
Fast elliptic curve scalar multiplications in
SN(T)ARK circuits

Liam Eagen1, Youssef El Housni2, Simon Masson3, and Thomas Piellard2

1 Alpen Labs
liameagen@protonmail.com

2 Linea
youssef.elhousni@consensys.net
thomas.piellard@consensys.net

3 ZKNox
simon.masson@protonmail.com

Keywords: SNARK, STARK, proof systems, elliptic curves, scalar multiplica-
tion

Abstract. Proof systems of arbitrary computations have found many
applications in recent years. However, the proving algorithm has a conse-
quent complexity tied to the size of the computation being proved. Thus,
proving large computations is quite inefficient. One of these large compu-
tations is the scalar multiplication over an elliptic curve. In this work, we
provide new techniques for reducing the time corresponding to proving a
scalar multiplication, using integer lattice reduction or a (half) extended
Euclidean algorithm in a ring of integers. We investigate optimizations
in the case of small (complex multiplication) discriminant curves, and
its generalization for multi scalar multiplications as used in signature
verification. We provide an optimized Golang implementation for different
elliptic curves in different proof systems settings. The speed-up in proving
time is between 22% and 53% compared to the previous state-of-the-art.

1 Introduction

Over the past few years, proof systems have become an essential primitive for
privacy-preserving and scalable applications in blockchains. A proof system is
an interactive protocol in which one party, referred to as the prover, seeks to
convince another party, known as the verifier, of the truth of a given statement.
Proof systems are classified as non-interactive when no communication is required
between the prover and the verifier beyond the transmission of the proof itself.
Within the category of non-interactive proofs, particularly notable concepts for
demonstrating computational integrity are the Succinct Non-interactive ARgu-
ment of Knowledge (SNARK) and Scalable Transparent ARgument of Knowledge
(STARK). SNARKs and STARKs offer computationally sound proofs that are
efficient to verify and compact in size relative to the statement being proved.
Proof systems were first introduced in [18] and have since been extensively stud-
ied in both theoretical and practical contexts [20,25,17,5]. Recent advancements

have explored a wide range of settings, including cryptographic assumptions,
asymptotic efficiency, implementation performance, and diverse applications.
In this work, we use the terms SNARK and STARK interchangeably, as the
techniques presented are agnostic to the specific choice of proof system. In the
context of blockchain technology, the computations being proved are often large,
making the proving algorithm computationally expensive and a critical target for
optimization. One prominent example of such a resource-intensive computation
is scalar multiplication over an elliptic curve. This operation is fundamental
to applications such as blockchain rollups1, Verkle tries2, account abstraction3,
and proof recursion [8,9,27]. While efficient computation of scalar multiplication
over elliptic curves is a well-established problem in cryptography, proving scalar
multiplication using a SNARK introduces a novel challenge that paves the way
for new research directions and implementation strategies.

Contributions. In this work, we investigate optimizations for proving scalar
multiplications with a SNARK. Given the pre-computed resulting point Q (called
a hint), and leveraging lattice reduction in Z, we show how to turn proving a
n-bit scalar multiplication [k]P

?
= Q in a curve E into mainly proving a n/2-bit

double-scalar-multiplication [k1]P − [k2]Q
?
= 0E , regardless of the existence of an

efficient endomorphism. When it exists, we show how to turn proving a n-bit scalar
multiplication into mainly a n/4-bit quadruple-scalar-multiplication. Alternatively
to using a lattice reduction in Z, we propose a novel use in cryptography of the
(half) extended Euclidean algorithm (rational reconstruction) in an order O of an
Euclidean imaginary quadratic field, e.g. Eisenstein integers for elliptic curves of
j-invariant 0. This alternative algorithm speeds up the witness generation (scalar
decomposition) at the cost of slowing down the proof generation (increasing the
decomposed sub-scalars bounds). This is useful in use-cases where a prover cannot
invoke arbitrary hints. Finally, we provide a fast implementation in Golang using
the gnark library for different elliptic curves in different proof systems settings.
The circuit size speed-up from this work is summarized in Table 1.

Circuit Curve Groth16 speed-up PLONK speed-up

Emulated small discriminant 24% 42%
generic 52% 50%

Native small discriminant 48% 53%
generic 22% 28%

Table 1: Scalar multiplication constraint speed-up using our work.

1 https://ethereum.org/en/developers/docs/scaling/zk-rollups/.
2 https://ethereum.org/en/roadmap/verkle-trees/.
3 https://ethereum.org/en/roadmap/account-abstraction/.

2

https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/roadmap/verkle-trees/
https://ethereum.org/en/roadmap/account-abstraction/

Organization of the paper. In Section 2, we explain what are SNARK circuits and
how to optimize them and we recall basics about elliptic curves and (multi) scalar
multiplications. We also recall facts about the decomposition of scalars, useful
for the results of Section 3, which is the core of this paper. We provide some
comparison of the new circuits with the previous state-of-the-art implementation
in Section 4, and conclude this work in Section 5.

2 Background

The results of this paper are related to the cost of elliptic curve scalar multiplica-
tion in SNARK circuits. In this section, we explain what are SNARK circuits
and recall results about elliptic curves, in particular for simple and multi scalar
multiplications. We present two techniques for decomposing scalars from a general
point of view. These techniques allow the well-known GLV decomposition [16],
that splits a scalar into two sub-scalars in order to reduce the cost of a scalar
multiplication for small discriminant curves.

2.1 SNARK circuits

Given a public non-deterministic polynomial (NP) program F and inputs b, c,
such that the program F satisfies the relation F (b) = c, a SNARK consists
in proving this relation succinctly. It consists mainly of the Prove and Verify
algorithms. The first algorithm requires generating an execution trace of the
program F . This step is called witness generation. In this paper, we are interested
in optimizing the Prove algorithm for the program F corresponding to a scalar
multiplication over an elliptic curve. We do this by expressing F as an arithmetic
circuit as efficiently as possible (low number of gates). This step is called the
arithmetization of the program F .

