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Abstract. Private set intersection (PSI) is a well-researched cryptographic primitive that
allows two parties to compute the intersection of their input sets without revealing any
information about items outside of the intersection. Fuzzy private set intersection is a
relatively new variant of PSI, where items are not matched exactly but “fuzzily”. Most
commonly, items are points q,w in d-dimensional integer space Zd and a point is a fuzzy
match to another if it lies within a ball of radius δ centered at this point, with respect to
some distance metric.
Previous works either only support infinity (L∞) distance metric and standard PSI func-
tionality, or support general Minkowski (Lp, p ∈ [1,∞]) distance metrics and realize richer
functionalities but rely on expensive homomorphic encryptions. Our work aims to bridge this
gap by giving the first construction of a fuzzy PSI protocol for general Minkowski distance
metrics relying on significantly cheaper operations during the online phase.
Our main building block is a novel fuzzy matching protocol based on an oblivious pseudo-
random function (OPRF), which can be realized very efficiently from vector oblivious linear
evaluation (VOLE). Our protocol is able to preserve the asymptotic complexity as well as the
simplicity of the fuzzy matching protocol from van Baarsen and Pu (Eurocrypt ’24), while
being much more concretely efficient. Additionally, we achieve several asymptotic improve-
ments by representing intervals succinctly. Finally, we present the first fuzzy PSI protocol
for infinity distance that places no assumptions on the sets of points, while maintaining
asymptotic complexities comparable to the state-of-the-art fuzzy PSI protocol.
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1 Introduction

Private set intersection (PSI) has been studied for several decades since [33]. It allows two parties
to jointly compute the intersection X ∩ Y of their respective sets X and Y without revealing any
additional information. PSI is often viewed as a natural application of oblivious pseudorandom
functions (OPRF), where one party learns only the PRF evaluations on its inputs, and the other
party learns the PRF key. Many modern PSI constructions are based on different implementations
of OPRF, such as using oblivious transfer extension [29,31], or vector oblivious linear evaluation
(VOLE) [38,36].

In this work, we focus on a variant called fuzzy PSI, which allows approximate matches between
set elements (or points3). Specifically, given two sets X,Y of size N and M , held by a receiver and a
sender, respectively, the receiver learns which elements in X are close to the sender’s elements. Here,
closeness is measured by a metric like infinity or Euclidean distance, and the maximum allowable
distance δ between two matched points also defines the radius of the ball surrounding each point,
which is additionally parametrized by the dimension d of the space.

Fuzzy PSI can be seen as a generalization of standard PSI, as it allows a broader matching
function, rather than a simple equality test as in standard PSI. This generalization is particularly
useful in scenarios where elements are inherently “noisy”, such as biometric samples [3,30] where
users want to compare its biometric readings (e.g., iris scans, fingerprints, or facial patterns) with
samples recorded at a server, or for geographic locations [23,20], where passengers want to know
whether there are available Ubers around. This latter application is also known as privacy-preserving
ride sharing. Although fuzzy PSI is closely related to PSI, it typically requires more complicated
constructions and follows different methodologies, which we outline below.

1.1 Related Work

Naive Enumeration. The most natural solution is enumerating every point contained in the
δ-radius ball surrounding each element in the set, followed by a standard PSI on these expanded
sets. This folklore approach utilizes standard PSI in a black-box way and therefore could benefit
from any future improvement on PSI constructions. The downside is that it is only suitable for
scenarios where the volume of the ball surrounding each element is small enough, because, for
instance, in d-dimensional space, a δ-radius ball has a volume roughly O(δd).

Generic Approaches. A common approach involves using garbled circuits (GC) [43,4] or fully
homomorphic encryption (FHE 4) [25] to implement a “fuzzy matching” circuit [18] for each pair
of elements, as shown in [27,41,40]. A fuzzy matching circuit takes two points as input and outputs
a bit indicating whether the points are within a certain distance threshold δ. By leveraging GC
(or FHE), these protocols can handle elements with polynomially large dimensions and therefore
exponentially large balls.

However, a limitation of this approach is that it becomes inefficient when dealing with large
sets. The pairwise comparison between elements from two sets results in a quadratic overhead in
terms of set size, O(N ·M). This is particularly expensive for communication (in the case of GC)
or computation (in the case of FHE) when the sizes of the sets are, for instance, several millions.

Concurrent work [37] circumvents this quadratic overhead by encoding the messages from
the GC-based fuzzy matching protocols in an oblivious key-value store (OKVS) which maps a

3 We use elements and points interchangeably in fuzzy PSI scenarios.
4 There is another line work use predicate encryption in fuzzy PSI for Hamming distance in a concurrent
work [6], however, they still share the similar shortcoming with quadratic overhead.
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hash identifier for each of the parties’ points to the corresponding next subprotocol message.
Instantiating this hash function similarly to the spatial hashing used in [23,24,1,20], they achieve
O
(
M2d−s +N2s)d log δ

)
communication complexity, where s ∈ [0, d] is an integer that can be

chosen freely. In case s = 0 or s = d, their “Disjoint hash” assumption is identical to the “Apart”
assumption we use for our protocol in Section 8.1. For intermediate values of s, their hashing
technique can actually also be applied to our construction to achieve a similar complexity, but we
leave the details to future work.

Another very recent work [14] use secret-sharing based techniques and focus on Hamming distance.
They handle other distance functions including L2 distance by using Johnson-Lindenstrauss-style
embeddings, but depend on a “gap” assumption which requires the parties’ points to either be close
or far apart across two sets.

Function Secret Sharing (FSS). Recent works [23,24] have introduced “structure-aware” PSI
protocols that can be adapted to achieve fuzzy PSI as well. These methods utilize specialized
FSS [9,10] to implement secure membership tests within a δ-radius ball, enabling more efficient fuzzy
PSI. Compared to naive enumeration, these protocols significantly reduce communication complexity
from O(δd) to O((2 log δ)

d
). In a very recent work [20], the authors optimized computational

complexity to the same level, reducing it from O(δd) to O((2 log δ)
d
).

These approaches primarily rely on symmetric cryptographic operations, making them concretely
efficient for practical use in low-dimensional settings. However, achieving the O((N +M) · (2 log δ)d)
complexity typically requires additional assumptions, such as ensuring that the points in the set
are not too close to each other. If these assumptions are violated, the complexity would degrade to
O(N ·M · ud) for both communication and computation, as reported in [20], where 2u represents
the size of the universe for each element. Another drawback of FSS is we currently do not have any
efficient instantiation suitable for generalized metrics (e.g., Euclidean distance), apart from infinity
distance 5.

Additive Homomorphic Encryption (AHE). The first construction for generalized metrics
supporting Lp∈[1,∞] distances was introduced in a recent work [1] using AHE, such as ElGamal-based
encryption [17]. Leveraging the linear homomorphism of the encryption scheme, this approach can
compute the p-powered Lp distance and securely compare it with a threshold to implement a fuzzy
matching. This method effectively handles polynomially large dimensions and radii while avoiding
the quadratic overhead appearing in generic solutions. It achieves complexities of O(2dM + δdN)
for low dimensions or O(Nd2δ2 +M) for higher dimensions under various mild assumptions on the
sets.

This construction is particularly suited for high-dimensional scenarios with large sets. While it
offers better asymptotic complexity than FSS-based approaches, its computational cost is dominated
by expensive public-key operations, making it less efficient in low-dimensional settings. A recent
follow-up work [19] reduced the cost from O(Nd2δ2 +M) to O((N +M)dδ) in high-dimensional
cases by introducing more interaction rounds, but it requires stronger assumptions (which does
not hold in low-dimensional settings) and still relies on additive homomorphic encryptions. More
precisely, they assume for both parties points that for each point there exists a dimension on which
its projection is at least distance 2δ from all other points. When considering the private ride-sharing
application [23], this assumption does not allow cars to be on parallel streets on both dimensions,
which is not realistic in practice.

5 It’s important to note that in this work, we focus solely on protocols with negligible correctness errors
and do not consider metric embedding or similar techniques. Please refer to [41,12] for constructions
with non-negligible errors.
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Table 1. Asymptotic complexities of fuzzy PSI protocols, where a receiver and a sender hold sets of size
N and M , respectively. Each point is sampled from Zd

2u . Denote κ as the security parameter, λ as the
statistical parameter, and δ as the maximum allowable distance between two points, s ∈ [0, d] is an integer.
“Arbitrary” means points are sampled arbitrarily; “Limited” means points are mostly 2δ-apart, but could be

closer for limited points; “Apart” means points are either 2δd
1
p - or 2δ(d

1
p + 1)-apart (degrading to 2δ and

4δ for L∞ distances); “Locally Separated” means that for each point there exists at least one dimension on
which its projection is 2δ-apart from all other points; “Globally Separated” means that for each point its
projection on each dimensions is 2δ-apart from all other points.

Protocol Communication Computation

[1, Apart, L∞] O
(
κδdN + (κ+ λ)2dM

)
O
(
δdN + d2dM

)
#

[1, Apart, Lp] O
(
κδd2dN + (κ+ λδp)M

)
O
(
δd2dN + dM +Mδp

)
#

[19, Locally Separated†, L∞] O (κδdN + κδdM) O (δdN + δdM)#

[19, Locally Separated†, Lp] O (κδdN + κM(δd+ p log δ)) O (δdN +M(δd+ p log δ))#

[20, Arbitrary, L∞] O
(
κ2uNd+ λNMud

)
O
(
NM(ud + κdu)

)
[20, Limited, L∞] O

(
κ2Nd log δ + λ ·M(2 log δ)d

)
O
(
N(log δ)d +M2d

(
(log δ)d + κd log δ

))
[37, Apart†, L∞] O

(
κ(M2d−s +N2s)d log δ

)
O
(
(M2d−s +N2s)d log δ

)
[37, Apart†, L1] O

(
κ(M2d−s +N2s)d log (dδ)

)
O
(
(M2d−s +N2s)d log (dδ)

)
[37, Apart†, L2] O

(
κM2d−sd log (dδ) + κN2s(d log (dδ) + log (dδ)3)

)
O
(
(M2d−s +N2s) · (d log (dδ) + log (dδ)3)

)
Ours, Apart†, L∞ O

(
λ ·min(N,M) · d2d + λdδ ·max(N,M)

)
O
(
min(N,M) · d2d + dδ ·max(N,M)

)
Ours, Apart†, L∞ O

(
λ
(
M2d +N

)
d log δ

)
O
(
N(log δ)d/2 + 2dMd log δ

)
Ours, Apart†, Lp O

(
λN2d(d+ p log δ) + λM(dδ + p log δ)

)
O
(
N2d(d+ p log δ) +M(δd+ p log δ)

)
Ours, Arbitrary, L∞ O

(
λ(M +N)(log δ)d

)
O
(
(M +N)(log δ)d

)
Ours, Globally Separated†, L∞ O (λdN + λdδM) O (dN + δdM)

Ours, Globally Separated†, Lp O (λN(d+ p log δ) + λM(dδ + p log δ)) O (N(d+ p log δ) +M(dδ + p log δ))

# The computational complexity is primarily dominated by costly public-key operations.
† Requires the assumption to hold on both sets.

1.2 Our Contributions

We summarize our main contributions below and provide a table comparing the asymptotic
complexities with previous works in Table 1. Additionally, a comparison of concrete communication
costs is presented in Table 2.

New Fuzzy Matching from VOLE. Our key insight is that the linear homomorphism used in [1]
is not necessary to achieve fuzzy matching. We propose a fuzzy matching protocol based on OPRF,
as described in Section 7. This protocol retains the same asymptotic complexities as [1] but only
relies on super cheap operations (dominated by hash evaluations and XORs during online phase),
thanks to recent advancements in VOLE [38]. Prior works either have strictly worse asymptotic
complexities [20], or rely on homomorphic encryptions [1,19].

Moreover, FSS-based protocols [23,24,20] must repeat O(κ) times to get negligible correctness
error, where κ is the security parameter, resulting in an O(κ2) factor in communication overhead.
In contrast, our communication costs scale linearly with κ, or are dependent only on the statistical
parameter λ (when using subfield VOLE).

Improved Prefix Trie Optimizations. Inspired by the idea from [1, Remark 2], we explore the
potential of applying prefix trie techniques from [12]. The algorithm in [12] requires O(δ) time to
build a prefix trie for an interval of length O(δ). In contrast, we present a new algorithm in Section 5
that reduces the time complexity to O(log δ) which is important in our applications. Moreover, by
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applying the “meet-in-the-middle” trick at the receiver’s side, we further decrease the receiver’s
computational complexity from (log δ)d to (log δ)d/2.

First Protocol Supporting Arbitrary Distributions. In Section 11, we introduce a fuzzy PSI
protocol for infinity distance in the most generalized setting, i.e., allowing arbitrarily distributed
points. It was even conjectured “necessary” to place assumptions on datasets to get non-trivial
complexities [19, Remark 1] since previous works only get trivial complexities: either incur a
quadratic overhead of set size, O(NM), or scale linearly with the volume of the balls, O((N+M)·δd).
Instead, our protocol achieves a complexity of O((N +M) · (log δ)d) for both communication and
computation 6.

Sender Privacy for Free. In Section 8, we extend our fuzzy matching protocol to fuzzy PSI
in low-dimensional settings, where we assume that the 2δ- or 4δ-apart assumptions hold for both
parties’ sets. Particularly, our approach supports sender privacy (i.e., it does not leak the sender’s
exact point as defined in Section 3.4) without additional cost, which is difficult to achieve in FSS-
based methods as they typically require more advanced primitives like PSI cardinality or labeled
PSI (only reveal labels), which lack symmetric key-based constructions.

High Dimensions and Extended Functionalities. In Section 9, we explore the potential for
efficient fuzzy PSI protocols in high-dimensional spaces. However, achieving this requires a rather
strong assumption that the points in the sets are globally disjoint, as our new fuzzy matching
protocol is inherently non-reusable. Under this assumption, for the first time, we can eliminate the
2d factor from both communication and computational complexities for generalized Lp distances.
Furthermore, in Section 10, we extend fuzzy PSI to support more advanced functionalities, such as
labeled PSI, PSI with cardinality, and circuit PSI.

2 Technical Overview

2.1 Fuzzy Matching from AHE

We briefly revisit the fuzzy matching protocol from [1] before moving on to our contributions.
Recall that fuzzy matching targets the setting where a receiver holds a point w ∈ Zd, a sender
holds a point q ∈ Zd, and the receiver learns whether dist(w,q) ≤ δ with respect to some distance
function dist and some maximum distance δ. The simplest case is the infinity distance L∞, defined
as dist∞(w,q) := maxi∈[d] |wi − qi|. Their main building block can be seen as a set membership
protocol based on additively homomorphic encryption (AHE). The fuzzy matching protocol works
as follows:

– For each dimension i ∈ [d], the receiver encodes an oblivious key-value store (OKVS) Ei with
a list of key-value pairs {(wi + j, ci,j)}j∈[−δ,+δ] where ci,j ← Enc(pk, 0) is fresh encryption of

zero under an AHE scheme. The receiver sends over E := (E1, . . . , Ed) together with pk.

– The sender decodes Ei at qi for each i ∈ [d] to obtain ci ← Decode(Ei, qi), homomorphically
combines these as c ← c1 + · · · + cd, and re-randomizes the result as c′ ← Enc(pk, 0) + c · r
before sending it back to the sender.

– The receiver outputs 1 if Dec(sk, c′) = 0, and 0 otherwise.

6 To clarify, in [20, Section 5.2], the authors claim that their spatial hashing supports overlapping balls,
but it works only in the best-case (i.e., the overlapping does not affect encoding an OKVS) and far from
the average-case, whereas our protocol works in the worst-case.
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Table 2. Concrete communication/computational costs of fuzzy PSI protocols for infinity distance L∞,
where parameters and assumptions are defined similarly in Table 1, with λ = 40, κ = 128. We choose
N = M = 216, δ = 32, and note that δ is radius as in most of prior works, instead of diameter denoted in [20,
Tab. 4]. We estimate the numbers for [20] by setting u = 32, ℓOT = 318, mini-universe with radius of 2δ, and
we report the numbers for [19,37] from their papers. For runtime estimation, we simplify calculations by
counting only hash calls and OKVS costs since XOR costs are typically negligible, and do not take the
preprocessing phase of generating the VOLE correlation into account. We assume hashing applies AES-NI
(2.2 ns/call on a 4.5 GHz CPU [36]), while OKVS encoding and decoding values (143.7 ns/item and 55.4
ns/item) are taken from [36, Tab. 1]. The standard PSI subprotocol are estimated according to [36, Tab. 2,
PSI-fast].

