
Bootstrapping GBFV with CKKS

Jaehyung Kim

Stanford University
jaehk@stanford.edu

Abstract. The Generalized BFV [Geelen and Vercauteren; Eurocrypt’25]
is an efficient fully homomorphic encryption scheme that supports in-
teger computations over large cyclotomic moduli. However, the only
known bootstrapping approach cannot support large precision as it uses
BFV linear transformation as a subroutine. In this work, we introduce a
GBFV bootstrapping that relies on CKKS bootstrapping as in the BFV
bootstrapping from CKKS [Kim et al.; CCS’24]. The new bootstrapping
can handle arbitrary precision, notably bootstrapping the CLPX scheme
[Chen et al.; CT-RSA’18] for the first time, bootstrapping up to 500, 000
bits of plaintext modulus in less than 20 seconds. In addition, we intro-
duce conversions between GBFV and CKKS and discuss its impact.

Keywords: GBFV · Bootstrapping · CLPX · CKKS.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptography that allows compu-
tation in an encrypted state. Since Gentry’s first scheme in 2009 [15], many
schemes have been suggested. The BGV [8] and BFV [7, 13] schemes use the
plaintext space Zq[X]/ΦM (X) for a modulus q ∈ Z and a cyclotomic polyno-
mial ΦM (X). To achieve high precision, the CLPX scheme [9] takes quotient
by a linear polynomial X − b ∈ Z[X]/ΦM (X), enabling a large plaintext space
Z[X]/(ΦM (X), X−b) ∼= ZΦM (b) without significant noise growth. Recently, Gee-
len and Vercauteren suggested a generalization of both BFV and CLPX called
generalized BFV (GBFV) [14] that takes the quotient by a more general poly-
nomial, thereby introducing a flexible trade-off between the plaintext modulus
size and the number of slots.

Although the original GBFV paper [14] instantiates a bootstrapping, it fails
to support large precision like the case of CLPX [9]. This stems from the fact
that the GBFV bootstrapping uses BFV linear transformation as a subroutine,
and the noise growth of the linear transformation is proportional to the plaintext
modulus. In this paper, we take a completely different approach. We revisit an
alternative BFV bootstrapping from CKKS bootstrapping [18]. The philosophy
of bootstrapping is that CKKS-bootstrapping the BFV noise results in BFV
bootstrapping. We adopt the same idea: CKKS-bootstrapping the GBFV noise
leads to GBFV bootstrapping, after small modifications.

2 Jaehyung Kim

1.1 Technical Overview

Let N > 1 be a power-of-two integer. Let R = Z[X]/(XN + 1). Given a power-
of-two integer k that divides N and an integer b ̸= 0, we consider a polynomial
t(X) = Xk − b. The GBFV plaintext space is

Rt = R/tR = Z[X]/(XN + 1, Xk − b) ∼= ZbN/k+1/(X
k − b).

Given a plaintext m ∈ Rt, a GBFV ciphertext encrypting m can be written as

ct = (−as+ ⌊(q/t) ·m⌉+ e, a) ∈ R2
q

where s ∈ R is a secret key. In other words, when we inner product ct with (1, s),
we get

ct · (1, s) = ⌊(q/t) ·m⌉+ e,

where we encode m in the most significant bits via the scaling factor q/t and e
is regarded as an error. The goal of the GBFV bootstrapping is to reduce the
size of the error e.

Our key observation is that we can CKKS-bootstrap the error as in [18]. Our
algorithm consists of the following four steps:

1. Error Extraction: It multiplies by t to extract the error,

t · ct = Encs(te+ eRound) ∈ R2
q,

adding a small error eRound.
2. Error Bootstrapping: It CKKS-bootstraps the error, i.e., homomorphi-

cally raise the ciphertext modulus while approximately preserving the un-
derlying message. The result

CKKS.Bootstrap(t · ct) = Encs(te+ eRound + eBTS) ∈ R2
qq′

where q′ ≃ q and eBTS is the CKKS bootstrapping error.
3. Error Recovery: It multiplies ⌊q′/t⌉ and rescale by q′, getting

ct′ = Encs(e+ ⌊(eRound + eBTS)/t⌉+ eRS) ∈ R2
q

where eRS is (roughly) the rescaling error.
4. Subtraction: It subtracts ct′ from the original ciphertext ct, having

Encs(⌊(q/t) ·m⌉+ e′)

where e′ = −⌊(eRound + eBTS)/r⌉ − eRS is small.

This can be written as the following informal theorem.1

Theorem 1 (Informal). Leveraging a p-bit precision CKKS bootstrapping, we
construct a GBFV bootstrapping that reduces the error by p−O(1) bits.
1 The theorem is further specified in Theorem 2 in Section 3.

Bootstrapping GBFV with CKKS 3

Next, we introduce a conversion from GBFV to CKKS and vice versa, ex-
ploring the usage of CKKS operations in the context of GBFV. The conversion
from GBFV to CKKS is approximate in the sense that it decomposes the original
message m ∈ ZbN/k+1[X]/(Xk − b) into its possibly redundant digit-b represen-
tation. We observe that the conversion gives a CKKS ciphertext encrypting a
polynomial of bounded norm and degree, allowing interesting operations despite
the approximate (i.e. unexact) nature. In particular, we discuss the following
two applications:

– Arbitrary Function Evaluation: The straightforward approach to eval-
uate arbitrary functions inside GBFV is to utilize univariate interpolation,
but the polynomial degree is too high, requiring multiple bootstrappings. As
our GBFV-to-CKKS conversion provides an approximate digit decomposi-
tion, we may use multivariate interpolation instead, significantly reducing
the modulus consumption.

– Approximate Modular Reduction: As in [17], one may consider simulat-
ing Zu arithmetic inside ZbN/k+1 to allow a more general modulus. Here we
observe that small polynomials in ZbN/k+1[X]/(Xk−b) convert to polynomi-
als of bounded degree, thereby allowing radix-based approximate modular
reduction.

1.2 Contributions

The main idea of this paper is to leverage CKKS to make GBFV more efficient.
The impact can be summarized as follows.

Large Precision Bootstrapping. Although the GBFV paper [14] instantiated
a bootstrapping, their construction works only for small and specific moduli in
practice, mainly because they rely on the subprocedure of the existing BFV
bootstrapping methods. As the plaintext modulus becomes larger, the modulus
consumption becomes extremely large, failing to be supported within practical
RLWE dimensions like logN ≤ 17. On the other hand, our GBFV bootstrapping
works almost independently of the underlying plaintext modulus, supporting an
arbitrarily large plaintext modulus. Notably, we bootstrap CLPX [9], which is
the special case of GBFV where t(X) = X − b for the first time, bootstrapping
plaintext modulus of size as large as ≃ 500, 000 bits in less than 20 seconds. Note
that this is not only new in the context of GBFV but also in the world of FHE in
general. For instance, the largest plaintext modulus reported for bootstrapping
was ≃ 8, 000 bits in [4], which we improve by roughly two orders of magnitude,
under the same RLWE dimension N = 216.2

Advanced Functionalities. In addition to the efficient GBFV bootstrapping
from CKKS, we explore how the CKKS literature can help support more efficient
2 According to their parameter table, they could have chosen at most 30, 000 bits, but

it is still more than an order of magnitude away.