Our techniques are valid for any SNARK (or STARK) but we implemented our
work (see Section 4) for two widely used schemes: Groth16 [19] and PLONK [13].
Considering w the number of wires, m the number of multiplication gates, a the
number of addition gates, ` = number of public inputs and MG a multiplication
in G, the cost of the Prove algorithm is given by (3m+ w − `) MG for Groth16,
and 9(m + a) MG for PLONK. Note that we omit the number of FFTs in this
estimation, as G multiplications dominate the overall cost of Prove. The better
we arithmetize F , the faster the Prove algorithm is.

Arithmetization. The first step in proving an arbitrary program is to arith-
metize it, that is to reduce the computation satisfiability to an intermediate
representation satisfiability. Many problems in cryptography can be expressed
as the task of computing some polynomials. Arithmetic circuits are the most
standard model for studying the complexity of such computations.

An arithmetic circuit over the field F and the set of variables X = {x0, . . . , xn}
is a directed acyclic graph such that the vertices are called gates, while the edges
are called wires. Arithmetic circuits of interest to many proof systems and most

3

Fig. 1: Arithmetic circuit encoding the computation x3 + x+ 5 = 35 for which
the (secret) solution is x = 3.

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x+ 5

applicable to this work are those with two incoming wires and one out-coming
wire (cf. Fig. 1 for an example).

SNARK-friendly computations. Many proof systems (e.g. Groth16 and
PLONK) arithmetize programs as arithmetic circuits. The number of gates is
what determines the prover complexity. For example, Groth16 prover complexity
is dominated by some multi scalar multiplications in G of sizes m (the number of
multiplication gates). With this in mind, multiplications by constants in F, which
are usually expensive in hardware, are essentially free. While more traditional
hardware-friendly computations (e.g. XORing 32-bit numbers) are far more costly
in this model. The following two observations, noted in earlier works [21], are
the key to lower the number of gates of a circuit:

– The multiplication by constants in F is free,
– The verification can be sometimes simpler than forward computation. The

circuits do not always have to compute the result, but can instead represent a
verification algorithm. For example a multiplicative inversion circuit (1/x ?

= y)
does not have to arithmetize the computation of the inversion (1/x) but can
instead consist of a single multiplication gate (x · y) on the value provided
(pre-computed) by the prover (y) and checks the equality (x · y ?

= 1).

This is basically a computation model where inversions cost as much as multipli-
cations.

2.2 Elliptic curves

In this work, E is an ordinary elliptic curve defined over Fp for a large character-
istic p. From Hasse theorem [29, page 138], the Fp-rational points form a finite
abelian group of order #E(Fp) = p+ 1− t where t is the trace of the curve and
satisfies |t| ≤ 2

√
p. We consider a subgroup of prime order r on E(Fp), i.e. r

divides p + 1 − t. In other words, let P ∈ E(Fp) a point of prime order r and

4

G the cyclic subgroup generated by P . We define the scalar multiplication as
[k]P for an integer k < r. In this work, N denotes the bit-size of r, and D the
Complex Multiplication (CM) discriminant associated to E, i.e. the discriminant
of the order End(E), the endomorphism ring of the curve as an order in the
integer ring of Q(

√
t2 − 4p). We refer to [29] for a deeper introduction to the

theory of elliptic curves.

2.3 Computing scalar multiplications

Single scalar multiplication. A scalar multiplication is the computation of
[k]P = P + . . .+P (k times). The double-and-add technique given in Algorithm 1
has a complexity linear in N , the bit-size of the scalar k. We provide here
an algorithm reading bits from the Most Significant Bit (MSB) to the Least
Significant Bit (LSB).

Algorithm 1: ScalarMultiplication(k, P)
Input. A scalar k of N bits,

A point P .
Output. Q = [k]P .

R← P
for b bit of k read from second MSB to LSB
do
R← [2]R
if b = 1 then
R← R+ P

end if
end for
return R

In cryptographic schemes where k is a secret, this algorithm is often computed
in constant-time, and the conditional R ← R+ P is implemented consistently.
In the context of SNARK circuits, conditional branching is not possible and an
addition is always computed at every step of the loop. In total, the cost of a
scalar multiplication is given by (N − 1)Add+ (N − 1)Dbl.

Multi scalar multiplication. We consider two points P1 and P2, and two
scalars k1, k2. In order to compute [k1]P1 + [k2]P2, it is possible to scan the
bits of both scalars simultaneously and compute the result at the cost of one
scalar multiplication (and an extra pre-computation). This improvement was
originally proposed in [30] and [12], and it can be generalized to a multi scalar
multiplication with n points, but the pre-computation cost increases. We provide
Algorithm 2 for the generic case of n scalar multiplication.

5

Algorithm 2: MultiScalarMultiplication((k1, P1), . . . , (kn, Pn))
Input. A list of scalars k1, . . . , kn of N bits,

A list of points P1, . . . , Pn.
Output. Q = [k1]P1 + . . .+ [kn]Pn.

Pre-computation table T .
for j between 0 and 2n − 1 do
T [j]←

∑n
i=1[ei]Pi where j =

∑n
i=1 ei2

i−1.
end for

Main loop.
R← 0E
for (b1, . . . , bn) bits of k1, . . . , kn read from MSB to LSB do
R← [2]R
R← R+ T

[∑n
i=1 bi2

i−1]
end for
return R

The cost of this algorithm is split into two: a pre-computation table of
2n − n − 1 elliptic curve additions (Add), and a main loop with N − 1 steps
including a doubling (Dbl) and an addition. Adding the neutral element may
occur with probability 2−n, but in the context of SNARK circuits (as well as for
constant time algorithms), additions will always be computed so we decided to
keep (N − 1)Add for the cost estimation. From now, we denote MSM(n,N) to
be the cost of a multi scalar multiplication of n points and scalars of N bits:

MSM(n,N) = (2n − n− 1 +N − 1) ·Add+ (N − 1) ·Dbl.