Protocols Estimated Bandwidth (GB) Estimated Runtime (Sec)

d = 2 d = 6 d = 10 d = 2 d = 6 d = 10

[20, Limited] 6.07 18446.91 > 109 1.78 2460.94 > 108

[19, Separated]† 5.35 15.97 26.59 ∼ 2218 ∼ 6366 ∼ 10779

[37, Apart] 0.44 5.31 35.39 − − − #

Section 11, Arbitrary 0.15 640.00 > 106 1.75 7184.28 > 107

Section 8, Apart 0.09 0.77 14.20 1.82 12.58 182.18

† We stress that the “separated” assumption is not quite realistic in low-dimensional settings (i.e., d < λ).
# Concrete computational costs not provided.

Given dist∞(w,q) ≤ δ if and only if wi ∈ [qi − δ, qi + δ] for all i ∈ [d], this protocol’s correctness
relies on the properties of OKVS (detailed in Section 3.2): if a correct key qi ∈ [wi − δ, wi + δ] is
used for decoding, then ci is a ciphertext encrypting zero; otherwise, ci is a random ciphertext and
the sum c′ is unlikely to be a zero ciphertext. Security against a semi-honest sender is ensured
by the OKVS obliviousness, which perfectly hides the inserted keys wi + j. Security against a
semi-honest receiver comes from the complete re-randomization of the AHE (i.e., both plaintext
and random coins are re-randomized).

2.2 VOLE-based Fuzzy Matching

Our key observation is that AHE can be replaced with oblivious pseudorandom function (OPRF)
which has much more efficient instantiations. An OPRF allows a receiver to evaluate a PRF on a
set of inputs while the sender remains oblivious to the inputs and the receiver remains oblivious to
the function. Using this primitive, we can adapt the fuzzy matching protocol as follows by switching
the roles of the sender and receiver:

– The receiver gets {F (w1), . . . , F (wd)} and the sender gets F (·) by interacting with an OPRF
functionality.

– For each dimension i ∈ [d], the sender encodes an OKVS instance Ei with a list of key-value
pairs {(qi + j, ri − F (qi + j))}j∈[−δ,+δ] where ri is a random mask. The sender sends over

E := (E1, . . . , Ed) together with the target value r :=
∑

i∈[d] ri.

– The receiver can now decode Ei at wi and unmask using their OPRF output as Decode(Ei, wi)+
F (wi), then sums the results over all dimensions i ∈ [d], and outputs 1 if and only if it equals
the target value r.
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It is clear that the correctness still holds as before, and the security against the sender is trivial since
the receiver has no transcripts (except for interacting with the ideal functionality of OPRF). The
security against the receiver follows from the fact that F (qi+ j) is pseudorandom unless qi+ j = wi.

One might recognize the technique of using an OPRF to mask values encoded in an OKVS
as an oblivious programmable PRF (OPPRF) [32], which is typically used in circuit-PSI [35,38]
and multi-party PSI [32,22] context. To the best of our knowledge, this is the first time a close
connection between OPPRF and fuzzy protocols has been established. Details of our fuzzy matching
protocol are provided in Section 7.

Instantiating OPRF. To instantiate the OPRF in our fuzzy matching protocol, we observe
that the sender can use different random function Fi for each dimension i ∈ [d], and that the
receiver only needs to obtain a single evaluation Fi(wi) for each dimension i ∈ [d]. This allows us
to use a more efficient OPRF protocol from subfield VOLE alone [11], instead of building OPRF
from VOLE+OKVS [38]. When moving to the fuzzy PSI setting, where the sender and receiver
hold multiple points, we actually need the receiver to obtain multiple evaluations of each random
function. To this end, we formalize the notion of a (d, n)-OPRF in Section 6, where the receiver
obtains n evaluations of each of the d random functions. We moreover give a protocol realizing
this functionality from subfield VOLE and an OKVS, which can be seen as a combination of the
protocols of [38] and [11]. Instantiating subfield VOLE by a pseudorandom correlation generator
(PCG) [8,7], our OPRF protocol only needs public-key operations in the setup phase (i.e., expanding
the seeds 7), and only relies on cheap symmetric-key operations in the online phase (i.e., XOR
and hash evaluations). We extend the notion of a (d, n)-OPRF to allow the sender to program
points in Section 6.1, resulting in a (d, n)-OPPRF, which forms the main building block of our
fuzzy matching and fuzzy PSI protocols.

2.3 Prefix Trie Optimizations

In Section 8.3, we explore how our fuzzy matching techniques can be combined with the prefix
trie techniques from [12]. The idea behind the prefix trie technique is to identify a set of common
prefixes for the binary representations of integers in an interval [q − δ, q + δ]. An integer w now
lies in this interval if and only if it has a prefix lying in this set. Both the set of common prefixes
representing the interval [q− δ, q+ δ] as well as the number of prefixes of w that need to be checked
have size O(log δ). The main difference between ours (Figure 8 in Section 5) and the Prefix Trie
techniques used in [12] is that we improve the computational time from O(δ) to O(log δ), for an
interval of length O(δ). Instead of building a Prefix Trie naively as in [12], we directly identify these
common prefixes in Figure 8 by exploiting the structure of the interval.

Hence our fuzzy matching protocol explained above can be adapted by the sender just encoding
the O(log δ) common prefixes q̃i,j representing the interval [qi − δ, qi + δ] in Ei for each dimension
i ∈ [d]. The receiver needs to evaluate the OPRF Fi and decode Ei at all of the O(log δ) relevant
prefixes w̃i,j of wi, for each dimension i ∈ [d]. As a result, the receiver has to compare the target
value r with all O((log δ)d) possible combinations

d∑
i=1

Fi(w̃i,ji) + Decode(Ei, w̃i,ji).

7 The seed expansion for VOLE relies on linear codes that are quite efficient in practice. For instance,
ordinary laptops can generate 220 correlations in < 0.5 sec [39], while typical fuzzy PSIs take 50 ∼ 100
sec for moderate-sized sets [1,19]. In fact, the setup cost is marginal even in the standard PSI context as
reported in [38, Table 2].
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Meet-in-the-Middle. This O((log δ)d) factor is undesirable, and in fact, we can do better: this is
a special case of the Knapsack problem to find a subset summing to the target value r. It is known
to be NP-complete, however, the receiver can search for the solution in quadratically better time by
using the “meet-in-the-middle” trick [26]. In detail, we can divide d lists of size ℓ′ into roughly two
halves, namely, d1 :=

⌈
d
2

⌉
lists and d2 :=

⌊
d
2

⌋
lists. Then we compute all possible sums of for each

half, resulting in two sets of size (ℓ′)d1 and (ℓ′)d2 . Checking if there is a match between two sets

takes time (ℓ′)d2 . In summary, we use O((log δ)⌈
d
2 ⌉) time and space to find a match.

Difference from FSS-based Approaches. Note that [21] also considers representing an interval
succinctly but they follow a completely different approach. They build an FSS for a one-sided
interval [0, b] through GGM trees, which is done by identifying the critical path (representing point
b) with u nodes (domain 2u). Thus their overhead comes from the depth of the GGM tree for a
one-sided interval. This overhead is actually inherent for FSS. For d-dimensional intervals, the
overhead is (2u)d overhead, which can be reduced to (2 log δ)d with the help of spatial hashing by
placing constraints on datasets.

On the contrary, our prefix trie does not rely on any cryptographic primitives and uses only
algebraic operations without needing to expand PRG over GGM (i.e., much more concretely
efficient). We represent a d-dimensional two-sided interval directly with (log δ)d costs, without
putting any restrictions on datasets.

2.4 Towards Fuzzy PSI

When moving from the single point fuzzy matching setting to the multiple point fuzzy PSI setting
in Section 8, we can use spatial hashing techniques similarly to previous works [23,24,1,20] which
requires the senders points are 2δ or 4δ apart to encode an OKVS successfully.

However, there is one important functional difference between our OPRF-based fuzzy matching
and the AHE-based solution from [1]: The sender’s encoding E can not be re-used with multiple
arbitrary receiver points. That is, when the receiver obtains the OPRF evaluations Fi(wi), Fi(w

′
i)

of two different values wi, w
′
i lying in the same interval [qi − δ, qi + δ], they can learn that

Fi(wi) + Decode(Ei, wi) = ri = Fi(w
′
i) + Decode(Ei, w

′
i),

from which they can infer that on dimension i ∈ [d], the projections wi, w
′
i lie in the projected

interval [qi − δ, qi + δ] with overwhelming probability.
As a result, we get around this issue by relying on a slightly stronger assumption that the

receiver’s points are also 2δ- (or 4δ-) apart from each other 8. This is still a realistic assumption,
since: (1) Each party can independently verify their sets (unlike [14]), so they can decide whether to
run the protocol depending on their own input distribution; (2) They can incrementally decrease δ
until points are 2δ- (or 4δ-) apart, or merge too-close points into one (which is not possible for [19],
since a point whose local projection on each dimension is close to another point is not necessarily
close to these points with respect to the global distance function). In the private ride-sharing
example, if two cars are too close, the system can use a merged one to represent them, without
affecting other cars’ privacy. The details of our fuzzy PSI protocol can be found in Section 8.1.

Sender Privacy. The fuzzy PSI protocol as described in the previous paragraph reveals to the
receiver the sender’s point qk that lies close to their point wk′ . However, for some applications we

8 Placing constraints on both parties’ sets has already been considered in existing works [19,14], where
they require either separated or “clustered” points for both parties. Both of them are stronger than ours.
Additionally, concurrent work [37] relies on a very similar assumption to ours.
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only want the receiver to learn that there exists some point of the sender close to their point wk′ .
This functionality is known as fuzzy PSI with sender privacy, which we explore in Section 8.2.

Existing works [20] could support this but have to rely on PSI with cardinality or labeled PSI
which are significantly more expensive. Instead, our protocol can be adapted by letting the sender
send over the target values rk for k ∈ [M ], the parties execute a standard PSI protocol where the
sender learns whether the receiver’s obtained values equal the target values. This effectively flips
the role of the sender and receiver, and has the effect that the protocol achieves sender privacy,
without increasing the asymptotic complexity, obtaining the protocol in Figure 18. Alternatively,
we can also achieve sender privacy by letting the sender iterate over the 2d cells intersecting the ball
centered at each point qk when encoding the fuzzy matching instances, so that the receiver only
has to evaluate the fuzzy matching instance at a single cell containing its point. For this protocol,
detailed in Figure 19, the sender’s points are required to be distance 4δ apart and the receiver’s
points 2δ apart.

2.5 Arbitrarily Distributed Points

While our new fuzzy PSI constructions impose extra conditions on the distribution of the parties’
points compared to previous work, we on the other hand explore the setting where the parties’
points are arbitrarily distributed, i.e., without imposing any restrictions on the distribution of the
parties’ points.

Our first observation is that by writing a d-dimensional L∞ ball as the direct product of d
one-dimensional interval, we generalize the prefix trie idea to compress a ball of O(δd) points
into a set of O((log δ)d) common prefixes. That is, for each k ∈ [M ], the sender can compute a
hash H(q̃j1k,1, . . . , q̃

jd
k,d) for all possible O((log δ)d) choices of (j1, . . . , jd), where q̃jk,i are the common

prefixes representing the interval [qk,i − δ, qk,i + δ]. The receiver can similarly, for each k ∈ [N ],

compute H(w̃j1
k,1, . . . , w̃

jd
k,d) for all possible O((log δ)d) choices of (j1, . . . , jd), where w̃j

k,i are the
prefixes of wk,i. Now the parties can run a standard PSI protocol between these sets of hash values,
resulting in a fuzzy PSI protocol with complexity O((N + M) · (log δ)d) based on very simple
techniques.

We additionally show that for general Minkowski distance Lp, p ∈ [1,∞), we can use the prefix
trie technique to obtain a modest improvement over the naive approach of expanding the entire
input sets and obtain a protocol with complexity O((N +M) · δd−1 log δ) in this way. Please refer
to Section 11 for more detail.

2.6 Minkowski Distance.

So far, we have focused on the infinity distance setting, but our protocols actually cover the general
Minkowski distance Lp, defined as

distp(w,q) :=

(
d∑

i=1

|wi − qi|p
)1/p

, for p ∈ [1,∞),

and we will briefly sketch how our protocols can be adapted to this setting, but refer to the
corresponding sections for more details. In our fuzzy matching protocol, the sender actually encodes
the OKVS Ei to map qi + j to ri + s · |j|p − F (qi + j), where s is an additional random value. This
has the effect that if wi ∈ [qi − δ, qi + δ] for each dimension i ∈ [d], the receiver obtains the value

u :=

d∑
i=1

Decode(Ei, wi) + Fi(wi) = r + s ·
d∑

i=1

|wi − qi|p, (1)
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and so the problem is reduced to checking whether u ∈ {r + s · j′ | j′ ∈ [δp]}.
The latter can be done by the sender simply sending over the random oracle evaluations

H(r + s · j′), adding a factor δp to the complexity of the fuzzy matching protocol. Alternatively, we
can leverage the prefix trie technique to reduce this overhead from O(δp) to O(p log δ) as follows.
The sender can in fact put s := 1, which reduces the problem to checking whether u ∈ [r, r + δp].
Then instead of sending over hash values, the sender can represent the interval [r, r+δp] by O(p log δ)
common prefixes using the prefix trie technique, and the receiver can compute the O(p log δ) relevant
prefixes ũj for the value u from equation (1). Now the parties can run a standard PSI protocol
between these sets of prefixes. We refer to Section 8 for the details of how these techniques can be
extended to the multiple-point setting.

3 Preliminaries

3.1 Notation

We denote λ for the statistical security parameter and κ for the computational security parameter.
For n ∈ N, we write [n] for the set of integers {1, . . . , n}, and for a, b ∈ Z, with a < b, write [a, b]
for the set {a, a+ 1, . . . , b− 1, b}.

3.2 Oblivious Key-Value Store

An oblivious key-value store OKVS [22] is a datastructure consisting of an Encode algorithm,
which takes as input a set of key-value pairs, and a Decode algorithm, which takes as input a key.
Obliviousness roughly means that as long as the encoded values are chosen randomly, an adversary
can not distinguish between different sets of encoded keys.

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store OKVS is parameterized
by a key space K, a value space V, computational and statistical security parameters λ, κ, respectively,
and consists of two algorithms:

– Encode : takes as input a set of key-value pairs L ∈ (K × V)n and randomness θ ∈ {0, 1}κ, and
outputs a vector r ∈ Vm or a failure indicator ⊥.

– Decode : takes as input a vector r ∈ Vm, a key k ∈ K and randomness θ ∈ {0, 1}κ, and outputs
a value v ∈ V.

That satisfies:

– Correctness: For all L ∈ (K×V)n with distinct keys and θ ∈ {0, 1}κ for which Encode(L; θ) =
r ̸= ⊥, it holds that ∀(k, v) ∈ L: Decode(r, k; θ) = v.

– Low failure probability: For all L ∈ (K × V)n with distinct keys:

Pr
θ←${0,1}κ

[Encode(L; θ) = ⊥] ≤ 2−λ.

– Obliviousness: For any {k1, . . . , kn}, {k′1, . . . , k′n} ⊆ K of n distinct keys and any θ ∈ {0, 1}κ,
if Encode does not output ⊥, then for v1, . . . , vn ←$ V:

{r← Encode({(ki, vi)i∈[n])}; θ)} ≈c {r′ ← Encode({(k′i, vi)i∈[n]}; θ)}.

