations are imposed on each user. Luykx et al’s
𝑢𝜎2

u

2
𝑛 only considers the maximum BC invocation

1
The adversary has access to 𝑢 users and makes encryption queries such that all plaintexts are zero strings and the number

of plaintext blocks per user is 𝜎u, thus 𝜎 = 𝑢𝜎u. Since no collision occurs in the BC’s outputs within the same user, the

birthday analysis offers the distinguishing probability Ω( 𝑢𝜎
2

u

2
𝑛 ) = Ω( 𝜎u𝜎

2
𝑛 ) .
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Table 1. Mu-bounds of GCM, CCM, and their enhancements with NR and NKD. For NKD, the mu-PRF

advantage of KDF is omitted in this table, since it can be negligible by choosing a KDF and its key length

appropriately.

Reference Target Bound

Hoang et al. [16] GCM
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢

2

2
𝑘

Hoang et al. [16] GCM w/ NR
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘

Hoang et al. [16] GCM w/ NR + NKD 𝜎n𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘

Generic Bound CCM
𝑢𝜎2

2
𝑛 + 𝑢𝑞d

2
𝑡 + 𝑢𝑝+𝑢𝜎

2
𝑘

Luykx et al. [24] CCM
𝑢𝜎2

u

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢

2

2
𝑘

Zhang et al. [43] CCM
𝜎2

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢𝜎

2
𝑘

This Work CCM
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢

2

2
𝑘

This Work CCM w/ NR
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘

This Work CCM w/ NR + NKD 𝜎n𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘

This Work TAE w/ NR + NTKD

√
𝜎n𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘

per user, and thus non-tight when data from some users do not reach the maximum. Moreover,

both bounds are worse than GCM’s mu-bound of
𝜎u𝜎

2
𝑛 [16].

Another line of research work aims to enhance the security without disruptive changes in

the scheme. For example, both GCM’s and CCM’s mu-offline security is already tight bounded

by Biham’s attack [4], which lowers the amount of offline queries to
2
𝑘

𝑢
, and there is no room

for improvement as long as GCM’s and CCM’s specification are maintained. GCM in TLS 1.3

implements a countermeasure called nonce randomization (NR) that preprocesses the nonce without

changing the GCM’s implementation interface. NR uses a randomized nonce 𝑁rand = 𝑁orig ⊕𝑅 with

the original 𝜈-bit nonce 𝑁orig and a user-specific random mask 𝑅 ∈ {0, 1}𝜈 . With this modification,

Biham’s attack additionally requires a collision in 𝑁rand and the offline security is improved from

2
𝑘

𝑢
to 2

𝑘
.

Bellare and Tackmann [3] proved confidentiality of NR, but the analysis is merely non-tight

and did not consider integrity. Hoang et al. [16] formalized NR by introducing the 𝑑-bound model,

where the number of the same randomized nonces across distinct users is bounded by 𝑑 ; in the

𝑑-bound and the IC models, the new mu-bound of GCM with NR becomes
𝜎u𝜎

2
𝑛 + 𝑞

d

2
𝑡 + 𝑑𝑝

2
𝑘 , as

summarized in Table 1.

Nonce-based key derivation (NKD) [14] is another method that enhances online (cf. offline)

security. Note that NKD is a meaningful technique for real-world applications, and in fact, NIST

recently announced their interest in revising NIST SP800-38D to standardize the combination

of GCM and NKD [27]. In NKD, each pair of a randomized nonce and a key for key derivation

function (KDF) generates a fresh key of an AE scheme, and combining it with the mu-bound in the

𝑑-bound model provides the following mu-bound of GCM with NKD,
𝜎n𝜎

2
𝑛 + 𝑞

d

2
𝑡 + 𝑑𝑝

2
𝑘 + Adv

muprf

F
,

where 𝜎n is the maximum number of BC invocations per nonce in a single user and Advmuprf

F
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Table 2. Upper-bounds of BC invocations for online mu-security with concrete parameters: 𝑛 = 128 and

several per-user usage limits, (i) 𝜎u = 2
34.5

, (ii) 𝜎u = 2
48
, and (iii) 𝜎u = 2

53
, from practical standards. 𝜎n

is upper-bounded by about 𝑣ℓ and this table evaluates 𝜎 for 𝑣 = 2
10

and ℓ = 2
24
. We approximate that

𝑘 − log
2
𝑑 ≈ 𝑘 .

Reference Target

Online Offline

Generic 𝜎u = 2
34.5 𝜎u = 2

48 𝜎u = 2
53

Generic

Zhang et al. [43] CCM 𝜎 ≤ 2
𝑛/2 𝜎 ≤ 2

64 𝜎 ≤ 2
64 𝜎 ≤ 2

64 𝑘 − log
2
𝑢

This work CCM 𝜎 ≤ 2
𝑛

𝜎u
𝜎 ≤ 2

93.5 𝜎 ≤ 2
80 𝜎 ≤ 2

75 𝑘 − log
2
𝑢

This work CCM w/ NR 𝜎 ≤ 2
𝑛

𝜎u
𝜎 ≤ 2

93.5 𝜎 ≤ 2
80 𝜎 ≤ 2

75 𝑘

This work CCM w/ NR + NKD 𝜎 ≤ 2
𝑛

𝜎n
𝜎 ≤ 2

94 𝑘

This work GCM/CCM w/ NR + NTKD 𝜎 ≤ 2
𝑛
√
𝜎n

𝜎 ≤ 2
111 𝑘

is an mu-pseudorandom-function (mu-PRF) advantage of the KDF F. Note that Advmuprf

F
can be

negligible by choosing a KDF and its key length appropriately. Since 𝜎n ≤ 𝜎u, NKD enhances the

security of GCM. In particular, we can significantly improve security by limiting the number of

decryption failures to some constant, i.e., 𝜎n ≪ 𝜎u.

So far, enhancing methods such as NR and NKD have only been discussed for GCM, but their

applicability to CCM has never been discussed. CCM is far behind GCM also in this respect.

It is also necessary to consider whether the enhanced security by NR and NKD is sufficient.

The offline security term
𝑑𝑝

2
𝑘 is almost tight, because 𝑘 − log

2
𝑑 ≈ 𝑘 . Hence, possible concerns are

on online security. Amazon AWS showed that AE schemes should allow to encrypt 2
92
messages

[22]. By combining it with the limitation of TLS 1.3 [32] that the maximum size of each message,

ℓ , is 2
10
blocks, AE schemes must be secure for 𝜎 = 2

102
BC invocations. Let us assume that the

BC is AES having 𝑛 = 128. With the original GCM and only with NR, the online term is
𝜎u𝜎

2
128
.

TLS 1.3 [32] limits 𝜎u = 2
34.5

BC invocations in AES-GCM,
2
and the aforementioned Internet Draft

document [15] is establishing similar limits for other schemes. NIST standards have the same kind

of limits: NIST SP800-38B for CMAC [12] recommends 𝜎u = 2
48
BC invocations when 𝑛 = 128,

and NIST SP800-38D for AES-GCM [11] limits 𝜎u = 2
53
BC invocations.

3
Even with the strongest

limitation of 𝜎u = 2
34.5

by TLS1.3, the maximum 𝜎 is 2
93.5

as shown in Table 2, which does not

reach the goal of 2
102

. When NKD is used, the online term is
𝜎n𝜎

2
128
. Adversaries can make queries

under the same nonce up to 𝑣 , the number of acceptable verification failures in decryption, hence

𝜎n is upper-bounded by about 𝑣ℓ . To ensure security for 𝜎 = 2
102

with ℓ = 2
24
coming from the

maximum counter size of CCM, 𝑣 can be at most 4. Practical systems can limit 𝑣 to a constant

threshold by implementing lockdown with failed decryption attempts, however 𝑣 = 4 is too strong

limitation, which significantly lowers usability.

In summary, mu-security of CCM still falls short compared to GCM in online security and the

existing enhancements, as summarized in Table 1. Moreover, the existing enhancements may not

be sufficient for some practical use cases. This paper aims to fill the gaps between CCM and GCM,

2
2

34.5
is derived from the maximum number of messages (2

24.5
) and ℓ = 2

10
blocks.

3
NIST SP800-38D [11] tolerates 2

21
messages for each key with 96-bit IV and 2

32
blocks per message restricted by the

counter length, totaling 2
53

blocks for each key.
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and to present a new enhancement method to reach an ideal mu-security level. In particular, we

address the following research questions.

• What is the tight online mu-bound of CCM? Is it better or worse compared to GCM?

• Do conventional enhancing methods, i.e., NR and NKD, improve mu-security of CCM? If

yes, how much?

• Is it possible to further enhance mu-security beyond NR and NKD, which works for both

GCM and CCM?

1.1 Contributions
In the first part of this paper, we prove that CCM is as good as GCM with respect to mu-security

for the standard model, NR, and NKD, with the following contributions.

Tight Mu-bound in the Standard Model (Section 5). We first improve the mu-bound of CCM in the

standard model to

𝜎u𝜎

2
𝑛
+ 𝑞d

2
𝑡
+ Advmuprp

𝐸
.

The first two terms
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 represent the online security, which are better than the corresponding

terms in the previous work, i.e.,
𝜎2

2
𝑛 + 𝑞d

2
𝑡 and

𝑢𝜎2

u

2
𝑛 + 𝑞d

2
𝑡 , for any adversary since 𝜎 ≤ 𝑢𝜎u and 𝜎u ≤ 𝜎 .

The new online terms are tight, i.e. match the generic bounds of the distinguishing attack on CTR

(see footnote 1 for details) and a generic forgery attack. Furthermore, with condition 𝜎u ≪ 2
𝑛/2

,

which can be ensured by adequate rekeying, CCM achieves beyond-birthday-bound online security.

The offline security of CCM, on the other hand, is derived from the last term Advmuprp

𝐸
. This

mu-PRP term offers the bound
𝑢𝑝+𝑢2

2
𝑘 in the IC model, which is also tight, matching the bounds of

the generic attacks [4]. In summary, the entire bound is tight, and CCM achieves the same level of

mu security as GCM, as summarized in Table 1.

Enhancing Offline Security with NR (Section 7). Next, we prove that the mu-bound of CCM with

NR in the 𝑑-bound and IC models is

𝜎u𝜎

2
𝑛
+ 𝑞d

2
𝑡
+ 𝑑𝑝

2
𝑘
.

The last term
𝑑𝑝

2
𝑘 represents offline security, where 𝑑 is ≈ 𝑛

log
2
𝑛
and negligible. Thus, NR enhances

offline security from
𝑘
𝑢
to 𝑘 bits, making it independent of the number of users. The online security

represented by the first two terms, on the other hand, is identical to that of bare CCM in the

standard model, which is tight. The bound is again the same as that of GCM in the 𝑑-bound and IC

models, as shown in Table 1.

Enhancing Online Security withNKD (Section 9). WhileNR enhances the offline security ofCCM, the

online security bound remains unchanged with the term
𝜎u𝜎

2
𝑛 . We improve it using NKD, following

the previous approach for GCM [16]. The mu-security of CCM with NKD in the 𝑑-bound and IC

models is

𝜎n𝜎

2
𝑛
+ 𝑞d

2
𝑡
+ 𝑑𝑝

2
𝑘
+ Advmuprf

F
,

obtained by replacing 𝜎u with 𝜎n and adding the mu-PRF advantage of F in the above mu-bound

of CCM with NR. Although the mu-PRF advantage is added as a new offline term, it becomes

negligible by choosing an appropriate KDF with sufficient key length, and the overall offline security

is 𝑘 bits.

The online security is enhanced under the condition that
𝜎n𝜎

2
𝑛 ≥ 𝑞

d

2
𝑡 and 𝜎n ≪ 𝜎u. Because 𝜎n is

upper-bounded by about 𝑣ℓ , the online term is improved to about
𝑣ℓ𝜎
2
𝑛 . The bound is the same as
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AE.EncFK AE.Enc

FK

N+a-1,Aa,ε

AE.Enc

FK

AE.Enc

FK
T1

0t N
Ta

C1

Ta+1

N+a+m -1,ε,Mm

Cm

Ta+m

T

N,A1,ε
^ ^ N+a,ε,M1

^ ^

Ka
^ Ka+1

^ Ka+m
^

N

N
K1
^

N

ε ε

Processing AD Encrypting a plaintext and generating a tag

Fig. 1. Encryption of AE_NTKD. AE.Enc is the underlying tag-based AE encryption. F𝐾 is the KDF that takes

nonce and a tag and generates a key of AE.Enc (and a nonce-based IV 𝑁̂ for the first AE.Enc call). 𝐴1, . . . , 𝐴𝑎
are AD sectors,𝑀1, . . . , 𝑀𝑚 are plaintext sectors, 𝐶1, . . . ,𝐶𝑚 are ciphertext sectors, 𝑇1, . . . ,𝑇𝑎+𝑚 are tags of

AE.Enc, 𝑇 is a tag of AE_NTKD. 𝑁̂ with a counter addition is used as nonce of each AE.Enc call.

the one of GCM with NKD in the IC and 𝑑-bound models, showing that CCM achieves the same

level of mu security as GCM.

Nonce-Based and Tag-Based Key Derivation (NTKD) (Section 10). In the second part of this paper, we

present a new method called NTKD to further enhance online mu-security. NTKD can be applied

to both GCM and CCM, and can be applied in generic for any tag-based AE: an AE such that (i)

encryption generates a ciphertext 𝐶 and a tag 𝑇 and (ii) decryption generates 𝑇 ′ without using 𝑇
and authenticates the data by matching 𝑇 and 𝑇 ′. The basic idea of NTKD is to separate the input

data into multiple sectors, an appropriately parameterized number of data blocks, and apply AE to

each sector by setting the key for the 𝑖th sector to an output of KDF that is computed from the

nonce and the tag for 𝑖 − 1th sector (Fig. 1). This has the effect of rekeying in every sector and

improves security. By setting the sector length to

√
𝜎n, the mu-bound becomes

√
𝜎n𝜎

2
𝑛
+ 𝑞d

2
𝑡
+ 𝑑𝑝

2
𝑘
.

Because 𝜎n is upper-bounded by about 𝑣ℓ , with 𝑛 = 128, ℓ = 2
24
, and 𝜎 = 2

102
, security is ensured

as long as 𝑣 ≤ 2
28
, which is significantly higher than 𝑣 ≤ 4 for NKD with the same setting. Also

we evaluate the value of 𝜎 that can be securely processed for some 𝑣 . with 𝑛 = 128, 𝑣 = 2
10
, and

ℓ = 2
24
, NTKD ensures security up to 𝜎 = 2

111
, while NKD ensures security up to 𝜎 = 2

94
, which

does not reach 𝜎 = 2
102

as shown in Table 2.

2 Notations
Let 𝜀 be the empty string, ∅ the empty set, and {0, 1}∗ the set of all bit strings. For integers

𝑖 ≤ 𝑗 , let [𝑖, 𝑗] := {𝑖, 𝑖 + 1, . . . , 𝑗} and [ 𝑗] := [1, 𝑗]. If 𝑖 > 𝑗 then [𝑖, 𝑗] := ∅. For an integer

𝑛 ≥ 0, let {0, 1}𝑛 be the set of all 𝑛-bit strings, {0, 1}0 := {𝜀}, {0, 1}≤𝑛 := ∪𝑖∈[0,𝑛]{0, 1}𝑖 , and
{0, 1}𝑛∗ := {𝑋 ∈ {0, 1}∗ | |𝑋 | > 0, |𝑋 | mod 𝑛 = 0}. Let 0

𝑖
be the bit string of 𝑖-bit zeros. For a

bit-string 𝐷 ∈ {0, 1}∗ and a positive integer 𝑛, let |𝐷 |𝑛 := ⌈|𝐷 |/𝑛⌉ be the 𝑛-bit block length of

𝐷 . For 𝑋 ∈ {0, 1} 𝑗 , let |𝑋 | := 𝑗 . The concatenation of two bit strings 𝑋 and 𝑌 is written as 𝑋 ∥𝑌
or 𝑋𝑌 when no confusion is possible. For integers 0 ≤ 𝑗 ≤ 𝑖 and 𝑋 ∈ {0, 1}𝑖 , let msb𝑗 (𝑋 ) (resp.
lsb𝑗 (𝑋 )) be the most (resp. least) significant 𝑗 bits of 𝑋 . For a non-empty set S, 𝑆 $←− S means

that an element is chosen uniformly at random from S and assigned to 𝑆 . For two sets S and S′,
S ∪←− S′ means S ← S ∪ S′. For an integer 𝑙 ≥ 0 and 𝑋 ∈ {0, 1}∗, 𝑋1, . . . , 𝑋ℓ

𝑙←− 𝑋 means parsing
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Algorithm 1 CTR

Encryption/Decryption CTR[𝐸𝐾 ] (𝑁, 𝐷)
1: 𝑚 ← |𝐷 |𝑛 ; for 𝑖 = 1, . . . ,𝑚 do 𝑋2,𝑖 ← add(𝑁, 𝑖); 𝑌2,𝑖 ← 𝐸𝐾 (𝑋2,𝑖 ) end for
2: 𝐾𝑆 ← msb |𝐷 | (𝑌2,1∥ · · · ∥𝑌2,𝑚); 𝐷 ′ ← 𝐷 ⊕ 𝐾𝑆 ; return 𝐷 ′

