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Abstract. In the wake of Manulis and Nguyen’s Eurocrypt’24 paper,
new CCA security notions, vCCA and vCCAD, and associated construc-
tion blueprints have been proposed to leverage either CPA or CPAD

secure FHE beyond the CCA1 security barrier. These two notions are
the strongest CCA security notions so far achievable, respectively, by cor-
rect and approximate homomorphic schemes. However, the only known
construction strategies intimately require advanced SNARK machinery,
undermining their practicality. In this context, this paper is an attempt
to achieve these advanced CCA security notions in the restricted case
of linearly homomorphic encryption, without resorting to SNARKs. To
do so, we investigate the relationship between the Linear-Only Homo-
morphism (LOH) assumption, an assumption that has been used for
more than a decade at the core of several proof-of-knowledge construc-
tions, and these two recent security notions (vCCA and vCCAD). On
the bright side, when working under the correctness assumption, we es-
tablish that the LOH property is sufficient to achieve vCCA security in
both the private and public key settings. In the public key setting, we
further show that a surprisingly simple and previously known Paillier-
based construction also achieves this level of security, at only twice the
cost of the baseline scheme. We then turn our attention to LWE-based
schemes for which the Pandora box of decryption errors opens up. In the
private key setting, we are able to achieve CPAD and vCCAD security
but only in a fairly restrictive non-adaptive setting, in which vCCAD

collapses onto a weak relaxation of CCA1. Finally, we eventually achieve
adaptive vCCAD security provided that the number of ciphertexts given
to the adversary is suitably restricted. While bridging the gap towards
credible practicality requires further work, this is a first step towards ob-
taining linear homomorphic schemes achieving these recent CCA security
notions by means only of relatively lightweight machinery.

Keywords: Homomorphic encryption · Linear-only homomorphism · CCA se-
curity.
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1 Introduction

Since its inception more than ten years ago, Fully Homomorphic Encryption
(FHE) has been the subject of much research towards more efficiency and better
practicality. However, from a security perspective, FHE still raises several ques-
tions and challenges. In particular, all the FHE usable in practice, BFV [18,30],
BGV [19], CKKS [25] and TFHE [26], achieve only CPA security and are also
known trivially CCA1 insecure. Although it is well-known that malleability is
contradictory with CCA2 security, building efficient FHE constructions achiev-
ing some degree of CCA security (e.g. CCA1) remains a very important open
challenge. Recently, this topic is the subject of renewed attention at least from
a theoretical viewpoint [47,21].

On the one hand, a number of correct linearly homomorphic schemes are
known to achieve CCA1 security under standard or almost standard assump-
tions. This is the case, as recently established in [41], for a simple variant of the
Paillier scheme where λ plaintext bits are forced to be zeroes or the Cramer-
Shoup Lite scheme [28]. On the other hand, recent works investigating CCA1
or beyond-CCA1 security for FHE from a more theoretical perspective, do so
by starting either from a CPA/correct [47] or CPAD [21] secure scheme, and
augment it with the machinery necessary for proving some form of plaintext
awareness on fresh ciphertexts as well as correctness of evaluated ciphertexts
derivation. Unfortunately, these generic construction blueprints are not easily
amenable to efficient implementations in their full generality, essentially because
they require powerful SNARK machinery.

A natural question is then the following: is it possible to achieve these new
“beyond CCA1” security notions by resorting only to lightweight machinery? In
particular, without using SNARKs? In this paper, we provide a first round of
answers to this question in the case of linearly homomorphic encryption, using
the Linear-Only Homomorphism (LOH) assumption [11] as a yardstick. We first
establish a connection between the LOH assumption and the vCCA security
notion recently introduced by Manulis and Nugyen [47] (CCA1≺vCCA≺CCA2),
by showing that any CPA/correct linear HE satisfying this assumption also
achieves vCCA security in both the private and public key settings. In the public
key setting, we then show that a surprisingly simple (and previously known)
construction based on the Paillier encryption scheme [51] is vCCA secure under
the reasonable assumption that it has the LOH property. We then investigate
LWE-based schemes which are notoriously prone to decryption errors. For such
schemes, we have to craft a hierarchy of constructions in order to first achieve
CPAD security and, then, leverage on this to further achieve vCCAD security
(a strictly stronger generalization of vCCA security in the regime where the
correctness assumption for the underlying homomorphic scheme is relaxed [21])
in the private key setting. We, however, only formally achieve this in a fairly
restrictive non-adaptive setting (in the sense of [38]), in which vCCAD collapses
onto a weak relaxation of CCA1. Finally, we extend our line of LWE-based
schemes to eventually achieve adaptive vCCAD security under the conjectured
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(adaptive) CPAD security of our first construction and the restriction that the
number of ciphertexts given to the adversary is suitably restricted.

Although generalizing our techniques to the FHE setting remains largely
open, this work is a first step towards obtaining (linearly) homomorphic schemes
that achieve the strongest CCA security notions so far known to be achievable
by homomorphic schemes using relatively lightweight machinery.

1.1 Summary of contributions

The contributions of this paper are as follows:

– We first prove the general results that any (perfectly or statistically) correct
CPA-secure linearly homomorphic scheme satisfying the Linear-Only Homo-
morphism assumption achieves vCCA security (hence also achieves CCA1
security) in both the private and public key settings.

– In the public key setting, we show that the (well-known) “two-ciphertexts”
blueprint, which consists of sparsifying the ciphertext domain of a correct
CPA-secure linearly homomorphic scheme by following a Knowledge-of-Ex-
ponent (KEA) template, achieves vCCA security under the assumption that
it has the LOH property. We do so by explicitly considering the Paillier
cryptosystem as the base scheme, but the approach can be expected to apply
starting from any (statistically) correct CPA-secure linearly HE scheme.

– In the case of LWE-based linear HE, where we cannot operate under the
correctness assumption, we focus on the private key setting :
● Starting from the Regev scheme, we propose a multi-secret scheme with a

ciphertext-dependent variance estimation procedure, which is then used
to derive a safe-bound on the true ciphertext variance. This then allows
proper smudging to occur within the decryption function of the scheme.
We refer to this first baseline scheme as FS1 and prove its CPAD security
in the non-adaptive setting, where the adversary specifies all its requests
after seeing the public material of the scheme. In doing so, we positively
answer an open question from [39] regarding the existence of schemes
with dynamic error estimation achieving at least a weak form of CPAD

security. Furthermore, FS1 is provably immune to the attacks in [39] on
a “natural” class of schemes with dynamic error estimation.
● We then build on that latter scheme to leverage the (well-known) ap-

proach consisting of applying the Knowledge-of-Exponent template to
a multiple-secret variant of Regev (using independent key material for
each slot) and show that it also is (non-adaptive) CPAD secure. We refer
to this scheme as FS′1 due to its connection to the previous one. Although
we show that this scheme does not satisfy the LOH property (by exhibit-
ing a concrete attack), we show that it achieves (non-adaptive) vCCAD

security under the credible assumption that it has a much weaker form
of the LOH property. It should be emphasized that in the non-adaptive
private-key setting, vCCAD security collapses onto a very weak relax-
ation of CCA1 security, which we refer to as CCA0, in which the ad-
versary specifies all its decryption requests before seeing any ciphertext.
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However weak this relaxation is, we give concrete CCA0 attacks that are
indeed thwarted by our scheme.
● We then study the adaptive setting under the conjectured (adaptive)

CPAD security of FS′1 (a conjecture that is presently not disproved by
any concrete attacks, including those in [39]). In that setting, we have
to augment the latter scheme with a linearly homomorphic (keyed) hash
function to credibly achieve a weak variant of LOH in which the ad-
versary is allowed to see only a limited number of ciphertexts (with a
number n + K − O(1) of ciphertexts, where n is the LWE dimension
and K = O(λ) is the number of slots in a multi-secret LWE ciphertext).
This further gives a generic pattern whereby any CPAD secure scheme
with linear homomorphic operators (should such schemes exist?) can be
leveraged into a vCCAD secure scheme (still under the above restriction
on the number of ciphertexts). Because this contribution is thus more
speculative, we provide its full details only in an appendix.
● As a bonus conribution, we also provide a new CPAD attack path on

the vanilla Regev scheme, its RLWE variant and the other mainstream
FHE schemes which are based on them.

– As a last contribution, we discuss the practical limitations and concrete
parameterization of our LWE-based schemes, although further research is
needed to claim practicality. Still, in the correct regime, our results show
that a vCCA secure linear HE scheme can be obtained at only twice the cost
of a CPA secure one.

1.2 Paper organization

This paper is organized as follows. Section 2 covers the preliminaries. Then
Section 3 focuses on the results and constructions we obtain under the correctness
assumption of the underlying linear HE scheme, and Section 4 addresses our
LWE-based constructions. Lastly, Sect. 5 concludes the paper by considerations
towards practicality and perspectives.

2 Preliminaries

2.1 Basic notations

Given l, u ∈ Z2, we use Jl, uK to denote the set {l, l + 1, ..., u − 1, u}. Reduction
modulo q is denoted as [.]q. We use this notation explicitly only when it avoid
possible ambiguities.

Given two discrete random variables X and Y we write X
i
= Y when the

distribution of X and that of Y are such that d(fX , fY ) ≤ neg(λ) where

d(fX , fY ) =
1

2

+∞
∑

k=−∞
∣P (X = k) − P (Y = k)∣
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is the usual statistical distance. In this case, X and Y are said to be statistically
indistinguishable or, for short, indistinguishable from one another. For simplicity
sake, we write λ to denote both the computational security parameter and the
statistical security parameter.

2.2 Basic definitions

We define an encryption scheme E = (KeyGen,Enc,Dec) over key space K, plain-
text domain P and ciphertext domain C as a triplet of PPT algorithms:

– KeyGen: on input 1λ, outputs an encryption key ek and a decryption key sk.
– Enc: on input m ∈ P and ek, outputs an encryption c ∈ C of m.
– Dec: on input c ∈ C and sk, outputs a1 decryption m ∈ P ∪ {�} of c.

Let COIN denote the randomness space of E . We sometimes externalize the
randomness used in the encryption function by means of the notation Enc(m; r),
with m ∈ P and r ∈ COIN. In this latter case, the function Enc ∶ P × COIN Ð→ C
is deterministic. When ek is public, we say that E is a public-key encryption
scheme. When for all (ek, sk) ∈ K and all m ∈ P we have that

Pr
r∈COIN

(Dec(Enc(m; r)) ≠m) ≤ neg(λ), (1)

we say that E is statistically correct or simply correct. When the above probability
is zero, we talk of perfect correctness.

Given a function class FH , we define a homomorphic encryption (HE) scheme
EH as an encryption scheme augmented by a deterministic2 polynomial-time
algorithm Eval which, on input f ∈ FH and c1, ..., cL ∈ C

L, where L denotes
the arity of function f , outputs a new evaluated ciphertext. When EH satisfies
condition (1) and when Eval is such that for all (ek, sk) ∈ K, all f ∈ FH and all
m1, ...,mL ∈ P

L

Pr
r⃗∈COINL

(Dec(Eval(f,Enc(m1; r1), ...,Enc(mL; rL))) ≠ f(m1, ...,mL)) ≤ neg(λ),

(2)
we say that EH is a correct HE scheme. When this is not the case, we say that
EH is an approximate HE scheme. Consistently with [39], to avoid arbitrary
schemes with unreliable Eval to be marketed as approximate HE schemes, we
add an additional condition that, for some (small) ε ≥ 0, the following holds

Pr
r⃗∈COINL

(∣∣Dec(Eval(f,Enc(m1; r1), ...,Enc(mL; rL))) − f(m1, ...,mL)∣∣∞ ≤ ε) ≥ µ,

(3)
with3 µ ≥ 3

4
. Lastly, a scheme such that ε = 0 and 3

4
≤ µ < 1 − neg(λ) is said to

be somewhat correct.
1 Decryption may not be deterministic.
2 As is the case for the mainstream FHE schemes such as BFV, BGV, TFHE and even

CKKS.
3 In practice µ is typically chosen above 1−2−40. In some contexts, e.g. [1], µ even has

to be at least 1 − neg(λ).
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2.3 Security notions

CPAD (and CPAD
0 ) security. The CPAD game has been introduced in the

context of approximate FHE [38]. CPAD security is a slight extension of CPA
security (recalled in Sect. E.2) defined by the following Left-Or-Right multiple
challenge security game.

Given a homomorphic encryption scheme EH = (KeyGen,Enc,Dec,Eval), an
adversary A and value λ for the security parameter, the game is parameterized
by a bit γ

$
←Ð {0,1}, unknown to A, and an initially empty state S of message-

message-ciphertext triplets:

– Key generation: run (ek, sk)← KeyGen(1λ), and, when the scheme is public-
key, give ek to A.

– Encryption request: When A queries (plaintext,m), m ∈ P compute c =
Enc(m), give c to A and update S ∶= [S; (m,m, c)].

– Challenge request: when A queries (test messages,m0,m1), m0,m1 ∈ P
2

(m0 ≠m1) compute c = Enc(mγ), give c to A and do S ∶= [S; (m0,m1, c)].
– Evaluation request: when A queries (eval, f, l0, . . . , lL−1) (li ∈ J0, ∣S∣−1K,∀i),

compute
m′0 = f(S[l0].m0, . . . , S[lL−1].m0),

and
m′1 = f(S[l0].m1, . . . , S[lL−1].m1),

as well as
c′ = Eval(f,S[l0].c, . . . , S[lL−1].c),

give c′ to A and do
S ∶= [S; (m′0,m

′
1, c
′
)].

– Decryption request: when A queries (ciphertext, l) (l ∈ J0, ∣S∣ − 1K) pro-
ceed as follows. If S[l].m0 ≠ S[l].m1, return � to A. Otherwise return her
Dec(S[l].c).

– Guessing stage (after polynomially many interleaved encryption, evaluation
and decryption requests): when A outputs (guess, γ′), if γ′ = γ then A wins
the game. Otherwise, A loses the game.

Remark that the decryption oracle accepts only ciphertexts from the game
state which are necessarily well-formed, i.e. either produced by an encryption or
challenge request, or derived by the evaluation oracle via an evaluation request
i.e., derived by correctly applying homomorphic operators to ciphertexts from
the game state (hence well-formed). As such, the above game does not capture
any CCA aspects. Let us also emphasize that, in the above game, A controls the
homomorphic calculations performed as f is included in the evaluation request
parameters.

As defined in [38], CPAD security admits a strictly weaker non-adaptive
variant of interest to us in this paper. In this variant, the adversary specifies all
its requests straight after seeing the public material of the scheme (if any). We
will refer to this variant as CPAD

0 . Other variants have been defined and studied
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in [21] (see Sect. E.1), where it is in particular shown that the single challenge
variants of CPAD security are strictly weaker than the multiple-challenge notion.

For completion, the definitions for CPA and CCA1 security are recalled in
Sect. E.2. Note that we define all the security games in this paper relatively to
the above CPAD game.

vCCA, vCCAD (and CCA0) security. As introduced in [47], vCCA security
is a single challenge security notion. As such, the vCCA game has two decryption
oracles. With the second step oracle assuming the existence of a PPT witness
extractor extract ∶ C ×X Ð→ FH × C

∗, where X denotes a set of auxiliary data4.
Before the unique challenge encryption oracle request, the first step decryption
oracle is then simply defined as follows:

– Decryption request (1st step): whenA queries (ciphertext, c), return Dec(c).