11



FFuzzyMatch

Parameters : dimension d, radius δ, and a distance function dist(·, ·).
Functionality :

– Receiver inputs w ∈ Zd.
– Sender inputs q ∈ Zd.
– Output 1 to Receiver if dist(w,q) ≤ δ, and 0 otherwise.

Possible Distance Functions

dist(w,q) is defined as:

– L∞ Distance: dist∞(w,q) = maxi∈[d] |wi − qi|

– Lp Distance: distp(w,q) =
(∑d

i=1 |wi − qi|p
)1/p

Fig. 1. Ideal Functionality of Fuzzy Matching

The efficiency of OKVS is characterized by: (1) the time it takes to encode n key-value pairs;
(2) the time it takes to decode a single key; (3) the expansion factor ϵ, characterizing the increase
in size of the encoding m := (1 + ϵ)n relative to the number of key-value pairs n. Recent OKVS
constructions [22,36,5] achieve: (1) encoding time O(nλ); (2) decoding time O(λ); (3) constant
expansion factor.

For its application to construct an oblivious programmable PRF (OPPRF), we require OKVS
to satisfy some additional properties, which are satisfied by all the state-of-the-art OKVS construc-
tions [22,36,5].

– Linearity: There exists a function dec : K×{0, 1}κ → Vm such that for all r ∈ Vm, k ∈ K and
θ ∈ {0, 1}κ it holds that Decode(r, k; θ) := ⟨dec(k; θ), r⟩.

– Double obliviousness: For all sets of n distinct keys {k1, . . . , kn} ⊆ K and n values
{v1, . . . , vn} ←$ V, it holds that Encode({(ki, vi)i∈[n])}; θ)} is statistically indistinguishable
from a uniformly random element from Vm.

These properties imply another useful property, which is known as the independence or random
decoding property. It is proven for the boolean case (V = {0, 1}ℓ) in [23] and was extended to the
more general linear case in [1].

Lemma 1 (Independence). If OKVS satisfies linearity, double obliviousness and negl(λ) failure
probability, and θ is uniformly randomly chosen while n < m, then for any L := {(ki, vi)i∈[n]} with
distinct keys, and any key k /∈ {ki}i∈[n], it holds that Decode (Encode(L; θ), k) is indistinguishable
from random.

3.3 Definition of Fuzzy Matching

We recall the functionality FFuzzyMatch of fuzzy matching between two points in d-dimensional
space Zd from [1] in Figure 1, with respect to either infinity (L∞) distance or Minkowski (Lp)
distance where p ∈ [1,∞).
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FFuzzyPSI

Parameters : dimension d, radius δ, cardinality of sets N,M , a distance function dist(·, ·), a leakage function
leakage(·, ·), label length σ, and a concise description for receiver’s and sender’s points DR,DS , respectively.

Functionality :

– Receiver inputs W ∈ Zd×N according to DR.
– Sender inputs Q ∈ Zd×M according to DS .

For Labeled PSI, Sender inputs LabelQ ∈ {0, 1}σ×M .
– Return leakage(W,Q) to Receiver.

Possible Leakage Functions

leakage(W,Q) is defined as:

– PSI: leakage(W,Q) = {qj | ∃ i ∈ [N ], dist(wi,qj) ≤ δ}.
– PSI-SP: leakage(W,Q) = {wi | ∃ j ∈ [M ], dist(wi,qj) ≤ δ}.
– Labeled PSI: leakage(W,Q) = {labelj | ∃ i ∈ [N ], dist(wi,qj) ≤ δ}, where labelj is the label associated

with qj .
– PSI-CA: leakage(W,Q) =

∑
i∈[N ],j∈[M ] (dist(wi,qj) ≤ δ).

Fig. 2. Ideal Functionality of Fuzzy PSI

3.4 Definition of Fuzzy Private Set Intersection

Moreover, we recall the functionality FFuzzyPSI of fuzzy private set intersection (fuzzy PSI) from [1]
in Figure 2. Similarly, this functionality is defined with respect to different distance functions, and
additionally incorporates various possible leakage functions, as detailed in Figure 2.

3.5 Spatial Hashing Techniques

To move from single-point fuzzy matching to the multiple-point fuzzy PSI setting, previous
works [23,24,1,20] all make use of the idea to tile the space into smaller cells such that each point
only needs to be matched to the points in a bounded number of cells. Since the number of relevant
cells still scales exponentially in the dimension of the space, this technique is especially useful in
low dimensions.

Specifically, the function cell2δ(q) maps a point q to the identifier of the cell (an L∞ hypercube
with side length 2δ) that contains q. The index idi of the corresponding cell C ← cell2δ(q) on
dimension i ∈ [d] is given by idi = ⌊ qi2δ ⌋ and each cell is uniquely labeled by id1 ∥ . . . ∥ idd. The
function ballδ(q), on the other hand, maps q to the set of points that are within a distance δ of q.

Consider the case that points are located in a low-dimension space Ud (e.g., d = O(log λ)) where
U is the universe for each dimension. A cell is defined as a L∞ hypercube of side length 2δ. Given a
point w ∈ Ud, the index idi of the corresponding cell C on dimension i ∈ [d] is given by idi = ⌊wi

2δ ⌋
and each cell is uniquely labeled by id1 ∥ . . . ∥ idd. We refer to [1] for the proofs of the following
results.

Lemma 2 (Maximal Distance in a Cell). Given two points w,q ∈ Ud located in the same

cell with side length 2δ, then the distance between them is distp(w,q) < 2δd
1
p where p ∈ [1,∞].

Specifically, if p =∞, dist∞(w,q) < 2δ.
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Lemma 3 (Unique Center). Suppose there are multiple Lp balls (p ∈ [1,∞]) with radius δ lying
in a d-dimensional space which is tiled by cells with side length 2δ. If these balls’ centers are at

least 2δd
1
p apart from each other, then for each cell, there is at most one center lying in this cell.

Specifically, if p =∞, then this holds for disjoint balls, since 2δd
1
p degrades to 2δ in this case.

Lemma 4 (Unique Ball). Suppose there are multiple Lp balls (p ∈ [1,∞]) with radius δ lying in
a d-dimension space which is tiled by cells with side length 2δ. If these balls’ centers are at least

2δ(d
1
p + 1) apart from each other, then there exists at most one ball intersecting with the same cell.

Specifically, if p =∞, then this holds for L∞ balls with 4δ-apart centers.

3.6 Standard PSI Functionalities

We introduce some standard PSI functionalities, which we make black-box use of when realizing
sender privacy in or other extended functionalities for our fuzzy PSI protocols in Sections 8.2 and 10,
respectively. The standard PSI functionality FPSI is given in Figure 3, the PSI with cardinality
(PSI-CA) functionality FPSI-CA is given in Figure 4, and the Circuit-PSI functionality FCPSI is
given in Figure 5.

FPSI

Parameters : Input domain X , cardinality of input sets N , M .

Functionality :

– Receiver inputs X ∈ XN .
– Sender inputs Y ∈ XM .
– Output X ∩ Y to Receiver.

Fig. 3. Ideal functionality of standard PSI.

FPSI-CA

Parameters : Input domain X , cardinality of input sets N and M .

Functionality :

– Receiver inputs X ∈ XN .
– Sender inputs Y ∈ XM .
– Output |X ∩ Y | to Receiver.

Fig. 4. Ideal functionality of PSI with cardinality.

4 Weak Labeled PSI

We introduce a functionality called weak labeled PSI in Figure 6, which is sufficient to realize labeled
fuzzy PSI as described in Section 10, and is moreover used for our fuzzy PSI protocols making
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FCPSI

Parameters : Input domain X , cardinality of input sets N , M , associated data length σ. Reorder : XN →
(π : [N ]→ [m]) which on input X outputs an injective function π.

Functionality :

– Receiver inputs X ∈ XN and associated data X̃ ∈ {0, 1}σ×N .
– Receiver inputs Y ∈ XM and associated data Ỹ ∈ {0, 1}σ×M .
– For each k ∈ [m], sample ak, bk ←$ {0, 1}1+2σ such that:

ak ⊕ bk = 1∥x̃i∥ỹj if ∃i ∈ [N ] s.t. k = π(i) ∧ xi = yj ,
ak ⊕ bk = 01+2σ otherwise.

– Return π, (ak)k∈[m] to Receiver and (bk)k∈[m] to Sender.

Fig. 5. Ideal functionality of Circuit-PSI

use of the prefix trie techniques in Sections 8.3 and 11. Weak labeled PSI differs from the usual
notion of labeled PSI in that the functionality outputs tuples (yi, labeli) instead of just the labeli of
the items in the intersection. We additionally present a simple protocol realizing weak labeled PSI
from a (1, N)-OPRF in Figure 7, which can be instantiated using for example the VOLE-based
protocol from Figure 12, whereas labeled PSI protocols typically require more expensive public-key
techniques [13,15].

FWLPSI

Parameters : Input domain X , cardinality of input sets N , M , label length σ.

Functionality :

– Receiver inputs X ∈ XN .
– Sender inputs Y = (yi, labeli)i∈[M ] ∈ (X × {0, 1}σ)M .
– Output {(yi, labeli) | i ∈ [M ], yi ∈ X} to Receiver.

Fig. 6. Ideal functionality of weak labeled PSI.

Remark 1. Note that the protocol ΠWLPSI reduces to the standard (1, N)-OPRF based PSI protocol,
for example, as in [38], realizing FPSI, when σ = 0.

Theorem 1. The protocol ΠWLPSI realizes the functionality FWLPSI against semi-honest adversaries
in the F(1,N)-OPRF hybrid model if ℓ ≥ λ+ log2 (NM).

Proof. (sketch) The proof proceeds analogously as in [38], with the only difference being that
the OPRF outputs F (yi) now completely hide the labeli by definition of F(1,N)-OPRF with output
length ℓ+ σ. ⊓⊔

5 Prefix Trie

Inspired by [12], we provide the following theorem about succinctly and efficiently representing an
integer interval. The main difference between ours and the Prefix Trie techniques used in [12] is that

15



ΠWLPSI

Parameters : Input domain X , cardinality of input sets N , M , label length σ, OPRF output length ℓ+ σ.
Receiver with input X = (xi)i∈[N ] ∈ XN and Sender with input Y = (yi, labeli)i∈[M ] ∈ (X × {0, 1}σ)M .
The output I is initiated empty, i.e. I := ∅.
Protocol :

– Receiver sends (Receiver,Evaluate, X) and Sender sends (Sender,Evaluate) to F(1,N)-OPRF.
– Receiver gets (F (xi))i∈[N ] and Sender gets OF from F(1,N)-OPRF.
– Sender sends a shuffled L = {F (yi)⊕ (0ℓ∥labeli) | i ∈ [M ]} to Receiver.
– Receiver checks for i ∈ [N ] whether there exists ỹ ∈ L such that F (xi) ⊕ ỹ = (0ℓ∥z) for some

z ∈ {0, 1}σ and updates I ← I ∪ {(xi, z)} if this is the case.

Fig. 7. Weak labeled PSI protocol from (1, N)-OPRF.

we improve the computational time from O(δ) in [12] to O(log δ), for an interval of length O(δ). For
completeness, we provide the detailed algorithms PrefixTrie and PrefixPath in Figure 8 and Figure 9
. We also denote the 2u-sized universe as Z2u , and drop the subscript when the context is clear. To
describe the PrefixTrie algorithm, we introduce a helper function Bin where b ∈ Zu

2 ← Bin(c ∈ Z2u)

is a binary decomposition function such that c =
∑u−1

i=0 bi · 2i.

Theorem 2. Given an integer interval [w − δ, w + δ] ∈ Z2δ+1
2u , there is an efficient algorithm to

succinctly encode the interval into a list of prefix nodes

{w̃1, . . . , w̃ℓ} ← PrefixTrie(w − δ, w + δ),

where ℓ ≤ ℓmax and w̃i ∈ {0, 1}u. Particularly, ℓmax = 1+ ⌊log(2δ + 1)⌋ when δ is a power of 2, and
ℓmax = 2 · ⌊log(2δ + 1)⌋ otherwise. Moreover, there is another efficient algorithm to expand each
query point q ∈ Z into a path of prefix nodes

{q̃1, . . . , q̃ℓ′} ← PrefixPath(q, δ),

where ℓ′ = 2+ ⌊log(2δ+1)⌋ and q̃i ∈ {0, 1}u. Both algorithms have O(log δ) computation complexity.
Importantly, q̃i ∈ {w̃1, . . . , w̃ℓ} for some unique i ∈ [ℓ′] if and only if q ∈ [w − δ, w + δ].

Proof. The algorithm PrefixPath(c, δ) presented in Figure 9 is precisely the same as in [12], such
that it takes ℓ′ iterations and outputs a set of size |J | = ℓ′.

Let us focus on the algorithm PrefixTrie(xl, xr) presented in Figure 8. First, every integer
xi ∈ [xl, xr] has a common prefix of u − (d + 1) bits where d = ⌊log(xr − xl + 1)⌋: if there are
xi, xj ∈ [xl, xr] differing more than lower d+1 bits, then the distance between them is greater than
2d+1 − 1 > xr − xl which is beyond the maximal distance within [xl, xr].

Next, consider an interval [el, er] of length 2d+1 which has a common prefix of u− (d+ 1) bits.
We consider the following cases.

1. If [xl, xr] has length 2d, then it might align perfectly with the left half or the right half of [el, er].
In this case, the interval [xl, xr] can be represented as a single prefix.

2. Otherwise, [xl, xr] must span across two halves of [el, er]. We denote two halves as [el, e
′
l] and

[e′r, er] respectively. Given the distance between s = e′l − xl + 1, we can decompose it into a
d-bit binary vector and its Hamming weight indicates the number of disjoint prefixes required
to represent the half [el, e

′
l]. The other half [e′r, er] is similar.
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In conclusion, in the worst case, we can represent the entire interval [xl, xr] with at most
ℓmax := 2 · d prefixes, and the algorithm PrefixTrie takes O(2d) steps at most.

Particularly, if δ is a power of 2, then the interval can be represented by ℓmax =: d+1 prefixes in
the worst case. Imaging [x′l, x

′
r] has length 2d and spans across two halves of [el, er], then it takes

at most d+ 1 prefixes to represent [x′l, x
′
r]. To see this, consider a divide-and-conquer algorithm:

1. Check if the middle point of [x′l, x
′
r] is greater than the ‘break’ point e′r or not;

2. Then, use one prefix to represent the half not containing e′r;

3. Next, run the algorithm recursively on the other half. It ends with only two integers which can
be represented at most 2 prefixes.

Summing up together, we have d+ 1 prefixes at most. When δ is a power of 2, [xl, xr] has length
2d + 1 and it is either [x′l − 1, x′r] or [x′l, x

′
r + 1]. We argue the number of required prefixes is

unchanged (i.e., d+ 1) for both [xl, xr] and [x′l, x
′
r] by the following cases.

1. If there is a prerfix p in J ′ of length u where J ′ is the prefix set for [x′l, x
′
r], then x′l and x′r must

be a singleton prefix. In this case, [xl, xr] can still be represented as |J ′| prefixes, just preserve
u− 1 bits of either x′l or x

′
r as the new prefix.

2. On the other hand, if there is no prefix of length u which means |J ′| < d + 1, then |J | =
|J ′|+ 1 ≤ d+ 1.

⊓⊔

PrefixTrie

Inputs : Two integers xl, xr ∈ Z2u , representing an interval [xl, xr].

Algorithm :

1. Set d = ⌊log(xr − xl + 1)⌋, and prepare a set J = ∅,
2. Set el = xl − (xl mod 2d+1) and er = el + 2d+1 − 1.
3. return Bin

(
el
2d

)
if el = xl ∧ el + 2d − 1 = xr, or if er = xr ∧ er − (2d − 1) = xl.

4. Set e′l = el + 2d − 1 and e′r = er − (2d − 1).
5. Decompose bl = Bin(e′l − xl + 1) and br = Bin(xr − e′r + 1).
6. Calculate the distance to get sl, sr where

sl,i =

d−1∑
j=i

2j · bl,j , sr,i =

d−1∑
j=i+1

2j · br,j

for i ∈ [d− 1, 0].
7. for each i ∈ [d− 1, 0], do:

(a) If bl,i = 1, set J = J ∪ Bin
(

1+e′l−sl,i
2i

)
.