Algorithm 2 CBC

MAC CBC[𝐸𝐾 ] (𝐵)
1: 𝑏 ← |𝐵 |𝑛 ; 𝐵1, . . . , 𝐵𝑏

𝑛←− 𝐵; 𝑌1,0 ← 0
𝑛

2: for 𝑖 = 1, . . . , 𝑏 do 𝑋1,𝑖 ← 𝐵𝑖 ⊕ 𝑌1,𝑖−1; 𝑌1,𝑖 ← 𝐸𝐾 (𝑋1,𝑖 ) end for
3: return 𝑌1,𝑏

Algorithm 3 CCM

Encryption CCM.Enc[𝐸𝐾 ] (𝑁,𝐴,𝑀)
1: 𝐵 ← fCCM (𝑁,𝐴,𝑀); 𝑆 ← CBC[𝐸𝐾 ] (𝐵);
2: 𝑋2,0 ← add(𝑁, 0) 𝑌2,0 ← 𝐸𝐾 (𝑋2,0)
3: 𝑇 ← lsb𝑡 (𝑆 ⊕ 𝑌2,0); 𝐶 ← CTR[𝐸𝐾 ] (𝑁,𝑀); return (𝐶,𝑇 )

Decryption CCM.Dec[𝐸𝐾 ] (𝑁,𝐴,𝐶,𝑇 )
1: 𝑀 ← CTR[𝐸𝐾 ] (𝑁,𝐶); 𝐵 ← fCCM (𝑁,𝐴,𝑀);
2: 𝑆 ← CBC[𝐸𝐾 ] (𝐵)
3: 𝑋2,0 ← add(𝑁, 0); 𝑌2,0 ← 𝐸𝐾 (𝑋2,0); 𝑇 ← lsb𝑡 (𝑆 ⊕ 𝑌2,0)
4: if 𝑇 = 𝑇 then return𝑀 else return reject end if

of 𝑋 into fixed-length 𝑙-bit strings, where if 𝑋 ≠ 𝜀 then 𝑋 = 𝑋1∥ · · · ∥𝑋ℓ , |𝑋𝑖 | = 𝑙 for 𝑖 ∈ [ℓ − 1],
and 0 < |𝑋ℓ | ≤ 𝑙 ; if 𝑋 = 𝜀 then ℓ = 1 and 𝑋1 = 𝜀. For integers𝑚,𝑛 ≥ 0, let Func(𝑚,𝑛) be the set
of all functions from {0, 1}𝑚 to {0, 1}𝑛 . For an integer 𝑛 ≥ 0, let Perm(𝑛) be the set of all 𝑛-bit
permutations. For a set S and 𝑗 ∈ [𝑙], let (𝑦1, . . . , 𝑦 𝑗−1, ∗, 𝑦 𝑗+1, . . . , 𝑦𝑙 ) ∈ S be a condition that ∃𝑦 s.t.

(𝑦1, . . . , 𝑦 𝑗−1, 𝑦,𝑦 𝑗+1, . . . , 𝑦𝑙 ) ∈ S.

3 Specification of CCM
CCM is a block-cipher(BC)-based and nonce-based AE schemewith the Encrypt-and-MAC structure.

The encryption part is the CTR mode and the MAC part is CBC-MAC, which is simply denoted by

CBC throughout the paper.

3.1 Block Cipher (BC)
ABC is a set of permutations indexed by a key. For positive integers𝑘 and𝑛, let 𝐸 : {0, 1}𝑘×{0, 1}𝑛 →
{0, 1}𝑛 be an encryption of a BCwith 𝑘-bit keys and𝑛-bit blocks. Let 𝐸−1

: {0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛
be its decryption. Let 𝐸± := (𝐸, 𝐸−1). 𝐸 with a key 𝐾 is denoted by 𝐸𝐾 or 𝐸 (𝐾, ·). Similarly, 𝐸−1

with

a key 𝐾 is denoted by 𝐸−1

𝐾
or 𝐸−1 (𝐾, ·).

3.2 CTR Mode
CTR is a parallelizable encryption scheme with a BC 𝐸𝐾 . The specification of CTR is given in Algo-

rithm 1 and Fig. 2(right). Let 𝑐 be a parameter for the counters. CTR[𝐸𝐾 ] : {0, 1}𝜈 ×{0, 1}≤𝑛 (2𝑐−2) →
{0, 1}≤𝑛 (2𝑐−2)

takes a tuple of a key 𝐾 , a nonce 𝑁 , and a plaintext/ciphertext 𝐷 , and returns its

ciphertext/plaintext 𝐷 ′ such that |𝐷 | = |𝐷 ′ |. If 𝐷 is a plaintext (resp. ciphertext), then 𝐷 ′ is the
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add(N,0)

⊕

C
M

add(N,m)

msb|M|
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⊕

EK

B2 Bb

lsbt

⊕

add(N,1)

X2,1

Y2,1

X2,m

Y2,m

T

CBC[EK] CTR[EK]

⊕

EK EK EK EK

add(N,2)

X2,2

Y2,2

EK

X1,1

Y1,1

X1,b

Y1,b

X1,2

Y1,2

Fig. 2. The encryption of CCM, where 𝐵 ← f
CCM
(𝑁,𝐴,𝑀) and 𝐵1, . . . , 𝐵𝑏

𝑛←− 𝐵.

ciphertext (resp. plaintext). 𝐾𝑆 is a key stream with which a ciphertext (resp. plaintext) is defined

by XORing a plaintext (resp. ciphertext). add : {0, 1}𝜈 × [0, 2𝑐 ] → {0, 1}𝑛 is a function that on an

input pair of a nonce and a counter, returns an input block of 𝐸 such that for any 𝑁 ∈ {0, 1}𝜈 and
distinct values 𝑖, 𝑗 ∈ [0, 2𝑐 ], add(𝑁, 𝑖) ≠ add(𝑁, 𝑗). Note that “2𝑐” is reserved for the first block of

CBC and “0” is reserved for masking CBC outputs.

3.3 CBC Mode
CBC is a BC-based MAC that is an iterated construction of 𝐸𝐾 . CBC[𝐸𝐾 ] : {0, 1}𝑛∗ → {0, 1}𝑛 takes
a message 𝐵 of length multiple of 𝑛, and returns an 𝑛-bit tag 𝑌1,𝑏 . The specification of CBC is given

in Algorithm 2 and Fig. 2(left).

3.4 CCM Mode
CCM is a nonce-based AE scheme with 𝐸𝐾 . Let 𝜈 be the nonce size such that 𝜈 ≤ 𝑛. LetM =

{0, 1}≤𝑛 (2𝑐−2)
be plaintext/ciphertext spaces and A ⊂ {0, 1}∗ an associated data (AD) space. Let

𝑡 be the tag size of CCM such that 𝑡 ≤ 𝑛. The specification of CCM is given in Algorithm 3 and

Fig. 2. Let fCCM : {0, 1}𝜈 × A × M → {0, 1}∗ be an injective formatting function that takes a

nonce 𝑁 , an AD 𝐴, and a plaintext 𝑀 , and returns an encoded message 𝐵 = fCCM (𝑁,𝐴,𝑀) such
that its first 𝑛-bit block is 𝐵1 = add(𝑁, 2𝑐 ), meaning that all first input blocks of CBC are distinct

from all input blocks of CTR. The input blocks defined by add, namely 𝑋1,1, 𝑋2,0, 𝑋2,1, . . . , 𝑋2,𝑚 , are

called the nonce-dependent input blocks, and the other input blocks, 𝑋1,2, . . . , 𝑋1,𝑏 , are called the

nonce-independent input blocks.

CCM.Enc[𝐸𝐾 ] : {0, 1}𝜈 × A ×M →M × {0, 1}𝑡 is the encryption of CCM with 𝐸𝐾 . It accepts

a nonce 𝑁 ∈ {0, 1}𝜈 , an AD 𝐴 ∈ A, and a plaintext𝑀 ∈ M, and returns a ciphertext 𝐶 ∈ M such

that |𝐶 | = |𝑀 |.
CCM.Dec[𝐸𝐾 ] : {0, 1}𝜈 ×A ×M × {0, 1}𝑡 →M ∪ {reject} is the decryption of CCM with 𝐸𝐾 .

It accepts a nonce 𝑁 ∈ {0, 1}𝜈 , an AD 𝐴 ∈ A, a cipher 𝐶 ∈ M, and a tag 𝑇 ∈ {0, 1}𝑡 and returns,

deterministically, either the distinguished invalid symbol reject ∉M or a valid plaintext𝑀 ∈ M.

We define a nonce extracting function extnonce : {0, 1}𝑛 → {0, 1}𝜈 that takes an 𝑛-bit input block
𝑋 ∈ {0, 1}𝑛 and returns a 𝜈-bit value such that for an input block 𝑋 , if ∃𝑁 ∈ {0, 1}𝜈 , 𝑖 ∈ [0, 2𝑐 ] s.t.
𝑋 = add(𝑁, 𝑖), then extnonce (𝑋 ) = 𝑁 .
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4 Security Definitions and Proof Tools
4.1 Distinguishing Advantage
We consider distinguishing-type security notions for BCs and AEs. For the security notions, we

define the following distinguishing advantage of an adversary A that has access to either O1 or O2

and returns a decision bit. For 𝑖 ∈ [2], let AO𝑖 = 1 be an event that A with O𝑖 returns 1. Then, the

distinguishing advantage of A is defined as AdvdistO1,O2

(A) ≔ Pr

[
AO1 = 1

]
− Pr

[
AO2 = 1

]
.

4.2 Security Models for BCs
In the mu-security proofs of CCM, we consider two models for BCs: the standard multi-user-

pseudorandom-permutation (mu-PRP) security and the ideal cipher (IC) models.

4.2.1 Standard Model. In the standard model, the underlying BCs are assumed to be mu-PRP

secure, where BC instantiations with independent keys are securely replaced with independent

random permutations (RPs). Let 𝑢 be the number of users. In the mu-PRP game, an adversary

interacts with either the real-world oracles (𝐸𝐾1
, . . . , 𝐸𝐾𝑢 ) or the ideal-world oracles (𝑃1, . . . , 𝑃𝑢),

where ∀𝜔 ∈ [𝑢] : 𝐾𝜔
$←− {0, 1}𝑘 and RPs are defined as ∀𝜔 ∈ [𝑢] : 𝑃𝜔

$←− Perm(𝑛). At the end of

this game, A returns a decision bit in {0, 1}. The mu-PRP advantage function of A is defined as

Advmuprp

𝐸
(A) := Advdist(𝐸𝐾

1
,...,𝐸𝐾𝑢 ),(𝑃1,...,𝑃𝑢 ) (A) .

For all possible adversaries A that have access to 𝑢 users, make at most 𝑞 queries, and run in time 𝜏 ,

the maximum advantage is defined as Advmuprp

𝐸
(𝑢, 𝑞, 𝜏) := maxA Advmuprp

𝐸
(A).

4.2.2 Ideal Cipher (IC) Model. Let BC be the set of all encryptions of 𝑘-bit key and 𝑛-bit block

BCs. An IC is an ideal BC and defined as 𝐸
$←− BC. In the IC model, all parties including CCM

oracles and adversaries obtain IC’s outputs by accessing an IC 𝐸± = (𝐸, 𝐸−1).

4.3 Security Models for CCM
Multi-user-AE (mu-AE) security is the indistinguishability between the real and ideal worlds. Let 𝑢

be the number of users. Let $𝜔 be a random-bit oracle of the 𝜔-th user that takes an input tuple

(𝑁,𝐴,𝑀) of a nonce, an AD, and a plaintext, and returns a pair of a random ciphertext and a

tag defined as (𝐶,𝑇 ) $←− {0, 1} |CCM.Enc[𝐸𝐾 ] (𝑁,𝐴,𝑀 ) | . Let ⊥𝜔 be a reject oracle that returns reject for

any query. Let 𝐾1, . . . , 𝐾𝑢 be users’ keys defined as 𝐾𝜔
$←− {0, 1}𝑘 for each 𝜔 ∈ [𝑢]. In the mu-AE

game in the standard or IC model, an adversary A has access to either real-world oracles Oreal or
ideal-world oracles Oideal defined as follows.

Standard Model: Oreal ≔ (CCM[𝐸𝐾1
], . . . ,CCM[𝐸𝐾𝑢 ])

Oideal ≔ (($1,⊥1), . . . , ($𝑢,⊥𝑢)).

IC Model: Oreal ≔ (CCM[𝐸𝐾1
], . . . ,CCM[𝐸𝐾𝑢 ], 𝐸±)

Oideal ≔ (($1,⊥1), . . . , ($𝑢,⊥𝑢), 𝐸±).
At the end of this game, A return a decision bit in {0, 1}. The mu-AE-security advantage function

of A is defined as

Advmuae

CCM
(A) := AdvdistO

real
,O

ideal

(A) .
Queries to each user are called online queries. Queries to encryption oracles CCM.Enc[𝐸𝐾𝜔 ]

or $𝜔 (resp. decryption oracles CCM.Dec[𝐸𝐾𝜔 ] or ⊥𝜔 ) are called encryption (resp. decryption)

queries. In the IC model, Queries to an IC are called offline queries, and offline queries to 𝐸 (resp.

𝐸−1
) are called forward (resp. inverse) queries.
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We consider nonce-respecting adversaries where for each user, all nonces in encryption queries

are distinct. In this game, making a repeated query and a trivial decryption query is forbidden,

where the trivial query (𝑁,𝐴,𝐶,𝑇 ) is such that the query tuple was obtained by some previous

encryption query to the same user.

4.3.1 Adversaries and Its Resources. In our proofs, we consider computationally-bounded and/or

computationally-unbounded adversaries. Queries to encryption oracles CCM.Enc[𝐸𝐾𝜔 ] or $𝜔 (resp.

decryption oraclesCCM.Dec[𝐸𝐾𝜔 ] or⊥𝜔 ) are called encryption (resp. decryption) queries. Let𝑞e be
the number of encryption queries, 𝑞d be the number of decryption queries, and 𝜎 be the number of

BC invocations in online queries. and 𝜎𝜔 the number of BC invocations in online queries to the𝜔-th

user such that

∑
𝜔∈[𝑢 ] 𝜎𝜔 = 𝜎 . For computationally-bounded (resp. computationally-unbounded)

adversaries, the time resources are expressed by its running time 𝜏 (resp. the number of offline

queries to an IC denoted by 𝑝). Let 𝜎u be the maximum number of BC invocations per user, i.e.,

∀𝜔 ∈ [𝑢] : 𝜎𝜔 ≤ 𝜎u.
Let Asm (resp. Aicm) be the set of all possible adversaries in the standard (resp. IC) model with

the above resources.

4.4 Coefficient-H Technique
The distinguishing advantage of A with access to either O1 or O2 can be upper-bounded by using

Patarin’s coefficient-H technique [31]. A set of values that an adversary obtains in the security

game is called a “transcript.” For 𝑖 ∈ [2], let T𝑖 be a transcript obtained by random samples of O𝑖 .
We call a transcript 𝜏 valid if Pr[T2 = 𝜏] > 0. Let T be the set of all valid transcripts such that

∀𝜏 ∈ T : Pr[T1 = 𝜏] > Pr[T2 = 𝜏]. Then, we have AdvdistO1,O2

(A) ≤ SD(T1, T2) :=
∑
𝜏∈T (Pr[T1 =

𝜏] − Pr[T2 = 𝜏]).
The statistical distance SD(T1, T2) can be bounded by using the coefficient-H technique [31].

Lemma 4.1. Let Tgood and Tbad be good and bad transcripts into which T is partitioned. If ∀𝜏 ∈
Tgood :

Pr[T1=𝜏 ]
Pr[T2=𝜏 ] ≥ 1 − 𝜀 s.t. 0 ≤ 𝜀 ≤ 1, then SD(T1, T2) ≤ Pr[T2 ∈ Tbad] + 𝜀.

Hence, we can obtain an upper-bound of AdvdistO1,O2

(A) by (1) defining good and bad transcripts;

(2) upper-bounding Pr[T2 ∈ Tbad]; and (3) lower-bounding
Pr[T1=𝜏 ]
Pr[T2=𝜏 ] for ∀𝜏 ∈ Tgood.

4.5 Definitions for Proofs
In our proofs, we use the following notations and definitions.

• For 𝛼 ∈ [𝑝], let (𝐾̂ (𝛼 ) , 𝑋 (𝛼 ) , 𝑌 (𝛼 ) ) be the 𝛼-th offline query-response tuples such that 𝑌 (𝛼 ) =
𝐸 (𝐾̂ (𝛼 ) , 𝑋 (𝛼 ) ).
• For 𝜔 ∈ [𝑢] and 𝛼 ∈ [𝑞], 𝜔 is called “user index” and 𝛼 is called “query index.”

• For 𝛼 ∈ [𝑞], values corresponding with the 𝛼-th query are denoted by using the superscript

symbol of (𝛼) such as𝑀 (𝛼 ) , 𝐶 (𝛼 ) , 𝑁 (𝛼 ) , 𝐴 (𝛼 ) , etc.
• The lengths 𝑏 and𝑚 for the 𝛼-th online query are denoted by 𝑏𝛼 and𝑚𝛼 , respectively.

• For 𝛼 ∈ [𝑞], let u𝛼 ∈ [𝑢] be the user index for the 𝛼-th online query. If an 𝛼-th online query is

to an 𝜔-th user, then u𝛼 = 𝜔 .

• Let QEnc ⊆ [𝑞] (resp. QDec ⊆ [𝑞]) be the set of encryption (resp. decryption) query indexes.

