
Enhancing E-Voting with Multiparty Class Group
Encryption

Michele Battagliola1[0000−0002−8269−2148], Giuseppe
D’Alconzo2[0000−0001−7377−6617], Andrea Gangemi2[0000−0001−9689−8473], and

Chiara Spadafora3[0000−0003−3352−9210]

1 Department Information Engineering, Marche Polytechnic University
m.battagliola@staff.univpm.it

2 Department of Mathematical Sciences, Politecnico di Torino
{giuseppe.dalconzo,andrea.gangemi}@polito.it
3 Department of Mathematics, University of Trento

chiara.spadafora@unitn.it

Abstract. CHide is one of the most prominent e-voting protocols, which,
while combining security and efficiency, suffers from having very long en-
crypted credentials. In this paper, starting from CHide, we propose a new
protocol, based on multiparty Class Group Encryption (CGE) instead of
discrete logarithm cryptography over known order groups. We achieve
a computational complexity of O(nr), for n votes and r voters, while
calling the MixNet algorithm one time. The homomorphic properties of
CGE allow for credentials that are shorter by a factor of 20 while main-
taining the same level of security, at the cost of a small slowdown in
efficiency.

Keywords: Class Group Encryption · Threshold Encryption · Coercion
Resistance · E-voting.

1 Introduction

E-voting protocols are usually based on discrete logarithm cryptography; in par-
ticular, the most widely used encryption scheme is ElGamal (e.g., [2,24,35,36]),
due to its homomorphic properties. However, protocols often require both sum
and multiplication to be computed efficiently, and ElGamal is not suitable for
this purpose, leading to protocols that are often computationally [30] or memory
inefficient [4,18].

A possible alternative to ElGamal is the multiparty Class Group Encryption
(CGE) [11,10]. Introduced in 2015 by Castagnos and Laguillaumie [13], CGE is
the first discrete logarithm-based scheme that allows for an unlimited number of
linear operations on plaintexts, without losing the ability to decrypt. Recently,
Braun et al. introduced the notion of threshold CGE [10,11], which allows ef-
ficient multiplication of plaintexts using a multiparty protocol. This feature is
particularly helpful for designing e-voting protocols, as it allows a wider range of

2 M. Battagliola et al.

computations. In particular, our attention is focused on the CHide voting pro-
tocol: proposed by Cortier et al. in [18], CHide is an efficient [4,18] and secure
protocol, as it achieves the strongest notion of coercion resistance.

1.1 E-voting protocols

Internet voting, often referred to as remote electronic voting (e-voting), enables
voters to cast their votes via the Internet, removing the need for physical polling
stations. Since its introduction in the early 2000s in Estonia and in the United
States, its popularity has grown and it is now implemented to various degrees
in several countries, including Switzerland [25], Canada [12] and Australia [27].

To be considered secure, an election must ensure vote and voter privacy, vote
verifiability and the correctness of the final results. Cryptographic protocols are
well-suited for this task, and numerous protocols, as Helios [3], Selene [34] and
Civitas [15], have been recently developed to secure Internet-based elections.

However, there is one additional property that is equally crucial to address
in a fair and democratic electoral process: resistance to coercion. In other words,
a voting protocol must protect voters from being forced into voting in a specific
way, either through threats or rewards. This threat becomes even greater in the
context of e-voting, due to its remote nature. This greatly expands the range of
possible coercion-attacks compared to in-person voting at polling stations.

1.2 Related Work

One of the first e-voting protocols that counters coercion is [30] by Juels, Cata-
lano and Jakobsson (JCJ). They proposed the first mathematical formalization
of coercion resistance, which is still the benchmark for research in the field. How-
ever, the real security of JCJ was recently questioned: the paper [18] critically
examines the definition of coercion resistance given in [30] and identifies a weak-
ness that stems from the procedure preceding the tally, in which trustees remove
ballots that should not be counted.

Thus, the authors proposed a new definition of coercion resistance which
overcomes the weaknesses of the one proposed by JCJ and designed CHide, a
new protocol that achieves it. In addition of being more secure than JCJ, CHide
is also more efficient, having a computational complexity of O((n+r) log(n+r)2),
where n denotes the number of votes and r is the number of voters, instead of
the quadratic complexity of the JCJ protocol. Parallel to CHide, Aranha et al.
[4] used a very similar approach to solve the security issue of JCJ, achieving
a better computational complexity of O((n + r) log(n + r)), at the price of an
additional mixnet. However, both of them suffer from the fact that the encrypted
credentials are very long: in fact, instead of the “standard” ElGamal encryption,
the credentials are encrypted bit-by-bit, so that a k bits credential is expanded in
k ElGamal ciphertexts. This negatively impacts performance, resulting in very
space-consuming protocols and causing big constant factor in the computational
complexity.

Enhancing E-Voting with Multiparty Class Group Encryption 3

Protocol Tally compl. MixNets Enc. cred. Security
JCJ [30] O(n2 + nr) 2 95.6 B JCJ
CHide [18] O

(
(n+ r) log2(n+ r)2

)
1 8160 B CHide

Aranha et al. [4] O ((n+ r) log2(n+ r)) 2 8160 B CHide
This work O(nr) 1 390.6 B CHide

Table 1. Comparison between our proposal and the JCJ and CHide voting schemes.
Tally compl. is the asymptotic complexity of the Tally Phase, where n denotes the
number of cast votes and r the number of credentials; MixNets is the number of calls
to the MixNet subroutine; Enc. cred. is the size of the encryption of a credential
for a security parameter λ = 128 and Security is the type of security provided by
the scheme: with CHide we mean that the scheme achieves the Coercion Resistance
property of Definition 2, while JCJ denotes the weaker notion from [30].

Other notions of coercion resistance. Besides the definition proposed by JCJ in
[30], other definitions have been used, such as the one utilized by NetVote and
ReVote [1,39] and by VoteAgain [31]. Comparing these definitions is often hard,
but in general the (patched) JCJ one is regarded as the strongest [26]. For this
reason we focus our analysis on protocols that achieve it.

1.3 Our Contribution

This paper combines the advantages of the JCJ protocol [30] and the CHide
variants [4,18]. Our contribution is twofold. First, we propose an alternative ver-
sion of [4,18] with shorter credentials, modifying the encryption scheme from
ElGamal to CGE. The greater flexibility offered by CGE allows us to avoid en-
crypting credentials bit-by-bit, resulting in a protocol that requires much less
memory: as shown in Table 1 our protocols require about 20 times less mem-
ory than [4,18], while achieving the same security level. However, by doing so,
we lose the advantage of bit-by-bit encryption, which is the possibility to sort
credentials, so our protocol suffers a slowdown compared to CHide. As a sec-
ond contribution, to limiting this slowdown we propose an optimized version of
our proposal, obtaining a tally that, while not as efficient as [4], requires less
than quadratic time. Specifically, the idea is to “amortize” the time required to
compute the final count by performing some precomputation during the voting
phase, instead of waiting until the end of the election. While the overall compu-
tational complexity is the same, the time interval between the end of the election
and the publication of results is significantly shorter.

Table 1 shows a comparison between the various protocols: for JCJ and CHide
(both versions), to compute the length of an encrypted credential we assume that
ElGamal is performed on Curve25519 [8], while we use [9] for CGE.

Organization. The paper is organized as follows: Section 2 recaps the crypto-
graphic tools that are later used in Section 3, where our new voting protocol is
described. This section also presents all the zero-knowledge protocols that are
necessary. Section 4 is devoted to security proofs, while Section 5 describes two
optimizations of the base protocol.

4 M. Battagliola et al.

2 Preliminaries

In the course of this paper, we denote with λ the security parameter. In the
pseudocode “←$” denotes the random sampling, “←” is a variable assignment
and “=” is an equality check.

2.1 Proofs and Arguments of Knowledge

An interactive protocol for a relation L ⊆ Y×W is a protocol between a prover,
who holds a statement-witness pair (y, w) ∈ L, and a verifier, who knows only
the statement y. At the end of the interaction, we want an honest prover to be
able to convince the verifier, possibly without leaking any additional information.
On the other hand, we want a dishonest prover (not knowing w) to be unable
to convince the verifier. The sequence of exchanged messages is said transcript.