4 Jaehyung Kim

operations for GBFV. The main ingredient is a conversion from GBFV to CKKS
(and vice versa), which can be regarded as an approximate b-digit decomposi-
tion (resp. recombination). As in the plaintext world, the digit decomposition
can boost many operations. In this work, we mainly discuss arbitrary function
evaluation and approximate modular reduction. Arbitrary function evaluation
can be instantiated with multivariate interpolation over CKKS rather than uni-
variate interpolation over GBFV, greatly improving efficiency such as modulus
consumption. Approximate modular reduction can be used similarly as in [4],
simulating arbitrary modulus computation inside a possibly smooth modulus
bN/k + 1. In addition, modular reduction enables rescaling and therefore fixed
point arithmetic (as in the philosophy of CKKS), allowing efficient large precision
fixed point real number computations.

1.3 Additional Related Works

High Precision FHE. An alternative way to achieve high precision integer
arithmetic is to use the discrete variant of CKKS [12, 3, 17]. In [16], they take
a radix-based approach, efficiently supporting arithmetic over moderate-sized
integers like 32 or 64 bit arithmetic. In [4], they construct a nested CRT sys-
tem inside RLWE to simulate CRT-based large integer arithmetic. One can also
consider high precision CKKS bootstrapping, which bootstraps real numbers
rather than integers. The state-of-the-art high precision CKKS bootstrapping is
META-BTS [2], which is used as a black box in our construction.

Scheme Conversion. The concept of converting FHE schemes from one to the
other for better efficiency is well studied [6, 19]. Not much is known about con-
versions to/from GBFV, and the only known conversion is a conversion between
GBFV and BFV in [14]. Their conversion is approximate as in our case, and
they mainly use it to construct their GBFV bootstrapping.

2 Preliminaries

Let N > 1 be a power-of-two integer. Let R = Z[X]/(XN + 1). Given t ∈ R,
let Rt = R/tR. The infinity norm ∥ · ∥∞ on R denotes the maximum absolute
value among its coefficients. We use the notation ≡q (resp. ≡t) to denote the
modulo q (resp. t) equivalence relation. Unless stated otherwise, [·]q : Z →
Zq = [−q/2, q/2) ∩ Z denotes the (signed) modular reduction by q. Given a
polynomial α(X) ∈ R, there exists a representation α(X) =

∑N−1
i=0 αiX

i. This
gives a natural embedding R → Z[X], and we denote deg(α) to denote the
polynomial degree of the embedded polynomial as an element of Z[X].

Bootstrapping GBFV with CKKS 5

2.1 GBFV basics

Let 1 ≤ k ≤ N be a power-of-two integer and b ∈ Z \ {0,±1} be an integer. Let
t(X) = Xk − b ∈ R be a polynomial and Rt be the plaintext space for GBFV.3
The GBFV scheme description follows [14].

GBFV Encryption. Given a message m ∈ Rt and secret key s ∈ R, the GBFV
encryption of m with secret key s is defined as

GBFV.Encrypt(m, s) = (−a · s+ ⌊∆ ·m⌉+ e, a) ∈ R2
q

where ∆ = q/t is a scaling factor, a ← Rq, and e ← χerr
4. Conversely, given a

ciphertext ct ∈ R2
q, the GBFV decryption of ct by s is defined as

GBFV.Decrypt(ct = (c0, c1), s) = ⌊(c0 + c1 · s)/∆⌉ ∈ Rt.

GBFV Bootstrapping. Let ct = (c0, c1) be a GBFV ciphertext encrypting a
message m ∈ Rt. This means that

(c0, c1) · (1, s) ≡q ⌊∆ ·m⌉+ e

for some small error e ∈ R. The GBFV Bootstrapping significantly reduces
the size of the error while keeping the underlying message m. That is,

GBFV.Bootstrap(ct) · (1, s) ≡q ⌊∆ ·m⌉+ e′

where e′ ≪ e. To quantify this, we can assume that there exists B1, B2 > 0 such
that if the input error e satisfies ∥e∥∞ ≤ B1 then the output error e′ satisfies
∥e′∥∞ ≤ B2 < B1.

2.2 CKKS basics

CKKS Encryption. Given a message m ∈ R[X]/(XN + 1) and secret key
s ∈ R, the (coefficients-encoded) CKKS encryption is defined as

CKKS.Encrypt(m, s) = (−a · s+ ⌊∆′ ·m⌉+ e, a) ∈ R2
q

where ∆′ ∈ R>0 is a scaling factor, a← Rq, and e← χ′
err

5. Conversely, given a
ciphertext ct ∈ R2

q, the CKKS decryption of ct by s is defined as

CKKS.Decrypt(ct = (c0, c1), s) = [c0 + c1 · s]q/∆′ ∈ R[X]/(XN + 1).

The decryption of ct ∈ R2
q without scaling down

[ct · (1, s)]q = ⌊∆′ ·m⌉+ e ∈ R

is called the underlying plaintext of ct.
3 Our idea naturally generalizes to general t ∈ R. We keep t(X) = Xk−b for simplicity.
4 χerr is an error distribution for GBFV.
5 χ′

err is an error distribution for CKKS.

6 Jaehyung Kim

CKKS Rescaling. Given a CKKS ciphertext ct = (c0, c1) ∈ R2
Q, the rescaling

of ct by q | Q is defined as

CKKS.RSq(ct) =

(
c0 − [c0]q

q
,
c1 − [c1]q

q

)
∈ R2

Q/q.

CKKS Bootstrapping. Let ct = (c0, c1) ∈ R2
q be a CKKS ciphertext encrypt-

ing a (erroneous) message m ∈ R[X]/(XN + 1). This means that

[(c0, c1) · (1, s)]q = ∆′ ·m.

The CKKS Bootstrapping [11] significantly increases the modulus while ap-
proximately preserving the message. That is, the result of the bootstrapping
lives in R2

Q for Q≫ q, and satisfies

[CKKS.Bootstrap(ct) · (1, s)]Q = ∆′ ·m+ e

for some small e ∈ R. We often assume that ∥m∥∞ ≤ 1 (so that ∥∆′ ·m∥∞ ≤
∆′ ≪ q) and ∥e/∆′∥∞ ≤ 2−p, and denote the bootstrapping precision as p-bits.

