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Abstract. This paper introduces a new one-more computational problem for lattice-based cryptog-
raphy, which we refer to as the Algebraic One-More MISIS problem, or AOM-MISIS for short. It is
a modification of the AOM-MLWE problem recently introduced by Espitau et al. (CRYPTO ’24) to
prove security of new two-round threshold signatures.
Our first main result establishes that the hardness of AOM-MISIS is implied by the hardness of MSIS
and MLWE (with suitable parameters), both of which are standard assumptions for efficient lattice-
based cryptography. We prove this result via a new generalization of a technique by Tessaro and
Zhu (EUROCRYPT ’23) used to prove hardness of a one-more problem for linear hash functions
assuming their collision resistance, for which no clear lattice analogue was known. Since the hardness
of AOM-MISIS implies the hardness of AOM-MLWE, our result resolves the main open question from
the work of Espitau et al., who only provided a similar result for AOM-MLWE restricted to selective
adversaries, a class which does not cover the use for threshold signatures.
Furthermore, we show that our novel formulation of AOM-MISIS offers a better interface to develop
tighter security bounds for state-of-the-art two-round threshold signatures. We exemplify this by pro-
viding new proofs of security, assuming the hardness of MLWE and MSIS, for two threshold signatures,
the one proposed in the same work by Espitau et al., as well as a recent construction by Chairattana-
Apirom et al. (ASIACRYPT 2024). For the former scheme, we also show that it satisfies the strongest
security notion (TS-UF-4) in the security hierarchy of Bellare et al. (CRYPTO ’22), as a result of
independent interest.

1 Introduction

One-more assumptions enable proofs of security for several interactive protocols, most notably
identification schemes, threshold signatures, multi-signatures, and blind signatures. The perhaps
most prominent example is the one-more discrete logarithm assumption (OMDL) [BNPS03], which
requires the hardness of computing Q discrete logarithm instances given access to an oracle that
allows the adversary to compute Q´ 1 discrete logarithms of arbitrary group elements. It has been
used throughout several security proofs (e.g., cf. [BNPS03, FPS20, NRS21, BCK`22]), where the
oracle allows the reduction to simulate secret-key dependent behavior of honest parties without
knowing the secret key. This notwithstanding, the main point of controversy is that an assumption
such as OMDL is very strong–for instance, Koblitz and Menezes [KM08] point out that in certain
groups, it is easier to break OMDL than to solve the standard discrete logarithm problem. The
only available route justifying its plausible hardness on standard elliptic curves is a proof [BFP21]
in the generic-group model (GGM) [Sho97, Mau05].

Provably-hard one-more problems. A few recent works [TZ23, BLT`24] follow a different
path: While they still leverage the power of one-more problems as an intermediate interface to
design modular security proofs, they also instantiate the underlying mathematical structure to
support a proof that the one-more problem is indeed hard based on more standard assumptions,
such as the hardness of (standard) discrete log/RSA (in [TZ23]) or of DDH (in [BLT`24]).

https://orcid.org/0000-0002-4276-2797
https://orcid.org/0000-0002-3751-8546


This is the angle pursued by this paper—we seek one-more problems which are sufficiently
expressive to enable useful security proofs, while also enjoying provable hardness from standard
assumptions. This paper deals specifically with lattice-based cryptography. Espitau, Katsumata,
and Takemure (EKT) [EKT24] recently introduced a one-more problem they refer to as algebraic
one-more MLWE (AOM-MLWE) and show that its hardness yields the security of a two-round
threshold signature. They also establish the selective hardness of AOM-MLWE from the standard
MLWE and MSIS assumptions, which is however unfortunately not sufficient to support their
application to threshold signatures. Another example—less relevant for this work, however—is the
one-more ISIS problem [AKSY22], used in the construction of lattice-based blind signatures, which
has also only been validated via cryptanalysis.

Our contributions, in a nutshell.We introduce a new variant of AOM-MLWE which we refer
to as Algebraic One-More MISIS (AOM-MISIS, for short),1 and for which we show two different
types of results:

- Provability. We show that the hardness of AOM-MISIS follows from the hardness of MSIS and
MLWE, with suitable parameters. In fact, the hardness of AOM-MISIS implies the hardness of
AOM-MLWE, and thus our result carries over to AOM-MLWE, providing the first reduction of
AOM-MLWE to standard assumptions, which was left as a main open question in [EKT24].

- Expressivity. We show the security of the EKT threshold signature scheme from [EKT24],
as well as of the recent scheme by Chairattana-Apirom, Tessaro, and Zhu [CATZ24], assuming
the hardness of AOM-MISIS. In turn, this establishes the security of these schemes from MSIS
and MLWE. We obtain either better concrete security bounds compared to [CATZ24], or proofs
under weaker assumptions compared to [EKT24] for slightly larger concrete parameter sets. We
also give a proof that the EKT scheme satisfies the strongest notion of security in the hierarchy
of Bellare et al. [BCK`22].

Algebraic One-More MISIS.The definition of AOM-MISIS relies on the cyclotomic ring R “

ZrXs{pXN`1q, whereN is a power of two, as well as the associated ringRq “ R{qR – ZqrXs{pXN`

1q for an odd prime q. The problem is defined via the following game:

- Input. The adversary is initially given a matrix A “ rA|Iks P Rkˆm
q , where A Ð$ R

kˆpm´kq
q ,

as well as Q instances ti Ð Asi, for i P rQs, where si Ð$ Dm
σi

is “small”, and sampled from an
m-dimensional discrete Gaussian with parameter σi. The instance number Q is a parameter of
the game.

