
Designated-Verifier SNARGs with One Group Element∗

Gal Arnon1, Jesko Dujmovic2, and Yuval Ishai3

1Weizmann Institute and Bar-Ilan University
galarnon42@gmail.com

2CISPA Helmholtz Center for Information Security and Saarland University
jesko.dujmovic@cispa.de

3Technion and AWS†

yuvali@cs.technion.ac.il

June 5, 2025

Abstract

We revisit the question of minimizing the proof length of designated-verifier succinct non-interactive
arguments (dv-SNARGs) in the generic group model. Barta et al. (Crypto 2020) constructed such dv-
SNARGs with inverse-polynomial soundness in which the proof consists of only two group elements. For
negligible soundness, all previous constructions required a super-constant number of group elements.

We show that one group element suffices for negligible soundness. Concretely, we obtain dv-SNARGs
(in fact, dv-SNARKs) with 2−τ soundness where proofs consist of one element of a generic group G
and O(τ) additional bits. In particular, the proof length in group elements is constant even with 1/|G|
soundness error.

In more concrete terms, compared to the best known SNARGs using bilinear groups, we get dv-
SNARGs with roughly 2x shorter proofs (with 2−80 soundness at a 128-bit security level). We are not
aware of any practically feasible proof systems that achieve similar succinctness, even fully interactive or
heuristic ones.

Our technical approach is based on a novel combination of techniques for trapdoor hash functions
and group-based homomorphic secret sharing with linear multi-prover interactive proofs.

∗This is a full version of [ADI25].
†This paper describes work performed at the Technion and is not associated with Amazon.

mailto:galarnon42@gmail.com
mailto:jesko.dujmovic@cispa.de
mailto:yuvali@cs.technion.ac.il

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Open problems and future directions . 5
1.3 Related work . 7
1.4 Organization . 7

2 Technical overview 8
2.1 Designated-verifier SNARGs from compressible encryption . 8
2.2 Packed ElGamal . 10
2.3 Improved proof length by reducing malleability . 12

3 Preliminaries 14
3.1 Generic group model . 14
3.2 Designated-verifier SNARGs . 15
3.3 Linear PCPs and strong linear MIPs . 16

3.3.1 Linear PCPs used in this paper . 17
3.4 Linearity testing . 18
3.5 Distributed discrete log . 18

4 Compressible encryptions schemes 18
4.1 Packed ElGamal . 19
4.2 Packed ElGamal with hash check . 22

5 Targeted malleability 23
5.1 Malleability notions . 23
5.2 Isolated homomorphism of packed ElGamal . 25
5.3 Bound-limited homomorphism of Packed ElGamal with hash check 30

6 Constructing linear PCPs and MIPs 33
6.1 Linear PCPs to strong linear MIPs . 33
6.2 Modded LPCPs . 37

7 Designated-verifier SNARGs from compressible encryption 40
7.1 Construction from isolated homomorphism . 41
7.2 Construction from bounded-limited homomorphism . 44

A On Measuring Concrete Proof Length 52

1 Introduction

Interactive proofs [GMR89] are a central tool in cryptography and complexity. In an interactive proof system
for an NP language L, a prover holding an instance-witness pair (x,w) wants to convince a polynomial-time
verifier that x ∈ L, and they do so over multiple rounds of back-and-forth communication. If the statement
is true, the verifier should accept; if false, it should accept with probability at most 2−τ , no matter what the
prover does.

Here, we consider such proof systems with two natural relaxations. First, we only require soundness
against computationally bounded provers [BCC88]. Such proof systems are often referred to as arguments.
Second, we allow the prover and the verifier to engage in an (instance-independent) preprocessing protocol.
In this setting, we ask the following basic question:

How succinct can a practical proof system be?

By succinctness, we refer to the total number of bits exchanged between the prover and the verifier,
excluding the preprocessing phase. Originating from the works of Kilian [Kil92] and Micali [Mic94], an
enormous body of works studied succinct proof systems that have sublinear communication in the length of
the NP-witness.

By practical, we loosely refer to proof systems that are practically feasible in the sense that they can
run in a “reasonable” amount of time for non-trivial NP-statements, such as proving the satisfiability of a
circuit with a few thousand gates. This excludes optimally succinct proof systems based on general-purpose
obfuscation techniques [SW21], which are not yet practical in this sense. To give a more precise notion of
practicality, we consider proof systems that can be cast in simple generic models, such as the random oracle
model (ROM) [BR93], the generic group model (GGM) [Sho97], or a generic bilinear group model. This is
general enough to capture the most succinct proof systems from the literature that are practical in the above
informal sense.1

Finally, in the above generic models, one can typically obtain a non-interactive proof system with little
to no loss of succinctness. We will therefore restrict our attention to such proof systems, referred to as
succinct non-interactive arguments (SNARGs) [Mic94, GW11].2 Here, the preprocessing phase may produce
a (possibly long and structured) common reference string (CRS), which can be used by any prover. SNARGs
where the verifier generates the CRS and may keep a secret verification key are referred to as designated-
verifier SNARGs (dv-SNARGs).

Designated-verifier SNARGs can be applied in any situation in which the verifier is predetermined. One
example would be in an anonymous credential setting, where it is clear that a user is proving a statement to a
specific authority. Another example is making verifiable queries on a succinctly committed database, where
the database operator certifies the answers. Here the answers can be very short, possibly just a Yes/No bit
or a small number, hence minimizing the proof size may be significant.

Concrete succinctness of known practical SNARGs. We briefly summarise the state of the art on
practical succinctness and defer a more detailed overview to Section 1.3. When referring to concrete proof
size, we assume 2−80 soundness at a 128-bit security level.3

• Using generic bilinear groups, there are SNARGs with 2 G1-elements and 2 field elements [Gro16,
Lip24, DMS24]. When instantiated, these yield 1280-bit proofs.

• In the GGM, [BIOW20] obtain a dv-SNARG with 2 G-elements that yields 512-bit proofs, but whose
soundness error is inverse-polynomial in the verifier’s running time. Obtaining negligible soundness
using the [BIOW20] construction requires a super-constant number of G-elements.

1The generic models we consider exclude practical lattice-based proof systems, e.g., [BISW17, BS23, SSE+24, AFLN24] and
many more. However, such proof systems are not competitive with group-based systems in terms of concrete succinctness.

2All positive results we refer to also hold for the stronger notion of SNARK [BCC+17]. Moreover, we are not aware of any
interactive (even heuristic) proof systems that achieve a similar level of succinctness to the non-interactive ones we obtain here.

3By 2−80 soundness at a 128-bit security level, we refer to provable soundness error of 2−80 against polynomial-time malicious
provers in the standard GGM, where we instantiate the group to have 256-bit elements. A similar convention is used in prior
related works, see Appendix A for further discussion.

3

This leaves open two questions: Can we obtain negligible soundness in the GGM with a constant number
of group elements? Can we obtain any practical proof system that meets the above concrete soundness level
using fewer than 1280 bits?

1.1 Our results

We answer both questions in the affirmative. We construct the first designated-verifier SNARGs in the
generic group model with negligible soundness error and proof size equating to a constant number of group
elements. In fact, our proofs consist of a single group element and an additive term that depends on the
soundness error. In concrete terms, we can obtain 2−80 soundness at a 128-bit security level using 695 bits,
almost a 2x improvement over the best pairing-based SNARGs [Gro16, Lip24, DMS24].

Settling for a constant soundness error (say, 1/2), which may be good enough for some practical use
cases, the total proof size is close to a single group element, almost a 2x improvement over the best previous
dv-SNARGs in this setting [BIOW20].

The above results are obtained via two variants of the same blueprint. We begin by describing a SNARG
with one group element and O(τ) additional bits, and then discuss its construction.

Theorem 1.1 (1 G + O(τ) bit dv-SNARG, informal). Let G = Gλ be a generic group4 and τ a soundness
parameter. There exists a dv-SNARG for proving the satisfiability of a Boolean circuit of size s with the
following features:

• Soundness error: 2−τ +O(t2 · 2−λ) against t-query adversaries;

• Proof size: 1 G-element (λ bits) and O(τ) additional bits;

• CRS size: O(τs) G-elements.

See Corollary 7.1 for a formal statement.

In fact, we prove that our dv-SNARG has the stronger notion of knowledge soundness. While the above
O(τ) term in proof size hides a large constant, we show that if we relax the CRS size to O(τs2), the proof
can include 1 G-element and 56τ bits. Thus, for use-cases where only a constant soundness error is required,
the proof size in the above dv-SNARG is smaller than 2 group elements. Finally, if we only require some
constant soundness error δ < 1, then we can get all the way down to 1 G-element and only 7 additional bits.

We note that even a quadratic CRS size may be tolerable when using our dv-SNARK as an “inner system”
for proving the correctness of a fast-to-verify proof generated by an “outer” SNARG, such as Groth16 [Gro16].

Our prover and verifier both make Õ(λτs) group operations (the prover time becomes Õ(λτs2) when
considering the quadratic CRS variant). We leave a more refined optimisation of asymptotic and concrete
efficiency to future work, and discuss some possible routes for improvement in Section 1.2.

Theorem 1.1 is proved by extending the BCIOP compiler [BCI+13], which combines a “linear-only”
encryption scheme and a linear PCP to construct dv-SNARGs, to compressible encryption schemes, where
ciphertexts can be compressed following homomorphic evaluations. Specifically, we consider the packed
ElGamal encryption scheme implied by techniques developed in [BGI16, DGI+19, BBD+20]. We analyse
the malleability of this encryption scheme and design (variants of) linear PCPs that support instantiating
the compiler with the packed ElGamal scheme. In more detail, we show that packed ElGamal in the generic
group model is isolated homomorphic, a form of limited homomorphism which allows the adversary more
ability than in the linear-only definition of [BCI+13]. We then use packed ElGamal to construct a dv-
SNARG using the compiler along with a strong linear multi-prover interactive proof (strong LMIP). While in
a standard MIP, the verifier interacts with multiple provers, which are unable to share information about the
verifier’s queries, a strong LMIP additionally requires the honest prover strategy to be linear while retaining
soundness against malicious provers with arbitrary strategies. To construct strong LMIPs, we use a linear
PCP (either the 1-query LPCP of [BHI+24] for linear CRS size or, for better concrete succinctness with

4Here Gλ refers to a generic group of size ≈ 2λ and whose elements are described using λ bits.

4

quadratic CRS, the Hadamard-based 2-query LPCP from [BIOW20]) and transform it into a strong LMIP.
Such a transformation was first used in [IKO07], and we give an alternate construction (for 2-query LPCPs)
which achieves better concrete parameters. See Section 2 for more details.

Improving concrete proof size via hashing. The primary difficulty in constructing the dv-SNARG of
Theorem 1.1 is to analyse precisely what power an adversary has in the malleability of the packed ElGamal
scheme, and this is the main limitation for achieving smaller proof size. We show that by utilizing a random
oracle (which we use only for its collision-resistant properties) it is possible to restrict the adversary’s range
of actions to a more limited set of malleability attacks. By using this variant of the packed ElGamal scheme,
we design a SNARG whose length is one group element, one output of the random oracle, and a number of
bits that tends towards 2τ :

Theorem 1.2 (1 G + 1 H + ∼ 2τ bit dv-SNARG, informal). Let G = Gλ be a generic group, H = Hλ be a
random oracle with λ output bits, τ a soundness parameter, and p > 2 be a prime. There exists a dv-SNARG
for proving the satisfiability of a Boolean circuit of size s with the following features:

• Soundness error: 2−τ +O(t2 · 2−λ) against t-query adversaries;

• Proof size: 1 G-element (λ bits), 1 H output (λ bits), and ⌈ 2τ log p
log p−Θ(1)⌉ additional bits;

• CRS size: O(τs · poly(p)) G-elements.

See Corollary 7.2 for a formal statement.

If we allow the CRS size to be quadratic in s, we can make the constant Θ(1) in the proof size equal to
1. Thus, for soundness error 2−80 at a 128-bit security level (i.e., setting τ = 80, λ = 256) and choosing p
to be a 256-bit prime, the proof length is only 2λ+ ⌈ 2τ log p

log p−1⌉ = 695 bits, almost a 2x improvement over the
best pairing-based SNARGs.

As in Theorem 1.1, we rely on linear PCPs (again, using the linear PCPs of [BHI+24] and [BIOW20]).
However, due to the reduced malleability of the encryption scheme, we do not have the additional overhead
of compiling to strong LMIP. We still need to slightly adapt the PCPs, but this adaptation is significantly
more efficient. This is the reason Theorem 1.2 achieves better concrete parameters than Theorem 1.1, at the
cost of the added random oracle output. See Section 2.3 for more details.

1.2 Open problems and future directions

In this work, we establish the practical feasibility of dv-SNARGs in the GGM whose proof size contains a
single group element and a small number of additional bits that depends on the level of soundness. While
this proof size is not too far from optimal, our results leave room for three kinds of improvement: (1) further
improving succinctness, (2) improving prover and verifier runtimes, and (3) making the CRS fully reusable.
We elaborate on each goal separately below.

Succinctness. There are two plausible approaches for further improving the proof size.

• Tighter analysis. In our analysis of packed ElGamal, we give a bound on the possible malleability
attacks a malicious party may do. However, we believe that our analysis is quite loose, and conjecture
that an even a slightly simpler construction can achieve a better level of soundness. See Section 2.3
for further discussion, as well as an explicit proposal for a dv-SNARG that we conjecture to achieve
soundness 2−τ with proofs consisting of only 1 group element and ≈ 2τ additional bits. For a soundness
error of 2−80 at a 128-bit security level, this would amount to a proof size of ≈ 420 bits.

• Better PCPs. As with prior constructions [BCI+13, BIOW20, BHI+24], our dv-SNARGs rely on
different flavors of linear PCPs. However, unlike these previous constructions, our approach is less
sensitive to the number of queries. It depends mainly on the ratio µ between the total bit-length of the

5

LPCP answers and the soundness level τ . The LPCPs we use have µ ≈ 2, which is why the SNARG
described in Theorem 1.2 tends to 2τ , and explains the 2τ additive term in our proof length. As noted
in [BHI+24], known hardness of approximation results for MAXLIN [H̊as01, FJ12, ABCH19] imply
1-query LPCPs with µ ≈ 1. Using such a linear PCP would result in a proof where the additive term is
improved from ≈ 2τ to ≈ τ . However, these LPCPs have a non-negligible completeness error and seem
practically infeasible. The completeness error can potentially be eliminated by allowing more queries,
combining PCPs with optimal amortised query complexity [HK05] with the universal factor graph
technique from [ABCH19] to make the query distribution input-independent. However, this approach
too seems practically infeasible. We leave open the question of designing practical LPCPs with µ ≈ 1.

The above two potential improvements could lead to the following dv-SNARG.

Conjecture 1.3. Let G = Gλ be a generic group and τ a soundness parameter. There exists a dv-SNARG
for proving the satisfiability of a Boolean circuit of size s with the following features:

• Soundness error: 2−τ+log log λ +O(t2/2λ) against t-query adversaries;

• Proof size: 1 G-element and τ + o(τ) additional bits;

• CRS size: O(τs) G-elements.

For a soundness error of 2−80 at a 128-bit security level this would amount to a proof size of ≈ 340 bits,
roughly half the proof size from Theorem 1.2.

Runtimes. Our new proof systems are practically feasible even for satisfiability problems involving thou-
sands of constraints. However, the concrete runtime of the prover and (especially) the verifier still leave
much to be desired, and improving these overheads is a major direction for future research.

Our packed ElGamal encryption is based on the distributed discrete logarithm algorithm from [BGI17],
which helps us achieve perfect completeness. With a more careful analysis, one might be able to switch to
the faster distributed discrete logarithm algorithm from [DKK18] to quadratically reduce verification time.

An orthogonal improvement is a tighter analysis of the SNARG verification time. Our analysis pessimisti-
cally assumes the magnitude of LPCP answers scales linearly with the proof length. However, for natural
linear PCPs, a quadratic improvement could be potentially obtained by using a concentration bound for a
corresponding random walk. Similar ideas have been explored in [BIOW20]. In Claims 6.5 and 6.10, we show
that this analysis is compatible with our transformations. See Conjecture 3.11 for a relevant conjecture.

Combining both of the above potential optimisations, the verifier’s runtime can grow linearly with s1/4

rather than linearly with s, potentially making our SNARGs practical for much larger circuits.
Finally, there is a lot of room for improving the concrete efficiency of the LPCPs we employ. In partic-

ular, we rely on 1-query LPCPs from [BIOW20, BHI+24] that apply to Boolean constraints or arithmetic
constraints over small fields. Extending them to natively accommodate arithmetic constraints over large
fields remains open.

Reusability. In every dv-SNARG, the CRS setup can be safely reused an arbitrary number of times as long
the prover does not learn (too many times) whether the verifier accepts badly formed proofs.5 This may be
good enough for many practical use cases, especially when there are long-term relations between the prover
and the verifier. In particular, the verifier can replace the CRS after several rejections, or alternatively, not
reveal whether each individual proof is accepted.

However, the standard (strong) notion of reusability for SNARGs requires that the CRS can be safely
reused even when a malicious prover can fully observe the verifier’s accept/reject decisions. Our dv-SNARGs
are not reusable in this sense, leaving the question of achieving full reusability open. We explain the source
of the problem below.

5In contrast, some interactive arguments in the preprocessing model, such as ones suggested in [IKO07, BHI+24], require
an independent setup for each proof instance even when malicious provers cannot learn the verifier’s decisions.

6

The BCIOP compiler [BCI+13] shows that by combining an LPCP that has reusable soundness with
a linear-only encryption scheme, one can obtain a dv-SNARG with (strong) reusable soundness. However,
the kinds of LPCPs and MIPs we use (concretely, “strong linear MIPs” and “modded linear PCPs”) do not
have reusable soundness. In the case of strong linear MIPs, where malicious provers can employ an arbitrary
strategy, the lack of reusable soundness seems inherent. However, there is hope to construct reusably sound
modded LPCPs. Indeed, [BHI+24, Corollary 5.24] realised reusably sound bounded 1-query LPCP over large
fields, which is a strongly related notion.

1.3 Related work

In this section, we give an overview of the concrete level of succinctness that can be achieved in each of the
main generic models: the random oracle model (ROM), the generic bilinear group model, and the generic
group model (GGM). For concreteness, we require here soundness error of 2−80 at a 128-bit security level
for designated verifier SNARGs and 128-bit soundness for publicly verifiable ones. See Appendix A for an
extended discussion about the security notion and this choice of numbers for comparison.

Random Oracle Model. In the ROM, the most succinct hash-based SNARGs [BBHR18, ACFY24a,
ACFY24b] have proofs with size roughly 40Kib (for instances of size 212). At a technical level, these (setup-
free) SNARGs combine the blueprint of Kilian and Micali with an interactive variant of classical PCPs known
as an IOP [BCS16, RRR16]. See [CY24] for further details. Using classical PCPs instead of IOPs, one could
potentially obtain somewhat better succinctness at the expense of a much slower prover time. However, even
in this case, proofs would have length in the thousands of bits.

Generic Bilinear Group Model. Bilinear group-based SNARGs can obtain a much better level of
succinctness by incorporating a different relaxation of classical PCPs known as a linear PCP [IKO07]. The
first practical SNARGs based on bilinear groups were given by Groth [Gro10]. Following a sequence of
works [Lip13, GGPR13, BCI+13, DFGK14], the Groth16 SNARG [Gro16] was considered until recently to
be the state of the art in succinctness. Built on asymmetric pairings, a Groth16 proof has size 2 G1-elements
and 1 G2-element. For the popular group of choice, BLS12-381 (for 128-bit security), this corresponds to
2 ·384+768 = 1536 bits. Recently, [Lip24] improved on the size of Groth16, achieving a size of 3 G1-elements
and 1 field element, which equates to 3·384+256 = 1408 bits. This was reduced in [DMS24] to 2 G1-elements
and 2 field elements arriving at 2 · 384 + 2 · 256 = 1280 bits. When instantiating [Mic94] with the linear
map commitments of [LM19] and a 2-query linear Reed-Solomon PCP implicit in [DFGK14] (see [BHI+24,
Corollary D.6]), one also gets a proof size of 2 G1-elements and 2 field elements. If one is willing to use the
full PCP machinery instantiating [Mic94] with the subvector commitments of [LM19], one may get a slightly
lower proof size. However, as discussed above, such general-purpose PCPs have poor concrete efficiency.