Definition 1. [37] An interactive protocol Π between a Prover P and a Verifier
V proving a relation L can satisfy the following properties.

– Completeness: if P follows the protocol on input (y, w) ∈ L, the verifier
accepts with overwhelming probability.

– Soundness: for every y ∈ Y such that does not exist w ∈ W for which
(y, w) ∈ L, a Prover P having input y is accepted by a Verifier V with
negligible probability.

– Special Soundness: there exists an efficient deterministic algorithm E, called
extractor, with the following property: whenever E is given as input the state-
ment y ∈ Y and two accepting transcripts (com, ch, resp) and (com, ch′, resp′),
with ch ̸= ch′, E outputs w ∈W such that (y, w) ∈ L.

– Honest-Verifier Zero Knowledge (HVZK): there exists a polynomial-time al-
gorithm S, called simulator, which on input y ∈ Y and a random challenge
ch, outputs an accepting transcript (com, ch, resp) with the same probability
distribution as the transcripts between an honest P and V on input y.

An interactive protocol having completeness, special soundness and HVZK is
called zero-knowledge proof of knowledge. An interactive protocol satisfying com-
pleteness, soundness and HVZK is said zero-knowledge argument of knowledge.

To ease the notation, in the rest of the paper we will refer both to proofs
and arguments using the term “proofs”. However, it will be specified when an
interactive protocol is an argument and not a proof. An interactive protocol
is said to be public coin if the message of the verifier is taken from a random
source. For such class of protocols, the Fiat-Shamir transform [23] allows to
remove the interaction between the prover and the verifier. We will use this
method to produce non-interactive zero-knowledge proofs and arguments from
the interactive ones in Section 3.1.

Given a zero-knowledge proof Π for the relation L ⊆ Y×W, we denote the
protocol performed on witness w ∈W and statement y ∈ Y as Π [y, w].

Enhancing E-Voting with Multiparty Class Group Encryption 5

Proofs and arguments of knowledge can be composed to perform AND and
OR proofs of the relations they prove. The AND proof of two protocols Π1 and
Π2 is simply given by their parallel composition, and the AND proof is accepting
if both are accepting; we write Π1 ∧ Π2. The standard construction of an OR
proof can be found in [21, Sect. 4] and we denote it with Π1 ∨Π2.

2.2 Cryptography from Class Groups

Class Group Encryption (CGE) is a public key encryption scheme introduced in
[13]. This construction is linearly homomorphic: given ciphertexts c1 = Enc(m1),
. . . , ck = Enc(mk) and public values µ0, µ1, . . . , µk, there exists a procedure
Linear such that

Linear(c1, . . . , ck;µ0, µ1, . . . , µk) = Enc

(
µ0 +

k∑
i=1

µimi

)
.

To build such a scheme, we follow the construction from [13]. For a security
parameter λ, consider an abelian finite group Ĝ of unknown order having a cyclic
subgroup F = ⟨f⟩ of order p > 2λ, where computing the discrete logarithm of
any element is easy. The order of Ĝ is then ŝp for some integer ŝ. Let h = xp for
a random x ∈ Ĝ, and define g = hf and G = ⟨g⟩. We can see that G ∼= H × F
where H = {yp | y ∈ G} and H = ⟨h⟩. Then, let ϵ ∈ N be a statistical distance
parameter and let DH be a distribution over the integers. We assume that the
distributions {hx | x←$ DH} and the uniform distribution in H have negligible
statistical distance. Suppose to know a bound s̃ > ŝ, then DH can be instantiated
as the uniform distribution on [0, 2ϵ−2s̃[. The public parameters of the encryption
scheme are given by the tuple pp = (Ĝ, s̃, g, h, f). The secret key is given by
sk ←$ DH , while the public key is pk = hsk. Then, to encrypt a message m in
Z/pZ, the sender samples a random r from DH and computes

Enc(pk,m, r) = (hr, pkrfm) = (ct1, ct2) = ct.

From now on, the ciphertexts will be denoted as pairs ct = (ct1, ct2), i.e., a list of
ciphertexts will have the indexes as superscripts ct(1), . . . , ct(ℓ), and each entry
is a pair (ct

(i)
1 , ct

(i)
2). To decrypt, the receiver computes ct2/ct

sk
1 = fm and then

retrieves m since fm ∈ F and the discrete logarithm in F is easy. We denote
m = Dec(sk, ct1, ct2). This encryption scheme is linearly homomorphic: given
two ciphertexts ct = (ct1, ct2) and ct′ = (ct′1, ct

′
2) which encrypt m,m′ ∈ Z/pZ

respectively, we have that (ct1 · ct′1, ct2 · ct′2) is an encryption of m + m′, and
(cta1 , ct

a
2) is an encryption of am for any a ∈ Z.

Threshold Encryption and Multiparty Computation from CGE. In [11], a thresh-
old CGE and a multiparty computation protocol are presented. In particular,
secret keys are shared with a t-out-of-n secret sharing scheme, meaning that
every subset of t−1 users does not obtain any information on the secrets. Then,
this threshold scheme is employed to allow an efficient algorithm for plaintext

6 M. Battagliola et al.

multiplication that does not require any decryption. We will use the arithmetic
functionalities presented in [11] as the basis of the operations used in the voting
protocol. Namely, the functionalities Init,KeyGen,Decrypt from [11, Sect. 6.1] and
the arithmetic black-box functionalities Init, Input,Output, Linear and Multiply
from [11, Sect. 7]. For the sake of readability, since CGE is already linearly
homomorphic and linear operations do not require communication, in our pro-
tocols, instead of calling Linear, they are executed directly. Differently, when a
homomorphic multiplication between two ciphertexts is needed, we will use the
Multiply functionality. Recently, the paper [10] improves on [11], by presenting
a new key generation algorithm with lower communication complexity and new
methods to batch zero-knowledge proofs in unknown order groups.

Mixnet from CGE. A Mixnet is a protocol that takes as input an ordered set
of k ciphertexts (C1, . . . , Ck) and returns another ordered set of ciphertexts
(C ′

1, . . . , C
′
k) such that C ′

i is a re-encryption of the plaintext from Cπ−1(i) for a
random permutation π. In the e-voting scenario, mixnets are used to randomize
the list of valid encrypted votes. In this way, the link between the voter and their
preference is broken and the secrecy is ensured.

A well-known mixnet that works with ElGamal encryption has been defined
in [5] by Bayer and Groth. Later, Beaugrand et al. [6] adapted the protocol from
[5] to work with the class group framework, providing a mixnet with sublinear
communication complexity. In our construction, we will use the proposal from
[6]: the functionality Mixnet takes as input a list of class group ciphertexts and
returns the permuted and re-encrypted list, with a proof πMixnet of its correctness.

Cryptographic assumptions. It has been shown that the CGE public key en-
cryption scheme is IND-CPA secure in [14] under the Hard Subgroup Membership
assumption (HSM) [14], stating that distinguishing between elements of the form
ha from elements of the form gb is intractable. In this context, a ←$ DH and b
is sampled from a distribution on integers DG such that the statistical distance
between the uniform distribution on G and {ga | a←$ DG} is negligible.

In groups of unknown order, to prove statements in zero-knowledge, it is
not known how to use Schnorr-like proofs since, to show the soundness of the
protocol, some exponents need to be inverted. Thus, to overcome the limitation
of the unknown order of Ĝ in the soundness proofs, we rely on the C-rough
assumption (ROC) [11], which informally states that class groups Ĝ having order
q ∤ ord(Ĝ) for each prime q < C are indistinguishable from class groups not
having this property.

Another assumption needed in our protocol is the Unknown Order (ORD)
one [20], where it must be intractable to compute an element h ∈ Ĝ \ F and a
non-zero integer e such that he = 1. In other words, it must be infeasible to find
an element in Ĝ \ F and a multiple of its order.