- Oracle access. The adversary can also (adaptively) query an oracle PI which takes as input a
Q-dimensional vector b P RQ, and returns

ř

iPrQs bisi.

To win, the adversary needs to output both b̂ “ pb̂1, . . . , b̂Qq P RQ and a “short” solution ŝ P Rm

such that
ÿ

iPrQs

b̂iti “ Aŝ .

To exclude trivial winning strategies, b̂ must however not be in the span of the vectors b1, b2, . . .
queried to PI. We in fact require something stronger, namely that in order to win, the adversary
also needs to additionally output u P RQ, along with b̂ and ŝ, and the following two properties
need to be satisfied:
1 Our naming is due to the fact that we prefer to think of our problem as a one-more version of Inhomogenous SIS
(SIS), rather than of LWE.
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- The vector u is orthogonal to all vectors b1, b2, . . . queried to PI, but not to b̂, i.e., bJ
i u “ 0,

but b̂
J
u ‰ 0. Here, orthogonality is defined with respect to the ring R.

- Both vectors pb̂1 ¨ σ1, . . . , b̂Q ¨ σQq and pu1{σ1, . . . , uQ{σQq are appropriately small, when inter-
preted as real vectors. Both conditions are necessary, as otherwise a simple attack exists.

Our main result is a concrete reduction showing that the AOM-MISIS problem is indeed hard if the
Module LWE (MLWE) and Module SIS (MSIS) assumptions also hold with suitable parameters,
related to the parameters of the above game. Our proof relies on a novel generalization of the
technique by Tessaro and Zhu [TZ23], which was originally used to obtain hard one-more problems
based on linear hash functions. The origin of this technique goes back to the analysis of Okamoto
signatures [Oka93], and was used also in [HKL19]. Some prior works [TZ23, HKLN20] can be
interpreted as attempts to adapt this approach to the lattice setting in limited ways, but in our
context, they would lead to worse parameters and restrictions on the generality of our game. We
discuss further details in Section 2 below.

We note that the hardness of AOM-MISIS implies the hardness of AOM-MLWE, and thus
we resolve the main open problem from [EKT24], which only provided an analysis for selective
adversaries issuing their oracle queries beforehand. In fact, the main difference between AOM-MISIS
and AOM-MLWE is the winning condition. We require outputting a single short solution for a
suitable non-trivial linear combination of the challenges, whereas AOM-MLWE requires outputting
Q short solutions for all challenges, given Q ´ 1 access to a similar oracle, although with different
conditions on the queries. These changes are what in part enables simpler reductions for threshold
signatures. A more detailed discussion is provided in Section 4.2.

Applications to threshold signatures.We first recall that in a t-out-of-n threshold signature
scheme [Des88, DF90], n potential signers each hold a secret share of a secret signing key, with
an associated public verification key. Any subset of (at least) t of these signers is able to jointly
produce a signature, via interaction, whereas an adversary that controls fewer than t signers should
not be able, on its own, to come up with a valid signature.

We leverage AOM-MISIS to obtain tighter analyses for state-of-the-art two-round lattice-based
threshold signatures, based on the MSIS/MLWE assumptions, and without assuming the hard-
ness of any ad-hoc one-more problem. We focus on two threshold signatures, which we refer to as
CTZ [CATZ24] and EKT [EKT24]. There are several small differences between the two construc-
tions, despite the fact that they instantiate similar ideas. Both can be seen as a natural threshold
version of the Fiat-Shamir-with-abort paradigm [Lyu09] that also underlies DILITHIUM [LDK`22],
albeit dispensing with the actual abort, and using a sufficiently large modulus instead. In particu-
lar, EKT is a threshold version of Raccoon [dPKPR24], submitted to the additional NIST call for
post-quantum signatures [Natnt]. They are natural lattice analogues of FROST [KG20, BCK`22,
CKGW22], a very lightweight threshold Schnorr signature.

Taking some liberty from their formal description, in both schemes, as a result of the second
round, the i-th signer produces an affine signature share

zi “ ri ` c ¨ λissi ,

in a suitable algebraic structure, where ssi is the i-th signer’s key share, c is a hash value associated
with the signature, and λi is a linear reconstruction coefficient associated with the secret sharing
scheme. With S being the set of signers, the final signature has format pR, zq, where R “ A

ř

iPS ri,
(A is a public matrix) and z “

ř

iPS zi. However, the two schemes differ in the following aspects:
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- In CTZ, to avoid leakage of the secret shares, λissi needs to remain sufficiently small and thus a
secret sharing scheme with small reconstruction coefficients is needed. This incurs a significant
cost due to the larger share size when compared to Shamir secret sharing. The security proof
in [CATZ24] is fairly involved, and gives a direct reduction to MSIS.

- To enable the use of Shamir secret sharing, EKT changes the initial setup to ensure that any pair
of signers shares a secret key, and these keys are used, in each execution of the signing protocol,
to generates (pseudo)random masks pmskiqiPS such that

ř

iPS mski “ 0. The i-th signer then
sends zi `mski in the second round instead of zi, and this ensures that only the sum of the zi’s
is leaked. The security proof in [EKT24] relies on the direct use of the AOM-MLWE assumption,
and since the constructed adversary is inherently not selective, they need to rely on a conjecture
about the hardness of AOM-MLWE.