Generic Group Model. Most relevant to our work, another line of research [BCI+13, BCC+16, BBB+18,
BIOW20, BHI+24] considers minimizing proof size using generic pairing-free groups, namely in the standard
GGM. The simpler structure gives hope for more conservative group instantiations with better concrete
parameters. Unlike pairing-based SNARGs, the most succinct GGM-based SNARGs apply only in the
designated-verifier setting. Settling for inverse-polynomial soundness error, Barta et al. [BIOW20], obtained
dv-SNARGs with proofs as short as 2 G-elements, which corresponds to 512 bits for Curve 25519, a pop-
ular group of choice. However, applying this construction with our soundness target of 2−80 would make
verification practically infeasible, unless the proof size is increased drastically to amplify soundness.

1.4 Organization

The rest of this paper is organised as follows. In Section 2, we give a high-level overview of the ideas and
techniques used in our work. In Section 3, we introduce preliminary notation, definitions and results known
from prior work. In Section 4, we define compressible encryption schemes, and introduce the packed ElGamal

7

encryption scheme, along with a variant thereof. In Section 5, we define malleability security notions and
prove that our compressible encryption schemes meet these security guarantees. In Section 6, we show how
to transform linear PCPs to strong linear MIPs and to modded linear PCPs. In Section 7, we combine
compressible encryption schemes and suitable linear PCPs (or MIPs) to construct dv-SNARGs.

2 Technical overview

In this section, we give an overview of our results and the underlying techniques.

2.1 Designated-verifier SNARGs from compressible encryption

We revisit a paradigm for constructing designated-verifier SNARGs by combining linearly homomorphic
encryption schemes with linear PCPs and related objects (such as linear IPs) developed in [IKO07, BCI+13].
In a linear PCP (LPCP) over a field Fp the prover (whether honest or malicious) commits to a proof π ∈ Fℓ

p,

and the verifier chooses queries a1, . . . ,aq ∈ Fℓ
p. The verifier then receives answers (b1, . . . , bq) ∈ Fp to

the queries, where bi = ⟨π,ai⟩ ∈ Fp. To construct a designated-verifier SNARG from LPCPs, we have
the verifier choose its queries first and put them into the common reference string. To have any chance of
preserving soundness, we hide these queries from the prover by encrypting them, where only the verifier is
given the decryption key. Intuitively, this way, the prover has a hard time making its proof string depend
on the queries. For completeness to still hold, we need this encryption to enable linear computation on the
encrypted messages.

We describe in more detail the transformation given an LPCP and an encryption scheme (KeyGen,Enc,Dec)
that is linearly homomorphic. For convenience of notation, for now, we consider only 1-query LPCPs.

• Setup. Generate keys (pk, sk) ← KeyGen for the encryption scheme, and PCP verifier query a ∈ Fℓ
p.

Encrypt the queries, cti = Enc(pk,a[i]), where a[i] is the i-th entry of a. The verifier private state is
sk, and the public reference string contains the public key pk and ciphertexts (ct1, . . . , ctℓ).

• Prover. Given pk, and ct1, . . . , ctℓ, the honest prover generates π ∈ Fℓ
p as in the linear PCP. It then

homomorphically evaluates ⟨π,a⟩ using the ciphertexts ct1, . . . , ctℓ, thus generating a new ciphertext
ct′. The prover message is ct′.

• Verifier. Given the secret key sk, and ciphertext ct′, decrypt b = Dec(sk, ct′) ∈ Fp and check that the
PCP verifier accepts given b as the query answer.

Note that to argue soundness, we require additional properties from our encryption scheme. Indeed, if a
malicious prover can do non-linear operations on the encrypted messages, then it can essentially launch a
non-linear attack on the linear PCP, in which case we cannot rely on the soundness of the PCP. Thus, we
want the encryption scheme to be linearly homomorphic, but the homomorphic operations to be restricted
only to linear ones (or, more generally, affine ones). Encryption schemes with this property are referred to
as being “linear-only” homomorphic.

Designated verifier SNARGs from ElGamal. Following the [BCI+13] paradigm, Barta et al. [BIOW20]
construct dv-SNARGs by utilising the ElGamal encryption scheme, which is linearly homomorphic for small
messages. Recall that, given a suitable group G of order p′ with generator g, the ElGamal encryption scheme
is:

• KeyGen: Sample random x←$ Zp′ . Set pk = gx and sk = x.
• Enc: Given public key pk = h, to encrypt m ∈ Zp′ pick r ←$ Zp′ and output (gr, hrgm).
• Dec: Given secret key sk = x and a ciphertext (c1, c2), compute the message m = DLog(c2 · c−x1).

Decryption, here, only works if m is small (i.e., so that discrete log can be computed by polynomially
bounded honest parties). Barta et al. [BIOW20] show that, in the generic group model (GGM), the ElGamal

8

encryption scheme satisfies linear targeted malleability, a variant of linear-only encryption. They further
design 1-query LPCPs over a field of size poly(λ) with soundness error 1/poly(λ). By combining these two
ingredients using the compiler described above, they construct a dv-SNARG in the GGM whose argument
consists of 2 group elements and whose soundness error is 1/poly(λ).

In the following, we explore how to push this idea to negligible soundness.

Adapting [BIOW20] for negligible soundness. The easiest way to achieve negligible soundness using
the previous approach is to repeat the proof q times, where q is super-constant in λ. This, however, would
increase size of the proof to 2q = ω(1) group elements, which is too large.

Our first step to reduce the size is to reuse the ciphertext randomness of ElGamal with multiple secret
keys in order to encrypt a vector of messages m1, . . .mq. In more detail:

• KeyGen: Sample random x1, . . . , xq ←$ Zp′ . Set pk = (gx1 , . . . , gxq) and sk = (x1, . . . , xq).
• Enc: Given public key pk = (h1, . . . , hq), to encrypt m1, . . . ,mq ∈ Zp′ pick r ←$ Zn

p′ and output
(gr, hr

1g
m1 , . . . , hr

qg
mq).

• Dec: Given secret key sk = (x1, . . . , xq) and a ciphertext (c0, . . . , cq),

output (DLog(c1 · c−x1
0), . . . ,DLog(cq · c

−xq

0)).

Observe that this change preserves linear homomorphism: given the two ciphertexts each encrypting a
q-message vector (gr, hr

1g
m1 , . . . , hr

ng
mq) and (gr

′
, hr′

1 gm
′
1 , . . . , hr′

q gm
′
q) we can compute a ciphertext

(grgr
′
, hr

1g
m1hr′

1 gm
′
1 , . . . , hr

tg
mqhr′

n gm
′
q)

=(gr+r′ , hr+r′

1 gm1+m′
1 , . . . , hr+r′

q gmq+m′
q),

which decrypts to the sum of the message vectors. Thus, we can use it in the paradigm.
With this modification, we have already reduced our proof length from 2q to q+1 group elements, which

is a significant decrease but still requires a super-constant number of group elements to achieve a negligible
soundness error. However, we have gained more power: the malicious prover is restricted to computing
the same linear function over all elements of the vector. This allows us to move from a 1-query LPCP to
a q-query one rather than repeat the 1-query LPCP q times. Multi-query LPCPs are significantly easier
to design than their 1-query variant.6 Revisiting our dv-SNARG construction, we use a q-query LPCP to
generate q queries a1, . . . ,aq. The verifier then encrypts the queries cti ← Enc(a1[i], . . . ,aq[i]). As in the
1-query compiler described above, the common reference string contains all of these ciphertexts. The prover
then homomorphically computes a ciphertext encrypting the value π⊺

(
a1 . . . aq

)
and sends it to the

verifier. The verifier decrypts this ciphertext and checks whether the LPCP verifier accepts the decrypted
values.

We have established that the paradigm can be made to work relatively efficiently for q-query linear PCPs.
However, this does not suffice to achieve negligible soundness with a constant number of group elements, as
we would need a linear PCP with constant query complexity and negligible soundness, which we only know
how to construct over large fields, which is both incompatible with computing the discrete log, and would
require a much larger generic group.

Smaller proofs using compressible encryption. We make two observations. The first is that because
the messages need to be small to compute the discrete logarithm, most of the group is unused. In other
words, in an amortized sense, one group element of size O(λ) only encodes polylog(λ) bits of information.
Our second observation is that the homomorphic properties of the encryption scheme are used only once in
the dv-SNARG. Indeed, after computing the query answers under the encryption, the prover simply sends
the resultant ciphertexts to the verifier, who decrypts them immediately.

To utilise the above observations, we consider encryption schemes that are compressible. In a (linearly
homomorphic) compressible encryption scheme, the encryption procedure Enc produces ciphertexts ct that

6See [BIOW20, BHI+24] for further discussion on the complications in designing 1-query LPCPs.

9

are large and support homomorphism. The scheme additionally has a compression algorithm Compress that
takes a ciphertext ct and compresses it into a smaller ciphertext cct, which might lose the homomorphic
capabilities held by ct.

We can now restate the transformation using the combined ideas of q-query LPCPs and compressible
encryption schemes:

• Setup. Generate keys (pk, sk) ← KeyGen for the encryption scheme, and PCP verifier queries
a1, . . . ,aq. Encrypt the queries,

cti = Enc(pk,a1[i], . . . ,aq[i]).

The verifier private state is sk, and the public reference string contains the public key pk and ciphertexts
(ct1, . . . , ctℓ).

• Prover.

1. Given pk, and ct1, . . . , ctℓ, the prover generates π as in the linear PCP. It then homomorphically
evaluates ⟨π,a1⟩ up to ⟨π,aq⟩ using the ciphertexts ct1, . . . , ctℓ, thus generating a new ciphertext
ct′.

2. Compute a compressed ciphertext cct from ct′ using Compress. The prover message is cct.

• Verifier. Given the secret key sk, and compressed ciphertext cct, decrypt (b1, . . . , bq) = Dec(sk, cct)
and check that the PCP verifier accepts given b1, . . . , bq as the query answers.

In the next sections, we explore instantiating this extension of the [BCI+13] paradigm.

2.2 Packed ElGamal

We consider the packed ElGamal scheme implied by techniques developed in [BGI17, DGI+19] and coined
in [BBD+20]. The setup and encryption of the scheme are identical to multi-message ElGamal, but now we
also consider a compression algorithm and subsequent decryption algorithm for compressed ciphertexts.

The main ingredient of the compression procedure is the “distributed discrete logarithm” (DDL) algo-
rithm. The DDL algorithm allows two parties that have group elements h1 and h2 = h1 · gx (respectively),
to convert these elements into integers y1 and y2 such that y1 = y2 + x, given that x is smaller than some
fixed bound B. We describe a simple distributed discrete logarithm algorithm (more efficient algorithms
exist, but are unnecessary for understanding our results). Suppose the two parties are given access to a
random function ϕ : G → {0, 1}ℓ. Now, each party computes its DDL share as follows: compute hi · gy for
every y < B′, and output the smallest y such that ϕ(hig

y) = 0ℓ. Now, if B′ is much bigger than B with
respect to x then with high probability both parties will arrive at the same element which maps to 0ℓ, i.e.,
h1g

y1 = h2g
y2 = h1g

x+y2 , and so y1 = y2 + x.
We show how to use DDL to compress an ElGamal ciphertext that encrypts a message m1, . . . ,mq ∈ Zp:

• Compress: Given a ciphertext ct = (c0, c1, . . . , cq), compute vi = DDL(ci) mod p for all i ∈ [q], and
output cct = (c0, v1, . . . , vq).

• Dec: Given secret key sk = (x1, . . . , xq) and a compressed ciphertext (c, v1, . . . , vq), compute

((DDL(cx1)− v1) mod p, . . . , (DDL(cxq)− vq) mod p) .

Then, assuming the distributed discrete logarithm algorithm does not fail, computing the compression and
then the decryption procedures becomes,

Dec(Compress(gr, hr
1g

m1 , ..., hr
qg

mq)),

and for every i ∈ [q] we get:

DDL(gxir) mod p− DDL(gxir+mi) mod p

=(yi − (yi −mi)) mod p = mi mod p

10

Failures of the DDL algorithm can be prevented by the compressing party resampling the randomness of the
ciphertext. While the compressor cannot check whether a compression error has occurred since it does not
have the decryption key, it can test whether there is a possible value which leads to a failure (recall that we
are considering here p, which is small).

Is packed ElGamal linear only? Recall that in order to use the paradigm to construct dv-SNARGs, we
needed an encryption scheme that is linear-only (or linear targeted malleable), i.e., is capable of doing linear
operations on the encrypted messages and nothing else. Since Compress is a postprocessing procedure to the
standard ElGamal ciphertexts, one could naively expect that this encryption, too, is linear only. However, we
show that this is, in fact, not the case by demonstrating that one can homomorphically evaluate non-linear
functions by forcing a decryption error.

We demonstrate how to evaluate a non-linear function over a packed ElGamal encryption with a ciphertext
that encrypts a message m ∈ {0, 1, 2}, and the compression happens modulo 3. The adversary gets a
ciphertext ct = (c0, c1) and the public key (g, h). Further, it knows h = gx, c0 = gr, and c1 = grx+m for
some r, x ∈ Zp′ and m ∈ {0, 1, 2}. In order to attack the scheme, the adversary scales (c0, c1) by a large
random number s ∈ Zp′ . More specifically, it produces a new ciphertext (c′0 = cs0 = grs, c′1 = cs1 = grxs+sm).
If the adversary chooses the (malformed) compressed ciphertext (c′0, e) for e ∈ Z3, then the decryption
procedure Dec will output (DDL(c′x0) − e) mod 3. Of course, the evaluator does not know c′x0 , but it does
know c′1 = c′x0 /gm. Therefore, it knows that Dec will output the following:

• (DDL(c′1)− e) mod 3 if m = 0;
• (DDL(c′1/g

s)− e) mod 3 if m = 1;
• (DDL(c′1/g

2s)− e) mod 3 if m = 2.

In other words, the adversary can homomorphically evaluate the function fs,e defined as:

m 7→

(DDL(c′1)− e) mod 3 if m = 0

(DDL(c′1/g
s)− e) mod 3 if m = 1

(DDL(c′1/g
2s)− e) mod 3 if m = 2

Because c′1, c
′
1/g

s, and c′1/g
2s are far apart, the value output of DDL given each as input is independent (as

they choose a different zero point of ϕ), and random7. Therefore, for example, with a constant probability
we will have the function (DDL(c′1) − e) mod 3 = (DDL(c′1/g

s) − e) mod 3 = 0 and (DDL(c′1/g
2s) − e)

mod 3 = 1, which is not a linear function over Z3.
Because s and e are chosen by the adversary, and it can compute fs,e, it can also use rejection sampling

until fs,e is whatever function it wants.
This attack generalises to bigger message spaces and multiple ciphertexts. It additionally generalizes

in the following sense to ciphertexts encrypting multiple messages: given a ciphertext encrypting a vector
(m1, . . . ,mn) the evaluator can evaluate non-linear functions f1, . . . , fn on the ciphertext, such it decrypts
to f1(m1), . . . , fn(mn).

Isolated homomorphism of packed ElGamal. We prove in the generic group model that the attack
mentioned above is the most a malicious party can do. More specifically, we prove that for every adver-
sary provided with ciphertexts ct1, . . . , ctℓ encrypting vectors m1, . . . ,mℓ ∈ Fq

p that outputs a compressed
ciphertext cct, there are functions f1, . . . , fq so that

Dec(cct) = (f1(m1[1], . . . ,m1[ℓ]), . . . , fq(mq[1], . . . ,mq[ℓ])) .

In other words, the adversary can evaluate arbitrary functions, but it cannot share information between
different “slots” of the vectors. We call this property of the encryption scheme isolated homomorphism.

7It is not uniformly random but the distribution has high enough entropy to make this attack work.

11

The proof follows standard techniques of proving security in the generic group model. First, we introduce
a hybrid in which we replace all secret random values with variables. We can argue that the behaviour does
not change compared to the honest execution by the Schwartz-Zippel lemma, as all polynomials are of degree
≤ 2. Now, if the ciphertext header ct0 depends on any secret key or a ciphertext element cti depends on a
secret key xj with i ̸= j, then the group elements that the decryptor computes are not computable by the
evaluator and therefore simulatable.

Strong linear MIPs. Isolated homomorphism of the packed ElGamal encryption scheme allows a mali-
cious prover to apply an arbitrary function fi to the verifier’s i-th query ai. However, since these functions
are isolated, they cannot “share” information between different slots of the ciphertexts. Thus, isolated ho-
momorphism translates to the soundness of a multi-prover interactive proof (MIP) rather than of a PCP.
In an MIP, a set of provers P1, . . . , Pq wants to convince a single verifier of a statement. The verifier
sends a query ai to each prover Pi and receives a response bi. A malicious set of provers can answer with
(f1(a1), . . . , fq(aq)) for any arbitrary functions f1, . . . , fq. This exactly matches the guarantees provided by
the isolated homomorphism notion.

In fact, we need the additional property that the honest proof is a single linear strategy. We call an
MIP where the honest prover computes a single linear function, but the malicious provers are allowed to
compute arbitrary (isolated) functions a strong linear MIP8. Strong linear MIPs have been constructed (e.g.,
in [IKO07]) by starting with a linear PCP with soundness against provers that (1) only apply linear strategies
and (2) apply the same strategy to each query. These requirements are relaxed by (1) adding a linearity test,
thereby removing the linearity assumption, and (2) adding a consistency check between the queries, thereby
removing the single strategy requirement.

This construction suffices to get strong linear MIPs with constant soundness, which can then be boosted
by repeating the protocol. Unfortunately, the concrete parameters achieved by this process leave much to
be desired. We give an alternate transformation that is specific to 2-query linear PCPs, which combines the
linearity and consistency checks into one combined check inspired by the linear-consistent test of [AHRS01],
thus improving the constants derived by this transformation. See Section 6.1 for further technical details.

dv-SNARGs from packed ElGamal. We combine the packed ElGamal encryption scheme with strong
linear MIPs to construct dv-SNARGs. Recall that we had compressed ciphertexts of the form cct =
(c0, v1, . . . , vq), such that c0 is a group element, and vi ∈ Zp, where Zp is the message space. Thus, the
dv-SNARG has proof length equal to one compressed ciphertext of a message of length equal to the size of
the query answers in the MIP.

Thus, when instantiated with a linear MIP (small) field Fp, with O(τ) queries and soundness error 2−τ

(which can be constructed from ones with constant soundness via τ -wise repetition), we get a dv-SNARG
whose proof length is a single group element along with O(τ · log p) bits (Theorem 1.1). Figure 1 provides a
summary of our transformations from linear PCPs to dv-SNARGs.

2.3 Improved proof length by reducing malleability

The main issues described in the previous section are caused by the malicious prover having the ability to
make DDL fail without being detected. We show that this behaviour of the malicious verifier can be limited
at the cost of appending a hash of the points that DDL synchronises to (i.e., the locations where ϕ is zero,
which the DDL algorithm outputs). Let H be a hash function, modelled by a random oracle. We change the
compression and decryption schemes in the following way:

• Compress(ct = (c0, c1, . . . , cq)):

1. Let vi ← DDL(ci) for i ∈ [q].
2. Let k ← H(c1g

v1 , . . . , cng
vq).

8In [IKO07] this notion is called linear MIP. In more recent work [BISW18], linear MIP refers to a notion in which the
malicious prover also has to behave linearly.

12

Linear PCP Strong LMIP +

Packed ElGamal

Theorem 1.1

(Lemma 6.1 or [IKO07]) (Lemma 7.3)

Isolated Homomorphic

(Lemma 5.3)

Linear PCP Modded LPCP +

Packed ElGamal w/hash

Theorem 1.2

(Lemma 6.7) (Lemma 7.5)

Bound-limited Homomorphic

(Lemma 5.6)

Figure 1: Summary of our transformations.

3. Output (c0, v1 mod p, . . . , vq mod p, k).

• Dec(sk = (x1, . . . , xq), cct = (c, e1, . . . , eq, k)):

1. Let v′i ← DDL(cxi) for i ∈ [q].

2. If H(cx1gv
′
1 , . . . , cxngv

′
q) ̸= k output ⊥.