3 Our GBFV Bootstrapping

In [18], they leverage CKKS bootstrapping to bootstrap a BFV ciphertext. This
comes from the idea that CKKS-bootstrapping the BFV error and subtracting it
from the original ciphertext leads to BFV bootstrapping (i.e. reducing the error).
We use the same idea in the case of GBFV. The basic idea remains the same:
CKKS-bootstrapping the GBFV error gives GBFV bootstrapping. However, the
algorithm in [18] does not immediately translate to GBFV due to the difference
in scaling factor shape. To solve this issue, we match the scaling factor via simple
plaintext-ciphertext multiplications before and after bootstrapping.

3.1 Main Algorithm

We start with a GBFV ciphertext ct ∈ R2
q encrypting a message m ∈ Rt. In

other words, we have
ct · (1, s) ≡q ⌊∆ ·m⌉+ e

where ∆ = q/t and e ∈ R is the underlying error. Since ∆ · t = 0 modulo q,
multiplying ct by t extracts the error. That is, ct′ = t · ct ∈ R2

q satisfies

[ct′ · (1, s)]q = te+ eRound

for some small error eRound. Next, we CKKS-bootstrap the error ciphertext ct′

to a modulus qq′ where q′ ≃ q. The resulting ciphertext ct′′ ∈ R2
qq′ satisfies

[ct′′ · (1, s)]qq′ = te+ eRound + eBTS

Bootstrapping GBFV with CKKS 7

for some small bootstrapping error eBTS. Finally, we multiply this ciphertext by
⌊q′/t⌉ and rescale by q′, approximately dividing the underlying message by t.
Since q′ ≃ q, q′/t has enough precision and leads to correct division by t. Thus,
the resulting ciphertext ct′′′ ∈ R2

q satisfies

[ct′′′ · (1, s)]q = e− e′

for some small error e′ ≪ e. By subtracting ct′′′ from the original ciphertext
ct, we get ctout whose underlying error e′ is significantly smaller than the initial
error e. We illustrate the detailed algorithm in Algorithm 1.

Algorithm 1: GBFV Bootstrapping from CKKS
Setting: ∆ = q/t, q′ ≃ q. CKKS.Bootstrap : R2

q →R2
qq′ introduces a small

error eBTS.
Input : ct = (c0, c1) ∈ R2

q such that ct · (1, s) ≡q ⌊∆ ·m⌉+ e.
Output: ctout = (c′0, c

′
1) ∈ R2

q such that ctout · (1, s) ≡q ⌊∆ ·m⌉+ e′, s.t. e′ ≪ e.
1 ct′ ← t · ct ∈ R2

q;
2 ct′′ ← CKKS.Bootstrap(ct′) ∈ R2

qq′ ;
3 ct′′′ ← CKKS.RSq′(⌊q′/t⌉ · ct′) ∈ R2

q;
4 ctout ← ct− ct′′′ ∈ R2

q;
5 return ctout

Theorem 2 (Bootstrapping Correctness). Let CKKS.Bootstrap : R2
q →

R2
qq′ be a CKKS bootstrapping that inputs a CKKS ciphertext encrypting a

plaintext in [−B1, B1]
N ⊆ R and introducing an error in [−B2, B2]

N ⊆ R.6
Then the Algorithm 1 gives a GBFV bootstrapping whose input error is in
[−B1/(|b|+ 1) + 1/2, B1/(|b|+ 1)− 1/2]N and output error e′ satisfies

∥e′∥∞ ≤ B2 +
|b|+ h+ 3

2
+

N

2q′
· (B1 +B2)

reducing the error by log2(B1/B2)−Oq(1) bits assuming that q′ ≫ N .7 In other
words, a p-bit precision CKKS bootstrapping gives a GBFV bootstrapping whose
error ratio is p−O(1) bits.

Proof. Let ct = (c0, c1) ∈ R2
q be a GBFV ciphertext such that

ct · (1, s) ≡q ⌊∆ ·m⌉+ e

6 Here we consider a natural embedding [−Bi, Bi] ⊆ RN ≃−→ R.
7 Here h is the secret key Hamming weight.

8 Jaehyung Kim

for a message m ∈ Rt and an error e ∈ R satisfying ∥e∥∞ ≤ B1/(|b|+ 1)− 1/2.
Since t(X) = Xk − b, we have that

∥te∥∞ = ∥(Xk − b) · e(X)∥∞
≤ ∥Xk · e(X)∥∞ + ∥b · e(X)∥∞

= (|b|+ 1) · ∥e∥∞ ≤ B1 −
|b|+ 1

2
.

The rounding error eRound is defined as

eRound = t · (∆ ·m− ⌊∆ ·m⌉)

and satisfies

∥eRound∥∞ ≤ (|b|+ 1) · ∥∆ ·m− ⌊∆ ·m⌉∥∞ ≤
|b|+ 1

2
.

Thus by triangular inequality, we have

∥te+ eRound∥∞ ≤ B1,

becoming a valid input of CKKS.Bootstrap. It ensures that the bootstrapping
error eBTS satisfies ∥eBTS∥∞ ≤ B2. In addition, we have

[ct′′′ · (1, s)]q =
(te+ eRound + eBTS) · ⌊q′/t⌉

q′
+ eRS

=
(te+ eRound + eBTS) · (q′/t− (q′/t− ⌊q′/t⌉))

q′
+ eRS

= e+ (eRound + eBTS)/t−
(te+ eRound + eBTS) · (q′/t− ⌊q′/t⌉)

q′
+ eRS

= e− e′.

Here eRS is the rescaling error that satisfies

∥eRS∥∞ ≤
h+ 2

2

where h is the secret key Hamming weight.8 The final error e′ satisfies

∥e′∥∞ ≤ ∥(eRound + eBTS)/t∥∞ +
N

2q′
· ∥te+ eRound + eBTS∥∞ + ∥eRS∥∞

≤ ∥eRound∥∞ + ∥eBTS∥∞ +
N

2q′
· (∥te+ eRound∥∞ + ∥eBTS∥∞) + ∥eRS∥∞

≤ |b|+ h+ 3

2
+B2 +

N

2q′
· (B1 +B2).

8 See [10, Theorem 3.2] for proof.

Bootstrapping GBFV with CKKS 9

In the second inequality, we use the fact that |b| ≥ 2 so that

∥t · α(X)∥∞ = ∥(Xk − b) · α(X)∥∞
= max

0≤i<N
|bαi − αi−k|

≥ max
0≤i<N

|αi| = ∥α(X)∥∞

for all α(X) ∈ Q[X]/(XN + 1). This finishes the proof. ⊓⊔

3.2 Efficiency Discussions

We briefly discuss how the performance of our bootstrapping is affected by dif-
ferent parameters.