In Sections 5 and 6, we give new security analyses for both schemes based on direct reductions from
AOM-MISIS, which in turn yield concrete security proofs from MLWE and MSIS. Our result for
CTZ yields better parameters than the analysis of [CATZ24]. The result about EKT, in addition to
now basing security on MLWE/MSIS alone, also shows a strong security property for this scheme,
namely TS-UF-4 in the hierarchy of Bellare et al. [BCK`22]. The concrete efficiency numbers
derived from our bounds are somewhat worse than those from EKT, but their concrete analysis
relies on their own cryptanalysis of AOM-MLWE, whereas we use standard parameters for MLWE
and MSIS. Closing the gap between the cryptoanalysis-driven parameter choices and those derived
from our security reduction remains an interesting open problem.

The recent work on Ringtail [BKL`24] also proposes a threshold signature scheme similar in
spirit to EKT and with a proof of security under MLWE. In Ringtail, unlike EKT, signers need
to know already in the first round the set of involved signers S, and thus, unlike EKT and CTZ,
Ringtail is not partially non-interactive in the sense of Bellare et al. [BCK`22]. Ringtail also needs
to authenticate first-round messages. The authors of Ringtail mention removing these restrictions,
while preserving comparable efficiency and provability from MLWE/MSIS, is an open problem,
which we resolve here based on the EKT scheme.

Ringtail’s security bound degrades with the number of random oracle queries, whereas ours
degrades with the number of signing sessions. We note that the latter is a system parameter that
can be enforced, whereas the former scales with the running time of the adversary.

Remarks on CTZ.While the concrete efficiency of CTZ is significantly worse than that of EKT,
we see value in the CTZ construction because it does not rely on pairwise masks. CTZ closely
resembles the structure of the original FROST protocol, making it a promising starting point for
achieving identifiable aborts (constructing efficient partially non-interactive lattice-based threshold
signatures with identifiable aborts is a big open problem in the field). In contrast, achieving iden-
tifiable aborts in EKT seems less likely without relying on heavyweight NIZK proofs, due to its
reliance on pairwise masks.

Also, the security argument of CTZ works for a class of linear secret sharing schemes rather
than a specific scheme. Its main source of inefficiency stems from the underlying secret sharing
scheme, and its efficiency could be significantly improved if better instantiations of the underlying
secret sharing scheme are proposed.

Other related work. We note here that there are other approaches to threshold signatures.
First off, Fully-Homomorphic Encryption (FHE) generically yields round-optimal threshold signa-
tures [BGGK17, BGG`18, ASY22]. These require however the homomorphic evaluation of the sign-
ing algorithm, and thus come with a substantial computational overhead. Earlier works [DOTT21,
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Che23] proposed two-round n-out-of-n threshold signatures derived from constructions for the re-
lated notion of multi-signatures. Gur et al. [GKS23] proposed two-round construction based on
linearly homomorphic encryption (LHE) which supports arbitrary thresholds. Both rounds are
message-dependent. More recently, Pino et al. [DKM`24] propose a more efficient lattice-based
threshold signature scheme that does not rely on FHE or the aforementioned heavy primitives,
but the drawback is that the protocol has three message-dependent rounds. Recent work [KRT24]
also gives a five-round threshold signature with adaptive security based on MLWE/MSIS, whereas
a threshold version of Falcon [PFH`22] was presented in [ENP24]. The latter scheme is designed
for robustness but requires four message-dependent rounds and incurs quadratic communication
complexity in the threshold.

2 Technical Overview

The main goal of this section is to provide a detailed overview of our main result establishing the
hardness of AOM-MISIS based on MSIS and MLWE. We stress that our reduction will involve
concrete parameters, but we keep the discussion in this section somewhat qualitative on this front.

At a technical level, it helps to see AOM-MISIS as a lattice-based analogue of the AOMPR
framework proposed by Tessaro and Zhu (TZ) [TZ23] to define one-more problems for linear hash
functions. Their framework does not cover lattice problems, however—we aim to adapt it to lattices,
and this presents a number of challenges, which we explain in this section. We will also discuss how
prior works have already tried to overcome such challenges, how those approaches are not sufficient
for our purposes, and what we do instead.

We focus first on a variant of AOM-MISIS we denote as wAOM-MISIS, where the adversary
does not output the relaxation vector b̂ and is instead asked to output Q solutions ŝ1, . . . , ŝQ with
small norm (instead of a single solution) such that ti “ Aŝi for all i P rQs. Also, the constraint

b̂
T
u ‰ 0 is now changed to u ‰ 0 instead, while bTi u “ 0 still must hold for the queries to PI.

This problem is not easier than AOM-MISIS: If the adversary wins the wAOM-MISIS game,
there exists an index i P rQs such that ui ‰ 0, and thus the adversary can win the original game
by outputting pŝi, ei,uq, where ei is the i-th unit vector. This is also the idea underlying the proof
that AOM-MISIS hardness implies the hardness of AOM-MLWE in Section 4.2.

Reduction ideas from [TZ23]. We now provide a self-contained review of TZ’s proof framework
in the context of wAOM-MISIS, and explain where it fails. In particular, given an adversary A
for the wAOM-MISIS game, we build a simple MSIS adversary B that takes a random matrix
A P Rkˆm

q as input and outputs a vector z with small norm such that Az “ 0. To start with, B
runs A by simulating the wAOM-MISIS game faithfully using the matrix A and sampling si by
itself. After receiving pŝ1, . . . , ŝQ,uq, if A wins, B finds an index i P rQs such that ŝi ‰ si and
outputs z Ð ŝi ´ si. Otherwise, B aborts.