Then, after the generation of the unique challenge ciphertext c∗:

– Decryption request (2nd step): when A queries (ciphertext, c) proceed
as follows. Let (f, c0, ..., cL−1) = extract(c, aux). Then, return � when c∗ ∈
{c0, ..., cL−1} and Dec(c) otherwise.

The vCCA game has no evaluation oracle as the adversary performs the homo-
morphic evaluations on its own in both the private and public key settings. In
essence, the vCCA game is exactly the single challenge CCA2 game, with the
second step decryption oracle being augmented in order to filter out all byprod-
ucts of the challenge ciphertext (rather than just the challenge ciphertext). In
[47], vCCA security is defined and studied under the correctness assumption of
the underlying FHE scheme, and then further studied in [21] when that assump-
tion is not satisfied. Then, [21] also defines the notion of vCCAD security, which,
in a nutshell, is a “CPAD-style” multiple challenge variant of vCCA in which the
decryption oracle also accepts byproducts of the challenge ciphertexts as long
as the associated left and right cleartext evaluations coincide. More precisely, in
the private key setting5, the vCCAD game decryption oracle is defined as:

– Decryption request: when A queries (ciphertext, c) proceed as follows. Let
(f, c0, ..., cL−1) = extract(c). If,

f(left(c0), ..., left(cL−1)) ≠ f(right(c0), ..., right(cL−1)), (4)

then return � to A. Otherwise, return Dec(c).
4 The spirit of the vCCA security notion is (at least) to model construction blueprints

which embed proof material in their ciphertexts and rely on a SNARK to enforce
correct homomorphic evaluations over some input ciphertexts, In this context, the
above extract thus corresponds to the extractor of that underlying SNARK which
allows to retrieve a witness from the proven statement as well as auxiliary data
forming the trace of the execution of the adversary, see [47,21] for more details.

5 In the public key setting, the definition of vCCAD security further has to assume the
existence of a plaintext extractor. We refer the reader to [21] (Sect. 3.3.1) regarding
this minor technical subtlety.
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Where the vCCAD challenger maintains an internal state S (similar to that of
a CPAD challenger) and where for any ciphertext c ∈ C we define6

left(c) = {S[i].m0 if ∃i ∶ S[i].c = c,
� otherwise, (5)

as well as,

right(c) = {S[i].m1 if ∃i ∶ S[i].c = c,
� otherwise, (6)

Finally, following [21], vCCA and vCCAD security are related as follows.
Under the correctness assumption, the two notions are equivalent. In the general
regime where approximate or somewhat correct FHE are allowed, we have that

vCCA ≺ vCCAD
SC ≺ vCCAD,

where vCCAD
SC is the single-challenge variant of vCCAD. Additionally, still in

that latter regime, vCCA security remains equivalent to its multiple-challenge
variant. In terms of which notion should be targeted, the bottom line is then
to target (single-challenge) vCCA security when working under the correctness
assumption (and it will be our focus in Sect. 3) and to target (multiple-challenge)
vCCAD security when working in the somewhat correct setting (in Sect. 4).

Lastly, like CPAD security, vCCAD security also admits a non-adaptive vari-
ant where the adversary specifies all its requests straight after seeing the public
material of the scheme. We will sometimes refer to this variant as vCCAD

0 . Al-
though this variant may not appear too restrictive in the public-key setting,
where the adversary can generate ciphertexts on its own and also perform ho-
momorphic evaluations (or any other treatments) over them before specifying
its set of requests, it is much more restrictive in the private key setting. Indeed,
in that case, the adversary has to specify all of its decryption requests before
seeing any ciphertext and therefore can ask for the decryption only of a priori
chosen ciphertexts. In the sequel, we refer to this rather weak non-adaptive CCA
security notion as CCA0. In particular, we have CCA0 ≺ CCA1. For complete-
ness (and sanity checking), we prove this separation in appendix Sect. E.3. With
respect to CPAD security, we have CPAD

0 ≺ CCA0 (see also Sect. E.3).

2.4 Smudging

Smudging is a technique that consist in “hiding” a small noise by flooding it in
a much larger noise such that the effect of the small noise becomes negligible.
Smudging was first introduced in [7] in the context of threshold PKE and later, in
the context of threshold FHE in [3,14] (essentially to make sure that a decryption
oracle over well-formed ciphertexts can be simulated without actually decrypting
6 With the convention that f(m0, ...,mL−1) = � when ∃i ∶mi = � so that if the left and

right evaluations both give �, condition (4) is not satisfied and Dec(c) is returned
to A.
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in the relevant security reductions) and has been used, since then in several
constructions proposals, e.g. [49]. Beyond threshold FHE, smudging has also
been suggested as a countermeasure to CPAD attacks against CKKS [40] (where
it is referred to as noise flooding) or the other “exact” FHE [23]. Smudging
comes into different flavors depending on whether the statistical distance or the
Rényi divergence is considered [27,16,48] or whether worst-case/non-worst-case
smudging should be performed [8,37].

In this work, for simplicity sake, we consider worst-case smudging based on
the statistical distance (as such we do not claim that this simple approach is
optimal and more advanced approaches, e.g. [52], may yield smaller smudging
noise bounds or variances, eventually leading to smaller LWE parameters). More
specifically, we rely only on simple “Smudging Lemmas” such as the following
from [3] (Lemma 1 in that paper), which we reproduce below.

Lemma 1 (Smudging Lemma [3]). Let B0 and B1 be two positive integers
and let e0 ∈ J−B0,B0K be a fixed integer. Let e1 be chosen uniformly at random
in J−B1,B1K. Then, if B1 ≥ 2

λB0 the statistical distance between the distribution
of e1 and that of e0 + e1, d(fe1 , fe1+e0), is bounded by neg(λ).

The above Lemma is useful as it shows that a centered uniform noise with
an appropriately large support can “smudge out” a constant value and, more
generally, any random variable following a distribution with a bounded support.
We can further extend it in order to “smudge out” a Gaussian noise, as we do
just below.

Lemma 2. Let ε be a centered Gaussian random variable with variance σ2
0.

Further let B0 = σ0

√
2(λ + 1) log 2, then P (ε /∈ [−B0,B0]) ≤ 2

−λ.

Proof. Recall that the Chernoff bound for the (centered) Gaussian distribution7

tells that P (∣ε∣ ≥ B) ≤ 2e
− B2

2σ2
0 . Then, consider B0 such that 2e

− B2
0

2σ2
0 = 2−λ i.e.

B0 = σ0

√
2(λ + 1) log 2. ⊓⊔

If we now choose

B1 = 2
λB0 = 2

λσ0

√
2(λ + 1) log 2 (7)

then Lemma 1 applies, directly leading the following Lemma.

Lemma 3. Let ε be a centered Gaussian random variable with variance σ2
0 and

let B1 ≥ 2
λσ0

√
2(λ + 1) log 2, then d(fυ, fυ+ε) ≤ 2

−λ, where υ is picked uniformly
in J−B1,B1K.

7 Remark that the Chernoff bound for the continuous Gaussian distribution also ap-
plies to the discrete Gaussian distribution for large enough LWE modulus q. Indeed,
for a Gaussian deviates X, P (∣X ∣ ≥ a) = P (∣⌈X⌋∣ ≥ ⌈a⌋) (ignoring the mod q as long
as q >> σ0

√
2λ, an assumption that will always be implicitly satisfied in this work).
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Alternatively, a small (centered) Gaussian noise can also be smudged out by a
Gaussian noise of much larger variance. This is implied by the following Lemma
which proof is given in appendix Sect. J.1 for completeness (other distributions
may further be used for smudging, e.g. Sec. J.2).

Lemma 4. Let ε and X be centered Gaussian random variables with respective
variance σ2

0 and σ2
1, with σ2

1 =
22λσ2

0(λ+1) log 2
π

, then d(fX , fX+ε) ≤ neg(λ).

Please note that, for simplicity sake, we stated the results in this section for
the continuous rather than the discrete Gaussian distribution. However, as this
paper focuses only on linearly homomorphic encryption, it will be clear that all
the noises occurring in the lattice-based schemes we consider are either (discrete)
Gaussian deviates or linear combinations of independent (discrete) Gaussian de-
viates. Under these circumstances, bounds derived for continuous Gaussian de-
viates are also valid for discrete ones, following Theorem 9 in [13] (Theorem 4.13
in [12]) stating that the distribution obtained by linearly combining independent
discrete Gaussian random variables is itself statistically indistinguishable from
a discrete Gaussian distribution.

2.5 The Linear-Only Homomorphism (LOH) assumption

Informally, for an encryption scheme EH = (KeyGen,Enc, ImVer,Dec,Eval), the
Linear-Only Homomorphism (LOH) property states (as explained in [11]) that
given polynomially-many ciphertexts (c0, ..., cm−1) under EH it is infeasible for an
adversary to create a new ciphertext c′, which is in the image of the encryption
function (as verified by ImVer) and cannot be expressed by (homomorphically)
evaluating an affine combination of the ciphertexts in the previous list. The LOH
property has been introduced in [11] to serve as the basis for several SNARK
constructions in that paper and other subsequent works [15,35,50].

Formally, following [11], we have the following definition.

Definition 5 (LOH property, reproduced from [11]). An encryption sche-
me EH = (KeyGen,Enc, ImVer,Dec,Eval) (with P = Zt

8) satisfies the Linear-only
Homomorphism property if for every PPT adversary A, there is a PPT extractor
extract such that for any auxilliary input aux ∈ {0,1}poly(λ) and any plaintext
generator M,

P

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃i ∈ J0, k − 1K s. t.
ImVer(c′i) = True
and
EH .Dec(c′i) ≠ a

′
i

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

(ek, sk) ∶= EH .KeyGen(1λ)
(a0, ..., am−1) ∶=M([ek])
(c0, ..., cm−1) ∶= (EH .Enc(a0), ...,EH .Enc(am−1))
(c′0, ..., c

′
k−1) ∶= A(c0, ..., cm−1, [ek]; aux)

Π ∶= extract(c0, ..., cm−1, [ek]; aux)
(a′0, ..., a

′
k−1)

T ∶=Π ⋅ (a0, ..., am−1)
T + b

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ neg(λ).

(8)

8 The definition still extends to the case where the plaintext domain is a ring [11].
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where Π ∈ Zk×m
t and b ∈ Zk

t , and with the convention that row i of Π is left empty
(i.e. (Πi, bi) = ∅) and a′i = � when c′i was not generated by homomorphically
evaluating an affine combination over the cj’s. The notation [ek] indicates that
the encryption key ek is optionally provided, depending on whether the setting is
private or public key.

In summary, whenever A builds c′i by doing “something equivalent to”,

c′i = EH .Add(EH .Eval(lincombπ, c0, ..., cm−1),EH .Eval(lincombπ′ , c′′0 , ..., c
′′
l−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pub. key case only

),

(9)
where c′′0 = EH .Enc(µ0;pk), ..., c′′l−1 = EH .Enc(µl−1;pk), then Πi = π and bi =

∑
l−1
j=0 π

′
jµj . Conversely, (Πi, bi) = ∅ when this is not the case.

In our security proofs, we will use the following more convenient one-ciphertext
notation for the above extractor,

(π,β) = extract(c, aux),

as a shortcut for Πi∶c′i=c and bi∶c′i=c (i.e. π, respectively β, is the row of Π, respec-
tively the component of β, associated to ciphertext c). Remark that affine rather
than linear combinations are considered in the above definition to account for
the fact that, in the public-key setting, the adversary can create (from scratch)
additional fresh well-formed ciphertexts on its own (a case that does not hap-
pen in the private key setting) and homomorphically add them to homomorphic
evaluations of linear combinations over the ci’s. When operating in the private
key setting, we will thus omit β and simply use the notation,

π = extract(c, aux).

On top of the above definition, [11] further proposes several heuristic ap-
proaches to build schemes satisfying the LOH property, starting from a correct
CPA secure linear homomorphic scheme. An example, which has been considered
in several works (e.g. [11,34]), is the “two-ciphertexts” blueprint which consists
in sparsifying the ciphertext domain of a correct linearly homomorphic scheme
(e.g. Paillier) by following a Knowledge-of-Exponent (KEA) template [29]. To
illustrate this approach with the Paillier scheme, one may consider that the en-
cryption of a message m consists of a pair of ciphertexts (Enc(m),Enc(α ⋅m))
under the same key material, for a secret random value α ∈ Zn (with n the RSA
modulus of the scheme), and with the ImVer algorithm checking this linear rela-
tion by decrypting both ciphertexts. It is then assumed that this scheme satisfies
Definition 5 as the underlying Paillier scheme only exhibits linear homomorphic
properties (to the best of the research community’s knowledge). We will further
explore the security properties of this construction in Sect. 3.2.

In the present paper (Sect. 4), we also consider LWE-based candidate schemes.
However, when considering lattice-based constructions following the above “two-
ciphertexts” blueprint, some additional precautions need to be taken. First, as
already noted in [11], it is well-known that LWE or RLWE schemes can be turned
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into Fully Homomorphic Schemes. So if one proceeds directly as above by en-
crypting a message m as a pair of independent ciphertexts (Enc(m),Enc(α ⋅m))
under the same key, an adversary may eventually compute two ciphertexts
Enc(f(m)) and Enc(α ⋅f(m)), for some nonlinear function f , from an encryption
of m and an encryption of 1 (giving the pair (Enc(1),Enc(α))). In practice, this
issue can be dealt with by having the two (or more, see bellow) ciphertexts be
under independent keys, so that one cannot (homomorphically) obtain a con-
sistent encryption of α ⋅ f(m) from an encryption of m (say under sk(0)) and
an encryption of α (say under sk(1)). Furthermore, all known FHE construc-
tions require issuance of evaluation keys such as relinearization or bootstrapping
keys. When no such keys are provided, these schemes are (to the best of the
community’s knowledge) stuck with linear-only homomorphic properties. The
second pitfall, is that such schemes tend to use a plaintext modulus t of small
size. Then, given an arbitrary first ciphertext in a “two-ciphertexts” pair, the
adversary can randomly sample the second ciphertext and then succeed with
probability 1

t
to forge a valid ciphertext pair and thus violate the LOH property.

This difficulty can easily be worked around either by choosing t = O(2λ) (but this
option would result in very large ciphertext modulus) or to follow a “more-than-
two-ciphertexts” blueprint using 1 + ⌈λ/ log2 t⌉ ciphertexts rather than just 2 in
order to ensure that an adversary “obliviously sampling” valid ciphertexts with-
out knowing the corresponding plaintext succeeds only with neg(λ) probability.
The last and not least pitfall is that LWE-based schemes are prone to decryption
errors. Although the occurrence of such errors does not necessarily contradict the
LOH assumption (for example if ImVer consistently return False when such an
error occurs), credibly assuming the LOH property for LWE-based schemes lead
to delicate issues to which a large part of this paper is devoted (Sect. 4). Note
that prior works (e.g. [15,35,50]) essentially workaround this issue by assuming
a weaker LOH property in which the adversary is restricted to evaluate linear
combinations of bounded L2 norm and choosing the LWE parameters such that
(statistical) correctness is achieved under that bound constraint9.