We recall in the next section a technique that speeds up a scalar multiplication
by computing it as a multi scalar multiplication with halve size scalars. It was
introduced in [16] by Gallant, Lambert and Vanstone.

GLV scalar multiplication. Let End(E) = Z+ψZ, and ψ(P) ≡ [λ]P , i.e. λ is
the eigenvalue of ψ seen as a linear application on E(Fp)[r], the order-r subgroup
defined over Fp. The method introduced in [16] turns [k]P into [k1]P + [k2]ψ(P)
with ψ efficiently computable. This applies to elliptic curves with small CM
discriminant, where the endomorphism ψ has a tiny degree. The scalars k1, k2
can be constructed of size around

√
r. We dig the details of this decomposition

from a generic point of view in Section 2.4. Note that for computing the multi
scalar multiplication, it is required to compute [λ]P = ψ(P), and it is expensive
when the degree of ψ is large. The GLV technique is implemented in many
libraries, and leads to almost 40% speed-up for scalar multiplication.

Example 1. Consider an elliptic curve defined over Fp by y2 = x3 + b. There is
an efficient endomorphism ψ : E → E defined by (x, y) 7→ (ωx, y) (and 0E 7→ 0E)

6

such that ψ(P) = [λ]P , where both ω and λ are cubic roots of unity in Fp and
Fr respectively. Evaluating this endomorphism costs only one multiplication
over Fp. Using ψ, it is possible to turn [k]P into [k1]P + [k2]ψ(P) which costs
MSM(2, N/2).

In the next sections, we dig the decomposition of a scalar from a general
point of view. The GLV method can be obtained from it as a special case, and
the results of Section 3 also use this technique.

2.4 Scalar decomposition using lattice reduction

In this section, we consider the generic decomposition of a scalar k. We look for
a small solution (x, y, z, t) ∈ Z4 of

x+ λy − k(z + λt) = 0 mod r,

where λ is fixed. Note that when λ is the eigenvalue of the endomorphism, finding
a solution with z = 1 and t = 0 leads to the GLV decomposition.

We look for small solutions to this problem. The set of solutions is a lattice
of small dimension, and it is possible to use algorithms of reduction in order to
find small solutions. Minkowski’s theorem ensure that in a lattice L of rank n,
there exists a vector v of norm |v|∞ ≤ Vol(L)1/n, where Vol(L) is the volume of
the lattice and can be computed as

√
det(MM t) for a matrix M defining the

lattice. If the lattice is described by a full rank matrix, the volume is simply
the determinant. Finding a short vector of the lattice can be computed in
polynomial time using for instance [23], but the obtained vector can be slightly
larger. The obtained bound is Vol(L)1/n/(δ−1/4)(n−1)/n, where δ is a parameter
usually set to a value close to 1, often δ = 0.99. However, we consider here only
dimension up to 6 and algorithms such as LLL [23] work also well for this range
of dimensions [26]. Though, the obtained vectors are short with respect to the
Euclidean norm. While this computation is done out-of-circuit during the witness
generation, it might be expensive depending on the context (see Section 4.1). We
consider an alternative approach in Section 2.5 for a witness/proof generation
trade-off that is easier to implement. We consider now specific values of the
parameter λ that will be useful in Section 3.

Integer fraction decomposition. When λ = 0, the equation is simply x−kz =
0 mod r. It corresponds to a fraction decomposition of k = x/z in Z/rZ. In this
case, the solutions form a lattice of dimension 2 defined with(

r 0
k 1

)
After reducing this matrix, the resulting scalars are expected to be bounded by
r1/2/(δ − 1/4)1/2 ≈ 1.16r1/2 for δ = 0.99. This case is studied in Section 3.1.

7

Simultaneous fraction decomposition. It is possible to solve two equations
simultaneously, namely for two scalars k1, k2, we consider the equations x1−k1z =
0 mod r and x2− k2z = 0 mod r. In other words, we write k1 and k2 as fractions
modulo r with the same denominator z, and it corresponds to a lattice of
dimension 3 defined with  r 0 0

0 r 0
k1 k2 1


and the resulting scalars are expected to be bounded by r2/3/(δ − 1/4)2/3 ≈
1.22r2/3 for δ = 0.99. This case is studied in Section 3.2.

Fraction decomposition in a quadratic extension. The solutions of the
original equation x+ λy− k(z+ λt) = 0 mod r is a lattice of dimension 4 defined
with 

r 0 0 0
−λ 1 0 0
k 0 1 0
0 0 −λ 1


and a solution corresponds to a rational fraction k = (x+ λy)/(z + λt) mod r,
i.e. a fraction in (Z/rZ)[λ]. Using a lattice reduction, the scalars are expected to
be bounded by r1/4/(δ − 1/4)3/4 ≈ 1.25r1/4 for δ = 0.99. This case is studied in
Section 3.3.

Simultaneous fraction decomposition in a quadratic extension. Gener-
alizing this to two equations simultaneously is also possible. The two equations
(x1 + λy1)− k1(z + λt) = 0 mod r and (x2 + λy2)− k2(z + λt) = 0 mod r define
a lattice of dimension 6 defined by

r 0 0 0 0 0
−λ 1 0 0 0 0
0 0 r 0 0 0
0 0 −λ 1 0 0
k1 0 k2 0 1 0
0 0 0 0 −λ 1


and the resulting scalars are expected to be bounded by r2/6/(δ − 1/4)5/6 ≈
1.28r1/3. We study this case in Section 3.4.

In the next section, we investigate how to compute a scalar decomposition
without lattice reduction. Instead, we consider the extended Euclidean algorithm
in different rings. First, we recall how it works in Z, and then apply the same
idea on the norm Euclidean rings Z[j] and Z[

√
−2].