Analysis of B. It is not hard to see that B wins the MSIS game if such an index i indeed ex-
ists, since Az “ Aŝi ´ Asi “ 0 and }z} ď }si} ` }ŝi} is bounded given both }si} and }ŝi} are
bounded. Here }¨} denotes the ℓ2-norm. The hard part is to show that such i exists w.h.p. under
the assumption that A wins w.h.p., and this is what we discuss next.

Following the same lines as TZ, we can assume w.l.o.g. that A is deterministic, and thus the
view ViewAps1, . . . , sQq of A (assuming the matrix A is fixed) is completely determined by the
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challenge secrets ps1, . . . , sQq. Also, we denote by D the set of secrets ps1, . . . , sQq such that A wins
the wAOM-MISIS game.

While this is not the case for us, suppose for now that D is finite and each ps1, . . . , sQq is
sampled uniformly from D. The first step is to find a derangement Φ of D, i.e., a permutation of D
without fixed points, such that for any ps1, . . . , sQq P D, ViewAps1, . . . , sQq “ ViewAps1

1, . . . , s
1
Qq

with ps1
1, . . . , s

1
Qq “ Φps1, . . . , sQq. Therefore, A also produces the same output pŝ1, . . . , ŝn,uq in

both cases. Since ps1, . . . , sQq ‰ ps1
1, . . . , sQq, there exists an index i P rQs such that si ‰ s1

i and
thus either si ‰ ŝi or s1

i ‰ ŝi, which means B wins the MSIS game in at least one of the cases.
Since Φ is a permutation of D, for at least half of elements in D lead to B winning. Therefore, B
wins with at least half of the probability that A wins. Crucially, note that Φ does not need to be
efficient for this argument to succeed, as the algorithm B described above is the actual reduction.

Constructing Φ.The first idea is to define Φ such that

Φps1, . . . , sQq :“ ps1 ` u1 ¨ ∆, . . . , sQ ` uQ ¨ ∆q , (1)

where ∆ P Rm is a non-zero vector such that A∆ “ 0 (we will discuss below how to ensure such
∆ exists), and u is the vector output by A in an execution with the secret value ps1, . . . , sQq. It
is not hard to check that ps1, . . . , sQq and Φps1, . . . , sQq produce the same view. First off, since
Apsi ` ui ¨ ∆q “ Asi ` ui ¨ pA∆q “ Asi, the input of A is identical in both cases. Further, for
each PI query b made by A, since u is a non-zero vector satisfying

ř

iPrQs uibi “ 0, we have
ř

iPrQs bipsi ` ui ¨ ∆q “
ř

iPrQs bisi ` p
ř

iPrQs biuiq ¨ ∆ “
ř

iPrQs bisi, which means the response
received by A is identical in both cases.

Issues and prior approaches. The issue with the above approach is that in our setting the
secrets are not sampled uniformly from a set. Two prior works [TZ23, HKLN20] have overcome this
issue by sampling si uniformly from a bounded box Bm

βi
:“ tx P Rm| }x} ď βiu. Still, the challenge

now is that Φ is no longer a permutation over a subset of Bm
β1

ˆ ¨ ¨ ¨ ˆ Bm
βQ

, since }si ` ui ¨ ∆} can

be larger than βi even though }si} ď βi.

To overcome this issue, Hauck et al. [HKLN20]2 proposed to set βi to be very large such that
the total faction of si P Bm

σi
such that si ` ui ¨ ∆ falls outside Bm

σi
is negligible in the security

parameter κ. Then, one can still show B wins with nearly at least half of the winning probability
of A. However, this requires σi “ Ωp2κ }ui∆}q, which results in very inefficient constructions using
this approach.

Chairattana-Apirom et al. [CATZ24] overcame the 2κ barrier with a different approach. They
let s1 be sampled from Bm

β1
, whereas si is sampled from Dm

σi
. They use this in the security proof

of their threshold signature scheme based on the MSIS assumption, but their technique can be
massaged into a reduction from MSIS to a restricted version of the wAOM-MISIS game, where the
PI queries are restricted, but still sufficient for their application.

Their proof is in some sense a probabilistic relaxation of TZ’s, in that for any s1 P Rm, they
consider a random variable ViewAps1q which represents the view of A given the first secret is s1,
whereas the remaining secrets are sampled afresh from discrete Gaussian distributions. If for any
s1 ‰ s1

1 P Rm, such that As1 “ As1
1, we can show that ViewAps1q and ViewAps1

1q are identically
distributed, then we can once again carry out the same argument as above. They in fact generalize
this argument by showing that if the Rényi divergence of ViewAps1q from ViewAps1

1q is small, one

2 We note that [HKLN20] precedes [TZ23], but deals with a lattice-analogue of a linear-hash function based frame-
work introduced by [HKL19] similar in spirit to that of [TZ23].
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can still show that the winning probabilities of B and A are sufficiently related. Finally, they show
the Rényi divergence is indeed bounded for the special types of queries they consider. Doing so,
they ensure that σi depends linearly on

?
Q instead of 2κ.