3. Otherwise, output ((v′1 − e1) mod p, . . . , (v′n − eq) mod p)

Observe that compressed ciphertexts have size 1 group element, one hash output, and q log p bits, as opposed
to 1 group element and q log p bits, which seems worse than our previous scheme.

However, we show that the protocol above is bound-limited homomorphic, a notion which enables the
prover only slight non-linear power. More specifically, the decryptor automatically rejects if the answer is
bigger than some bound B′. If the answer is within this bound, the decryptor learns an affine function
evaluated over Zp′ and then modded by the smaller modulus p.

Importantly, bound-limited homomorphism is significantly more restrictive than isolated homomorphism.
Thus, we do not have to divert to strong linear PCPs, and can model these attacks as a slightly modified
version of linear PCPs (which we call modded linear PCPs). We show that standard linear PCPs can
be adapted to this modified model with a small loss in query complexity. Known linear PCPs can have
significantly better parameters than strong linear MIPs, translating to a smaller number of queries q.

This allows us to construct a dv-SNARG with proof size 1 group element, one hash output, and bits
approaching 2τ (Theorem 1.2). This is a significant improvement over our previous dv-SNARG when in the
high-soundness regime (e.g., when we think of τ = 80 and the size of a group element and a hash being 256
bits each). See Figure 1 for an overview of these transformations.

“Fishing in the dark.” We believe that our approach can be refined to achieve an even smaller SNARG.
As previously demonstrated, the packed ElGamal scheme can be used to evaluate non-linear functions
homomorphically. However, the class of non-linear functions described in our attack is quite limited. Recall
that in the evaluation, the adversary forces a synchronization error of DDL to get non-linear behavior,
meaning that cig

DDL(ci) (which is run on the adversary side) is different from cx0g
DDL(cx0) (which the decryptor

computes). In the hash-verified approach, we added a hash to eliminate this possibility.

13

We conjecture that it is possible to “integrate” the hash check into the ciphertext, thus making it hard
for an adversary to maul the ciphertexts even without the additional cost of the hash output:

• Compress(ct = (c0, c1, . . . , cq)):

1. Let vi ← DDL(ci) for i ∈ [q].
2. Let k1, . . . , kq ← H(c1g

v1 , . . . , cqg
vq).

3. Output (c0, v1 + k1 mod p, . . . , vq + kq mod p).

• Dec(sk = (x1, . . . , xq), cct = (c, e1, . . . , eq)):

1. Let v′i ← DDL(cxi) for i ∈ [q].

2. Let k1, . . . , kn ← H(cx1gv
′
1 , . . . , cxngv

′
q).

3. Otherwise, output ((v′1 − e1 − k1) mod p, . . . , (v′q − en − kq) mod p)

While we are currently unable to prove this, the above construction seems likely to be secure when combined
with a natural linear PCP over Zp. To see why, suppose that the decryptor’s outputs of cxigDDL(cxi) have

high entropy from the perspective of the adversary. In this case, it cannot query H(cx1gv
′
1 , . . . , cxngv

′
n), and

the decryption output will seem truly random. Thus, this attack reduces to a random attack function, i.e.,
a random attack on the underlying linear PCP, which does not pose a problem for soundness.

If, however, the values cxigDDL(cxi) have relatively low entropy from the perspective of the adversary,
then each possible input to the hash function H defines an affine function over Zp. Our linear PCP will
then provide soundness against each of the affine functions individually. However, we cannot afford a union
bound over all such affine functions. We believe that the construction is still secure, since the prover does
not have full control of these functions, as they are partially defined using the hash function.

Thus, in either case, the prover must effectively “fish in the dark” for a random function with which
to attack the scheme. If the above intuition is correct, then the resultant dv-SNARG could have length
that approaches 1 group element and 2τ bits. This improvement would be the first step towards proving
Conjecture 1.3. We leave further analysis of this approach for future work.

3 Preliminaries

For a relation R := {(x,w)}, we let L(R) := {x | ∃w, (x,w) ∈ R}. For a vector a ∈ Fℓ, we let a[i] be the
i-th entry. For the set {n, n+ 1, . . . ,m} we write [n,m], and abbreviate [1,m] with [m].

We equate prime order fields Fp with the congruence class Zp. For a ∈ Zp we define the absolute
value |a| to be the minimun distance of an element in the congruence class of a to 0, more specifically
|a| = min{|b| | b ∈ Z, b mod p = a mod p}. Further we define an operation that lifts a ∈ Zp to the integers
Z(a) = min|b|{b | b ∈ Z, b mod p = a mod p} and similarly an operation that moves a to some Zp′ , namely
Zp′(a) = {b | Z(a) mod p′ = b mod p′}. Notice, if p′ > p then for a ∈ Zp we have a = Zp(Zp′(a)).

We use Hoeffding’s inequality:

Theorem 3.1. Let X1, . . . , Xn be independent random variables where Xi ∈ [−B,B] for B > 0 and let
X =

∑
i Xi. Then for every t > 0,

Pr[|X − E[X]| > t] < 2 · exp
(
− t2

2 · n ·B2

)
.

3.1 Generic group model

We use Shoup’s version of the generic group model [Sho97].

Definition 3.2. The generic group model models cryptographic group operations via an oracle. For a
prime p′ the oracle holds a permutation f : L 7→ Z′p that maps from the label space L which are just binary
representations of the numbers 0, . . . , p′ − 1, to the group (Z′p,+). At the beginning of a security game f is
sampled uniformly at random from all permutations and all parties are provided with the label g ← f−1(1).

14

Throughout security games the parties have oracle access to the oracle G, which take two labels χ1, χ2 as
input and responds with f−1(f(χ1) + f(χ2)). We denote by G ← GGM(λ) the act of sampling a random
GGM oracle of size ≥ 2λ.

Remark 3.3. Our constructions in Construction 4.9 and Corollary 7.2 additionally use a random oracle H,
which is a uniformly random function with specified output length χ bits, sampled at the same time as the
GGM oracle. For simplicity, in our constructions we always set χ = λ and always count total oracle calls to
both oracles.

If an algorithm P has access to an oracle O we denote this by PO. Further, y
tr←− PO(x) means y is the

output of evaluating the algorithm PO on x and tr is the trace of P ’s interactions with the oracle O, i.e., it
contains all the queries to the oracle and its responses.

3.2 Designated-verifier SNARGs

Definition 3.4. A designated-verifier succinct non-interactive argument (dv-SNARG) in the generic group
model for a relation R = {(x,w)} is defined by a triple (Setup,P,V) as follows:

• Syntax. We describe a dv-SNARG with message length ℓ:

– The setup algorithm Setup receives an input size parameter 1n. It outputs a common reference
string crs and a verification state st.

– The (honest) prover algorithm P receives as input a common reference string crs, instance x ∈
{0, 1}n, and witness w ∈ {0, 1}m. It outputs a proof pf ∈ {0, 1}ℓ.

– The verifier algorithm V receives as input a verification state st, and instance x ∈ {0, 1}n, and a
proof pf ∈ {0, 1}ℓ. It outputs a bit b ∈ {0, 1}.

• Completeness. A dv-SNARG has completeness error α if for all (x,w) ∈ R and λ ∈ N:

Pr

VG(st, x, pf) = 1

G ← GGM(λ)

(crs, st)← SetupG(1|x|)
pf ← PG(crs, x, w)

 ≥ 1− α(λ, |x|) .

• Soundness. A dv-SNARG has (adaptive) soundness with error δ if for every λ ∈ N, n ∈ N, and prover
P′ that makes at most t queries to the GGM oracle:

Pr

 x /∈ L(R)
∧ VG(st, x, pf) = 1

G ← GGM(λ)

(crs, st)← SetupG(1|x|)
(x, pf)← P′G(crs)

 ≤ δ(λ, |x|, t) .

• Succinctness. For every large enough λ, GGM oracle G in the image of GGM(λ), (x,w) ∈ R and (crs, st)
in the image of SetupG(1|x|), we have |pf| = o(w) for pf = PG(crs, x, w).

A SNARG with the following additional knowledge property is known as a SNARK:

• (Straight-line) Knowledge soundness. A dv-SNARG has (adaptive) knowledge soundness (in which
case we refer to it as a dv-SNARK) with knowledge κ if there exists an expected polynomial time PPT
extractor Ext so that for every λ ∈ N, n ∈ N, and prover P′ that makes at most t queries to the GGM
oracle,

Pr

 (x,w) /∈ R
∧ VG(st, x, pf) = 1

G ← GGM(λ)

(crs, st)← SetupG(1n)

(x, pf)
tr←− P′G(crs)

w ← Ext(x, pf, tr)

 ≤ κ(λ, n, t) .

15

3.3 Linear PCPs and strong linear MIPs

A linear PCP is a PCP system where the verifier has query access to (affine) linear functions of the PCP
proof.

Definition 3.5. A linear PCP (P, (VQ, VD)) for a relation R = {(x,w)} over a finite field F is defined as
follows:

• Syntax. We describe a linear PCP with input length n, proof length ℓ, and query complexity q:

– The verifier query algorithm VQ receives as input x ∈ Fn. It outputs a state st ∈ {0, 1}∗, and q
queries a1, . . . ,aq ∈ Fℓ.

– The (honest) prover algorithm P receives an input x ∈ Fn and witness w ∈ Fh. It outputs a proof
π ∈ Fℓ.

– The verifier decision algorithm VD receives as input a state st ∈ {0, 1}∗, an input x ∈ Fn, and
query answers b1, . . . , bq ∈ F. It outputs a bit b ∈ {0, 1}.

• Perfect completeness. A linear PCP has perfect completeness if for all (x,w) ∈ R:

Pr

VD (st, x, b1, . . . , bq) = 1
π ← P(x,w)

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨π,ai⟩

 = 1 .

• Soundness. A linear PCP has soundness error (against affine strategies) δ if for every x /∈ L(R), π ∈ Fℓ,
and c1, . . . , cq ∈ F:

Pr

[
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨π,ai⟩+ ci

]
≤ δ .

• Knowledge. A linear PCP satisfies knowledge soundness κ if there exists a PPT extractor Ext such
that for every x, π ∈ Fℓ, and c1, . . . , cq ∈ F if,

Pr

[
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨π,ai⟩+ ci

]
> κ ,

then (x,Ext(x, π, c1, . . . , cq)) ∈ R.

We say that a linear PCP is smooth if every query ai is 1-wise uniform over Fℓ, and we say that it is
instance-independent if VQ(x) is a function only of |x|, in which case we specify its input by 1|x| (i.e., the
verifier query algorithm is VQ(1

|x|)).

We additionally consider a strong variant of linear MIPs, where the honest prover is restricted to a single
linear function, while the malicious adversary can reply to any query with an arbitrary (stateless) function.

Definition 3.6. A strong linear MIP (P, (VQ, VD)) for a relation R = {(x,w)} over a finite field F is defined
as follows:

• Syntax. We describe a linear PCP with input length n, proof length ℓ, and query complexity q:

– The verifier query algorithm VQ receives as input x ∈ Fn. It outputs a state st ∈ {0, 1}∗, and q
queries a1, . . . ,aq ∈ Fℓ.

– The (honest) prover algorithm P receives an input x ∈ Fn and witness w ∈ Fh. It outputs a proof
π ∈ Fℓ.

– The verifier decision algorithm VD receives as input a state st ∈ {0, 1}∗, an input x ∈ Fn, and
query answers b1, . . . , bq ∈ F. It outputs a bit b ∈ {0, 1}.

16

• Perfect completeness. A linear PCP has perfect completeness if for all (x,w) ∈ R:

Pr

VD (st, x, b1, . . . , bq) = 1
π ← P(x,w)

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨π,ai⟩

 = 1 .

• Soundness. A q-query strong linear MIP has soundness error δ if for every x /∈ L(R), and functions
f1, . . . , fq:

Pr

[
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = fi(ai)

]
≤ δ .

• Knowledge. A q-query strong linear MIP has knowledge soundness κ if there exists a an expected
polynomial-time oracle-aided extractor Ext such that for every x and every set of functions f1, . . . , fq
if

Pr

[
VD(st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
bi ← fi(ai)

]
> κ ,

then (x,Extf1,...,fq (x)) ∈ R.

As with linear PCPs, a linear MIP is is instance-independent if VQ(x) is a function only of |x|, in which
case we specify its input by 1|x| (i.e., the verifier query algorithm is VQ(1

|x|)).

We also consider bounded variants of PCPs and (strong) MIPs:

Definition 3.7. A q-query LPCP (resp. strong LMIP) (P, (VQ, VD)) over a relation R and finite field Fp

with proof length ℓ is B-bounded with error α if for all (x,w) ∈ R:

Pr

b1, . . . , bq ∈ [−B,B]
π ← P(x,w)

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨Z(π),Z(ai)⟩ ∈ Z

 ≥ 1− α .

Note that any LPCP is (p2 · ℓ)-bounded with error 0, in which case we either say that it is trivially
bounded. Whenever we do not give an explicit bound, the LPCP is assumed to be trivially bounded.

Furthermore, observe that (by the union bound) if an LPCP is B-bounded with error α, then its t-wise
repetition is B-bounded with error t · α.

3.3.1 Linear PCPs used in this paper

In this paper, we us the following linear PCPs known in the literature: For our results, we utilize the existence
of the following linear PCPs for arithmetic circuits:

Theorem 3.8 ([BIOW20], Appendix B.1). Let C : Fn
p×Fh

p → Fp be an arithmetic circuit of size s over finite

field Fp. There exists a 2-query instance-oblivious LPCP over Fp for RC =
{
(x,w) ∈ Fn × Fh | C(x,w) = 1

}
with perfect completeness, knowledge soundness error 2/p against affine strategies, and proof length s + s2

(field elements).
If we restrict to Boolean circuits, then there is an LPCP with the same parameters which for any λ ∈ N

with is O(p2sλ)-bounded with error 2−λ.

Theorem 3.9 ([BHI+24], Theorem 1.2). Let C : Fn
p × Fh

p → Fp be an arithmetic circuit of size s over
finite field Fp with p > 2. There exists a 1-query instance-oblivious LPCP over Fp for the relation RC ={
(x,w) ∈ Fn × Fh | C(x,w) = 1

}
with perfect completeness, knowledge soundness error O(1/

√
p) against

affine strategies, and proof length s · poly(p) (field elements).

By applying a transformation given in [IKO07, Section 5] from LPCPs to strong LMIPs to Theorem 3.9
we get the following:

17

Corollary 3.10. Let C : Fn
p×Fh

p → Fp be an arithmetic circuit of size s over finite field Fp with p > 2. There

exists a O(1)-query instance-oblivious strong LMIP over Fp for RC =
{
(x,w) ∈ Fn × Fh | C(x,w) = 1

}
with

perfect completeness, knowledge soundness error O(1) against affine strategies, and proof length O(s ·poly(p))
(field elements).

In Section 6.1 we give an alternate transformation from LPCP to strong LMIP which has better concrete
parameters, which we apply to the LPCP described in Theorem 3.8.

Following the discussion on open problems in Section 1.2, we add a conjecture that the LPCP of Theo-
rem 3.9 is bounded. We stress that this conjecture is included here purely to formally define what we mean
in the discussion, and is not used in this paper.

Conjecture 3.11. The LPCP from Theorem 3.9 is O(λp2
√
s)-bounded with error 2−λ.

3.4 Linearity testing

In our construction of strong linear MIPs (Section 6.1) we utilize a variant of the [BLR93] linearity test for
linear-consistent functions.

Definition 3.12. A triple of functions f1, f2, f3 : Fℓ → F is linear-consistent if there exists a linear function
g : Fℓ → F and c1, c2, c3 ∈ F so that c1 + c2 = c3 and for every i ∈ [3] and z ∈ Fℓ, fi(z) = g(z) + ci.

Theorem 3.13 ([AHRS01], Theorem 2). Let f1, f2, f3 : Fℓ → F. If

δ := Pr
z1,z2←Fℓ

[f1(z1) + f2(z2) ̸= f3(z1 + z2)] <
2

9
,

then there exist a triple of linear-consistent functions g1, g2, g3 : Fℓ → F so that for every i ∈ [3], ∆(fi, gi) ≤ δ.

3.5 Distributed discrete log

In our packed ElGamal encryption schemes (Section 4) use the distributed discrete log algorithm:

Lemma 3.14 ([BGI16, BGI17]). Let δ > 0, B ∈ N, p′ be a prime with B, T < p′, and δ = 4B/T . There
exists an algorithm DDL that does T GGM queries such that for all GGM labels h ∈ L,

Pr

[
∀x ∈ [−B,B],

DDLGB,δ(h)

− DDLGB,δ(h · gx) = x

∣∣∣∣∣ G ← GGM(p′)

]
≥ 1− δ .

Further, ∀x ̸∈ [−T, T] we have

h · gDDLG
B,δ(h) ̸= h · gx+DDLG

B,δ(h·g
x).

Remark 3.15. Previous work on distributed discrete logarithms are in the plain model. They require a
large group and a function that maps elements of this group to random bit-strings. The generic group model
provides both of these properties.

4 Compressible encryptions schemes

Our constructions of designated-verifier SNARGs will utilize linearly homomorphic encryption schemes that
have compressible ciphertexts. In this section, we define compressible encryption schemes. In subsequent
sections we give constructions of such schemes: in Section 4.1 we describe the packed ElGamal encryption
scheme, and in Section 4.2 we show a variant on this scheme that additionally uses a hash function.

Definition 4.1 (Compressible linearly homomorphic encryption). A compressible bounded linearly ho-
momorphic encryption scheme in the generic group model with bounded message space and compressed
ciphertext size σcct is a tuple of algorithms (KeyGen,Enc,Dec,Eval,Compress) that must satisfy the following
properties:

18

• Syntax. We describe an encryption scheme with homomorphism modulus p′, n ∈ N slots, plaintext
moduli p1, . . . , pn, decryption bound B, ciphertext size σct, compressed ciphertext size σcct, encryption,
decryption, and eval running times tenc, tdec, teval. All algorithms have access to a GGM oracle of size
λ.

– KeyGen: Outputs a public key pk and a secret key sk.

– Enc(pk,m): On input a public key pk and a message m ∈ Zn
p′ , outputs a ciphertext ct. This is

done in time tenc(λ).

– Dec(sk, cct): On input a secret key sk and a compressed ciphertext cct, output a message m ∈
Zp1
× · · · × Zpn

∪ {⊥}. This is done in time tdec(λ).

– Eval(pk, ct1, . . . , ctℓ, π): On input a public key pk, ciphertexts ct1, . . . , ctℓ and a linear function
π ∈ Zn

p′ , outputs a new ciphertext ct′. This is done in time teval(λ, ℓ).

– Compress(pk, ct): On input a public key pk and a ciphertext ct, outputs a compressed ciphertext
cct with |cct| = σcct.

• Correctness. The encryption has correctness error εcor if for every λ,∈ N, m1, ...,mt ∈ Zn
p′ , and π ∈ Zℓ

p′

Pr

DecG(sk, cct) =

(
Zpi

(
⟨π,

m1[i]
...

mt[i]

⟩))
i∈[n]

G ← GGM(λ)

(pk, sk)← KeyGenG

∀i ∈ [t], cti ← EncG(pk,mi)

ct′ ← EvalG(pk, ct1, . . . , ctℓ, π)

cct← CompressG(pk, ct′)

∀i ∈ [n], ⟨π,

m1[i]
...

mt[i]

⟩ ∈ [−B,B]

≥ 1− εcor(λ) .

We say that it is correct if εcor(λ) = negl(λ).

• Semantic security. The encryption scheme has semantic security advantage εsem for t-query adversaries
if for any λ ∈ N and adversary A that makes at most t queries to the GGM oracle:

Pr

∀i, m0,i,m1,i ∈ Zn

q

∧ b = b′

G ← GGM(λ)

(pk, sk)← KeyGenG

((m0,1, . . . ,m0,ℓ), (m1,1, . . . ,m1,ℓ), stA)← AG(pk)
b← {0, 1}

cti ← EncG(pk,mb,i)
b′ ← AG(ct1, . . . , ctℓ, stA)

 ≤
1

2
+ εsem(λ, t, ℓ) .