• Let Q [𝜔 ]
Enc
⊆ QEnc (resp. Q [𝜔 ]

Dec
⊆ QDec) be the set of encryption (resp. decryption) query indexes

of the 𝜔-th user.

• Let Q [𝜔 ] := Q [𝜔 ]
Enc
∪ Q [𝜔 ]

Dec
be the set of online query indexes of the 𝜔-th user.

• For 𝛼 ∈ [𝑞], let Index(𝛼 ) := ({1} × [𝑏𝛼 ]) ∪ ({2} × [0,𝑚𝛼 ]) be the set of indexes of input-output
pairs in the 𝛼-th online query.
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• Let X [𝜔 ] := {𝑋 (𝛼 )
𝑖, 𝑗
| 𝛼 ∈ Q [𝜔 ], (𝑖, 𝑗) ∈ Index(𝛼 ) } be all input blocks for the 𝜔-th user.

• Let X [𝜔 ]
Enc

:= {𝑋 (𝛼 )
𝑖, 𝑗
| 𝛼 ∈ Q [𝜔 ]

Enc
, (𝑖, 𝑗) ∈ Index(𝛼 ) } be all input blocks for encryption queries to

the 𝜔-th user.

• Let X [𝜔 ]
2

:= {(𝑋 (𝛾 )
2, 𝑗
, 𝑌
(𝛾 )

2, 𝑗
) | 𝛾 ∈ Q [𝜔 ], 𝑗 ∈ [0,𝑚𝛾 ]} be all input-output pairs defined in CTR

and the tag generation of the 𝜔-th user.

• Let X [𝜔 ]
N

:= {𝑋 (𝛼 )
1,1
, 𝑋
(𝛼 )
2,1
, . . . , 𝑋

(𝛼 )
2,𝑚𝛼
| 𝛼 ∈ Q [𝜔 ]} be the set of nonce-dependent input blocks

for the 𝜔-th user.

• Let X [𝜔 ]
≠N

:= {𝑋 (𝛼 )
1,2
, . . . , 𝑋

(𝛼 )
1,𝑏𝛼
| 𝛼 ∈ Q [𝜔 ]} be the set of nonce-independent input blocks for the

𝜔-th user.

• Let Y [𝜔 ] := {𝑌 (𝛼 )
𝑖, 𝑗
| 𝛼 ∈ Q [𝜔 ], (𝑖, 𝑗) ∈ Index(𝛼 ) } be the set of output blocks for the 𝜔-th user.

• We call “a query phase” a phase that an adversary makes queries to its oracles and “a decision

phase” a phase after finishing all queries and before outputting a decision bit.

5 Mu-Security of CCM in the Standard Model
In this section, we show an mu-bound of CCM in the standard model, followed by the security

proof.

5.1 Security Bound
Theorem 5.1. ∀A ∈ Asm:

Advmuae

CCM
(A) ≤ Advmuprp

𝐸
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) +

∑︁
𝜔∈[𝑢 ]

𝜎2

𝜔

2
𝑛
+ 𝑞d

2
𝑡
.

With the parameters 𝜎 and 𝜎u, ∀A ∈ Asm:

Advmuae

CCM
(A) ≤ Advmuprp

𝐸
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) + 𝜎u𝜎

2
𝑛
+ 𝑞d

2
𝑡
.

5.2 Proof of Theorem 5.1
Without loss of generality, assume that A is deterministic. Let 𝜎𝜔 be the number of BC calls in

online queries to the 𝜔-th user, where 𝜎𝜔 ≤ 𝜎u. In the following evaluation, we consider four

games.

Real World→ Game 2. We start the proof from the real world, followed by Game 2. In the real

world, A has access to Oreal. From the real world to Game 2, the 𝑢 BCs (𝐸𝐾𝜔 )𝜔∈[𝑢 ] are replaced
with 𝑢 RPs (𝑃𝜔 )𝜔∈[𝑢 ] , where ∀𝜔 ∈ [𝑢] : 𝑃𝜔

$←− Perm(𝑛). Hence, in Game 2, A has access to

the modified oracles O2 := (CCM[𝑃𝜔 ])𝜔∈[𝑢 ] . The BC-RP switch yields the following bound.

AdvdistO
real
,O2

(A) ≤ Advmuprp

𝐸
(𝜎, 𝜏 +𝑂 (𝜎)).

Game 2→ Game 3. We next consider Game 3. Hereafter, we consider a computationally-unbounded

adversary A. From Game 2 to Game 3, the RPs (𝑃𝜔 )𝜔∈[𝑢 ] are replaced with random functions (RFs)

(R𝜔 )𝜔∈[𝑢 ] , where ∀𝜔 ∈ [𝑢] : R𝜔
$←− Func(𝑛, 𝑛). Hence, in Game 3, A has access to the modified

oracles O3 := (CCM[R𝜔 ])𝜔∈[𝑢 ] . For each 𝜔 ∈ [𝑢], a RF R𝜔 is the same as a RP as long as no output

collision occurs, and the collision probability is

(
𝜎𝜔
2

)
· 1

2
𝑛 ≤ 0.5𝜎2

𝜔

2
𝑛 . Hence, by the RP-RF switch, we

have AdvdistO2,O3

(A) ≤ ∑
𝜔∈[𝑢 ]

0.5𝜎𝜔
2
𝑛 .

Game 3→ Ideal World. Finally, we evaluate the difference between Game 3 and the ideal world.

We derive the following bound.
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Lemma 5.2. For any computationally-unbounded adversary A,

AdvdistO3,Oideal (A) ≤
𝑞d

2
𝑡
+

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

.

where O3 = (CCM[R𝜔 ])𝜔∈[𝑢 ] and Oideal = ($𝜔 ,⊥𝜔 )𝜔∈[𝑢 ] .

Hereafter, we provide a high-level overview of the proof of Lemma 5.2, and the formal proof is

given in Section 6.

5.2.1 Proof of Lemma 5.2 (Overview). We first consider encryption queries in Game 3. For each

user, all input blocks 𝑋
(𝛼 )
2,𝑖

in CTR are distinct, and the outputs 𝑌
(𝛼 )

2,𝑖
are chosen independently and

uniformly at random from {0, 1}𝑛 . Hence, the responses (𝐶 (𝛼 ) ,𝑇 (𝛼 ) ) to the encryption queries are

indistinguishable from those defined by $𝜔 in the ideal world.

The remaining work is to evaluate the difference of responses to decryption queries between

Game 3 and the ideal world. In Game 3, for some response of the decryption query, a valid plaintext

(≠ reject) is probabilistically returned, and we have

AdvdistO3,Oideal (A) ≤ Pr[∃𝛽 ∈ QDec s.t. 𝑇
(𝛽 ) = 𝑇 (𝛽 ) ] .

We evaluate the probability by using the following event.

coll𝑋1,𝑏
⇔ ∃𝛽 ∈ QDec s.t. 𝑋

(𝛽 )
1,𝑏𝛽
∈ X [u𝛽 ]

Enc
.

The event means that for some decryption query, the last input block in CBC collides with some

input block defined by the encryption query. In other worlds, if the event does not occur, then

all tags 𝑇 (𝛽 ) are defined independently of the responses of the encryption queries. Thus, we have

Pr[∃𝛽 ∈ QDec s.t. 𝑇
(𝛽 ) = 𝑇 (𝛽 ) | ¬coll𝑋1,𝑏

] ≤ 𝑞
d

2
𝑡 , and

AdvdistO3,Oideal (A) ≤ Pr[∃𝛽 ∈ QDec s.t. 𝑇
(𝛽 ) = 𝑇 (𝛽 ) | ¬coll𝑋1,𝑏

] + Pr[coll𝑋1,𝑏
]

≤ 𝑞d
2
𝑡
+ Pr[coll𝑋1,𝑏

] .

We evaluate the probability Pr[coll𝑋1,𝑏
]. By the iterated structure of CBC and the property of

add,
4
the event coll𝑋1,𝑏

implies that there exists 𝛽 ∈ QDec, and 𝑗 ∈ [𝑏𝛽 ] such that the 𝑗-th CBC

input block is 𝑋
(𝛽 )
1, 𝑗
∈ X [u𝛽 ]

Enc
but the previous input block is 𝑋

(𝛽 )
1, 𝑗−1

∉ X [u𝛽 ]
Enc

. The 𝑗-th input block

has the form of 𝑋
(𝛽 )
1, 𝑗

= 𝐵
(𝛽 )
𝑗
⊕ 𝑌 (𝛽 )

1, 𝑗−1
and 𝑌

(𝛽 )
1, 𝑗−1

is chosen independently of all output blocks for

the encryption queries. Using the randomness of 𝑌
(𝛽 )

1, 𝑗−1
, we have the following birthday bound:

Pr[coll𝑋1,𝑏
] ≤ ∑

𝜔∈[𝑢 ]
(
𝜎𝜔
2

)
· 1

2
𝑛 ≤

∑
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛 .

By using the above bounds, we obtain the bound in Lemma 5.2. Note that the formal proof given

in Appendix 6 uses the coefficient-H technique and these events are evaluated in the ideal world by

introducing dummy internal input-output blocks.

[End of Proof of Lemma 5.2 (Overview)] ■

4
The property of add ensures that for each 𝜔 ∈ [𝑢 ], 𝛼 ∈ Q [𝜔 ]

Enc
, and 𝛽 ∈ Q [𝜔 ]

Dec
, the messages 𝐵 (𝛼 ) and 𝐵 (𝛽 ) of CBC are

distinct and the first input block 𝐵
(𝛽 )
1

is distinct from all input blocks in CTR, offering the condition ∃𝛽, 𝑗 s.t. (𝑋 (𝛽 )
1, 𝑗−1

∉

X
[u𝛽 ]
Enc
) ∧ (𝑋 (𝛽 )

1, 𝑗
∈ X

[u𝛽 ]
Enc
) .
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Conclusion of the Proof. By using these bounds, we have

Advmuae

CCM
(A) = AdvdistO

real
,O2

(A) + AdvdistO2,O3

(A) + AdvdistO3,Oideal (A)

≤ Advmuprp

𝐸
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) +

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛
+ 𝑞d

2
𝑡
.

[End of Proof of Theorem 5.1] ■

6 Proof of Lemma 5.2
We derive the following bound by using the coefficient-H technique (See Section 4.4). For any

computationally-unbounded adversary A,

AdvdistO3,Oideal (A) ≤
𝑞d

2
𝑡
+

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

,

where O3 = (CCM[R𝜔 ])𝜔∈[𝑢 ] and Oideal = ($𝜔 ,⊥𝜔 )𝜔∈[𝑢 ] . Let T3 (resp. T𝐼 ) be a transcript obtained

by random samplings of O3 (resp. Oideal).

6.1 Extended Transcript

In this poof, we permit A to obtain all input-output pairs {(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) | 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) }

in the decision phase. In the ideal world, the (dummy) internal pairs are defined by using Algorithm 4

in the decision phase. Note that giving the additional pairs does not reduce the A’s advantage, since
A can ignore the additional pairs. Thus, the (extended) transcript 𝜏 consists of

• encryption query-responses (𝑁 (𝛼 ) , 𝐴 (𝛼 ) , 𝑀 (𝛼 ) ,𝐶 (𝛼 ) ,𝑇 (𝛼 ) ) for 𝛼 ∈ QEnc,

• decryption query-responses (𝑁 (𝛼 ) , 𝐴 (𝛼 ) ,𝐶 (𝛼 ) ,𝑇 (𝛼 ) , 𝑅𝑉 (𝛼 ) ) for 𝛼 ∈ QDec, where 𝑅𝑉
(𝛼 ) ∈

M ∪ {reject} is the response to the 𝛼-th decryption query, and

• (dummy) internal pairs {(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) | 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) }.

We explain Algorithm 4. The algorithm define dummy input-output pairs {(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) | 𝛼 ∈

[𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) } by using online query-response tuples. First, the algorithm initializes tables

R𝜔 for 𝜔 ∈ [𝑢] that will keep dummy input-output pairs. Second, in Steps 2-18, dummy input-

output pairs for encryption queries are defined according to the structure of CCM.Enc. Finally, in

Steps 19-38, dummy input-output pairs for decryption queries are defined according to the structure

of CCM.Dec.

For the 𝛼-th encryption query, in Steps 4-7, dummy input-output pairs in CTR are defined

with the relation 𝐾𝑆 (𝛼 ) = 𝑀 (𝛼 ) ⊕ 𝐶 (𝛼 ) . If |𝑀 (𝛼 ) | mod 𝑛 ≠ 0, then the last block is extended to 𝑛

bits by appending a random-bit string 𝐾𝑆∗. In Steps 8-14, dummy input-output pairs in CBC are

defined, where each output block is randomly chosen if the input is new. In Steps 15-17, a dummy

input-output pair (𝑋 (𝛼 )
2,0
, 𝑌
(𝛼 )

2,0
) for a tag are defined by using the relation 𝑇 (𝛼 ) = lsb𝑡 (𝑌 (𝛼 )

1,𝑏𝛼
⊕ 𝑌 (𝛼 )

2,0
).

If 𝑡 < 𝑛, then the truncated (𝑛 − 𝑡) bits are randomly chosen.

Similarly, the dummy input-output pairs of the 𝛼-th decryption query are defined according to

the structure ofCCM.Dec. Note that in the (original) ideal world, the tag𝑇 (𝛼 ) is not introduced, thus

in Steps 35-37, 𝑌
(𝛼 )

2,0
is randomly chosen and the dummy tag is defined as 𝑇 (𝛼 ) = lsb𝑡 (𝑌 (𝛼 )

1,𝑏𝛼
⊕ 𝑌 (𝛼 )

2,0
).

Also note that for a repeated input block, the output is equal to the previous output by using the

table R𝜔
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Algorithm 4 Procedure to define internal values in the ideal world

1: for 𝜔 ∈ [𝑢], 𝑋 ∈ {0, 1}𝑛 do R𝜔 [𝑋 ] ← 𝜀 end for ⊲ Initialization of the RF’s tables

2: // Defining dummy input-output pairs for encryption queries

3: for 𝛼 ∈ QEnc do
4: // Defining dummy input-output pairs (𝑋 (𝛼 )

2,𝑖
, 𝑌
(𝛼 )

2,𝑖
) in CTR s.t. 𝑖 ≠ 0

5: 𝑚𝛼 ← |𝑀 (𝛼 ) |𝑛 ; 𝐾𝑆 (𝛼 ) ← 𝑀 (𝛼 ) ⊕ 𝐶 (𝛼 ) ; 𝜔 ← u𝛼

6: 𝐾𝑆∗
$←− {0, 1}𝑚𝛼𝑛−|𝑀 (𝛼 ) | ; 𝑌 (𝛼 )

2,1
, . . . , 𝑌

(𝛼 )
2,𝑚𝛼

𝑛←− 𝐾𝑆 (𝛼 ) ∥𝐾𝑆∗

7: for 𝑖 ∈ [𝑚𝛼 ] do 𝑋 (𝛼 )
2,𝑖
← add(𝑁 (𝛼 ) , 𝑖); R𝜔 [𝑋 (𝛼 )

2,𝑖
] ← 𝑌

(𝛼 )
2,𝑖

end for
8: // Defining dummy input-output pairs (𝑋 (𝛼 )

1,𝑖
, 𝑌
(𝛼 )

1,𝑖
) in CBC

9: 𝐵 (𝛼 ) ← fCCM (𝑁 (𝛼 ) , 𝐴 (𝛼 ) , 𝑀 (𝛼 ) ); 𝑏𝛼 ← |𝐵 (𝛼 ) |𝑛 ; 𝐵 (𝛼 )
1
, . . . , 𝐵

(𝛼 )
𝑏𝛼

𝑛←− 𝐵 (𝛼 )

10: 𝑌
(𝛼 )

1,0
← 0

𝑛

11: for 𝑖 ∈ [𝑏𝛼 ] do
12: 𝑋

(𝛼 )
1,𝑖
← 𝐵

(𝛼 )
1
⊕ 𝑌 (𝛼 )

1,𝑖−1
; if R𝜔 [𝑋 (𝛼 )

1,𝑖
] = 𝜀 then R𝜔 [𝑋 (𝛼 )

1,𝑖
] $←− {0, 1}𝑛 end if

13: 𝑌
(𝛼 )

1,𝑖
← R𝜔 [𝑋 (𝛼 )

1,𝑖
]

14: end for
15: // Defining a dummy input-output pair (𝑋 (𝛼 )

2,0
, 𝑌
(𝛼 )

2,0
) for a tag

16: 𝑇 ∗
$←− {0, 1}𝑛−𝑡 ; 𝑋 (𝛼 )

2,0
← add(𝑁 (𝛼 ) , 0); 𝑌 (𝛼 )

2,0
← 𝑌

(𝛼 )
1,𝑏𝛼
⊕ (𝑇 ∗∥𝑇 (𝛼 ) )

17: R𝜔 [𝑋 (𝛼 )
2,0
] ← 𝑌

(𝛼 )
2,0

18: end for
19: // Defining dummy input-output pairs for decryption queries

20: for 𝛼 ∈ QDec do
21: // Defining dummy input-output pairs (𝑋 (𝛼 )

2,𝑖
, 𝑌
(𝛼 )