META-BTS [2] The most important metric for GBFV bootstrapping perfor-
mance is the denoising factor (defined in [18] for BFV), which can be defined as
the ratio between input and output GBFV noises. As noise grows after each mul-
tiplication, the denoising factor corresponds to the multiplicative depth between
two consecutive bootstrappings. Theorem 2 asserts that the denoising factor is
proportional to the CKKS bootstrapping precision. Hence, the higher the CKKS
bootstrapping precision, the higher the GBFV multiplicative depth. The state-
of-the-art method for high-precision CKKS bootstrapping is META-BTS [2],
which iteratively bootstraps the errors to achieve higher precision. In particular,
the bootstrapping precision is proportional to the number of iterations.

Theorem 3 (Theorem 3.2 of [2], Simplified). Given a p-bit precision CKKS
bootstrapping BTS : R2

q → R2
Q, we may iterate BTS k times and achieve kp-bit

precision CKKS bootstrapping BTS(k) : R2(k−1)p·q → R2
Q.

When combined with the correctness theorem, we get the following informal
statement:

Corollary 1 (Bootstrapping Efficiency, Informal). Given a CKKS boot-
strapping with p-bits of bootstrapping precision, we may iterate the bootstrap-
ping k ≥ 1 times to construct a GBFV bootstrapping whose denoising factor is
O(k) = kp−O(1) bits and computational complexity is O(k).

See [18, Section 5.2] for more details, as most of the discussions in the section
are also applicable in our GBFV bootstrapping.

The Choice of b. In practice, we can freely choose t(X) = Xk − b so that we
have a plaintext modulus of bN/k +1 and k slots. The parameter k introduces a
trade-off between plaintext modulus size and the number of slots, while b does
not affect the number of slots. When aiming for high precision, one may increase
|b| instead of decreasing k. Theorem 2 says that the bootstrapping input and
output error bounds are functions of b.

10 Jaehyung Kim

Theorem 4 (Theorem 2, Simplified). Given a fixed CKKS bootstrapping
algorithm, the input error bound is Ω(1/|b|) and the output error bound is O(|b|),
thereby having O(1)−O(log(|b|) denoising factor.

Since the plaintext modulus bN/k + 1 is of size O(log(b)) bits, the amount of
increase in plaintext modulus bit size is linear in denoising factor decrease in bits.
Concretely, since N/k can easily achieve thousands of bits already, choosing a
very large b does not help much as it would increase the bootstrapping parameter
which is worse. The rough behavior or error growth can be observed in Table 2.

4 Conversion between GBFV and CKKS

In this section, we describe how to convert a GBFV ciphertext into a CKKS
ciphertext and vice versa, and what it provides in terms of functionality. This
somewhat generalizes the algorithm in the previous section.

4.1 Conversions

Unlike GBFV to BFV conversion in [14], we identify a GBFV ciphertext with a
corresponding digit-wise representation in CKKS. We first elaborate on this.

Definition 1 (Flatten [14]). We identify an element in Rt as an element in R
via the embedding Flatten : Rt → R defined as

Flatten(m) = t ·
[m
t

]
1

where [·]1 denotes the (signed) modulo 1 function. It satisfies Flatten(m) ≡t m.

Theorem 5. Let ct = (c0, c1) ∈ R2
q be a GBFV ciphertext encrypting a message

m ∈ Rt, satisfying
ct · (1, s) ≡q ⌊∆ ·m⌉+ e

and ∥e∥∞ < q/2. Then we have

[ct · (1, s)]q = ⌊∆ · Flatten(m)⌉+ q · I + e

where I ∈ R is a small polynomial satisfying ∥I∥∞ ≤ 1.

Proof. By definition,

[ct · (1, s)]q = [⌊∆ ·m⌉+ e]q

= [⌊(q/t) · Flatten(m)⌉+ e]q

=
[⌊
q ·
[m
t

]
1

⌉
+ e
]
q
=
⌊
q ·
[m
t

]
1

⌉
+ q · I + e

Bootstrapping GBFV with CKKS 11

for some I ∈ R. Note that

I =
1

q
·
([⌊

q ·
[m
t

]
1

⌉
+ e
]
q
−
⌊
q ·
[m
t

]
1

⌉
− e

)
= −

⌊⌊
q ·
[
m
t

]
1

⌉
+ e

q

⌉
.

Since ∥[m/t]1∥∞ ≤ 1/2, we have that∥∥∥⌊q · [m
t

]
1

⌉
+ e
∥∥∥
∞
≤ q

2
+ ∥e∥∞ < q.

Therefore, ∥I∥∞ ≤ 1 as desired. ⊓⊔

If the size of the message is small, we get a stronger result.

Lemma 1. Let m ∈ ZbN/k+1[X]/(Xk−b) ≃ Rt be a polynomial. If ∥m∥∞ ≤ |b|ℓ
for some ℓ < N/k, then deg(Flatten(m)) ≤ k(ℓ+ 1)− 1.

Proof. Let m(X) =
∑k−1

i=0 miX
i, where |mi| ≤ |b|ℓ for each 0 ≤ i ≤ k − 1. By

the definition of Flatten, we have

Flatten(m) = t ·
[m
t

]
1
= t ·

(m
t
−
⌊m
t

⌉)
= m− t ·

⌊m
t

⌉
= m(X)− (b−Xk) ·

⌊
bN/k−1 + bN/k−2 ·Xk + · · ·+XN−k

bN/k + 1
·

(
k−1∑
i=0

miX
i

)⌉

= m(X)− (b−Xk) ·

N/k−1∑
j=0

k−1∑
i=0

bN/k−j−1 ·mi

bN/k + 1
·Xkj+i


= m(X)− (b−Xk) · α(X)

where α(X) ∈ Q[X]/(XN + 1). Since |mi| ≤ |b|ℓ and |b| ≥ 2,∣∣∣∣bN/k−j−1 ·mi

bN/k + 1

∣∣∣∣ < ∣∣∣∣bN/k−j−1 · bℓ

bN/k

∣∣∣∣ = |b|ℓ−j−1 ≤ 1/2

for all j ≥ ℓ. This means that deg(α(X)) ≤ kℓ− 1, leading to deg(Flatten(m)) ≤
k(ℓ+ 1)− 1 as desired. ⊓⊔

Theorem 6. Let ct = (c0, c1) ∈ R2
q be a GBFV ciphertext encrypting a message

m ∈ Rt, satisfying
ct · (1, s) ≡q ⌊∆ ·m⌉+ e,

∥m∥∞ ≤ |b|ℓ for some ℓ < N/k as an element of ZbN/k+1[X]/(Xk− b) ≃ Rt and
∥e∥∞ < q/4. Then we have

[ct · (1, s)]q = ⌊∆ · Flatten(m)⌉+ q · I + e

where I ∈ R is a small polynomial satisfying ∥I∥∞ ≤ 1 and deg(I) ≤ k(ℓ+1)−1.