We say that it is semantically secure if for t, ℓ = poly(λ) we have εsem(λ, t, ℓ) = negl(λ).

Remark 4.2. Construction 4.9 has an additional random oracle with output length λ. It is straightforward
to add sampling of the random oracle into the notation above.

4.1 Packed ElGamal

We describe the packed ElGamal compressible encryption scheme:

Theorem 4.3. The packed ElGamal encryption scheme described in Construction 4.4 is compressible bounded
linearly homomorphic with the following properties:

• Homomorphism modulus: p′, the size of the generic group,
• Number of Slots: n,

19

• Correctness error: 0,
• Semantic security advantage: εsem(λ, t, ℓ) = 4t2/2λ.
• Plaintext moduli: p = p1 = ... = pn,
• Ciphertext size: n+ 1 G-elements,
• Compressed ciphertext size: 1 G-element and ⌈n log p⌉ bits,
• Encryption time: (4n+ 2) log λ group operations,
• Evaluation time for ℓ linear combinations: ℓ(2 log λ+ 1)(n+ 1) group operations,
• Decryption time: n(8Bn+ log λ) group operations,
• Expected compression time: 32Bn2 + 2(n+ 1) log λ group operations.

Construction 4.4 (Packed ElGamal). We specify the encryption scheme, parameterized by a message-
space p,B, n ∈ N and number of supported additions ℓ. Let δ = 1/2n and number of GGM queries per DDL
T = 8Bn.

KeyGenG :

1. Let p′ be the order of the generic group G and g its generator.
2. For every i ∈ [n], sample xi ←$ Zp′ .
3. Output pk = (gx1 , . . . , gxn) and sk = (x1, . . . , xn).

EncG(pk,m) :

1. Parse pk = (h1, . . . , hn) and m ∈ Zp′ .
2. Sample r ←$ Zp′ .
3. Output ct = (gr, hr

1 · gm1 , . . . , hr
n · gmn).

DecG(sk, cct) :

1. Parse sk = (x1, . . . , xn) and cct = (c, e1, . . . , en).
2. For every i ∈ [n], let mi = (DDLB,δ(c

xi)− ei) mod p.
3. Output m = (m1, . . . ,mn).

EvalG(pk, ct1, . . . , ctt, π) :

1. Parse pk = (h1, . . . , hn) and cti = (ai,bi).
2. Let a′ = aπ1

1 · . . . · a
πℓ

ℓ and b′j = b1[j]
π1 · . . . · bℓ[j]

πℓ for j ∈ [n].
3. Output ct′ = (a′, b′1, . . . , b

′
n).

CompressG(pk, ct) :

1. Parse pk = (h1, . . . , hn) and ct = (a, b1, . . . , bn).
2. Do in a loop:

• Sample r ←$ Zp′ uniformly at random.

• Compute a← a · gr, and bi ← bi · hr
i for every i ∈ [n].

3. Until for every i ∈ [n] and j ∈ [−B,B] it holds that

DDLGB,δ(bi · gj) + j = DDLGB,δ(bi).

4. Output cct = (a,DDLGB,δ(b1) mod p, . . . ,DDLGB,δ(bn) mod p).

Lemma 4.5. Construction 4.4 satisfies correctness and the running times are as described in Theorem 4.3.

Proof. Fix parameters λ, p,B, n, t ∈ N, messages m1, . . . ,mt ∈ Zn
p , and π ∈ Zt

p. We follow the correctness
experiment, keeping track of what each value is:

• Setup. Fix any (pk, sk) sampled by KeyGen. Then letting sk = (x1, . . . , xn), we have pk = (gx1 , . . . , gxn).

20

• Encryption. For every i ∈ [ℓ], and any randomness ri sampled during the encryption of cti, and mi, it
holds that

cti = (gri , hri
1 · gmi[1], . . . , hri

n · gmi[n])

= (gri , gx1·ri+mi[1], . . . , gxn·ri+mi[n]) = (ai,bi) .

• Linear evaluation. Following the evaluation step, we have ct′ = (a′, b′1, . . . , b
′
n) where

a′ =
∏
i∈[ℓ]

aπi
i = g

∑
i∈[ℓ] πi·ri ,

and for every k ∈ [n],

b′k =
∏
i∈[ℓ]

bi[k]
πi = g

∑
i∈[ℓ] πi·ri·xk+πi·mi[k] .

• Compression. The compressed ciphertext is cct = (c, v1, . . . , vn), where for some r ∈ Z′p we have

c = a′ · gr = gr+
∑

i∈[ℓ] πi·ri ,

and for every k ∈ [n],

vk = DDL(b′k · hr
k) = DDL

(
gr·xk+

∑
i∈ℓ πi·ri·xk+πi·mi[k]

)
and we know that for all j ∈ [−B,B] we have

DDL
(
gr·xk+

∑
i∈ℓ πi·ri·xk+πi·mi[k]

)
+ j

=DDL
(
gr·xk+

∑
i∈[ℓ] πi·ri·xk+πi·mi[k]−j

)
=DDL

(
gr·xk+

∑
i∈[ℓ] πi·ri·xk+

∑
i∈[ℓ] πi·mi[k]−j

)
• Decryption. For every k ∈ [n] the decryptor computes

(DDL(cxk)− vk) mod p

=
(
DDL

(
g(r+

∑
i∈[ℓ] πi·ri)·xk

)
− DDL

(
gr·xk+

∑
i∈ℓ πi·ri·xk+

∑
i∈[ℓ] πi·mi[k]

))
mod p

Because
∑

i∈[ℓ] πi ·mi[k] ∈ [−B,B] we get(
DDL

(
g(r+

∑
i∈[ℓ] πi·ri)·xk

)
− DDL

(
gr·xk+

∑
i∈ℓ πi·ri·xk+

∑
i∈[ℓ] πi·mi[k]

))
mod p

=
(
DDL

(
gr·xk+

∑
i∈ℓ πi·ri·xk+

∑
i∈[ℓ] πi·mi[k]

)
+
∑
i∈[ℓ]

πi ·mi[k]

− DDL
(
gr·xk+

∑
i∈ℓ πi·ri·xk+

∑
i∈[ℓ] πi·mi[k]

))
mod p

=

∑
i∈[ℓ]

πi ·mi[k]

 mod p ,

which is the correct value.

21

What is left is to analyze the running times of the algorithms. For everything except Compress this is trivial.
By Lemma 3.14 we get that for every i ∈ [n]

Pr
[
∀j ∈ [−B,B] : DDLB,δ(bi · g−j) = DDLB,δ(bi)− j

]
≥ 1− δ

Therefore, by union bound it follows that

Pr
[
∀j ∈ [−B,B], i ∈ [n] : DDLB,δ(bi · g−j) = DDLB,δ(bi)− j

]
≥ 1− nδ = 1/2

Therefore, Compress runs the loop a constant number of times in expectation.

Remark 4.6. As described above the Compress runs in polynomial time with overwhelming probability. To
turn it into strict poly time one can limit the number of times the loop is run. Further, to drastically speed
up compression one can leave out the loop entirely. Both of these changes result in imperfect correctness.

Lemma 4.7. The encryption scheme described in Construction 4.4 satisfies statistical semantic security for
multiple ciphertexts in the generic group model against adversaries with t queries with a statistical distance
of 4t2/p′ ≤ 4t2/2λ.

Proof. Follows from arguments almost identical to Claim 5.4.

4.2 Packed ElGamal with hash check

We describe the packed ElGamal compressible encryption scheme extended with a hash:

Theorem 4.8. The packed ElGamal with hash check encryption scheme described in Construction 4.9 is
compressible bounded linearly homomorphic with the following properties:

• Homomorphism modulus: p′, the size of the generic group,
• Number of Slots: n,
• Correctness error: 0,
• Semantic security advantage: εsem(λ, t, χ, ℓ) = 4t2/2λ for big enough t.
• Plaintext moduli: p1, ..., pn,
• Ciphertext size: n+ 1 G-elements,
• Compressed ciphertext size: 1 G-element, 1 H hash and ⌈

∑
i∈[n] log pi⌉ bits,

• Encryption time: (4n+ 2) log λ group operations,
• Evaluation time for ℓ linear combination: ℓ(2 log λ+ 1)(n+ 1) group operations,
• Decryption time: n(8Bn+ log λ) group operations and 1 H hash operation,
• Expected compression time: 32Bn2 + 2(n+ 1) log λ group operations and 1 H hash operation.

Construction 4.9 (Packed ElGamal with hash check). We specify the encryption scheme, parameterized
by n, p1, . . . , pn, B ∈ N and number of supported additions ℓ. Let δ = 1/2n, number of GGM queries per
DDL T = 8Bn, and H be a random oracle with output size χ.

KeyGenG :

1. Let p′ be the order of the generic group G and g its generator.
2. For every i ∈ [n], sample xi ←$ Zp′ .
3. Output pk = (gx1 , . . . , gxn) and sk = (x1, . . . , xn).

EncG(pk,m) :

1. Parse pk = (h1, . . . , hn) and m ∈ Zn
p′ .

2. Sample r ←$ Zp′ .
3. Output ct = (gr, hr

1 · gm[1], . . . , hr
n · gm[n]).

22

DecG(sk, cct) :

1. Parse sk = (x1, . . . , xn) and cct = (c, e1, . . . , en, k).
2. For every i ∈ [n], let mi = (DDLGB,δ(c

xi)− ei) mod pi.
3. Output m = (m1, . . . ,mn).

EvalG(pk, ct1, . . . , ctℓ, π) :

1. Parse pk = (h1, . . . , hn) and cti = (ai,bi).
2. Let a′ = aπ1

1 · . . . · a
πℓ

ℓ and b′j = bπ1
1 [j] · . . . · bπℓ

ℓ [j] for j ∈ [n].
3. Output ct′ = (a′, b′1, . . . , b

′
n).

CompressG(pk, ct) :

1. Parse pk = (h1, . . . , hn) and ct = (a, b1, . . . , bn).
2. Do in a loop:

• Sample r ←$ Zp′ uniformly at random.

• Compute a← a · gr, and bi ← bi · hr
i for every i ∈ [n].

3. Until for every i ∈ [n] and j ∈ [−B,B] it holds that

DDLGB,δ(bi · gj) + j = DDLGB,δ(bi).

4. For i ∈ [n] let ei ← DDLGB,δ(bi)
5. Let k ← H(a, e1, . . . , en).
6. Output cct = (a, e1 mod p1, . . . , en mod pn, k).

Lemma 4.10. The encryption scheme described in Construction 4.9 is correct and statistically semantically
secure for multiple ciphertexts in the generic group model with a loss of 4t2/p′ ≤ 4t2/2λ. Moreover, the
running times are as described in Theorem 4.8.

Proof. This follows from the exact same arguments as in Lemmas 4.5 and 4.7.

5 Targeted malleability

In this section we define malleability notions, and prove that our encryption schemes satisfy these notions in
the generic group model. In Section 5.1, we define the two notions that we consider: isolated homomorphism,
and bound-limited homomorphism. Then, in Section 5.2, we show that the packed ElGamal encryption
scheme satisfies isolated homomorphism, and in Section 5.3 we show that packed ElGamal with hash satisfies
bound-limited homomorphism.

5.1 Malleability notions

We define two malleability notions for compressible encryption schemes. The first says that no adversary
can mix information between different slots of the messages:

Definition 5.1 (Isolated homomorphism). An n-slot compressible encryption scheme
(KeyGen,Enc,Dec,Eval,Compress) is isolated linearly homomorphic with distinguishing error εih = ε(λ, t,m)
in the generic group model if there exists a poly time simulator S such that for every plaintext generator T
and oracle machine A that makes t queries to the GGM oracle, the following distributions have statistical
distance at most εih:

• Real world:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (a1, . . . ,am, stT)← T (pk).

23

4. cti ← EncG(pk,ai) for all i ∈ [m].
5. (cct, stA)← AG(pk, ct1, . . . , ctm).
6. If DecG(sk, cct) = ⊥ output ⊥
7. (a′1, . . . , a

′
n)← DecG(sk, cct)

8. Output (stT , stA, a
′
1, . . . , a

′
n).

• Ideal world:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (a1, . . . ,am, stT)← T (pk).
4. cti ← Enc(pk,ai) for all i ∈ [m].

5. (cct, stA)
tr←− AG(pk, ct1, . . . , ctm), where tr is the trace of queries A made to the generic group

oracle and the oracle’s responses.
6. (f1, . . . , fn)← S(tr, pk, ct1, . . . , ctm, cct).
7. If DecG(sk, cct) = ⊥ output ⊥.
8. a′i = fi(a1[i], . . . ,am[i]) for all i ∈ [n].
9. Output (stT , stA, a

′
1, . . . , a

′
n).

We say that the encryption scheme is isolated homomorphic if t = poly(λ) we have εih(λ,m, t) = negl(λ).

The second notion is a notion of bound-limited linear-only encryption, which says that any adversary
can only apply linear functions to an encrypted message. These linear functions may be over a large field
Fp′ , but their results need to be within a bounded range. If they are within that range the decryptor learns
the values but modded by some smaller modulus p. This will later match our definition of modded linear
PCPs (see Section 6.2).

Definition 5.2 (Bound-limited homomorphism). A compressible encryption scheme
(KeyGen,Enc,Dec,Eval,Compress) is B′-bounded limited homomorphic with n slots and moduli p′,
(pi)i∈[n] with distinguishing error εbnd = εbnd(λ, t,m) in the generic group model if there exists a poly time
simulator S such that that for every plaintext generator T and oracle machine A makes t to the GGM
oracle the following distributions have statistical distance at most εbnd:

• Real world:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (a1, . . . ,am, stT)← T (pk).
4. cti ← EncG(pk,ai) for all i ∈ [m].
5. (cct, stA)← AG(pk, ct1, . . . , ctm).
6. If DecG(sk, cct) = ⊥ output ⊥
7. (a′1, . . . , a

′
n)← DecG(sk, cct)

8. Output (stT , stA, a
′
1, . . . , a

′
n).

• Ideal world:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGen.
3. (a1, . . . ,am, stT)← T (pk).
4. cti ← EncG(pk,ai) for all i ∈ [m].

5. (cct, stA)
tr←− AG(pk, ct1, . . . , ctm), where tr is the trace of queries A made to the generic group

oracle and the oracle’s responses.
6. (Π ∈ Zm

p′ , b1 ∈ Zp1
, . . . , b1 ∈ Zpn

)← S(tr, pk, ct1, . . . , ctm, cct).

7. If DecG(sk, cct) = ⊥ output ⊥.
8. a′i = Zpi

(∑
j∈[m] Πj · aj [i]

)
+ bi for all i ∈ [n].

24

9. If there exists an i such that a′i ̸∈ [−B′, B′] output ⊥.
10. Output (stT , stA, a

′
1, . . . , a

′
n).

As with the definition of compressible encryption schemes, here we also allow a random oracle H which is
sampled together with G in Item 1. We say that the encryption scheme is bound-limited homomorphic if
t = poly(λ) we have εih(λ,m, t) = negl(λ).

5.2 Isolated homomorphism of packed ElGamal

In this section, we prove that the packed ElGamal encryption scheme is isolated homomorphic.

Lemma 5.3. Packed ElGamal is isolated homomorphic in the GGM with a distinguishing error εih(λ, t,m) =
4t2/p′ ≤ 4t2/2λ for t > 4tDec + 1, where tDec is the number of queries the decryption algorithm does.

Proof. Let p′ be the size of the GGM group. We design a simulator for the isolated homomorphism experi-
ment:

1. In the beginning of the security game, the simulator receives the trace tr, public key pk := (hj)j∈[n],
and cti := (cti,0, (cti,j)j∈[n]) for i ∈ [m]. The simulator initializes an empty table T and for i ∈ [m]
and j ∈ [n] adds the expressions

g 7→ 1, hj 7→ x̂j , cti,0 7→ r̂i, and cti,j 7→ r̂ix̂j + âi[j]

to the table where x̂j , r̂i, and âi[j] are formal variables representing secret key, randomness and
messages respectively.

2. The simulator goes through the trace tr first to last entry and does the following for each entry:

Each entry has two input labels handles ξ1 and ξ2, the simulator checks whether there are mappings T
from ξ1 and ξ2 to polynomials over formal variables Φ1 and Φ2 in the table, respectively. If ξi does not
map to a polynomial in the table T and the existing formal variables are (ûj)j∈[ℓ] then the simulator
generates a new formal variable ûℓ+1 and adds the mapping ξi 7→ ûℓ+1 into the table T. Now, ξ1 and
ξ2 both have mappings in T to polynomials over formal variables Φ1, Φ2.

The simulator computes the polynomial Φ3 := Φ1+Φ2. The simulator looks at the output label of the
trace entry ξ3. If the table T contains an entry ξ3 7→ Φ′3 for some polynomial Φ′3 then the simulator
outputs ⊥ if Φ′3 ̸≡ Φ3.

3. The simulator also has the adversary’s output cct := (cct0, (e
′
j)j∈[n]). The simulator checks whether T

contains mappings cct0 7→ Φ′0, where Φ
′
0 is a polynomial over formal variables equivalent to

∑
i∈[m] αir̂i+

β for α1, . . . , αm, β ∈ Zp′ . If this is not the case, then for each j ∈ [n] the simulator samples a uniform
label vj not used in T yet, and outputs f1, . . . , fn functions that entirely ignore the input:

• fj(a1[j], . . . ,am[j]): Output (DDLg(vj)− ej) mod q.

4. If the simulator has reached this point it outputs the functions f1, . . . , fn defined below. The functions

have the labels for (ct
(i)
j)i∈[m] hardcoded, which correspond to the polynomials r̂ix̂j + âi[j]

• fj(a1[j], . . . ,am[j]):

(a) Let uj ←
∑

i αiai[j].
(b) Compute a label vj for the polynomial over formal variables

∑
i αi(r̂ix̂j + âi[j]) + βx̂j − uj .

(c) Output (DDLg(vj)− ej) mod q.

We show the extracted function outputs the correct distribution if the output ciphertext decrypts successfully
with overwhelming probability. We prove this via hybrid argument.

Hyb0: It is the same as the real distribution in Definition 5.1. In more detail:

25

1. In the beginning of the security game, for each j ∈ [n] the experiment samples xj ←$ Zp′ . The
experiment initializes an empty table T and adds the mapping g 7→ 1. For j ∈ [n] the experiment
checks whether there already exists a mapping from to xj . If not the experiment samples a new
distinct label hj and adds hj 7→ xj to the table T. It sets the public key pk := (hj)j∈[n] and the
secret key sk := (xj)j∈[n].

2. Then the experiment samples the plaintexts and a state (a1, . . . ,am, stT) ← T (pk) and corre-
sponding ciphertexts cti ← Enc(pk,ai) using the generic group for each i ∈ [m]. More specifically,
cti ← Enc(pk,ai) samples ri ←$ Zp′ uniformly at random and for the values ri and rixj + ai[j]
for j ∈ [n] checks whether there already is a mapping in T if not it adds a random label that is
uniformly random from the label space L and different from all existing labels. Now, there are
labels cti,0 and cti,j such that the mappings

cti,0 7→ ri, and cti,j 7→ rixj + ai[j]

are in the table T.

3. The experiment sends the public key pk and the ciphertexts ct1, . . . , ctm to the adversary A. When
the adversary A uses its oracle access to the generic group the experiment does the following:

When the adversary queries the generic group with the two handles ξ1, ξ2 the experiment checks
whether there are mappings in the table T from ξ1 and ξ2 to Zp′ elements Φ1, Φ2 respectively. If
for i ∈ {1, 2} we have ξi does not map to a Zp′ element in T then the experiment samples a new
distinct Zp′ element ui and adds the mapping ξi 7→ ui into the table T.

Now, ξ1 and ξ2 have mappings in T to Zp′ elements Φ1, Φ2. Compute Φ3 := Φ1 + Φ2. If the
table T contains an entry ξ3 7→ Φ3 for some ξ3 the experiment forwards ξ3 to the adversary A.
Otherwise, there is no entry for Φ3 in the table T. The experiment then samples a new distinct
label ξ3 from L and adds an entry ξ3 7→ Φ3 to the table T and forwards ξ3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state stA and the trace of its GGM queries tr.