8

2.5 Scalar decomposition using the (half) extended Euclidean
algorithm

A fraction decomposition can be obtained using the extended Euclidean algorithm
(EEA), as described in [16, Sec. 4].

Decomposition in Z. Running the extended Euclidean algorithm on (r, k) in
Z produces a sequence of numbers si, ti, ri, starting with

s0 = 1, t0 = 0, r0 = r,
s1 = 0, t1 = 1, r1 = k,

and verifying

1. sir + tik = ri
2. ri > ri+1 ≥ 0 for i ≥ 0,
3. |si| < |si+1| for i ≥ 1,
4. |ti| < |ti+1| for i ≥ 0,
5. ri|ti+1|+ ri+1|ti| = r for i ≥ 1.

Stopping the algorithm at the last step m where rm ≥
√
r ensures that

|ti+1| <
√
r. Since rm+1 <

√
r, we obtain (x, z) := (rm+1, tm+1) such that

x− zk = 0 mod r, and |(x, z)|∞ <
√
r.

This method allows in fact to find a short vector in the lattice L, the kernel of

Z× Z −→ Z/rZ
(x, y) −→ x+ ky

Note that the short vector that is found is below the Minkowski bound
Vol(L)1/2 =

√
r.

Decomposition in a norm Euclidean imaginary quadratic ring. In an
imaginary quadratic ring O which is norm Euclidean (meaning that we can
run the Greatest Common Divisor (GCD) algorithm using the norm N in the
complex sense), if an ideal (r) splits as a product of two distinct prime ideals I1
and I2, we can apply the same idea as in Z to find a short vector in the kernel
(which is a lattice L) of

O ×O −→ O/I1 ∼= Z/rZ
(x, y) −→ x+ ky

Running the extended Euclidean algorithm on (r, k) in O produces a sequence
of values si, ti, ri, starting with

s0 = 1, t0 = 0, r0 = r,
s1 = 0, t1 = 1, r1 = k,

and verifying

9

1. sir + tik = ri
2. N (ri) > N (ri+1) ≥ 0 for i ≥ 0,
3. N (si) < N (si+1) for i ≥ 1,
4. N (ti) < N (ti+1) for i ≥ 0,
5. ±(riti+1 − ri+1ti) = r for i ≥ 1.

As in Z, if we stop the algorithm at the last step m where N (rm) ≥
√
N (r) =

√
r,

we can find a short vector (tm+1, rm+1) satisfying rm+1−tm+1k = 0 mod r, where
N (rm+1) ≤

√
N (r). From ±(ri−1ti − riti−1) = r for i ≥ 1 and N (ri−1) > N (ri)

we have

N (r) ≥ N (ri−1)N (ti)−N (ri)N (ti−1) ≥ N (ri−1)(N (ti)−N (ti−1))

Since N (ri) ≥
√
r for i ≥ m, we have for i ≥ m√

N (r) ≥ (N (ti)−N (ti−1))

Since this inequality is true for all the first m steps and since t0 = 0, summing
all those inequalities gives

c
√
N (r) ≥ N (ti)

where c is the number of steps before we stop the algorithm. The number of steps
when running the extended Euclidean algorithm on (a, b) with N (a) > N (b) is
at worst log2(N (a)).

The bound
√
r is far from the theoretical Minkowski bound Vol(L)1/4 = 4

√
r.

To remedy to this, instead of running the extended Euclidean algorithm on (r, k),
we can run it on (w, k) where w is a short vector in I1, of size below

√
r, which is

possible since I1, I2 are lattices of rank 2 and volume r. In this case, running the
extended Euclidean algorithm on (w, k) would produce (tm+1, rm+1) such that

N (tm+1) < c
√
N (w)

N (rm+1) <
√
N (w)

and
rm+1 − tm+1k = 0 mod w

and since w is I1, this gives that

rm+1 − tm+1k = 0 mod I1

Decomposition in Z[j]. In the ring of Eisenstein integers, the ideal (r) splits
as the product of I1 := (r, j − λ) and I2 := (r, j − λ2). To find a short vector w
in I1, we apply the half-GCD method for the decomposition in Z on (r, λ). It
produces a vector (w0, w1) such that

w := w0 + jw1 ∈ I1

since in Z[j]/(r, j − λ)Z ∼= Z/rZ, w = 0. Also |(w0, w1)|∞ <
√
r.

10

Now, running the extended Euclidean algorithm on (w, k) produces x, y ∈ Z[j]
such that

x− kz = 0 mod (r, j − λ)

and such that N (x) <
√
N (w) and N (z) < N

√
N (w) where N is the bit-size of

k.
For implementation purposes, we need to know the bit-size of the scalars x

and z. For that we need to compare the norm N and maximum norm defined
by |a+ jb|∞ = max{|a|, |b|}. The comparison of those norms is described in the
Appendix A. We obtain that

|x|∞ ≤ 2
√
2 4
√
r,

|z|∞ ≤ 2
√
2N 4
√
r.

Decomposition in Z[
√
−2]. When r splits in Z[

√
−2] as I1 := (r,

√
−2− µ),

I2 := (r,
√
−2 − ν), we proceed exactly in the same way as in Z[j], that is

we first find a short vector w ∈ I1 such that |w|∞ <
√
r, and then we run

the extended Euclidean algorithm on (w, k) in Z[
√
−2] to find (x, z) such that

x− kz = 0 mod (r, r− µ) and such that N (x) <
√
N (w) and N (z) < N

√
N (w)

where N is the bit-size of k. Again, comparing the norm N and the maximum
norm defined by |a+ b

√
−2|∞ = max{|a|, |b|} (see Appendix A) shows that

|x|∞ ≤ 2
4
√
2 4
√
r,

|z|∞ ≤ 2
4
√
2N 4
√
r.