2,𝑖
) in CTR s.t. 𝑖 ≠ 0

22: 𝑚𝛼 ← |𝐶 (𝛼 ) |𝑛 ; 𝜔 ← u𝛼

23: for 𝑖 ∈ [𝑚𝛼 ] do
24: 𝑋

(𝛼 )
2,𝑖
← add(𝑁 (𝛼 ) , 𝑖); if R𝜔 [𝑋 (𝛼 )

2,𝑖
] = 𝜀 then R𝜔 [𝑋 (𝛼 )

2,𝑖
] $←− {0, 1}𝑛 end if

25: 𝑌
(𝛼 )

2,𝑖
← R𝜔 [𝑋 (𝛼 )

2,𝑖
]

26: end for
27: 𝑀 (𝛼 ) ← 𝐶 (𝛼 ) ⊕ msb |𝐶 (𝛼 ) |

(
𝑌
(𝛼 )

2,1
∥ · · · ∥𝑌 (𝛼 )

2,𝑚𝛼

)
28: // Defining dummy input-output pairs (𝑋 (𝛼 )

1,𝑖
, 𝑌
(𝛼 )

1,𝑖
) in CBC

29: 𝐵 (𝛼 ) ← fCCM (𝑁 (𝛼 ) , 𝐴 (𝛼 ) , 𝑀 (𝛼 ) ); 𝑏𝛼 ← |𝐵 (𝛼 ) |𝑛 ; 𝐵 (𝛼 )
1
, . . . , 𝐵

(𝛼 )
𝑏𝛼

𝑛←− 𝐵 (𝛼 )

30: 𝑌
(𝛼 )

1,0
← 0

𝑛

31: for 𝑖 ∈ [𝑏𝛼 ] do
32: 𝑋

(𝛼 )
1,𝑖
← 𝐵

(𝛼 )
1
⊕ 𝑌 (𝛼 )

1,𝑖−1
; if R𝜔 [𝑋 (𝛼 )

1,𝑖
] = 𝜀 then R𝜔 [𝑋 (𝛼 )

1,𝑖
] $←− {0, 1}𝑛 end if

33: 𝑌
(𝛼 )

1,𝑖
← R𝜔 [𝑋 (𝛼 )

1,𝑖
]

34: end for
35: // Defining a dummy input-output pair (𝑋 (𝛼 )

2,0
, 𝑌
(𝛼 )

2,0
) for a tag

36: 𝑋
(𝛼 )
2,0
← add(𝑁 (𝛼 ) , 0); if R𝜔 [𝑋 (𝛼 )

2,0
] = 𝜀 then R𝜔 [𝑋 (𝛼 )

2,0
] $←− {0, 1}𝑛 end if

37: 𝑌
(𝛼 )

2,0
← R𝜔 [𝑋 (𝛼 )

2,0
]; 𝑇 (𝛼 ) ← lsb𝑡 (𝑌 (𝛼 )

1,𝑏𝛼
⊕ 𝑌 (𝛼 )

2,0
)

38: end for
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6.2 Bad and Good Transcripts
We define conditions coll𝑋1,𝑏

and forge on bad transcripts. The set of bad transcripts Tbad is a subset
of T such that one of the conditions holds. The set of good transcripts is defined as Tgood := T\Tbad,
which is the subset of T such that the conditions do not hold.

For encryption queries, all output blocks 𝑌
(𝛼 )

1, 𝑗
( 𝑗 ≥ 1) are independently chosen, and pairs of

ciphertext and tag in Game 3 are indistinguishable from those in the ideal world. On the other

hand, responses to decryption queries between Game 3 and the ideal world are probabilistically

distinct, since in Game 3, some response is not reject. The condition forge is defined so that if the

condition does not hold, responses to decryption queries are all reject and the condition coll𝑋1,𝑏
is

defined to support the evaluation of forge.

The first condition coll𝑋1,𝑏
is defined as follows.

coll𝑋1,𝑏
⇔ ∃𝛽 ∈ QDec s.t. 𝑋

(𝛽 )
1,𝑏𝛽
∈ X [u𝛽 ]

Enc
.

coll𝑋1,𝑏
ensures that if the condition does not hold, all last input blocks in CBC are new, and the

output blocks can be seen as fresh random values. Next, the second condition forge is defined as

follows.

forge⇔ ∃𝛽 ∈ QDec s.t. 𝑇
(𝛽 ) = 𝑇 (𝛽 ) .

In Game 3, if the event does not occur, then all responses to decryption queries are reject, thus
there is no difference between Game 3 and the ideal world.

6.3 Upper-bounding Pr[T𝐼 ∈ Tbad]
Let coll

∗
𝑋1,𝑏

(resp. forge
∗
) be an event that coll𝑋1,𝑏

(resp. forge) occurs before forge (resp. coll𝑋1,𝑏
)

occurs. Since one of the conditions on Tbad occurs before the other occurs, we have

Pr[T𝐼 ∈ Tbad] ≤ Pr[coll∗𝑋1,𝑏
] + Pr[forge∗] ≤ ©­«

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

ª®¬ + 𝑞d2
𝑡
.

These bounds are derived in the followings.

6.3.1 Upper-bounding Pr[coll∗𝑋1,𝑏
]. Fix 𝜔 ∈ [𝑢]. Let 𝜎𝜔,2 := |X [𝜔 ]

2
| be the total number of input

blocks in CTR of the 𝜔-th user, and 𝜎𝜔,1 :=
∑
𝛼∈Q [𝜔 ] 𝑏𝛼 the total number of input-output pairs

(𝑋 (𝛼 )
1, 𝑗
, 𝑌
(𝛼 )

1, 𝑗
) in CBC of the 𝜔-th user.

In this evaluation, we use the following event.

coll𝑋1,𝑋2
⇔ ∃𝛽 ∈ Q [𝜔 ], 𝑗 ∈ [𝑏𝛽 ] s.t. 𝑋 (𝛽 )1, 𝑗

∈ X [𝜔 ]
2

.

The event considers a collision in input blocks between CBC and CTR (with the tag generation)

for the 𝜔-th user. Since 𝑋
(𝛽 )
1,1

∉ X [𝜔 ]
2

, the output block 𝑌
(𝛽 )

1,1
is chosen independently of all output

blocks in CTR. By the iterated structure of CBC, if coll𝑋1,𝑋2
occurs, then there exists 𝑗 ∈ [𝑏𝛽 ]

such that 𝑋
(𝛽 )
1, 𝑗−1

∉ X [𝜔 ]
2
∧ 𝑋 (𝛽 )

1, 𝑗
∈ X [𝜔 ]

2
. For each 𝑋

(𝛽 )
1, 𝑗−1

∉ X [𝜔 ]
2

and 𝑋
(𝛼 )
2,𝑖
∈ X [𝜔 ]

2
, 𝑌
(𝛽 )

1, 𝑗−1
is chosen

independently of 𝑋
(𝛼 )
2,𝑖

, we have

Pr[𝑋 (𝛽 )
1, 𝑗

= 𝑋
(𝛼 )
2,𝑖
] = Pr[𝑌 (𝛽 )

1, 𝑗−1
⊕ 𝐵 (𝛽 )

𝑗
= 𝑋

(𝛼 )
2,𝑖
] ≤ 1

2
𝑛
,

and

Pr[coll𝑋1,𝑋2
] ≤ 𝜎𝜔,2𝜎𝜔,1

2
𝑛

.

We next evaluate Pr[coll∗𝑋1,𝑏
] under the assumption that coll𝑋1,𝑋2

does not occur. Since fCCM is

an injective function, for any 𝛼, 𝛽 ∈ Q [𝜔 ] such that 𝛼 ≠ 𝛽 , 𝐵 (𝛽 ) ≠ 𝐵 (𝛼 ) holds. By this property and
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the iterated structure of CBC, if coll
∗
𝑋1,𝑏

occurs, then 𝑋
(𝛼 )
2,𝑖−1

≠ 𝑋
(𝛽 )
2, 𝑗−1

and 𝑋
(𝛼 )
2,𝑖

= 𝑋
(𝛽 )
2, 𝑗

must hold for

some 𝛼, 𝛽 ∈ Q [𝜔 ], 𝑖 ∈ [𝑏𝛼 ], 𝑗 ∈ [2, 𝑏𝛽 ] such that (𝛼, 𝑖) ≠ (𝛽, 𝑗). Note that if 𝑖 = 1, then 𝑋
(𝛼 )
2,0

:= 𝜀 for

the sake of convenience. For two input blocks 𝑋
(𝛼 )
2,𝑖−1

≠ 𝑋
(𝛽 )
2, 𝑗−1

, the output blocks are independently

chosen, and we have

Pr[𝑋 (𝛼 )
2,𝑖

= 𝑋
(𝛽 )
2, 𝑗
] = Pr[𝑋 (𝛼 )

2,𝑖
= 𝑌

(𝛽 )
2, 𝑗−1
⊕ 𝐵 (𝛽 )

𝑗
] ≤ 1

2
𝑛
,

and

Pr[coll∗𝑋1,𝑏
] ≤

(
𝜎𝜔,1

2

)
· 1

2
𝑛
≤

0.5𝜎2

𝜔,1

2
𝑛

.

Summing the above bounds for each 𝜔 , we have

Pr[coll∗𝑋1,𝑏
] ≤

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔,1

2
𝑛
+ 𝜎𝜔,2𝜎𝜔,1

2
𝑛

≤
∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

.

6.3.2 Upper-bounding Pr[forge∗]. For each 𝛽 ∈ QDec, coll𝑋 ∗
1,𝑏

does not occur, and 𝑌
(𝛽 )

1,𝑏𝛽
is chosen

independently of all output blocks defined in encryption queries. Hence, we have

Pr[forge∗] ≤
∑︁

𝛽∈QDec

Pr[𝑇 (𝛽 ) = 𝑇 (𝛽 ) ]

=
∑︁

𝛽∈QDec

Pr[𝑇 (𝛽 ) = lsb𝑡 (𝑌 (𝛽 )
1,𝑏𝛽
⊕ 𝑌 (𝛽 )

2,0
)] ≤ 𝑞d

2
𝑡
.

6.4 Lower-bounding Pr[T3=𝜏 ]
Pr[T𝐼=𝜏 ]

Fix a good transcript 𝜏 ∈ Tgood. By ¬forge, the input-output pairs in 𝜏 are defined so that ∀𝛽 ∈
QDec : 𝑇 [𝛽 ] ≠ 𝑇 [𝛽 ] holds. Since all responses (𝐶 (𝛼 ) ,𝑇 (𝛽 ) ) for 𝛼 ∈ QEnc are uniquely fixed from

input-output pairs (𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
), we evaluate the probability that all input-output pairs result in the

good transcript 𝜏 .

In the ideal world, all output blocks of CTR for encryption queries are independent defined by

random-bit oracles via Algorithm 4. In Game 3, the nonce-respect setting ensures that all input

blocks in CTR are distinct, ensuring that all output blocks in CTR are independently defined. For

the other outputs, for a new input, the output is chosen uniformly at random from {0, 1}𝑛 in both

Game 3 and the ideal world, and for a repeated input, the output is defined as the same one. Hence,

the above evaluation shows that Pr[T3 = 𝜏] = Pr[T𝐼 = 𝜏], thus we have
Pr[T3 = 𝜏]
Pr[T𝐼 = 𝜏]

= 1.

6.5 Deriving the Upper-bound

Combining Lemma 4.1 with the upper-bound of Pr[T𝐼 ∈ Tbad] and the lower-bound of
Pr[T3=𝜏 ]
Pr[T𝐼=𝜏 ] , we

obtain the upper-bound in Lemma 5.2.

[End of Proof of Lemma 5.2] ■

7 Mu-Security of CCM with NR

We evaluate the security of CCM with randomized nonce in the IC model. We use the 𝑑-bound

model by Hoang and Tessaro [16], which is a generalization of the randomized nonce.
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7.1 𝑑-bound Adversaries
In the 𝑑-bound model, the number of collisions of nonces in encryption queries across users is

bounded by 𝑑 . Note that there is no collision in nonces in encryption queries within the same user.

Definition 7.1 (𝑑-bound model). For 𝜔 ∈ [𝑢], let N [𝜔 ] be the set of nonces in encryption queries

to the𝜔-th user. A 𝑑-bound adversary is such that for any 𝑁 ∈ {0, 1}𝜈 , |{𝜔 ∈ [𝑢] | 𝑁 ∈ N [𝜔 ]}| ≤ 𝑑 .

We study the bound 𝑑 . We consider the following randomized nonce: each original nonce 𝑁orig

is defined by incrementing 1, i.e., 𝑁orig ← 𝑁orig + 1 (initially 𝑁orig = 0
𝑛
), and a randomized nonce

𝑁 is defined as 𝑁 = 𝑁orig ⊕ 𝑅 with the 𝜈-bit original nonce 𝑁orig and a user-specific random mask

𝑅 ∈ {0, 1}𝜈 . Then, for each of 𝑑 randomized nonces 𝑁 (𝛼1 ) , . . . , 𝑁 (𝛼𝑑 ) such that the user indexes

u𝛼1
, . . . , u𝛼𝑑 are all distinct, we have Pr[𝑁 (𝛼1 ) = . . . = 𝑁 (𝛼𝑑 ) ] ≤

(
1

2
𝜈

)𝑑−1

. Using the bound with

𝑑 := 𝜈
log

2
𝜈
, we have

Pr[∃𝛼1, . . . , 𝛼𝑑 s.t. 𝑁 (𝛼1 ) = . . . = 𝑁 (𝛼𝑑 ) ]

≤
(
𝑞e

𝑑

)
·
(

1

2
𝜈

)𝑑−1

≤ 2
𝜈
( 𝑒𝑞e
𝑑2

𝜈

)𝑑
= 2

𝜈

(
𝑒𝑞e
𝜈

log
2
𝜈
· 2𝜈

) 𝜈
log

2
𝜈

≤
(
(2𝜈 )

log
2
𝜈

𝜈 · 𝑒𝑞e
𝜈

log
2
𝜈
· 2𝜈

) 𝜈
log

2
𝜈

≤
(

3(log
2
𝜈)𝑞e

2
𝜈

) 𝜈
log

2
𝜈

,

using Stirling’s approximation (𝑑! ≥ (𝑑/𝑒)𝑑 for any 𝑑). We then consider for the common parameter

for CCM: the nonce size is 𝜈 = 3𝑛/4 (𝜈 = 96 when using the AES parameter 𝑛 = 128). In this case,

𝑑 =
3𝑛/4

log
2
(3𝑛/4) and the bound of 𝑑 can be ensured up to 𝑞e ≈ 2

3𝑛/4
encryption queries.

7.2 Security Bound
Theorem 7.2. ∀A ∈ Aicm such that A is a 𝑑-bound adversary:

Advmuae

CCM
(A) ≤ 𝑞d

2
𝑡
+

∑︁
𝜔∈[𝑢 ]

𝜎2

𝜔

2
𝑛
+

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 .

With the parameters 𝜎 and 𝜎u, ∀A ∈ Aicm such that A is a 𝑑-bound adversary:

Advmuae

CCM
(A) ≤ 𝑞d

2
𝑡
+ 𝜎u𝜎

2
𝑛
+

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 .

Assume that 𝑛 ≤ 𝑘 . The last three terms excluding 𝑝 are of online security and become a constant

if 𝜎 is about 2
𝑛
. On the other hand, the second term becomes a constant if 𝜎 is about

2
𝑛

𝜎u
. Hence,

the first two terms are dominant online terms. The last term excluding 𝜎 is of offline security and

becomes a constant if 𝑝 = 2
𝑘+𝑛

𝜎
. Since 𝜎 ≤ 2

𝑛
, the third term excluding 𝜎 is a dominant offline term.

Since 𝑑 is about
𝑛

log
2
𝑛
, dominant terms in the bound is

𝑞
d

2
𝑡 + 𝜎u𝜎

2
𝑛 + 𝑑𝑝

2
𝑘 .

7.3 Proof of Theorem 7.2
Without loss of generality, we assume that A is deterministic. In this evaluation, we consider three

games.
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Real World→ Game 2. We start the proof from the real world, followed by Game 2. In the real

world, A has access to Oreal. From the real world to Game 2, the 𝑢 BCs (𝐸𝐾𝜔 )𝜔∈[𝑢 ] are replaced
with 𝑢 RFs (R𝜔 )𝜔∈[𝑢 ] . Hence, in Game 2, A has access to the modified oracles

O2 ≔ ((CCM[R𝜔 ])𝜔∈[𝑢 ], 𝐸±),

where 𝐸
$←− BC and ∀𝜔 ∈ [𝑢] : R𝜔

$←− Func(𝑛, 𝑛). The following lemma shows an upper-bound of

the difference between the real world and Game 2.

Lemma 7.3. For any computationally-unbounded adversary A,

AdvdistO
real
,O2

(A) ≤

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 +

(
3(log

2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+
∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

,

where Oreal = ((CCM[𝐸𝐾𝜔 ])𝜔∈[𝑢 ], 𝐸±) and O2 = ((CCM[R𝜔 ])𝜔∈[𝑢 ], 𝐸±).

Hereafter, we provide a high-level overview of the proof, and the formal proof is given in

Section 8.

7.3.1 Proof of Lemma 7.3 (Overview). From the real world to Game 2, the underlying primitives

are replaced from an IC 𝐸 (with independent keys) to independent RFs (R𝜔 )𝜔∈[𝑢 ] . We thus define

the following three events that are taken into account the difference.