4. The experiment sends the trace tr, the public key pk, the input ciphertexts ct1, . . . , ctm, and the
output ciphertext cct to the simulator S. The simulator outputs n functions (fj)j∈[n].

5. Let (a′j)j∈[n] ← Dec(sk, cct). The experiment outputs (stT , stA, a
′
1, . . . , a

′
n). That is because for

Packed ElGamal decryption algorithm Dec never outputs ⊥.

Hyb1: Same as Hyb0 but keeps track of generic group queries with formal variables as in the simulator S.
More specifically, the experiment behaves in the following way:

1. In the beginning of the security game, the experiment samples distinct labels g, (hj)j∈[n] ←$ L.
For j ∈ [n] the experiment samples xj ←$ Zp′ . The experiment initializes an empty table T and
adds the mappings g 7→ 1 and hj 7→ x̂j where x̂j are formal variables. It sets the public key
pk := (hj)j∈[n] and the secret key sk := (xj)j∈[n].

2. Then the experiment samples the plaintexts and a state (a1, . . . ,am, stT) ← T (pk) and corre-
sponding ciphertexts cti ← Enc(pk,ai) using the generic group for each i ∈ [m]. More specifically,
cti ← Enc(pk,ai) samples ri ←$ Zp′ uniformly at random and distinct labels cti,0 and (cti,j)j∈[n]
that are uniformly random under the condition that they are not yet in T. The experiment adds
the mappings

cti,0 7→ r̂i, and cti,j 7→ r̂ix̂j + âi[j]

where j ∈ [n] to the table T.

3. The experiment sends the public key pk and the ciphertexts ct1, . . . , ctm. When the adversary A
also uses it oracle access to the generic group.

If the adversary queries the generic group with the two handles ξ1, ξ2 the experiment checks
whether there are mappings in the table T from ξ1 and ξ2 to polynomials over formal variables

26

Φ1, Φ2 respectively. If for i ∈ {1, 2} we have ξi does not map to a polynomial over formal variables
in T and the existing formal variables are (ûj)j∈[ℓ] then the experiment generates a new formal
variable ûℓ+1 and adds the mapping ξi 7→ ûℓ+1 into the table T. Further, the experiment samples
a new distinct Zp′ element uℓ+1.

Now, ξ1 and ξ2 have mappings in T to polynomials over formal variables Φ1, Φ2. Compute
Φ3 := Φ1 + Φ2. If the table T contains an entry ξ3 7→ Φ3 for some ξ3 the experiment forwards
ξ3 to the adversary A. Otherwise, there is no entry for Φ3 in the table T. The experiment then
samples a new distinct label ξ3 from L and adds an entry ξ3 7→ Φ3 to the table T and forwards
ξ3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state stA and the trace of its GGM queries tr.

4. Then the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j]), and (ûi)i∈[ℓ]
by their corresponding Zp′ values (xj)j∈[n], (ri)i∈[m], (ai[j]), and (ui)i∈[ℓ]. Now T is a table that
maps from labels to Zp′ elements. Continue as in Hyb0.

Hyb2: Same as Hyb1 except that checking the well-formedness of the adversary’s output cct := (cct0, (e
′
j)j∈[n])

using the formal variables instead of the Zp′ values. Instead of the final step of Hyb1 it does the
following:

1. At the end of the simulation of the adversary A, it, among other things, outputs a ciphertext
cct := (cct0, (e

′
j)j∈[n]). The experiment checks whether T contains mappings cct0 7→ Φ′0, where

Φ′0 is a polynomial over formal variables equivalent to
∑

i∈[m] αir̂i + β for α1, . . . , αm, β ∈ Zp′ .

If this is not the case, for j ∈ [n] compute the experiment samples unused labels vj outputs the
functions:

• fj(a1[j], . . . ,am[j]): Output (DDLg(vj)− ej) mod q.

2. Then the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j]), and (ûi)i∈[ℓ]
by their corresponding Zp′ values (xj)j∈[n], (ri)i∈[m], (ai[j]), and (ui)i∈[ℓ]. Now T is a table that
maps from labels to Zp′ elements.

3. The experiment outputs

(stT , stA, fj(a1[1], . . . ,am[1]), . . . , fj(a1[n], . . . ,am[n])) . (1)

We argue Hyb2 is identically distributed to the ideal distribution. This follows from the decryption algorithm
Dec(sk, cct := (cct0, (ej)j∈[n])) outputting DDL(cctj) − ej with j ∈ [n] and cctj being the label for the
value Φ0 · xj , which exactly matches the simulator’s output functions after instantiating (x̂j)j∈[n], (r̂i)i∈[m],
(âi[j])i∈[m],j∈[n], and (ûi)i∈[ℓ] by their corresponding values (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], and (ui)i∈[ℓ].
That is because after instantiation∑

i

αi(r̂ix̂j + âi[j]) + βx̂j −
∑
i

αiai[j]

becomes ∑
i

αi(rixj + ai[j]) + βxj −
∑
i

αiai[j] =
∑
i

αirixj + βxj −
∑
i

= Φ0 · xj .

Therefore, fj(a1[j], . . . ,am[j]) = a′j and the distributions are the same.
Finally, we argue statistical distance of the hybrids for polynomial generic group queries. Statistical

distance between Hyb0 and Hyb1 is established in Claim 5.4 and the statistical distance between Hyb1 and
Hyb2 in Claim 5.5. The sum of these distances is < 4t2/p′ for t > 4tDec + 1, where tDec is the number of
queries the decryption algorithm does.

Claim 5.4. For any adversary A making t many queries to the generic group oracle Hyb0(A) has a statistical
distance of 3t(t+ 1)/p′ from Hyb1(A).

27

Proof. We show that the view of the adversary A is statistically close in the two hybrid if it only makes
polynomially many queries to the generic group oracle. We argue that the public key pk, the ciphertexts
ct1, . . . , ctm and adversary’s queries to the generic group are statistically close in Hyb0 and Hyb1. We argue
via a hybrid argument over each query to the generic group. We start with Hyb0,0 which is identically
distributed to Hyb0 and with Hyb0,s the first s computed elements are as in Hyb1 and all the rest are still
as in Hyb0. We then show that Hyb0,s−1 and Hyb0,s are statistically close. It suffices to consider the i-th
computed element:

• The hybrids only differ in behavior if the label ξ given to the adversary maps to a polynomial over formal
variables Φ that has a non-zero linear term in (r̂i)i∈[m], (r̂ix̂j)i∈[m],j∈[n], or (ûi)i∈[ℓ] monomials while
Φ((xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], (ui)i∈[ℓ]) is already in the table T. This condition is equivalent
to the condition that there exists a constant c ∈ Zp′ in the table T such that Φ((x̂j)j∈[n], (r̂i)i∈[m],
(âi[j])i∈[m],j∈[n], (ûi)i∈[ℓ]) − c ̸≡ 0, but Φ((xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], (ui)i∈[ℓ]) − c = 0. We
show this happens with negligible probability. In both, Hyb0,s−1 and Hyb0,s the first s−1 elements are
handled as in Hyb1. Therefore, these elements are independent of (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n],
(ui)i∈[ℓ]. Fix an arbitrary constant c ∈ Zp′ from the table T. We define a new polynomial

Ψc((x̂j)j∈[n], (r̂i)i∈[m], (ûi)i∈[ℓ])

=Φ((x̂j)j∈[n], (r̂i)i∈[m], (ai[j])i∈[m],j∈[n], (ûi)i∈[ℓ])− c.

Notice, that we instantiated (âi[j])i∈[m],j∈[n] by (ai[j])i∈[m],j∈[n]. In the polynomial Φ((x̂j)j∈[n], (r̂i)i∈[m],
(âi[j])i∈[m],j∈[n], (ûi)i∈[ℓ]) we have monomial âi[j] always with the same arity as the corresponding
monomial r̂ix̂j for i ∈ [m], j ∈ {0, 1} because the challenger initially only gives out labels for polynomi-
als of the form r̂ix̂j+âi[j] and the oracles only allow the adversary to learn linear combinations. There-
fore, if the polynomial Ψc is the zero polynomial then so is Φ((x̂j)j∈[n], (r̂i)i∈[m](âi[j])i∈[m],j∈[n], (ûi)i∈[ℓ])−
c.

Because Ψc is a polynomial of total degree 2 we derive by polynomial identity lemma that

Pr[Ψc((x̂j)j∈[n], (r̂i)i∈[m], (ûi)i∈[ℓ]) = 0] ≤ 2/p′.

By union bound we get that

Pr[∃c ∈ Zp′ ∩ T : Ψc((x̂j)j∈[n], (r̂i)i∈[m], (ûi)i∈[ℓ]) = 0] ≤ 2|T|/p′.

Thus, with probability 2|T|/p′ for Φ degree ≥ 1 we have Φ((xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n]) is not
in the table T. Therefore, Hyb0,s−1 and Hyb0,s have the same behavior with probability 1− 2|T|/p′.
If the number of queries to the generic group oracle is ℓ then Hyb0,0 is identically distributed to Hyb0
and Hyb0,ℓ is identically distributed to Hyb1. Because every query introduces at most 3 entries into T
we get the statistical distance between Hyb0 and Hyb1 is at most

∑
i∈[ℓ] 2(3i)/p

′ = 3ℓ(ℓ+ 1)/p′.

Claim 5.5. For any adversary A making tA many queries and Dec making tDec queries to the generic group
oracle Hyb1(A) has a statistical distance of 3tDec(tA + (tDec + 1)/2)/p′ from Hyb2(A).

Proof. The view of the adversary in Hyb1 and Hyb2 are identical, therefore, all that is left to prove is that
decryption of the output ciphertext is statistically close. Notice that the adversary’s view is independent
of (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], and (ui)i∈[ℓ], therefore we can treat them as being sampled after the
adversary outputs the ciphertext. We analyze the following three scenarios:

• If the label in the output ciphertext cct0 is not in the table T: Without loss of generality this does not
happen because one can always introduce a new formal variable ûℓ+1, where (ûi)i∈[ℓ] are the variables
that represent unknown elements, and add cct0 7→ ûℓ+1 to the table T and this case reduces to the
next one.

28

• The table T contains a mapping from the label of the output ciphertext cct := (cct0, (e
′
j)j∈[n]) to a

polynomial Φ′0 such that Φ′0 ̸≡
∑

i∈[m] αir̂i + β for α1, . . . αm, β ∈ Zp′ :

Now, we have that Φ′0 contains one of the following monomials: r̂ix̂j , x̂j , or (ûi)i∈[ℓ] for i ∈ [m] and
j ∈ [n]. Therefore, the adversary interacted with the group oracle involving the label cctℓ (either used
is as input or received it as output) for Φ′0 · x̂ℓ with t ∈ [n] as it can only linearly combine 1, (x̂j)j∈[n],
(rix̂j + âi[j])i∈[m],j∈[n], and (ûi)i∈[ℓ]. Therefore, Hyb1 and Hyb2 only differ if in Hyb1 the DDL(cctt)
algorithm queries an entry that has already been assigned to a value. We argue via a sequence of
hybrids that the probability of this happening is negligible. To prove this we use the property that
DDLg(cctt) only has access to g (the label for 1) and its input label cctt. We start with Hyb1,0 which is
identically distributed to Hyb1 and then in Hyb1,s the first i queries are handled with formal variables.
We now show that Hyb1,s−1 and Hyb1,s are statistically close. It suffices to consider the s-th computed
element:

– The hybrids only differ in behavior if for some j ∈ [n] a label ξ that DDL(cct
xj

0) received from the
generic group orale maps to a degree ≥ 1 polynomial Φ over formal variables while Φ((xj)j∈[n],
(ri)i∈[m], (ai[j])i∈[m],j∈[n], (ui)i∈[ℓ]) is already in the table T. This condition is equivalent to
the condition that there exists a constant c ∈ Z′p in the table T such that Φ((x̂j)j∈[n], (r̂i)i∈[m],
(âi[j])i∈[m],j∈[n], (ûi)i∈[ℓ]) − c ̸≡ 0, but Φ((xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], (ui)i∈[ℓ]) − c = 0.
We show this happens with negligible probability. In both, Hyb1,s−1 and Hyb1,s the first s − 1
elements are handled with formal variables.

Therefore, DDL(cctℓ) has only the adversary interacted with the group oracle involving labels for
linear combinations of 1, Φ′0 · x̂t, and formal variables (ûi+ℓ)i∈[s−1]. So, the s-th query will be
a linear combination of 1, Φ′0 · x̂t, and formal variables (ûi+ℓ)i∈[s] (it might have introduced a
new formal variable). More precisely, this means that the query will output a label that maps to
α + β · Φ′0 · x̂t +

∑
i∈[s] γiûi+ℓ for some α, β, γi ∈ Z′p. If β = γ1 = ... = γs = 0 then the formal

polynomial is not of degree ≥ 1 meaning Hyb1,s−1 and Hyb1,s are identically distributed.

Further, as they only depend on formal variables, these elements are independent of (xj)j∈[n],
(ri)i∈[m], (ai[j])i∈[m],j∈[n], (ui)i∈[ℓ+s]. Fix an arbitrary constant c ∈ Z′p from the table T. We
define a new polynomial

Ψc,t((x̂j)j∈[n], (r̂i)i∈[m], (ûi)i∈[ℓ+s])

=α+ β · Φ′0((x̂j)j∈[n], (r̂i)i∈[m], (ûi)i∈[ℓ+s], (ai[j])i∈[m],j∈[n]) · x̂t − c.

Notice, that we instantiated (âi[j])i∈[m],j∈[n] by (ai[j])i∈[m],j∈[n]. The polynomial Φ((x̂j)j∈[n],
(r̂1)i∈[m], (âi[j])i∈[m],j∈[n], (ûi)i∈[ℓ]) must at least contain one of the following monomials:

(r̂ix̂j x̂t)i∈[m],j,t∈[n], (x̂j x̂t)j,t∈[n], or (ûix̂t)i∈[ℓ+s],t∈[n].

Therefore, if the polynomial Ψc,t is the zero polynomial then so is Φ((x̂j)j∈[n], (r̂1)i∈[m], (âi[j])i∈[m],j∈[n],
(ûi)i∈[ℓ+s])− c.

Because Φ′0 is an comes from an output of the adversary and the adversary only knows polynomials
of degree ≤ 2 and can only compute linear combinations we have Φ′0 is also of degree ≤ 2. It
follows that Ψc,t is ≤ 3 degree polynomial. Then, we derive by polynomial identity lemma that

Pr[Ψc,t((xj)j∈[n], (ri)i∈[m], (ui)i∈[ℓ]) = 0] ≤ 3/p′.

By union bound we get that

Pr[∃c ∈ Zp′ ∩ T : Ψc,t((xj)j∈[n], (ri)i∈[m], (ui)i∈[ℓ]) = 0] ≤ 3|T|/p′.

Thus, with probability 3|T|/p′ for Φ with degree≥ 1 we have Φ((xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n])
is not in the table T. Therefore, Hyb0,s−1 and Hyb0,s have the same behavior with probability
1− 3|T|/p′.

29

We have Hyb1,0 is identically distributed to Hyb1. Let ℓA be the number of generic group oracle
calls the adversary made and ℓDec be the number of generic group oracle call Dec makes.

Further, the statistical distance between Hyb1,0 and Hyb1,ℓDec
is
∑

i∈[ℓDec]
3(ℓA+ i)/p′ = 3ℓDec(ℓA+

(ℓDec + 1)/2)/p′ because each query can introduce at most 3 terms.

Then Hyb2 is identically distributed to Hyb1,ℓDec
because as argued above the adversary does not

have access to the formal polynomial Φ′0 · x̂t, therefore, from its perspective the corresponding
label could also be chosen uniformly at random from the labels the adversary has not seen yet.

• The table T contains a mapping from each label of the output ciphertext cct := (cct0, (e
′
j)j∈[n]) to a

polynomial Φ′0 such that Φ′0 ≡
∑

i∈[m] αir̂i + β for α1, . . . αm, β ∈ Zp′ :

Hyb1 and Hyb2 behave identically in that case.

5.3 Bound-limited homomorphism of Packed ElGamal with hash check

In this section, we prove that Packed ElGamal with hash check has bound limited homomorphism.

Lemma 5.6. Packed ElGamal with hash check for has 8Bn-bound-limited homomorphism with distinguisha-
bility error εbnd(λ, t, χ,m) = 4t2/p′ + 2t2/2χ ≤ 6t2/2λ for t > 4tDec + 1, where tDec is the number of queries
the decryption algorithm does.

Proof. For any adversary A and plaintext generator T in the bound-limited homomorphism experiment we
define an extractor Ext:

1. In the beginning of the security game, the extractor receives the trace tr, the public key pk := (h1, h2),
and cti := (cti,0, (cti,j)j∈[n]) for i ∈ [m]. The extractor initializes an empty table T and for i ∈ [m] and
j ∈ [n] adds the expressions

g 7→ 1, hj 7→ x̂j , cti,0 7→ r̂i, and cti,j 7→ r̂ix̂j + âi[j]

to the table where x̂j , r̂i, and ˆ̂ai[j] are formal variables representing secret key, randomness and
messages respectively for i ∈ [m].

2. The simulator goes through the trace tr first to last entry and does the following for each entry:

Each entry has two input labels handles ξ1 and ξ2, the simulator checks whether there are mappings T
from ξ1 and ξ2 to polynomials over formal variables Φ1 and Φ2 in the table, respectively. If ξi does not
map to a polynomial in the table T and the existing formal variables are (ûj)j∈[ℓ] then the simulator
generates a new formal variable ûℓ+1 and adds the mapping ξi 7→ ûℓ+1 into the table T. Now, ξ1 and
ξ2 both have mappings in T to polynomials over formal variables Φ1, Φ2.

The simulator computes the polynomial Φ3 := Φ1+Φ2. The simulator looks at the output label of the
trace entry ξ3. If the table T contains an entry ξ3 7→ Φ′3 for some polynomial Φ′3 then the simulator
outputs ⊥ if Φ′3 ̸≡ Φ3.

3. The simulator also has the adversary’s output cct := (cct0, (ej)j∈[n], k). The simulator checks whether T
contains mappings cct0 7→ Φ′0, where Φ

′
0 is a polynomial over formal variables equivalent to

∑
i∈[m] αir̂i+

β for α1, . . . , αm, β ∈ Zp′ . If this is not the case, the simulator outputs ⊥.

4. For each j ∈ [n] the simulator computes labels cctj corresponding to βx̂j +
∑

i∈[m] αir̂ix̂j .

5. For each j ∈ [n] the simulator computes vj ← DDL(cctj).

6. If the extractor has reached this point it outputs (Π = (α1, . . . , αm),b = (vj − ej mod p)j∈[n]).

30

We show the simulated linear function outputs the correct value if the output ciphertext decrypts successfully
with all but negligible probability. We prove this via hybrid argument.

Hyb0: It is the same as the real distribution in Definition 5.2. In more detail:

1. In the beginning of the security game, for each j ∈ [n] the experiment samples xj ←$ Zp′ . The
experiment initializes an empty table T and adds the mapping g 7→ 1. For j ∈ [n] the experiment
checks whether there already exists a mapping from to xj . If not the experiment samples a new
distinct label hj and adds hj 7→ xj to the table T. It sets the public key pk := (hj)j∈[n] and the
secret key sk := (xj)j∈[n].

2. Then the experiment samples the plaintexts and a state (a1, . . . ,am, stT) ← T (pk) and corre-
sponding ciphertexts cti ← Enc(pk,ai) using the generic group for each i ∈ [m]. More specifically,
cti ← Enc(pk,ai) samples ri ←$ Zp′ uniformly at random and for the values ri and rixj + ai[j]
for j ∈ [n] checks whether there already is a mapping in T if not it adds a random label that is
uniformly random from the label space L and different from all existing labels. Now, there are
labels cti,0 and cti,j such that the mappings

cti,0 7→ ri, and cti,j 7→ rixj + ai[j]

are in the table T.