As a last remark, let us also emphasize that the LOH property requires EH ’s
decryption function to be deterministic, at least with overwhelming probability.

3 Results under the correctness assumption

In this section, we investigate the relationship between the LOH property and
the vCCA security notion for correct linearly homomorphic encryption schemes.
Because, for vCCA security, the single challenge notion is equivalent to the
multiple challenge one [21], we focus our proofs only on the former notion.

The results in this section work under the natural assumption that

E .Dec(c) = �⇔ E .ImVer(c) = False, (10)
9 These works essentially use such LWE-based schemes as building blocks in the con-

text of proof-of-knowledge constructions in which the L2 bound constraint ends up
satisfied “by construction”.
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and the assumption stating that for (ek, sk) ∈ K, all π ∈ PL, all m1, ...,mL ∈ P
L,

Pr
r⃗∈COINL

(ImVer(Eval(lincombπ,Enc(m1; r1), ...,Enc(mL; rL))) = False) ≤ neg(λ).

(11)
This latter assumption is natural under the correctness assumption (Eq. 2) and
is consistent with the expected functionalities of a linear homomorphic scheme
i.e. since Dec returns � when ImVer = False, a scheme not satisfying this property
is essentially not linearly homomorphic.

3.1 General black-box results

We first focus on the private key setting.

Proposition 6. Let EH = (KeyGen,Enc,Dec, ImVer,Eval) be a private key cor-
rect CPA secure linearly homomorphic scheme that satisfies the LOH property.
Then EH is vCCA secure.

Proof. We start by one step of game hoping.
First game hop. Let G0 be the vCCA game against EH and G1 be the same

game as G0 where we modify the challenger such that, when handling a decryp-
tion request on ciphertext ct, the new challenger invokes the LOH extractor to
verify that

extract(ct, aux) ≠ ∅,

rather than checking ImVer(ct) = True. Indeed, the two games cannot be dis-
tinguished since the case where (extract(c) = ∅) ∧ (ImVer(c) = True) contra-
dicts the LOH property in conjunction with property (10); and the case where
(extract(c) ≠ ∅)∧(ImVer(c) = False) contradicts property (11). Hence, extract(c) =
∅⇔ ImVer(c) = False.

Final reduction. To finalize the proof, we show that, from an adversary A
against G1 (or equivalently G0), we can build an adversary B against the CPA
security of EH which uses A as a subroutine. For the reduction to work, we
assume that A and B agree on a consistent numbering of the ciphertexts output
by the encryption oracle. The reduction then starts by initializing an empty state
S ∶= [] which will contain message-ciphertext pairs and then proceeds as follows.

– When receiving an encryption request over message m ∈ P from A, it first
transfers it as is to the CPA challenger to get ciphertext ct = EH .Enc(m; ek)
(for unknown ek since we are in the private key setting) which it sends back
to A after updating its internal state as S ∶= [S; (m, ct)].

– When receiving the single challenge request over messages m0 ≠ m1 ∈ P
2

from A, it transfers it as is to the CPA challenger to get ciphertext ct∗ =
EH .Enc(mγ ; ek) (for unknown ek and γ), which it sends back to A after
updating its internal state as S ∶= [S; (m0, ct∗)] (or, equivalently, S ∶=
[S; (m1, ct∗)]) and setting i∗ = ∣S∣ − 1 (i∗ is initially set to −1).
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– When A issues a decryption request over ciphertext ct ∈ C, then B runs the
LOH extractor to get π = extract(ct, aux). When π = ∅, it returns � to A.
Otherwise, B returns � whenever πi∗ ≠ 0 (with the convention that π−1 = 0)
or,

∑
i∶πi≠0

πiS[i].m, (12)

when this is not the case (i.e. when πi∗ = 0).

The claim follows from the facts that, when ImVer(ct) = True (or, equivalently,
when extract(ct, aux) ≠ ∅), the correctness of EH implies that (12) cannot be
distinguished from EH .Dec(ct; sk) and that the reduction duly reply � for all
decryption requests on ciphertexts which are byproducts of the challenge ci-
phertexts (i.e. for which c∗ ∈ {c0, ..., cL−1} in the notations of the vCCA game
2nd step decryption oracle definition, p. 7, and πi∗ ≠ 0), consistently with the
vCCA game decryption oracle specification. ⊓⊔

As vCCA security is the strongest (so far known) CCA security notion achiev-
able by FHE under the correctness assumption, this is a relatively strong impli-
cation. Remark also that we get CCA1 security as a corollary to Prop. 6 since
vCCA security implies CCA1 security [47].

Proving a general result in the public key setting is a little bit more subtle.

Proposition 7. Let EH = (KeyGen,Enc,Dec, ImVer,Eval) be a public key correct
CPA secure linearly homomorphic scheme that satisfies the LOH assumption.
Then EH is vCCA secure.

Proof. We first start by showing how to turn a LOH extractor into a plaintext
extractor in the public key setting.

Preliminary remarks. In the public key setting remark that there are two
types of ciphertexts that the adversary may not generate on its own: a (possibly
empty) set of ciphertexts pk0, ...,pkN which are part of the public key as well
as the unique challenge ciphertext ct∗. Assume that the vCCA challenger stores
them in a state S containing message-ciphertext pairs i.e. such that

S = [(m0,pk0), ..., (mN−1,pkN−1), (m
∗
0, ct

∗
)] (13)

where m∗0 is the first of the two messages that served for creating ct∗ (S might
equivalently contain (m∗1, ct

∗) in the last position, as it is expected to return
� for decryption requests over ciphertexts depending on ct∗). Further remark
that the LOH extractor works only on ciphertexts generated by the adversary
(aux is essentially the trace of execution of A) and not over those generated by
the challenger. Thus, following Def. 5 (p. 10), we have m = N + 1 and the set
(c0, ..., cm−1) (in that definition) is reduced to (pk0, ...,pkN−1, ct

∗).
Then, let us consider a ciphertext ct submitted as part of decryption request

such that extract(ct, aux) ≠ ∅. Let (π,β) = extract(ct, aux), we have the two
following properties:

– ct depends on ct∗ (i.e. c∗ ∈ {c0, ..., cL−1} in the notations of the vCCA game
2nd step decryption oracle definition, p. 7) if, and only if, πN ≠ 0.
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– If ct is independent of ct∗ (i.e. c∗ /∈ {c0, ..., cL−1} in the vCCA game 2nd step
decryption oracle as well as πN = 0) then, from the correctness of EH ,

EH .Dec(ct) =
N−1
∑
i=0

πiS[i].m + β. (14)

With these properties, we can now finalize the proof as follows.
First game hop. Identical to that of the proof of Prop. 6
Final reduction. To finalize the proof, we then show that, from an adversary

A against G0 (or equivalently G1), we can build an adversary B against the
CPA security of EH which uses A as a subroutine. For the reduction to work,
we assume that A and B agree on a consistent numbering of the ciphertexts
generated by the reduction, which it stores in an internal state S containing
message-ciphertext pairs following Eq. (13). Thus, after getting ek (which con-
tains pk0, ...,pkN−1) and transferring it to A, the reduction proceeds as follows10:

– When receiving the single challenge request over messages m∗0 ≠ m∗1 ∈ P
2

from A, it transfers it as is to the CPA challenger to get ciphertext ct∗ =
EH .Enc(m∗γ ; ek) (for unknown γ), which it sends back to A after updating
its internal state as S ∶= [S; (m∗0, ct

∗)] (or, equivalently, S ∶= [S; (m∗1, ct
∗)]).

Remark that following Eq. (13), ct∗ is stored in the N + 1-th position in S.
– When A issues a decryption request over ciphertext ct ∈ C, it first checks

that extract(ct, aux) ≠ ∅ and returns � when this is not the case. Let (π,β) =
extract(ct, aux), then B returns � whenever πN ≠ 0 (case of a challenge-
dependent ciphertext). Lastly, when this is not the case (πN = 0), B runs the
plaintext extractor given by Eq. (14), i.e. simply returns ∑N−1

i=0 πiS[i].m+β.
⊓⊔

3.2 A public-key vCCA secure construction based on Paillier

Let EP = (KeyGen,Enc,Dec,Add,Mulc) denote the Paillier encryption scheme
[51] (briefly recalled in Appendix F). We now consider the scheme E(2)P , built
from EP as follows11.

– E(2)P .KeyGen: run EP .KeyGen to get n, g and ω, then pick ξ uniformly at
random in Zn. Generate ciphertext ct△ = (EP .Enc(1),EP .Enc(ξ)). The public
key is set to pk = (n, ct△), while all the other parameters remain private
(including the generator g). As in the original scheme, the secret key is
sk = ω(n).

– E(2)P .Enc: given m ∈ Zn and pk = (n, ct△), pick r0, r1 uniformly in Zn2 . When
m = 0, return

ct = (c0, c1) = ([rn0 ]n2 , [rn1 ]n2). (15)

Otherwise, compute and return

ct = (c0, c1) = ([(ct△.c0)mrn0 ]n2 , [(ct△.c1)mrn1 ]n2). (16)
10 In the public-key setting, the reduction does not have to handle encryption requests.
11 Following Sect. 2.5, we emphasize that this scheme is not new and has already been

proposed and used in several works, e.g. [11,34]
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– E(2)P .ImVer: given ct ∈ Z2
n2 and sk, let µ0 denote EP .Dec(ct.c0; sk) (and re-

spectively so for µ1). Then return True if [ξµ0]n = µ1 and False otherwise.
– E(2)P .Dec: given ct ∈ Z2

n2 and sk, if E(2)P .ImVer(ct; sk) = True, then return
EP .Dec(ct.c0; sk). Otherwise, return �.

– E(2)P .Add and E(2)P .Mulc are straightforwardly derived from those of EP .

We highlight that:

– ct△ is a privately generated encryption of 1 under E(2)P .
– Since g and ξ are not public, only encryptions of 0 under E(2)P can be gener-

ated without using ct△ by picking r0, r1 uniformly in Zn2 and following Eq.
(15) above.

– E(2)P .Enc (i.e. Eq. 16) can equivalently be written as

ct = E(2)P .Add(E(2)P .Mulcm(ct△),E
(2)
P .Enc(0)). (17)

Proposition 8. E(2)P is CPA secure.

Proof. The proof is done via a simple reduction to the CPA security of EP .
The reduction picks ξ and, since the scheme is public-key, only has to generate
a proper challenge ciphertext from the one it obtains from its CPA challenger
against EP , which is denoted by c∗ = EP .Enc(mγ) (for unknwon bit γ). This is
simply done by picking r uniformly in Zn and returning, ct∗ = (c∗, [c∗ξrn]n2),
i.e. (c∗, [EP .Mulcξ(c∗)rn]n2), to the CPA adversary against E(2)P . ⊓⊔

Lemma 9. Let ct = (c0, c1) denote a well-formed ciphertext under E(2)P encrypt-
ing a linear combination ∑i αimi, then there exists r and r′ such that

c0 = (ct△.c0)∑i αimirn

and
c1 = (ct△.c1)∑i αimir′

n

Proof. Left to the reader. ⊓⊔

Putting E(2)P into perspective with Def. 5, remark that given a well-formed
ciphertext ct under E(2)P built by some adversary A, the above Lemma (and the
perfect correctness of EP ) implies that π0, with

(π,β) = extract(ct, aux) (18)

gives a plaintext extractor (i.e. π0 = E
(2)
P .Dec(ct)). Furthermore, since the only

ciphertexts that an adversary can generate from scratch are encryptions of 0,
β = 0 in Eq. (18).

We now prove that E(2)P achieves vCCA security.

Proposition 10. E(2)P is vCCA secure under the assumption that it has the LOH
property.
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Proof. This follows from Proposition 6. In the notations of the proof of that
Prop., we have N = 1 and pk0 = ct△. Lemma 9 (and Eq. 18) further gives a
plaintext extractor which is consistent with Eq. (14) in that proof. Also note
that E(2)P satisfies property (10). ⊓⊔

It is interesting that, under the assumption that it has the LOH property,
such a simple construction eventually achieves vCCA security. As a byproduct,
the previous proposition also implies that E(2)P achieves CCA1 security. Fur-
ther note that the recent theoretical barriers revealed by Schäge [55] against
the provable CCA1 security of vanilla ElGamal and Paillier12 (as well as alike
semi-homomorphic PKE schemes) do not apply here. Indeed, we establish CCA1
security for a “two-ciphertexts” variant of Paillier which is not covered by these
results (essentially as this construction lacks the required property that the va-
lidity of ciphertexts can be publicly verified). The same remark applies to the
modified Paillier scheme, where λ plaintext bits are forced to be zeroes, that
is shown CCA1 secure in [41]. Consistently with these remarks, vanilla Paillier
further does not have the LOH property as also argued in [11] ([10], p. 33).

4 LWE-based constructions

We now give up the comfort of working under the correctness assumption. In
this “jungle”, we have decided to straightaway focus on concrete candidate LWE-
based constructions. Still, a natural question is whether black-box results, such
as Prop. 6 and 7, can be obtained in the case of approximate schemes? I.e.
may any CPAD secure linearly homomorphic scheme with the LOH property be
vCCAD secure? We sketch such results in Sect. C. However, as we unveil in this
section, building approximate or somewhat correct (LWE-based) schemes cred-
ibly satisfying even weak variants of the LOH property is particularly delicate.
So it seems to us that this kind of black-box results have a limited relevance.

The Knowledge-of-Exponent pattern is also natural to apply to LWE-based
schemes: start from the multi-secret variant of Regev, put the message in the first
slot and multiples of that message in the subsequent ones, for a large-enough set
of secret multipliers. However, in the LWE setting, we have to deal with CPAD

security13. There are two ways to do so, on the one hand, we can put additional
restrictions on the adversary abilities, via the cryptosystem specification which a
CPAD adversary is bounded to follow, so as to achieve correctness [1]. However,
in the CCA adversary regime, compliance with these constraints (e.g. a bound
on the L2 norm of the linear combinations that the adversary can evaluate over
fresh ciphertexts) has to be enforced and this appears difficult to achieve without
advanced proof-of-knowledge techniques. On the other hand, if we wish to avoid
such additional constraints, we have to embed within the cryptosystem some
12 Despite of the fact that CCA1 security proofs do exist either under non-standard

assumptions [2] or in the idealized Generic as well as Algebraic Group Models [43,33].
13 At the very least, a simple adaptation of the attack path in [23] allows to retrieve

the L∞ norm of the noise vector in such a ciphertext.



18 M. Checri et al.

mechanism (usually some form of smudging) that eventually allows to handle
CPAD decryption requests in a reduction towards a CPA challenger. This is the
path we follow in this section, by designing a line of schemes consistently fol-
lowing the Knowledge-of-Exponent pattern and achieving some degree of CPAD

security by means of smudging. We then investigate how far this approach takes
us in terms of CCA security.