(b) If br,i = 1, set J = J ∪ Bin
(

e′r+sr,i
2i

)
.

8. return J .

Fig. 8. Algorithm descriptions of PrefixTrie
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PrefixPath

Inputs : An integer c ∈ Z2u and a radius δ.

Algorithm :

1. Prepare a set J = ∅.
2. for each i ∈ [0, ⌊log(2δ + 1)⌋+ 1] do:

– Update J = J ∪ Bin
(⌊

c
2i

⌋)
.

3. return J .

Fig. 9. Algorithm descriptions of PrefixPath

6 Multi-Batch O(P)PRF

We introduce the notion of a multi-batch oblivious pseudorandom function (OPRF), where batches
of points are evaluated under multiple independent random functions. More precisely, there are d
independent random functions, the receiver inputs d batches of n points and receives the evaluation
of each batch under the corresponding random function. We will refer to this functionality as a
(d, n)-OPRF and formally define it in Figure 10. Note that by setting d = 1, one recovers the usual
notion of an OPRF as in [38]. By setting n = 1, one recovers the notion of a vector OPRF from [2].
Our notion of a (d, n)-OPRF is moreover related to the notion of a membership batch, related-key
OPRF (mBaRK-OPRF) from [11], except that we work in the random oracle model, which allows
for a cleaner presentation.

F(d,n)-OPRF

Parameters : Number of batches d, batch size n, input space X , output space Y.
Functionality :

– Receiver inputs (Receiver,Evaluate,X), where X := (X1, . . . ,Xd) ∈ X d·n.
– Sender inputs (Sender,Evaluate).
– Sample F1, . . . , Fd ←$ {f : X → Y}
– Output (Fi(xi,j))i∈[d],j∈[n] to Receiver and (OFi)i∈[d] to Sender.

Fig. 10. Ideal functionality of (d, n)-multi-batch oblivious PRF ((d, n)-OPRF).

We moreover give a construction Π(d,n)-OPRF of a multi-batch OPRF based on subfield vector
linear oblivious evaluation (sVOLE) in Figure 12. This can be seen as a combination of the
semi-honest VOLE-based OPRF construction from [38] and the sVOLE-based mBaRK-OPRF
construction from [11]. The protocol makes use of the subfield VOLE functionality defined in
Figure 11. While keeping the total number N := dn constant, the protocol becomes more efficient
as d increases, since this means that the number of points n = N/d the sender needs to encode
in each OKVS decreases. For example, the state-of-the-art OKVS construction [5] has encoding
complexity O(n(λ/ϵ+ log n)) to encode n points and decoding complexity O(λ/ϵ+ log n) to decode
a single point, where ϵ is the expansion factor of the OKVS. Hence, to encode dn values in a single
OKVS takes time O(dn(λ/ϵ+ log (dn))), whereas encoding d separate OKVS’s with n values each
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takes time O(dn(λ/ϵ+log n)), saving a factor O( log d
λ/ϵ+logn ). The same factor is saved when decoding

dn values.

FsVOLE

Parameters : Base field B, finite extension field F.
Functionality :

– Receiver inputs (Receiver,Evaluate,m).
– Sender inputs (Sender,Evaluate,m).
– Sample ∆←$ F, A←$ Bm, B←$ Fm and put C := ∆ ·A+B.
– Output A,C to Receiver and ∆,B to Sender.

Fig. 11. Ideal functionality of subfield VOLE.

Π(d,n)-OPRF

Parameters : Receiver with input X = (X1, . . . ,Xd) ∈ X d·n, number of batches d, batch size n,
input field B, F a finite extension field of B, output space Y. H : {0, 1}∗ → Y is a random oracle,
OKVS = (Encode,Decode) is an oblivious key-value store with value space B and expansion factor ϵ.

Protocol :

1. Receiver computes Pi ← Encode({(xi,j , 0) | j ∈ [n]}) for each i ∈ [d]. Let P := (P1, . . . ,Pd) ∈ Bm,
m := d · (1 + ϵ)n. If n = 1, Receiver puts Pi := Xi.

2. Receiver sends (Receiver,Evaluate,m) and Sender sends (Sender,Evaluate,m) to FsVOLE.
3. Receiver gets A ∈ Bm, C ∈ Fm and Sender gets ∆ ∈ F, B ∈ Fm from FsVOLE, satisfying the relation

C = ∆ ·A+B.
4. Receiver sends Z := P+A to Sender.
5. Sender defines K := ∆ · Z + B and Fi(x) := H(i,Decode(Ki, x)), for each i ∈ [d], where Ki :=

(k(i−1)·(1+ϵ)n+1, . . . , ki·(1+ϵ)n).
6. Receiver computes Fi(xi,j) = H(i,Decode(Ci, xi,j)), for each i ∈ [d] and j ∈ [n], where Ci :=

(c(i−1)·(1+ϵ)n+1, . . . , ci·(1+ϵ)n).

Fig. 12. Subfield VOLE-based (d, n)-OPRF protocol

Lemma 5. The protocol Π(d,n)-OPRF (Fig. 12) has computation complexity O(dn) and communica-
tion complexity O(dnλ), ignoring logarithmic factors in d and n.

Proof. This can be achieved using a PCG to generate the subfield VOLE correlations, which
achieves [8,7]: computation and communication scaling logarithmically in the vector length in the
offline phase to distribute the seeds; computation scaling linearly in the vector length in the online
phase to expand the seeds, while requiring no communication. Additionally we can instantiate
OKVS by a construction with constant expansion factor, linear encoding time and constant decoding
time, such as [36,5]. ⊓⊔
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Theorem 3. The protocol Π(d,n)-OPRF (Fig. 12) securely realizes the ideal functionality F(d,n)-OPRF

against semi-honest adversaries in the random oracle, FsVOLE-hybrid model if the subfield size
log2 |B| ≥ λ + log2 (n) and extension field size log2 |F| ≥ κ and OKVS satisfies the independence
property from Lemma 1.

Proof. If both parties behave honestly, it is straightworward to check that the receiver obtains
the correct evaluations. Namely, on inputs xi,j ∈ Xi, by definition of FsVOLE and the linearity of
OKVS, by expanding Ki, it follows that

Fi(xi,j) : = H(i,Decode(Ki, xi,j))

= H(i,Decode(∆ · Zi +Bi, xi,j))

= H(i,Decode(∆ ·Pi +∆ ·Ai +Bi, xi,j))

= H(i,Decode(∆ ·Pi +Ci, xi,j))

= H(i,∆ · Decode(Pi, xi,j) + Decode(Ci, xi,j))

= H(i,Decode(Ci, xi,j)).

Note that the functions Fi(x) are independent for different i ∈ [d] by domain separation in the
input to the random oracle H. Moreover, each function Fi(x) behaves as a random function because
the vector Ki ∈ F(1+ϵ)n is uniformly random and the decoding vectors dec(x) for different x are
linearly independent with overwhelming probability since OKVS has negligible failure probability.

Consider a semi-honestly corrupted sender. The simulator samples the VOLE outputs∆←$ F and
B←$ Fm as the ideal functionality FsVOLE does, and samples Z←$ Bm, which is indistinguishable
from the real protocol execution since P is completely masked by A. Then the simulator computes
K := ∆ · Z+B and programs the random oracle at queries of the form (i,Decode(Ki, y)), i ∈ [d],
y ∈ X to return the F(d,n)-OPRF output Fi(y). These outputs are indistinguishable from the real
protocol outputs by the same reasoning as for the correctness above.

Now consider a semi-honestly corrupted receiver. The simulator samples the VOLE outputs
A ←$ Bm and C ←$ Fm, which is indistinguishable from the ideal functionality FsVOLE since B
completely randomizes C. Upon receiving random oracle queries of the form (i,Decode(Ci, xi,j)),
i ∈ [d], j ∈ [n], the simulator returns the F(d,n)-OPRF output Fi(xi,j). These are indistinguishable

from the real functionality outputs since each Ci ∈ F(1+ϵ)n is uniformly random and the decoding
vectors dec(xi,j), j ∈ [n], are linearly independent with overwhelming probability. Consider a hybrid
which behaves as a real protocol execution but aborts when the receiver poses a query of the form
(i,∆ · Decode(Pi, x) + Decode(Ci, x)) for any i ∈ [d] and x ∈ X \ Xi. This hybrid aborts with
negligible probability in κ since ∆←$ F from the receiver’s point of view and |F| ≥ 2κ. Moreover, it
is infeasible for the receiver to find x ∈ X \Xi such that Decode(Pi, x) = 0 by the independence
property from Lemma 1. Finally, the simulated execution is computationally indistinguishable from
this hybrid, which completes our proof. ⊓⊔

6.1 Multi-Batch OPPRF

Extending our multi-batch OPRF with the ability for the sender to program certain input points
to map to certain output points, we obtain the notion of a multi-batch oblivious programmable
pseudorandom function (OPPRF). In addition to the receiver inputting d batches of n points, the
sender inputs d lists of (input, output) pairs. If one of the receiver’s inputs in batch i ∈ [d] matches
one of the sender’s inputs in the same list i ∈ [d], the receiver obtains the corresponding output
value. Otherwise, the receiver obtains an independently random output value, as in (d, n)-OPRF.
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We formalize this functionality as a (d, n)-OPPRF and present it in Figure 13. By setting d = 1,
one recovers the usual notion of an OPPRF as in [38] and, by setting n = 1, one recovers the
notion of a vector OPPRF from [2]. Our notion of a (d, n)-OPPRF is also related to the notion of a
batch OPPRF from [35], except that we allow the receiver to obtain multiple evaluations of each
programmed function (if n > 1), and that working in the random oracle model allows us to give a
cleaner presentation.

F(d,n)-OPPRF

Parameters : Number of batches d, batch size n, input space X , output space Y.
Functionality :

– Receiver inputs (Receiver,Evaluate,X), X := (X1, . . . ,Xd) with Xi ∈ Xn.
– Sender inputs (Sender,Evaluate,L), where L := (L1, . . . , Ld) with Li ⊂ X × Y.
– Sample Fi ←$ {f : X → Y | ∀(y, z) ∈ Li : f(y) = z} for each i ∈ [d]
– Output (|Li|)i∈[d], (Fi(xi,j))i∈[d],j∈[n] to Receiver and (OFi)i∈[d] to Sender.

Fig. 13. Ideal functionality of (d, n)-multi-batch oblivious programmable PRF ((d, n)-OPPRF).

Additionally, we present a protocol Π(d,n)-OPPRF of a multi-batch OPPRF from a multi-batch
OPRF in Figure 14. This protocol follows the usual blueprint of the OPPRF protocols presented
in [32,35,38] of using a data structure to encode some offset to an OPRF, such that decoding
the data structure and adding the OPRF evaluation gives the programmed point. The conditions
that this data structure needs to satisfy were recently formalized under the notion of an oblivious
key-value store (OKVS) [22], and a formal proof of an OPPRF from an OPRF and a general OKVS
was given in [2]. Our protocol can be seen as a combination of the protocols from [38,2] to allow
the receiver to obtain multiple evaluations under multiple independent programmed functions.

Π(d,n)-OPPRF

Parameters : Number of batches d, batch size n, input space X , output space Y. Receiver with input
X = (X1, . . . ,Xd), where Xi ∈ Xn, and Sender with input L = (L1, . . . , Ld), where Li ⊂ X × Y.
Protocol

1. Receiver sends (Receiver,Evaluate,X) and Sender sends (Sender,Evaluate) to F(d,n)-OPRF.

2. Receiver gets (F ′
i (xi,j))i∈[d],j∈[n] and Sender gets (OF ′

i )i∈[d] from F(d,n)-OPRF.
3. Sender computes Ei ← Encode({(y, z − F ′

i (y)) | (y, z) ∈ Li}) for each i ∈ [d].
4. Sender sends E := (E1, . . . , Ed) to Receiver.
5. Sender defines the function Fi(x) := F ′

i (x) + Decode(Ei, x) for each i ∈ [d].
6. Receiver computes Fi(xi,j) = F ′

i (xi,j) + Decode(Ei, xi,j) for each i ∈ [d], j ∈ [n].

Fig. 14. (d, n)-OPRF-based (d, n)-OPPRF protocol
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Lemma 6. The protocol Π(d,n)-OPPRF has computation complexity O(dn + |L|) for the sender,
computation complexity O(dn) for the receiver, and communication complexity O(dnλ+ |L| · log2 |Y|),
where |L| :=

∑d
i=1 |Li|, ignoring logarithmic factors in d, n and |L|.

Proof. This can be achieved realizing F(d,n)-OPRF by the protocol Π(d,n)-OPRF from Figure 14 and
using the corresponding complexities from Lemma 5, and again instantiating OKVS by construction
with constant expansion factor, linear encoding time and constant decoding time. ⊓⊔

Theorem 4. The protocol Π(d,n)-OPPRF realizes the ideal functionality F(d,n)-OPPRF against semi-
honest adversaries in the F(d,n)-OPRF hybrid model if OKVS is linear and doubly oblivious.

Proof. If both parties behave honestly, correctness on programmed points (y, z) ∈ Li follows from
the correctness of OKVS, since

Fi(y) : = F ′i (y) + Decode(Ei, y)

= F ′i (y) + z − F ′i (y)

= z.

On unprogrammed points x ∈ X , the vector Ei is independent from F ′i (x), and thus the value
Fi(x) := F ′i (x) + Decode(Ei, x) is uniformly random since F ′i is a random function by definition of
F(d,n)-OPRF.

First, consider a semi-honestly corrupted sender. Since the sender does not receive any messages
from the receiver, we only need to simulate the outputs (OF ′

i )i∈[d] of F(d,n)-OPRF such that they are
consistent with the outputs (OFi)i∈[d] of F(d,n)-OPPRF. On inputs y ∈ X for which there exists (y, z) ∈
Li, the simulator samples the value F ′i (y) uniformly random as the ideal functionality F(d,n)-OPRF

does. Using these values, the simulator can compute Ei ← Encode({(y, z − F ′i (y)) | (y, z) ∈ Li}) as
the sender does. The simulator can now simulate the OPRF oracle OF ′

i on unprogrammed points
as F ′i (x) := Fi(x)− Decode(Ei, x), which is indistinguishable from a real protocol execution since
the values Fi(x) are uniformly random on unprogrammed points.

Now consider a semi-honestly corrupted receiver. The simulator obtains the receiver’s input X =
(X1, . . . ,Xd) and the ideal F(d,n)-OPPRF functionality’s outputs (|Li|)i∈[d] and (Fi(xi,j))i∈[d],j∈[n].
The simulator samples E by inserting |Li| random key-value pairs into each Ei, and simulates
the F(d,n)-OPRF outputs as F ′i (xi,j) := Fi(xi,j) − Decode(Ei, xi,j), which guarantees correctness
on programmed points. The OKVS encodings Ei are statistically indistinguishable from a real
protocol execution since OKVS is doubly oblivious. Indistinguishability of the values F ′i (xi,j) can
be seen from the following two cases. First, if xi,j = y for some programmed point (y, z) ∈ Li,
then Decode(Ei, y) := ⟨dec(y), Ei⟩ is distributed uniformly random independent from z since Ei

is uniformly random independent from Li and the vectors dec(y), for (y, z) ∈ Li, are linearly
independent with overwhelming probability by the correctness of OKVS; hence

F ′i (xi,j) = F ′i (y)

= Fi(y)− Decode(Ei, y)

= z − Decode(Ei, y)

is distributed statistically close to uniformly random. Second, if xi,j is an unprogrammed point,
the F(d,n)-OPPRF output Fi(xi,j) is distributed uniformly random independent from Ei; hence
F ′i (xi,j) := Fi(xi,j)− Decode(Ei, xi,j) is uniformly random. ⊓⊔
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GetListp(r, s,q,∆q)

If p =∞, replace s← 0

For each i = 1, . . . , d

If i < d, sample ri ←$ {0, 1}λ
′

If i = d, set rd := r −
∑d−1

i=1 ri

For each j = −δ, . . . , δ
Set keyi,j ← Hγ(qi + j∥∆q)

Set vali,j := ri + s · |j|p

Set listi := {(keyi,j , vali,j)j∈[−δ,δ]}
Return (list1, . . . , listd)

Fig. 15. GetList subprotocol for Minkowski distance p ∈ [1,∞].