Still, their reduction fails if A issues general PI queries, and this is because the Rényi divergence
of ViewAps1q from ViewAps1

1q is no longer bounded. For example, the first secret (either s1 or s
1
1) can

be recovered from an PI query with input p1, 0, . . . , 0q. Moreover, they need to ensure that almost
all s1’s have one partner s1

i ‰ si P Bm
β1

such that As1 “ As1
1, and this requires β1 ě 2κ{Nqk{m,3

which leads to inefficient parameters in their threshold signature.

2.1 Step 1: Generalizing TZ’s argument

Our goal is to provide a reduction that supports an adversary A without any extra restrictions
on its queries to PI, and furthermore that ensures hardness even for sufficiently small parameter
choices in wAOM-MISIS. For this reason, we take a different route and generalize TZ’s argument to
a setting where each si is sampled (independently) from an arbitrary distribution Pi, rather than
uniformly from a finite set.

Let P “ P1 ˆ ¨ ¨ ¨ ˆ PQ be the joint distribution of ps1, . . . , sQq. Then, instead of requiring Φ
to be a permutation of D (recalling that D is the set of secrets ps1, . . . , sQq that make A win the
wAOM-MISIS game), we require that the distribution of ps1, . . . , sQq conditioned on ps1, . . . , sQq P

D (denoted as P|D) is identical to that of Φps1, . . . , sQq conditioned on ps1, . . . , sQq P D (denoted
as ΦpP|Dq). The original TZ approach corresponds to the case when P is a uniform distribution
over D. Here, since arbitrary distributions over D are allowed, we no longer require D to be a
finite set. The two other requirements for Φ remain the same, i.e., Φ has no fixed point over D and
ViewAps1, . . . , sQq “ ViewApΦps1, . . . , sQqq.

Our key observation here is that the previous argument to lower bound the success probability
of B still applies. To see this, it helps us to extend Φ to the space of all potential secrets (not only
those in D) by defining Φps1, . . . , sQq :“ ps1, . . . , sQq for all ps1, . . . , sQq P RmzD. Then, consider
the following two adversaries B1 and B2.

- B1 is the same as B except that B1 samples ps1, . . . , sQq from ΦpPq.
- B2 is the same as B except that 1. B2 samples pr1, . . . , rQq Ð$ P and computes secrets as

ps1, . . . , sQq Ð Φpr1, . . . , rQq; 2. after A returns, B2 outputs ŝi ´ ri if there exists ri ‰ ŝi.

We note that B1 and B2 do not need to be efficient. They are only used to compute the winning
probability of the (efficient) adversary B.

Denote now by PWinX the winning probability of X P tA,B,B1,B2u. Then, the conclusion that
PWinB ě 1{2PWinA is a straightforward corollary of the following three facts.

Fact 1. PWinB “ PWinB1 ;
Fact 2. PWinB “ PWinB2 ;
Fact 3. PWinB1 ` PWinB2 ě PWinA.

Fact 1 is straightforward since P is identical to ΦpPq, which means B and B1 behave the same. Fact
2 is also not hard to see. Since ViewApr1, . . . , rQq “ ViewApΦpr1, . . . , rQqq “ ViewAps1, . . . , sQq,
even if B2 sets the secrets to pr1, . . . , rQq instead of s1, . . . , sQ, the output of B2 remain the same.
However, then, B2 is identical to B, which implies the second fact.

3 Since N is usually set to 512 or 1024, the leading term here is qk{m.
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Finally, to prove the third fact, we can interpret the sampling process of B1 as first sampling
pr1, . . . , rQq from P and then set ps1, . . . , sQq Ð Φpr1, . . . , rQq. Then, the only difference between
B1 and B2 is that B1 check whether there exists si ‰ ŝi, while B2 check whether there exists
ri ‰ ŝi. Since Φ has no fixed point over D, we know pr1, . . . , rQq ‰ ps1, . . . , sQq if pr1, . . . , rQq P D.
Therefore, for each pr1, . . . , rQq P D, at least one of B1 and B2 wins, which implies Fact 3.

However, if we use Φ from Equation 1, this extended argument does not give us any benefit.
Indeed, Φ as define is a bijection over D, and therefore, the relaxed condition P|D “ ΦpP|Dq still
requires P to be a uniform distribution over D. Also, it is unclear whether there are other ways to
construct such Φ.

Further relaxation on the requirements of Φ. The way out from the above situation is
that that the two distributions do not need to be exactly identical. In fact, this condition is only
needed by Fact 1. Concretely, we relax the condition that P|D “ ΦpP|Dq to requiring that the Rényi
divergence of P|D from ΦpP|Dq is small, denoted as Rα

`

ΦpP|Dq}P|D

˘

, where α ą 1 is a parameter
we can choose. Then, due to the property of Rényi divergence (formally see Lemma 4),

PWinB1 ď
`

Rα

`

ΦpP|Dq}P|D

˘

¨ PWinB
˘pα´1q{α

.

Combining with Fact 2 and 3, it gives

PWinA ď PWinB `
`

Rα

`

ΦpP|Dq}P|D

˘

¨ PWinB
˘pα´1q{α

,

which upper bounds the winning probability of A by the advantage of solving the MSIS problem.
We note that it is possible to get analogous statements using other distance measures, but they fail
to give equally good parameters in our application scenarios.