4.1 The basic Regev Scheme (FS0)

We start from the usual Regev scheme. We consider the symmetric variant, which
is parameterized by a security parameter λ, a dimension n, an integer q and a
(discrete Gaussian) probability distribution χσ0 on Zq with standard deviation
σ0. Plaintexts are elements of Zt and ciphertexts are elements of Zn

q ×Zq. Unless
otherwise stated, we work under the assumption that t divides q. The scheme
FS0(λ,n, q, t, σ0) is then defined as follows:

– FS0.KeyGen: pick a secret key sk ∈ Zn
q uniformly at random.

– FS0.Enc: given a plaintext m ∈ Zt, pick a ∈ Zn
q uniformly at random, pick e in

Zq according to χσ0 , and return (a, b) with b = ⟨a, sk⟩ +∆m + e and ∆ = q/t.
– FS0.Dec: given a ciphertext c = (a, b), return [⌈ 1

∆
(b − ⟨a, sk⟩)⌋]

t
.

This scheme is trivially linearly homomorphic, offering homomorphic addi-
tion, mult-by-const (mulα, α ∈ Zt) and add-by-const (addα) operators.

Regarding the security notions of interest to us in this paper, it is well-
known that FS0 is CPA secure under the LWE assumption [53]. However, FS0

is CPAD insecure [23,24] and also trivially CCA1 insecure. For example, the
ill-formed ciphertext (−∆1i,0) decrypts to [ski]t, where 1i is the i-th standard
basis vector, which is enough to recover the secret key with n decryption requests
when its components are in Zt. When, as above, sk is picked uniformly in Zq it is
also easy for a CCA1 adversary to retrieve sk by means of this kind of decryption
requests (we describe such an attack in Sect. G.1 for completeness).

4.2 Achieving (non-adaptive) CPAD security (FS1)

Preliminaries. The intuition behind our first construction is as follows: we
append a clean noise sample of size K to each ciphertext and we use it as
a (linearly-updatable) variance monitoring mechanism. To do so, we consider a
multi-secret variant of FS0 with K+1 slots, with the first slot carrying a message
and the K others being vanilla LWE samples carrying only noise. Each slot is
under key material independent of that of the others with the same a vector
used for all slots. Upon decryption, we then use the noises that we recover in
the K last slots to put a confidence interval with 1−2−λ probability on the noise
variance (we are able to do that with a Chernoff bound for the χ2 distribution)
and use this safe bound to generate an appropriate smudging noise at decryption.
We do so by means of a result from [36] which tells the following about the lower
tail of the χ2 distribution.
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Theorem 11 ([36], Theorem 2.). Let X follows χ2
K , then for 0 < c <K,

P (X <K − c) ≤ e−
c2

4K .

Lemma 12. Let K ≥ 4λ log 2+1, given a set E0, ...,EK−1 of iid centered gaussian
deviates with variance σ2, then ,

σ2
≤

Kσ̂2

K − 2
√
Kλ log 2

with overwhelming probability, where σ̂2 = 1
K ∑

K−1
i=0 E2

i .

Proof. Under the statement assumption, Kσ̂2

σ2 follows χ2
K . Theorem 11 then tells

us that

P (
Kσ̂2

σ2
<K − c) = P (σ2

>
Kσ̂2

K − c
) ≤ e−

c2

4K .

Thus, letting e−
c2

4K = 2−λ yields c = 2
√
Kλ log 2. It therefore follows (when c <K

so when 2
√
Kλ log 2 <K, i.e. K ≥ 4λ log 2 + 1) that

P (σ2
>

Kσ̂2

K − 2
√
Kλ log 2

) ≤ 2−λ.

⊓⊔

Following this Lemma, we can thus use

σ̄2
K =

Kσ̂2

K − 2
√
Kλ log 2

(19)

as a safe upper bound for σ2 given the sample E0, ...,EK−1 (for K ≥ 4λ log 2+1).

Scheme FS1. Let K ≥ 4λ log 2 + 1, the scheme FS1(λ,n, q, t, σ0,K) is then
defined as follows:

– FS1.KeyGen: for k ∈ J0,KK, uniformly pick sk(k) ∈ Zn
q .

– FS1.Enc: given a plaintext m ∈ Zt, uniformly pick a single a ∈ Zn
q as well as

vector E ∈ ZK+1
q with each component drawn independently from χσ0 . Then,

return (a,B) ∈ Zn
q ×ZK+1

q such that

B0 = ⟨a, sk
(0)
⟩ +∆m +E0.

and, for k ∈ J1,KK,
Bk = ⟨a, sk

(k)
⟩ +Ek.

Note that we will sometimes refer to B0 as the payload slot and to the Bk’s
(k ∈ J1,KK) as the noise slots.
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– FS1.Dec: given ciphertext c = (a,B) ∈ Zn
q ×ZK+1

q , first compute

σ̂2
=

1

K

K

∑
k=1
(Bk − ⟨a, sk

(k)
⟩)

2
.

Then (following Eq. 19 and Lemma 3), uniformly pick υ ∈ J−B,BK with B =

2λσ̄K

√
2(λ + 1) log 2. If ∣υ∣ ≥ ∆

2
, return �. Else, return FS0.Dec(a,B0; sk

(0)
).

It is well-known that such multi-secret variants of the Regev scheme are CPA
secure. The linearly homomorphic operators of FS1 (homomorphic addition and
mult-by-const) are trivially defined from those of FS0. We emphasize that we do
not provide FS1 with a direct add-by-const operator. Although such an operator
could be obtained by simply adding the said constant to B0.

CPAD
0 security of FS1. To prove the CPAD security of FS1, we proceed via

a reduction to the CPA security of FS0. In a nutshell, the reduction operates
the K noise slots, while the CPA challenger against FS0 operates the first slot
with a message payload. For processing decryption requests (over state indices in
CPAD), the reduction uses the noises it recovers from the noise slots to generate
a smudging noise of large-enough variance (with overwhelming probability) to
make the effect the noise in the first slot (which it does not know) negligible and,
hence, provide outputs that are indinstinguishable from those of a true CPAD

decryption oracle. However, the reduction is valid only in the non-adaptive set-
ting (i.e. CPAD

0 , as defined towards the end of Sect. 2.3) where the adversary
specifies all its queries in advance, straight after the key generation step [38]. As
we shall see in the proof of Proposition 15, this restriction is necessary to main-
tain the independence of the noises which are retrieved from the noise slots, an
assumption which we require for proper smudging (essentially in order to be able
to apply Lemma 12 to obtain a safe bound on the ciphertext noise variance).

Let us first consider the following Lemma which essentially states that FS1’s
decryption function guarantees correct decryption when it does not return �.

Lemma 13. Let (a, b) ∈ Zn
q × Zq be such that b = ⟨a, sk⟩ + ∆m + e where e

is a Gaussian deviate of variance σ2. Let υ be drawn uniformly in J−B,BK,
independently of e, with B ≥ 2λσ̄

√
2(λ + 1) log 2 and σ̄2 ≥ σ2. Then, if ∣υ∣ < ∆

2
,

with overwhelming probability,

⌈
1

∆
(b − ⟨a, sk⟩)⌋ =m.

Proof. In the conditions of the statement, Lemma 3 applies and e+υ
i
= υ. Hence,

when ∣υ∣ < ∆
2
, ∣e∣ << ∆

2
(with overwhelming probability). The claim follows. ⊓⊔

Then the following Lemma captures the independence of the noises (in both
the payload and noise slots) within an evaluated FS1 ciphertext, as long as the
coefficients of the linear combination are independent of the ciphertexts on which
it has been applied to produce the said ciphertext.
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Lemma 14. Let π ∈ ZL
t , let c(0), ..., c(L−1) be any set of L fresh well-formed FS1

ciphertexts. Further let

c = (a,B) = FS1.Eval(lincombπ, c(0), ..., c(L−1)),

then the Ek = Bk − ⟨a, sk
(k)
⟩’s (k ∈ J0,KK) are independent (and Gaussian).

Proof. The claim follows trivially from the facts that fresh well-formed cipher-
texts under FS1 have this property, that FS1 homomorphic operators proceed
component-wise as well as that π is a priori chosen, independently of the c(i)’s.

⊓⊔

Following this, we now establish the CPAD
0 security of FS1, i.e. its CPAD

security in the non-adaptive setting.

Proposition 15. Let K ≥ 4λ log 2+1, if there exists an adversary A against the
CPAD

0 security of FS1(λ,n, q, t, σ0,K), then there exists an adversary B against
the (LOR-)CPA14 security of FS0(λ,n, q, t, σ0).

Proof. Recall that the CPAD game allows multiple challenge requests. So B
starts by initializing an initially empty state S ∶= [] which will contain message-
message-ciphertext triplets and by uniformly picking sk(k) ∈ Zn

q , for k ∈ J1,KK
(i.e. sk(0) is in the CPA challenger against FS0 and the other keys are in the
reduction). Then, since we are in the non-adaptive setting, A sends all it requests
to the reduction which processes them as follows:

– When processing an encryption request for message m, B first transfers it
as is to the CPA challenger getting (a, b = ⟨a, sk(0)⟩ +∆m + e), for unknown
sk(0) and e. It then picks E ∈ ZK

q following χσ0 and constructs (a,B) such
that B0 = b and, for k ∈ J1,KK,

Bk = ⟨a, sk
(k)
⟩ +Ek−1.

After adding it to its internal state by doing S ∶= [S; (m,m, (a,B))], B
returns the ciphertext (a,B) to A.

– When processing a challenge request for messages m0 ≠ m1, B also first
transfers it as is to the CPA challenger getting (a, b = ⟨a, sk(0)⟩ + ∆mγ +

e), for unknown sk(0), challenge bit γ and noise e. It then proceeds as
for encryption requests above, however updating its internal state as S ∶=
[S; (m0,m1, (a,B))].

– When processing an evaluation request (wlog broken-down in unitary sum
and mulα homomorphic operations),

14 Where (LOR-)CPA is the mutiple challenge variant of (IND-)CPA, or (FTG-)CPA
in the terminology of [5,6] which show the equivalence between the two notions.
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● (eval,sum, i, j): B creates a new evaluated ciphertext

c = FS1.Eval(sum, S[i].c, S[j].c),

and returns c to A after updating its internal state as

S ∶= [S; (S[i].m0 + S[j].m0, S[i].m1 + S[j].m1, c)].

● (eval,mulα, i): B similarly creates a new evaluated ciphertext,

c = FS1.Eval(mulα, S[i].c),

and returns c to A after updating its internal state as

S ∶= [S; (αS[i].m0, αS[i].m1, c)].

– Lastly, for processing a decryption request with state index i, B returns � if
S[i].m0 ≠ S[i].m1. Otherwise, i.e. when S[i].m0 = S[i].m1, it first computes

σ̂2
=

1

K

K

∑
k=1
(Bk − ⟨a, sk

(k)
⟩)

2
. (20)

Then, it uniformly picks υ ∈ J−B,BK with B = 2λσ̄K

√
2(λ + 1) log 2. Finally,

it returns � if ∣υ∣ ≥ ∆
2
, and S[i].m0 (or, equivalently, S[i].m1) otherwise.

The key point which makes the reduction works is that B’s replies to A’s de-
cryption requests are indistinguishable from a true FS1 decryption oracle. Let e
be the (unknown to B) noise in the first payload slot of S[i].c and σ2 denotes
its variance. Since, we are in the non-adaptive setting, Lemma 14 applies (i.e.
the Bk − ⟨a, sk

(k)
⟩’s in Eq. 20 are iid). Therefore we can use Lemma 12 (and

Eq. 19) to claim that σ̄2
K ≥ σ

2 (with overwhelming probability). Then, since σ̄2
K

is independent from e, Lemma 13 applies. It thus follows that, in the reduc-
tion’s processing of decryption requests, FS0.Dec(S[i].c.a, S[i].c.B0) = S[i].m0

(or, equivalently, S[i].m1) whenever ∣υ∣ < ∆
2

(with overwhelming probability).
⊓⊔

Remark that, stricto sensu, the noises in the noise slots of an FS1 ciphertext
could even be given in cleartext form since, in the non-adaptive private key set-
ting under which the above proof operates, the adversary eventually specifies all
of her request before seeing any ciphertexts. However, in our next construction,
built on FS1, we will also use the noise slots to store additional private infor-
mation. Hence, it will not be desirable to keep the content of the noise slots in
cleartext.

Because it is using a ciphertext-dependent variance estimation procedure,
FS1 falls in a category of schemes, referred to as Dynamic Error Estimation-
based schemes, introduced and studied in Sect. 5 of [39] in the context of CKKS.
In a nutshell, that paper presents an approach (which the authors of that paper
attribute to Y. Polyakov) leveraging on a special message encoding which fixes
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many of the coordinates of CKKS message space to be 0 and to use these to
obtain, at decryption, an estimation of the noise variance for the ciphertext and
to use this estimation to set the variance of their noise flooding mechanism (which
essentially is equivalent to the noise smudging mechanism initially introduced
in [3] for threshold FHE). Then, still in the context of CKKS, the authors of
[39] present CPAD attacks on a “natural” class of such schemes and leave open
the following problem: “While our results on “dynamic” error estimation are
negative, we have not ruled out achieving some weaker security notion with
these techniques (for natural schemes).” In essence, the previous proposition is a
positive answer to this open problem, with the weaker security notion being non-
adaptive CPAD security as defined in [38]. Let us also emphasize that FS1 departs
slightly from the blueprint depicted in [39], in that we are using the dynamic
variance estimation to obtain a safe-bound on the true variance which leads to
a correct variance for the smudging noise (with overwhelming probability). Let
us also emphasize that the attacks in [39] do not apply to FS1 as they leverage
on the noise/message dependencies which naturally arise in CKKS (and other
schemes such as BGV and BFV) when performing homomorphic multiplications.
In contrast, the noises in an FS1 ciphertext are message-independent (and remain
so under the linear homomorphic operators).

Finally, we provide concrete parameters for FS1 in appendix Sect. D.

4.3 Achieving “non-adaptive” LOH (FS′1)

Let us emphasize that the schemes considered in this section are not new, to the
exception of the dynamic estimation based smudging technique that we use in
the decryption function of the FS′1 scheme below.

FS(K)
0

and FS′1. We now consider the usual multi-secret variant of FS0, where
K messages are encrypted by ciphertexts under K instances of FS0 with inde-
pendent key material but using the same a vector. Then FS(K)0 (λ,n, q, t, σ0) is
defined as follows:

– FS(K)0 .KeyGen: for k ∈ J0,K − 1K, uniformly pick sk(k) ∈ Zn
q .

– FS(K)0 .Enc: given plaintext M ∈ ZK
t , uniformly pick a single a ∈ Zn

q as well as
vector E ∈ ZK

q with each component drawn independently from χσ0 . Then,
return (a,B) ∈ Zn

q ×ZK
q such that for k ∈ J0,K − 1K

Bk = ⟨a, sk
(k)
⟩ +∆Mk +Ek.

– FS(K)0 .Dec: given ciphertext (a,B) ∈ Zn+K
q , let

µk = FS0.Dec(a,Bk; sk
(k)
),

for k ∈ J0,K − 1K. Then return (µ0, ..., µK−1).
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We now define a variant of FS(K+1)0 , FS′1, with built-in additional verifica-
tions following the Knowledge-of-Exponent pattern as well as smudging in the
decryption function.