7 Fuzzy Matching from OPPRF

Fuzzy matching targets the setting where there are two parties holding points w = (w1, . . . , wd)
and q = (q1, . . . , qd) in d-dimensional space Zd, who wish to learn whether their points are close to
each other, that is, whether dist(w,q) ≤ δ, with respect to some distance metric. In particular, we
focus our attention on the generalized Minkowski distance

distp(w,q) :=

{
maxi∈[d] |wi − qi| if p =∞,

(
∑d

i=1 |wi − qi|p)1/p if p ̸=∞.

The ideal functionality FFuzzyMatch is detailed in Figure 1 and we present a protocol Πp
FuzzyMatch

realizing this functionality for generalized Minkowski distance p ∈ [1,∞] from a (d, 1)-OPPRF in
Figure 16. Our protocol is inspired by the fuzzy matching protocol from [1]. Under the hood, the
OPPRF protocol from Figure 14 can be seen as using the OPRF outputs to one-time-pad encrypt
the programmed values, which the receiver can only decrypt if their input matches a programmed
point. Our protocol can therefore be seen as replacing the additively homomorphic encryption in [1]
by an OPRF, which can be super efficiently instantiated from OKVS and VOLEs, as shown in
Figure 12.

The main idea behind our protocol for infinity distance (p =∞) is that the sender programs the
OPPRF to map the intervals ([qi − δ, qi + δ])i∈[d], to a random d-out-of-d secret sharing (ri)i∈[d] of
zero. The receiver obtains the OPPRF evaluations (Fi(wi))i∈[d], which will sum up to zero if and
only if wi ∈ [qi − δ, qi + δ] for all i ∈ [d]. That is, if and only if dist∞(w,q) ≤ δ.

For Minkowski distance (p ̸=∞), the sender instead programs the OPPRF to map the values
qi + j to ri + s · |j|p with random ri, s, for i ∈ [d], j ∈ [−δ, δ]. This means that if wi ∈ [qi− δ, qi + δ],
the receiver will obtain the OPPRF evaluation Fi(wi) := ri + s · |wi − qi|p. If this holds for all

dimensions, the receivers OPPRF evaluations will sum to r + s · distp(w,q)p, where r :=
∑d

i=1 ri.
As a final step, the sender can therefore send over the set {H(r + s · j) | j ∈ [δp]} of hash values,

and the receiver can check if H(
∑d

i=1 Fi(wi)) is present in this set.
This leads to our protocol having almost identical asymptotic complexities to the protocol

from [1], the main difference being the δp term in the sender’s instead of the receiver’s computation
complexity, but using significantly cheaper individual operations (i.e., only containing XOR and
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Πp
FuzzyMatch

Parameters : Receiver with input w ∈ Zd and Sender with input q ∈ Zd. Dimension d and radius δ.

Protocol :

1. Sender samples r, s←$ {0, 1}λ
′
, and sets r = 0 if p =∞.

2. Sender gets (list1, . . . , listd)← GetListp(r, s,q, 0
λ).

3. Receiver sends (Receiver,Evaluate,w) and Sender sends (Sender,Evaluate, (list1, . . . , listd))
to F(d,1)-OPPRF.

4. Receiver gets (Fi(wi))i∈[d] and Sender gets (OFi)i∈[d] from F(d,1)-OPPRF.
5. If p ̸=∞, Sender puts S := {Hλ′(r + s · j) | j ∈ [δp]}, shuffles S and sends it to Receiver.
6. If p =∞, Receiver puts S := {Hλ′(0)}.
7. Receiver outputs 1 if Hλ′(

∑d
i=1 Fi(wi)) ∈ S, and 0 otherwise.

Fig. 16. Fuzzy matching for Minkowski distance from (d, 1)-OPPRF.

hash evaluations during the online phase). Additionally, the communication complexity of our
protocol relies only on the statistical security parameter λ, not on the computational security
parameter κ, due to the use of subfield VOLE in the underlying OPRF. However, this gain in
efficiency does come at the cost of our fuzzy matching protocol not being reusable. That is, since the
sender programs all points in the interval [qi − δ, qi + δ] to map to the same ri, the receiver is not
allowed to receive OPPRF evaluations of two different wi, w

′
i ∈ [qi − δ, qi + δ], as this reveals more

information about partial matches on individual dimensions. This does make it more complicated
to move from our fuzzy matching protocol to a fuzzy PSI protocol, which we will discuss in more
detail in Section 8.

Lemma 7. The protocol Πp
FuzzyMatch has

– sender’s computational complexity: O(δd) if p =∞, and O(δd+ δp) if p ̸=∞;
– receiver’s computational complexity O(d);
– communication complexity O(δdλ) if p =∞, and O(δdλ+ δpλ) if p ̸=∞;

ignoring logarithmic factors in all complexities.

Proof. The above complexities can be realized by instantiating F(d,1)-OPPRF by a protocol with

sender computational complexity O(
∑d

i=1 |Li|+ d), receiver computational complexity O(d), and

communication complexity O((d+
∑d

i=1 |Li|) · λ), as in Lemma 6. For example, by instantiating
F(d,1)-OPRF by the subfield VOLE-based protocol from Figure 12 with subfield size log2 |B| := γ and
output length log2 |Y| := λ′ as in Theorem 5, using the complexities from Lemma 5. Moreover, we
can instantiate S by a data structure with constant lookup time and linear build time, such as a
Cuckoo hash table. ⊓⊔

Theorem 5. The protocol Πp
FuzzyMatch securely realizes the ideal functionality FFuzzyMatch for

Lp distance, p ∈ [1,∞], against semi-honest adversaries in the F(d,1)-OPPRF-hybrid model if Hγ :
{0, 1}∗ → {0, 1}γ is a universal hash function with γ ≥ λ+ log δ and:

– If p =∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a universal hash function with λ′ ≥ λ.

– If p ̸=∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a random oracle with λ′ ≥ λ+ p · log δ.
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Proof. For correctness, we will show that the protocol outputs are correct with overwhelming
probability when both parties behave honestly. We will handle the cases p = ∞ and p ̸= ∞
separately.

Correctness when p =∞. If dist∞(w,q) ≤ δ, this implies that wi ∈ [qi − δ, qi + δ] for all i ∈ [d].

Hence Fi(wi) = ri for all i ∈ [d] by definition of F(d,1)-OPPRF, and thus Hλ(
∑d

i=1 Fi(wi)) = Hλ′(0).
If dist∞(w,q) > δ, this means that there exists at least one dimension j ∈ [d] such that wj ̸∈
[qj − δ, qj + δ], and thus Fj(wj) is distributed uniformly random in {0, 1}λ′

by the definition of

F(d,1)-OPPRF. Hence
∑d

i=1 Fi(wi) = 0 with negligible probability by choosing λ′ ≥ λ.

Correctness when p ̸=∞. If distp(w,q) ≤ δ, then in particular dist∞(w,q) ≤ δ and Fi(wi) =

ri+s·|wi−qi|p by the definition of F(d,1)-OPPRF. Thus Hλ′(
∑d

i=1 Fi(wi)) = Hλ′(r+s·distp(w,q)p) ∈ S
if distp(w,q) ≤ δ. If distp(w,q) > δ, then two cases can occur. Either dist∞(w,q) > δ, in which
case it follows similarly to the case p =∞ that the receiver outputs 1 with negligible probability.
Or dist∞(w,q) ≤ δ, in which case

∑d
i=1 Fi(wi) = r + s · distp(w,q)p but distp(w,q)p > δ; thus

Hλ′(
∑d

i=1 Fi(wi)) ∈ S with negligible probability.
To argue security, let us first consider a semi-honestly corrupted sender. Since the sender does not

receive any output from the ideal functionality, nor any messages from the receiver, the simulation
is trivial by simulating the ideal F(d,1)-OPPRF functionality.

Now consider a semi-honestly corrupted receiver. The simulator again sends w to FFuzzyMatch

to obtain the output b ∈ {0, 1}. The simulator now simulates the adversary’s view in different cases.

Corrupted receiver when p = ∞. The simulator only needs to simulate the output from
F(d,1)-OPPRF by putting |Li| = 2δ + 1 for each i ∈ [d], and sampling {Fi(wi)←$ {0, 1}λ′}i∈[d] such
that

∑d
i=1 Fi(wi) = 0 if b = 1, or sampling them randomly if b = 0. The simulated outputs are

indistinguishable from the real protocol outputs. If b = 0, the receiver obtains d− 1 additive shares
of 0 and some uniformly random evaluation (guaranteed by the functionality F(d,1)-OPPRF). They
are all uniformly random. If b = 1, the receiver obtains d shares of 0 which is precisely the same as
the simulated values.

Corrupted receiver when p ̸=∞. The simulator needs to simulate the output of F(d,1)-OPPRF and
the set S. The simulator simulates F(d,1)-OPPRF outputs {Fi(wi)}i∈[d] by sampling them uniformly

random from {0, 1}λ′
and by putting |Li| = 2δ + 1 for each i ∈ [d]. Since the sender programs a

uniformly random target value ri + s · |j|p in the function Fi for all points qi − δ, . . . , qi + δ, and
the receiver only obtains a single evaluation Fi(wi), which may or may not lie in [qi − δ, qi + δ], for
each dimension i ∈ [d], the simulated outputs are indistinguishable from the real protocol outputs.

If the ideal functionality outputs b = 1, the simulator computes h := Hλ′(
∑d

i=1 Fi(wi)), inserts it
in a random location j∗ ←$ [δp] of S, and samples the remaining locations of S uniformly random
from {0, 1}λ′

. If b = 0, the simulator samples all entries of S uniformly random from {0, 1}λ′
. The

simulator sends S to the receiver. ⊓⊔

7.1 Optimization from Prefix Trie Techniques

We can combine our fuzzy matching protocol from Figure 16 with the prefix trie techniques from
Section 5 in multiple ways.

Infinity Distance. If p =∞, we can use the prefix trie technique to reduce the number of points
programmed in the OPPRF for each dimension from O(δ) to O(log δ), inspired by [1, Remark 2].

Furthermore, we manage to optimize the computational cost at the receiver side from (log δ)
d
in [1]

to (log δ)
d
2 . For points q,w ∈ Zd

2u , we adapt the protocol as follows:
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1. Sender computes (q̃i,1, . . . , q̃i,ℓ) ← PrefixTrie(qi − δ, qi + δ) for each i ∈ [d] and puts l̃isti :=

{(q̃i,j , ri) | j ∈ [ℓ]}, where ri ←$ {0, 1}λ′
such that

∑d
i=1 ri = 0λ

′
. Sender pads each l̃isti to

size ℓmax as defined in Theorem 2 with random pairs.

2. Receiver puts w̃i := (w̃i,1, . . . , w̃i,ℓ′)← PrefixPath(wi, δ) for each i ∈ [d].

3. Receiver inputs (Receiver,Evaluate, (w̃1, . . . , w̃d)) and Sender inputs (Sender,Evaluate,
( ˜list1, . . . , ˜listd)) to F(d,ℓ′)-OPPRF.

4. Receiver gets (Fi(w̃i,j))i∈[d],j∈[ℓ′], Sender gets (OFi)i∈[d] from F(d,ℓ′)-OPPRF.

5. Receiver checks if ∃ j := (j1, . . . , jd) ∈ [ℓ′]d such that
∑d

i=1 Fi(w̃i,ji) = 0λ
′
, then outputs 1 if

this is the case, and 0 otherwise.

This reduces the communication cost of the protocol to O(dλ log δ) and the sender’s computation

cost to O(d log δ), while increasing the receiver’s computation cost to O(d log δ+(log δ)
d
2 )), compared

to Figure 16. We argue that Receiver can run Step 5 in O((log δ)
d
2 ) time: this is a special case of

the Knapsack problem which is known to be NP complete, however, we can search for the solution
in slightly better time by using the standard “meet-in-the-middle” trick [26]. We can divide d lists
of size ℓ′ into roughly two halves, namely, d1 :=

⌈
d
2

⌉
lists and d2 :=

⌊
d
2

⌋
lists. Then we compute all

possible sums of the first λ′ bits for each half (e.g.,
∑d1

i (Fi(w̃i,ji)[1:λ′] for all j), resulting in two

sets of size (ℓ′)d1 and (ℓ′)d2 . Checking if there is a match between two sets takes time (ℓ′)d2 . In

summary, Receiver takes O((log δ)⌈
d
2 ⌉) time and space to find a match in Step 5.

The correctness follows from Theorem 2, that is, Receiver obtains all of the shares ri if and
only if wi ∈ [qi − δ, qi + δ] for each i ∈ [d]. However, regarding the security, the vector j∗ ∈ [ℓ′]d

that leads to a match, reveals more information about the distance between w and q. Security can
be proven for an adapted fuzzy matching functionality with additional leakage where the receiver
learns q if distp(w,q) ≤ δ, and nothing otherwise. This is fine for standard PSI applications where
the receiver learns the sender’s points close to theirs. Note that according to Theorem 2, the match
is unique, which is crucial for the security to prevent Receiver learns multiple Fi(q̃i,j) for some
i ∈ [d].

For an application where one requires sender privacy, the parties can run a standard PSI protocol
with Sender acting as the receiver with input S and Receiver acting as the sender with input
{Hλ′(

∑d
i=1 Fi(w̃i,ji)) | (j1, . . . , jd) ∈ [ℓ′]d}. Using a PSI protocol with linear complexity, this will

add a factor O((log δ)d) to the communication and computation complexity, and will ultimately
flip the role of the sender and receiver in the fuzzy matching protocol.

Minkowski Distance. If p ̸= ∞, the above method will unfortunately not work, but we can
instead leverage the prefix trie technique to get rid of the δp factor in the communication and
computation complexity, which was left as an open question in [1]. For points q,w ∈ Zd

2u , this can
be done as follows:

1. Sender sets vali,j := ri+|j|p instead of ri+s·|j|p, which has the effect that Sender can represent
the interval [r, r + δp] using the prefix trie technique as S := (r̃1, . . . , r̃ℓ)← PrefixTrie(r, r + δp).
Padding S to size ℓmax, where ℓmax = O(p log δ) as defined in Theorem 2.

2. Receiver now gets U := (ũ1, . . . , ũℓ′) ← PrefixPath(u, δp/2), where u :=
∑d

i=1 Fi(wi) and
ℓ′ = O(p log δ).

3. Now the parties can run a PSI protocol between S and U to let Receiver learn ũj∗ for the
j∗ ∈ [ℓ′] that leads to a match when u ∈ [r, r + δp].
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Using a PSI protocol with linear complexity, this will reduce the communication cost of the
protocol to O(δdλ+ pλ log δ) sender’s computational cost to O(δd+ p log δ), while increasing the
receiver’s computational cost to O(d+ p log δ).

However, the item ũj∗ that leads to a match reveals more information about the distance
between w and q when dist(w,q) ≤ δ. The protocol again realizes an adapted fuzzy matching
functionality with additional leakage where the receiver learns the sender’s point q if dist(q,w) ≤ δ
and nothing otherwise, which is fine for standard PSI applications where the receiver learns the
close sender’s points. For an application where one requires sender privacy, one can instead use a
PSI cardinality protocol to compare S and U .

8 Fuzzy PSI from OPPRF

In this section, we expand our OPPRF-based fuzzy matching protocols to support fuzzy PSI. We
start by introducing an efficient protocol for standard fuzzy PSI, then work on adapting it to ensure
sender privacy (allowing the receiver to only learn which of its own points are close to the sender’s
points). After that, we apply prefix trie techniques to our fuzzy PSI protocols to achieve a better
trade-off in terms of complexity. Finally, we explore additional functionalities, such as labeled PSI,
PSI with cardinality, and circuit PSI.