The threshold CGE between N parts presented in [11] is secure and tolerates
up to t < N/2 corruptions under the ORD and RON+1 assumptions. Finally, the
CGE-based mixnet presented in [6] is secure under the ROC assumption.

All the assumptions presented here are formally defined in Appendix A.

Enhancing E-Voting with Multiparty Class Group Encryption 7

2.3 Security Properties of E-Voting Protocols

In order to be considered secure, an e-voting protocol with algorithms (Setup,Reg,
Vote,Tally) should enforce the following properties: correctness [30], fairness [19],
vote privacy [38], individual verifiability (usually expressed in terms of cast-as-
intended [22], recorded-as-cast [32], tallied-as-recorded [33]), universal verifiabil-
ity [38], eligibility verifiability [17]) and coercion resistance [18,30].

Coercion resistance is one of the most challenging properties to achieve when
designing e-voting protocols. In this paper, we use the definition proposed in [18],
which is an improvement of [30]. In simple words, in the registration phase, every
voter is provided with a voting credential and a way to produce fake credentials
that are indistinguishable from real ones. Votes cast with fake credentials are
subsequently discarded. To evade coercion, voters can handle to the coercer the
fake credential, without losing the ability to cast a valid vote. In the following,
we report its formal definition.

We consider a distribution D of sequence of pairs (j, ν) where j is a voter
and ν is a voting option in [1, nV]. Additionally, fake votes are modeled as pairs
where j ̸∈ [1, nV]. The definition of coercion resistance follows the standard real-
ideal world paradigm: in the real world, the adversary controls some authority
and participates in the protocol, while in the ideal world, at the end of the
voting phase, the tally is done by a trusted third party. We say that a voting
protocol is secure if and only if for every adversary in the real world there is
an equivalent adversary in the ideal world. With reference to [18], we have the
following definition.

Definition 2 (Coercion Resistance [18]). A voting protocol with algorithms
(Setup,Reg,Vote,Tally) is coercion resistant if there exists an algorithm Fake
that, on input a credential σ outputs a random credential σ̃ such that for every
adversary A, for all parameters nT , t, nV , nA, nC and for all distributions D,
there exists a simulator S such that

Pr(IdealCRS (λ, nV , nA, nC ,D) = 1)− Pr(RealCRA (λ, nT , t, nV , nA, nC ,D) = 1)

is negligible, where IdealCR and RealCR are defined in Figure 1.

3 The Voting protocol

The participants in the voting protocol are:

– The public board BB, an honest append-only list of data, where all the par-
ticipants can write and read.

– The election trustees, a set T of nT authorities that performs the tally. We
allow corruptions up to the threshold t < nT of the encryption scheme.

– The set of voters V. There are nV voters and at least 2 of them are honest.

8 M. Battagliola et al.

RealCR(A, k, nT , t, nV , nA, nC ,BB)

1 : BB ← ∅

2 : pk, ski, hi ← SetupA(k, nT , t)

3 : {σi}i∈V , R← Reg(k, pk, nV)

4 : VA ← A()

5 : (j, β)← A({σi}i∈V , R)

6 : if |VA| ≠ nA or j ̸∈ V \ VA or β ̸∈ [0, nC]

7 : return 0

8 : B ← D(nV − nA, nC)

9 : for (i, ∗) ∈ B, i ̸∈ [1, nV] do

10 : σi ← Fake(σi)

11 : b←$ {0, 1}

12 : σ̃ ← σj

13 : if b == 1

14 : remove all (j, ∗) from B

15 : else

16 : Remove all (j, ∗) from B but the last

17 : Replace it with (j, β)

18 : σ̃ ← Fake(σj)

19 : A(σ̃)

20 : for (i, α) ∈ B do

21 : M ← A(BB)

22 : BB ← BB ∪ {m ∈M |m valid}

23 : BB ← {Vote(σi, α, pk)}

24 : M ← A(BB)

25 : BB ← BB ∪ {m ∈M |m valid}

26 : X,Π ← TallyA(BB, R, pk, {hi, ski}, t)

27 : b′ ← A()

28 : return b = b′

IdealCR(A, k, nV , nA, nC ,D)

1 :

2 :

3 :

4 : VA ← A()

5 : (j, β)← A()

6 : if |VA| ̸= nA or j ̸∈ V \ VA or β ̸∈ [0, nC]

7 : return 0

8 : B ← D(nV − nA, nC)

9 :

10 :

11 : b←$ {0, 1}

12 :

13 : if b = 1

14 : Remove all (j, ∗) from B

15 : else

16 : Remove all (j, ∗) from B but the last

17 : Replace it with (j, β)

18 :

19 :

20 : (νi)i∈VA , β′ ← A(|B|)

21 : if b = 1 and β ̸= ∅

22 : B ← B ∪ {(j, β′)}

23 : B ← B ∪ {(i, νi)|i ∈ VA, νi ∈ [1, nC]}

24 :

25 :

26 : X ← Result(Cleanse(B))

27 : b′ ← A(X)

28 : return b = b′

Fig. 1. Security game of coercion resistance. λ is the security parameter, nT the number
of talliers, t the threshold, nV the number of voters, nA the number of corrupted voters,
nC the number of voting options and D the distribution. The algorithm Reg generates
the public-private credential pair for each voter, while Result returns the tally and
Cleanse removes votes from invalid voters and re-votes. For more details, refer to [18].

Enhancing E-Voting with Multiparty Class Group Encryption 9

– The auditors, a set of parties that checks the consistency of the data pub-
lished on the board and the validity of all the zero-knowledge proofs (ZKPs).
Since every check involves only public data, any party could serve as an au-
ditor.

– The registrars, a second set R of nR authorities that issue credentials to
voters. For coercion resistance, we require that all the registrars are honest.

The voting protocol is composed by four phases.

1. Setup Phase: the authorities generate the public data and the parameters
for the election (e.g. the public key, the hash function used for the non-
interactive ZKPs, etc.).

2. Registration Phase: voters authenticate themselves with the relevant au-
thorities and receive voting materials, usually containing their voting cre-
dentials and a proof of their correctness. For coercion resistance we required
that the voting material allows for an Evasion Strategy, to be used in case
of coercion.

3. Voting Phase: voters vote using the obtained credentials. Voters can vote
more than once (usually, re-voting invalidates previous votes). During this
phase, voters should be able to verify the correctness of the protocol, checking
that the vote was cast-as-intended and recorded-as-cast. This is usually done
via a combination of ZKP, the usage of a public board and device auditing
techniques like the Benaloh Challenge [7].

4. Tally Phase: the election result is computed, and published along with a
ZKP about its correctness.

Setup Phase. A security parameter λ is chosen. The nT election trustees jointly
execute the distributed key generation protocol presented in [10]. They use the
Init and the KeyGen functionalities, producing a public key pk and private shares
ski for i = 1, ..., nT , one for each trustee. A commitment hi for the private share
of ski is published by the i-th trustee on the public board, in addition to pk.

Registration phase. Credentials are created by registrars and their encryptions
are published on the public bulletin board BB. Each credential is sent privately to
the voter, with designated verifier zero-knowledge proofs (DVZKP) to ensure its
validity.4 We denote with σ a credential and with Rσ the list of all the authorized
(encrypted) credentials. We refer to elements in Rσ as the “public credentials”.

Evasion Strategy. To evade coercion a voter can simply lie about their credential
σ, generate a random fake credential σ̃ and give it to the coercer, manipulating
the DVZKP accordingly. In this way, voters are also able to vote with their
correct credential.

4 Voter authentication is out of the scope of this paper but, for example, it could be
done via a digital signature by the user with a long-term key pair.

10 M. Battagliola et al.

Voting Phase. To cast a vote for candidate ν, voter V computes an encryption
of their voting choice ctV = Enc(pk, ν, ρν) and an encryption of their credential
ctC = Enc(pk, σ, ρσ). Additionally, the voter computes two proofs: πVote, the
proof produced by the protocol ΠVote to prove that ν is a valid voting option,
and πCred produced by ΠCred to prove the knowledge of σ in ctC. These proofs are
also used to link together ctV and ctC, making the pair (ctV, ctC)5 non-malleable.
To link these two proofs we apply the Fiat-Shamir transform to the AND (i.e.
concatenation) of them. We call the tuple (ctV, ctC, πVote, πCred) a “ballot”. This
ballot is then published by the voter V on BB using an anonymous channel.
During the Voting Phase, each voter V can vote multiple times. For simplicity,
the policy we implement is that we count only the last vote cast with each
credential. This is implicit in how the Update function in the tally phase is
designed. During this step the auditors verify the uniqueness of each ballot and
that every published proof is valid. Votes that fail these checks are discarded
and are not processed further.