Also, we emphasize that although both our work and [CATZ24] use Rényi divergence, the latter
work bounds Rényi divergence between the views of A, when run with different secrets, whereas
we bound the Rényi divergence between distributions of secrets before and after applying the Φ
map. The context where we use Rényi divergence is also very different from that of other works in
lattice-based cryptography.

2.2 Step 2: Upper bounding Rα

`

ΦpP|Dq}P|D

˘

It is left to show that Rα

`

ΦpP|Dq}P|D

˘

is bounded, for the specific construction of Φ given in
Equation 1, and again assuming a suitable ∆ exists. The intuition that the two distributions
should be close is that Φ is local in the sense that it maps each element to a nearby one given
}pu1∆, . . . , uQ∆q} is small. Since each secret is sampled from a discrete Gaussian distribution,
elements that are close in distance have similar probabilities of being sampled. However, turning this
idea into a proof is still challenging, as both P|D and ΦpP|Dq are not “well-structured” distributions,
since both the set D and u can be arbitrarily determined by A.

Our key insight here is that D can be decomposed into several disjoint sets such that the
distributions conditioned on each set is a one-dimensional discrete Gaussian. Then, we can upper
bound the Rényi divergence of the distributions conditioned on each set, which implies an upper
bound on Rα

`

ΦpP|Dq}P|D

˘

.
More precisely, for each ps1, . . . , sQq P D, our definition of Φ in Equation 1 also ensures that

ViewAps1, . . . , sQq is identical to ViewAps1 ` ku1 ¨ ∆, . . . , sQ ` kuQ ¨ ∆q for any k P Z, where u
is the vector output by A given secrets being ps1, . . . , sQq. Denote SWrs1, . . . , sQs :“ tps1 ` ku1 ¨
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∆, . . . , sQ ` kuQ ¨ ∆q|k P Zu. We can show that Φ is a bijection over SWrs1, . . . , sQs, and all the
SWrs1, . . . , sQs sets are either the same or disjoint with each other. Therefore, we just need to
bound

Rα

´

ΦpP|SWrs1,...,sQsq}P|SWrs1,...,sQs

¯

for each ps1, . . . , sQq P D.

Now the problem is much easier since P|SWrs1,...,sQs is well structured: each P is a discrete

Gaussian distribution over RQm, and SWrs1, . . . , sQs is a one-dimensional lattice over RQm. In
fact, we can transform P|SWrs1,...,sQs into a discrete Gaussian over Z with standard deviation

}pu1{σ1 ¨ ∆, . . . , uQ{σQ ¨ ∆qq}
´1,4 while ΦpP|SWrs1,...,sQsq is exactly the same distribution shifted by

1. Therefore, we can use the upper bound from [TT15] (see also Lemma 6) of the Rényi divergence.

We refer to Section 4.3 for the proof details.

Further optimizations. We explain in this subsection two further optimizations we do to the
reduction, which give us better parameters.

Outputting only one solution.We observe that the reduction B uses only one of the solutions
output by A, which means most of the solutions are actually redundant. In fact, the reduction still
works if A outputs a single solution pi, ŝq for the i-th challenge satisfying ui ‰ 0 and B just outputs
ŝ´si if ŝ ‰ si. This is because for each ps1, . . . , sQq P D and ps1

1, . . . , s
1
Qq “ Φps1, . . . , sQq, we have

si ‰ si ` ui ¨ ∆ “ s1
i if ui ‰ 0, and thus B wins in at least one of the cases if A outputs a solution

for the i-th challenge. This leads us to define our AOM-MISIS problem, where A is only required to
output a single solution ŝ together with a relaxation vector b̂ such that

ř

iPrQs b̂iti “ Aŝ. Similarly,

the requirement on the special solution becomes
ř

iPrQs uib̂i ‰ 0. The relaxation vector b̂ is needed
when reducing the security of the threshold signatures to the hardness of AOM-MISIS.

Reducing the norm of ∆. One question we do not answer in the above discussion is how to
guarantee the existence of a small non-zero vector ∆ P Rm such that A∆ “ 0. Such ∆ must exist
in Bm

β if |Bm
β{2| ą qkN , which implies β “ Ωpqk{mq. However, this results in a large }∆} negatively

impacting both the Rényi divergence bound and σi, which depends linearly on }∆}.

We can get a smaller }∆} by relying on the MLWE assumption to embed a small ∆ into A as a

(very minimal) trapdoor. We sample A as rd|D|Iks, where D Ð$ R
pm´k´1qˆk
q and d “ Da` e with

a Ð$ Bm´k´1
βlwe

and e Ð$ Bk
βlwe

. Then, we can let∆ “ p1,´a,´eq, which satisfies A∆ “ 0, and }∆} ď
?
mβlwe, which is much smaller than qk{m. By the MLWE assumption, rd|Ds is computationally

indistinguishable from a matrix uniformly sampled from R
pm´kqˆk
q .

Two remarks are in order. The first is that this trick would not have worked to improve the
parameters of [CATZ24] directly, as they need something stronger than the existence of a small ∆.
Second, the way we use MLWE here is different than its use to improve parameters in prior works
on lattice-based signatures and threshold signatures (e.g. [Lyu12, BTT22, DKM`24]). It is really
tailored at supporting our tighter analysis of the reduction via the embedding of a small enough ∆.

4 This is the reason why we bound }u1{σ1, . . . , uQ{σQ} in the winning condition.
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3 Preliminaries

3.1 Notation

For any positive integers k ă n, rns denotes t1, . . . , nu, and rk..ns denotes tk, . . . , nu. We use κ
to denote the security parameter. For a sequence of variables x1, . . . , xℓ, we use xris to denote
px1, . . . , xjq and xri..js to denote pxi, . . . , xjq.