8.1 Minkowski Distance

To move from single-point fuzzy matching to the multiple-point fuzzy PSI setting, we leverage
spatial hashing techniques (see Section 3.5), similar to [1], by tiling the space with cells of side-length

2δ. If the sender’s points are distance 2δd
1
p apart, there is at most one of their points lying in

each cell by Lemma 3. The sender can therefore program a fuzzy matching instance for qk in the
OPPRF at Ck ← cell2δ(qk) for each k ∈ [M ]. The receiver now needs to evaluate the fuzzy matching
instances at the at most 2d cells Ck,j intersecting ballδ(wk), for each k ∈ [N ], to check for potential
matches. To make sure that the receiver does not notice any collisions in the OPPRF outputs, we

additionally require the receiver’s points to be distance 2δ(d
1
p + 1) apart, which guarantees that

there is at most one ballδ(wk) intersecting with the each cell C by Lemma 4. This results in the
protocol Πp

FuzzyPSI in Figure 17, whose complexity is given in Lemma 8. and security is proven in
Theorem 6.

Lemma 8. The protocol Πp
FuzzyPSI has

– sender’s computational complexity O(δdM + d2dN) if p =∞, and O(δdM + δpM + d2dN) if
p ̸=∞;

– receiver’s computational complexity O(d2dN);
– communication complexity O(δdMλ+ d2dNλ) if p = ∞, and O(δdMλ+ δpMλ+ d2dNλ) if

p ̸=∞;

ignoring logarithmic factors in all complexities.

Proof. These complexities can be achieved similarly to Lemma 7 with subfield size log2 |B| := γ
and OPRF output length log2 |Y| := λ′ where λ′ is as in Theorem 6. ⊓⊔

Theorem 6. The protocol Πp
FuzzyPSI realizes the functionality FFuzzyPSI for Lp distance, p ∈ [1,∞],

with standard PSI leakage against semi-honest adversaries in the F(d,2d·N)-OPPRF-hybrid model if
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Πp
FuzzyPSI

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. For k ∈ [M ], Sender puts Ck ← cell2δ(qk), samples rk, sk ←$ {0, 1}λ
′
.

2. For i ∈ [d], Sender updates listi ← listi ∪ listk,i, where (listk,1, . . . , listk,d)← GetListp(rk, sk,qk, Ck) and
k ∈ [M ].

3. Receiver sends (Receiver,Evaluate, (W̃1, . . . ,W̃d)) and Sender sends
(Sender,Evaluate, (list1, . . . , listd)) to F(d,2d·N)-OPPRF, where

∀ i ∈ [d], W̃i := (Hγ(wk,i∥Ck,j))k∈[N ],j∈[2d],

Ck,j ranges over all cells intersecting ballδ(wk), and each W̃i is padded with random items to size 2d ·N .
4. Receiver gets (Fi(Hγ(wk,i∥Ck,j)))i∈[d],k∈[N ],j∈[2d] and Sender gets (OFi)i∈[d] from F(d,2d·N)-OPPRF.

5. Receiver computes uk,j :=
∑d

i=1 Fi(Hγ(wk,i∥Ck,j)) for all k ∈ [N ], j ∈ [2d].
6. Sender puts

– S := {Hλ′+du(rk)⊕ (0λ
′
∥qk) | k ∈ [M ]} if p =∞;

– S := {Hλ′+du(rk + sk · j)⊕ (0λ
′
∥qk) | k ∈ [M ], j ∈ [δp]} if p ̸=∞;

then shuffles S and sends it to Receiver.
7. Receiver sets I := ∅, and, for each k ∈ [N ], if there exists j∗ ∈ [2d] such that Hλ′+du(uk,j∗)⊕s = 0λ

′
∥q

for some s ∈ S and q ∈ Zd
2u , updates I ← I ∪ {q}.

Fig. 17. Fuzzy standard PSI for Minkowski distance p ∈ [1,∞], sender’s points 2δd
1
p apart (2δ apart when

p =∞), receiver’s points 2δ(d
1
p + 1) apart (4δ apart when p =∞).

the sender’s points are 2δd
1
p apart (2δ when p = ∞) and the receiver’s points are 2δ(d

1
p + 1)

apart (4δ apart when p =∞). Moreover, Hγ : {0, 1}∗ → {0, 1}γ is a universal hash function with

γ ≥ λ+ d+ log (δNM), Hλ′+du : {0, 1}∗ → {0, 1}λ′+du is a random oracle, and:

– If p =∞, λ′ ≥ λ+ d+ logN ;
– If p ̸=∞, λ′ ≥ λ+ d+ logN + log (δpM).

Proof. First consider correctness. Since the sender’s points are 2δd
1
p apart, there is at most

one point q lying in each cell by Lemma 3. Hence there are no collisions in the keys of each listi,

i ∈ [d]. Now since the receiver’s points are 2δ(d
1
p + 1) apart, the cells {Ck,j}j∈[2d] and {Ck′,j}j∈[2d]

are disjoint for different points wk, wk′ by Lemma 4. Moreover, each ballδ(w) intersects with at
most 2d cells, and any point q with distp(w,q) ≤ δ must lie in one of these cells. The correctness
now follows from the correctness of the fuzzy matching protocol Theorem 5.

Assume the sender is semi-honestly corrupted. Since the sender does not receive any output from
the ideal functionality, nor any messages from the sender, the simulation is trivial by simulating
the F(d,2d·N)-OPPRF outputs.

Now assume the receiver is semi-honestly corrupted. The simulator receives the intersection
I = {qj | ∃ k ∈ [N ], distp(wk,qj) ≤ δ} from the ideal functionality, and uses this to get Cj ←
cell2δ(qj) and the corresponding wkj with distp(wkj ,qj) for each qj ∈ I. The simulator simulates
the F(d,2d·N)-OPPRF outputs (Fi(Hγ(wk,i∥Ck,j)))i∈[d],k∈[N ],j∈[2d] by sampling them uniformly random

from {0, 1}λ′
and sets the corresponding programmed set size M · (2δ + 1). Note that the simulated
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OPPRF outputs are indistinguishable from the real protocol execution similar to Theorem 5: the
receiver obtains evaluations for different cells {Ck,j}j∈[2d] for each k ∈ [N ], since the receiver’s points

are 2δ(d
1
p + 1) apart; and the sender programs {rk,i}i∈[d] as independent random target values for

each cell Ck ← cell2δ(qk), k ∈ [M ]. Finally, the simulator computes Hλ′+du(
∑d

i=1 Fi(Hγ(wkj ,i∥Cj)))⊕
(0λ

′∥qj) for each qj ∈ I, inserts these in random locations of S, and samples the remaining entries

uniformly random from {0, 1}λ′+du. ⊓⊔

Remark 2 (Limited Overlap). In the infinity distance setting p = ∞, the sender can instead of
encoding fuzzy matching instances at the Ck ← cell2δ(qk) assign a block Bk ← block4δ(qk) of
side-length 4δ and encode the fuzzy matching instance at this block. The receiver can now similarly
iterate over all blocks Bk,j containing cell2δ(wk). Now, similarly to [20, Section 5.2], as long as the
sender can assign a unique block to each point k ∈ [M ], they can program the OPPRF correctly.
As a result, we can allow the sender’s balls to have limited overlap under this condition (i.e., the
points qk can be distance < 2δ from each other). The receiver will again not learn any collisions
from the OPPRF evaluations since they will iterate over each block B at most once if their points
are distance 4δ apart.

8.2 Sender Privacy

The protocol Πp
FuzzyPSI from Figure 17 realizes the standard fuzzy PSI functionality where the

receiver learns the sender’s points q ∈ Q that lie close to their points, that is, for which there
exists w ∈W such that distp(w,q) ≤ δ. However, for some applications it might be desirable to
not reveal the exact point q, but only reveal that the sender has a point lying close to the receiver’s
point w. We refer to this variant as fuzzy PSI with sender privacy (PSI-SP), see Figure 2 for
the ideal functionality. There are two ways we can adapt the protocol in Figure 17 to realize this
functionality, which we will detail below.

Infinity Distance. In the infinity distance case, p =∞, we can let the parties run a normal PSI
protocol in the end (replacing the Step 6 and 7 in Figure 17), where the sender acts as receiver

and inputs the set S := {
∑d

i=1 rk,i}k∈[M ], whereas the receiver acts as sender and inputs the set
U := {uk,j}j∈[N ],j∈[2d]. This effectively flips the role of the sender and the receiver in the resulting
protocol. For completeness, we present the protocol in Figure 18 and prove security in Theorem 7.
The complexity of the resulting protocol is given in Lemma 9. Note that this approach does not
work in the p ̸=∞ case, since the intersection S∩U reveals the exact distance between the matching
points to the receiver.

Lemma 9. The protocol Π∞FuzzyPSI-SP has computational complexity O(d2dM +N) for the sender,
computational complexity O(δdN+d2dM) for the receiver, and communication complexity O(δdNλ+
d2dMλ), ignoring logarithmic values.

Proof. By instantiating FPSI by a PSI protocol with linear communication and sender compu-
tation in the size of both input sets, and receiver computation linear in the receiver’s set size. For
example, by an OPRF-based PSI protocol such as [36]. Moreover, we instantiate F(d,2d·M)-OPPRF

by Π(d,2d·M)-OPPRF from Figure 14 as in Lemma 7, with the parameters λ′ and γ chosen as in
Theorem 7. ⊓⊔

Theorem 7. The protocol Π∞FuzzyPSI-SP realizes the functionality FFuzzyPSI for L∞ distance with
PSI-SP leakage against semi-honest adversaries in the FPSI-, F(d,N)-OPPRF-hybrid model if the
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Π∞
FuzzyPSI-SP

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. For each k ∈ [N ], Receiver puts Ck ← cell2δ(wk), samples rk ←$ {0, 1}λ
′
, and updates listi ←

listi ∪ listk,i for each i ∈ [d], where (listk,1, . . . , listk,d)← GetListp(rk, 0,wk, Ck).
2. Sender sends (Receiver,Evaluate, (Q̃1, . . . , Q̃d)) and Receiver sends

(Sender,Evaluate, (list1, . . . , listd)) to F(d,2d·M)-OPPRF, where

∀ i ∈ [d], Q̃i := (Hγ(qk,i∥Ck,j))k∈[M ],j∈[2d],

Ck,j ranges over all cells intersecting ballδ(qk), and each Q̃i is padded with random items to size 2d ·M .
3. Sender gets (Fi(Hγ(qk,i∥Ck,j)))i∈[d],k∈[M ],j∈[2d] and Receiver gets (OFi)i∈[d] from F(d,2d·M)-OPPRF.
4. Receiver puts S := {Hλ′(rk) | k ∈ [N ]}.
5. Sender puts U := {Hλ′(

∑d
i=1 Fi(Hγ(qk,i∥Ck,j))) | k ∈ [M ], j ∈ [2d]}.

6. Receiver sends (Receiver,Evaluate, S) and Sender sends (Sender,Evaluate, U) to FPSI.
7. Receiver gets S ∩ U from FPSI and outputs I := {wk | k ∈ [N ],Hλ′(rk) ∈ S ∩ U}.

Fig. 18. Fuzzy PSI-SP for infinity distance, making black-box use of PSI, sender’s points 4δ apart, receiver’s
points 2δ apart.

sender’s points are 4δ apart and the receiver’s points are 2δ apart. Moreover, Hγ : {0, 1}∗ → {0, 1}γ
and Hλ′ : {0, 1}∗ → {0, 1}λ′

are universal hash functions with γ ≥ λ + d + log (δNM) and
λ′ ≥ λ+ d+ logM + logN .

Proof. Correctness of the protocol follows from the correctness of the protocol Πp
FuzzyPSI from

Theorem 6, since by definition the ideal functionality FPSI outputs the values Hλ′(rk), k ∈ [N ], for

which there exists k′ ∈ [M ] and j ∈ [2d] such that Hλ′(
∑d

i=1 Fi(Hγ(qk′,i∥Ck′,j))) = Hλ′(rk).
Simulation proceeds similarly to the proof of Theorem 6, except that the simulator for a corrupt

receiver now obtains S from the receiver’s input to FPSI and inserts the k-th element of S into the
output from FPSI if wk is in the output from FFuzzyPSI. ⊓⊔

Minkowski Distance. For general Minkowski distance, p ∈ [1,∞], we can basically take a “dual”
approach to the protocol in Figure 17, where now the sender iterates over all cells intersecting
ballδ(qk) when programming the OPPRF and the receiver just receives the evaluation at a single

cell for each point wk. This means that now the sender’s points have to be 2δ(d
1
p + 1) apart (4δ

when p =∞) and the receiver’s points 2δd
1
p apart (2δ when p =∞). The protocol is given in 19

and security is proven in Theorem 8, following the discussion about the complexity in Lemma 10.
In the case that p =∞, compared to the protocol in Figure 18, the protocol from Figure 19 will

be desirable in a setting where N > 2d ·M and δ > 1. To see this, the overhead in Figure 18 is
C1 = δNd+ d2dM , whereas the overhead in Figure 19 is C2 = δd2dM + dN . If k = N

2dM
> 1, we

have C1 − C2 = dN(δ − 1)(1− 1
k ) > 0.

Lemma 10. The protocol Πp
FuzzyPSI-SP has computation complexity O(δd2dM +dN) for the sender

if p =∞ and O(δd2dM + δpM + dN) if p ̸=∞, computation complexity O(dN) for the receiver,
and communication complexity O(δd2dMλ+ dNλ) if p =∞, O(δd2dMλ+ δpMλ+ dNλ) if p ̸=∞,
ignoring logarithmic factors in all complexities.
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Πp
FuzzyPSI-SP

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. For each k ∈ [M ], Sender samples rk, sk ←$ {0, 1}λ
′
and sets rk = 0 when p =∞.

2. For each k ∈ [M ] and each cell Cj intersecting ballδ(qk), Sender gets

(listk,j,1, . . . , listk,j,d)← GetListp(rk, sk,qk, Cj)

and updates listi ← listi ∪ listk,j,i for each i ∈ [d]. Pads each listi to size 2d ·M(2δ + 1) with random
pairs.

3. Receiver sends (Receiver,Evaluate, (W̃1, . . . ,W̃d)) and Sender sends
(Sender,Evaluate, (list1, . . . , listd)) to F(d,N)-OPPRF, where

∀ i ∈ [d], W̃i := (Hγ(wk,i∥Ck))k∈[N ], Ck ← cell2δ(wk).

4. Receiver gets (Fi(Hγ(wk,i∥Ck)))i∈[d],k∈[N ] and Sender gets (OFi)i∈[d] from F(d,N)-OPPRF.
5. If p ̸=∞, Sender puts S := {Hλ′(rk + sk · j) | k ∈ [M ], j ∈ [δp]}, shuffles S and sends it to Receiver.
6. If p =∞, Receiver puts S := {Hλ′(0)}.
7. Receiver computes uk := Hλ′

(∑d
i=1 Fi(Hγ(wk,i∥Ck))

)
for all k ∈ [N ].

8. Receiver sets I := ∅, and, for each k ∈ [N ], if uk ∈ S, updates I ← I ∪ {(wk)}.

Fig. 19. Fuzzy PSI-SP for Minkowski distance p ∈ [1,∞], sender’s points 2δ(d
1
p + 1) apart (4δ apart when

p =∞), receiver’s points 2δd
1
p apart (2δ apart when p =∞).

Proof. These complexities can be achieved similarly to Lemma 7 with subfield size log2 |B| := γ
and OPRF output length log2 |Y| := λ′ as in Theorem 8. ⊓⊔

Theorem 8. The protocol Πp
FuzzyPSI-SP realizes the functionality FFuzzyPSI for Lp distance, p ∈

[1,∞], with PSI-SP leakage against semi-honest adversaries in the F(d,N)-OPPRF-hybrid model if

the sender’s points are 2δ(d
1
p + 1) apart (4δ apart when p =∞) and the receiver’s points are 2δd

1
p

apart (2δ apart when p =∞). Moreover, Hγ : {0, 1}∗ → {0, 1}γ is a universal hash functions with
γ ≥ λ+ d+ log (δNM) and:

– If p =∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a universal hash function, λ′ ≥ λ+ logN ;

– If p ̸=∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a random oracle, λ′ ≥ λ+ logN + log (δpM).