Recall Lemma 12 and let

K ≥max{⌈
λ

log2 t
⌉ ,4λ log 2 + 1} . (21)

We then build FS′1 from FS(K+1)0 as follows:

– FS′1.KeyGen: run FS(K+1)0 .KeyGen and let ξ1, ..., ξK be secret multipliers uni-
formly picked in Z∗t .

– FS′1.Enc: given a plaintext m ∈ Zt, return

(a,B) = FS(K+1)0 .Enc(m, [ξ1m]t, ..., [ξKm]t).

– FS′1.ImVer: given ciphertext c = (a,B) ∈ Zn+K+1
q , let

(µ0, µ1, ..., µK) = FS(K+1)0 .Dec(c).

When15 a = 0⃗ or if

∃k ∈ J1,KK, [ξkµ0]t ≠ µk, (22)

then return False. Otherwise (i.e. when a ≠ 0⃗ and ∀k ∈ J1,KK, [ξkµ0]t = µk),
let

εk = Bk − ⟨a, sk
(k)
⟩ −∆µk,

and compute σ̂2 = 1
K ∑

K
i=1 ε

2
i (remark that σ̂2 is computed over the K last

slots in order to preserve independence between σ̂2 and ε0, when all the εk’s,
k ∈ J0,KK, are independent). Then, pick υ ∈ Zq following a centered Gaussian
distribution of variance (following Eq. 19 and Lemma 4)

σ2
smg =

22λσ̄2
K(λ + 1) log 2

π
. (23)

Finally, return False when ∣υ∣ ≥ ∆
2

and True otherwise.
– FS′1.Dec: given ciphertext c = (a,B) ∈ ZK+1

q , if FS′1.ImVer(c) = False, then
return �. Otherwise, let (µ0, µ1, ..., µK) = FS(K+1)0 .Dec(c) and return µ0.

We emphasize that FS′1 has no direct add-by-const operator, since the mul-
tipliers are private.

15 This is to eliminate a corner case in a later security proof.
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CPAD
0 security of FS′1. To prove the CPAD

0 security of FS′1 we now relate
it to the FS1 scheme that we have studied in the previous section. Indeed, in
FS′1 the K last slots serve the double purpose of enforcing ciphertext verification
as well as of estimating the noise variance for smudging the first (payload) slot.
Lemma 16 essentially shows that the two schemes are equivalent over well-formed
ciphertexts. This will then allow us to prove the CPAD

0 security of FS′1 based on
the CPAD

0 security of FS1 which we have previously established.
The following lemma implies that FS′1’s decryption function admits an alter-

nate version which “knows the noise”.

Lemma 16. Let ct = (a,B) ∈ Zn
q × ZK+1

q denote a well-formed FS′1 ciphertext,
i.e. such that for k ∈ J0,KK (ξ0 = 1),

Bk = ⟨a, sk
(k)
⟩ +∆ξkm + ek, (24)

and the ek’s are iid and Gaussian. Let us consider an alternative decryption func-
tion, ̂FS′1.Dec, which eventually knows the ek’s and always proceeds by smudging
without checking cond. (22), then FS′1.Dec is equivalent to ̂FS′1.Dec.

Proof. Let V [ek] = σ
2
ct.

Case 1 (correct FS(K+1)0 decryption). In this case, condition (22) is satis-
fied and, therefore, FS′1’s decryption function proceeds, following Eq. (23), with
smudging based on σ̄2

K ≥ σ2
ct (with overwhelming probability, from Lemma 12

and Eg. 19). Hence, FS′1’s decryption function proceeds as ̂FS′1.Dec.
Case 2 (incorrect FS(K+1)0 decryption #1). We now consider the case where

a decryption error occurs only in the first slot, i.e. FS0.Dec(a,B0; sk
(0)
) ≠m. On

the one hand, condition (22) is not satisfied and FS′1.Dec(c) = �. On the other
hand, ̂FS′1.Dec proceeds following Eq. (23), with smudging based on σ̄2

K ≥ σ2
ct

(with overwhelming probability, from Lemma 12 and Eq. 19). As a consequence,
it picks a smudging noise ν such that e0+υ

i
= υ i.e. such that ∣υ∣ >> ∣e0∣ ≥ ∆

2
(with

overwhelming probability). Hence, ̂FS′1.Dec also returns � (with overwhelming
probability).

Case 3 (incorrect FS(K+1)0 decryption #2). Lastly we consider the case where
a decryption error occurs in at least one of the K last slots (and possibly in the
first one also) i.e. ∃k ∈ J1,KK ∶ FS0.Dec(a,Bk; sk

(k)
) ≠ ξkm. On the one hand,

condition (22) is again not satisfied and FS′1.Dec(c) = �. However, ̂FS′1.Dec (which
eventually knows the ek’s) proceeds by smudging as in the previous cases. Since
an error occurs in at least one of the K last slots, we have ∣∣(e1 ... eK)∣∣∞ ≥

∆
2
,

hence σ̂2 ≥ ∆2

4K
, and (Eq. 19),

σ̄2
K =

Kσ̂2

K − 2
√
Kλ log 2

≥
∆2

4(K − 2
√
Kλ log 2)

.
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Thus, the Gaussian smudging in Lemma 4, leads to smudge with a Gaussian
noise having variance

σ2
smg =

(λ + 1)22λσ̄2
K log 2

π
≥
(λ + 1)22λ∆2 log 2

4π(K − 2
√
Kλ log 2)

. (25)

Consider the following trivial bound for the Gaussian: P (∣X ∣ ≤ a) ≤ 2a√
2πσ

. Then,
plugging (25) in that bound yields,

P (∣υ∣ ≤
∆

2
) ≤

∆
√
2π

¿
Á
ÁÀ4π(K − 2

√
Kλ log 2)

(λ + 1)22λ∆2 log 2
,

≤

√
K − 2

√
Kλ log 2

2λ−1
√
2(λ + 1) log 2

≤ neg(λ),

as long as K ≤ O(poly(λ)). Therefore, ̂FS′1.Dec also replies � with overwhelming
probability. ⊓⊔

Remark that Lemma 16 above tells us that FS′1 is equivalent to FS1 (with
the Gaussian smudging of Lemma 4 replacing the uniform smudging of Lemma
3), as ̂FS′1.Dec is exactly FS1.Dec. As the next proposition establishes, the (non-
adaptive) CPAD security of FS′1 then follows from that of FS1 (Prop. 15).

Proposition 17. Let K ≥ 4λ log 2 + 1, FS′1 is CPAD
0 -secure.

Proof. Let G0 denote the CPAD
0 game against FS′1 and G1 the CPAD

0 game
against FS1. The claim follows from the fact that the two games cannot be dis-
tinguished since, for both schemes, well-formed ciphertexts are indistinguishable
from uniform over Zn+K+1

q (from the LWE assumption) and from Lemma 16
which tells that over well-formed ciphertexts, FS′1.Dec’s behavior in G0 is indis-
tinguishable from that of FS1.Dec in G1. ⊓⊔

FS′1 and LOH. Several works since [11], e.g. [15,35,50], have consistently made
the assumption that schemes like FS′1 satisfy a weaker variant of the LOH prop-
erty with the constraint that the L2-norm of the linear combinations that the
adversary may apply is bounded16 by q

√
π

2tσ0

√
(λ+1) log 2

, a condition under which

the scheme achieves (statistical) correctness.
Without such kind of restrictions, FS′1 does not satisfy the LOH property as

the next proposition establishes.
16 This follows from the Banaszczyk bound ([42, Lemma 2.2] and [4]) which states that

given a vector x of iid discrete Gaussian deviates with variance σ2
0 , any T ∈ R+ and

any a ∈ RL we have that P (∣⟨x, a⟩∣ ≥ Tσ0∣∣a∣∣) ≤ 2e−πT2

. Equating 2e−πT2

= 2−λ then

yields T =
√
(λ+1) log 2

π
. A sufficient condition for correct decryption of a ciphertext of

the form c = Eval(lincomba, c0, ..., cL−1), where c0, ..., cL denotes L fresh well-formed
ciphertexts LWE ciphertexts, is thus that Tσ0∣∣a∣∣ < q

2t
, i.e. q > 2tTσ0∣∣a∣∣.
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Proposition 18. FS′1 does not have the LOH property.

Proof. Recall the notations in Def. 5 (p. 10) and consider that the set of messages
(a0, ..., am−1) in that definition is (1,0, ...,0). Hence c0 is an encryption of 1,
when c1, ..., cm−1 are all encryptions of 0. However, as soon as m ≥ n +K + 2 is
sufficiently large that c1, ..., cm−1 forms a generating set of vectors for Zn+K+1

q

with non-negligible probability, the adversary can find a linear combination of
the c1, ..., cm−1 with coefficients in Zq thus depending on the cj’s such that,

c′0 =
m−1
∑
j=1

αj(c0, ..., cm−1)cj = c0,

Then, since c0 is a fresh well-formed encryption of 1 under FS′1, we have that
FS′1.ImVer(c′0) = FS′1.ImVer(c0) = True as well as FS′1.Dec(c′0) = FS′1.Dec(c0) = 1
(with high probability). However, since c′0 has been obtained by linearly com-
bining encryptions of 0 we have a′0 = Π ⋅ (a0 ... am−1)

T = 0 ≠ FS′1.Dec(c′0), in
violation of the LOH property. ⊓⊔

Interestingly, this attack strategy also leads a new CPAD attack path on the
vanilla Regev scheme, its RLWE variant and the other mainstream FHE schemes
which are based on them. We descibe this such an attack in Sect. H.

Now, recall that we have done our CPAD security proofs in the non-adaptive
private key setting in which the adversary specifies all its requests under the
drastic restriction that it has not yet seen any ciphertext. In this setting, the
previous attack is not applicable and only a degenerate variant of the LOH
property with m = 0 is relevant. We refer to this (rather weak) variant as LOH0

and now assume that FS′1 satisfies it.

Assumption 1 Let K ≥ ⌈ λ
log2 t
⌉, FS′1 satisfies the LOH0 property.

As discussed in Sect. 2.5, the LOH property requires a deterministic decryp-
tion function and FS′1’s is not. However, this does not disrupt LOH0. Indeed,
in the private key setting of FS′1, remark that the only valid ciphertexts that
a LOH0 adversary could a priori create on its own would be “trivial” encryp-
tions of 0 of the form (0⃗,E), where E is a K + 1 dimensional vector such that
∣∣E∣∣∞ <

∆
2

(as, indeed, such a ciphertext decrypts to 0⃗ under FS(K+1)0 and, as
0⃗ satisfies condition 22, could decrypt to 0 under FS′1 depending on smudging).
However, this corner case is not an issue, as in the specification of our scheme,
FS′1.ImVer returns False whenever a = 0⃗. It follows that, for FS′1, the LOH0 prop-
erty tells that an adversary can ex nihilo create on its own a ciphertext c such
that FS′1.ImVer(c) = True only with negligible probability.

We now show that FS′1 achieves CCA0 security, as defined in Sect. 2.3.

Proposition 19. FS′1 is CCA0 secure under the assumption that it has the
LOH0 property.
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Proof. As just discussed, for FS′1, the LOH0 property tells that an adversary
can create on its own a ciphertext c such that FS′1.ImVer(c) = True only with
negligible probability. In the non-adaptive setting of CCA0 where the adversary
specifies all its decryption requests before seeing any ciphertexts, the claim thus
follows by a straightforward reduction to the CPA security of FS′1. The reduction
simply forwards encryption and challenge requests as is to its CPA challenger.
Lastly, the reduction handles a decryption request over a ciphertext c by just
returning � unconditionally. ⊓⊔

So, eventually, the LOH0 property earned us a little CCA security increment.
At least sufficient to thwart (non-adaptive) CCA1 attacks such as the one we
discussed at the end of Sect. 4.1 (see also Sect. G.1).

5 Concluding remarks

In this paper, our goal has been to investigate whether the LOH property and
the associated Knowledge-of-Exponent design blueprint could help obtaining “be-
yond CCA1” secure linearly homomorphic schemes without relying on advanced
SNARK machinery.

When working under the correctness assumption, the short answer is yes.
Indeed, this paper has unveiled a fruitful connection between the LOH prop-
erty and vCCA security, eventually yielding simple constructions achieving this
strong CCA security notion at twice the cost of achieving only CPA security.

Relaxing the correctness assumption has, as is usually the case, revealed a
more complicated picture. Although it can be expected that a CPAD secure
scheme with the LOH property achieves vCCAD security (Sect. C), the second
part of this paper shows that it is quite delicate to build schemes having these
former properties by starting from a LWE-based scheme and extending it by
naturally following the KEA design blueprint. Eventually, this strategy works
only in a non-adaptive setting in which vCCAD collapses onto a weak relaxation
of CCA1. We are therefore left with the question asking how far can we go with
our LWE-based line of schemes? If we conjecture that FS′1 is (adaptive) CPAD

secure, then it still does not satisfy the LOH assumption as the attack in the
proof of Proposition 18 still works against it. However, that attack works under
the assumption that m ≥ n +K + 1. It turns out that the (adaptive) vCCAD

security of FS′1 can be established under the assumption that the adversary
has access to only m < n +K + 1 ciphertexts, so under the conjecture that it is
(adaptive) CPAD secure and the assumption that it has the LOH property in the
same conditions. To do so, we however have to associate a linearly homomorphic
hash to FS′1 ciphertexts in order to deal with yet another corner case involving
trivial encryptions of 0. This more speculative path is pursued in Sect. B.

Generalization to the public key setting however appears more problematic,
even in the non-adaptive setting. Indeed, it is tempting to apply the well-known
Regev’s trick for turning FS0 into a public key scheme [53,54]: define the public
key as a large enough set of encryptions of 0 under FS0 along with an additional
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public encryption of 1 for injecting messages in ciphertexts via the mult-by-
const operator17. Then, all well-formed ciphertexts would end up being linear
combinations of the ciphertexts forming the public key, paving the way for a
reduction able to feed all well-formed ciphertexts built by a vCCAD adversary
into the internal state of a (private key) CPAD challenger by means of eval-
uation requests parameterized on the LOH extractor output. However, Claim
5.3 in [54]18 implies that we have to use N ≥ 4λ + (n +K + 1) log2 q ciphertexts
to form a public-key. Unfortunately, that number of ciphertexts (which are ob-
served, in the public-key setting, by a non-adaptive adversary before it specifies
its requests) is much larger than the limit under which we can credibly claim
adaptive vCCAD security. Another trail, could be to adapt our schemes from the
multi-secret to the RLWE setting [46] leading to a public key formed by a single
encryption of 0. However, notwithstanding the other issues that may crop up
when doing so, a reduction towards a CPAD challenger would have to operate in
the adversarially-chosen encryption randomness setup19 (contrary to the above
“Regev-style” approach where the LOH extractor would be able to retrieve the
encryption randomness). This setup then would require the baseline scheme to
achieve Strong CPAD rather than only “standard” CPAD security [9].
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A Appendix sections organization

The appendix sections are organized as follows. First, Sect. B investigates whether
and how vCCAD security may be attained in the adaptive adversary setting,
under the conjecture that FS′1 (and FS1) achieves (adaptive) CPAD security.
Then, in the spirit of Sect. 3.1, Sect. C discusses the kind of black-box results
that can be obtained in the regime where the correctness assumption is relaxed,
and sketches how to obtain them. Subsequently, Sect. D further gives concrete
guidelines for choosing the parameters of FS1 (and FS′1). For the sake of self-
containedness, the other remaining appendix sections essentially contain either
easy picks or additional background that is referred to from the main body or
other appendix sections. Lastly, we have also included a table of contents at the
end of this document to ease the reader’s navigation.