Event collon,≠u. We first define an event collon,≠u that considers a collision of pairs of key and

input/output block between distinct users. If it does not occur in the real world, for each user, the

underlying primitive can be independent of those of the other users as Game 2.

collon,≠u ⇔ 𝜔1, 𝜔2 ∈ [𝑢] s.t. 𝜔1 ≠ 𝜔2 ∧ 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ]∧
(X [𝜔1 ] ∩ X [𝜔2 ] ≠ ∅ ∨ Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅) .

X [𝜔1 ] ∩ X [𝜔2 ] ≠ ∅ is the condition on the input-block collision and Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅ is the one
on the output-block collision.

We consider the collisions 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ X [𝜔1 ] ∩ X [𝜔2 ] ≠ ∅.
• If X [𝜔1 ]

N
∩ X [𝜔2 ]

N
≠ ∅, i.e., a collision occurs in nonce-dependent input blocks, then a collision

of nonces between distinct users occurs. In the 𝑑-bound model, for each nonce 𝑁 (𝛼 ) of the
𝜔1-th user, the number of the other different users with the same nonce is at most 𝑑 . Hence,

for each pair of key and nonce, the probability that the pair collides with one of the pairs of

the other different users is at most
𝑑

2
𝑘 . Thus, we have Pr[𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ X [𝜔1 ]

N
∩ X [𝜔2 ]

N
≠

∅] ≤ ∑
𝛼∈[𝑞 ]

𝑑

2
𝑘 =

𝑑𝑞

2
𝑘 .

• If X [𝜔1 ]
≠N
∩ X [𝜔2 ] ≠ ∅, i.e., a collision with nonce-independent input blocks occurs, then

each input block 𝑋
(𝛼 )
1, 𝑗
∈ X [𝜔1 ]

≠N
is defined as 𝑋

(𝛼 )
1, 𝑗

= 𝐵
(𝛼 )
1, 𝑗
⊕ 𝑌 (𝛼 )

1, 𝑗−1
where 𝑌

(𝛼 )
1, 𝑗−1

is an 𝑛-bit

random value. Hence, we can use the 𝑛-bit randomness, providing the bound Pr[𝐾 [𝜔1 ] =

𝐾 [𝜔2 ] ∧ X [𝜔1 ]
≠N
∩ X [𝜔2 ] ≠ ∅] ≤

(
𝜎
2

)
· 1

2
𝑘+𝑛 ≤ 𝜎2

2
𝑘+𝑛 .

We next consider the collisions 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅. The evaluation is the same

as the one for the collisions 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ X [𝜔1 ]
N
∩ X [𝜔2 ]

N
≠ ∅. In this case, instead of the multi-

collision bound 𝑑 for input blocks, we use a multi-collision event for output blocks ∪𝜔∈[𝑢 ]Y [𝜔 ] . By
using the randomness of the output blocks, the probability that ( 𝑛

log
2
𝑛
)-multi-collision occurs in

the output blocks can be bounded by ( 3(log
2
𝑛)𝜎

2
𝑛 )

𝑛
log

2
𝑛
. Assuming that the multi-collision does not
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occur, by the same evaluation (but 𝑑 is replaced with the bound
𝑛

log
2
𝑛
), we have

Pr[𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅] ≤
𝑛

log
2
𝑛
·𝜎

2
𝑘 .

Summing these bounds, we have

Pr[collon,≠u] ≤
(
𝑑+ 𝑛

log
2
𝑛

)
𝜎

2
𝑘 +

(
3(log

2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛 + 𝜎2

2
𝑘+𝑛 .

Event collon,off . In Game 2, the underlying primitives (R𝜔 )𝜔∈[𝑢 ] are independent of 𝐸±. On the other
hand, in the real world, all underlying primitives are 𝐸 (with independent keys). We thus define an

event collon,off for the difference. The event considers a collision of pairs of key and input/output

block between online and offline queries. If it does not occur, outputs of user’s primitives can be

independent of offline query-response tuples.

collon,off ⇔ 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) , 𝛽 ∈ [𝑝]

s.t. 𝐾 [u𝛼 ] = 𝐾̂ (𝛽 ) ∧ (𝑋 (𝛼 )
𝑖, 𝑗

= 𝑋 (𝛽 ) ∨ 𝑌 (𝛼 )
𝑖, 𝑗

= 𝑌 (𝛽 ) ).

The evaluation is similar to the evaluation for the event collon,≠u. By using the 𝑑-bound model for

the input-block collision and the ( 𝑛
log

2
𝑛
)-multi-collision event for the output-block collision, we

can obtain Pr[collon,off] ≤
(
𝑑+ 𝑛

log
2
𝑛

)
𝑝

2
𝑘 + 𝜎𝑝

2
𝑘+𝑛 .

Event collon,=u. In Game 2, for each 𝜔 ∈ [𝑢], each output of the underlying primitive R𝜔 is chosen

with replacement. On the other hand, in the real world, all underlying primitives are 𝐸 (with

independent keys) and for each 𝜔 ∈ [𝑢], each output of the underlying primitive is chosen without

replacement. We thus define an event collon,=u for the RP-RF difference.

collon,=u ⇔ ∃𝜔 ∈ [𝑢], 𝑋 (𝛼1 )
𝑖1, 𝑗1

, 𝑋
(𝛼2 )
𝑖2, 𝑗2
∈ X [𝜔 ] s.t.

𝑋
(𝛼1 )
𝑖1, 𝑗1

≠ 𝑋
(𝛼2 )
𝑖2, 𝑗2
∧ 𝑌 (𝛼1 )

𝑖1, 𝑗1
= 𝑌

(𝛼2 )
𝑖2, 𝑗2

,

where 𝑌
(𝛼1 )
𝑖1, 𝑗1

and 𝑌
(𝛼2 )
𝑖2, 𝑗2

are independently chosen. By the birthday analysis, we have Pr[collon,=u] ≤∑
𝜔∈[𝑢 ]

(
𝜎𝜔
2

)
· 1

2
𝑛 ≤

∑
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛 .

Deriving the Bound in Lemma 7.3. These events cover the differences from the replacements of the

underlying primitives from (𝐸𝐾𝜔 )𝜔∈[𝑢 ] to (R𝜔 )𝜔∈[𝑢 ] , thus by the above bounds, we have

AdvdistO
real
,O2

(A) ≤ Pr[collon,≠u] + Pr[collon,off] + Pr[collon,=u]

≤

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 +

(
3(log

2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+
∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

.

Note that the formal proof given in Appendix 8 uses the coefficient-H technique and these events

are evaluated in Game 2.

[End of Proof of Lemma 7.3 (Overview)] ■

Game 2→ Ideal World. For the difference between Game 2 and the ideal world, we use Lemma 5.2

in the proof of Theorem 5.1. In Lemma 5.2, an IC is absent, whereas in this evaluation, an IC is

available. However, the responses of online queries are independent of the IC, thus an adversary

can simulate an IC. Hence, the difference between Game 2 and the ideal world can be bounded by

the bound in Lemma 5.2, and we have AdvdistO2,Oideal (A) ≤
(∑

𝜔∈[𝑢 ]
0.5𝜎2

𝜔

2
𝑛

)
+ 𝑞d

2
𝑡 .



20 Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

Conclusion of the Proof. Using the above bounds, we have

Advmuae

CCM
(A) = AdvdistO

real
,O2

(A) + AdvdistO2,Oideal (A)

≤ 𝑞d
2
𝑡
+

∑︁
𝜔∈[𝑢 ]

𝜎2

𝜔

2
𝑛
+

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 .

[End of Proof of Theorem 7.2] ■

8 Proof of Lemma 7.3
We derive the following bound by using the coefficient-H technique (See Section 4.4). For any

computationally-unbounded, 𝑑-bound adversary A,

AdvdistO
real
,O2

(A) ≤

(
𝑑 + 𝑛

log
2
𝑛

)
· (𝑝 + 𝜎)

2
𝑘

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 +

(
3(log

2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+
∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

,

where Oreal = (CCM[𝐸𝐾𝜔 ])𝜔∈[𝑢 ], 𝐸±) and O2 = ((CCM[R𝜔 ])𝜔∈[𝑢 ], 𝐸±). Let T𝑅 (resp. T2) be a

transcript obtained by random samplings of Oreal (resp. O2).

8.1 Extended Transcript

In this poof, we permit A to obtain all internal values {(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) | 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) } in

the decision phase. Note that the additional values do not reduce the A’s advantage, since A can

ignore the values. Thus, the (extended) transcript 𝜏 consists of

• primitive query-responses (𝐾̂ (𝛼 ) , 𝑋 (𝛼 ) , 𝑌 (𝛼 ) ) for 𝛼 ∈ [𝑝],
• encryption query-responses (𝑁 (𝛼 ) , 𝐴 (𝛼 ) , 𝑀 (𝛼 ) ,𝐶 (𝛼 ) ,𝑇 (𝛼 ) ) for 𝛼 ∈ QEnc,

• decryption query-responses (𝑁 (𝛼 ) , 𝐴 (𝛼 ) ,𝐶 (𝛼 ) ,𝑇 (𝛼 ) , 𝑅𝑉 (𝛼 ) ) for 𝛼 ∈ QDec, where 𝑅𝑉
(𝛼 ) ∈

M ∪ {reject} is the response to the 𝛼-th decryption query, and

• (dummy) internal values {(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) | 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) }.

8.2 Bad and Good Transcripts
We define four conditions collon, collon,off , mcoll𝑌 and collon,=u on bad transcripts. The set of bad

transcripts Tbad is a subset of T such that one of the conditions holds. The set of good transcripts

is defined as Tgood := T\Tbad, which is the subset of T such that the conditions do not hold.

8.2.1 Conditions on (In)dependence for Online and Offline Queries. In Game 2, for each 𝜔 ∈ [𝑢],
the internal input-output tuples are defined independently of 𝐸± and the input-output tuples of the

other users. On the other hand, in the real world, all underlying primitives use the same IC 𝐸 (with

independent keys). Hence, we ensure the independence by introducing the following events.

collon,≠u ⇔ 𝜔1, 𝜔2 ∈ [𝑢] s.t. 𝜔1 ≠ 𝜔2 ∧ 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ]∧
(X [𝜔1 ] ∩ X [𝜔2 ] ≠ ∅ ∨ Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅) .

collon,off ⇔ 𝛼 ∈ [𝑞], (𝑖, 𝑗) ∈ Index(𝛼 ) , 𝛽 ∈ [𝑝]

s.t. 𝐾 [u𝛼 ] = 𝐾̂ (𝛽 ) ∧ (𝑋 (𝛼 )
𝑖, 𝑗

= 𝑋 (𝛽 ) ∨ 𝑌 (𝛼 )
𝑖, 𝑗

= 𝑌 (𝛽 ) ).

The first event collon,≠u considers a collision in pairs of key and input (or output) block between

different users. Thus, if the event does not occur, the independence of input-output tuples between

distinct users is ensured. The second event collon,off considers a collision in pairs of key and input
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block (or output block) between online and offline queries. Thus, if the event does not occur, the

independence of input-output tuples between online and offline queries is ensured.

8.2.2 Condition on Output Blocks. We define a multi-collision event for output blocks across

distinct users. The multi-collision event is used to evaluate the probabilities of collon,≠u and collon,off

with the output collisions. Note that for the probabilities with the input collisions, the bound 𝑑 is

used. Let 𝜇 := 𝑛
log

2
𝑛
.

mcoll𝑌 ⇔ ∃𝛼1, . . . , 𝛼𝜇 ∈ [𝑞], (𝑖1, 𝑗1) ∈ Index(𝛼1 ) , . . . , (𝑖𝜇, 𝑗𝜇) ∈ Index(𝛼𝜇 )

s.t. u𝛼1
, . . . , u𝛼𝜇 are all distinct and 𝑌

(𝛼1 )
𝑖1, 𝑗1

= · · · = 𝑌 (𝛼𝜇 )
𝑖𝜇 , 𝑗𝜇

.

8.2.3 Condition on RP-RF Switch. In the real world (resp. Game 2), output blocks are defined

without (resp. with) replacement for each key element. We thus define the following event to cover

the collision of output blocks in Game 2.

collon,=u ⇔ ∃𝜔 ∈ [𝑢], 𝑋 (𝛼1 )
𝑖1, 𝑗1

, 𝑋
(𝛼2 )
𝑖2, 𝑗2
∈ X [𝜔 ] s.t. 𝑋 (𝛼1 )

𝑖1, 𝑗1
≠ 𝑋

(𝛼2 )
𝑖2, 𝑗2
∧ 𝑌 (𝛼1 )

𝑖1, 𝑗1
= 𝑌

(𝛼2 )
𝑖2, 𝑗2

.

8.3 Upper-bounding Pr[T𝐼 ∈ Tbad]
Let Event := {collon,≠u, collon,off,mcoll𝑌 , collon,=u}. For each event ∈ Event, let event∗ be an event

that event before the other events Event\{event} occur. Since one of the conditions on Tbad occurs
before the other occurs, we have

Pr[T𝐼 ∈ Tbad] ≤
∑︁

event∈Event
Pr[event∗]

≤

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 +

(
3(log

2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+
∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

.

8.3.1 Upper-bounding Pr[coll∗
on,≠u]. Wefirst consider the collisions𝐾 [𝜔1 ] = 𝐾 [𝜔2 ]∧X [𝜔1 ]∩X [𝜔2 ] ≠

∅.
• If X [𝜔1 ]

N
∩ X [𝜔2 ]

N
≠ ∅, i.e., a collision occurs in nonce-dependent input blocks between distinct

users, then a nonce collision occurs, since ∃𝑋 (𝛼1 )
𝑖1, 𝑗1
∈ X [𝜔1 ]

N
, 𝑋
(𝛼2 )
𝑖2, 𝑗2
∈ X [𝜔2 ]

N
s.t. 𝑋

(𝛼1 )
𝑖1, 𝑗1

= 𝑋
(𝛼2 )
𝑖2, 𝑗2
⇒

𝑁 (𝛼1 ) = extnonce (𝑋 (𝛼1 )
𝑖1, 𝑗1
) = extnonce (𝑋 (𝛼2 )

𝑖2, 𝑗2
) = 𝑁 (𝛼2 )

. In the 𝑑-bound model, for each nonce

𝑁 (𝛼 ) of the 𝜔1-th user, the number of the other users with the same nonce is at most 𝑑 . Hence,

for each pair of key and nonce, the probability that the pair collides with one of the pairs

of the other users is at most
𝑑

2
𝑘 . Thus, we have Pr[𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧ X [𝜔1 ]

N
∩ X [𝜔2 ]

N
≠ ∅] ≤∑

𝛼∈[𝑞 ]
𝑑

2
𝑘 =

𝑑𝑞

2
𝑘 .

• IfX [𝜔1 ]
≠N
∩X [𝜔2 ] ≠ ∅, i.e., a collision occurs for nonce-independent input blocks, then each input

block𝑋
(𝛼 )
1, 𝑗
∈ X [𝜔1 ]

N
is defined as𝑋

(𝛼 )
1, 𝑗

= 𝐵
(𝛼 )
1, 𝑗
⊕𝑌 (𝛼 )

1, 𝑗−1
where 𝑌

(𝛼 )
1, 𝑗−1

is an 𝑛-bit random value. By

using the𝑛-bit randomness, we have Pr[𝐾 [𝜔1 ] = 𝐾 [𝜔2 ]∧X [𝜔1 ]
≠N
∩X [𝜔2 ] ≠ ∅] ≤

(
𝜎
2

)
· 1

2
𝑘+𝑛 ≤ 0.5𝜎2

2
𝑘+𝑛 .

Using the above bounds, we have

Pr[coll∗
on,≠u ∧ X [𝜔1 ] ∩ X [𝜔2 ] ≠ ∅] ≤ 𝑑𝑞

2
𝑘
+ 0.5𝜎2

2
𝑘+𝑛 .

We next consider the collisions 𝐾 [𝜔1 ] = 𝐾 [𝜔2 ] ∧Y [𝜔1 ] ∩Y [𝜔2 ] ≠ ∅. By ¬mcoll𝑌 , for each 𝛼 ∈ [𝑞]
and (𝑖, 𝑗) ∈ Index(𝛼 ) , the number of tuples (𝛽, (𝑖′, 𝑗 ′)) ∈ [𝑞]×Index(𝛽 ) s.t. u(𝛼 ) ≠ u

(𝛽 )∧𝑌 (𝛼 )
𝑖, 𝑗

= 𝑌
(𝛽 )
𝑖′, 𝑗 ′
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is at most 𝜇, thus the number of key candidates that yield the collisions is at most 𝜇. Hence, we

have

Pr[coll∗
on,≠u ∧ Y [𝜔1 ] ∩ Y [𝜔2 ] ≠ ∅]

≤
∑︁

𝛼∈[𝑞 ],(𝑖, 𝑗 ) ∈Index(𝛼 )

𝜇

2
𝑘
=
𝜇𝜎

2
𝑘
=

𝑛
log

2
𝑛
· 𝜎

2
𝑘

.

Using the above bounds, we have

Pr[collon,≠u] ≤
𝑑𝑞 + 𝑛

log
2
𝑛
· 𝜎

2
𝑘

+ 𝜎2

2
𝑘+𝑛 .

8.3.2 Upper-bounding Pr[collon,off]. We first consider the collisions 𝐾 [u𝛼 ] = 𝐾̂ (𝛽 ) and 𝑋 (𝛼 )
𝑖, 𝑗

= 𝑋 (𝛽 ) .