3. The experiment sends the public key pk and the ciphertexts ct1, . . . , ctm to the adversary A. When
the adversary A uses its oracle access to the generic group the experiment does the following:

When the adversary queries the generic group with the two handles ξ1, ξ2 the experiment checks
whether there are mappings in the table T from ξ1 and ξ2 to Zp′ elements Φ1, Φ2 respectively. If
for i ∈ {1, 2} we have ξi does not map to a Zp′ element in T then the experiment samples a new
distinct Zp′ element ui and adds the mapping ξi 7→ ui into the table T.

Now, ξ1 and ξ2 have mappings in T to Zp′ elements Φ1, Φ2. Compute Φ3 := Φ1 + Φ2. If the
table T contains an entry ξ3 7→ Φ3 for some ξ3 the experiment forwards ξ3 to the adversary A.
Otherwise, there is no entry for Φ3 in the table T. The experiment then samples a new distinct
label ξ3 from L and adds an entry ξ3 7→ Φ3 to the table T and forwards ξ3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state stA and the trace of its GGM queries tr.

4. The experiment sends the trace tr, the public key pk, the input ciphertexts ct1, . . . , ctm, and the
output ciphertext cct to the simulator S. The simulator outputs Π and b.

5. If Dec(sk, cct) = ⊥ the experiment outputs ⊥. More specifically Dec(sk, cct := (cct0, (e
′
j)j∈[n], k

′))
checks if

k = H(c0, (c
xj

0 · gDDL(c
xj
0))j∈[n]).

If this is not the case the experiment outputs ⊥.
6. Let (a′j)j∈[n] ← Dec(sk, cct). The experiment outputs (stT , stA, a

′
1, . . . , a

′
n).

Hyb1: Same as Hyb0 but keeps track of generic group queries with formal variables as in the simulator S.
More specifically, the experiment behaves in the following way:

1. In the beginning of the security game, the experiment samples distinct labels g, (hj)j∈[n] ←$ L.
For j ∈ [n] the experiment samples xj ←$ Zp′ . The experiment initializes an empty table T and
adds the mappings g 7→ 1 and hj 7→ x̂j where x̂j are formal variables. It sets the public key
pk := (hj)j∈[n] and the secret key sk := (xj)j∈[n].

2. Then the experiment samples the plaintexts and a state (a1, . . . ,am, stT) ← T (pk) and corre-
sponding ciphertexts cti ← Enc(pk,ai) using the generic group for each i ∈ [m]. More specifically,
cti ← Enc(pk,ai) samples ri ←$ Zp′ uniformly at random and distinct labels cti,0 and (cti,j)j∈[n]

31

that are uniformly random under the condition that they are not yet in T. The experiment adds
the mappings

cti,0 7→ r̂i, and cti,j 7→ r̂ix̂j + âi[j]

where j ∈ [n] to the table T.

3. The experiment sends the public key pk and the ciphertexts ct1, . . . , ctm. When the adversary A
also uses it oracle access to the generic group.

If the adversary queries the generic group with the two handles ξ1, ξ2 the experiment checks
whether there are mappings in the table T from ξ1 and ξ2 to polynomials over formal variables
Φ1, Φ2 respectively. If for i ∈ {1, 2} we have ξi does not map to a polynomial over formal variables
in T and the existing formal variables are (ûj)j∈[ℓ] then the experiment generates a new formal
variable ûℓ+1 and adds the mapping ξi 7→ ûℓ+1 into the table T. Further, the experiment samples
a new distinct Zp′ element uℓ+1.

Now, ξ1 and ξ2 have mappings in T to polynomials over formal variables Φ1, Φ2. Compute
Φ3 := Φ1 + Φ2. If the table T contains an entry ξ3 7→ Φ3 for some ξ3 the experiment forwards
ξ3 to the adversary A. Otherwise, there is no entry for Φ3 in the table T. The experiment then
samples a new distinct label ξ3 from L and adds an entry ξ3 7→ Φ3 to the table T and forwards
ξ3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state stA and the trace of its GGM queries tr.

4. Then the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j]), and (ûi)i∈[ℓ]
by their corresponding Zp′ values (xj)j∈[n], (ri)i∈[m], (ai[j]), and (ui)i∈[ℓ]. Now T is a table that
maps from labels to Zp′ elements. Continue as in Hyb0.

Hyb2: Same as Hyb1 but instead of the last step the experiment does the following:

1. For the ciphertext cct := (cct0, (ej)j∈[n], k) if there is no mapping cct0 7→ Φ′0 in the table T such
that Φ′0 ≡

∑
i∈[m] αir̂i+β for α1, . . . αm, β ∈ Zp′ the experiment samples n uniform unused labels

(cctj)j∈[n].

2. If H(cct0, (cctj · gDDL(cctj))j∈[n]) ̸= k the experiment outputs ⊥.
3. Otherwise, the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j])i∈[m],j∈[n],

and (ûi)i∈[ℓ] in T by their corresponding values (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], and (ui)i∈[ℓ].
Now T is a table that maps from labels to Zp′ elements.

4. The experiment computes (a′j)j∈[n] ← Dec(sk, cct). The experiment outputs (stT , stA, a
′
1, . . . , a

′
n).

Hyb3: Same as Hyb2 but instead of creating dummy variables if there is no mapping cct0 7→ Φ′0, we simply
output ⊥.

1. For the ciphertext cct := (cct0, (ej)j∈[n], k) if there is no mapping cct0 7→ Φ′0 in the table T such
that Φ′0 ≡

∑
i∈[m] αir̂i + β for α1, . . . αm, β ∈ Zp′ the experiment outputs ⊥.

2. If H(cct0, (cctj · gDDL(cctj))j∈[n]) ̸= k the experiment outputs ⊥.
3. Otherwise, the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j])i∈[m],j∈[n],

and (ûi)i∈[ℓ] in T by their corresponding values (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], and (ui)i∈[ℓ].
Now T is a table that maps from labels to Zp′ elements.

4. The experiment computes (a′j)j∈[n] ← Dec(sk, cct). The experiment outputs (stT , stA, a
′
1, . . . , a

′
n).

Hyb4: Same as Hyb3 but instead of the final step the experiment now does the following:

1. For a j ∈ [n], with cctj being the label in T for βx̂j +
∑

i∈[m] αi(r̂ix̂j + âi[j]), and cct∗j being the

label for βx̂j +
∑

i∈[m] αi(r̂ix̂j + âi[j]− ai[j]) if

cct∗j · gDDL(cct∗j) ̸= cctj · gDDL(cctj).

the experiment outputs ⊥.

32

2. Otherwise, the experiment instantiates all the formal variables (x̂j)j∈[n], (r̂i)i∈[m], (âi[j])i∈[m],j∈[n],
and (ûi)i∈[ℓ] in T by their corresponding values (xj)j∈[n], (ri)i∈[m], (ai[j])i∈[m],j∈[n], and (ui)i∈[ℓ].
Now T is a table that maps from labels to Zp′ elements.

3. The experiment computes (a′j)j∈[n] ← Dec(sk, cct). The experiment outputs (stT , stA, a
′
1, . . . , a

′
n).

We argue that in Hyb4 the adversaries winning probability is 0. First, note that if for all j ∈ [n] we have
cct∗j ·gDDL(cct∗j) = cctj ·gDDL(cctj) then

∑
i∈[m] αiai[j] ∈ [−8Bn, 8Bn] by contrapositon of Lemma 3.14 because

DDL does 8Bn queries.
Then, we argue that decryption outputs exactly what the extractor outputs. cct∗j is a label for βx̂j +∑

i∈[m] αi(r̂ix̂j + âi[j]− ai[j]). After instantiating (r̂i)i∈[m], x̂j , and (âi[j])i∈[m] by their values (ri)i∈[m], xj ,

and (ai[j])i∈[m] this exactly corresponds to
∑

i∈[m] αirixj + βxj . Therefore, Dec computes DDL(cct∗j) and
outputs

(DDL(cct∗j)− ej) mod p = (DDL(cctj) +
∑
i∈[m]

αiai[j]− ej) mod p.

This is exactly what the experiment outputs in the ideal world because DDL(cct∗j) and ej are much smaller
than the cryptographic group.

Finally, we argue statistical distance of the hybrids for polynomial generic group queries. Statistical
distance between Hyb0 and Hyb1 is established using the exact same arguments as Claim 5.4 and the statistical
distance between Hyb1 and Hyb2 is established using the exact same arguments as Claim 5.5. Statistical
distance between Hyb2 and Hyb4 is established in Claims 5.7 and 5.8. The sum of these distances is <
(t+ 1)2/p′ for t > 4tDec + 1, where tDec is the number of queries the decryption algorithm does.

Claim 5.7. For any adversary A we have Hyb2(A) and Hyb3(A) are at statistical distance 2−χ.

Proof. Follows from H being a universal hash function with a codomain of {0, 1}χ.

Claim 5.8. For any adversary A with t queries to the ROM we have Hyb3(A) are at statistical distance of
t2/2χ to Hyb4(A).

Proof. We prove that checking equality between

(cctj · gDDL(cctj))j∈[n] and (cct∗j · gDDL(cct∗j))j∈[n]

is statistically close close to checking the equality of their hashes. This follows from collision resistance of
H. More precisely, if (cctj · gDDL(cctj))j∈[n] ̸= (cct∗j · gDDL(cct∗j))j∈[n] but H((cctj · gDDL(cctj))j∈[n]) = H((cct∗j ·
gDDL(cct∗j))j∈[n]) the adversary found a collision in the hash function. If H is modeled with the random oracle
then the collision resistance is with probability t(t+ 1)/2χ+1.

6 Constructing linear PCPs and MIPs

In this section, we show how to adapt known linear PCPs into the information-theoretic objects underlying
our dv-SNARG constructions. In Section 6.1 we show how to transform 2-query linear PCPs into 3-prover
strong linear MIPs, and in Section 6.2, we show that linear PCPs can be transformed into modded bounded
LPCPs.

6.1 Linear PCPs to strong linear MIPs

A transformation of linear PCPs to strong linear PCPs was given in [IKO07]. However, this transformation
garners a large loss in soundness error, and so requires many repetitions to achieve specific soundness errors.
We give an alternate transformation for LPCPs with 2 queries which is more efficient in practice:

33

Lemma 6.1. Let R be a relation with a smooth LPCP over Fp with length ℓ, query complexity 2, and
knowledge soundness κ against affine strategies. There exists a strong LMIP for R over Fp with length ℓ,
query complexity 3, and strong knowledge soundness 7

9 + 36
505−729·κ . If the LPCP is input-oblivious, then so

is the strong LMIP. If the LPCP is B-bounded with error α, then the strong LMIP is (B + 4p
√
ℓλ)-bounded

with error α+ 2−λ.

Proof. We begin by showing that an LPCP can be made smooth with the addition of a single query:

Claim 6.2. Let R be a relation with an LPCP over Fp with length ℓ, query complexity q, and knowledge
error κ against affine strategies. Then R has a smooth LPCP over Fp with length ℓ, query complexity q+1,
and knowledge error κ against affine strategies. If the LPCP is input-oblivious, then so is the smooth LPCP.
If the LPCP is B-bounded with error α, then for every λ ∈ N, the smooth LPCP is (B + p2

√
ℓλ)-bounded

with error α+ 2−λ.

Proof. Let (P, (VQ, VD)) be the linear PCP for R. We give a smooth linear PCP (P′, (V ′Q, V
′
D)) for R:

• P′(x,w): Output π ← P(x,w).

• V ′Q(x):

1. Sample (st,a1, . . . ,aq)← VQ(x) and a′0 ←$ Fℓ
p.

2. Output (st,a′0,a
′
1, . . . ,a

′
q) where a′i = ai + a′0.

• V ′D(st, x, b
′
0, . . . , b

′
q): Output b← VD(st, x, b1, . . . , bq) where bi = b′i − b′0.

The linear PCP (P′, (V ′Q, V
′
D)) is smooth: a′0 is uniform over Fℓ, and so a′i = ai + a′0 is 1-wise uniform

over Fℓ
p. Observe that for every affine prover strategy π ∈ Fℓ

p and c0, . . . , cq ∈ Fp:

bi = b′i − b′0 = ⟨π,ai + a′0⟩+ ci − ⟨π,a′0⟩ − c0 = ⟨π,ai⟩+ ci − c0 .

Hence we can translate any prover strategy π, c0, . . . , cq in the new protocol to a prover strategy π, (c1 −
c0), . . . , (cq − c0) in the original proof. Moreover, any set of queries (a′0, . . . ,a

′
q) in the new scheme can be

translated into (a1, . . . ,aq), where the distribution of a random set of these queries is the identical to the
original protocol. Completeness and knowledge soundness follow immediately from this fact.

To see that the smooth LMIP is 2B-bounded, notice that

|⟨Z(π),Z(a′i)⟩| = |⟨Z(π),Z(ai + a′0)⟩| ≤ |⟨Z(π),Z(ai)⟩|+ |⟨Z(π),Z(a′0)⟩| ,

Since the PCP is bounded, |⟨Z(π),Z(ai)⟩| > B with probability at most α. By Hoeffding’s inequality, since
⟨Z(π),Z(a′0)⟩ ∈ [−ℓ · p2, ℓ · p2] for every t > 0 we have

Pr[|⟨Z(π),Z(a′0))⟩| > t] < 2 · exp
(
−2 · t2

ℓ2p4

)
Setting t = p2

√
ℓλ, we get that we have that |⟨Z(π),Z(a′0))⟩| > p2

√
ℓλ with probability at most 2−2λ+1 < 2−λ.

Thus, |⟨Z(π),Z(a′i)⟩| > B + p2
√
ℓλ with probability at most α+ 2−λ.

Given Claim 6.2, we can safely assume that our linear PCP is smooth with 3 queries. We use this to
construct a 3-query strong LMIP. Let (P, (VQ, VD)) be the smooth LPCP. We design a 3-query strong LMIP
(P′, (V ′Q, V

′
D)):

• P′(x,w): Output π ← P(x,w).

• V ′Q(x): Sample b ← {0, 1} from the Bernoulli distribution where 0 is sampled with probability β =
162

505−729·κ . Then, do the following:

1. If b = 0: Sample (st,a1,a2,a3)← VD(x). Output (st′,a′1,a
′
2,a
′
3) where st′ = (b, st) and a′i = ai.

34

2. If b = 1: Sample z1, z2 ←$ Fℓ and set z3 = z1 + z2. Output (st′,a′1,a
′
2,a
′
3) where st′ = (b,⊥) and

a′i = zi.

• V ′D(st
′, x, b′1, b

′
2, b
′
3): Parse st′ = (b, st), and

1. If b = 0: Output 1 if and only if VD(st, x, b
′
1, b
′
2, b
′
3) = 1.

2. If b = 1: Output 1 if and only if b′1 + b′2 = b′3.

Completeness holds by perfect completeness of the smooth linear PCP in the case of b = 0, and by linearity
of the honest prover strategy in the case of b = 1. We now prove knowledge soundness. Let Ext be the
extractor for the LPCP. We construct an extractor Ext′ as follows:

1. On input x and given oracle access to functions f1, f2, f3 : Fℓ
p → Fp.

2. For every i ∈ [3] extract from fi an affine function πi, ci by doing standard local correction of affine
functions for distance at most 2/9 (note this can be done in time poly(ℓ) with constant probability).

3. If πi ̸= πj for some i, j, then repeat the above.
4. Otherwise, output w ← Ext(x, π1, c1, c2, c3).

Fix x and functions f1, . . . , f3 so that V′ accepts x when given access to f1, f2, f3 with probability κ′ >
7
9 + 36

505−729·κ . It is clear that if f1, f2, f3 are 2/9-close to affine shifts (c1, c2, c3) of the same linear function

π, where (π, (c1, c2, c3)) causes V to accept on x with probability greater than κ, then Ext′ runs in expected
polynomial time and outputs w so that (x,w) ∈ R. We therefore show that this holds.

Observe that:

Pr

V ′D (st′, x, b′1, b
′
2, b
′
3) = 1 (st′,a′1,a

′
2,a
′
3)← V ′Q(x)
b′i = fi(a

′
i)

= β · Pr

VD (st, x, b′1, b
′
2, b
′
3) = 1 (st,a1,a2,a3)← VQ(x)

b′i = fi(ai)

+ (1− β) · Pr

b′1 + b′2 = b′3
z1, z2 ←$ Fℓ

p

z3 = z1 + z3
b′i = fi(zi)

 .

We first show that due to the linearity check, there must be linear-consistent functions that are 2/9-close to
f1, f2, f3. Note that linear-consistent functions is simply a specific case of a linear function with affine shifts.

Claim 6.3. There exist linear-consistent functions g1, g2, g3 : Fℓ → Fp so that for every i ∈ [3], δi =
∆(fi, gi) < 2/9.

Proof. Suppose that there are no linear-consistent functions g1, g2, g3 : Fℓ
p → Fp so that for every i ∈ [3],

δi = ∆(fi, gi) < 2/9. In this case, by Theorem 3.13,

Pr

b′1 + b′2 = b′3
z1, z2 ←$ Fℓ

z3 = z1 + z3
b′i = fi(zi)

 ≤ 7/9 .

Therefore,

Pr

V ′D (st′, x, b′1, b
′
2, b
′
3) = 1 (st′,a′1,a

′
2,a
′
3)← V ′Q(x)
b′i = fi(a

′
i)

 ≤ β +
7

9
· (1− β) < κ′ ,

which contradicts our assumption that V′ accepts x when given access to f1, f2, f3 with probability κ′.

35

Let π ∈ Fℓ
p, and c1, c2, c3 ∈ F be so that gi(a) = ⟨π,a⟩ + ci and c1 + c2 = c3. We now show that these

linear-consistent functions describe shifts of a linear function that cause V to accept with probability greater
than κ:

Claim 6.4. Pr

[
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], bi = ⟨π,ai⟩+ ci

]
> κ .

Proof. Suppose towards contradiction that the claim did not hold. Since each query ai is smooth, bi =
fi(ai) = ⟨π,ai⟩+ ci with probability at least 1− δi ≥ 7/9. Thus,

Pr

VD (st, x, b′1, b
′
2, b
′
3) = 1 (st,a1,a2,a3)← VQ(x)

bi = fi(ai)

≤1−

3∏
i=1

(1− δi)

+ Pr

VD (st, x, b′1, b
′
2, b
′
3) = 1 (st,a1,a2,a3)← VQ(x)

bi = ⟨π,ai⟩+ ci

 · 3∏
i=1

(1− δi)

≤1−
3∏

i=1

(1− δi) + κ ·
3∏

i=1

(1− δi)

≤1−
(
7

9

)3

+ κ .

Thus, the probability that the verifier accepts is at most

Pr

V ′D (st′, x, b′1, b
′
2, b
′
3) = 1 (st′,a′1,a

′
2,a
′
3)← V ′Q(x)
b′i = P′i(a

′
i)

≤ β ·

(
1−

(
7

9

)3

+ κ

)
+ 1− β < κ′ .

Claim 6.5. The strong LMIP is (B + 4p2
√
ℓλ)-bounded with error α+ 2−λ.

Proof. We consider each choice of b ∈ {0, 1}.

• If b = 0, then the smooth linear LPCP is (B + p2
√
ℓλ)-bounded with error α+ 2−λ.

• If b = 1, then two of the queries are uniformly random over F and the last is the sum of the two.
That is, for the first and second queries, ⟨Z(π),Z(ai)⟩ is uniform over [−ℓ · p2, ℓ · p2]. By the Hoeffding
inequality, for every t > 0 and i ∈ {1, 2},

Pr [|⟨Z(π),Z(ai)⟩| ≥ t] ≤ 2 exp

(
− t2

2ℓ · p2

)
For the final query, we have

|⟨Z(π),Z(a3)⟩| = |⟨Z(π),Z(a1 + a2)⟩| ≤ |⟨Z(π),a1⟩+ ⟨Z(π),a2)⟩| ,

and so when each of the queries above is within t, the final query is within bound 2t. Taking a union

bound, with probability 1− 4 exp
(
− t2

2ℓ·p2

)
, all of the queries are within bound 2t.

By choosing t = 4p ·
√
ℓλ we get that all of the queries are within [−4p

√
ℓλ, 4p

√
ℓλ] with probability at

least 1− 2−λ.

36

Putting both of these together, we have that all of the queries are within bound B+4p2
√
ℓλ with probability

at least 1− α− 2−λ.