3 Proving scalar multiplications

In this section, we explain how to apply scalar decomposition in order to speed
up proving scalar multiplications in SNARKs. In the traditional context, when
an efficient endomorphism is available, one can turn a single scalar multiplication
i.e. MSM(1, N) into a MSM(2, N/2). In Sections 3.1 and 3.2, we present a
technique to turn any MSM(1, N) into a MSM(2, N/2) regardless if the elliptic
curve is equipped with an efficient endomorphism. In Sections 3.3 and 3.4, when
the curve is equipped with a GLV endomorphism, we show how to turn a
MSM(1, N) into a MSM(4, N/4).

3.1 Hinted simple scalar multiplication

In the context of SNARKs, the scalar multiplication [k]P is rather verified than
computed. In this context it is possible to hint the output Q = [k]P , that is the
prover computes the scalar multiplication outside of the SNARK circuit. Then
the verifier checks whether if [k]P −Q = 0E inside the SNARK circuit. This way,
it is possible to write k as x/z mod r with x, z small as in Section 2.4.

[k]P = Q ⇐⇒ [x]P − [z]Q = 0

11

This computation can be done with a double scalar multiplication as in Section 2.3.
From Section 2.4, the resulting scalars x, z are expected to be bounded by 1.16

√
r.

However, the verifier has to additionally check that the decomposition is correct,
i.e. k · z = x mod r.

In the traditional context of computing [k]P , the GLV endomorphism is a
way to introduce a second point φ(P) which is cheap to compute to turn [k]P
into [k1]P + [k2]φ(P) where k1, k2 are small. In the SNARK context, we use the
resulting point Q as this second point to achieve the same speed-up. In terms of
cost, this technique enables a verification in almost MSM(2, N/2). We note that
a similar idea for verifying signatures was introduced in [2] in a different context.
In the next section, we investigate how to use this technique for a double scalar
multiplication.

Example 2. Consider the following toy elliptic curve: E/F103 : y2 = x3 + 5. It
forms a group of prime order 97. Let P = (38, 94) be a point on the curve. Given
Q = [11]P = (95, 27), proving [11]P = Q is equivalent to proving [2]P−[9]Q = 0E .

3.2 Hinted double scalar multiplication

The previous technique can be generalized for a double scalar multiplication.
The computation of [k1]P1 + [k2]P2 can be decomposed using the simultaneous
fraction decomposition of Section 2.4 in order to write k1 = x1/z mod r and
k2 = x2/z mod r. Then,

[k1]P1 + [k2]P2 = Q ⇐⇒ [x1]P1 + [x2]P2 − [z]Q = 0

and the scalars x1, x2 and z are expected to be bounded by 1.22r2/3. The
computation of the MSM of size 2 can be done using a MSM of size 3 with scalar
of size almost 2/3 of the original scalar size. We estimate that this leads to a
25% improvement for a signature verification. In the next section, we investigate
the case of GLV optimization.

Example 3. Let P1 = (38, 94) and P2 = (31, 82) be two points on the curve
E(F103). Given Q = [75]P1 + [35]P2 = (8, 38), proving [75]P1 + [35]P2 = Q is
equivalent to proving [−18]P1 + [11]P2 + [8]Q = 0E .

3.3 Hinted GLV scalar multiplication

It is possible to use the technique described in Section 3.1 together with the
GLV speed-up. Instead of writing k = x/z mod r, we decompose the scalar in
(Z/rZ)[λ] as in Section 2.4:

k =
x+ λy

z + λt
mod r

leading to a four-dimensional multi scalar multiplication:

[k]P = Q ⇐⇒ [x]P + [y]ψ(P)− [z]Q− [t]ψ(Q) = 0

12

Using a lattice reduction, a solution (x, y, z, t) can be found with expected norm
bounded by 1.25 4

√
r. Finally, we obtain an overall cost of almost MSM(4, N/4),

improving the scalar multiplication verification for small discriminant curves.

Example 4. The curve E(F103) has the same form as Example 1. Hence, it has
an efficient endomorphism ψ with λ = 61 and ω = 46. Let P = (38, 94) ∈
E. Given Q = [56]P = (8, 65), proving [56]P = Q is equivalent to proving
[1]P + [1]ψ(P) + [1]Q− [1]ψ(Q) = 0E .

3.4 Hinted GLV double scalar multiplication

An approach similar to Section 3.2 can be combined with the GLV optimization.
As in Section 2.4, we write

k1 =
x1 + λy1
z + λt

mod r, k2 =
x2 + λy2
z + λt

mod r

and so

[k1]P1+[k2]P2 = Q ⇐⇒ [x1]P1+[y1]ψ(P1)+[x2]P2+[y2]ψ(P2)−[z]Q−[t]ψ(Q) = 0.

From Section 2.4, we expect xi, yi, z, t to be bounded by 1.28r1/3. The final cost is
almost MSM(6, N/3), slightly better than MSM(4, N/2) when the double scalar
multiplication is computed using the GLV optimization.

Example 5. Let P1 = (38, 94) and P2 = (31, 82) in E(F103). Given Q = [16]P1 +
[92]P2 = (57, 2), proving [16]P1 + [92]P2 = Q is equivalent to proving [2]P1 +
[−1]ψ(P1) + [1]P2 + [−2]ψ(P2)− [2]Q− [1]ψ(Q) = 0E .

Note 1. In this section, we only focused on elliptic curves defined over Fp. Gal-
braith, Lin, and Scott [14,15] generalized the GLV method for a large class of
elliptic curves over Fp2 , referred to as GLS curves. Our technique applies similarly
to this generalization. It can turn proving a N -bit scalar multiplication over a
GLS curve into proving a N/8-bit multi scalar multiplication of size 8.

Note 2. The difference between our method and the (traditional) GLV method
is threefold:

1. In GLV, for the scalar decomposition, we usually start by pre-computing
a short basis using a lattice reduction given the curve order r and the
endomorphism eigenalue λ. This is a one-time setup per elliptic curve. Then
we find a close vector to the scalar k in the lattice using Babai rounding. In our
case, it is the lattice reduction that gives us directly the scalar decomposition.
The reduction takes k and r as inputs and has to be performed for every new
scalar multiplication.