• We consider the collisions with 𝑋
(𝛼 )
𝑖, 𝑗
∈ X [𝜔 ]

N
for some 𝜔 ∈ [𝑢]. In the 𝑑-bound model, for each

𝛽 ∈ [𝑝], the number of input-output tuples (𝐾 [u𝛼 ], 𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) such that 𝑋 (𝛽 ) = 𝑋

(𝛼 )
𝑖, 𝑗

is at

most 𝑑 , since 𝑋 (𝛽 ) = 𝑋 (𝛼 )
𝑖, 𝑗
⇒ 𝑁 (𝛼 ) = extnonce (𝑋 (𝛼 )𝑖, 𝑗

) = extnonce (𝑋 (𝛽 ) ). Thus, the probability
that 𝐾̂ [𝛽 ] is equal to one of (at most) the 𝑑 keys is

𝑑

2
𝑘 . Thus, we have Pr[∃𝛼, 𝛽, 𝑖, 𝑗 s.t. 𝐾 [u𝛼 ] =

𝐾̂ (𝛽 ) ∧ 𝑋 (𝛼 )
𝑖, 𝑗

= 𝑋 (𝛽 ) ] ≤ ∑
𝛼∈[𝑝 ]

𝑑

2
𝑘 =

𝑑𝑝

2
𝑘 .

• We consider the collisions with𝑋
(𝛼 )
𝑖, 𝑗
∈ X [𝜔 ]

≠N
for some𝜔 ∈ [𝑢]. In this case, 𝑖 = 1 and 1 ≤ 𝑗 . For

𝑋
(𝛼 )
1, 𝑗
∈ X [𝜔 ]

≠N
, it is defined as𝑋

(𝛼 )
1, 𝑗

= 𝐵
(𝛼 )
1, 𝑗
⊕𝑌 (𝛼 )

1, 𝑗−1
where𝑌

(𝛼 )
1, 𝑗−1

is an𝑛-bit random value. By using

the𝑛-bit randomness, we have Pr[∃𝛼, 𝛽, 𝑖, 𝑗 s.t. 𝐾 [u𝛼 ] = 𝐾̂ (𝛽 )∧𝑋 (𝛼 )
𝑖, 𝑗

= 𝑋 (𝛽 ) ] ≤ 𝜎 ·𝑝 · 1

2
𝑘+𝑛 =

𝜎𝑝

2
𝑘+𝑛 .

Using the above bounds, we have

Pr[collon,off ∧ 𝑋 (𝛼 )𝑖, 𝑗
= 𝑋 (𝛽 ) ] ≤ 𝑑𝑝

2
𝑘
+ 𝜎𝑝

2
𝑘+𝑛 .

We next consider the collisions 𝐾 [u𝛼 ] = 𝐾̂ (𝛽 ) and 𝑌 (𝛼 )
𝑖, 𝑗

= 𝑌 (𝛽 ) . For each 𝛽 ∈ [𝑝], the number of

input-output tuples (𝐾 [u𝛼 ], 𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) such that 𝑌 (𝛽 ) = 𝑌 (𝛼 )

𝑖, 𝑗
is at most 𝑑 due to ¬mcoll𝑌 . Thus,

the number of key candidates that yield the collisions is at most 𝜇, and we have

Pr[collon,off ∧ 𝑌 (𝛼 )𝑖, 𝑗
= 𝑌 (𝛽 ) ] ≤ 𝑝 · 𝜇

2
𝑘
=

𝑛
log

2
𝑛
· 𝑝

2
𝑘

.

Using these bounds, we have

Pr[collon,off] ≤

(
𝑑 + 𝑛

log
2
𝑛

)
𝑝

2
𝑘

+ 𝜎𝑝

2
𝑘+𝑛 .

8.3.3 Upper-bounding Pr[mcoll
∗
𝑌 ]. For each 𝛼1, . . . , 𝛼𝜇 ∈ [𝑞] and (𝑖1, 𝑖 𝑗 ) ∈ Index(𝛼1 ) , . . . , (𝑖𝜇, 𝑖𝜇) ∈

Index
(𝛼𝜇 )

s.t. u𝛼1
, . . . , u𝛼𝜇 are all distinct, the 𝜇 tags 𝑌

(𝛼1 )
𝑖1, 𝑗1

, . . . , 𝑌
(𝛼𝜇 )
𝑖𝜇 , 𝑗𝜇

are independently chosen, and

we have Pr[𝑌 (𝛼1 )
𝑖1, 𝑗1

= · · · = 𝑌 (𝛼𝜇 )
𝑖𝜇 , 𝑗𝜇
] ≤

(
1

2
𝑛

)𝜇−1

. Thus,

Pr[mcoll
∗
𝑌 ] ≤

(
𝜎

𝜇

) (
1

2
𝑛

)𝜇−1

≤ 2
𝑛

(
𝑒𝜎

𝜇2
𝑛

)𝜇
= 2

𝑛

(
𝑒𝜎

𝑛
log

2
𝑛
· 2𝑛

) 𝑛
log

2
𝑛

≤
(
(2𝑛)

log
2
𝑛

𝑛 · 𝑒𝜎
𝑛

log
2
𝑛
· 2𝑛

) 𝑛
log

2
𝑛

≤
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

,
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using Stirling’s approximation (𝜇! ≥ (𝜇/𝑒)𝜇 for any 𝜇).

8.3.4 Upper-bounding Pr[collon,=u]. For each 𝜔 ∈ [𝑢], 𝑋 (𝛼1 )
𝑖1, 𝑗1

, 𝑋
(𝛼2 )
𝑖2, 𝑗2
∈ X [𝜔 ] s.t. 𝑋 (𝛼1 )

𝑖1, 𝑗1
≠ 𝑋

(𝛼2 )
𝑖2, 𝑗2

, we

have Pr[𝑌 (𝛼1 )
𝑖1, 𝑗1

= 𝑌
(𝛼2 )
𝑖2, 𝑗2
] ≤ 1

2
𝑛 . Thus,

Pr[collon,=u] ≤
∑︁
𝜔∈[𝑢 ]

(
𝜎𝜔

2

)
· 1

2
𝑛
≤

∑︁
𝜔∈[𝑢 ]

0.5𝜎2

𝜔

2
𝑛

.

8.4 Lower-bounding Pr[T𝑅=𝜏 ]
Pr[T2=𝜏 ]

Fix a good transcript 𝜏 ∈ Tgood. Since online-query response tuples are fixed from input-output pairs

(𝑋 (𝛼 )
𝑖, 𝑗

, 𝑌
(𝛼 )
𝑖, 𝑗
) and user’s keys, we evaluate the probability that all input-output pairs and user’s keys

result in the good transcript 𝜏 . By ¬collon,off , ¬collon,≠u, and ¬collon,=u, for each of tuples (𝐾,𝑋,𝑌 )
and (𝐾 ′, 𝑋 ′, 𝑌 ′) of 𝐸± in 𝜏 , if 𝐾 = 𝐾 ′, 𝑋 ≠ 𝑋 ′ ⇔ 𝑌 ≠ 𝑌 ′ holds. Hence, Pr[T2 = 𝜏] > 0.

Regarding offline queries, in both worlds, the responses are defined by an IC. Hence, there is no

difference between the real world and Game 2.

Regarding user’s keys, in both the real world and Game 2, each user’s key is chosen uniformly at

random from {0, 1}𝑘 , and there is no difference between the real world and Game 2.

Regarding online queries, in Game 2, for each new pair of key and input block, the output block

is chosen from {0, 1}𝑛 , whereas it is chosen from {0, 1}𝑛 excluding the previous output blocks with

the same key. Hence, we have Pr[T𝑅 = 𝜏] ≥ Pr[T2 = 𝜏] and

Pr[T𝑅 = 𝜏]
Pr[T2 = 𝜏]

≥ 1 .

8.5 Deriving the Upper-bound

Combining Lemma 4.1 with the upper-bound of Pr[T2 ∈ Tbad] and the lower-bound of
Pr[T𝑅=𝜏 ]
Pr[T2=𝜏 ] , we

obtain the upper-bound in Lemma 7.3.

[End of Proof of Lemma 7.3] ■

9 Mu-Security of CCM with NKD

In this section, we consider the mu-security of CCM_NKD, CCM with the nonce-based key deriva-

tionNKD, following the previous application toGCM [14]. Compared toCCMwithNR,CCM_NKD

replaces the dominant term
𝜎u𝜎

2
𝑛 to

𝜎n𝜎

2
𝑛 , wherein 𝜎n is the maximum number of BC invocations

within the same nonce and user’s key, thus its online security becomes independent of 𝜎u.

9.1 Specification of CCM_NKD
Let F𝐾 : {0, 1}𝜈 → {0, 1}𝑘 be a KDF with a 𝜅-bit key 𝐾 that accepts a nonce and returns a nonce-

based key of CCM. The encryption and decryption algorithms of CCM_NKD are defined in the

following.

• For an input tuple (𝑁,𝐴,𝑀) ∈ {0, 1}𝜈 ×A ×M, the encryption CCM_NKD.Enc is defined as

CCM_NKD.Enc[𝐸, F𝐾 ] (𝑁,𝐴,𝑀) ≔
CCM.Enc[𝐸F𝐾 (𝑁 ) ] (𝑁,𝐴,𝑀).
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• For an input tuple (𝑁,𝐴,𝐶,𝑇 ) ∈ {0, 1}𝜈 ×A ×M × {0, 1}𝑡 , the decryption CCM_NKD.Dec is

defined as

CCM_NKD.Dec[𝐸, F𝐾 ] (𝑁,𝐴,𝐶,𝑇 ) ≔
CCM.Dec[𝐸F𝐾 (𝑁 ) ] (𝑁,𝐴,𝐶,𝑇 ).

9.2 Multi-user PRF Security
In our proof, we assume that the KDF is mu-pseudorandom function (mu-PRF) secure. Let 𝑢 be

the number of users. In the mu-PRF-security game, an adversary A has access to either real-world

oracles (F𝐾1
, . . . , F𝐾𝑢 ) or ideal-world ones (R1, . . . ,R𝑢), where 𝐾𝑖 is the 𝑖-th user’s key defined as

𝐾𝑖
$←− {0, 1}𝜅 and R𝑖 is a random function of the 𝑖-th user defined as R𝑖

$←− Func(𝜈, 𝑘). At the end of
this game, A return a decision bit. Then, themu-PRF-security advantage function of A is defined as

Advmuprf

F
(A) ≔ Advdist(F𝐾𝜔 )𝜔∈ [𝑢 ] ,(R𝜔 )𝜔∈ [𝑢 ] (A).

For all possible adversaries A that have access to 𝑢 users, make at most 𝑞 queries, and run in time 𝜏 ,

the maximum advantage is defined as Advmuprf

F
(𝑢, 𝑞, 𝜏) := maxA Advmuprf

F
(A).

9.3 Mu-Security of CCM_NKD
For each nonce, the KDF in CCM_NKD provides a fresh key of CCM under the assumption that

F𝐾 is a secure PRF. Hence, in the mu-setting, there are at most 𝑞 keys of CCM via the KDF in

CCM_NKD. By using the bounds in Theorems 5.1 and 7.2, we obtain the following bounds of the

mu-AE security of CCM_NKD. Let 𝜎n be the maximum number of BC invocations whose keys are

defined by CCM_NKD with the same nonce and user’s key.

Corollary 9.1 (Mu-Security ofCCM_NKD in the StandardModel). For any computationally-
bounded adversary A,

Advmuae

CCM_NKD (A) ≤ Advmuprf

F
(𝑢, 𝑞, 𝜏 +𝑂 (𝜎)) + Advmuprp

𝐸
(𝑞, 𝜎, 𝜏 +𝑂 (𝜎)) + 𝜎n𝜎

2
𝑛
+ 𝑞d

2
𝑡
.

Corollary 9.2 (Mu-Security ofCCM_NKD in the𝑑-bound and ICModels). For any computationally-
bounded adversary A,

Advmuae

CCM_NKD (A) ≤ Advmuprf

F
(𝑢, 𝑞, 𝜏 +𝑂 (𝜎)) + 𝑞d

2
𝑡
+ 𝜎n𝜎

2
𝑛

+

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 .

With a discussion similar to Subsection 7.2, dominant terms in the bounds are
𝑞
d

2
𝑡 + 𝜎n𝜎

2
𝑛 + 𝑑𝑝

2
𝑘 .

9.3.1 Choices for PRF. As mentioned in [6, 14, 26], the concatenation of truncated BCs and

CENC [20] are nice choices for the KDF in CCM_NKD. Particularly, when implementing AES with

AES-NI, the KDF can be efficiently performed.

10 Authenticated Encryption with NTKD

In this section, we present an AE mode AE_NTKD that enhances the mu-security of tag-based and

BC-based AE schemes including CCM and GCM by respecting its interfaces. AE_NTKD equips a

nonce- and tag-based key derivation NTKD.
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10.1 AE_NTKD

10.1.1 Parameters. Let 𝜅 , 𝜈 , and 𝑡 be lengths of keys, nonce, and tags of AE_NTKD such that 𝑡 ≤ 𝑛.
In AE_NTKD, AD and a plaintext/ciphertext are divided into data blocks called sectors. Each sector

is processed by using the underlying AE. Let 𝑠 be the length of each sector.

10.1.2 The Underlying AE. We define the underlying AE scheme of AE_NTKD. Let AE be a tag-

based AE scheme that is a pair of encryption and decryption algorithms (AE.Enc,AE.Dec). Let
K , N , A,M, C, and T be the sets of keys, nonce, AD, plaintexts, ciphertexts, and tags of AE,

respectively. We define the set of tags of AE as T ≔ {0, 1}𝑡 . The encryption algorithm AE.Enc :

K × N × A ×M → C × T takes a tuple (𝐾, 𝑁,𝐴,𝑀), and returns, deterministically, a pair of a

ciphertext and a tag (𝐶,𝑇 ). The decryption algorithm AE.Dec : K×N×A×C×T → {reject}∪M
takes a tuple (𝐾, 𝑁,𝐴,𝐶,𝑇 ) and returns, deterministically, either the distinguished invalid symbol

reject ∉M or a plaintext𝑀 ∈ M. We require that∀(𝐾, 𝑁,𝐴,𝑀), (𝐾 ′, 𝑁 ′, 𝐴′, 𝑀 ′) ∈ K×N×A×M
s.t. |𝑀 | = |𝑀 ′ | : |AE.Enc(𝐾,𝐴,𝑀) | = |AE.Enc(𝐾 ′, 𝐴′, 𝑀 ′) |. We also require that ∀𝐾 ∈ K, 𝑁 ,𝐴 ∈
A, 𝑀 ∈ M : AE.Dec(𝐾,𝐴,AE.Enc(𝐾, 𝑁,
𝐴,𝑀)) = 𝑀 . AE.Enc and AE.Dec with a key 𝐾 ∈ K are denoted by AE.Enc𝐾 and AE.Dec𝐾 . Let

AE𝐾 ≔ (AE.Enc𝐾 ,AE.Dec𝐾 ).
We extract a tag generation function and a core function of AE.Dec from AE. Let TagGen :

K×N×A×C → T be the tag generation function such that for any (𝐾, 𝑁,𝐴,𝑀) ∈ K×N×A×M,

(𝐶, TagGen(𝐾, 𝑁,𝐴,𝐶)) = AE.Enc(𝐾, 𝑁,𝐴,𝑀) holds. TagGen with a key 𝐾 is denoted by TagGen𝐾 .

Let AE.Dec∗ : K × N × A × C × T → M × T be the core function of AE.Dec that produces an

unverified plaintext𝑀 and a tag𝑇 , i.e., for an input (𝐾, 𝑁,𝐴,𝐶,𝑇 ) ∈ K ×N ×A×C×T to AE.Dec,

the output is defined as follows: (𝑀,𝑇 ) ← AE.Dec∗ (𝐾, 𝑁,𝐴,𝐶) and the output is𝑀 if𝑇 = 𝑇 ; reject
otherwise.

10.1.3 KDF. We define the underlying KDF F. Let F : {0, 1}𝜅 × {0, 1}𝜈 × {0, 1}𝑡 → K ×N be the

KDF that takes a 𝜅-bit key, nonce, and tag, and based on nonce and a tag, returns a pair of key and

IV. F with a key 𝐾 is denoted by F𝐾 . For (𝐾, 𝑁,𝑇 ) ∈ {0, 1}𝜅 × {0, 1}𝜈 × {0, 1}𝑡 , let F1

𝐾
(𝑁,𝑇 ) ≔ 𝐾̂

and F
2

𝐾
(𝑁,𝑇 ) ≔ 𝑁̂ such that F𝐾 (𝑁,𝑇 ) = (𝐾̂, 𝑁̂ ).