Tally Phase. The tally procedure is a multiparty protocol between the nT
trustees. In order to tally the votes, we need the equality Eq and update Update
functionalities presented later. From now on, we refer to Enc(σ) = Enc(pk, σ, ρ).
The equality functionality Eq is used to check whether two ciphertexts encrypt
the same credential or not: it takes as input two ciphertexts (Enc(σ),Enc(σ̄)) and
returns the encryption of 1 if σ = σ̄ and an encryption of 0 otherwise. It is pre-
sented in Figure 2 and uses the exponentiation functionality Exp, which, in turn,
needs the multiparty multiplication protocol Multiply from [11]. The protocol for
equality Eq is correct, since when σ = σ̄ we have that b = 0, otherwise b = 1,
due to xp = 1 for all x ∈ (Z/pZ)∗. Observe that the exponentiation procedure
Exp, shown in Figure 2, is performed using the square-and-multiply procedure,
i.e. using O(log2(p)) multiplications.

Exp(Enc(x),s)

1 : (s0, . . . , sℓ)← Binary(s)

2 : Y ← Enc(1)

3 : for i = ℓ, . . . , 0 do

4 : Y ← Multiply(Y, Y)

5 : if ki = 1

6 : Y ← Multiply(Y,Enc(x))

7 : return Y

Eq(Enc(σ),Enc(σ̄))

1 : y ← Enc(σ) · Enc(σ̄)−1

2 : b← Exp(y, p)

3 : return Enc(1) · b−1

Fig. 2. Exponentiation and Equality procedures. Here p is the order of F . Multiply is
the multiplication functionality from in [11].

5 Notice that each ciphertext of the couple is a couple itself, as per defined in Sec-
tion 2.2.

Enhancing E-Voting with Multiparty Class Group Encryption 11

Now, we present the Update functionality (Figure 3) for the update of the
votes. It takes as input two pairs of vote-credential encryptions (Enc(ν),Enc(σ))
and (Enc(ν̄),Enc(σ̄)), and it returns a ciphertext ReEnc(ν∗), where ν∗ = ν if
σ ̸= σ̄ and ν∗ = ν̄ otherwise. Here, ReEnc(x) is the encryption of x using a
different randomness.

Finally, we describe the Tally protocol (Figure 3). The idea is to start with a
list R of null votes, encoded by the element 0, one for each credential in Rσ and
update it with all the ballots in BB, so that, at end, R contains the last vote
made with each credential. Formally, at the beginning of Tally Phase, we have

R = {(Enc(0),Enc(σi)) | σi ∈ Rσ} .

For each ballot in BB, the whole list R is updated using Update, such that the
entry corresponding to the credential in the considered ballot is changed, while
the others are simply re-encrypted. Note that it is impossible to distinguish
whether an entry is simply re-encrypted or changed. Also, note that when a
vote is cast with a fake credential, it means that the entire R is re-encrypted,
since no entry in R correspond to a fake credential. This is done to avoid leaking
the number of fake votes. In order to do this, first, the nT trustees create the
list R as described above. Note that this is a copy and not a re-encryption
of the credentials σi’s. Then, for each entry BBi of the public bulletin board
BB and for each entry Rj of the list R the Update function is performed, so
that, after this computation, the first entry of Rj is the encryption of the last
vote made with the credential σj . Let R[1] be the list of the first entries of
every element in R: at the end of the procedure this is the list of valid votes.
The mixnet is performed on this list using the functionality Mixnet from [6],
obtaining a permuted list of valid votes, breaking the link between the voter and
his preference. The Mixnet procedure additionally produces a proof πMixnet that
has to be checked in order to verify the correctness of the shuffle. Finally, the
trustees can decrypt the permuted list via the functionality Decrypt from [11],
getting the valid preferences in clear.

3.1 Zero-Knowledge Proofs

Apart from the proofs of knowledge needed and produced by the multiparty
protocol from [11,10] and the mixnet from [6], the voting system, in its voting
phase, uses two different zero-knowledge proofs. Let (ctV, ctC) be the pair of
ciphertexts where ctV = Enc(pk, ν, ρν) is the encryption of a voting preference ν
and ctC = Enc(pk, σ, ρσ) is an encryption of their credential σ. The first argument
of knowledge, denoted with ΠVote proves that ν is a valid voting option. The
second proof ΠCred is needed to prove the knowledge of σ in the ciphertext ctC.

The zero-knowledge proofs will be presented as a 3-move interactive protocols
which can be made non-interactive by the Fiat-Shamir transform [23] by comput-
ing the verifier message as a hash function of the concatenation of the statement
and the first message. For all the upcoming protocols, pp =

(
Ĝ, s̃, g, h, f

)
is the

tuple of public parameters, where Ĝ has unknown order and it has a subgroup

12 M. Battagliola et al.

Update(B,B̄)

1 : (Enc(v),Enc(σ))← B

2 : (Enc(v̄),Enc(σ̄))← B̄

3 : b← Eq(Enc(σ̄),Enc(σ))

4 : m1 ← Multiply(b,Enc(v̄))

5 : m2 ← Multiply(Enc(1) · b−1,Enc(v))

6 : return m1 ·m2

Tally(BB,Rσ)

1 : for i = 1 . . . , |Rσ| do
2 : Ri ← (Enc(⊥),Rσi)

3 : for i = 1, . . . , |BB| do
4 : for j = 1, . . . , |R| do
5 : Enc(v∗)← Update(BBi, Rj)

6 : Rj [1]← Enc(v∗)

7 : (V, πMixnet)← Mixnet(R[1])

8 : if Verify(πMixnet) = ⊥ return ⊥
9 : y ← Decrypt(V)

10 : return y

Fig. 3. Update and Tally procedures.

ΠPoPK

Prover(pp, (ct1, ct2),m, ρ) Verifier(pp, (ct1, ct2))

ρ̃←$ [0, 22ϵCs̃[, m̃←$ Z/Zp,

c̃t← Enc(pk, m̃, ρ̃) c̃t

x x←$ [0, C[

ρ̂← ρ̃+ ρx, m̂← m̃+mx m̂, ρ̂ accept if

c̃t1 · ctx1 = hρ̂, c̃t2 · ctx2 = pkρ̂fm̂

Fig. 4. Interactive protocol ΠPoPK to prove knowledge of m and ρ from [6].

G ∼= H × F , with H a cyclic group generated by h and F the unique subgroup
of G of order p, which is generated by f . Furthermore, the public key used to
encrypt is pk = hsk, where sk is the corresponding secret key. More details can
be found in Section 2.2.

The starting point to design both ΠVote and ΠCred is the proof of plaintext
knowledge ΠPoPK from [6, Sect. 3], which demonstrates plaintext knowledge of a
public ciphertext, in particular, given a public key pk, it is an interactive protocol
for the following relation

{(ct, (m, ρ)) | ct = Enc(pk,m, ρ)} .

For completeness, the protocol is described in Figure 4, and its security is based
on the ROC assumption. Note that the integer C that appears in the protocol
is exactly the C used in the definition of this assumption. More details about
how to prove the soundness and the special soundness properties of interactive
protocols with unknown group order can be found in [6].

Enhancing E-Voting with Multiparty Class Group Encryption 13

ΠAoRK

Prover(pp, (m, (ct1, ct2)), ρ) Verifier(pp, ((ct1, ct2),m))

ρ̃←$ [0, 22ϵCs̃[

c̃t← Enc(pk, 0, ρ̃) c̃t

x x←$ [0, C[

ρ̂← ρ̃+ ρx ρ̂ accept if

c̃t1 · ctx1 = hρ̂, c̃t2 · ctx2 = pkρ̂fxm

Fig. 5. Interactive protocol ΠAoRK to prove knowledge of ρ such that (ct1, ct2) =
Enc(pk,m, ρ), for a public message m.