2. In GLV, the scalar decomposition (Babai rounding) is part of the running
time of the scalar multiplication algorithm. In our case, the SNARK circuit
only verifies that the (pre-computed) decomposition is correct.

3. In 2-dimensional GLV, we need an efficient endomorphism. In our case, we
don’t. In 4-dimensional GLV, we need two endomorphisms. In our case, we
only need one.

13

4 Implementation results

For the implementation, we choose two widely used proof systems: Groth16 and
PLONK. As shown in Section 2.1, we are interested in reducing the number
of gates of the arithmetic circuit corresponding to a scalar multiplication. For
Groth16, we only consider multiplication gates and for PLONK we consider both
addition and multiplication gates.

4.1 Considerations

Arithmetizing computations for SNARK proving is different than traditionally
carrying plain computations as shown in Section 2.1.

Arithmetizing elliptic curve operations. Since inversions cost as much as
multiplications here, we use affine coordinates to double and add points on the
elliptic curve in short Weierstrass form. When a doubling is followed by an
addition i.e. [2]R+P we instead compute (R+P)+R omitting the computation
of the y-coordinate of R+ P as pointed out in [10].

With these considerations, we can implement Algorithm 1 in a SNARK
but conditional branching (If/Else) is not possible in SNARK circuits so this is
replaced by constant window table lookups inside the circuit. This can be achieved
using polynomials which vanish at the constants that aren’t being selected, i.e. a
1-bit table lookup R ← ki · R + (1 − ki) · (R + P). Hence this double-and-add
algorithm requires N doubling, N additions and N 1-bit table lookup where N
is the bit-size of the scalar. This can be extended to windowed double-and-add,
i.e. scanning more than a bit per iteration using larger window tables, but the
number of gates of the lookup table increases exponentially.

Since we start with R ← 0E it is infeasible to avoid conditional branching
because affine formulas are incomplete. Instead, we scan the bits right-to-left
and assume that the first bit k0 is 1 (so that we start at R← P), we double the
input point P in the accumulator T in this algorithm and finally conditionally
subtract (using the 1-bit lookup) P if k0 was 0, as shown in Algorithm 3.

Algorithm 3: ScalarMultiplication(k, P)
Input. A scalar k of N bits,

A point P .
Output. Q = [k]P .
R← P
T ← [2]P
for b bit of k read from second LSB to MSB do
R← b ·R+ (1− b) · (R+ T)
T ← [2]T

end for
k0 ← k mod 2
R← k0 ·R+ (1− k0) · (R− P)
return R

14

With these considerations, implementing the GLV scalar multiplication in a
SNARK is also feasible as demonstrated in [9, Alg. 1]. We further extend this
technique by using a 16-bit lookup, as show in the attached code (See Section 4.2).
While the cost of lookups grows in SNARK circuits, we empirically found that,
in the case of emulated arithmetic (elliptic curve base field is different from
the SNARK field), it yields the best performances. The scalar decomposition is
verified inside the SNARK circuit. However, sub-scalars can be negative. In this
case the hint returns positive sub-scalars and a bit to indicate when to inverse
points instead using a 1-bit lookup.

When the curve is endomorphism-equipped, we implement a MSM of size 4
using the 16-bit lookup as shown in the attached code (See Section 4.2).

For curves in twisted Edwards form, since formulae are complete, we implement
a 2-bit windowed scalar multiplication as shown in [31] and [3, Alg. 17]. For a
MSM of size 4, the cost of the 16-bit lookup is expensive in native arithmetic
compared to the cost of point arithmetic. This makes the algorithm in Section 3.3
costlier than the one in Section 3.1 for Bandersnatch curve as shown in Table 6.
In native SNARK circuits, we it is better to always use Section 3.1 regardless of
the existence of an efficient endomorphism.

Proving and witness generation times trade-off. In blockchain applica-
tions, e.g. StarkNet 4, to prevent Denial of Service (DOS) attacks, arbitrary
hints are not allowed. A malicious prover can run an infinite loop as a hint
and cause a DOS. Only whitelisted hints by StarkNet are allowed. A developer
submits their hint as a transaction calldata 5 which costs fees and is limited in
size, inherently limiting the DOS surface. In this case, we would like to trade off
the cost of the witness generation for the cost of the proving. In this case, for
the scalar decomposition hint, we use the half-GCD algorithm in Z[j] developed
in Section 2.5 instead of the lattice reduction techniques shown in Section 2.4.
However, this increases the bounds on the sub-scalars as seen in Section 2.5
resulting in slower proving but cheaper calldata per transaction.

4.2 Implementation and benchmarks

Our code is available in the following GitHub repository:
https://github.com/yelhousni/scalarmul-in-snark.
We choose to implement our work for some of the widely used elliptic curves

in SNARKs and blockchains (See Table 2).
We use the gnark library [6] in Golang to implement the circuits. We refer

by r1cs (rank-1 constraint system) to Groth16 constraints and by scs (sparse
constraint system) to the PLONK constraints. We consider two settings:

– Setting (i): The emulated case. We use a SNARK over an arbitrary field
and we prove scalar multiplication over a given elliptic curve by emulating

4 https://www.starknet.io/.
5 https://learnevm.com/chapters/fn/calldata.

15

https://github.com/yelhousni/scalarmul-in-snark
https://www.starknet.io/
https://learnevm.com/chapters/fn/calldata

Curve5 Endomorphism? Form
BN254 (Ethereum) X Weierstrass
BLS12-381 [7] X Weierstrass
BW6-761 [11] X Weierstrass
Secp256k1 (Bitcoin) X Weierstrass
P-256 (SEC 2) Weierstrass
P-384 (SEC 2) Weierstrass
Jubjub [31] twisted Edwards
Bandersnatch [24] X twisted Edwards

Table 2: Some elliptic curves used in SNARKs and blockchains.

the base field arithmetic in the SNARK arbitrary field (see [22,1] for details
on field emulation in SNARKs). Table 3 reports our results for curves with
an efficient endomorphism (setting (i)-a) and Table 4 for curves without
endomorphism (setting (i)-b).