10.1.4 Specification of AE_NTKD. We define AE_NTKD. The specification is also given in Algo-

rithm 5 and Figure 1. For 𝑙max which is a maximum number of sectors in AD or a plaintext,

let addntk : {0, 1}𝜈 × [𝑙max] → N be a nonce-updating function that takes nonce 𝑁̂ and a

counter 𝑖 , and returns nonce of the underlying AE such that ∀𝑁̂ ∈ {0, 1}𝜈 , 𝑖, 𝑗 ∈ [𝑙max] s.t. 𝑖 ≠ 𝑗 :

addntk (𝑁̂ , 𝑖) ≠ addntk (𝑁̂ , 𝑗). Note that in Figure 1, addntk (𝑁̂ , 𝑖) = 𝑁̂ + (𝑖 − 1).
AE_NTKD.Enc𝐾 : {0, 1}𝜈 × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}𝑡 is the encryption algorithm

with a key 𝐾 ∈ {0, 1}𝜅 that takes a tuple of nonce, AD, and a plaintext, and returns a pair of a

ciphertext and a tag. In AE_NTKD.Enc, AD and plaintext are respectively divided into sectors of 𝑠

bits 𝐴1, . . . , 𝐴𝑎 and 𝑀1, . . . , 𝑀𝑚 . Note that if 𝐴 = 𝜀, then 𝑎 = 0. First, a nonce-based key 𝐾̂1 and a

nonce-based IV 𝑁̂ are defined by using the KDF F𝐾 . Then, by iterating AE.Enc and F𝐾 , AD sectors

are processed, followed by the process of plaintext sectors. The KDF takes nonce 𝑁 and a tag of

the previous AE.Enc call, and returns a key of the next AE.Enc call.

AE_NTKD.Dec𝐾 : {0, 1}𝜈×{0, 1}∗×{0, 1}∗×{0, 1}𝑡 → {0, 1}∗×{0, 1}𝑡 is the decryption algorithm
with a key 𝐾 ∈ {0, 1}𝜅 that takes a tuple of nonce, AD, a plaintext, and a tag, and returns a valid

plaintext if the inputs are authenticated; the reject symbol reject otherwise. In AE_NTKD.Dec𝐾 ,

AD and a ciphertext are respectively divided into sectors 𝐴1, . . . , 𝐴𝑎 and𝐶1, . . . ,𝐶𝑚 . Then, similarly

to AE_NTKD.Enc𝐾 , the AD sector blocks are processed by iterating AE.Enc and F𝐾 , and then the

ciphertext sector blocks are processed by iterating AE.Dec∗ (instead of AE.Enc) and F𝐾 .
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Algorithm 5 AE_NTKD

Encryption AE_NTKD.Enc(𝐾, 𝑁,𝐴,𝑀)
1: 𝑇0 ← 0

𝑡
; 𝑁̂ ← F

2

𝐾
(𝑁, 0𝑡 ); 𝐴1, . . . , 𝐴𝑎

𝑠←− 𝐴;𝑀1, . . . , 𝑀𝑚
𝑠←− 𝑀

2: for 𝑖 ∈ [𝑎 +𝑚] do
3: 𝐾̂𝑖 ← F

1

𝐾
(𝑁,𝑇𝑖−1); 𝑁̂𝑖 ← addntk (𝑁̂ , 𝑖)

4: if 𝑖 ≤ 𝑎 then (𝐶𝑖 ,𝑇𝑖 ) ← AE.Enc(𝐾̂𝑖 , 𝑁̂𝑖 , 𝐴𝑖 , 𝜀)
else (𝐶𝑖−𝑎,𝑇𝑖 ) ← AE.Enc(𝐾̂𝑖 , 𝑁̂𝑖 , 𝜀, 𝑀𝑖−𝑎) end if

5: end for
6: 𝐶 ← 𝐶1∥ · · · ∥𝐶𝑚 ; 𝑇 ← 𝑇𝑎+𝑚 ; return (𝐶,𝑇 )

Decryption AE_NTKD.Dec(𝐾, 𝑁,𝐴,𝐶,𝑇 )
1: 𝑇0 ← 0

𝑡
; 𝑁̂ ← F

2

𝐾
(𝑁, 0𝑡 ); 𝐴1, . . . , 𝐴𝑎

𝑠←− 𝐴; 𝐶1, . . . ,𝐶𝑚
𝑠𝑛←−− 𝐶

2: for 𝑖 ∈ [𝑎 +𝑚] do
3: 𝐾̂𝑖 ← F

1

𝐾
(𝑁,𝑇𝑖−1); 𝑁̂𝑖 ← addntk (𝑁̂ , 𝑖)

4: if 𝑖 ≤ 𝑎 then (𝑀𝑖 ,𝑇𝑖 ) ← AE.Enc(𝐾̂𝑖 , 𝑁̂𝑖 , 𝐴𝑖 , 𝜀)
else (𝑀𝑖−𝑎,𝑇𝑖 ) ← AE.Dec∗ (𝐾̂𝑖 , 𝑁̂𝑖 , 𝜀,𝐶𝑖−𝑎) end if

5: end for
6: 𝑀 ← 𝑀1∥ · · · ∥𝑀𝑚 ; 𝑇 ← 𝑇𝑎+𝑚
7: if 𝑇 = 𝑇 then return𝑀 else return reject end if

10.2 Security Model
10.2.1 Security Definition for AE_NTKD. We consider the mu-AE security of AE_NTKD in the IC

model, since the security of the underlying AE AE is considered in this model. Let 𝑢 be the number

of users. We use the security definition given in Section 4.3 with

the real-world oracles Oreal ≔ ((AE_NTKD
𝐾 [𝜔 ]
)𝜔∈[𝑢 ], 𝐸±) and

the ideal-world oracles Oideal ≔ (($𝜔 ,⊥𝜔 )𝜔∈[𝑢 ], 𝐸±)),
where ∀𝜔 ∈ [𝑢] : 𝐾 [𝜔 ]

$←− {0, 1}𝜅 and 𝐸± is an IC. Then, the advantage function of an adversary

A is defined as Advmuae

AE_NTKD
(A) := AdvdistO

real
,O

ideal

(A). Let 𝑝 and 𝜎 be respectively the numbers of

offline queries and of BC calls of AE_NTKD in online queries. Let 𝑞d be the number of decryption

queries. Let A be the set of all possible nonce-respecting computationally-unbounded adversaries

with the resources.

10.2.2 Assumptions. Regarding the KDF, we assume that F is mu-PRF secure. The definition of

mu-PRF security is given in Section 9.2.

Regarding the underlying AE, we assume that AE is mu-AE secure in the IC model. Let 𝑢1 be the

number of users. We use the security definition given in Section 4.3. In this case, we consider

the real-world oracles: Oreal ≔ ({AE𝐾 [𝑤 ] }𝑤∈[𝑢1 ], 𝐸
±) and

the ideal-world oracles: Oideal ≔ ({($𝜔 ,⊥𝜔 )}𝜔∈[𝑢1 ], 𝐸
±), where ∀𝑤 ∈ [𝑢1] : 𝐾 [𝑤 ]

$←− K and 𝐸± is

an IC. Then, the advantage function of an adversary B is defined as Advmuae

AE
(B) := AdvdistO

real
,O

ideal

(B).
Let ℓ1 be the maximum number of primitive calls of AE per online query. Let 𝑞d,1 be the number of

decryption queries. Let 𝜎1 be the number of primitive calls of AE in all queries made by B. Let 𝑝1

be the number of offline queries. Let Q1 ≔ (𝑢1, 𝜎1, 𝑞d,1, ℓ1, 𝑝1) be the query resources of adversaries.

Then, for all possible computationally-unbounded adversaries with the resource Q1, the maximum

of the advantage function is denoted by Advmuae

AE
(Q1) ≔ maxB Advmuae

AE
(B).
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In addition to the mu-AE assumption, we assume that TagGen is regular and almost universal.

The definitions are given below.

Definition 10.1 (Regular and Almost Universal (AU)). For an input tuple D to TagGen𝐾 , let 𝑁D
be the number of primitive calls (such as BC calls and 𝑛-bit field multiplications) of TagGen𝐾 (D).
Let 𝛿 be a function that takes the number of primitive calls of TagGen𝐾 with D1 and returns a

probability for regular and AU. TagGen is said to be 𝛿-regular if for any 𝑌 ∈ {0, 1}𝑡 and any input

tuple D, Pr[𝐾 $←− K ; TagGen𝐾 (D) = 𝑌 ] ≤ 𝛿 (𝑁D, 0). TagGen is said to be 𝛿-AU if for any distinct

tuples D1,D2, Pr[𝐾 $←− K ; TagGen𝐾 (D1) = TagGen𝐾 (D2)] ≤ 𝛿 (𝑁D1
, 𝑁D2

).

10.3 mu-AE Security of AE_NTKD

The following theorem shows the mu-AE-security bound of AE_NTKD with the assumptions that

F is mu-PRF secure, AE is mu-AE secure, and TagGen is regular and AU. The proof is given in

Section 10.5.

Theorem 10.2. Let 𝑏𝑠 be the maximum number of BC calls in AE.Enc with a pair of 𝑠-bit AD and
the empty plaintext or a pair of empty AD and an 𝑠-bit plaintext. Let TagGen be 𝛿-regular and 𝛿-AU
such that for the numbers of primitive calls 𝑁1, 𝑁2 and a positive integer 𝑐 , 𝛿 (𝑁1, 𝑁2) = 𝑐 (𝑁1+𝑁2 )

2
𝑡 .

∀A ∈ A : Advmuae

AE_NTKD
(A) ≤ Advmuprf

F
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) + 𝑐𝜎n𝜎

𝑏𝑠2
𝑡
+ Advmuae

AE
(Q1) ,

where Q1 (= (𝑢1, 𝜎1, 𝑞d,1, ℓ1, 𝑝1)) = (⌊𝜎/𝑏𝑠⌋ + 𝑞, 𝜎, 𝑞d, 𝑏𝑠 , 𝑝).

10.4 Applications to CCM and GCM

We first consider AE_NTKD with CCM in the IC model, i.e., AE = CCM. Note that the parameter 𝑐

of CCM is a constant [1]. Assume that Advmuprf

F
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) is negligible compared with the

other terms, which can be realized by using highly secure KDFs, such as BC-based PRFs [6, 8, 14, 26]

and SHA-2/3-based KDFs [29, 30].

We evaluate the term Advmuae

CCM
(Q1) with Theorem 7.2. Let B be an adversary with the resource

Q1. Let 𝑣 be the maximum number of decryption queries per user. For 𝑤 ∈ [𝑢1], let 𝜎𝑤 be the

number of BC calls in queries to the𝑤-th user. Hence, 𝜎 =
∑
𝑤∈[𝑢1 ] 𝜎𝑤 . By Theorem 7.2, for any

adversary B, we have

Advmuae

CCM
(B) ≤ 𝑞d

2
𝑡
+

∑︁
𝑤∈[𝑢1 ]

𝜎2

𝑤

2
𝑛
+

(
𝑑 + 𝑛

log
2
𝑛

)
(𝑝 + 𝜎)

2
𝑘

+
(

3(log
2
𝑛)𝜎

2
𝑛

) 𝑛
log

2
𝑛

+ 𝜎 (𝑝 + 𝜎)
2
𝑘+𝑛 .

Regarding the term

∑
𝑤∈[𝑢1 ]

𝜎2

𝑤

2
𝑛 , since the number of encryption queries to each user is at most 1

and the number of BC calls in each query is at most 𝑏𝑠 , the term is maximum when for each of

some ⌊𝑞d/𝑣⌋ + 1 users, B makes 𝑣 decryption queries that require 𝑏𝑠 BC calls per user. Without loss

of generality, assume that the user indexes with the decryption queries is from 1 to ⌊𝑞d/𝑣⌋ + 1. In

this case, for 𝑤1 ∈ [⌊𝑞d/𝑣⌋ + 1], 𝜎𝑤1
= 𝑏𝑠 + 𝑏𝑠𝑣 , and for 𝑤2 ∈ [⌊𝑞d/𝑣⌋ + 2, 𝑢1], 𝜎𝑤2

≤ 𝑏𝑠 . We thus

have ∑︁
𝑤∈[𝑢1 ]

𝜎2

𝑤

2
𝑛
≤ (⌊𝑞d/𝑣⌋ + 1) · (𝑏𝑠 + 𝑏𝑠𝑣)

2

2
𝑛

+
∑︁

𝑤2∈[⌊𝑞d/𝑣⌋+2,𝑢1 ]

𝑏𝑠𝜎𝑤2

2
𝑛

≤ 8𝑏2

𝑠𝑣𝑞d

2
𝑛
+ 𝑏𝑠𝜎

2
𝑛

.
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Regarding the number of forgery attempts 𝑣 , it can be limited by rekeying. We thus assume that

𝑣𝑞d ≤ 𝜎 , and the above bound is at most
9𝑏𝑠𝜎

2
𝑛 . We then use the parameter 𝑏𝑠 =

√
2
𝑛−𝑡𝜎n that

ensures
𝑏𝑠𝜎

2
𝑛 =

𝜎n𝜎

𝑏𝑠2
𝑡 . Putting the bound of Advmuae

CCM
(B) with 𝑏𝑠 =

√
2
𝑛−𝑡𝜎n into Theorem 10.2, the

mu-AE-security bound is about

𝑞d

2
𝑡
+
√

2
𝑛−𝑡𝜎n𝜎

2
𝑛

+ 𝑑𝑝
2
𝑘
.

When 𝑡 = 𝑛, the bound ensures that AE_NTKD with CCM is mu-AE secure as long as 𝜎 ≤ 2
𝑛/√𝜎n

and 𝑝 ≤ 2
𝑘
.

Regarding GCM [11], Hoang et al. [16] derive the same bound for Advmuae

GCM
(Q1) as our CCM’s

bound in the𝑑-boundmodel. Note thatGCM uses theMAC algorithmGMAC and the parameter 𝑐 of

GMAC is a constant. Hence, AE_NTKD with GCM is as secure as AE_NTKD with CCM regarding

mu-AE security. By using 𝑏𝑠 =
√
𝜎n and assuming that Advmuprf

F
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)) is negligible and

𝑣𝑞d ≤ 𝜎 , themu-AE-security bound is about
𝑞
d

2
𝑡 +

√
2
𝑛−𝑡𝜎n𝜎
2
𝑛 + 𝑑𝑝

2
𝑘 . When 𝑡 = 𝑛, AE_NTKD with GCM

is mu-AE secure as long as 𝜎 ≤ 2
𝑛/√𝜎n and 𝑝 ≤ 2

𝑘
.

10.5 Proof of Theorem 10.2
We first modify the real world, where R𝜔 is replaced with F𝐾 [𝜔 ] for each 𝜔 ∈ [𝑢]. The modified

world is called “middle world.” Hence, an adversary A interacts with the middle-world oracles

Omiddle ≔ ((AE_NTKD[R𝜔 ])𝜔∈[𝑢 ], 𝐸±), where 𝐸± is an IC and AE_NTKD[R𝜔 ] is AE_NTKD𝐾 [𝜔 ]

with R𝜔 . We then have

Advmuae

AE_NTKD
(A) =

(
Pr

[
AOreal = 1

]
− Pr

[
AOmiddle = 1

] )
+

(
Pr

[
AOmiddle = 1

]
− Pr

[
AOideal = 1

] )
.

We evaluate each difference in the followings.

10.5.1 Upper-bounding Pr

[
AOreal = 1

]
−Pr

[
AOmiddle = 1

]
. By the replacement from Oreal to Omiddle,

the difference is bounded by the mu-PRF advantage, i.e., Pr[AOreal = 1] − Pr[AOmiddle = 1] ≤
Advmuprf

F
(𝑢, 𝜎, 𝜏 +𝑂 (𝜎)).

10.5.2 Upper-bounding Pr

[
AOmiddle = 1

]
− Pr

[
AOideal = 1

]
. We use the following notations. For

𝛼 ∈ [𝑞], let𝑚𝛼 and 𝑎𝛼 be the lengths𝑚 and 𝑎 of the plaintext and AD in the 𝛼-th online query. For

𝛼 ∈ [𝑞], values regarding the 𝛼-th online query are denoted by using the superscript symbol of

(𝛼), e.g.,𝑀 (𝛼 ) ,𝐶 (𝛼 ) , etc. Let u𝛼 be the user index of the 𝛼-th online query.

We next define the following collision events in the middle world. For 𝛼 ∈ [𝑞] and 𝑖 ∈ [𝑎𝛼 +𝑚𝛼 ],
let D (𝛼 )

𝑖
be a pair of an AD sector and a ciphertext sector at the 𝑖-th AE call of the 𝛼-th online

query. If 𝑖 ≤ 𝑎𝛼 , then D (𝛼 )𝑖
= (𝐴 (𝛼 )

𝑖
, 𝜀); if 𝑖 > 𝑎𝛼 , then D (𝛼 )𝑖

= (𝜀, 𝑀 (𝛼 )
𝑖−𝑎𝛼 ).

coll⇔ ∃𝛼, 𝛽 ∈ [𝑞], 𝑖 ∈ [𝑎𝛼 +𝑚𝛼 ], 𝑗 ∈ [𝑎𝛽 +𝑚𝛽 ] s.t. (𝛼, 𝑖) ≠ (𝛽, 𝑗)
∧ u𝛼 = u𝛽 ∧ 𝑁 (𝛼 ) = 𝑁 (𝛽 )

∧ (𝑇 (𝛼 )
𝑖−1

,D (𝛼 )
𝑖
) ≠ (𝑇 (𝛽 )

𝑗−1
,D (𝛽 )

𝑗
) ∧𝑇 (𝛼 )

𝑖
= 𝑇

(𝛽 )
𝑗

.

The collision event considers a tag collision of some two distinct sectors or keys, yielding a key

collision of the underlying AE. In other worlds, each key of the AE is independently chosen as long

as coll does not occur. With the event, we have

Pr

[
AOmiddle = 1

]
− Pr

[
AOideal = 1

]
≤ Pr

[
AOmiddle = 1 | ¬coll

]
− Pr

[
AOideal = 1

]
+ Pr[coll] .
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10.5.3 Upper-bounding Pr

[
AOmiddle = 1 | ¬coll

]
− Pr

[
AOideal = 1

]
. We give an overview of the

evaluation. The detail evaluation is given in Section 11.