The zero-knowledge proof ΠCred is exactly the proof of plaintext knowledge
given in Figure 4 for a ciphertext ctC = Enc(pk, σ, ρσ) encrypting a credential σ
with randomness ρσ

ΠCred

[
ctC, (σ, ρσ)

]
= ΠPoPK

[
ctC, (σ, ρσ)

]
.

The proof ΠVote proves that, given ctV, the voter 1) knows the plaintext, i.e.
the vote, and 2) the vote is an admissible vote. Indeed, ΠVote can be viewed as
an AND proof of the two statements above. The first one is directly given by
the proof of plaintext knowledge ΠPoPK from Figure 4, while, for the second, a
slightly involved proof is needed.

We want to design a protocol to prove that the vote ν given in ctV =
Enc(pk, ν, ρν) is a correct vote, i.e. it belongs to the set of valid votes {ν1, . . . , νk}.
The building block of this proof is an argument of randonmess knowledge ΠAoRK,
proving the relation

{((m, ct), ρ) | ct = Enc(pk,m, ρ)} .

Observe that in this case the message m is part of the statement. We can design
an argument of randonmess knowledge slightly modifying the proof of plaintext
knowledge from Figure 4. The protocol is given in Figure 5.

Remark 1. There are some technical difficulties to design a proof of randonmess
knowledge. As noted in [6], the proof of plaintext knowledge ΠPoPK from Figure 4
is partial extractable; this means that only a part of the witness (m, ρ) can be
efficiently extracted, namely, the message m. However, even if we cannot extract
the randomness ρ in the protocol of Figure 5, it is complete, sound, and honest-
verifier zero-knowledge, showing that it is an argument of knowledge. This is
enough for our purposes, as we show later in Section 4. Indeed, the protocol is
only used during the voting phase to identify and discard invalid votes, and in
the security proof we do not need to extract the randomness used.

Theorem 1. The protocol ΠAoRK for randomness knowledge described in Fig-
ure 5 is a zero-knowledge argument, i.e., it is complete, sound and honest-verifier
zero-knowledge under the ROC assumption.

14 M. Battagliola et al.

The proof of Theorem 1 can be found in Appendix B and it follows the one
of [6, Th. 2].

On top of the argument of randomness knowledge ΠAoRK, we can build an
argument of plaintext equality ΠAoPE for the relation

{((ct, ct′), (m, ρ, ρ′)) | ct = Enc(pk,m, ρ) ∧ ct′ = Enc(pk,m, ρ′)} .

We can then show that two ciphertexts ct = Enc(pk,m, ρ) and ct′ = Enc(pk,m, ρ′)
share the same public message m showing that, due to the homomorphic prop-
erties of the CGE, the ciphertext ct/ct′ is an encryption of 0. This is done using
ΠAoRK, setting ct/ct′ as the ciphertext, 0 as the message and ρ−ρ′ as randomness.
Following the notation from above, we set

ΠAoPE [(m, ct, ct′) , (ρ, ρ′)] = ΠAoRK [(0, ct/ct′) , ρ− ρ′] .

At this point, we have the ingredients to design the argument of knowledge
ΠVote. It is obtained by using the OR construction of k argument of plaintext
equality, each of which proves that the plaintext in ct

C

is νi for i ∈ [k]. Observe
that the standard construction for OR proof given in [21, Sect. 4] has commu-
nication linear in the number of clauses, in our case k. Recall that the AND
of two interactive protocols is simply given by their concatenation. Hence, the
proof ΠVote, proving the relation

{(ct, (ν, ρν)) | ct = Enc(pk, ν, ρν) ∧ ν ∈ {ν1, . . . , νk}} ,

for public ρi’s, is given by

ΠVote

[
ctV, (ν, ρν)

]
= ΠPoPK

[
ctV, (ν, ρν)

]∧
(

k∨
i=1

ΠAoPE

[(
νi, ct

V,Enc(pk, νi, ρi)
)
, (ρν , ρi)

])
.

The argument of knowledge ΠVote and the proof of knowledge ΠCred are
then linked together to make them non-malleable: when using the Fiat-Shamir
transform, for each proof the challenge is computed using the first messages and
statements of the two proofs together.

3.2 Designated Verifier Re-Encryption Proof

For the security proof, a last zero-knowledge proof is needed. We present ΠDVRE,
a Designated Verifier Re-Encryption proof [28] which can be faked by the Des-
ignated Verifier Ver in order to validate a fake credential. In short, it is an OR
proof of 1) a proof of a Re-Encryption, i.e. given ct(0), ct(1), one proves that they
are two encryptions of the same message, and 2) the proof of knowledge of a
secret key skVer linked to a publicly known public key pkVer.

For the sake of clarity, we first show the proof ΠRE of Re-Encryption for the
relation {(

(ct(0), ct(1)), ρ̃
)
| ct(1) = (hρ̃ct

(0)
1 , pkρ̃ct

(0)
2)
}

Enhancing E-Voting with Multiparty Class Group Encryption 15

Prover
(
pp, ct(0), ct(1), ρ̃

)
Verifier

(
pp, ct(0), ct(1)

)
(d1, . . . , dλ)←$ [0, 2ϵ−2s̃[λ

Ii ←
(
ct

(0)
1 hdi , ct

(0)
2 hdi

)
for i = 1, . . . , λ I1, . . . , Iλ

c1, . . . , cλ (c1, . . . , cλ)←$ {0, 1}λ

zi ← di − ρ̃ci for i = 1, . . . , λ z1, . . . , zλ accept if for i = 1, . . . , λ

Ii =
(
hzict

(ci)
1 , hzict

(ci)
2

)

Fig. 6. Protocol to prove that ct(1) is a re-encryption of ct(0).

in Figure 6. Here, we use a standard parallel repetition with λ binary challenges,
where λ is the security parameter.

Theorem 2. The interactive protocol ΠRE described in Figure 6 is complete,
special sound and honest-verifier zero-knowledge.

The proof of Theorem 2 is a standard proof for a parallel repetition protocol
with binary challenge and it can be found in Appendix B.

For the second part, observe that the key pair (skVer, pkVer) does not have to
be related to CGE. However, we can still use a discrete logarithm-based keypair.
In particular, suppose that there exists a public element g of order q such that
pkVer = gskVer . This implies that we can use known order groups, allowing us to
use more efficient protocols, such as Schnorr. However, since the two challenge
spaces must be equal, for the proof of knowledge of skVer, we use λ parallel
repetitions with binary challenges for simplicity. The DVZKP is then an OR
proof, obtained using standard techniques. For completeness, it is presented in
Appendix C.

4 Security Analysis

The security proof for our voting protocol is very similar to the ones presented
in [4,18]. Hence, here we just sketch the proof.

Theorem 3. Under the HSM, the ROC and the ORD assumptions, the voting
system presented in Section 3 is coercion-resistant.

Proof. Let A be an adversary for the real game. We give to A the power to
impersonate t among nT election trustees and up to nA voters. Our goal is to
build an adversary S for the ideal game using A as a subroutine. In particular,
S controls the remaining nT − t trustees and needs to simulate both the Setup
and the Tally.

First of all, S and A run the Setup algorithm to generate a common public
key pk, secret shares of the private key sk1, ..., sknT

and the public commitments
h1, ..., hnT . During this step, S is also able to reconstruct the secret key sk by

16 M. Battagliola et al.

extracting A’s secrets. The simulation of the key generation is shown in Section
6.2 of [11]. Then, S follows the real game normally, getting the set of corrupted
voters VA, the coerced voter j and the voting choice β from the adversary. In
the ideal game, S sends the same choices for VA, j, β.