For a finite set S, |S| denotes the size of S, and x Ð$ S denotes sampling an element uniformly
from S and assigning it to x. For a distribution D, denote SupppDq as the support of D, and x Ð$ D
denotes sampling x according to D. For any y P SupppDq, denote Dpyq :“ Prx Ð$ Drx “ ys, and for
S Ď SupppDq, denote DpSq :“ Prx Ð$ Drx P Ss. For any set T and any function F : SupppDq Ñ T ,
denote F pDq as the distribution of F pxq for x sampled from D.

For any vector space V over a field F and a set S P V , we denote SpanF pSq as the F -span of S,
which is the smallest F -subspace of V that contains S. In particular, we omit F from the subscript
if F “ R. For a finite set S “ tv1, . . . , vnu Ď V , we say S is F -linearly independent if and only
if for any non-zero pa1, . . . , anq P Fn,

ř

iPrns aivi ‰ 0. We say S is a F -basis of V if and only if S
is F -linearly independent and SpanF pSq “ V . When F is not specified, we assume F “ R. The
dimension of V is equal to the size of S.

For any integer p ą 0 and any x P Zp, denote x̄ P Z to be the lift of x such that x̄ P r0..p ´ 1s

and x̄ “ x mod p. We use t¨s : R Ñ Z to denote the rounding operator that maps any x P R to
tx ` 1{2u. For any integers v ą 0 and q ą 2v, denote qv “ tq{2vu and denote t¨sv : Zq Ñ Zqv a
function that maps x P Zq to tx̄{2vs P Zqv . These operations can be extended an element x in R or
Rq by applying them to each coefficient of x.

3.2 Polynomial Rings

Let q be an odd prime and N be a power of 2. We denote the ring R :“ ZrXs{pXN ` 1q, contained
in the cyclotomic field K :“ QrXs{pXN ` 1q, and let Rq :“ R{qR – ZqrXs{pXN ` 1q. Denote

KR :“ R b K – RrXs{pXN ` 1q. For an element v P KR, where v “
řN´1

i“0 viX
i, we denote its

conjugate as v˚ “
řN´1

i“0 ´viX
N´i. We use ϕ to denote the coefficient embedding that embeds KR

in RN , and ϕ maps v to vector pv0, . . . , vN´1q P RN . When applying ϕ to a vector v P Km
R , ϕ maps

v to a vector in RmN by applying ϕ to each entry of v. The map ϕ is a bijection, and we denote
its inverse by ϕ´1. An ℓp-norm of v P Km

R is given by

}v}p :“ }ϕpvq}p “

˜

m
ÿ

i“1

N´1
ÿ

j“0

|vi,j |
p

¸

1
p

,

where vi,j denotes the coefficient of Xj of the i-th entry of v. Additionally, the ℓ8-norm of v is
defined as }v}8 :“ maxiPrms,jPr0..N´1s |vi,j |. For the ℓ2-norm, we omit the subscript and denote }v}

as the ℓ2-norm of v. Denote the conjugate transpose of v P Km
R as v: :“ pv˚qT . We define the inner

product of two vectors v,v1 P Km
R as xv,v1y :“ ϕpvqTϕpv1q “ xϕpvq, ϕpv1qy. We have }v} “ xv,vy.

We say v is a unit vector if }v} “ 1.
Also, we define a map ϕM that maps each element in KR to a matrix in RNˆN as follows.

Let MX :“

ˆ

0 ´1
IN´1 0

˙

P RN , where IN´1 is the identity matrix in RN´1. For each v P KR,

ϕMpvq :“
řN´1

i“0 viM
i
X , which can be viewed as the matrix representation of v. In particular, for ϕ
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and ϕM, the following properties hold: for any v, v1 P KR, ϕMpv˚q “ ϕMpvqT , ϕMpvv1q “ ϕMpvqϕMpv1q

and ϕMpvqϕpv1q “ ϕpvv1q. We extend the above definitions to Rq by representing each v P Rq as

v “
řN´1

i“0 viX
i, where vi P t´pq ´ 1q{2, . . . , pq ´ 1q{2u.

For a matrix M P Kmˆm
R , we denote its conjugate transpose as M : “ pM˚qT , and we say M

is hermitian if M “ M :. We say M is positive definite if and only if M is hermitian and for all
x P Km

R zt0u, xx,Mxy ą 0, or equivalently, ϕMpMq is positive definite. Also, denote σminpMq :“
infxPKm

R ,}x}“1 xx,Mxy as the smallest singular value of M and σmaxpMq :“ supxPKm
R ,}x}“1 xx,Mxy

as the largest singular value of M .
We borrow the following lemma from [BCK`14], which establishes the property of the set of

signed monomials Sb :“ t˘1, . . . ,˘XN´1u Ď Rq.

Lemma 1 (Lemma 3.1 of [BCK`14]). Let Sb :“ t˘1, . . . ,˘XN´1u Ď Rq. For any b, b̄ P Sb

such that b ‰ b̄, there exists γ P R such that pb ´ b̄qγ “ 2 mod q and γ is a polynomial with
coefficients only in t´1, 0, 1u.