12 Jaehyung Kim

Proof. As in the proof of Theorem 5, we have

[ct · (1, s)]q =
⌊
q ·
[m
t

]⌉
+ q · I + e

for some I ∈ R. Note that

I = −

⌊⌊
q ·
[
m
t

]
1

⌉
+ e

q

⌉
.

As in the proof of Lemma 1, the coefficient of the term Xkj+i (0 ≤ j < N/k,
0 ≤ i < k) is

−
⌊
⌊q · bN/k−j−1 ·mi/(b

N/k + 1)⌉+ ei
q

⌉
= 0

if j ≥ ℓ+ 1 where e =
∑N−1

i=0 eiX
i. Here we use the fact that∣∣∣q · bN/k−j−1 ·mi/(b

N/k + 1)
∣∣∣ < |b|ℓ−j−1 ≤ q/4

and |ei| < q/4. Hence, deg(I) ≤ k(ℓ + 1) − 1. The fact that ∥I∥∞ ≤ 1 directly
follows from Theorem 5. ⊓⊔

Next, we consider a variant of CKKS bootstrapping that allows messages to
be put in the most significant bits. Such bootstrapping can be instantiated as
in [17] via the iterative discrete bootstrapping. Theorem 5 and 6, when compiled
with this CKKS bootstrapping, give a conversion from GBFV to CKKS:

Algorithm 2: GBFV to CKKS Conversion
Setting: ∆ = q/t, ∆′ = q. CKKS.Bootstrap : R2

q →R2
Q introduces a small

error eBTS.
Input : ct = (c0, c1) ∈ R2

q such that ct · (1, s) ≡q ⌊∆ ·m⌉+ e.
Output: ctout = (c′0, c

′
1) ∈ R2

q such that
[ctout · (1, s)]q = ⌊q · Flatten(m)⌉+ q · t · I + e′, ∥I∥∞ ≤ 1.

1 ctout ← t · CKKS.Bootstrap(ct);
2 return ctout

Theorem 7 (GBFV to CKKS). Let ct = (c0, c1) ∈ R2
q be a GBFV ciphertext

encrypting a message m ∈ Rt. That is,

ct · (1, s) ≡q ⌊∆ ·m⌉+ e

for a scaling factor ∆ = q/t and some small error e ∈ R satisfying ∥e∥∞ ≪
q/2. Let CKKS.Bootstrap : R2

q → R2
Q be a CKKS bootstrapping accepting any

input plaintext in [−q/2, q/2)N . Then t · CKKS.Bootstrap(ct) ∈ R2
Q is a CKKS

Bootstrapping GBFV with CKKS 13

ciphertext encrypting Flatten(m)+t·I with scaling factor q where I ∈ R is a small
polynomial satisfying ∥I∥∞ ≤ 1. Furthermore, if ∥m∥∞ ≤ |b|ℓ as an element of
ZbN/k+1[X]/(Xk − b) for some ℓ < N/k, then deg(Flatten(m)) ≤ k(ℓ + 1) − 1
and deg(I) ≤ k(ℓ+ 1)− 1.

Proof. By Theorem 5, we observe that

[ct · (1, s)]q = ⌊∆ · Flatten(m)⌉+ q · I + e

for some I ∈ R satisfying ∥I∥∞ ≤ 1. Hence, ct can be regarded as a CKKS
ciphertext encrypting a plaintext ⌊∆ · Flatten(m)⌉+ q · I + e. In the case where
∥m∥∞ ≤ |b|ℓ, we have deg(I) ≤ k(ℓ+1)−1 in addition, by Theorem 6. Next, the
CKKS bootstrapping CKKS.Bootstrap raises the modulus while approximately
preserving the underlying plaintext, thereby giving ct′ satisfying

[ct′ · (1, s)]Q = ⌊∆ · Flatten(m)⌉+ q · I + e+ eBTS

where eBTS is the bootstrapping error. When multiplied by t, we have

[t · ct′ · (1, s)]Q = q · (Flatten(m) + t · I) + t · (e+ eBTS) + eRound

for some small rounding error as in Section 3. Since t ·(e+eBTS)+eRound is small,
the ciphertext t · ct′ can be regarded as a CKKS ciphertext with scaling factor
q and message Flatten(m) + t · I. ⊓⊔

The backward conversion, CKKS to GBFV, can be defined more easily
through a simple modulus switching.

Theorem 8 (CKKS to GBFV). Let ct = (c1, c1) ∈ R2
qq′ be a CKKS cipher-

text encrypting a message Flatten(m) + t · I where m ∈ Rt, I ∈ R satisfying
∥I∥∞ ≤ B, q′ ≃ q, and B = Oq(1). That is,

[ct · (1, s)]qq′ = q · (Flatten(m) + t · I) + e

for some small error e ∈ R. Then CKKS.RSq′(⌊q′/t⌉ · ct) ∈ R2
q can be regarded

as a GBFV ciphertext encrypting m ∈ Rt.

Proof. We first observe that

⌊q′/t⌉ · ct · (1, s) ≡qq′ ⌊q′/t⌉ · q · (Flatten(m) + t · I) + ⌊q′/t⌉ · e
≡qq′ ⌊q′/t⌉ · q · Flatten(m) + (q′/t) · q · t · I + ⌊q′/t⌉ · e+ e′

≡qq′ ⌊q′/t⌉ · q · Flatten(m) + e′′

where e′ = [q′/t]1 · q · t · I and e′′ = ⌊q′/t⌉ · e + e′. After rescaling by q′, the
resulting ciphertext ct′ = CKKS.RSq′(⌊q′/t⌉ · ct) satisfies

ct′ · (1, s) ≡q ⌊(q/t) · Flatten(m)⌉+ e′′′ + ⌊e′′/q′⌉+ eRS

14 Jaehyung Kim

where

e′′′ = ⌊(q/t) · Flatten(m)⌉ − ⌊⌊q′/t⌉ · q · Flatten(m)/q′⌉
≃ (q/t) · Flatten(m)⌉ − ⌊q′/t⌉ · q · Flatten(m)/q′

= [q′/t]1 · (q/q′) · Flatten(m) = Oq(1)

and eRS is the rescaling error. Since

⌊(q/t) · Flatten(m)⌉ ≡q ⌊(q/t) ·m⌉

by definition, it remains to prove that the error ⌊e′′/q′⌉ is small. For this, we
check that

⌊e′′/q′⌉ ≃ e′′/q′ = (⌊q′/t⌉ · e+ e′)/q′

≃ e/t+ e′/q′ = e/t+ ⌊q′/t⌉1 · q · t · I/q′

= e/t+ (q/q′) · (⌊q′/t⌉1 · t · I) = Oq(1)

which is small. This finishes the proof. ⊓⊔

Corollary 2 (Conversion Correctness). Let ct = (c0, c1) ∈ R2
q be a GBFV

ciphertext encrypting a message m ∈ Rt. If we apply the CKKS-to-GBFV con-
version : R2

q → R2
qq′ and the GBFV-to-CKKS converison : R2

qq′ → R2
q, the

resulting GBFV ciphertext encrypts the same message m as before.