When asking for the credential of voter j, S provides to A the real credential
σj . From the ideal game, S learns the size |B| of the ideal board and uses it to
simulate the voting process. For |B| times:

• S calls A with input B getting M, a list of ballots the adversary wants to
make.
• S decrypts all the valid votes and credentials in M. For every authorized

credential σi, S saves the tuple (σi, ν) or updates a previously saved (σi, ν′).
• S adds all valid ballots in M to B.
• S chooses a random voter and a valid voting option and casts a valid vote,

adding it to B.

At the end of the voting process, S adds the same votes in the ideal game.
S learns the result of the election X at the end of the ideal game and uses it

to simulate the tallying process in the real game:

• S simulates all the Update procedure, due to the UC security of threshold
CGE.

• S simulates the MixNet controlling the honest authorities, while A uses the
dishonest ones.

• S chooses |X| entries at random and simulates its partial decryption: every
entry not chosen is decrypted to 0, while such |X| entries are decrypted such
that the result is exactly X.

At this point A makes its guess b and S forwards the same guess in the ideal
game. The differences between a real execution and the simulation are:

• In the real game A can get either the real credential σj or a fake one. In
the simulation A always receives σj . Since in both the real and ideal worlds
fake credentials have uniformly random distribution and the DVZKP could
be simulated, A can only distinguish a real execution from a simulated one
if and only if it is able to distinguish whether the received credential is a
plaintext of one of the encrypted credentials in Rσ or not. Since CGE is
IND-CPA due to the HSM assumption, this is impossible.
• During the simulation of the voting loop S adds random ballots, while in

the real game ballots are drawn according to D. As before, since the ballots
are encrypted, the simulation is indistinguishable from the real game.
• During the tally, S simulates the execution of the Update procedure. Due

to the UC security of the MPC class group encryption, the simulation is
indistinguishable from a real execution, as shown in [11].
• In the simulation, the result always includes all the last valid ballots cast by

honest voters. In a real execution, the adversary may change it by casting
ballots on behalf of an honest voter. However, to do so, the adversary must be
able to create a valid proof about the credential used, and this is unfeasible.
• S simulates the decryption protocol at the end. This simulation is indistin-

guishable under the ORD and the ROC assumptions, as shown in [11].

Enhancing E-Voting with Multiparty Class Group Encryption 17

4.1 Notes about Privacy and Verifiability

Here, we provide an informal discussion about privacy and verifiability, with a
sketch of the proof. Before that, however, we need to define IND-PA0 security,
that is indistinguishability under parallel chosen plaintext attack. It is a stronger
property than security under chosen plaintext attack (IND-CPA), where the ad-
versary has also access to a list of decrypted ciphertexts. For a formal definition,
see [18]. It is possible to show that the voting map of Section 3

(ν, σ)→ (Enc(pk, ν, ρν),Enc(pk, σ, ρσ), πVote, πCred)

is an IND-PA0 encryption scheme, where πVote and πCred are the proofs produced
by ΠVote and ΠCred, the protocols described in Section 3.1. In particular, πVote

is a proof that the vote ν is known and correct and πCred proves the plaintext
knowledge of σ.

Privacy. Informally, privacy means that it is impossible to guess which option a
voter chose. Formally, in the privacy game, the adversary A chooses two voting
options ν0, ν1 and an “observed voter” vo, who picks a random bit b and votes νb.
The adversary, controlling t − 1 trustees, wins if they guess b. See Appendix C
of [18] for a formal definition. To prove it, we make a reduction to the IND-PA0
security of the encryption protocol used.

Sketch. Suppose that A is an adversary that wins the privacy game with non-
negligible advantage. We show how to build an adversary S for the IND-PA0 that
wins with non-negligible advantage. Indeed, S chooses ν0, ν1 as the plaintext for
the IND-PA0 game. Before the tally, S uses the whole board BB as a query in
the IND-PA0 game, except for the vote cast by vo, for which S chooses randomly
one of the two voting options. At this point, S can simulate the whole tally
knowing the end result and guesses whatever bit b A guesses. When S chooses
correctly the vote for vo, the simulation is perfect and S wins every time A wins,
which happens with probability 1

2 + negl. Instead, if S picks the wrong choice,
which happens 1

2 of the times, S wins with probability 1
2 . Overall, the winning

probability of S is 1
2 + negl which is non negligible.

Verifiability. Universal verifiability is granted by the proofs produced by the
trustees and by the honesty of the bulletin board. Cast-as-intended instead is
more tricky, since it should require to design algorithms for voters to inquire
about their own devices. Many protocols, such as the Benaloh challenge [7], are
suitable, however, they usually rely more on “responsible behaviour” from the
user, without having a solid security proof. Moreover, they often fall short when
analyzed from a game theory standpoint, like in [29] where the authors suggest
that the optimal strategy is to (almost) always ignore the audit step and cast the
vote immediately. For this reason, we left cast-as-intended out of our scope and
we suggest to employ one of the various established solutions since our protocol
can support many of them ([16]).

18 M. Battagliola et al.

5 Performance and Optimizations

The main advantage of our protocol is the compactness of the encrypted cre-
dentials, which are k times shorter than in [4,18], since we only need a single
ciphertext instead of k for a k-bit credential. The complexity of Tally Phase is
O(nr), where n is the number of votes and r is the number of registered cre-
dentials. Although not optimal and higher than the complexity of the protocols
presented in [4,18], our complexity is still better than that of many coercion
resistance protocols, whose execution typically takes place in O(n2 + nr). Fur-
thermore, it is worth noting that having shorter credentials has a large impact
on the actual execution time of the protocol, since the execution time of [4,18]
is linear with respect to the number of ciphertexts.

We propose two improvements in order to achieve a better execution time
while, unfortunately, maintaining the same asymptotic complexity O(nr).

Online tally. To further optimize the Tally procedure (see Figure 3), a possibility
would be to perform the Update procedure every time a new vote is added to
BB. While the overall complexity would remain the same, this would allow for
distibute the workload throughout the entire voting process, rather than only
at the end, resulting in an overall reduction of the delay between the end of the
voting phase and the publication of the results.

Removing the MixNet. If the number N of candidates is small enough, an opti-
mization can be implemented to avoid the mixnet. The principle is the following.
Suppose that the votes are cast in Z/pZ, where p ≃ 2M . A preference for the
i-th candidate is encoded in the vote 2(i−1)M

N . In the tally phase, instead of de-
crypting all the votes (after the MixNet), we can simply compute T = Π

|R|
i=1Ri[1]

and then decrypt T . Notice that T =
∑N−1

i=0 2(i−1)M
N xi, where xi is the number

of votes for the i-th candidate. From the knowledge of T , one can easily retrieve
all the xi’s using its representation in base 2

M
N . To avoid an overflow of votes,

an upper bound to the number of voters is 2
M
N .

Acknowledgments. The first author is supported by the Italian Ministry
of University’s PRIN 2022 program under the “Mathematical Primitives for
Post Quantum Digital Signatures” (P2022J4HRR) and by the FISA project
"Quantum-sate cryptographic tools for the protection of national data and in-
tormation technology assets" (QSAFEIT). The second and the third authors are
members of the INdAM Research group GNSAGA and CrypTO, the group of
Cryptography and Number Theory of the Politecnico di Torino. The work of
the fourth author has been supported by a joint laboratory between Fondazione
Bruno Kessler and the Italian State Mint and Polygraphic Institute.