– Setting (ii): The native case. We use a SNARK over a fixed field that matches
the base field of the given elliptic curve we want to prove scalar multiplications
over. Table 5 reports our results for curves with an efficient endomorphism
(setting (ii)-a) and Table 6 for curves without endomorphism (setting (ii)-b).

Curve Previous work ([9, Alg. 1]) This work (Sec. 3.3) Speed-up

BN254 381467 scs
78246 r1cs

220436 scs
59351 r1cs

42%
24%

BLS12-381 539973 scs
110928 r1cs

307045 scs
84508 r1cs

43%
24%

BW6-761 1367067 scs
295194 r1cs

765544 scs
212659 r1cs

44%
28%

Secp256k1 385461 scs
78940 r1cs

223188 scs
60089 r1cs

42%
24%

Table 3: Implementation results for setting (i)-a.

Curve Previous work (Alg. 3) This work (Sec. 3.1) Speed-up

P-256 612759 scs
157685 r1cs

294128 scs
78940 r1cs

52%
50%

P-384 1233998 scs
325974 r1cs

588942 scs
159073 r1cs

52%
51%

Table 4: Implementation results for setting (i)-b.

16

Curve Previous work ([3, Alg. 17]) This work (Sec. 3.1) Speed-up

Jubjub 5863 scs
3314 r1cs

4549 scs
2401 r1cs

22%
28%

Table 5: Implementation results for setting (ii)-a.

Curve Previous work ([24, Sec. 4.3]) This work (Sec. 3.3) slow-down

Bandersnatch 4712 scs
2621 r1cs

8519 scs
4038 r1cs

80%
54%

Table 6: Implementation results for setting (ii)-b.

In this section, we only implemented single scalar multiplication circuits.
The practical and the theoretical speed-ups roughly match, but the number of
constraints is slightly more complicated to analyse. The look-up table access
has a cost in SNARKs that becomes significant when the table size increases.
Moreover, for the emulated case, the cost of the non-native arithmetic operations
become predominant. We did not investigate the implementation for multi scalar
multiplications as SNARK circuit in gnark, but expect to get a speed-up only
for n = 2. In systems such as PLONK or Groth16, reading points of the pre-
computation table requires some constraints, and the overall circuit size may
increase in consequence. A similar result is expected for scalar multiplication
using GLS decomposition, where the scalar can be decomposed with 8 sub-scalars.

5 Conclusion

In this work, we investigate new techniques for proving scalar multiplications
in the context of generic proof systems. While the computation of scalar mul-
tiplications has been optimized in the last decades, the case of a verification
has not been investigated. Using the hint of the output point, it is possible
to apply decomposition of the scalars in order to speed up the proving time.
Table 7 provides the expected size of scalars and cost for simple and double
scalar multiplications (SM and 2MSM resp.) in the case of small (GLV) and large
(generic) discriminant curves. The obtained scalar sizes were obtained using a
reduction of the lattice with respect to the Euclidean norm. Thus, the maximum
norm is slightly larger than the Minkowski bound. A refined lattice reduction
would be possible in order to reduce further the scalar sizes.

We implemented the different techniques for elliptic curves used in production
in blockchains and obtained significant speed-ups, as shown in Figure 2.

As we have shown in Section 2.3, multi scalar multiplications based on
Strauss’s [30] trick speeds up the algorithmic cost but the pre-computation table
cost grows exponentially in n. Hence, we expect to benefit from our optimizations
for a double scalar multiplication (n = 2) but not for higher multi scalar multipli-
cation (n ≥ 3). However, for future work, considering in SNARK circuits different
5 The parameters of the elliptic curves can be found in https://neuromancer.sk/std/.

17

https://neuromancer.sk/std/

Algorithm Previous work This work
Cost Scalar bound Cost Scalar bound

SM MSM(1, N) r MSM(2, dN/2e) 1.16 · r1/2

GLV SM MSM(2, dN/2e) 1.16 · r1/2 MSM(4, dN/4e) 1.25 · r1/4

2MSM MSM(2, N) r MSM(3, d2N/3e) 1.22 · r2/3

GLV 2MSM MSM(4, dN/2e) 1.16 · r1/2 MSM(6, dN/3e) 1.28 · r1/3

Table 7: In-circuit scalar multiplication cost.

(a) Setting (i)-a scs (b) Setting (i)-a r1cs (c) Setting (i)-b scs (d) Setting (i)-b r1cs

(e) Setting (ii)-a scs (f) Setting (ii)-a r1cs (g) Setting (ii)-b scs (h) Setting (ii)-b r1cs

Fig. 2: Implementation results.

algorithms for larger sizes such as Pippenger’s [4, Sec. 4] or Bos–Coster’s [28,
Sec. 4] algorithms may lead to promising results.

Acknowledgments. We express our gratitude to 0xPARC since this work partially
started while the first and second authors (in alphabetical order) were at the
0xPARC residency in San Francisco. We would also like to thank Renaud Dubois
and Olivier Bégassat for fruitful discussions.