Proof. The proof directly follows from Theorem 5 and 6. ⊓⊔

4.2 Applications

In this subsection, we discuss two applications of our conversion framework,
arbitrary function evaluation and (approximate) modular reduction.

Arbitrary Function Evaluation. The first application of our conversions is
the arbitrary function evaluation. At a high level, we use the GBFV-to-CKKS
conversion as an approximate digit decomposition, thereby utilizing multivariate
interpolation rather than univariate interpolation (which is the case of GBFV).

Lemma 2. Let m ∈ Rt. Then ∥Flatten(m)∥∞ ≤ (|b|+ 1)/2.

Proof. By definition,

∥Flatten(m)∥∞ =
∥∥∥t · [m

t

]
1

∥∥∥
∞

=
∥∥∥(Xk − b) ·

[m
t

]∥∥∥
∞

≤ (|b|+ 1) ·
∥∥∥[m

t

]∥∥∥
∞
≤ (|b|+ 1)/2.

The first inequality is from the triangular inequality. ⊓⊔

Bootstrapping GBFV with CKKS 15

Corollary 3. Let ct = (c0, c1) ∈ R2
q be a GBFV ciphertext encrypting a message

m ∈ Rt, and ct′ be the output of the GBFV-to-CKKS conversion on ct. Let
m′ = Flatten(m)+ t · I ∈ R be the underlying message as in Theorem 5, then we
have ∥m′∥∞ ≤ 3(|b|+ 1)/2.

Proof. By Theorem 5 and Lemma 2, we have

∥m′∥∞ = ∥Flatten(m) + t · I∥∞
= ∥Flatten(m) + (Xk − b) · I∥∞
≤ ∥Flatten(m)∥∞ + (|b|+ 1) · ∥I∥∞ ≤ 3(|b|+ 1)/2.

This finishes the proof. ⊓⊔

When the plaintext modulus p = bN/k + 1 is a prime, the naive GBFV
approach needs to evaluate a univariate interpolation of degree p. Instead, we
may first decompose the GBFV ciphertext into digits by using our GBFV-to-
CKKS conversion, and perform a multivariate interpolation of individual degree
≤ 2∥m′∥∞+1 ≤ 3|b|+4. The multiplicative depth reduces from log2(b

N/k+1) ≃
(N/k) · log2(|b|) to log2(N/k) + log2(3|b|+ 4), achieving logarithmic asymptotic
in N/k. In addition, one may use the discrete CKKS framework [12, 3], which
supports more efficient bootstrapping than GBFV in large parameters.

Modular Reduction. One of the important applications of GBFV is large
integer arithmetic, as we can choose a sufficiently large plaintext modulus bN/k+1
and simulate integer arithmetic inside the ring ZbN/k+1. In addition, one may
want to simulate Zu arithmetic for u < bN/k + 1, as in the recent work on large
integer computations with discrete CKKS [4]. Our construction leverages GBFV
and CKKS to handle Zu arithmetic inside ZbN/k+1.

Lemma 3. Let u < |b|ℓ be a positive integer for some ℓ < N/k. Let Ω =∑ℓ−1
i=0 ωi · bi be a (redundant) b-digit representation of Ω ∈ Z, where |wi| ≤ B

for each i. Then

Ω′ =

ℓ−1∑
i=0

wi · [bi]u

satisfies Ω′ ≡u Ω and
|Ω′| ≤ Buℓ/2.

Proof. By definition of Ω′,

Ω′ =

ℓ−1∑
i=0

wi · [bi]u ≡u

ℓ−1∑
i=0

wi · bi.

For the upper bound of Ω′,

|Ω′| ≤
ℓ−1∑
i=0

B · (u/2) = Buℓ/2.

This finishes to proof. ⊓⊔

16 Jaehyung Kim

We apply the algorithm of Lemma 3 to the output of Algorithm 2. Let u < |b|ℓ
for some ℓ < N/k. Let Φ(X) =

∑N−1
i=0 φi · Xi ∈ R satisfies |φi| ≤ B for some

B > 0 and deg(Φ) ≤ k(ℓ+ 2)− 1. Φ corresponds to

Φ̌(X) =

k−1∑
i=0

ℓ+1∑
j=0

φkj+i · bj
 ·Xi =

k−1∑
i=0

Ωi ·Xi ∈ ZbN/k+1[X]/(Xk − b).

We may precompute [bi]u for 0 ≤ i ≤ ℓ + 1 in advance and represent it as a
b-digit form

[bi]u =

ℓ−1∑
j=0

βij · bj .

Next, we replace b with Xk and get

Φ′(X) =

k−1∑
i=0

ℓ+1∑
j=0

(
φkj+i ·

(
ℓ−1∑
v=0

βjv ·Xkv

))
·Xi

 (1)

=

k−1∑
i=0

ℓ−1∑
v=0

ℓ+1∑
j=0

φkj+i · βjv

 ·Xkv+i ∈ R

 . (2)

which is an approximate modular reduction of Φ with respect to our encoding.
As we described our algorithm in terms of plaintext polynomials in R, it

remains to translate it into ciphertext arithmetic. In CKKS, such an operation
on plaintexts can be represented as a homomorphic linear transformation, which
is very efficient. Let LinTrans be the corresponding homomorphic linear trans-
formation. The correctness of the algorithm, i.e., that applying Lemma 3 homo-
morphically gives the correct modular reduction, mainly relies on the following
Lemma.

Lemma 4. Let m ∈ Rt satisfies ∥m∥∞ ≤ |b|ℓ as an element of ZbN/k+1[X]/(Xk−
b) for some ℓ < N/k − 4. Let m̃ ∈ Z[X]/(Xk − b) be a natural embedding of m
via the signed embedding ZbN/k+1 = [−(bN/k + 1)/2, (bN/k + 1)/2) ↪→ Z. Let
m′ = Flatten(m)+ t ·I ∈ R satisfies I ∈ R, ∥I∥∞ ≤ 1, and deg(I) ≤ k(ℓ+1)−1.
Let m̃′ ∈ Z[X] be a natural embedding of m′ via R = Z[X]/(XN + 1) ↪→ Z[X].
Then we have

[m̃′]t = m̃

as an element of Z[X]/(Xk − b).