References

1. Achenbach, D., Kempka, C., Löwe, B., Müler-Quade, J.: Improved Coercion-
Resistant electronic elections through deniable Re-Voting. USENIX Journal of

Enhancing E-Voting with Multiparty Class Group Encryption 19

Election Technology and Systems (JETS) 3(2), 26–45 (Aug 2015), https://www.
usenix.org/jets/issues/0302/achenbach

2. Adida, B.: Helios: Web-based open-audit voting. In: USENIX security symposium.
vol. 17, pp. 335–348 (2008)

3. Adida, B.: Helios: Web-based Open-Audit Voting. In: USENIX Security Sympo-
sium. pp. 335–348. USENIX Association (2008)

4. Aranha, D.F., Battagliola, M., Roy, L.: Faster coercion-resistant e-voting
by encrypted sorting. E-Vote-ID 2023 (2023). https://doi.org/10.18420/
e-vote-id2023_03

5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings 31. pp. 263–280. Springer (2012)

6. Beaugrand, A., Castagnos, G., Laguillaumie, F.: Efficient succinct zero-knowledge
arguments in the cl framework. Journal of Cryptology 38(1) (Jan 2025). https:
//doi.org/10.1007/s00145-024-09534-1

7. Benaloh, J.: Simple verifiable elections. In: Workshop on Accurate Electronic Vot-
ing Technology. p. 5. EVT’06, USENIX Association (2006)

8. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006.
pp. 207–228. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

9. Bouvier, C., Castagnos, G., Imbert, L., Laguillaumie, F.: I want to ride my bi-
cycl: Bicycl implements cryptography in class groups. J. Cryptol. 36(3) (Apr
2023). https://doi.org/10.1007/s00145-023-09459-1, https://doi.org/10.
1007/s00145-023-09459-1

10. Braun, L., Castagnos, G., Damgård, I., Laguillaumie, F., Melissaris, K., Orlandi,
C., Tucker, I.: An improved threshold homomorphic cryptosystem based on class
groups. In: Galdi, C., Phan, D.H. (eds.) Security and Cryptography for Networks.
pp. 24–46. Springer Nature Switzerland, Cham (2024)

11. Braun, L., Damgård, I., Orlandi, C.: Secure Multiparty Computation from Thresh-
old Encryption Based on Class Groups. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023. pp. 613–645. Springer Nature Switzer-
land, Cham (2023)

12. Cardillo, A., Akinyokun, N., Essex, A.: Online Voting in Ontario Municipal Elec-
tions: A Conflict of Legal Principles and Technology? In: E-VOTE-ID. LNCS, vol.
11759, pp. 67–82. Springer (2019)

13. Castagnos, G., Laguillaumie, F.: Linearly Homomorphic Encryption from DDH.
In: Nyberg, K. (ed.) Topics in Cryptology — CT-RSA 2015. pp. 487–505. Springer
International Publishing, Cham (2015)

14. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner
product functional encryption modulo p. In: International Conference on the The-
ory and Application of Cryptology and Information Security. pp. 733–764. Springer
(2018)

15. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting Sys-
tem. In: IEEE Symposium on Security and Privacy. pp. 354–368. IEEE Computer
Society (2008)

16. Cortier, V., Dreier, J., Gaudry, P., Turuani, M.: A simple alternative to Benaloh
challenge for the cast-as-intended property in Helios/Belenios. In: HAL (2019)

17. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting system. In: Foundations of Security, Protocols, and Equational Rea-
soning, pp. 214–238. Springer (2019)

https://www.usenix.org/jets/issues/0302/achenbach
https://www.usenix.org/jets/issues/0302/achenbach
https://doi.org/10.18420/e-vote-id2023_03
https://doi.org/10.18420/e-vote-id2023_03
https://doi.org/10.18420/e-vote-id2023_03
https://doi.org/10.18420/e-vote-id2023_03
https://doi.org/10.1007/s00145-024-09534-1
https://doi.org/10.1007/s00145-024-09534-1
https://doi.org/10.1007/s00145-024-09534-1
https://doi.org/10.1007/s00145-024-09534-1
https://doi.org/10.1007/s00145-023-09459-1
https://doi.org/10.1007/s00145-023-09459-1
https://doi.org/10.1007/s00145-023-09459-1
https://doi.org/10.1007/s00145-023-09459-1

20 M. Battagliola et al.

18. Cortier, V., Gaudry, P., Yang, Q.: Is the JCJ voting system really coercion-
resistant? (2024). https://doi.org/10.1109/CSF61375.2024.00003

19. Recommendation CM/Rec(2017)5 of the Committee of Ministers to member States
on standards for e-voting, https://search.coe.int/cm/Pages/result_details.
aspx?ObjectID=0900001680726f6f

20. Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transpar-
ent setup from bounded integer commitments. In: Annual international conference
on the theory and applications of cryptographic techniques. pp. 247–277. Springer
(2021)

21. Damgård, I.: On σ-protocols. Lecture Notes, University of Aarhus, Department for
Computer Science 84 (2002)

22. Escala, A., Guasch, S., Herranz, J., Morillo, P.: Universal cast-as-intended verifia-
bility. In: International Conference on Financial Cryptography and Data Security.
pp. 233–250. Springer (2016). https://doi.org/10.1007/978-3-662-53357-4_16

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

24. Glondu, S.: Belenios specification. Tech. rep., Belenios Project (October 2024),
https://www.belenios.org/specification.pdf, accessed on 30 May 2025

25. Haines, T., Pereira, O., Teague, V.: Running the Race: A Swiss Voting Story. In:
E-Vote-ID. LNCS, vol. 13553, pp. 53–69. Springer (2022)

26. Haines, T., Smyth, B.: Surveying definitions of coercion resistance. IACR ePrint
Arch. p. 822 (2019), https://eprint.iacr.org/2019/822

27. Halderman, J.A., Teague, V.: The New South Wales iVote System: Security Fail-
ures and Verification flaws in a live online election. In: VoteID. LNCS, vol. 9269,
pp. 35–53. Springer (2015)

28. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 539–556. Springer (2000)

29. Jamroga, W.: Pretty Good Strategies for Benaloh Challenge. In: Volkamer,
M., Duenas-Cid, D., Rønne, P., Ryan, P.Y.A., Budurushi, J., Kulyk, O., Ro-
driguez Pérez, A., Spycher-Krivonosova, I. (eds.) Electronic Voting. pp. 106–122.
Springer Nature Switzerland, Cham (2023)

30. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM workshop on Privacy in the electronic society. pp.
61–70 (2005)

31. Lueks, W., Querejeta-Azurmendi, I.n., Troncoso, C.: Voteagain: a scalable
coercion-resistant voting system. In: Proceedings of the 29th USENIX Conference
on Security Symposium. SEC’20, USENIX Association, USA (2020)

32. Müller, J., Truderung, T.: Caised: A protocol for cast-as-intended verifiability with
a second device. In: International Joint Conference on Electronic Voting. pp. 123–
139. Springer (2023)

33. Popoveniuc, S., Kelsey, J., Regenscheid, A., Vora, P.: Performance require-
ments for End-to-End verifiable elections. In: 2010 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE 10). USENIX As-
sociation, Washington, DC (Aug 2010), https://www.usenix.org/conference/
evtwote-10/performance-requirements-end-end-verifiable-elections

34. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: Voting with Transparent Verifi-
ability and Coercion-Mitigation. In: Financial Cryptography Workshops. LNCS,
vol. 9604, pp. 176–192. Springer (2016)

https://doi.org/10.1109/CSF61375.2024.00003
https://doi.org/10.1109/CSF61375.2024.00003
https://search.coe.int/cm/Pages/result_details.aspx?ObjectID=0900001680726f6f
https://search.coe.int/cm/Pages/result_details.aspx?ObjectID=0900001680726f6f
https://doi.org/10.1007/978-3-662-53357-4_16
https://doi.org/10.1007/978-3-662-53357-4_16
https://www.belenios.org/specification.pdf
https://eprint.iacr.org/2019/822
https://www.usenix.org/conference/evtwote-10/performance-requirements-end-end-verifiable-elections
https://www.usenix.org/conference/evtwote-10/performance-requirements-end-end-verifiable-elections

Enhancing E-Voting with Multiparty Class Group Encryption 21

35. State Electoral Office of Estonia: Ivxv protocols: Specification. Tech. Rep. Dok
IVXV-PR-EN-1.8.0, State Electoral Office of Estonia (December 2022), https:
//www.valimised.ee/sites/default/files/2023-02/IVXV-protocols.pdf, ac-
cessed on 30 May 2025

36. Swiss Post: Swiss post e-voting system documentation. https://gitlab.
com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/
System (May 2025), accessed on 30 May 2025

37. Thaler, J., et al.: Proofs, arguments, and zero-knowledge. Foundations and
Trends® in Privacy and Security 4(2–4), 117–660 (2022)

38. U.S. Election Assistance Commission: Voluntary Voting System Guidelines
(VVSG) version 2.0 (02 2021), https://www.eac.gov/voting-equipment/
voluntary-voting-system-guidelines

39. Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: The Second International Conference on Availability, Reli-
ability and Security (ARES’07). pp. 908–916 (2007). https://doi.org/10.1109/
ARES.2007.108

A Cryptographic Assumptions

In this section, we report the cryptographic assumptions on which the proposed
e-voting scheme relies.