Assume that coll does not occur. In the nonce-respecting setting, all keys of AE.Enc in the middle

world are independently chosen by RFs (R𝜔 )𝜔∈[𝑢 ] . Hence, {AE_NTKD.Enc[R𝜔 ]}𝜔∈[𝑢 ] behave as
random-bit oracle up to the advantageAdvmuae

AE
(Q1), where Q1 = (⌈𝜎/𝑏𝑠⌉ +𝑞, 𝜎, 𝑞d, 𝑏𝑠 , 𝑝). Moreover,

each tag of AE_NTKD.Dec in the middle world is defined by using AE.Dec. Hence, the probability

of forging a tag of AE_NTKD.Dec[R𝜔 ] is bounded by the advantage Advmuae

AE
(Q1). We thus have

Pr

[
AOmiddle = 1 | ¬coll

]
− Pr

[
AOideal = 1

]
≤ Advmuae

AE
(Q1).

10.5.4 Upper-bounding Pr[coll]. For each 𝛼, 𝛽 ∈ [𝑞], 𝑖 ∈ [𝑎𝛼 + 𝑚𝛼 ], 𝑗 ∈ [𝑎𝛽 + 𝑚𝛽 ] such that

(𝛼, 𝑖) ≠ (𝛽, 𝑗), u𝛼 = u𝛽 and 𝑁 (𝛼 ) = 𝑁 (𝛽 ) , if 𝑇 (𝛼 )
𝑖−1

≠ 𝑇
(𝛽 )
𝑗−1

, then the keys 𝐾̂
(𝛼 )
𝑖

and 𝐾̂
(𝛽 )
𝑗

are

independently chosen, and thus by the regular property of TagGen, the probability of the tag

collision 𝑇
(𝛼 )
𝑖

= 𝑇
(𝛽 )
𝑗

is at most
𝑐𝑏𝑠
2
𝑛 . If 𝑇

(𝛼 )
𝑖−1

= 𝑇
(𝛽 )
𝑗−1

and D (𝛼 )
𝑖

≠ D (𝛽 )
𝑗

, then by the AXU or regular

property of TagGen, the probability of the tag collision is at most
2𝑐𝑏𝑠
2
𝑛 .

For 𝜔 ∈ [𝑢], let 𝑁𝜔 be the number of distinct nonces in queries to the 𝜔-th user. For 𝑖 ∈ [𝑁𝜔 ],
let 𝜎𝜔,𝑖 be the number of BC calls in online queries with the 𝑖-th nonce to the 𝜔-th user. Then, for

each 𝑖 ∈ [𝑁𝜔 ], there are at most ⌈𝜎𝜔,𝑖
𝑏𝑠
⌉ keys of AE. By using the above bounds, we have

Pr[coll] ≤
∑︁
𝜔∈[𝑢 ]
𝑖∈[𝑁𝜔 ]

(⌈𝜎𝜔,𝑖
𝑏𝑠
⌉

2

)
· 2𝑐𝑏𝑠

2
𝑡
≤

∑︁
𝜔∈[𝑢 ]
𝑖∈[𝑁𝜔 ]

0.5(⌈𝜎𝜔,𝑖
𝑏𝑠
⌉)2 · 2𝑐𝑏𝑠

2
𝑡

≤
∑︁

𝜔∈[𝑢 ],𝑖∈[𝑁𝜔 ]

4𝑐 (𝜎𝜔,𝑖/𝑏𝑠 )2 · 𝑏𝑠
2
𝑡

≤ 4𝑐𝜎n𝜎

𝑏𝑠2
𝑡

.

10.5.5 Conclusion of the Proof. Combining the above bounds, we obtain the bound in Theorem 10.2.

11 Detail Evaluation of Section 10.5.3
Assume that coll does not occur in the middle world. Let A be an mu-AE-adversary against

AE_NTKD that makes 𝑝 offline queries and online queries such that the number of BC calls

is at most 𝜎 and 𝑞d decryption queries.

We construct anmu-AE adversary B against the AE schemeAE that has access to𝑢1 (= ⌈𝜎/𝑏𝑠⌉+𝑞)
users and an IC 𝐸± = (𝐸, 𝐸−1). For 𝑤 ∈ [𝑢1], let Enc𝑤 (resp. Dec𝑤) be the encryption (resp.

decryption) oracle of the𝑤-th user. In the middle world, these oracles are (AE_NTKD[R𝑤])𝑤∈[𝑢1 ] .
In the ideal world, these oracles are ideal AEs {($𝑤,⊥𝑤)}𝑤∈[𝑢1 ] .
We define the adversary B in Algorithm 6 that simulates the A’s environment by using the B’s

oracles (Enc𝑤,Dec𝑤)𝑤∈[𝑢1 ] . In this simulation, for encryption queries by A, each sector of AD

and plaintexts is processed by B’s encryption oracles. In the middle world, each key of Enc𝑤 is

regarded as an output of R𝑤 . In the process of the 𝑖-th sector, the key of Enc𝑤 (or user index) is

determined by the nonce and sectors processed so far that we call “prefix data sequence.” If 𝑖 ≤ 𝑎+1,

then the prefix data sequence is (𝑁,𝐴1∥ . . . ∥𝐴𝑖−1) and if 𝑖 > 𝑎 + 1, then it is (𝑁,𝐴,𝐶1∥ . . . ∥𝐶𝑖−1).
Note that for prefix data sequences, we consider ciphertext sectors instead of plaintext sectors.

For decryption queries by A, the responses are defined by using B’s decryption oracles Dec𝑤 . For

prefix data sequences of the decryption procedure, we consider only the last (𝑎 +𝑚)-th Dec𝑤 calls,

since the decryption procedure performs Dec𝑤 for the last sector. B has three tables E, N andU,

and two variables umax and 𝑏. For offline queries by A, the responses are defined by using B’s IC
𝐸± = (𝐸, 𝐸−1). Before A makes the first query, B performs the initialization that initializes these
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Algorithm 6 Adversary B
Initialization

1: E ← ∅; N ← ∅;U ← ∅; umax ← 0; 𝑏 ← 0

Encryption procedure for A’s query to the 𝜔-th user (𝑁,𝐴,𝑀)
1: 𝑇0 ← 0

𝑡
; 𝐴1, . . . , 𝐴𝑎

𝑠←− 𝐴;𝑀1, . . . , 𝑀𝑚
𝑠←− 𝑀

2: 𝑁̂ ← N(𝜔, 𝑁 ); if N(𝜔, 𝑁 ) = 𝜀 then 𝑁̂ $←− {0, 1}𝜈 end if
3: N ∪←− {𝜔, 𝑁, 𝑁̂ }; 𝐴∗ ← 𝜀; 𝐶∗ ← 𝜀

4: for 𝑖 ∈ [𝑎 +𝑚] do
5: 𝑁̂𝑖 ← addntk (𝑁̂ , 𝑖);𝑤 ←U(𝜔, 𝑁,𝐴∗,𝐶∗)
6: if 𝑤 = 𝜀 then umax ← umax + 1;𝑤 ← umax end if
7: if 𝑖 ≤ 𝑎 then D𝑖 ← (𝐴𝑖 , 𝜀) else D𝑖 ← (𝜀, 𝑀𝑖−𝑎) end if
8: (𝐶𝑖 ,𝑇𝑖 ) ← E(𝑤, 𝑁̂𝑖 ,D𝑖 )
9: if 𝑇𝑖 = 𝜀 then (𝐶𝑖 ,𝑇𝑖 ) ← Enc𝑤 (𝑁̂𝑖 ,D𝑖 ) end if
10: E ∪←− (𝑤, 𝑁̂𝑖 ,D𝑖 ,𝐶𝑖 ,𝑇𝑖 );U

∪←− (𝜔, 𝑁,𝐴∗,𝐶∗,𝑤)
11: if 𝑖 ≤ 𝑎 then 𝐴∗ ← 𝐴∗∥𝐴𝑖 else 𝐶∗ ← 𝐶∗∥𝐶𝑖 end if
12: end for
13: 𝐶 ← 𝐶1∥ · · · ∥𝐶𝑚 ; 𝑇 ← 𝑇𝑎+𝑚 ; return (𝐶,𝑇 )

Decryption procedure for A’s query to the 𝜔-th user (𝑁,𝐴,𝐶)
1: 𝑇0 ← 0

𝑡
; 𝐴1, . . . , 𝐴𝑎

𝑠←− 𝐴; 𝐶1, . . . ,𝐶𝑚
𝑠←− 𝐶

2: 𝑁̂ ← N(𝜔, 𝑁 ); if N(𝜔, 𝑁 ) = 𝜀 then 𝑁̂ $←− {0, 1}𝜈 end if
3: N ∪←− {𝜔, 𝑁, 𝑁̂ }
4: if 𝐶 = 𝜀 then 𝐴∗ ← 𝐴1∥ · · · ∥𝐴𝑎−1; 𝐶

∗ ← 𝜀 else 𝐴∗ ← 𝐴; 𝐶∗ ← 𝐶1∥ · · · ∥𝐶𝑚−1 end if
5: 𝑤 ←U(𝜔, 𝑁,𝐴∗,𝐶∗)
6: if 𝑤 = 𝜀 then umax ← umax + 1;𝑤 ← umax end if
7: 𝑁̂𝑎+𝑚 ← addntk (𝑁̂ , 𝑎 +𝑚)
8: if 𝐶 = 𝜀 then D𝑎+𝑚 ← (𝐴𝑎, 𝜀) else D𝑎+𝑚 ← (𝜀,𝐶𝑚) end if
9: 𝑀 ← Dec𝑤 (𝑁̂𝑎+𝑚,D𝑎+𝑚);U

∪←− (𝜔, 𝑁,𝐴∗,𝐶∗,𝑤)
10: if 𝑀 = reject then return reject

else 𝑏 ← 1; goto the finalization end if

A’s offline query (𝐾̂, 𝑋 ) to 𝐸
1: Makes an offline query (𝐾̂, 𝑋 ) to the B’s oracle 𝐸 and receive the response 𝑌

2: return 𝑌

A’s offline query (𝐾̂, 𝑌 ) to 𝐸−1

1: Makes an offline query (𝐾̂, 𝑌 ) to the B’s oracle 𝐸−1
and receive the response 𝑋

2: return 𝑋

Finalization

1: if 𝑏 = 0 then 𝑏 ← (an output of A) end if
2: return 𝑏
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tables and variables. After finishing all queries of A or a valid plaintext is returned in B’s decryption
procedure, B runs the finalization.

Regarding the tables, E keeps tuples (𝑤, 𝑁̂ ,D,𝐶,𝑇 ) where 𝑤 is a user index of an B’s oracle,
𝑁̂ is a nonce-based IV, D is an input pair of AD and plaintext sectors to Enc𝑤 , and 𝐶 and 𝑇 are

the ciphertext and tag of Enc𝑤 with these inputs. Let E(𝜔, 𝑁̂ ,D) ≔ (𝐶,𝑇 ) if (𝜔, 𝑁̂ ,D,𝐶,𝑇 ) ∈ E;
E(𝜔, 𝑁̂ ,D) ≔ (𝜀, 𝜀) otherwise. N keeps tuples (𝜔, 𝑁, 𝑁̂ ) where 𝜔 is a user index 𝜔 of A’s oracles,
𝑁 is nonce in a query by A, and 𝑁̂ is a nonce-based IV corresponding with 𝑁 . Let N(𝜔, 𝑁 ) ≔ 𝑁̂

if (𝜔, 𝑁, 𝑁̂ ) ∈ N and N(𝜔, 𝑁 ) ≔ 𝜀 otherwise.U keeps tuples (𝜔, 𝑁,𝐴∗,𝐶∗,𝑤) where 𝜔 is a user

index 𝜔 of A’s oracles, 𝑁 is nonce in a query by A, 𝐴∗ is a concatenation of AD sectors, 𝐶∗ is a
concatenation of ciphertext sectors, and𝑤 is a user index of B’s oracles. LetU(𝜔, 𝑁,𝐴∗,𝐶∗) ≔ 𝑤 if

(𝜔, 𝑁,𝐴∗,𝐶∗,𝑤) ∈ U;U(𝜔, 𝑁,𝐴∗,𝐶∗) ≔ 𝜀 otherwise. The table is used for extracting a user index

which is performed in some previous query with the same prefix data sequence.

Regarding the variables, umax keeps the maximum user index of B’s oracles that B had access

to and 𝑏 is the output bit of B. These variables are initially set to 0. umax becomes 1 if B makes a

decryption query such that a valid plaintext is returned or A returns 1; otherwise 0.

By the following justifications for the algorithm, B succeeds in simulating the A’s environment.

If A returns 1 or B makes a decryption query to Dec𝑤 such that a valid plaintext is returned, then

B returns 1. Hence, for any adversary A, the adversary B ensures that

Pr

[
AOmiddle = 1 | ¬coll

]
− Pr

[
AOideal = 1

]
≤ Advmuae

AE
(B).

The number of offline queries by B is 𝑝 . Since BC calls of each AE call is 𝑏𝑠 , the number of users in

B’s game is at most ⌈𝜎/𝑏𝑠⌉ + 𝑞. The maximum number of BC calls in online queries by B is 𝜎 . The

number of decryption queries by B is 𝑞d. Hence, B’s resource is Q1 = (⌈𝜎/𝑏𝑠⌉ + 𝑞, 𝜎, 𝑞d, 𝑏𝑠 , 𝑝).

Justification of the Encryption Procedure in Algorithm 6. In the real world, regarding the encryption

procedure for the 𝛼-th online query made by A, B first defines a nonce-based IV 𝑁̂ (𝛼 ) . If there exists
𝛽 ∈ [𝑞] such that u𝛼 = u𝛽 and the 𝛽-th online query by A is a decryption one with 𝑁 (𝛼 ) = 𝑁 (𝛽 ) ,

𝑁̂ (𝛼 ) = 𝑁̂ (𝛽 ) must hold. This condition is realized by using the table N . If the same nonce is not

in N , 𝑁̂ (𝛼 ) is chosen uniformly at random from {0, 1}𝜈 , since it is defined by an RF in the middle

world. With the (simulated) nonce-based IV 𝑁̂ (𝛼 ) , AD and plaintext sectors of the 𝛼-th online

query are processed by iterating B’s encryption oracles (Enc𝑤)𝑤∈[𝑢1 ] . We assume that coll does

not occur, thus there is no collision occur in inputs to RFs in the encryption queries to the same

user, ensuring that the keys of the underlying AE’s encryptions are all independent. Thus, our

simulation succeeds in simulating A’s encryption oracles in the middle world.

Note that A can make encryption and decryption queries with the same nonce to the same user.

Hence, in the middle world, the keys of the underlying AEs of encryption and decryption queries

must be the same if the prefix sequences of the keys are the same. This case is managed by using

the table U in our algorithm which keeps tuples of the prefix sequence and the following user

index.

In the ideal world, ciphertext sectors and tags are defined by using random-bit oracles ($𝑤)𝑤∈[𝑢1 ] ,
and thus our simulation succeeds in simulating A’s encryption oracles in the ideal world.

Justification of the Decryption Procedure in Algorithm 6. In the real world, for each 𝛽-th online

query made by A that is a decryption one, if there exists an 𝛼-th online query such that the query

is an encryption one, u𝛼 = u𝛽 , 𝑁
(𝛽 ) = 𝑁 (𝛼 ) , and the prefix data sequence of the last sector in the

𝛽-th query is equal to some prefix sequence of the 𝛼-th query, then the output of the decryption

oracle is defined by using the same user as the encryption query by the tableU. If there is no such

encryption query, then B uses a new user’s decryption oracle. Hence, our simulation succeeds in
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simulating the A’s decryption oracles in the middle world as long as the decryption oracles do not

return a plaintext.

In the ideal world, for each decryption query from B, our algorithm returns reject.
Hence, our simulation succeeds in simulating the A’s decryption oracles in the ideal world.

12 Conclusion
This work studied mu-security of CCM, which has received less attention compared to GCM. We

presented the improvedmu-bound ofCCM given by
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑢𝑝+𝑢

2

2
𝑘 . Our bound improves the online

term of the previous bound from min{𝑢𝜎
2

u

2
𝑛 ,

𝜎2

2
𝑛 } to 𝜎u𝜎

2
𝑛 , and this matches the mu-bound of GCM.

We further studied how the existing enhancing methods developed for GCM, nonce randomization

(NR) and nonce-based key derivation (NKD), could be applied to CCM. NR enhances the third

term representing offline security, yielding the enhanced bound of
𝜎u𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘 in the 𝑑-bound

model. NKD further replaces the first term to
𝜎n𝜎

2
𝑛 . As a result, the mu-security of CCM becomes as

good as those based on GCM. Given that some real-world applications would require even higher

mu-bound, we proposed a new enhancement method nonce-based and tag-based key derivation

(NTKD) that is applied to both GCM and CCM. NTKD enhances the mu-bound to

√
𝜎n𝜎

2
𝑛 + 𝑞d

2
𝑡 + 𝑑𝑝

2
𝑘 ,

which meets such real-world needs when BC is AES.

Dedicated mu-security analysis of symmetric-key schemes is still emerging, and there are several

targets for further research, including the conventional CCM variants such as CCM-SIV [23] and

EAX [2], and the newer schemes such as GCM-SST [7, 18].
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