6.2 Modded LPCPs

We define modded linear PCPs, and show that any standard linear PCP can be transformed into a modded
one. Modded LPCPs are linear PCPs where each query needs to be within a certain bound (over a large
field) and, if it is within this bound, then the verifier receives the query answer after being modded.

Definition 6.6. A (bounded) modded linear PCP (mod-LPCP) (P, (VQ, VD)) for a relation R = {(x,w)} S
is defined as follows:

• Syntax. We describe a mod-LPCP with input length n, proof length ℓ, a big field size p′, query
complexity q, small field sizes p1, . . . , pq ∈ N, and a bound B′, B ∈ N with B′ > B:

– The verifier query algorithm VQ receives as input x ∈ Fn. It outputs a state st ∈ {0, 1}∗, and q
queries a1, . . . ,aq ∈ Fℓ

p′ .

– The (honest) prover algorithm P receives an input x ∈ Fn and witness w ∈ Fh. It outputs a proof
π ∈ Fℓ

p′ .

– The verifier decision algorithm VD receives as input a state st ∈ {0, 1}∗, an input x ∈ Fn, and
query answers b1 ∈ Fp1

, . . . , bq ∈ Fpq
. It outputs a bit b ∈ {0, 1}.

• Perfect completeness. A mod-LPCP has perfect completeness if for all (x,w) ∈ R:

Pr

 ∀i ∈ [q], di ∈ [−B,B]
VD (st, x, b1, . . . , bq) = 1

π ← P(x,w)
(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], di = ⟨π,ai⟩
∀i ∈ [q], bi = Zpi

(di)

 = 1 .

• Soundness. A mod-LPCP has soundness error δ if for every x /∈ L, π ∈ Fℓ
p′ , and c1 ∈ Fp1

, . . . , cq ∈ Fpq
:

Pr

 ∀i ∈ [q], di ∈ [−B′, B′]
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], di = ⟨π,ai⟩

∀i ∈ [q], bi = Zpi
(di) + ci

 ≤ δ .

• Knowledge. A mod-LPCP satisfies knowledge soundness κ if there exists a PPT extractor Ext such
that for every instance x, proof π ∈ Fℓ

p′ , and shifts c1 ∈ Fp1
, . . . , cq ∈ Fpq

if,

Pr

 ∀i ∈ [q], di ∈ [−B′, B′]
VD (st, x, b1, . . . , bq) = 1

(st,a1, . . . ,aq)← VQ(x)
∀i ∈ [q], di = ⟨π,ai⟩

∀i ∈ [q], bi = Zpi
(di) + ci

 > κ ,

then (x,Ext(x, π, c1, . . . , cq)) ∈ R.

We say that a mod-LPCP is instance-independent if VQ(x) is a function only of |x|, in which case we
specify its input by 1|x| (i.e., the verifier query algorithm is VQ(1

|x|)).

We show that linear PCPs can be transformed into mod-LPCP:

Lemma 6.7. Let R be a relation with a LPCP over Fp with soundness error δ query complexity q and proof

length ℓ, and let p′ > p be a parameter so that p′

2·p·ℓ > 2B′. Then R has a mod-LPCP over moduli p′ and

p with soundness error δ, q + ⌈− log δ⌉ queries, and proof length ℓ. The mod-LPCP moduli are pi = p for
i ∈ [q] and pi = 1 for i ∈ [q + 1, q + ⌈− log δ⌉].

If the LPCP is instance-oblivious, then so is the mod-LPCP. If the LPCP is B-bounded with error α,
then the mod-LPCP is max{B, 2

√
pℓλ}-bounded with error α+ 2−λ⌈log 1/δ⌉.

37

Remark 6.8. Notice that in the resultant mod-LPCP of Lemma 6.7, the last ⌈− log δ⌉ queries have a
modulus of 1. Therefore, VD always receives 0 at those positions. They help only with soundness because of
the bounds check but do not communicate any information to the verifier.

Proof. Let q′ = q+⌈− log δ⌉ and let (P, (VQ, VD)) be the original LPCP. We define a mod-LPCP (P′, (V ′Q, V
′
D))

im the following construction:

• P′(x,w):

1. Let π ← P(x,w) ∈ Fℓ
p.

2. Output π′ = Zp′(π) ∈ Fℓ
p′ .

• V ′Q(x):

1. Let (st,a1, . . . ,aq)← VQ(x).
2. We define a distribution D whose image is {−1, 0, 1} which outputs:

– −1 with probability 1/4;

– 1 with probability 1/4;

– 0 with probability 1/2.

3. For i ∈ [⌈− log δ⌉] sample aq+i ← Dℓ.
4. Output queries (a′i)i∈[q′] = (Zp′(ai))i∈[q′].

• V ′D(st, x, b1, . . . , bq′):

1. Output b← VD(st, x, b1, . . . , bq). (Note that the verifier ignores bi for i > q.)

Completeness follows by the construction, we prove soundness and later explain knowledge soundness. To
prove soundness we distinguish two cases:

• If for every j ∈ [ℓ], we have |π[j]| < p′

2·p·ℓ . In this case, for all i ∈ [q], the magnitude of ⟨π,ai⟩ when
computations are done over the integers (rather than p′) is small:

|⟨Z(π),Z(a′i)⟩| =

∣∣∣∣∣∣
∑
j∈[ℓ]

Z(π[j]) · Z(ai[j])

∣∣∣∣∣∣ ≤
∑
j∈[ℓ]

|Z(π[j])| · |Z(ai[j])|

<
∑
j∈[ℓ]

p′

2 · p · ℓ
· p = p′/2 .

The above holds by triangle inequality. Since over the integers, the inner product is smaller than p′,
there is no wrap-around when computing over the integers versus over Zp′ . Thus,

Zp(⟨π,a′i⟩) = Zp(⟨Z(π),Z(a′i)⟩) = Zp

∑
j∈[ℓ]

Z(π[j]) · Z(a′i[j])

=
∑
j∈[ℓ]

Zp(π[j]) · Zp(a
′
i[j]) = ⟨Zp(π),Zp(a

′
i)⟩ = ⟨Zp(π),ai⟩

Therefore,

V ′D(st, x,Zp(⟨π,a′1⟩) + c1, . . . ,Zp(⟨π,a′q′⟩) + cq′)

= VD(st, x, ⟨Zp(π),a1⟩+ c1, . . . , ⟨Zp(π),aq⟩+ cq) .

Thus, this case reduces to soundness of (P, (VQ, VD)) against the proof (Zp(π), c1, . . . , cq).

38

• If there exists j ∈ [ℓ] such that |π[j]| ≥ p′

2·p·ℓ . Fix this j for the remainder of the proof. For the rest of

the analysis we relax the malicious prover’s winning condition: the prover wins if for every i ∈ [q+1, q′]
it holds that ⟨π,ai⟩ ∈ [−B′, B′]. Since we have removed restrictions from the probability that we need
to bound, this can only increase the probability. Thus by bounding this probability, we bound the
probability that the results are within range and the verifier accepts.

Fix an arbitrary i ∈ [q+1, q′]. We analyze the probability that ⟨π,ai⟩ ∈ [−B′, B′]. By opening up the
definition, ⟨π,ai⟩ = π[j] · ai[j] +

∑
j′∈[ℓ]\{j} π[j

′] · ai[j′]. We show that for every s ∈ Fp′ we show that

Pr
ai[j]←D

[(π[j] · ai[j] + si) ∈ [−B′, B′]] ≤ 1/2 .

Fix s ∈ Fp′ and recall that |π[j]| > p′

2·p·ℓ > 2B′ and that ai[j] is chosen from D. Then,

– If |s| ≤ B′ then |π[j] · 1 + s| > B′ and |π[j] · −1 + s| > B′. Since ai[j] ∈ {−1, 1} with probability
1/2, we have that |π[j] · ai[j] + s| > B′ with probability 1/2.

– If |s| > B′, then |π[j] ·0+ s| > B′. Since ai[j] = 0 with probability 1/2, we have that |π[j] ·ai[j]+
s| > B′ with probability 1/2.

Thus, we have that

Pr
ai←Dℓ

[⟨π,ai⟩ ∈ [−B′, B′]] = Pr

(π[j] · ai[j] + s) ∈ [−B′, B′]
∀j′ ∈ [ℓ] \ {j}ai[j′]← D

s =
∑

j′∈[ℓ]\{j} π[j
′] · ai[j′]

ai[j]← D

 ≤ 1/2

Finally, since the queries aq+1, . . . ,aq′ are all chosen independently,

Pr[∀i ∈ [q′], ⟨π,ai⟩ ∈ [−B′, B′]] ≤ Pr[∀i ∈ [q + 1, q′], ⟨π,ai⟩ ∈ [−B′, B′]]
≤ 2−⌈− log δ⌉

≤ δ.

Remark 6.9. If (P, (VQ, VD)) has knowledge soundness β then (P′, (V ′Q, V
′
D)) also has knowledge soundness

β. This follows by the exact same argument as above using the same extractor as the original LPCP.

Claim 6.10. The mod-PCP is max{B, 2
√
pℓλ}-bounded with error α+ 2−λ⌈log 1/δ⌉.

Proof. The first q queries are B-bounded with error α by assumption. Each for ai, each entry ai[j] is
bounded within [−1, 1] and has expectation 0. Thus, |⟨Z(π),Z(ai)⟩| ≤ p · ℓ and has an expectation of 0. By
Hoeffding’s inequality,

Pr[|⟨Z(π),Z(ai)⟩| > t] < 2 · exp
(
− t2

2p2ℓ2

)
.

Since there are ⌈log 1/δ⌉ such queries, the probability that there exists a value that is out-of-bound t is

at most ⌈log 1/δ⌉ · 2 · exp
(
− t2

2p2ℓ2

)
. Setting t = 2

√
pℓλ, we get that all of these are within bounds with

probability at least 1− 2−λ⌈log 1/δ⌉.
Thus, all together, we get the bound max{B, 2

√
pℓλ} with error α+ 2−λ⌈log 1/δ⌉.

39

7 Designated-verifier SNARGs from compressible encryption

In this section, we show how to construct SNARGs (in fact, SNARKs) by combining compressible encryption
schemes with suitable information-theoretic protocols. In Section 7.1, we show this from isolated homomor-
phism (Definition 5.1) and strong MIPs, and in Section 7.2, we show this from bound-limited homomorphism
(Definition 5.2) and modded LPCPs.

We state here the dv-SNARKs resultant as corollaries from our proofs and transformations.

• Derived by combining Lemma 7.3 with the packed ElGamal encryption scheme and a strong linear
MIP and making enough repetitions:

Corollary 7.1 (Dv-SNARKs from packed ElGamal). Let C : Fn
p × Fh

p → Fp be an arithmetic circuit

of size s. For every λ, τ ∈ N there are dv-SNARKs for RC =
{
(x,w) ∈ Fn × Fh | C(x,w) = 1

}
in the

GGM with of group size 2λ with completeness error negl(λ), and the following parameters:

(Linear CRS.) Using the LMIP of Corollary 3.10:

– Message length: 1G element and O(τ) bits;
– Knowledge soundness: 2−τ + 8t2/2λ against t-query adversaries;
– CRS length: O(τ · (s+ poly(p))) G elements;
– Setup time: O(τ · (s+ poly(p)));
– Prover expected runtime: Õ(λsτ2poly(p));
– Verifier runtime: Õ(λsτ2p2).

(Concrete efficiency.) Using the LMIP derived by combining Theorem 3.8 and Lemma 6.1):

– Message length: 1G element and ⌈3τ log2 p⌉ bits;
– Knowledge soundness: (79 + 36p

505p−1458)
τ + 8t2/2λ against t-query adversaries;

– CRS length: (3τ + 1) · (s2 + s) G elements;
– Setup time: O(τs2);
– Prover expected runtime: Õ(λs2τ2p2);
– Verifier runtime: Õ(λs2τ2p2) (Õ(λsτ2p2) if we restrict to Boolean circuits).

Above, the knowledge soundness errors hold for t > 4 · tV + 1 where tV is the verification time.

• Derived by combining Lemma 7.5 with the packed ElGamal with hash scheme and a linear PCP
transformed into a modded LPCP using Lemma 6.7 we get dv-SNARKs where the number of added
bits approaches 2τ :

Corollary 7.2 (Dv-SNARKs from packed ElGamal with hash). Let C : Fn
p × Fh

p → Fp be an arith-
metic circuit of size s with p > 2. For every λ, τ ∈ N there are dv-SNARKs for the relation
RC =

{
(x,w) ∈ Fn × Fh | C(x,w) = 1

}
in the GGM with group size 2λ and with random oracle output

length λ with completeness error negl(λ) and the following parameters:

(Linear CRS.) Using the LPCP of Theorem 3.9:

– Message length: 1G element, 1 ROM output (λ bits), and ⌈τ log p⌉ bits;
– Knowledge soundness: O(p−τ/2)+10t2/2λ against t-query adversaries (to both the ROM and

GGM);
– CRS length: O(τ · (s+ poly(p))) G elements;
– Setup time: O(τ · (s+ poly(p)));
– Prover expected runtime: Õ(λsτ2poly(p));
– Verifier runtime: Õ(λsτ2p2).

(Minimal length.) Using the LPCP of Theorem 3.8:

– Message length: 1G element, 1 ROM output (λ bits), and ⌈2τ log p⌉ bits;

40

– Knowledge soundness: (2/p)−τ + 10t2/2λ against t-query adversaries (to both the ROM and
GGM);

– CRS length: O(τs2) G elements;
– Setup time: O(τs2);
– Prover expected runtime: Õ(λs2τ2p2);
– Verifier runtime: Õ(λs2τ2p2) (Õ(λsτ2p2) if we restrict to Boolean circuits).

Above, the knowledge soundness errors hold for t > 4 · tV + 1 where tV is the verification time.

7.1 Construction from isolated homomorphism

We show how to combine a strong LMIP with knowledge soundness, and an isolated homomorphic encryption
scheme into a dv-SNARK:

Lemma 7.3. Suppose the existence of the following ingredients:

• An input-oblivious strong linear MIP over finite field Fp for a relation R that is B-bounded with error
α, soundness δ, knowledge soundness κ, q queries, query length ℓ, prover running time tP , and verifier
running time (tQ, tD).

• A compressible linearly homomorphic encryption scheme with q slots, plaintext moduli p, ciphertext size
σct, compressed ciphertext size σcct, decryption bound B, and encryption, compression, evaluation, and
decryption times (tenc, tcmp, teval, tdec). Furthermore, let εcor be its correctness error, εih be its isolated
homomorphism distinguishability error and εsem be its semantic security advantage.

Then there is a designated-verifier SNARK for R with:

• Completeness error: α+ ℓ · εcor(λ);
• Soundness: δ + εih(λ, t, ℓ) + εsem(λ, t, ℓ) against t-query adversaries;
• Knowledge soundness: κ+ εih(λ, t, ℓ) + ℓ · εsem(λ, t) against t-query adversaries;
• Message length: σcct(λ);
• CRS length: ℓ · σct(λ);
• Setup time: O(tQ + ℓ · tenc(λ));
• Prover runtime: O(tP + teval(λ, ℓ) + tcmp(λ));
• Verifier runtime: O(tD + tdec(λ)).

Proof. Let (P, (VQ, VD)) be the linear MIP, and (KeyGen,Enc,Dec,Eval) be the homomorphic encryption
scheme. We construct a SNARK

Construction 7.4. The SNARK (Setup,P′,V′) is defined as follows:

• SetupG(1n):

1. Sample (pk, sk)← KeyGenG and (st′,a1, . . . ,aq)← VQ(1
n).

2. For every i ∈ [ℓ] let zi = (a1[i], . . . ,aq[i]) ∈ Fq and compute cti ← Enc(pk, zi).
3. Output crs := (pk, ct1, . . . , ctℓ) and st := (sk, st′).

• P′G(crs, x, w):

1. Parse crs := (pk, ct1, . . . , ctℓ) and compute π ← P(x,w).
2. Compute ct′ ← EvalG(pk, ct1, . . . , ctℓ, π).
3. Let cct := CompressG(pk, ct′).
4. Output pf := cct.

• V′G(st, x, pf):

1. Parse st = (sk, st′) and pf = cct.
2. If DecG(sk, cct) = ⊥, then output 0. Otherwise, let (b1, . . . , bq) = DecG(sk, cct).

41

3. Output 1 if VD(st
′, x, b1, . . . , bq) = 1 and otherwise output 0.

Completeness, and the complexity parameters follow immediately from the construction. We prove
soundness and knowledge by first proving soundness, and then explaining the (small) differences when
proving knowledge.

Soundness. Fix λ and a prover P′ for the dv-SNARK soundness experiment that makes t queries. We
show that the probability that V′ outputs 1 is at most δ + εsem + εih. Suppose towards contradiction to the
soundness error of the strong LMIP that P′ causes the verifier to accept with probability δ′ > δ+ εsem + εih.

Let S be the simulator of the isolated homomorphism experiment of the encryption scheme, and define
a plaintext generator T and adversary A:

• T G(pk): Sample (st′,a1, . . . ,a1)← VQ(x). Output (st′, (z1, . . . , zℓ)) where zi = (a1[i], . . . ,aq[i]).

• AG(pk, ct1, . . . , ctℓ): Let crs = (pk, ct1, . . . , ctℓ) and compute and output (x, cct)← P′G(crs).

By plugging in to the isolated homomorphism experiment this plaintext generator and adversary, the outputs
of the following two experiments have statistical distance at most εih:

• Real:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (st′,a1, . . . ,aℓ)← VQ(1

n).
4. zi = (a1[i], . . . ,aq[i]) for all i ∈ [ℓ].

5. cti ← EncG(pk, zi) for all i ∈ [ℓ].
6. (x, cct)← P′G(pk, ct1, . . . , ctℓ).
7. If DecG(sk, cct) = ⊥, output ⊥.
8. (b1, . . . , bq)← DecG(sk, cct)
9. Output (st′, x, b1, . . . , bq).

• Ideal:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (st′,a1, . . . ,aℓ)← VQ(1

n).
4. zi = (a1[i], . . . ,aq[i]) for all i ∈ [ℓ].

5. cti ← EncG(pk, zi) for all i ∈ [m].

6. (cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ).

7. (f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct).
8. If DecG(sk, cct) = ⊥, output ⊥.
9. bi = fi(ai) for all i ∈ [q].
10. Output (st′, x, b1, . . . , bq).

Consider the following predicate p(X): if X = ⊥ or X cannot be parsed as X = (st′, x, b1, . . . , bq), then
output 0. Otherwise, output 1 if |x| = n, x ∈ L(R), and VD(st

′, x, b1, . . . , bq) = 1, and otherwise output
0. Observe that after applying the predicate to the output of the real experiment, we get the predicate of
whether the SNARK verifier accepted in the adaptive soundness experiment, which happens with probability
δ′. Thus, by εih statistical indistinguishability of the real and ideal games, the probability of the predicate

42

being satisfied in the ideal game is at least δ′ − εih:

Pr

x /∈ L(R)

∧ DecG(sk, cct) ̸= ⊥
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi = fi(ai)

≥ δ′ − εih(λ, t, ℓ) .

We can now remove the check that decryption is done correctly, thus making the predicate independent of
the encryption secret key. That is, the expression above is bounded from above by

Pr

x /∈ L(R)

∧ VD(st
′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi = fi(ai)

We now utilize semantic security of the encryption scheme to change the encryptions to 0q.

Pr

x /∈ L(R)

∧ VD(st
′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], cti ← Enc(pk, 0q)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi = fi(ai)

≥ Pr

x /∈ L(R)

∧ VD(st
′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(A, pk, ct1, . . . , ctℓ)
∀i ∈ [q], bi = fi(ai)

− εsem(λ, t, ℓ) .

Indeed, otherwise we could run the above experiments to distinguish ciphertexts of (z1, . . . , zℓ) from cipher-
texts of the all-zeroes string. Thus, we have that

Pr

x /∈ L(R)

∧ VD(st
′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], cti ← EncG(pk, 0q)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi = fi(ai)

≥ δ′ − εih(λ, ℓ, t)− εsem(λ, t, ℓ) > δ .