B Achieving vCCAD security, under the conjectured
(adaptive) CPAD security of FS′1 (and FS1)

B.1 The ℓ-LOH property

Even if we are willing to conjecture that FS′1 is (adaptive) CPAD secure, then it
still does not satisfy the LOH assumption as the attack in the proof of Proposi-
tion 18 still works against it. However, that attack works under the assumption
that m ≥ n+K + 1. In this section, we thus investigate the restricted case where
the LOH adversary only has access to m < n + K + 1 ciphertexts. Indeed, let
N = n +K + 1 and assume that the adversary has access to only 0 ≤ ℓ < N ran-
domly chosen ciphertexts. Then the probability for an arbitrary ciphertext to be
in the span of these ℓ ciphertexts is upper bounded by20 qℓ

qN
= qℓ−N . Equating

qℓ−N = 2−λ then yields ℓ = N − λ log 2
log q

. We refer to the LOH property in this re-
stricted setting as ℓ-LOH. We thus now attempt to achieve (adaptive) ℓ-vCCAD

security in the private key setting (i.e. vCCAD security where the adversary

20 The bound is tight when Zq is a field [20].
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can cumulate no more than ℓ ≤ N − λ log 2
log q

encryption or challenge oracle calls).
Further remark that since log2 q generally is in O(λ) (see also Sect. D), then we
have ℓ ≤ N −O(1).

Following this, there remain two issues to deal with.
The first is that FS′1’s decryption function is not deterministic (as discussed

in Sect. 2.5, the LOH property requires deterministic decryption). This however
can be dealt with by considering a variant of FS′1 (or FS1 in the rest of this Sect.)
with deterministic decryption, e.g. by generating the smudging noise by means
of a keyed PRF seeded on H(c) for some hash function H). When this is so,
our CPAD

0 security proofs (Prop. 15 and 17 as well as Lemma 16) remain valid
“only” at the cost of modelling H as a Random Oracle.

The last issue is as follows. Let us consider a trivial encryption of 0 under
FS(K+1)0 of the form (0⃗n,E) where E is a K + 1 dimensional vector such that
0 < ∣∣E∣∣∞ <

∆
2
. Recall that FS′1.ImVer((0⃗n,E)) = False (as FS′1.ImVer((a,B))

returns False whenever a = 0). Because of this, a ciphertext of the form

c′0 = FS′1.Eval(lincombπ, c0, ..., cℓ−1) + (0⃗n,E), (26)

where c0, ..., cℓ−1 are the fresh well-formed ciphertexts available to the ℓ-LOH
adversary, should yield extract(c′0) = ∅ and a0 = � (in Def. 5’s notations, p. 10).
However, when ∣∣E∣∣∞ << ∆

2
, FS′1.ImVer(c′0) = True and FS′1.Dec(c′0) ≠ �, with

high probability. We finally deal with this last issue by associating a tag to FS′1
ciphertexts obtained by means of a collision-resistant (keyed) hash function, thus
preventing a ℓ-LOH adversary to build ciphertexts of the form (26) on its own
(as, as just argued, it can get a valid hash for vector (0⃗n,E) only with negligible
probability when ℓ ≤ N − λ log 2

log q
). Interestingly, this also makes our next scheme

immune to the folklore (adaptive) CCA1 attack in Sect. G.2 (under the same
restriction).

Lastly, we emphasize that the conjecture that FS′1 is (adaptive) CPAD secure
(at least when less than n +K + 1 ciphertexts are available to the adversary) is
not so far disproved by any attacks, indeed, to the best of our knowledge:

– The attacks in [39] do not apply to FS′1 as they leverage on the noise/message
dependencies which naturally arise in CKKS, and other schemes such as
BGV and BFV, when performing homomorphic multiplications. In contrast,
the noises in a FS′1 ciphertext are message independent.

– Among the CPAD attacks in [24], only the non-adaptive attack in Sect. 4 of
that paper would be applicable to FS′1. However, since it is non-adaptive, the
CPAD

0 security of FS′1 implies that it is not subject to it. The others attacks
in [24] either need multiplications or bootstrappings.

– The adaptive LWE noise recovery dichotomic attack in [23] manipulates only
ciphertexts of the form α ⋅ c0 (with c0 a well-formed fresh encryption of 0)
and is heuristically thwarted by FS′1’s smudging (under the assumption of the
independence of the Ek’s, in the notations of Lemma 14, which is not stricto
sensu true since the α coefficient choice during the dichotomy depends on
outputs of the CPAD decryption oracle which depend on the Ek’s. However
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we conjecture that this dependence is benign when the adversary is restricted
to evaluate single-coefficient linear combinations as in the latter attack).

– Lastly, FS′1 is provably immune against the attack we present in Sect. H as
soon as the adversary is restricted to see less than N −λ log 2

log q
ciphertexts (an

assumption that we explicitly make in the rest of this Sect.). In the regime
beyond this bound, it is however unclear how to obtain concrete attacks
against FS′1 by following an attack path like that of Sect. H thanks to the
smudging in FS′1’s decryption function (although, as above, the independence
assumption on the Ek’s, in the notations of Lemma 14, is jeopardized).

B.2 Linearly homomorphic hash functions

The last tool we need is thus a collision-resistant keyed linearly homomorphic
one-way hash function

Ĥ = (KeyGen,Digest,Add,Mulc),

with Ĥ.Digest ∶ Zn
q ×ZK+1

q Ð→H, Ĥ.Add ∶H2 Ð→H and Ĥ.Mulc ∶H ×Zq Ð→H

such that, with the convention that ⊕ ≡ Ĥ.Add and ⊙ ≡ Ĥ.Mulc, the following
property holds,

Ĥ.Digest(
L−1
∑
l=0

πlcl) =
L−1
⊕
l=0

πl ⊙ Ĥ.Digest(cl).

Although the construction can be instantiated from any linearly homomor-
phic hash function (with domain ZN

q ), there are only a very limited number of
candidate constructions in the state-of-the-art. As a concrete example, we can
use the Fiore-Gennaro-Pastro hash function introduced in [31] ([32], Sect. 4.2)
in order to build several VC schemes on top of the BV scheme [17]. We give the
hash function details in Sect. I for completion.

B.3 Scheme FS′2

Following the discussion just above, we now consider an additional scheme, FS′2,
which we build from a variant of FS′1 with deterministic decryption (Sect. B.1), by
further onboarding hash function Ĥ in the following Encrypt-then-Hash fashion:

– FS′2.KeyGen: run FS′1.KeyGen as well as Ĥ.KeyGen.
– FS′2.Enc: given m ∈ Zt, return

ct = (c, τ) = (FS′1.Enc(m), Ĥ.Digest(c)).

– FS′2.ImVer: given ct ∈ Zn
q ×ZK+1

q ×H, return False if either FS′1.ImVer(ct.c) =
False or

Ĥ.Digest(ct.c) ≠ ct.τ, (27)

and True otherwise.



“Beyond CCA1” security for linear HE 35

– FS′2.Dec: given ct ∈ Zn
q ×ZK+1

q ×H, if FS′2.ImVer(ct) = False, then � is returned.
Otherwise return FS′1.Dec(ct.c).

Consistently with Sect. B.1, we will now work under the following assump-
tion.

Assumption 2 Let ℓ ≤ n +K + 1 − λ log 2
log q

, FS′2 has the ℓ-LOH property.

B.4 ℓ-vCCAD security of FS′2

For the proof in this section, we assume a slightly modified mult-by-const opera-
tor and associated extractor. Indeed, we assume that the mult-by-const operator,
mulα, accepts α ∈ Zq rather than Zt with the effect of producing an encryption
of [[α]tm]t (under our running assumption that t divides q, Sect. 4.1). This
operator naturally occurs whenever usual mult-by-const operators are chained
during an homomorphic evaluation. Consistently, given a FS′2 ciphertext ct, we
also assume that (π,β), as returned by extract(ct, aux), is in Zm

q ×Zq rather than
Zm
t ×Zt (in the notations of Def. 5, p. 10) and that the following property holds,

(π,β) = extract(ct, aux)⇔ ct.c = ce, (28)

with π ∈ Z∣SF ∣q , β = 0 (in the private key setting) and,

ce = FS′1.Eval(lincombπ, SF [0].c, ..., SF [∣SF ∣ − 1].c),

where SF denotes a common list of well-formed ciphertexts on which an ad-
versary and its challenger agree. This modification is a mild assumption as the
usual extractor output is naturally a reduction modulo t of the modified one’s
output (again, when t divides q). This slight modification is important as it will
allow us to rebuild the ciphertexts given by the adversary when we need to do
so in the proof of the next proposition.

Proposition 20. FS′2 is (adaptive) ℓ-vCCAD secure, under the assumptions
that it satisfies the ℓ-LOH property and that FS1 is (adaptive) CPAD secure.

Proof. The proof works under the natural assumption that A and the challenger
share a common numbering for the ciphertexts output by the encryption oracle
(i.e., fresh well-formed ciphertexts).

We then start by one step of game hoping.
First game hop. Let G0 be the ℓ-vCCAD game against FS′2 and G1 be the

same game as G0 where we modify the challenger as follows. First (consis-
tently with the above common numbering assumption), the challenger C1 stores
the fresh ciphertexts it generates in an internal state SF containing message-
message-ciphertext triplets (andA is assumed to maintain a similar array). Then,
when handling a decryption request on ciphertext ct, it first invokes the LOH
extractor to verify that

extract(ct, aux) ≠ ∅,
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rather than checking conditions (22) and (27) in FS′2.ImVer(ct), and returns
� when this is not the case. Otherwise, C1 proceeds as follows. Let (π,β) =
extract(ct, aux)21,

µ0 =

∣SF ∣−1

∑
i=0

πiSF [i].m0 and µ1 =

∣SF ∣−1

∑
i=0

πiSF [i].m1. (29)

Then, whenever µ0 = µ1 (otherwise it returns �), rather than returning
FS′1.Dec((ct.c.a, ct.c.B)), C1 returns FS1.Dec((ct.c.a,B′)) with

B′0 = B0 (30)

and, for k ∈ J1,KK,
B′k = Bk −∆ξkµ0. (31)

We now argue that G0 and G1 cannot be distinguished. Indeed, in the case
where extract(ct) = ∅, the indistinguishability of the two games follows from
the ℓ-LOH property as, in this case, we have that FS′2.ImVer(ct) = False with
overwhelming probability. When, extract(ct) ≠ ∅, then (by Eq. 28) ct.c is a well-
formed FS′1 ciphertext, i.e. is such that for k ∈ J0,KK (ξ0 = 1),

ct.c.Bk = ⟨ct.c.a, sk
(k)
⟩ +∆ξkµ + ek,

and the ek’s are iid and Gaussian, which may decrypt to � depending on the
ek’s (remark that µ may not be Zt). Now (recall the properties of the extractor
discussed at the begining of this Sect.), when µ0 = µ1 in Eq. (29), we exactly have
that µ = µ0. Hence, Eq. (31) turns (ct.c.a, ct.c.B) into a well-formed ciphertext
(ct.c.a,B′) under FS1 with

B′0 = ⟨ct.c.a, sk
(0)
⟩ +∆µ + e0,

and, for k ∈ J1,KK,
B′k = ⟨ct.c.a, sk

(k)
⟩ + ek.

The indistinguishability of the two games, in the case where extract(ct) ≠ ∅,
thus follows from the indistinguishability between FS1’s and FS′1’s decryption
functions which we have established in Lemma 16.

Second game hop. We now consider game G2 where we further modify the
challenger C1 such that (recall FS′1.Enc definition on p. 24) the new challenger
C2 replies to a challenge request on m0 ≠m1 ∈ Z2

t with ciphertext

ct′ = (c′, τ ′) = (FS(K+1)0 .Enc(mγ , ξ1m0, ..., ξKm0), Ĥ.Digest(c′)),

rather than, in G1,

ct∗ = (c∗, τ) = (FS(K+1)0 .Enc(mγ , ξ1mγ , ..., ξKmγ), Ĥ.Digest(c∗)).

These two games cannot be distinguished for the following reasons:
21 Recall, following Def. 5 (p. 10), that the LOH assumption enforces linear (rather

than affine) combinations in the private key setting. Hence, in the context of this
proof, when the LOH extractor does not return ∅, we get (π,β) = extract(ct, aux)
with β = 0.
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– Both c′ and c∗ are indistinguishable from uniform (by the LWE assumption).
– When handling a decryption request over a ciphertext ct such that ∅ ≠

extract(ct, aux) = (π,β) (again, with β = 0 in the private key setting), and
µ0 = µ1 in Eq. (29), in which case we also have µ0 = µγ , both challengers reply
with FS1.Dec((ct.c.a,B′)) (with B′ obtained, in both cases, following Eqs. 30
and 31 above). When this is not the case, i.e. when either extract(ct, aux) = ∅
or µ0 ≠ µ1 (in Eq. 29), then both challengers consistently reply �.

Final reduction. We next prove that an adversary B against the CPAD secu-
rity of FS1 (consistently with C2 specification) can be build using an adversary
A against G2 as a subroutine. The reduction thus maintains an initially empty
state SF containing message-message-ciphertext (under FS′2) triplets (and A’s
is assumed to maintain a similar state). The reduction also maintains a con-
version table between ciphertext indices in SF and S, where S is the internal
state of the CPAD challenger against FS1, I ∶ J0, ∣SF ∣ − 1K Ð→ J0, ∣S∣ − 1K such
that SF [l].c = S[I(l)].c (it does so by means of a counter ctr initially set to 0).
Note that to ease understanding, we also show the internal state of the CPAD

challenger in the following. The reduction subsequently picks the multipliers
ξ1, ..., ξK uniformly in Z∗t and runs Ĥ.KeyGen. It then handles A’s requests as
follows:

– When receiving an encryption request over message m ∈ Zt, B transfers it
as is to the CPAD challenger to get ciphertext c = (a,B). It then computes
ciphertext c′ = (a,B′), with B′0 = B0 and B′k = Bk +∆ξkm (for k ∈ J1,KK)
and returns ct = (c′, Ĥ.Digest(c′)) to A after updating its internal state
as SF ∶= [SF ; (m,m, ct)] and its conversion table as I(∣SF ∣ − 1) ∶= ctr (then
doing ctr ∶= ctr+1). This has the side effect of updating the CPAD challenger’s
internal state as S ∶= (S; (m,m, c)) (with the invariant that ctr = ∣S∣).