Proof. We write m′ ∈ R as

m′(X) =

N−1∑
i=0

µiX
i =

k−1∑
i=0

N/k−1∑
j=0

µkj+iX
kj

Xi

Bootstrapping GBFV with CKKS 17

which gives m̃′(X) =
∑N−1

i=0 Xi. Then we have

[m̃′]t = [m̃′]Xk−b =

k−1∑
i=0

N/k−1∑
j=0

µkj+i · bj
 ·Xi ∈ Z[X]/(Xk − b).

Since

deg(m′) ≤ max(deg(Flatten(m)),deg(t) + deg(I)) ≤ k(ℓ+ 2)− 1

and
∥m′∥∞ ≤ ∥Flatten(m)∥∞ + (|b|+ 1) · ∥I∥∞ ≤ 3(|b|+ 1)/2

(as in the proof of Corollary 3), we have that

∥[m̃′]t∥∞ ≤ max
i

N/k−1∑
j=0

|µkj+i| · |b|j


= max
i

ℓ+1∑
j=0

|µkj+i| · |b|i


≤
ℓ∑

j=0

3(|b|+ 1) · |b|i/2 =
3(|b|+ 1) · (|b|ℓ+1 − 1)

2(|b| − 1)

≤ |b|ℓ+4 < (bN/k + 1)/2 (∵ |b| ≥ 2, ℓ < N/k − 4).

In addition, we check that

[[m̃′]t]bN/k+1 = [[m̃′]t]XN+1

= [[m̃′]XN+1]t

= [Flatten(m) + t · I]t ≡t m.

Therefore, [m̃′]t ∈ Z[X]/(Xk − b) is a representation of m with normalized
coefficients, meaning that it should be equal to m̃. ⊓⊔

Now we are ready to describe our approximate modular reduction leveraging
CKKS, which we describe in Algorithm 3.

Theorem 9 (Modular Reduction). Let ct = (c0, c1) be a GBFV ciphertext
encrypting m ∈ Rt which satisfies ∥m∥∞ < |b|ℓ as an element of ZbN/k+1[X]/(Xk−
b) for some ℓ < N/k− 4. Then the output of Algorithm 3 is a GBFV ciphertext
encrypting m′ = m + u · J ∈ ZbN/k+1[X]/(Xk − b) for some small integral J
satisfying ∥J∥∞ ≤ 3(|b|+ 1)u(ℓ+ 2)/2.

Proof. After GBFV-to-CKKS, we have a CKKS ciphertext encrypting m′ =
Flatten(m) + t · I with scaling factor q where I ∈ R is a small polynomial
satisfying ∥I∥∞ ≤ 1 and deg(m′) ≤ k(ℓ+ 2)− 1 (from Theorem 6). In addition,
Corollary 3 gives the upper bound ∥m′∥∞ ≤ 3(|b|+ 1)/2.

18 Jaehyung Kim

Algorithm 3: Approximate Modular Reduction through CKKS
Setting: ∆ = q/t. q′ ≃ q and Q≫ q. GBFV-to-CKKS : R2

q →R2
Q and

CKKS-to-GBFV : R2
qq′ →R2

q are conversions from GBFV to CKKS
and vice versa, as in the previous subsection. The integer u > 0
which we want to take the modular reduction. Let LinTrans be the
homomorphic linear transformation as defined previously.

Input : ct = (c0, c1) ∈ R2
q such that ct · (1, s) ≡q ⌊∆ ·m⌉+ e, where

∥m∥∞ < |b|ℓ as an element of ZbN/k+1[X]/(Xk − b) for some
ℓ < N/k − 4.

Output: ctout = (c′0, c
′
1) ∈ R2

q such that ctout · (1, s) ≡q ⌊∆ ·m′⌉+ e′ for some
m ∈ Rt such that m ≡u m′ as an element of Z[X]/(Xk − b) and
∥m′∥∞ ≪ ∥m∥∞.

1 ctout ← CKKS-to-GBFV ◦ LinTrans ◦ GBFV-to-CKKS(ct);
2 return ctout

Next, applying LinTrans performs Lemma 3 in a vectorized manner, thereby
homomorphically getting approximate modular reduction with upper bound
(3(|b|+ 1)/2) · u · (ℓ+ 2). Here, Lemma 4 ensures that there is no overflow (i.e.
wrapping around modulo bN/k + 1) so that the correctness is guaranteed.

Finally, we convert the mod-reduced CKKS ciphertext into a GBFV ci-
phertext. The input CKKS ciphertext can be regarded as a valid encryption
of Flatten(m′) + t · I ′ for some m′ and I ′, where m′ ≡u m as an element of
ZbN/k+1[X]/(Xk − b) and ∥m′∥∞ ≤ 3(|b|+1)u(ℓ+2)/2. To be correctly be con-
verted to a GBFV ciphertext, ∥I∥∞ needs to be bounded (see Theorem 8). To
check this, we revisit Line (2) where we computed Φ′ for modular reduction. The
upper bound is computed as

∥Φ′∥∞ = max
i,v

ℓ+1∑
j=0

φkj+i · βjv


≤ (ℓ+ 2) ·max

i
|φi| ·max

j
|βj |

≤ (ℓ+ 2) · (3(|b|+ 1)/2) · (|b|/2)
= |b|(3|b|+ 1)(ℓ+ 2)/4 = Oq(1)

which is small. This finishes the proof. ⊓⊔

5 Experimental Results

We provide proof-of-concept implementation results for our GBFV bootstrap-
ping in Section 3. Our code is built upon the golang lattigo library [1] and all
our experiments are taken single-threaded over an Apple M4 Max processor with
128GB of RAM running macOS Sequoia 15.4.1. All of our parameters satisfy 128
bits of security according to [5]. All the experiments are measured after at least
20 iterations.

Bootstrapping GBFV with CKKS 19

5.1 Bootstrapping GBFV

We first describe the FHE parameter set used in the experiments. As in Sec-
tion 3, we denote q for the GBFV modulus which is the input modulus for
CKKS.Bootstrap : R2

q → R2
qq′ , and denote qq′ for the output modulus of CKKS.Bootstrap.

We choose q to be a product of a 60-bit NTT prime and a 45-bit NTT prime,
and q′ to be a product of two 45 bit primes. Using META-BTS [2], this param-
eter supports ≃ 80-bit precision CKKS bootstrapping within ≃ 18 seconds. The
detailed information is written in Table 1.