43

Observe that, now the choice of x, f1, . . . , fq does not depend on a1, . . . ,aq. By an averaging argument,
there exist x, f1, . . . , fq so that:

Pr

[
VD(st

′, x, b1, . . . , bq) = 1
(st′,a1, . . . ,aq)← VQ(1

n)
∀i ∈ [q], bi = fi(ai)

]
> δ ,

which contradicts soundness of the strong LMIP.

Knowledge soundness. Let Ext be the extractor of the LMIP. We specify our SNARK extractor Ext′:

1. On input crs = (pk, ct1, . . . , ctℓ), x, cct, and a trace tr.
2. Run (f1, . . . , fq)← S(pk, cct, tr).
3. Output w ← Extf1,...,fq (x).

It is immediate that Ext runs in expected time that is polynomial in λ, n, and t. The proof that our scheme
has knowledge soundness κ + εsem + εih closely follows that of standard soundness. Indeed, the knowledge
soundness game is:

Pr

 (x,w) /∈ R
∧ VG(st, x, pf) = 1

G ← GGM(λ)

(crs, st)← SetupG(1n)

(x, pf)
tr←− P′G(crs)

w ← Ext(x, pf, tr)

= Pr

(x,w) /∈ R
∧ DecG(sk, cct) ̸= ⊥

∧ VD(st
′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(f1, . . . , fq)← S(tr, pk, ct1, . . . , ctℓ, cct)
(b1, . . . , bq)← DecG(sk, cct)

w ← Extf1,...,fq (x)

.

By then following precisely the same arguments as in soundness, with this experiment we end up at the fact
that there exist x and f1, . . . , fq so that,

Pr

 (x,w) /∈ R
∧ VD(st

′, x, b1, . . . , bq) = 1

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [q], bi = fi(ai)

w ← Extf1,...,fq (x)

 > κ ,

which contradicts knowledge soundness of the strong LMIP.

7.2 Construction from bounded-limited homomorphism

In this section we show how to combine a modded LPCP with knowledge soundness, and a bound-limited
homomorphic encryption scheme into a designated-verifier SNARK:

Lemma 7.5. Suppose the existence of the following ingredients:

• An input-oblivious mod-LPCP over big modulus p′ and moduli (pi) for a relation R that is B-bounded
with error α, soundness δ, knowledge soundness κ, q queries, query length ℓ, prover running time tP ,
and verifier running time (tQ, tD). Let B′ be its big moduli bound.

44

• A compressible linearly homomorphic encryption scheme over p′ with q slots, plaintext moduli (pi),
ciphertext size σct, compressed ciphertext size σcct, decryption bound B, and encryption, compression,
evaluation, and decryption times (tenc, tcmp, teval, tdec). Furthermore, let εcor be its correctness error,
εbnd be its bound-limited homomorphism error with bound B′ error and εsem be its semantic security
advantage.

Then there is a designated-verifier SNARK for R with:

• Completeness error: ℓ · εcor(λ);
• Soundness: δ + εbnd(λ, t, ℓ) + εsem(λ, t, ℓ) against t-query adversaries;
• Knowledge soundness: κ+ εbnd(λ, t, ℓ) + ℓ · εsem(λ, t) against t-query adversaries;
• Message length: σcct(λ);
• CRS length: ℓ · σct(λ);
• Setup time: O(tQ + ℓ · tenc(λ));
• Prover runtime: O(tP + teval(λ, ℓ));
• Verifier runtime: O(tD + tdec(λ)).

Proof. Let (P, (VQ, VD)) be the linear MIP, and (KeyGen,Enc,Dec,Eval) be the homomorphic encryption
scheme. We construct a SNARK

Construction 7.6. The SNARK (Setup,P′,V′) is defined as follows:

• SetupG(1n):

1. Sample (pk, sk)← KeyGenG and (st′,a1, . . . ,aq)← VQ(1
n).

2. For every i ∈ [ℓ] let zi = (a1[i], . . . ,aq[i]) ∈ Fq and compute cti ← EncG(pk, zi).
3. Output crs := (pk, ct1, . . . , ctℓ) and st := (sk, st′).

• P′G(crs, x, w):

1. Parse crs := (pk, ct1, . . . , ctℓ) and compute π ← P(x,w).
2. Compute ct′ ← EvalG(pk, ct1, . . . , ctℓ, π).
3. Let cct := CompressG(pk, ct′).
4. Output pf := cct.

• V′G(st, x, pf):

1. Parse st = (sk, st′) and pf = cct.
2. If DecG(sk, cct) = ⊥, then output 0. Otherwise, let (b1, . . . , bq) = DecG(sk, cct).
3. Output 1 if VD(st

′, x, b1, . . . , bq) = 1 and otherwise output 0.

Completeness, and the complexity parameters follow immediately from the construction. We prove
soundness and knowledge by first proving soundness, and then explaining the (small) differences when
proving knowledge.

Soundness. Fix λ and a prover P′ for the dv-SNARK soundness experiment that makes t queries. We
show that the probability that V′ outputs 1 is at most δ+ εsem + εbnd. Suppose towards contradiction of the
soundness error of the mod-LPCP that P′ causes the verifier to accept with probability δ′ > δ+ εsem + εbnd.

Let S be the simulator of the bounded-restricted homomorphism experiment of the encryption scheme,
and define a plaintext generator T and adversary A:

• T G(pk): Sample (st′,a1, . . . ,a1)← VQ(x). Output (st′, (z1, . . . , zℓ)) where zi = (a1[i], . . . ,aq[i]).

• AG(pk, ct1, . . . , ctℓ): Let crs = (pk, ct1, . . . , ctℓ) and compute and output (x, cct)← P′G(crs).

By plugging in to the bound-limited homomorphism experiment this plaintext generator and adversary, the
outputs of the following two experiments have statistical distance at most εbnd:

45

• Real:

1. Sample G ← GGM(λ).
2. Let (pk, sk)← KeyGenG .
3. (st′,a1, . . . ,aℓ)← VQ(1

n).
4. zi = (a1[i], . . . ,aq[i]) for all i ∈ [ℓ].

5. cti ← EncG(pk, zi) for all i ∈ [ℓ].
6. (x, cct)← P′G(pk, ct1, . . . , ctℓ).
7. If DecG(sk, cct) = ⊥, output ⊥.
8. (b1, . . . , bq)← DecG(sk, cct)
9. Output (st′, x, b1, . . . , bq).

• Ideal:

1. Let (pk, sk)← KeyGenG .
2. (st′,a1, . . . ,aℓ)← VQ(1

n).
3. zi = (a1[i], . . . ,aq[i]) for all i ∈ [ℓ].

4. cti ← EncG(pk, zi) for all i ∈ [m].

5. (cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ).

6. (π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct), where π ∈ Zq
p′ and ci ∈ Zpi

.

7. If DecG(sk, cct) = ⊥, output ⊥.
8. bi ← Zpi

(∑
j∈[q] πjzj [i]

)
+ ci = Zpi (⟨π,ai⟩) + ci.

9. If there exists an i such that bi ̸∈ [−B′, B′] output ⊥.
10. Output (st′, x, b1, . . . , bq).

Consider the following predicate p(X): if X = ⊥ or X cannot be parsed as X = (st′, x, b1, . . . , bq), then
output 0. Otherwise, output 1 if |x| = n, x ∈ L(R), and VD(st

′, x, b1, . . . , bq) = 1, and otherwise output
0. Observe that after applying the predicate to the output of the real experiment, we get the predicate of
whether the SNARK verifier accepted in the adaptive soundness experiment, which happens with probability
δ′. Thus, by εbnd statistical indistinguishability of the real and ideal games, the probability of the predicate
being satisfied in the ideal game is at least δ′ − εbnd:

Pr

x /∈ L(R)

∧ DecG(sk, cct) ̸= ⊥
∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi ← Zpi

(⟨π,ai⟩) + ci

≥ δ′ − εbnd(λ, t, ℓ) .

We can now remove the check that the decryption succeeds, thus making the predicate independent of the
encryption secret key. That is, the above expression is upper bounded by:

Pr

x /∈ L(R)

∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi ← Zpi

(⟨π,ai⟩) + ci

46

We now utilize semantic security of the encryption scheme to change the encryptions to 0q.

Pr

x /∈ L(R)

∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], cti ← EncG(pk, 0q)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi ← Zpi

(⟨π,ai⟩) + ci

≥ Pr

x /∈ L(R)

∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi ← Zpi

(⟨π,ai⟩) + ci

− εsem(λ, t, ℓ) .

Indeed, otherwise we could run the above experiments to distinguish ciphertexts of (z1, . . . , zℓ) from cipher-
texts of the all-zeroes string. Thus, we have that

Pr

x /∈ L(R)

∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], cti ← EncG(pk, 0q)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
∀i ∈ [q], bi ← Zpi

(⟨π,ai⟩) + ci

≥ δ′−εbnd(λ, ℓ, t)−εsem(λ, t, ℓ) > δ .

Observe that, now the choice of x, π, and c1, . . . , cq does not depend on a1, . . . ,aq. By an averaging argument,
there exist x, π, and c1, . . . , cq so that:

Pr

[
∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1
(st′,a1, . . . ,aq)← VQ(1

n)
∀i ∈ [q], bi ← Zpi (⟨π,ai⟩) + ci

]
> δ ,

which contradicts soundness of the LPCP.

Knowledge soundness. Let Ext be the extractor of the LPCP. We specify our SNARK extractor Ext′:

1. On input crs = (pk, ct1, . . . , ctℓ), x, cct, and a trace tr.
2. Run (π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct).
3. Output w ← Ext(x, π, c1, . . . , cq).

It is immediate that Ext runs in expected time that is polynomial in λ, n, and t. The proof that our scheme
has knowledge soundness κ+ εsem + εbnd closely follows that of standard soundness. Indeed, the knowledge

47

soundness game is:

Pr

 (x,w) /∈ R
∧ VG(st, x, pf) = 1

G ← GGM(λ)

(crs, st)← SetupG(1n)

(x, pf)
tr←− P′G(crs)

w ← Ext(x, pf, tr)

= Pr

(x,w) /∈ R

∧ DecG(sk, cct) ̸= ⊥
∧ VD(st

′, x, b1, . . . , bq) = 1

G ← GGM(λ)

(pk, sk)← KeyGenG

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [ℓ], zi = (a1[i], . . . ,aq[i])

∀i ∈ [ℓ], cti ← EncG(pk, zi)

(cct, x)
tr←− P′G(pk, ct1, . . . , ctℓ)

(π, c1, . . . , cq)← S(tr, pk, ct1, . . . , ctℓ, cct)
(b1, . . . , bq)← DecG(sk, cct)

w ← Ext(x, π, c1, . . . , cq)

.

By then following precisely the same arguments as in soundness, with this experiment we end up at the fact
that there exist x, π, and c1, . . . , cq so that,

Pr

 (x,w) /∈ R
∧ ∀i ∈ [q], bi ∈ [−B′, B′]
∧ VD(st

′, x, b1, . . . , bq) = 1

(st′,a1, . . . ,aq)← VQ(1
n)

∀i ∈ [q], bi ← Zpi
(⟨π,ai⟩) + ci

w ← Ext(x, π, c1, . . . , cq)

 > κ ,

which contradicts knowledge soundness of the strong LMIP.

Acknowledgments

Gal Arnon is supported by the European Research Union (ERC, CRYPTOPROOF, 101164375). Jesko
Dujmovic is supported by the European Reasearch Union (ERC, LACONIC, 101041207). Yuval Ishai was
supported by ISF grant 3527/24, BSF grant 2022370, and ISF-NSFC grant 3127/23.

References

[ABCH19] Per Austrin, Jonah Brown-Cohen, and Johan H̊astad. Optimal inapproximability with universal
factor graphs. ACM Transactions on Algorithms, 2019.

[ACFY24a] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-solomon proximity
testing with fewer queries. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part X, volume 14929 of LNCS, pages 380–413, Santa Barbara, CA, USA, August 18–22, 2024.
Springer, Cham, Switzerland.

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR: reed-solomon prox-
imity testing with super-fast verification. IACR Cryptol. ePrint Arch., page 1586, 2024.

[ADI25] Gal Arnon, Jesko Dujmovic, and Yuval Ishai. Designated-verifier SNARGs with one group
element. In Proceedings of Crypto 2025, 2025.

[AFLN24] Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen. SLAP:
Succinct lattice-based polynomial commitments from standard assumptions. In Marc Joye and
Gregor Leander, editors, EUROCRYPT 2024, Part VII, volume 14657 of LNCS, pages 90–119,
Zurich, Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

48

[AHRS01] Yonatan Aumann, Johan H̊astad, Michael O. Rabin, and Madhu Sudan. Linear-consistency
testing. J. Comput. Syst. Sci., 62(4):589–607, 2001.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 315–334. IEEE Computer Society, 2018.

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Constant
ciphertext-rate non-committing encryption from standard assumptions. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 58–87, Durham,
NC, USA, November 16–19, 2020. Springer, Cham, Switzerland.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed–Solomon in-
teractive oracle proofs of proximity. In Proceedings of the 45th International Colloquium on
Automata, Languages and Programming, ICALP ’18, pages 14:1–14:17, 2018.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357, Vienna, Austria, May 8–12, 2016. Springer, Berlin, Heidelberg, Germany.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 315–333, Tokyo, Japan, March 3–6, 2013. Springer, Berlin, Heidelberg,
Germany.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60,
Beijing, China, October 31 – November 3, 2016. Springer, Berlin, Heidelberg, Germany.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 509–539, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Berlin, Heidelberg, Germany.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing rounds,
communication, and computation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 163–193, Paris, France, April 30 –
May 4, 2017. Springer, Cham, Switzerland.

[BHI+24] Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D. Rothblum, and David J. Wu. Dot-product
proofs and their applications. In 65th FOCS, pages 806–825. IEEE Computer Society Press,
October 2024.

[BIOW20] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and witness
encryption from groups. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 776–806, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Cham, Switzerland.

49

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their
application to more efficient obfuscation. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 247–277, Paris, France,
April 30 – May 4, 2017. Springer, Cham, Switzerland.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear
multi-prover interactive proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 222–255, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Cham, Switzerland.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, November 3–5,
1993. ACM Press.

[BS23] Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS from module-SIS. In
Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 518–548, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Cham, Switzer-
land.

[CY24] Alessandro Chiesa and Eylon Yogev. Building cryptographic proofs from hash functions. URL:
https://github. com/hash-based-snargs-book, 2024.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Berlin, Heidelberg, Germany.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 3–32, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Cham, Switzerland.

[DKK18] Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed discrete log protocol with
applications to homomorphic secret sharing. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 213–242, Santa Barbara, CA,
USA, August 19–23, 2018. Springer, Cham, Switzerland.

[DMS24] Michel Dellepere, Pratyush Mishra, and Alireza Shirzad. Garuda and pari: Faster and
smaller SNARKs via equifficient polynomial commitments. Cryptology ePrint Archive, Report
2024/1245, 2024.

[FJ12] Uriel Feige and Shlomo Jozeph. Universal factor graphs. In Automata, Languages, and Program-
ming: 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings,
Part I 39, pages 339–350. Springer, 2012.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30, 2013.
Springer, Berlin, Heidelberg, Germany.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

50

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–9,
2010. Springer, Berlin, Heidelberg, Germany.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326,
Vienna, Austria, May 8–12, 2016. Springer, Berlin, Heidelberg, Germany.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108, San Jose, CA, USA, June 6–8, 2011. ACM Press.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–
859, 2001.

[HK05] Johan H̊astad and Subhash Khot. Query efficient pcps with perfect completeness. Theory
Comput., 1(1):119–148, 2005.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short pcps. In
22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16 June 2007,
San Diego, California, USA, pages 278–291. IEEE Computer Society, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732, Victoria, BC, Canada, May 4–6, 1992. ACM Press.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and
linear error-correcting codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part I, volume 8269 of LNCS, pages 41–60, Bengalore, India, December 1–5, 2013. Springer,
Berlin, Heidelberg, Germany.

[Lip24] Helger Lipmaa. Polymath: Groth16 is not the limit. In Leonid Reyzin and Douglas Stebila,
editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages 170–206, Santa Barbara, CA,
USA, August 18–22, 2024. Springer, Cham, Switzerland.

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 530–560, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Cham, Switzerland.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453, Santa Fe, NM,
USA, November 20–22, 1994. IEEE Computer Society Press.

[MS24] Daniele Micciancio and Mark Schultz-Wu. Bit security: Optimal adversaries, equivalence results,
and a toolbox for computational-statistical security analysis. In Elette Boyle and Mohammad
Mahmoody, editors, Theory of Cryptography - 22nd International Conference, TCC 2024, Milan,
Italy, December 2-6, 2024, Proceedings, Part II, volume 15365 of Lecture Notes in Computer
Science, pages 224–254. Springer, 2024.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs for del-
egating computation. In Proceedings of the 48th ACM Symposium on the Theory of Computing,
STOC ’16, pages 49–62, 2016.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266, Konstanz, Germany, May 11–
15, 1997. Springer, Berlin, Heidelberg, Germany.

51

[SSE+24] Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, and Ray-
mond K. Zhao. LUNA: Quasi-optimally succinct designated-verifier zero-knowledge arguments
from lattices. In ACM CCS 2024, pages 3167–3181. ACM Press, November 2024.

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. SIAM J. Comput., 50(3):857–908, 2021.

A On Measuring Concrete Proof Length

In this section we discuss in more detail our measures of concrete (as opposed to asymptotic) proof length,
which follow the standards of previous related works, and discuss an important related distinction between
public and designated verification.

Concrete proof length is only meaningful when specifying a concrete security level. While there are several
principled approaches for defining the exact “bit security” of cryptographic primitives (see, e.g., [MS24] and
references therein), the common practice in generic model constructions is to simply refer to the bit-length of
the oracle instantiation. For instance, a garbled circuit construction in the ROM is referred to as having 128-
bit security when the random oracle is instantiated using (say) AES, even if the security reduction involves
some multiplicative polynomial loss (as opposed to quadratic loss required by collision resistance). Similarly,
in GGM constructions that rely on the hardness of computing discrete logarithms, a 128-bit security level
refers to an instantiation with suitable elliptic-curve groups whose order is a 256-bit prime. This accounts
for the quadratic speedup of fast algorithms for computing discrete logarithm. We follow this convention
here as well.

Finally, we would like to point out an important distinction between dv-SNARGs and publicly verifiable
SNARGs in the context of measuring concrete security. In publicly verifiable proofs, the prover can test
whether a proof they generate is accepted by the verifier. It is therefore natural to only measure the
expected time it takes for a malicious prover to generate an accepted false proof. In contrast, in a designated
verifier setting, where the prover does not know whether they will be caught cheating, there is a natural
separation between the computational security level and the statistical soundness error.

For example, soundness as low as 2−64 is more than enough in most use-cases of dv-SNARGs, when a
malicious prover cannot verify their own proofs without access to a verification oracle. Indeed, an access to
a verification oracle is typically much more costly than just checking a publicly verifiable proof. Consider
an extreme scenario in which it costs $0.0001 to query a verification oracle, and if a prover manages to
cheat, they gain the entire earth’s GDP (≈ $1014 in 2022). With soundness error 2−64, even in this extreme
scenario a malicious prover who tries to cheat has a negative expected utility.

Given the above, our concrete measures of proof size refer to the arguably conservative setting of 2−80

soundness error at a 128-bit security level, where the latter refers to using a 256-bit group and ignores the
small loss in the security reduction.

52

	Introduction
	Our results
	Open problems and future directions
	Related work
	Organization

	Technical overview
	Designated-verifier SNARGs from compressible encryption
	Packed ElGamal
	Improved proof length by reducing malleability

	Preliminaries
	Generic group model
	Designated-verifier SNARGs
	Linear PCPs and strong linear MIPs
	Linear PCPs used in this paper

	Linearity testing
	Distributed discrete log

	Compressible encryptions schemes
	Packed ElGamal
	Packed ElGamal with hash check

	Targeted malleability
	Malleability notions
	Isolated homomorphism of packed ElGamal
	Bound-limited homomorphism of Packed ElGamal with hash check

	Constructing linear PCPs and MIPs
	Linear PCPs to strong linear MIPs
	Modded LPCPs

	Designated-verifier SNARGs from compressible encryption
	Construction from isolated homomorphism
	Construction from bounded-limited homomorphism

	On Measuring Concrete Proof Length