– When receiving a challenge request over messages m0 ≠m1 ∈ Z2
t , then B also

transfers it as is to the CPAD challenger to get ciphertext c∗ = (a∗,B∗).
It then computes ciphertext c′

∗
= (a∗,B′

∗
), with B′0

∗
= B∗0 and B′k

∗
=

B∗k +∆ξkm0 (for k ∈ J1,KK), yielding c′
∗
= FS(K+1)0 .Enc(mγ , ξ1m0, ..., ξKm0)

consistently with C2’s specification, and returns ct = (c′∗, Ĥ.Digest(c′∗)) to
A after updating its internal state and conversion table as in the above
case. As in the previous case, this has the side effect of updating the CPAD

challenger’s internal state as S ∶= (S; (m0,m1, c
∗)).

– When receiving a decryption request over ciphertext ct ∈ Zn
q × ZK+1

q ×H, B
proceeds as follows:
● Fresh ciphertext. If ∃l ∶ SF [l].c = ct, it issues a decryption request with

index I(l) towards its CPAD challenger and return the result to A.
Remark that the adversary expects the decryption of FS′1 ciphertext
ct.c = SF [l].c while the reduction returns in fact the decryption of FS1

ciphertext S[I(l)].c however with the guarantee that FS1.Dec(S[I(l)].c)
is indistinguishable FS′1.Dec(SF [l].c) (by Lemma 16).
● Evaluated ciphertext. Otherwise, it invokes extract(ct) getting either ∅,

in which case � is returned to A (following C1’s specification in the
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first game hop), or a vector π ∈ Z∣SF ∣q . Let l0, ..., lL−1 denote the in-
dices such that πlj ≠ 0, then B issues an evaluation request over indices
I(l0), ...,I(lL−1) towards its CPAD challenger to get ciphertext

ce = FS1.Eval(lincombπl0
,...,πlL−1

, S[I(l0)].c, ..., S[I(lL−1)].c).

Remark that, when µ0 = µ1 in Eq. (29), we have ct.c.a = ce.a, ct.c.B0 =

ce.B0 as well as ct.c.Bk = ce.Bk +∆ξkµ0 (k ∈ J1,KK). This has the side
effect of augmenting the internal state of the CPAD challenger with the
triplet

(
L−1
∑
i=0

πliS[I(li)].m0,
L−1
∑
i=0

πliS[I(li)].m1, ce) . (32)

Additionally B increments ctr to keep I consistent with the internal state
of its challenger (i.e. maintain the invariant that ctr = ∣S∣). Finally, B is-
sues a decryption request with index ctr−1 towards its CPAD challenger
to get a decryption of ce (which may be �) which it sends back to A. Re-
mark that because of the above relation between ct.c and ce we have that
FS′1.Dec(ct.c) is indistinguishable from FS1.Dec(ce) (by Lemma 16). Re-
call that, when handling a decryption request on state index l, the CPAD

challenger’s decryption oracle verifies that S[l].m0 = S[l].m1 and returns
the decryption of S[l].c only when this is the case (and � otherwise) so
the reduction does not even have to check this.

The claim then follows from the (adaptive) CPADsecurity of FS1 which we con-
jecture in this section. ⊓⊔

As a last remark, it may be worth noting that applying the Encrypt-then-
Hash blueprint that yielded FS′2 from FS′1 (Sect. B.3) directly to FS1 may be
sufficient to obtain a scheme that also credibly satisfies the ℓ-LOH property,
i.e. under the not too far-fetched assumption that the (linearly homomorphic)
hash verification is sufficient to get this property. Although this depart from
the more conventional Knowledge-of-Exponent blueprint, the resulting scheme
(say FS2) would be simpler and would also admit a less cumbersome proof of
ℓ-vCCAD security, in particular with a more direct final reduction towards a
CPAD challenger against FS1 which is left to the reader.

C General results for approximate schemes?

As discussed in Sect. 4, a natural question is whether black-box results, such
as Prop. 6 and 7, can be obtained in the case of approximate schemes? E.g.
if any CPAD secure linearly homomorphic scheme with the LOH property is
vCCAD secure? A natural proof strategy for obtaining such a result (say, first,
in the private key setting) is to perform a reduction towards a CPAD challenger.
For such a reduction to work, it then has to handle decryption requests over
well-formed evaluated ciphextexts from the vCCAD adversary by means of its
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CPAD challenger’s one. To do so, the reduction then has to populate the internal
state of its CPAD challenger with the exact same ciphertext provided by the
vCCAD adversary, by means of evaluation requests parameterized by the LOH
extractor output and the set of fresh well-formed ciphertexts output by the
encryption oracle. Then, in the notations of Def. 5 (p. 10) and following Eq. (9),
the reduction works by relying on the property that22,

(π,β) = extract(c′, aux)⇔ c′ = EH .Eval(lincombπ, c1, ..., cm),

(recall that β = 0 in the private key setting). Still, as illustrated in Sect. 4 and
B, building approximate or somewhat correct (LWE-based) schemes satisfying
even weak variants of the LOH property is particularly delicate. So it seems
to us that the kind of black-box results sketched above has a limited practical
relevance.

We also emphasize that, in the public-key setting, in order for a reduction
to properly rely on a CPAD challenger’s decryption oracle to handle decryption
requests from a vCCAD adversary, it further has to populate the challenger’s
internal state with the well-formed fresh ciphertexts generated on its own by
the adversary (which, in that case, controls the encryption randomness). To do
so, the reduction hence necessarily has to operate in the adversarially-chosen
encryption randomness setup which is accounted for by the notion of Strong
CPAD security introduced in [9]23. We think the only way whereby this reliance
on Strong CPAD could be avoided, would be by proceeding via a reduction
which does not have to rely on a challenger with a decryption oracle (e.g a
reduction to the CPA rather than “CPAD” security of the homomorphic scheme).
This however appears difficult to achieve without introducing non-black box
assumptions on EH as the reduction would then have to handle the adversary’s
decryption requests without relying on any decryption oracle. .

D Choosing the ciphertext modulus for FS1

Recall FS1 definition in Sect. 4.2 as well as Eq. (7), we consider a FS1 ciphertext
with noise variance σ2

ct. For such a ciphertext υ is uniformly picked in J−B,BK
with B = 2λσ̄K

√
2(λ + 1) log 2 and σ̄K with σ̄2

K =
Kσ̂2

K−2
√

Kλ log 2
, following Eq.

(19). Since, E[σ̂2] = σ2
ct, then, on average,

B = 2λσct

¿
Á
ÁÀ 2K(λ + 1) log 2

K − 2
√
Kλ log 2

. (33)

Now consider the following upper tail bound for the χ2 distribution [36].

22 Although, stricto sensu, Eq. (9) only gives us the right to left implication (see the
discussion at the beginning of Sect. B.4 leading to Eq. 28).

23 Similarly to the reductions in the proof of Prop. 17 and 18 in [21].
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Theorem 21 ([36], Theorem 1.). Let X follows χ2
K , then for c > 0,

P (X >K + c) ≤ e−
c2

4(K+c) .

Since Kσ̂2

σ2
ct

follows χ2
K , we have that,

P (σ̂2
>
σ2

ct(K + c)

K
) ≤ e−

c2

4(K+c)

Assuming we target the probability of erroneous decryption to be less than a
preset target value of 2−ϵ. Then, letting

e−
c2

4(K+c) = 2−ϵ

yields
c∗ = 2(ϵ log 2 +

√
ϵ log 2(ϵ log 2 +K)).

We may then use σ2
ct(K+c

∗)
K

as a bound for σ̂2, plug it in Eq. (33) (instead of
σ2

ct) and thus, since υ is uniformly distributed in [−B,B], choose q such that,

q

2t
> 2λ

√
σ2

ct(K + c
∗)

K

¿
Á
ÁÀ 2K(λ + 1) log 2

K − 2
√
Kλ log 2

> 2λσct

¿
Á
ÁÀ2(K + c∗)(λ + 1) log 2

K − 2
√
Kλ log 2

Also recall from Sect. 4.2 that K ≥ 4λ log 2 + 1.
If we apply a linear combination α0, ..., αL over fresh FS1 ciphertexts with in-

dependent noises (note that since FS1 is CPAD secure, even only non-adaptively,
evaluating such a linear combination over ciphertexts with non-independent noise
decreases reliability but causes no security issue), then the variance of the re-
sulting noise is

σ2
ct = σ

2
0

L−1
∑
j=0

α2
j .

We will refer to ∣∣α∣∣2 = ∑L−1
j=0 α2

j as an L2-budget. For a given such budget, follow-
ing the above calculations, one may perform either (considering both extremes)
∣∣α∣∣2 additions of ciphertexts with independent noises or only ∣∣α∣∣ additions of a
given ciphertext with itself, and then achieve 2−ϵ probability of getting � upon
decryption. Table 1 provides some examples of parameters for FS1. For exam-
ple, with a plaintext modulus of 232, a ciphertext modulus q on around 170 bits
allows to sum up to 1000 ciphertexts with independent noises or up to around
30 times the given ciphtertext with itself, in both cases, with a probability on
average less than 2−40 of getting � at decryption of the result.
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t log2 q n λ̂ t log2 q n λ̂

2 146 8192 171 2 150 8192 165
256 153 8192 160 256 157 8192 154
216 161 8192 149 216 165 8192 144
232 177 8192 130 232 181 8192 126
264 209 10240 141 264 213 10240 137
264 209 16384 266 264 213 16384 259

Table 1. Example of parameters for FS1, in function of the plaintext modulus t. With
an L2-budget of 1000 (left half) and 106 (right half) as well as σ0 = 3.19, ϵ = 40 (i.e.
a probability of decrypting to � below 2−ϵ = 2−40). The target security level is λ = 128
(K = 355), estimated security levels (λ̂) have been computed by means of the lattice-
estimator. Note that increasing K, e.g. to 1000, leads slightly smaller modulus, e.g. 5
bits less.

E Additional security notions

E.1 Additional variants of CPAD security

In addition to the multiple-challenge notion initially defined in [38] (Sect. 2.3),
the following weaker restrictions of it have been defined and studied in [21]:

– CPAD
2 : restriction of CPAD to the single challenge case where the adversary

is allowed only one request of the form (test messages,m0,m1) with m0 ≠

m1.
– CPAD

1 : restriction of CPAD
2 with the decryption oracle closing after the

unique challenge request (similar in spirit to the CCA1/CCA2 definitions,
hence the choice for the names).

– KRD: a challenge-less variant of CPAD in which the adversary wins the game
when it retrieves the secret decryption key.

With respect to these latter notions, [21] has established the following separa-
tion results in the general regime where approximate or somewhat correct FHE
schemes are considered:

CPA ≺ CPAD
1 ≺ CPAD

2 ≺ CPAD. (34)

Note that CPAD
1 is different from non-adaptive CPAD (CPAD

0 in this paper)
as defined and studied in [38] (recall also Sect. 2.3). Indeed, there is a (not
so slight) difference between the notion of adaptability as understood in the
multiple-challenge context of [38] (the adversary performs all its requests at once)
and that which is usually assumed between single-challenge CCA1 and CCA2
(the adversary performs all its decryption requests before the unique challenge
ciphertext is published).

E.2 CPA and CCA1 security.

Recall that by convention CPA and CCA1 security notion are usually single
challenge. We define them relatively to the CPAD game of Sect. 2.3.
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In the CPA game, the adversary only has access to encryption requests and
can perform a unique challenge request. Note that the encryption oracle is nec-
essary only in the private key case as, in the public key case, the adversary can
generate ciphertexts on its own. In the CPA game, there is also no need for an
evaluation oracle since the adversary can always perform homomorphic evalua-
tion on its own and their is no need to fill a game state (recall that in the CPAD

game, the purpose of the encryption and evaluation oracles is to fill the game
state with well-formed ciphertexts for handling subsequent decryption requests
on state indices).

In the CCA1 game, the adversary has access to encryption requests and can
also perform a single challenge request. Before this unique challenge request, the
adversary is additionally granted access to a first step decryption oracle which
simply proceeds as follows:

– Decryption request (before the unique challenge request). When A queries
(ciphertext, c): return her Dec(c).

Then after the single challenge request, the decryption oracle systematically
replies �. Note that the CCA1 game has no evaluation oracle as the adversary
performs the homomorphic evaluations on its own in both the private and pub-
lic key setting and there is no need to fill a game state (since the decryption
oracle accepts arbitrary ciphertexts rather than indices pointing to well-formed
ciphertexts stored in a game state).

In the general regime where approximate or somewhat correct FHE schemes
are allowed, we also have the following separation [21]:

CPA ≺ CPAD
1 ≺ CCA1. (35)

E.3 Separation results for CCA0

In this section, for sanity checking, we establish a few easy separation results
to position the CCA0 security notion (Sect. 2.3) with respect to other ones (we
do so in the private key setting and implicitly assuming single challenge). We
do not claim that we are the first to consider this rather weak (yet intuitive)
relaxation of CCA security.

Proposition 22. If there exist a correct private key scheme S which is CCA1
secure, then there exists a scheme S′ which is CCA0 secure and CCA1 insecure.

Proof. The proof works under the mild assumption that ∣P ∣ ≥ O(2λ). Let S =
(KeyGen,Enc,Dec) be a CCA1 secure private key correct scheme. We then con-
sider S′ = (KeyGen,Enc,Dec′) such that:

Dec′(c) = {
sk if Dec(c) = 0
Dec(c) otherwise

S′ is CCA0 secure. CCA1 security implies CCA0 security, hence S is CCA0
secure. Then S′’s CCA0 security follows from a trivial reduction to that of S with
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the reduction transferring all decryption requests consisting of a priori chosen
ciphertext from the CCA0 adversary as is to the CCA0 challenger against S.
Finally, under the assumption that ∣P ∣ ≥ O(2λ), A has a negligible probability
of submitting an encryption of 0.

S′ is CCA1 insecure. The CCA1 adversary simply asks an encryption of 0 to
get c = Enc(0) and then ask the decryption of c to get sk = Dec′(c). Then, once
the challenge ciphertext is obtained, A simply decrypts it on its own. ⊓⊔

We also separate CCA0 with the notion of non-adaptive CPAD security from
[38] which we refer to as CPAD

0 (Sect. 2.3).

Proposition 23. If there exist a correct private key scheme S which is CCA0
secure, then there exists a scheme S′ which is CPAD

0 secure and CCA0 insecure.

Proof. Since CCA0, in the private key setting, is equivalent to vCCAD
0 (Sect.

2.3), the proof is similar to that of Prop. 1 in [21] (CPAD≺vCCAD). ⊓⊔

F The Paillier cryptosystem

This section briefly presents Paillier’s original cryptosystem [51], denoted EP ,
which security is grounded in the Composite Residuosity Class Problem hard-
ness assumption. The scheme is partially homomorphic allowing additions, or
multiplications by a constant, but does not support multiplications between two
ciphertexts. Note that a relatively simple modification of this scheme, described
in [22], allows to perform one level of multiplications.

Let n be an RSA modulus. The plaintext space is Zn and the ciphertext space
is Z×n2 . Let Sn be the set Sn = {u ∈ Z×n2 ∣ u ≡ 1 (mod n)}, which is a multiplicative
subgroup of Z×n2 . For all u ∈ Sn we define the function L ∶ Sn → Zn, such that
L(u) = u−1

n
.