Table 1. The FHE parameter set we used for the experiments. Here N denotes the
ring dimension, QP denotes the maximum switching key modulus, (h, h̃) denote the
dense and spare Hamming weights for the sparse secret encapsulation [5], respectively, q
denotes the GBFV modulus (= CKKS bootstrapping input modulus), and qq′ denotes
the CKKS bootstrapping output modulus.

logN logQP (h, h̃) log q log q′

16 1288 (192, 32) 60 + 45 45× 2

We test our main bootstrapping algorithm in Algorithm 1 by using the CKKS
bootstrapping as a black box. In particular, we change the combination of b, k
for t(X) = Xk − b, providing various parameter choices. The bootstrapping
time and the denoising factor remained almost the same as we rely on the same
CKKS bootstrapping. We first fix b = 2 and change k, which provides a different
plaintext modulus bN/k+1 and maximum number of slots k, introducing a trade-
off between the modulus size and the number of slots. Second, we fix k = 1 (i.e.
bootstrapping CLPX [9]) and change b, which gives different plaintext moduli
bN + 1. Such choices support extremely large moduli. For instance, for b = 32
and N = 216, the plaintext modulus is log2(322

16

+1) ≃ 5 ·216 bits. The detailed
results are illustrated in Table 2.

5.2 Comparison with Prior Works

First, we concretely compare our results with the only existing GBFV boot-
strapping in [14]. As they only provide plaintext modulus p = 216 + 1 case, we
compare it with our result for plaintext modulus p. In [14], they discuss two op-
timization strategies for latency and throughput. We compared our results with
both types. When compared to N = 214 (resp. N = 215) implementations of [14],
our work achieves a similar denoising factor (resp. number of slots). However, in
either case, our method loses significantly in terms of latency or denoising factor,
respectively. Therefore, the bootstrapping of [14] remains competitive for small
modulus like p = 216 + 1.

When it comes to larger modulus, the GBFV bootstrapping in [14] performs
significantly worse than our method. The key reason is that they use BFV linear
transformation as a subroutine, which means that at some point the plaintext

20 Jaehyung Kim

Table 2. GBFV Bootstrapping Experimental Results. Here t(X) = Xk − b, TBTS

denotes the GBFV bootstrapping time, and the denoising factor denotes log(B1/B2)
where B1 and B2 are the input and output error upper bound, respectively.

b k TBTS (sec) Denoising Factor (bits)

2

1 18.4 77.1
4 18.5 77.3
16 18.4 77.3
64 18.3 77.3
256 18.5 77.2
1024 18.4 77.2
4096 18.4 77.1

4

1

18.4 77.4
8 18.4 74.7
16 18.4 74.1
32 17.9 74.1
256 18.4 70.8

Table 3. Comparison with [14] on modulus p = 216 + 1. The figures are borrowed
from [14, Table 1 and 3], including both single and batch bootstrappings.

N # slots TBTS (sec) Denoising Factor (bits)

[14] 214

1024 1.94 124
2048 1.98 115
4096 1.98 90
8192 2.01 38

215 32768 13.24 374

Ours 216 32768 18.4 70.1

space becomes ZbN/k+1 as a BFV ciphertext. In particular, if N/k is very large
(e.g. CLPX [9] where k = 1), the modulus consumption during BFV linear
transformation is O(bN/k + 1) which is not affordable for practical RLWE di-
mensions. In this regard, our bootstrapping is the first GBFV bootstrapping
that can support an arbitrary plaintext modulus.

When the target is achieving large precision bootstrapping within a single
RLWE ciphertext, one may compare our method with the state-of-the-art high
precision bootstrapping in [4]. Asymptotically, both works support the same
maximum precision O(N) bits. In practice, our method supports much larger
moduli as we do not lose modulus from embedding smaller moduli into larger
moduli. Concretely, the maximum reported plaintext modulus in [4] is 7 679 bits,
and the theoretical maximum is ≃ 30 000 bits. On the other hand, we support up
to 219 = 524 288 bits9 which is more than an order of magnitude better, within
the same RLWE dimension N = 216. Nevertheless, this does not mean that our

9 In the case of b = 256 and k = 1, as in Table 2. log2(b
N/k + 1) ≃ (N/k) · log2(b) =

216 · 8 = 219.

Bootstrapping GBFV with CKKS 21

scheme outperforms [4] in all aspects: they do support arbitrary moduli while
our modulus choice is restricted to cyclotomic moduli.

Acknowledgements

We thank Robin Geelen for answering a question on GBFV encoding. This work
was funded by NSF, DARPA, and the Simons Foundation. Opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA. The author of this
work was partially supported by the Stanford Graduate Fellowship in Science
and Engineering as a David Cheriton Fellow.

References

1. Lattigo v6. Online: https://github.com/tuneinsight/lattigo (Aug 2024), ePFL-
LDS, Tune Insight SA

2. Bae, Y., Cheon, J.H., Cho, W., Kim, J., Kim, T.: META-BTS: Bootstrapping
precision beyond the limit. In: CCS (2022)

3. Bae, Y., Kim, J., Stehlé, D., Suvanto, E.: Bootstrapping small integers with CKKS.
In: ASIACRYPT (2024)

4. Boneh, D., Kim, J.: Homomorphic encryption for large integers from nested residue
number systems. Cryptology ePrint Archive, Paper 2025/346 (2025)

5. Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for approximate
homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In: ACNS (2022)

6. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: Combining ring-
LWE-based fully homomorphic encryption schemes. J. Math. Crypt. (2020)

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: CRYPTO (2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS (2012)

9. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: CT-RSA (2018)

10. Cheon, J.H., Cho, W., Kim, J., Stehlé, D.: Homomorphic multiple precision mul-
tiplication for CKKS and reduced modulus consumption. In: CCS (2023)

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: EUROCRYPT (2018)

12. Drucker, N., Moshkowich, G., Pelleg, T., Shaul, H.: BLEACH: Cleaning errors in
discrete computations over CKKS. J. Cryptol. (2024)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/144

14. Geelen, R., Vercauteren, F.: Fully homomorphic encryption for cyclotomic prime
moduli. In: EUROCRYPT (2025)

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
16. Kim, J.: Efficient homomorphic integer computer from CKKS. Cryptology ePrint

Archive, Paper 2025/066 (2025), https://eprint.iacr.org/2025/066
17. Kim, J., Noh, T.: Modular reduction in CKKS. Cryptology ePrint Archive, Paper

2024/1638 (2024)

22 Jaehyung Kim

18. Kim, J., Seo, J., Song, Y.: Simpler and faster BFV bootstrapping for arbitrary
plaintext modulus from CKKS. In: CCS (2024)

19. Lu, W.j., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: S&P (2021)