Definition 3 (Hard Subgroup Membership assumption (HSM). Let DG

and DH two distributions over the integers such that

1. {gx | x ←$ DG} is at distance less than 2−λ from the uniform distribution
on G and

2. {hx | x ←$ DH} is at distance less than 2−λ from the uniform distribution
on G.

Let pp = (Ĝ, s̃, g, h, f) be the public parameters, then the Hard Subgroup Mem-
bership assumption states that∣∣∣Pr [b = b′ : x←$ DG, x

′ ←$ DH , b←$ {0, 1}, Z0 = gx, Z1 = hx′
, b′ ←$A (pp, Zb)

]
−1

2

∣∣∣
is negligible in λ for every PPT adversary A.

Definition 4 (C-rough assumption (ROC)). Let C be a natural number.
Define CLGen as the algorithm taking as input the security parameter λ, a prime
p and some randomness ρ ∈ {0, 1}λ and returning the public parameters pp =

(Ĝ, s̃, g, h, f). Let Drough
C be the uniform distribution over the set

{ρ ∈ {0, 1}λ | pp = CLGen(1λ, p, ρ) ∨ ∀q < C, q ∤ ord(Ĝ)}.

The C-rough assumption states that∣∣∣Pr [1←$A
(
1λ, ρ0

)
: ρ0 ←$ {0, 1}λ

]
− Pr

[
1←$A

(
1λ, ρ1

)
: ρ1 ←$ Drough

C

] ∣∣∣
is negligible in λ for every PPT adversary A.

https://www.valimised.ee/sites/default/files/2023-02/IVXV-protocols.pdf
https://www.valimised.ee/sites/default/files/2023-02/IVXV-protocols.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/System
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/System
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/System
https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines
https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines
https://doi.org/10.1109/ARES.2007.108
https://doi.org/10.1109/ARES.2007.108
https://doi.org/10.1109/ARES.2007.108
https://doi.org/10.1109/ARES.2007.108

22 M. Battagliola et al.

Definition 5 (Unknown Order assumption ORD). Let pp = (Ĝ, s̃, g, h, f)
be the public parameters, then the Unknown Order assumption states that

Pr
[
(h, e)←$A(1λ, pp) : h ∈ Ĝ \ F, e ̸= 0, he = 1

]
is negligible in λ for every PPT adversary A.

B Missing proofs

Proof of Theorem 1. The correctness follows from direct inspection.
The soundness property is proven following the same arguments from [6].

Assume that one can extract two accepting transcripts (c̃t, x, ρ̂) and (c̃t, x′, ρ̂′)
from a prover P ∗ which is accepted with non-negligible probability, with x ̸= x′.
Then, since they are accepting, we have that

(c̃t1 · ctx1 , c̃t2 · ctx2) = (hρ̂, pkρ̂fxm) and (c̃t1 · ctx
′

1 , c̃t2 · ctx
′

2) = (hρ̂′
, pkρ̂

′
fx′m).

Hence, dividing the two equations, we have

(ctx−x′

1 , ctx−x′

2) = (hρ̂−ρ̂′
, pkρ̂−ρ̂′

f (x−x′)m) = Enc(pk, (x− x′)m, ρ̂− ρ̂′).

By the C-rough assumption, since 0 < |x − x′| < C, the element x − x′ is
invertible modulo qŝ, the order of Ĝ and denote its inverse with z. Then, we
have

(ct1, ct2) = (ct
(x−x′)z
1 , ct

(x−x′)z
2) = Enc(pk,m, z(ρ̂− ρ̂′))

and hence, there exists the randomness z(ρ̂− ρ̂′) for the ciphertext (ct1, ct2) with
plaintext m.

For the honest-verifier zero-knowledge property, we refer to [6, Th. 2].

Proof of Theorem 2. The correctness follows from direct inspection since, if ct(1)
is a re-encryption of ct(0) using randomness ρ̃, then we have that

ct(1) = (ct
(1)
1 , ct

(1)
2) = (hρ̃ct

(0)
1 , hρ̃ct

(0)
2).

To prove special soundness, consider two accepting transcripts ({Ii}, {ci}, {zi})i
and ({Ii}, {c′i}, {z′i})i with different challenges such that there exist an index j
with cj ̸= c′j . For instance, suppose that cj = 0 and c′j = 1. Then, the extractor
computes the witness ρ̃ as z′j − zj .

The following simulator SRE provides the honest-verifier zero-knowledge prop-
erty. For each i from 1 to λ, the simulator samples a random bit challenge ci, then
it picks a random zi from [0, 2ϵ−2s̃[and computes Ii = (hzict

(ci)
1 , hzict

(ci)
2). The

produced transcript has the same distribution of a honest-generated one.

Enhancing E-Voting with Multiparty Class Group Encryption 23

C Designated Verifier ZKP

Here we show the explicit Designated Verifier zero-knowledge proof from Sec-
tion 3.1. Recall that it is designed as an OR proof of the proof of re-encryption
from Figure 6 and a proof of knowledge of skVer given the public pair (g, gskVer =
pkVer). For the latter, a standard proof using λ repetition and binary challenges
can be used, having simulator SVer.

The OR proof is described in Figure 7. It uses the witness w, which can
be ρ̃ or skVer. If the parameter MODE is equal to 0, then the prover knows the
randomness ρ̃ and calls SRE, the simulator of the protocol in Figure 6; otherwise,
if MODE is equal to 1, the prover knows the secret key skVer and calls the simulator
SVer.

24 M. Battagliola et al.

Prover
(
pp, ct(0), ct(1), pkVer,w, MODE

)
Verifier

(
pp, ct(0), ct(1), pkVer

)
(c′1, . . . , c

′
λ)←$ {0, 1}λ

if MODE = 0 then

({Ji}, {c′i}, {z′′i })← SVer(c′1, . . . , c′λ)

(d1, . . . , dλ)←$ [0, 2ϵ−2s̃[λ

Ii ←
(
ct

(0)
1 hdi , ct

(0)
2 hdi

)
for i = 1, . . . , λ

if MODE = 1 then

({Ii}, {c′i}, {z′i})← SRE(c′1, . . . , c′λ)

(x1, . . . , xλ)←$ (Z/Zp)λ

Ji ← gxi for i = 1, . . . , λ

I1, J1 . . . , Iλ, Jλ

c1, . . . , cλ (c1, . . . , cλ)←$ {0, 1}λ

(c′′1 , . . . , c
′′
λ)← (c1, . . . , cλ)⊕ (c′1, . . . , c

′
λ)

if MODE = 0 then

z′i ← di − wc′′i for i = 1, . . . , λ

(c̃1, . . . , c̃λ)← (c′′1 , . . . , c
′′
λ)

(
≈
c1, . . . ,

≈
cλ)← (c′1, . . . , c

′
λ)

if MODE = 1 then

z′′i ← xi − wc′′i for i = 1, . . . , λ

(c̃1, . . . , c̃λ)← (c′1, . . . , c
′
λ)

(
≈
c1, . . . ,

≈
cλ)← (c′′1 , . . . , c

′′
λ)

{z′i}, {z′′i }, {c̃i}, {
≈
ci}

(c′′1 , . . . , c
′′
λ)← (c1, . . . , cλ)⊕

(c′1, . . . , c
′
λ)

accept if for i = 1, . . . , λ

Ii =
(
hz′ict

(c̃i)
1 , hz′ict

(c̃i)
2

)
Ji = gz

′′
i pk

≈
ci
Ver

Fig. 7. Interactive protocol for the Designed Verifier ZKP.

	Enhancing E-Voting with Multiparty Class Group Encryption