Proof. First, we argue correctness. For any receiver’s point w, since the sender’s points are

2δ(d
1
p +1) apart, there exists at most a single sender’s point q such that ballδ(q) intersects cell2δ(w)

by Lemma 4. Moreover, the ball ballδ(q) intersects with at most 2d cells and any receiver’s point
w with distp(w,q) ≤ δ must lie in one of these cells. Moreover, since the receiver’s points are

2δd
1
p apart, there is at most one of the receiver’s points w lying in each cell by Lemma 3. Finally,

since the sender’s points are 2δ(d
1
p + 1) apart, the cells {Ck,j}j∈[2d] and {Ck′,j}j∈[2d] are disjoint for

different points qk, qk′ by Lemma 4, thus there are no collisions in the keys of each listi, i ∈ [d].
Hence the correctness of the fuzzy PSI protocol follows from the correctness of the fuzzy matching
protocol Theorem 5.
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Consider a semi-honestly corrupted sender. Since the sender does not receive any output from
the ideal functionality, nor any messages from the sender, the simulation is trivial by simulating
the F(d,N)-OPPRF outputs.

Now consider a semi-honestly corrupted receiver. The simulator receives the intersection I :=
{wk | ∃j ∈ [M ], distp(wk,qj) ≤ δ} from the ideal functionality. The simulator can simulate the

F(d,N)-OPPRF outputs Fi(Hγ(wk,i∥Ck)) by sampling them uniformly random from {0, 1}λ′
(or additive

shares 0 when p = ∞), and send the corresponding programmed set size 2d ·M(2δ + 1). The
simulated outputs are indistinguishable from the real protocol OPPRF outputs since the sender
programs independent d-out-of-d sharings {rk,j,i}i∈[d] of a random value rk (or 0) for each cell Cj
intersecting ballδ(qk) and, since the receiver’s points are 2δd

1
p apart, they decode at most one point

wk′ for each cell Cj′ by Lemma 3, and can not have two points wk′ ,wk′′ in different cells Cj′ , Cj′′
both lying in ballδ(qk). Finally, for each wk ∈ I, the simulator adds Hλ′(

∑d
i=1 Fi(Hγ(wk,i∥Ck))) to

a random location in S, and samples the remaining entries uniformly random from {0, 1}λ′
. ⊓⊔

8.3 Optimization from Prefix Trie Techniques

In this section, we will explore how the results of Section 7.1 on combining the prefix trie techniques
from Section 5 with our fuzzy matching protocol transfer to the fuzzy PSI protocols presented in
the previous sections.

Infinity Distance. Combining the protocols in Figures 17, for p = ∞, with the prefix trie
technique discussed in Section 7.1 requires using a weak labeled PSI (as in Section 4) 9. The
sender generates the lists of points to be programmed in the OPPRF in the same way, except
replacing the interval (qk,i+ j)j∈[−δ,δ] by the list of prefixes (q̃k,i,j)j∈[ℓ] ← PrefixTrie(qk,i−δ, qk,i+δ)
for each k ∈ [M ], i ∈ [d], and pads each list to size ℓmax with random strings. Additionally, the
sender replaces rk ← 0λ

′∥vk for each k ∈ [M ] in Figure 17, where vk ←$ {0, 1}σ and σ = O(λ).
Similarly, for each receiver’s point to be evaluated under the OPPRF, the role of wk,i is replaced
by (w̃k,i,j)j∈[ℓ′] ← PrefixPath(wk,i, δ), increasing the number of points by a factor ℓ′ = O(log δ).

Furthermore, Step 5 of the protocol again changes as the receiver now additionally needs to
iterate over j ∈ [ℓ′]d to find whether these OPPRF evaluations sum to 0λ

′∥v for some v ∈ {0, 1}σ,
where we can again use the “meet-in-the-middle” trick sketched in Section 7.1 to find such v.

In the end, instead of following Step 6 and 7, both parties run a weak labeled PSI protocol
between S′ := {(vk,qk) | k ∈ [M ]} and U := {vk | qk is close to some w} such that the receiver
learns (vk,qk) for each qk which is close to receiver’s points. Notably, the adapted versions of all
these protocols realize the functionality FFuzzyPSI with standard PSI leakage. The Figure 19 can be
adapted similarly with standad PSI leakage. The complexities of the resulting protocols can be
found in Table 3.

The protocol in Figure 18 is adapted similarly but with the roles of sender and receiver reversed
and the final comparison is made by the ideal PSI functionality FPSI. Because of this, the adapted
protocol realizes FFuzzyPSI with PSI-SP leakage. Sender privacy can similarly be achieved for the
other adapted protocols by reversing the parties’ roles and letting the final comparison step be
done by a standard PSI functionality. Note that the protocol in Figure 17 adapted in this way
becomes identical to the adapted version of the protocol in Figure 18. Moreover, to preserve sender
privacy, we require the sender to progam uniformly random values instead of additive shares of 0,

9 Note that Figure 20 is also compatible with the prefix trie techniques but the computation cost scales to

(log δ)
d
2 , which does not make too much sense in high-dimensional spaces.

32



Table 3. Complexities for fuzzy standard PSI protocols for infinity distance using prefix trie encoding.

Protocol Communication Sender comp. Receiver comp.

Fig. 17 O((M + 2dN)dλ log δ) O((M + 2dN)d log δ) O(2dN(d log δ + (log δ)
d
2 ))

Fig. 19 O((2dM +N)dλ log δ) O((2dM +N)d log δ) O(N(d log δ + (log δ)
d
2 ))

Table 4. Complexities for fuzzy PSI with sender privacy for infinity distance using prefix trie encoding.

Protocol Communication Sender comp. Receiver comp.

Fig. 18 O((2dM +N)dλ log δ + 2dMλ(log δ)d) O(2dM(d log δ + (log δ)d) +N) O((2dM +N)d log δ)

Fig. 19 O((M + 2dN)dλ log δ +Mλ(log δ)d) O(M(d log δ + (log δ)d) +N) O((M + 2dN)d log δ)

Table 5. Complexities for fuzzy standard PSI protocols for Minkowski distance using prefix trie encoding.

Protocol Communication Sender comp. Receiver comp.

Fig. 17 O((δM + 2dN)dλ+ (M + 2dN)λp log δ) O((δM + 2dN)d+ (M + 2dN)p log δ) O(2dN(d+ p log δ))

Fig. 19 O((δ2dM +N)dλ+ (M +N)λp log δ) O((δ2dM +N)d+ (M +N)p log δ) O(N(d+ p log δ))

Fig. 20 O((δM +N)dλ+ (M +N)λp log δ) O((δM +N)d+ (M +N)p log δ) O(N(d+ p log δ))

which renders our “meet-in-the-middle” trick mentioned in Section 7.1 no longer available. The
complexities of the resulting protocols can be found in Table 4.

Minkowski Distance. In the p ̸=∞ setting, as discussed in Section 7.1, we can use the prefix
trie technique to reduce the δp factor in the communication to p log δ. We describe the adaptations
for the protocol in Figure 17, but the protocols in Figures 19 and 20 can be adapted similarly.
In all GetList calls, the sender replaces sk ← 1, and forms the set S as S ← S ∪ {r̃k,1, . . . , r̃k,ℓ}
where (r̃k,1, . . . , r̃k,ℓ)← PrefixTrie(rk, rk + δp) for each k ∈ [M ], and pads S with random values to

have size ℓmax ·M . The receiver proceeds as usual, but instead puts uk,j :=
∑d

i=1 Fi(Hγ(wk,i∥Ck,j))
and computes (ũk,j,1, . . . , ũk,j,ℓ′) ← PrefixPath(uk,j , δ

p/2) for each k ∈ [N ], j ∈ [2d]. Then the
receiver forms the set U := {ũk,j,i | k ∈ [N ], j ∈ [2d], i ∈ [ℓ′]} and pads it with random values
to have size ℓ′ · 2d ·N . The parties run a weak labeled PSI protocol (as in Appendix 4) between
S′ := {(r̃k,i,qk) | k ∈ [M ], i ∈ [ℓmax]} and U such that the receiver learns (ũk,j,i∗ ,qk′) for each
k ∈ [N ] for which there exists j ∈ [2d] such that uk,j ∈ [rk′ , rk′ +δp] for some k′ ∈ [M ], and for which
there thus exists a matching prefix ũk,j,i∗ , i∗ ∈ [ℓ′]. Since the receiver learns the matching sender’s
points qk′ , all adapted protocols realize FFuzzyPSI with standard PSI leakage. The complexities of
these adapted protocols can be found in Table 5. Depending on the size of M and N , the parties
might also choose to reverse the roles of the parties when executing the final PSI protocol to achieve
a different trade-off in computation complexity.

9 Fuzzy PSI for High Dimensions

If the dimension d is large, the factor 2d in the protocols from the previous sections becomes
prohibitive. Therefore, we explore under which assumptions our novel fuzzy matching approach
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Πp,gd
FuzzyPSI

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. For each k ∈ [M ], Sender samples rk, sk ←$ {0, 1}λ
′
, and sets rk = 0 when p =∞.

2. For each i ∈ [d], Sender updates listi ← listi ∪ listk,i where (listk,1, . . . , listk,d)← GetListp(rk, sk,qk, 0)
for each k ∈ [M ].

3. Receiver sends (Receiver,Evaluate, (W̃1, . . . ,W̃d)) and Sender sends
(Sender,Evaluate, (list1, . . . , listd)) to F(d,N)-OPPRF, where W̃i := (Hγ(wk,i))k∈[N ] for each
i ∈ [d].

4. Receiver gets (Fi(Hγ(wk,i)))i∈[d],k∈[N ] and Sender gets (OFi)i∈[d] from F(d,N)-OPPRF.
5. If p ̸=∞, Sender puts S := {Hλ′(rk + sk · j) | k ∈ [M ], j ∈ [δp]}, shuffles S and sends it to Receiver.
6. If p =∞, Receiver puts S := {Hλ′(0)}.
7. Receiver computes uk := Hλ′

(∑d
i=1 Fi(Hγ(wk,i))

)
for all k ∈ [N ].

8. Receiver sets I := ∅, and, for each k ∈ [N ], if uk ∈ S, updates I ← I ∪ {(wk)}.

Fig. 20. Fuzzy PSI-SP protocol for high-dimension Minkowski distance when both the sender’s and receiver’s
points are globally disjoint (GD)

can be leveraged to provide a more efficient fuzzy PSI protocol in the high-dimensional setting.
Unfortunately, since the sender’s message in our fuzzy matching protocol, that is, the OKVS
encoding in the underlying OPPRF protocol, can not be re-used to match against multiple receiver’s
points, we have to make rather strong assumptions on the distribution of both the sender’s as
well as the receiver’s points. We recall the definition of globally (axis) disjoint balls from [23] in
Definition 2. Assuming that both the sender’s and receiver’s balls are globally disjoint, we are able
to construct a fuzzy PSI-SP protocol whose complexity depends only linearly on the dimension
d. We have to admit that this assumption is rather strong and not quite realistic, but it serves
to illustrate the limits of our new fuzzy matching technique. The protocol is given in Figure 20,
achieves the complexity as described in Lemma 11 and its security is proven in Theorem 9

Definition 2 (Globally Disjoint). A set of d-dimensional balls of radius δ with centers Q ∈ Zd×N

is globally (axis) disjoint if, for each dimension i ∈ [d], the projections [qk,i− δ, qk,i + δ] are disjoint
for all k ∈ [N ].

Lemma 11. The protocol Πp,gd
FuzzyPSI has computation complexity O(δdM + dN) for the sender if

p =∞ and O(δdM + δpM + dN) if p ̸=∞, computation complexity O(dN) for the receiver, and
communication complexity O(δdMλ+ dNλ) if p =∞, O(δdMλ+ δpMλ+ dNλ) if p ̸=∞.

Theorem 9. The protocol Πp,gd
FuzzyPSI realizes the functionality FFuzzyPSI for Lp, p ∈ [1,∞], with

PSI-SP leakage against semi-honest adversaries in the F(d,N)-OPPRF-hybrid model if the sender’s
and receiver’s balls are globally disjoint as in Definition 2. Moreover, Hγ : {0, 1}∗ → {0, 1}γ is a
universal hash function with γ ≥ λ+ log (δNM) and:

– If p =∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a universal hash function, λ′ ≥ λ+ logN + logM ;

– If p ̸=∞, Hλ′ : {0, 1}∗ → {0, 1}λ′
is a random oracle, λ′ ≥ λ+ logN + log (δpM).

34



Proof. For correctness, first note that since the sender’s balls are globally disjoint, there are
no collisions in the keys of each listi, i ∈ [d]. Moreover, since the receiver’s points are also globally
disjoint, there can not be two points wk, wk′ whose projections wk,i, wk′,i for some dimension
i ∈ [d] lie in the same interval [qi−δ, qi+δ]. Hence the OPPRF is programmed on a disjoint union of
fuzzy matching instances and the receiver obtains OPPRF evaluations at disjoint instances. So the
correctness of the protocol follows from the correctness of the fuzzy matching protocol Theorem 5.

The simulation proceeds similarly to the proof of Theorem 8, except that the independent
randomness of the receiver’s OPPRF evaluations on different wk,i, wk′,i now follows from the
assumption that the receiver’s points are globally disjoint. ⊓⊔

10 Fuzzy PSI with Extended Functionalities

So far we have focussed on fuzzy PSI protocols achieving standard PSI or standard PSI with sender
privacy. However, one might want to achieve a different variant of fuzzy PSI depending on one’s
use case. For example, labeled PSI or PSI with cardinality (PSI-CA) as defined in Figure 2, or
Circuit-PSI as defined in Figure 21.

Labeled PSI. Labeled PSI is relatively easy to achieve for all our protocols that realize PSI with
sender privacy (PSI-SP). Note that labeled PSI implies standard PSI, by letting the label be a
description of the sender’s point, but not necessarily the other way around, since the parties might
want to exchange the label without revealing the sender’s point. For the protocols in Figures 19
and 20 labeled PSI, for labels of length σ, can be achieved by replacing the items in the sender’s
set S by Hλ′+σ(rk) ⊕ (0λ

′∥labelk) if p = ∞, or Hλ′+σ(rk + sk · j) ⊕ (0λ
′∥labelk) for all j ∈ [δ]p if

p ̸=∞. The receiver then checks for each k ∈ [N ] if there exists s ∈ S such that uk ⊕ s = 0λ
′∥z for

some z ∈ {0, 1}σ, and adds (wk, z) to their output if this is the case. To not increase the receiver’s
complexity in doing this final step, the set S can be instantiated as follows. The sender uses a
data structure with constant lookup time and linear insertion time, such as a Cuckoo hash table,
where the first λ′ bits of s ∈ S are used to compute the bin index, and all λ′ + σ bits of s are
subsequently stored in this bin. The receiver then similarly uses the first λ′ bits of uk to compute
the potential bin indice, and subsequently checks for all items s in these bins if uk ⊕ s = 0λ

′∥z for
some z ∈ {0, 1}σ. In this way, the labeled version of the protocols in Figures 19 and 20 have the
same asymptotic complexity as the original versions.

For the protocol in Figure 18, labeled PSI can be achieved by replacing the ideal functionality
FPSI by an ideal “weak” labeled PSI functionality FWLPSI. With “weak”, we mean a labeled
PSI functionality that outputs the point in the intersection in addition to the label. This weaker
functionality is sufficient to obtain a labeled fuzzy PSI protocol since the value (Hλ′(rk), labelk′) in
the output only reveals that for the receiver’s point wk, there exists some close sender point qk′

with corresponding labelk′ . We formalize the notion of weak labeled PSI and give a simple protocol
with linear communication and computation complexity from a (1, n)-OPRF in Appendix 4.