– EP .KeyGen: sample a RSA modulus n = pq such that p and q are distinct
large prime numbers and such that gcd(pq, (p − 1)(q − 1)) = 1. Let φ(n) =
(p − 1)(q − 1) and ω ∶= ω(n) = lcm(p − 1, q − 1). Choose uniformly at random
an integer g ∈ Z×n2 , such that L(gω (mod n2)) ∧ n = 1. Set the public key
pk = (n, g) and the secret key sk = ω(n).

– EP .Enc: given m ∈ Zn and pk, sample uniformly at random r
$
←Ð (Zn)

× and
return c = gmrn (mod n2).

– EP .Dec: given c ∈ Zn2 and sk, return
L(csk (mod n2))

L(gsk (mod n2))
(mod n).

– EP .Add: given c, c′ ∈ Z2
n2 , compute and return [c ⋅ c′]n2 .

– EP .Mulc: given α ∈ Zn and c ∈ Zn2 , compute and return [cα]n2 .

As a notable property with respect to the present work, the Paillier scheme
achieves perfect correctness.
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G Folklore CCA1 attacks against Regev

In this section, we briefly present two lines of folklore CCA1 attacks against the
Regev scheme (FS0).

G.1 A non-adaptive ill-formed ciphertext-based attack

As discussed in Sect. 4.1, let us remark that the the ill-formed ciphertext (−∆1i,0)
decrypts to [ski]t, where 1i is the i-th standard basis vector. As a slight sim-
plification, let us assume that ∆ = q

t
= 2k

2l
= 2k−l and asks for the decryption

of ill-formed ciphertext cl = (−
∆
t
1i,0) = (−2

k−2l1i,0) which gives [⌈ ski

t
⌋]

t
. Since

ski

t
= ⌊ ski

t
⌋ +

[ski]t
t

, two cases can then occur,

– When [ski]t
t
< 1

2
(recall that we know [ski]t from above), FS0.Dec(cl) =

[⌈ ski

t
⌋]

t
= [⌊ ski

t
⌋]

t
and the decryption of cl straightaway gives us bits l, l +

1, ...,2l − 1 of ski.
– When [ski]t

t
≥ 1

2
, FS0.Dec(cl) = [⌈ ski

t
⌋]

t
= [⌊ ski

t
⌋ + 1]

t
. So either FS0.Dec(cl) =

0 and thus [⌊ ski

t
⌋]

t
= t − 1 or, [⌊ ski

t
⌋]

t
= FS0.Dec(cl) − 1 otherwise. So

FS0.Dec(cl) − 1 mod t gives away bits l, l + 1, ...,2l − 1 of ski.

A CCA1 adversary may then further proceeds similarly by exploiting ill-formed
ciphertext c2l = (−∆

t2
1i,0) = (−2

k−3l1i,0) and his/her knowledge of [ski]t2 (from
above) to retrieve bits 2l,2l + 1, ...,3l − 1 of ski, and so on and so forth. Let us
emphasize that this attack is non-adaptive.

G.2 An adaptative noise recovery attack

Another line of folklore attacks follows a dichotomic search pattern (which has
been used numerous times, e.g. [44,23]) where the adversary starts from a well-
formed encryption of 0 c0 = (a, b) with b = ⟨a, sk⟩ + e) to find the critical value
α∗ such that Dec(a, b + α∗) ≠ 0 (i.e. such that e + α∗ = ∆

2
. The adversary may

then conclude that the noise in c0 is equal to ∆
2
− α∗ thereby getting one linear

equation in sk. By repeating this (adaptive) process over n encryptions of 0, the
adversary can eventually retrieve sk by means of linear algebra techniques.

Remark that this attack does not use the legit add-by-const operator wihch
only allows to add multiples of ∆ to the b-term of an LWE pair.

H Yet another CPAD attack path on “exact” FHE

Interestingly, in the wake of [23,24], the attack in Proposition 18 gives us yet
another attack path on the vanilla Regev scheme, its RLWE variant and the
other mainstream FHE schemes which are based on them.

For simplicity sake, we state the attack against vanilla RLWE encryption
with a binary secret key sk ∈ {0,1}n. In such a condition, remark that the ill-
formed ciphertext (∆ ⋅ 1,0) decrypts to sk (similarly to the attack in Sect. G.1).
Let c△ denotes this ciphertext.
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The CPAD attack then goes as follows:

– The adversary, say A, requests encryptions of 0, until it gets a generating
set of vectors for Z2n

q
24. Let c0, ..., cN−1 denotes these ciphertexts.

– Using elementary linear algebra, the adversary then finds a linear combina-
tion with coefficients in Zq such that,

c△ =
N−1
∑
i=0

πici,

with π ∈ ZN
q .

– For i ∈ J0,N −1K, the adversary then builds ciphertext c△i with the following
legit homomorphic operations, which it performs by means of CPAD game
evaluation oracle calls. Assuming t > 2, let k = ⌈logt−1 πi⌉ and let the πi,j ’s
denote the k digits in the base (t − 1) decomposition of πi, i.e.

πi =
k−1
∑
j=0

πi,j(t − 1)
j .

Then A performs,

c△i,j = πi,j ⊗ (t − 1)⊗ ...⊗ (t − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j times

⊗ci,

where α⊗ c denotes Eval(mulα, c), α ∈ Zt, and,

c△i = Eval(sum, c△i,0, ..., c
△
i,k−1).

– Following this, by an evaluation request of the form Eval(sum, c△0 , ..., c
△
N−1),

the adversary eventually puts c△ in the internal state of its CPAD challenger.
– Finally, a single decryption requests on state index ∣S∣ − 1, where S is the

internal state of the CPAD challenger, gives sk to A.

Remark that the above attack also shows that, unless the number of ciphertexts it
has access to is suitably restricted, a CPAD adversary against the vanilla RLWE
scheme can get any ciphertext into the internal state of a CPAD challenger and,
as such, has as much power as a CCA adversary (in the special case of these
LWE-based schemes).

I The F̂GP linearly homomorphic hash function [31]

For illustrative purpose, we briefly describe the Fiore-Gennaro-Pastro hash func-
tion introduced in [31] ([32], Sect. 4.2) in order to build several VC schemes on
top of the BV scheme [17]. Although FS′2 can be instantiated from any linearly
24 When q ≥ O(2λ) is prime, 2n encryptions of 0 are enough (with overwhelming

probability).
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homomorphic hash function (with domain ZN
q ), this is an example of a concrete

candidate.
The hash function consists in interpreting a FS1 ciphertext as a polynomial

in Zq[X][Y ] with degree max(K,n−1) in X and degree 1 in Y , i.e. a ciphertext
ct = (a,B) ∈ Zn

q ×ZK+1
q is associated to polynomial

pct(X,Y ) =
n−1
∑
i=0

aiX
i
+ Y

K

∑
i=0

BiX
i.

Given α and β, two secret values uniformly picked in Z2
q, the hash function is

then simply defined as

FGPα,β .Digest(ct) = pct(α,β) =
n−1
∑
i=0

aiα
i
+

K

∑
i=0

Biβα
i.

This function is trivially linearly homomorphic (and not affine homomorphic).
It is further shown in [32] (Theorem 2) that it is universal one-way for q >
2λ, although not collision resistant. To achieve collision resistance, [31,32] then
extends the hash function to work in the exponent of a multiplicative group G
for which the discrete logarithm is hard, e.g. with a prime modulus M = q + 1,
with q = tp, where p is a suitably large prime (and t is the plaintext modulus25),

F̂GPα,β .Digest(ct) = gpct(α,β) mod M.

where g in a generator of G. Note that [31,32] uses bilinear groups rather
than cyclic groups in order for the homommorphic property to hold for degree-2
functions which we do not need as the present work explicitly focuses on linear-
only homomorphic schemes. In summary, the specification of F̂GP is as follows:

– F̂GP.KeyGen: uniformly pick α,β ∈ Z2
q, choose a prime M as above and a

generator g of Z/MZ.
– F̂GP.Digest: given ct = (a,B) ∈ Zn

q ×ZK+1
q , return

g∑
n−1
i=0 aiα

i+∑K
i=0 Biβα

i

mod M.

– F̂GP.Add: given h,h′ ∈ (Z/pZ)2, return hh′ mod M .
– F̂GP.Mulc: given h ∈ Z/pZ and α ∈ Zq, return hα mod M .

Still, in terms of practical implications, the fact that the LWE ciphertext
modulus connects to the discrete log modulus requires using unusually large
LWE moduli (e.g. compared to Sect. D). As already investigated in [31], there
are protocols in which function FGP, rather than F̂GP, can be used (essentially
when only one FHE calculation is performed). In such cases, the aforementioned
difficulty disappear.
25 It is desirable that t divides q for a number of reasons (including but not limited to

the discussion in Sect. B.4).
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To the best of our knowledge, there are only a very limited number of candi-
date constructions in the state-of-the-art. Other approaches may consider using
the Boneh-Freeman lattice-based linearly homomorphic signature scheme [13]
(modified to authenticate vectors with coefficients over extension fields F2k , as
explained in that paper) or the SWIFFT hash function [45] (although a vari-
ant working over non-binary inputs remains to be defined and studied). Both
approaches would lead to constructions consistently only based on lattices.

J More smudging lemmas

J.1 Gaussian smudging

Lemma 24. Let X denote a centered Gaussian random variable with variance
σ2 and ε > 0, then the statistical distance between the distribution of X and that
of X + ε is bounded by ε√

2πσ
.

Proof. Let fX(x) =
1√
2πσ

e−
x2

2σ2 and fX+ε(x) =
1√
2πσ

e−
(x−ε)2

2σ2 . We have,

fX(x) − fX+ε(x) =
1

√
2πσ

e−
x2

2σ2 −
1

√
2πσ

e−
(x−ε)2

2σ2

=
1

√
2πσ
(e−

x2

2σ2 − e−
x2
−2xε+ε2

2σ2 )

=
e−

x2

2σ2

√
2πσ
(1 − e

2xε−ε2

2σ2 ) .

Then fX(x) − fX+ε(x) ≥ 0 when e
2xε−ε2

2σ2 ≤ 1 i.e., for 2xε−ε2
2σ2 ≤ 0, so

x ≤
ε

2
= ε0.

It thus follows that,

d(fX , fX+ε) =
1

2
∫

+∞

−∞
∣fX(x) − fX+ε(x)∣dx

=
1

2
∫

ε0

−∞
fX(x) − fX+ε(x)dx +

1

2
∫

+∞

ε0
fX+ε(x) − fX(x)dx

= FX(ε0) − FX+ε(ε0)

= FX(0) + ∫
ε0

0
fX(x)dx − (FX+ε(ε) − ∫

ε

ε0
fX+ε(x)dx)

=
1

2
+ ∫

ε0

0
fX(x)dx −

1

2
+ ∫

ε

ε0
fX+ε(x)dx

= 2∫
ε0

0
fX(x)dx

≤ 2fX(0)ε0.

Since 2fX(0)ε0 =
2√
2πσ

ε
2
= ε√

2πσ
, the claim follows.
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Lemma 25. Let ε ∈ [−B,B] be some fixed value and X denote a centered Gaus-
sian random variable with variance σ2 = 22λB2

2π
then d(fX , fX+ε) ≤ neg(λ).

Proof. Following Lemma 24, choosing σ2 such that

2−λ =
∣ε∣
√
2πσ

,

i.e. σ = 2λB√
2π

, leads to

d(fX , fX+ε) ≤ d(fX , fX+B) ≤ 2
−λ.

The above Lemma is useful as it shows that a Gaussian noise with an appro-
priately large variance can “smudge out” a constant value and, more generally,
any random variable following a distribution with a bounded support. We can
further extend it in order to “smudge out” a Gaussian noise, as we do just below.

Lemma 26 (Same as Lemma 4). Let ε and X be centered Gaussian ran-
dom variables with respective variance σ2

0 and σ2
1, with σ2

1 =
(λ+1)22λσ2

0 log 2

π
, then

d(fX , fX+ε) ≤ neg(λ).

Proof. Recall that the Chernoff bound for the Gaussian distribution tells that,

P (∣ε∣ ≥ B) ≤ 2e
− B2

2σ2
0 .

Let us consider B0 such that 2e
− B2

0
2σ2

0 = 2−λ i.e.,

B0 = σ0

√
2(λ + 1) log 2.

Then ε ∈ [−B0,B0] with probability 1 − neg(λ). The claim then follows from
Lemma 25. ⊓⊔

Since neg(λ) = O(2−λ), we eventually get the “Smudging lemma for Gaus-
sians” (e.g. notably used in [49]).

Lemma 27 (Smudging Lemma for Gaussians (SLG)). Let ε and X be
centered Gaussian random variables with respective variances σ2

0 and σ2
1 = 2

2λσ0,
then d(fX , fX+ε) ≤ neg(λ).

J.2 Triangle smudging

Recall that the triangle distribution over J−B,BK is such that

P (X = k) =
B + 1 − ∣k∣

(B + 1)2
.

It is well-known that the triangle distribution is the distribution followed by
the difference of two discrete uniform random variables over J0,BK.
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Lemma 28. Let X be a random variable following the triangle distribution over
J−B,BK and let e ∈ N∗, then d(fX , fX+e) ≤

e+2
B

.

Proof.

d(fX , fX+e) =
1

2

B+e
∑

k=−B
∣P (X = k) − P (X + e = k)∣

=
1

2

⎛

⎝

⌊e/2⌋

∑
k=−B

P (X = k) − P (X + e = k) +
B+e
∑

k=⌊e/2⌋+1
P (X + e = k) − P (X = k)

⎞

⎠

=
1

2
(P (X ≤ ⌊e/2⌋) − P (X + e ≤ ⌊e/2⌋) + P (X + e ≥ ⌊e/2⌋ + 1) − P (X ≥ ⌊e/2⌋ + 1))

= P (X ≤ ⌊e/2⌋) − P (X + e ≤ ⌊e/2⌋)

= P (X ≤ −1) + P (0 ≤X ≤ ⌊e/2⌋) − P (X + e ≤ e − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P (X≤−1)

+P (⌊e/2⌋ + 1 ≤X + e ≤ e − 1)

= P (0 ≤X ≤ ⌊e/2⌋) + P (⌊e/2⌋ + 1 ≤X + e ≤ e − 1)

≤ P (0 ≤X ≤ ⌊e/2⌋) + P (⌈e/2⌉ ≤X + e ≤ e)

≤ P (0 ≤X ≤ ⌊e/2⌋) + P (−⌊e/2⌋ ≤X ≤ 0)

= 2P (0 ≤X ≤ ⌊e/2⌋)

≤ 2P (X = 0)(⌊e/2⌋ + 1)

=
2(⌊e/2⌋ + 1)

B + 1

≤
e + 2

B + 1

≤
e + 2

B
.

⊓⊔

Lemma 29 (Triangle Smudging Lemma). Let B0 and B1 be two positive
integers and let e0 ∈ J−B0,B0K be a fixed integer. Let e1 be chosen following the
triangle distribution in J−B1,B1K, then if B1 ≥ 2

λ(B0+2), the statistical distance
between the distribution of e1 and that of e0 + e1, d(fe1 , fe1+e0), is bounded by
neg(λ).

Proof. Following Lemma 28, we have that

d(fe1 , fe1+e0) ≤
B0 + 2

B1
.

Letting 2−λ = B0+2
B1

leads the claim. ⊓⊔
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