References

1. Ambrona, M., Firsov, D., Querejeta-Azurmendi, I.: Efficient foreign-field arithmetic
in PLONK. Cryptology ePrint Archive, Paper 2025/695 (2025), https://eprint.
iacr.org/2025/695

2. Antipa, A., Brown, D.R.L., Gallant, R., Lambert, R., Struik, R., Vanstone, S.A.:
Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Berlin, Heidelberg (Aug 2006).
https://doi.org/10.1007/11693383_21

3. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for
proof systems. DCC 91(11), 3333–3378 (2023). https://doi.org/10.1007/
s10623-022-01135-y

18

https://eprint.iacr.org/2025/695
https://eprint.iacr.org/2025/695
https://doi.org/10.1007/11693383_21
https://doi.org/10.1007/11693383_21
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y

4. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.J.: Faster batch forgery
identification. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS,
vol. 7668, pp. 454–473. Springer, Berlin, Heidelberg (Dec 2012). https://doi.org/
10.1007/978-3-642-34931-7_26

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again.
In: Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM (Jan 2012). https:
//doi.org/10.1145/2090236.2090263

6. Botrel, G., Piellard, T., El Housni, Y., Kubjas, I.: Consensys/gnark: v0.12.0 (Jan
2025). https://doi.org/10.5281/zenodo.5819104, https://doi.org/10.5281/
zenodo.5819104

7. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. Zcash blog (March
11 2017), https://blog.z.cash/new-snark-curve/

8. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: Enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy. pp. 947–964. IEEE Computer Society Press (May 2020). https://doi.
org/10.1109/SP40000.2020.00050

9. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019), https:
//eprint.iacr.org/2019/1021

10. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and
improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612,
pp. 343–354. Springer, Berlin, Heidelberg (Apr 2003). https://doi.org/10.1007/
3-540-36563-X_24

11. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay,
S. (eds.) CANS 20. LNCS, vol. 12579, pp. 259–279. Springer, Cham (Dec 2020).
https://doi.org/10.1007/978-3-030-65411-5_13

12. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.)
CRYPTO’85. LNCS, vol. 218, pp. 396–402. Springer, Berlin, Heidelberg (Aug 1986).
https://doi.org/10.1007/3-540-39799-X_28

13. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

14. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve
cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 518–535. Springer, Berlin, Heidelberg (Apr 2009). https:
//doi.org/10.1007/978-3-642-01001-9_30

15. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptog-
raphy on a large class of curves. Journal of Cryptology 24(3), 446–469 (Jul 2011).
https://doi.org/10.1007/s00145-010-9065-y

16. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Berlin, Heidelberg (Aug 2001). https://doi.org/
10.1007/3-540-44647-8_11

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011). https://doi.org/10.1145/1993636.1993651

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.
1137/0218012

19

https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1007/978-3-642-34931-7_26
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://blog.z.cash/new-snark-curve/
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/978-3-030-65411-5_13
https://doi.org/10.1007/978-3-030-65411-5_13
https://doi.org/10.1007/3-540-39799-X_28
https://doi.org/10.1007/3-540-39799-X_28
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/s00145-010-9065-y
https://doi.org/10.1007/s00145-010-9065-y
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
305–326. Springer, Berlin, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5_11

20. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992). https:
//doi.org/10.1145/129712.129782

21. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
shelat, a., Shi, E.: C∅c∅: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015), https://eprint.
iacr.org/2015/1093

22. Kubjas, I.: Notes about optimizing emulated pairing (part 1). https://hackmd.io/
@ivokub/SyJRV7ye2 (2023)

23. Lenstra, H.j., Lenstra, A., LovÃ¡sz, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 515–534 (1982), http://eudml.org/doc/
182903

24. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built over
the BLS12-381 scalar field. DCC 92(12), 4131–4143 (2024). https://doi.org/10.
1007/s10623-024-01472-0

25. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE Com-
puter Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365746

26. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM
Trans. Algorithms 5(4) (Nov 2009). https://doi.org/10.1145/1597036.1597050,
https://doi.org/10.1145/1597036.1597050

27. Prover, L.: Linea prover documentation. Cryptology ePrint Archive, Paper
2022/1633 (2022), https://eprint.iacr.org/2022/1633

28. de Rooij, P.: Efficient exponentiation using procomputation and vector addition
chains. pp. 389–399 (1995). https://doi.org/10.1007/BFb0053453

29. Silverman, J.H.: The arithmetic of elliptic curves, Graduate texts in mathematics,
vol. 106. Springer (1986)

30. Strauss, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70(114), 806–808 (1964)

31. ZCash: What is jubjub? https://z.cash/technology/jubjub/ (2021)

A Comparison of norms

A.1 Comparison of N and the maximum norm in Z[j]

We compare both norms with | · |2 defined by |x+ jy|2 =
√
x2 + y2. Recall that

N (a + jb) =
√
a2 + b2 − ab, so it is the norm in the complex sense. From the

triangle inequality, followed by Cauchy inequality, we obtain that

|a+ jb|∞ ≤ |a|∞|1|∞ + |b|∞|1|∞ ≤
√
2|a+ jb|2,

N (a+ jb) ≤ N (1)N (a) +N (1)N (b) ≤
√
2|a+ jb|2.

Now, on the circle |x|2 = 1, the norm N reaches its minimum 1√
2
at 1√

2
+ j√

2
,

and so
1√
2
| · |2 ≤ N (·).

20

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://hackmd.io/@ivokub/SyJRV7ye2
https://hackmd.io/@ivokub/SyJRV7ye2
http://eudml.org/doc/182903
http://eudml.org/doc/182903
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://eprint.iacr.org/2022/1633
https://doi.org/10.1007/BFb0053453
https://doi.org/10.1007/BFb0053453
https://z.cash/technology/jubjub/

The same reasoning shows that

1√
2
| · |2 ≤ | · |∞.

A.2 Comparison of N and the maximum norm in Z[
√
−2]

Here again, |a+ b
√
−2|∞ = max{|a|, |b|} and N (a+

√
−2b) =

√
a2 + 2b2. Again,

the triangle inequality and the Cauchy inequality shows that

N (x) ≤
√
2|x|2,

|x|∞ ≤
√
2|x|2.

Now, on the circle |x|2 = 1, we see that the norm N reaches its minimum 1 at
1+0

√
−2, and | · |∞ reaches its minimum 1√

2
at 1√

2
+
√
−2 1√

−2 , and so we obtain

| · |2 ≤ | · |∞,
1√
2
| · |2 ≤ N (·).

21

	 Fast elliptic curve scalar multiplications in SN(T)ARK circuits