PSI with Cardinality. We can realize fuzzy PSI with cardinality (defined in Figure 2) for all the
protocols in Figures 17, 19 and 20 by letting the parties send the sets S and U := {uk,j | k ∈ [N ], j ∈
[2d]} (resp. U := {uk | k ∈ [N ]}) to an ideal PSI cardinality functionality FPSI-CA (as in Figure 3).
Similarly, the protocol in Figure 18 can be adapted by replacing the ideal functionality FPSI by
FPSI-CA. Compared to the fuzzy PSI protocols from [1], which naturally realize fuzzy PSI-CA, it
seems like our protocols will incur a relatively large overhead to realize this functionality. However,
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FFuzzyCPSI

Parameters : dimension d, radius δ, cardinality of sets N,M , a distance function dist(·, ·), associated data
length σ, and a concise description for receiver’s and sender’s points DR,DS , respectively. Reorder : Zd×N →
(π : [N ]→ [m]) which on input W outputs an injective function π.

Functionality :

– Receiver inputs W ∈ Zd×N according to DR and associated data W̃ ∈ {0, 1}σ×N .
– Sender inputs Q ∈ Zd×M according to DS and associated data Q̃ ∈ {0, 1}σ×M .
– For each k ∈ [m], sample ak, bk ←$ {0, 1}1+2σ such that:

ak ⊕ bk = 1∥w̃i∥q̃j if ∃i ∈ [N ] s.t. i′ = π(i) ∧ dist(wi,qj) ≤ δ,
ak ⊕ bk = 01+2σ otherwise.

– Return π, (ak)k∈[m] to Receiver and (bk)k∈[m] to Sender.

Fig. 21. Ideal Functionality of Fuzzy Circuit-PSI

since to the best of our knowledge, all PSI-CA protocols rely on public-key techniques such as
additively homomorphic encryption (except from resorting to generic solutions) [18,16,28,34,42], it
seems inherent that we will require more effort to achieve PSI-CA for our protocols. Additionally,
by composing with a PSI-CA protocol at the end, we only need public-key operations on sets of
relatively small size. Hence by using a PSI-CA protocol with linear communication and computation
complexity, we expect our protocols to still outperform those of [1].

Circuit-PSI. We present a slightly different functionality FFuzzyCPSI for fuzzy Circuit-PSI, com-
pared to [1], in Figure 21, where we allow the indices of the output shares to be reordered according
to an injective function π : [N ] → [m] which is known to the receiver. This is in line with the
standard Circuit-PSI functionality from [38].

To achieve fuzzy Circuit-PSI, we can similarly leverage an ideal Circuit-PSI functionality FCPSI

(as in Figure 5). We will describe how the protocols in Figures 19 and 20 can be adapted.

– Receiver inputs U := {(uk, w̃k) | k ∈ [N ]} to FCPSI.
– If p =∞, Sender inputs S := {(sk, q̃k) | k ∈ [M ]} to FCPSI

– If p ̸=∞, Sender inputs S := {(sk,j , q̃k) | k ∈ [M ], j ∈ [δp])} to FCPSI.
– Receiver gets π : [N ]→ [m] and (ai)i∈[m] from FCPSI.
– Sender gets (bi)i∈[m] from FCPSI.

To realize circuit-PSI for the protocol in Figure 17 can be done similarly, but here the shares
(ai)i∈[m], (bi)i∈[m] are indexed by π : [2d] × [N ] → [m]. So, for each k ∈ [N ], the parties need to

sum over the shares aπ(j,k) and bπ(j,k) for j ∈ [2d], without the sender learning the indices π(j, k).

11 Fuzzy PSI for Arbitrary Distribution

In this section, we consider the most generalized setting (or, the weakest assumption): we do not
assume that points are 2δ- or 4δ-apart from each other, instead, they can be distributed arbitrarily
in the space. In other words, if we consider each point as the center of a ball, then these balls can
be overlapped arbitrarily. Note that this is more general than the setting captured in [20], which
only allows limited overlapping to ensure a successful encoding.
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11.1 Infinity Distance

The key observation is that we can utilize the prefix trie idea from [12] to represent an integer
interval succinctly. Then a d-dimensional hypercube can be represented as the direct product of d
intervals. Though the previous work [20] uses a similar idea, they represent each interval through a
GGM-tree to build function secret sharing (FSS), which incurs an O(ud) overhead, where 2u is the

universe. Our protocol is much simpler, not relying on FSS, and incurs only an O((log δ)
d
) overhead.

We present the protocol in Figure 22 where the invoked algorithms {PrefixTrie,PrefixPath} are
introduced in Theorem 2. Notably, we improve the computational time of PrefixTrie from O(δ)
in [12] to O(log δ). Our protocol makes use of an ideal weak labeled PSI functionality FWLPSI, as
defined in Appendix 4.

Π∞,PrefixTrie
FuzzyPSI

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. Receiver and Sender prepare an empty set A and B, respectively.
2. For each k ∈ [M ], j ∈ [ℓ]d, Sender updates B = B ∪ {(bjk,qk)}, where

bjk ∈ {0, 1}
λ′
← Hλ′

(
q̃j1k,1, . . . , q̃

jd
k,d

)
,

and
{q̃1k,i, . . . , q̃ℓk,i} ← PrefixTrie(qk,i − δ, qk,i + δ).

Padding set B with random strings to size M · ℓdmax.
3. For each k ∈ [N ] and j ∈ [ℓ′]d, Receiver updates A = A ∪ {aj

k}, where

aj
k ∈ {0, 1}

λ′
← Hλ′

(
w̃j1

k,1, . . . , w̃
jd
k,d

)
,

and
{w̃1

k,i, . . . , w̃
ℓ′
k,i} ← PrefixPath(wk,i, δ).

Padding set A with random strings to size N · (ℓ′)d.
4. Receiver sends (Receiver,Evaluate, A) and Sender sends (Sender,Evaluate, B) to FWLPSI.

5. Receiver gets I from FWLPSI, and outputs
{
qk | (b,qk) ∈ I, b ∈ {0, 1}λ

′
}
.

Fig. 22. Fuzzy PSI for Infinity distance from prefix trie, points are arbitrarily distributed

Lemma 12. The protocol Π∞,PrefixTrie
FuzzyPSI presented in Figure 22 has communication and computational

complexity O
(
ℓdmax ·M +N · (ℓ′)d

)
, where ℓ′ = ⌊log(2δ + 1)⌋, and ℓmax = ⌊log(2δ + 1)⌋ when δ is a

power of 2, and ℓmax = 2⌊log(2δ + 1)⌋ otherwise. We assume there is a protocol realizing FWLPSI

with linear communication and computational complexities, such as, ΠWLPSI from Figure 7.

Theorem 10. The protocol Π∞,PrefixTrie
FuzzyPSI presented in Figure 22 realizes the functionality FFuzzyPSI

for L∞ distance, with standard PSI leakage defined in Figure 2, against semi-honest adversaries in
the FWLPSI-hybrid model if {PrefixTrie, PrefixPath} satisfy Theorem 2 and Hλ′ : {0, 1}∗ → {0, 1}λ′

is a universal hash functions with λ′ ≥ λ+ logM + logN + d log log δ.
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Proof. Consider that a semi-honest adversary A corrupts Receiver. Since there are no transcripts
between parties that only interact with the ideal functionality FPSI, the view of A includes the
intersection I from FWLPSI and the final output. The simulator S performs the step 3 in Figure 22
to get the set A, and sends the input of Receiver W into FFuzzyPSI to learn the intersection
J := {qk | ∃ j ∈ [N ] : dist(wj ,qk) ≤ δ}. Then, S performs step 2 on J to get the set B′, and

simulates I ′ = {(bjk,qk) | (bjk,qk) ∈ B′, bjk ∈ A} as the output from FWLPSI. The simulation is
statistically indistinguishable from the adversary: Suppose there is a pair (c,qy) ∈ I but (c,qy) ̸∈ I ′,
then there must be some wx, for y ∈ [M ], x ∈ [N ], such that

Hλ′(w̃
j′1
x,1, . . . , w̃

j′d
x,d) = Hλ′(q̃j1y,1, . . . , q̃

jd
y,d) ∧ dist(wx,qy) > δ,

exists for some j ∈ [ℓ]d, j′ ∈ [ℓ′]d. However, according to Theorem 2, there is at least one i ∈ [d]

such that w̃
j′i
x,i ̸= q̃jiy,i for any (j′1, ji) ∈ [ℓ′]× [ℓ]. This implies above equation holds with negligible

probability when Hλ′ is a universal hash function. Suppose the other way around, that is, there is a
pair (c,qy) ̸∈ I but (c,qy) ∈ I ′, implying there must be some wx, for y ∈ [M ], x ∈ [N ], such that

Hλ′(w̃
j′1
x,1, . . . , w̃

j′d
x,d) ̸= Hλ′(q̃j1y,1, . . . , q̃

jd
y,d) ∧ dist(wx,qy) ≤ δ,

holds for every j ∈ [ℓ]d, j′ ∈ [ℓ′]d. This cannot happen due to Theorem 2 and the correctness of Hλ′ .

Regarding the case that A corrupts Sender, S sends the input of Sender Q into FFuzzyPSI,
which is sufficient since Sender has no output or transcripts.

Regarding the correctness, that is, when both parties are honest, the final output is consistent
with the output from FFuzzyPSI: as discussed in the case where Receiver is semi-honest, the output
I from FWLPSI contains the pair (ax,qy) if and only if wx is close to some point qy ∈ Q. ⊓⊔

11.2 Minkowski Distance

The above approach unfortunately does not work for Minkowski distance Lp, p <∞: the reason is
simple, a distance-preserving mapping (isometry) does not exist from Lp to L∞. One exception is
the normalized Euclidean distance (equivalently, the Cosine distance) in a two-dimensional space.
Not surprisingly, normalized 2-dim vectors are on a unit circle, and vectors within some distance
are exactly an arc. Switching the coordinate system from Cartesian to Polar, the arc on the unit
circle can be represented as an interval of radius δ. Then we can use the prefix trie to obtain a fuzzy
PSI protocol for normalized Euclidean distance on two-dimensional space with overhead O(log δ).
However, normalized Euclidean distance does not make much sense in a low-dimensional space.

However, we show that the prefix trie technique can still be leveraged to save approximately
a factor O( δ

log δ ) compared to the naive approach of expanding the input balls, resulting in a

protocol with communication and computation complexity O(N log δ + δd−1 ·M log δ). We present
the protocol in Figure 23. The intuition is we can map each d-dimensional ball to multiple (d− 1)-
dimensional spheres and there are at most 2δ + 1 such hyperspheres, thus the remaining dimension
can be handled by the prefix trie.

Lemma 13. The protocol Πp,PrefixTrie
FuzzyPSI presented in Figure 23 has communication and computational

complexity O
(
Nℓ′ + δd−1 ·Mℓmax

)
, where ℓ′ = ⌊log(2δ + 1)⌋ and ℓmax = O(log(2δ+1)). We assume

there is a protocol realizing FWLPSI with linear communication and computational complexities, such
as ΠWLPSI from Figure 7.
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Πp,PrefixTrie
FuzzyPSI

Parameters : Receiver with input W = (w1, . . . ,wN ) ∈ Zd×N and Sender with input Q =
(q1, . . . ,qM ) ∈ Zd×M . Dimension d and radius δ.

Protocol :

1. Receiver and Sender prepare an empty set A and B, respectively.
2. For each k ∈ [M ], j ∈ [ℓ]× [−δ,+δ]d−1, Sender updates B = B ∪ {(bjk,qk)}, where

bjk ∈ {0, 1}
λ′
← Hλ′

(
q̃j1k,1, qk,2 + j2, . . . , qk,d + jd

)
,

and

δ1 =

⌊(
δp −

d∑
i=2

|ji|p
) 1

p

⌋
, {q̃1k,1, . . . , q̃ℓk,1} ← PrefixTrie(qk,1 − δ1, qk,1 + δ1).

Padding set B with random strings to size M · δd−1 · ℓmax.
3. For each k ∈ [N ] and j ∈ [ℓ′], Receiver updates A = A ∪ {aj

k}, where

aj
k ∈ {0, 1}

λ′
← Hλ′

(
w̃j

k,1, wk,2, . . . , wk,d

)
,

and
{w̃1

k,1, . . . , w̃
ℓ′
k,1} ← PrefixPath(wk,1, δ.)

Padding set A with random strings to size N · ℓ′.
4. Receiver sends (Receiver,Evaluate, A) and Sender sends (Sender,Evaluate, B) to FWLPSI.

5. Receiver gets I from FWLPSI, and outputs
{
qk | (b,qk) ∈ I, b ∈ {0, 1}λ

′
}
.

Fig. 23. Fuzzy PSI for Minkowski distance from prefix trie, points are arbitrarily distributed

Theorem 11. The protocol Πp,PrefixTrie
FuzzyPSI presented in Figure 22 realizes the functionality FFuzzyPSI

for Lp distance, with standard PSI leakage defined in Figure 2, against semi-honest adversaries in

the FWLPSI-hybrid model if {PrefixTrie, PrefixPath} satisfy Theorem 2 and Hλ′ : {0, 1}∗ → {0, 1}λ′

is a universal hash functions with λ′ ≥ λ+ logM + logN + log log δ + (d− 1) log δ.

Proof. The proof follows the same framework as the proof of Theorem 10. Consider that a semi-
honest adversary A corrupts Receiver. Since there are no transcripts between parties that only
interact with the ideal functionality FPSI, the view of A includes the output I from FWLPSI and the
final output. The simulator S performs the step 3 in Figure 22 to get the set A, and sends the input
of Receiver W into FFuzzyPSI to learn the intersection J := {qk | ∃ j ∈ [N ], dist(wj ,qk) ≤ δ}.
Then, S performs step 2 on J to get the set B′, and simulates I ′ := {(bjk,qk) | (bjk,qk) ∈ B′, bjk ∈ A}
as the output from FWLPSI. The simulation is statistically indistinguishable from the adversary:
Suppose there is a pair (c,qy) ∈ I but (c,qy) ̸∈ I ′, then there must be some wx, for y ∈ [M ], x ∈ [N ],
such that

Hλ′(w̃j′

x,1, wx,2, . . . , wx,d) = Hλ′(q̃j1y,1, qy,2 + j2 . . . , qy,d + jd) ∧ dist(wx,qy) > δ,

exists for some j ∈ [ℓ]× [−δ,+δ]d−1, j′ ∈ [ℓ′]. However, dist(wx,qy) > δ implies that wx is outside
the p-ball centered at qy and there must be some i ∈ [d] such that either wx,i /∈ [qy,i− δ, qy,i + δ], or
i = 1 and wx,1 /∈ [qy,1 − δ1, qy,1 + δ1], where 2δ1 + 1 is the length of the interval of the projection of

p− 1-ball on this dimension. According to Theorem 2, wx,1 /∈ [qy,1− δ1, qy,1 + δ1] means w̃j′

x,1 ≠ q̃j1y,1
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for any (j′, j1) ∈ [ℓ′] × [ℓ]. Thus, the equation holds with negligible probability when Hλ′ is a
universal hash function.

Suppose the other way around, that is, there is a pair (c,qy) ̸∈ I but (c,qy) ∈ I ′, implying there
must be some wx, for y ∈ [M ], x ∈ [N ], such that

Hλ′(w̃j′

x,1, wx,2, . . . , wx,d) ̸= Hλ′(q̃j1y,1, qy,2 + j2 . . . , qy,d + jd) ∧ dist(wx,qy) ≤ δ,

holds for every j ∈ [ℓ]×[−δ,+δ]d−1, j′ ∈ [ℓ′]. Note that dist(wx,qy) ≤ δ implies wx,i ∈ [qy,i−δ, qy,i+δ]
for every i ∈ [d], and wx,1 ∈ [qy,1 − δ1, qy,1 + δ1]. According to Theorem 2 and the correctness of
Hλ′ , the hash evaluations must match for some j, j′ except with negl(λ) probability.

Regarding the case that A corrupts Sender and the case that both parties are honest (correct-
ness), it is the same as proof of Theorem 10. ⊓⊔
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