3.3 Lattices and Discrete Gaussian Distributions

In this subsection, we give definitions for lattices and discrete Gaussian distributions over R and
KR. An m-dimensional lattice Λ over Z (resp. R) is a discrete additive subgroup of Z (resp. R).
Equivalently, Λ “ Lptb1, . . . , bkuq :“ t

ř

iPrks xibi : xi P Zu for a set of linearly independent vectors
b1, . . . , bk P Zm (resp. Rm), which is referred to as a basis of Λ. The size k is the rank of the lattice
Λ. We say Λ is a full rank lattice if k “ m (resp. k “ mN for Λ over R). For any a P Zm (resp. Rm),
Λ ` a is a coset of Λ. The dual lattice of Λ is denoted as Λ˚ “ tx P SpanpΛq : @ y P Λ, xx,yy P Zu.
A Λ-subspace is the linear span of some subset of Λ, i.e., a subspace S such that S “ SpanpS XΛq.

For a matrix A P Rkˆm
q , we define the R-lattice ΛK

q pAq Ď Rm as

ΛK
q pAq :“ tx P Rm : Ax “ 0 mod qu .

We know ΛK
q pAq has full-rank since qRm Ď ΛK

q pAq.

For a positive definite matrix Σ P Rmˆm (resp. an invertible positive definite matrix Σ P Kmˆm
R )

and a vector c P Rn (resp. Km
R ), we define the function ρΣ,c over Rm (resp. Km

R ) as

ρΣ,cpxq :“ exp
`

´π
@

x ´ c, Σ´1px ´ cq
D˘

.

Then, we denote Dm
Λ`a,Σ,c as the discrete Gaussian distribution over a lattice coset Λ ` a Ď Zm

(resp. Rm) with covariance matrix Σ, centered at c P Rm, where for x P Λ ` a, we define

Dm
Λ`a,Σ,cpxq :“ Prrx Ð$ Dm

Λ`a,Σ,cs “
ρΣ,cpxq

ρΣ,cpΛ ` aq

where ρΣ,cpΛ ` aq “
ř

xPΛ`a ρΣ,cpxq. For Λ ` a Ď Rm, we denote Dm,mod q
Λ`a,Σ,cpxq as the distribution

of px mod qq P Rm
q for x sampled from Dm

Λ`a,Σ,c.
Also, we make some remarks about the notations we will use throughout the paper. When

Σ “ σ2Im for σ P R, we will use ρσ,c and Dm
Λ`a,σ,c as ρΣ,c and Dm

Λ`a,Σ,c, respectively. If the center
c “ 0, then we omit the subscript c from ρΣ,c and Dm

Λ`a,Σ,c. Moreover, when Λ ` a “ Zm (resp.
Λ ` a “ Rm), we omit Λ ` a from the subscript of Dm

Λ`a,Σ,c.
The smoothing parameter of a lattice Λ with respect to ε ą 0, denoted by ηεpΛq, is the smallest

s ą 0 such that ρ1{spΛ˚zt0uq ď ε. Throughout the paper, we set ε “ 2´2κ.
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Game MSISA
q,N,k,m,β :

A Ð$ R
kˆpm´kq
q

A Ð rA|Iks

x Ð ApAq

Return p}x} ď β ^ Ax “ 0q

Game MLWEA
q,N,k,m,β :

A Ð$ R
kˆpm´kq
q ; A Ð rA|Iks

s Ð$ Bm
β ; t0 Ð As ; t1 Ð$ Rk

q

b Ð$ t0, 1u

b̂ Ð ApA, tbq

Return pb̂ “ bq

Fig. 1. The module-SIS and module-LWE problems, where R :“ ZrXs{pXN
` 1q, Rq :“ R{qR and Bm

βlwe
:“ tx P

Rm
| }x}

8
ď βlweu.

We borrow the following lemma from [AGHS13] that bounds the ℓ2-norm of discrete Gaussian
random variables and adapt it to lattices over KR.

Lemma 2 (Lemma 3 of [AGHS13] adapted to KR). For any ε P p0, 1q, a lattice Λ Ď Rm,
c P Km

R , and σ ě ηεpΛq, then

Prr}x ´ c} ě σ
?
mN : x Ð$ DΛ,σ,cs ď

1 ` ε

1 ´ ε
¨ 2´mN .

We also borrow the following lemma from [GPV08] that show upper bounds of smoothing
parameters for general lattices.

Lemma 3 (Lemma 2.6 of [GPV08]). For any full-rank lattice Λ in Rm and ε ą 0, ηεpΛq ď?
logp2mp1`1{εqq{π

λ8
1 pΛ˚q

, where λ8
1 pΛ˚q denotes the ℓ2 norm of the shortest non-zero vector in the ℓ8 norm

in the dual lattice Λ˚.

3.4 Assumptions

We recall the module short integer solution (MSIS) problem and the module learning with error
(MLWE) problem (defined in Figure 1). The advantage of A for the MSIS problem is defined as

Advmsis
q,N,k,m,βpAq :“ Pr

“

MSISAq,N,k,m,β “ 1
‰

.

The advantage of A for the MLWE problem is defined as

Advmlwe
q,N,k,m,βpAq :“ Pr

“

MLWEA
q,N,k,m,β “ 1

‰

.

3.5 Rényi Divergence

We define the notion of Rényi Divergence between two distributions P,Q which we will use in our
analysis of the scheme.

Definition 1 (Rényi Divergence). Let P,Q be two discrete probability distributions such that
SupppP q Ď SupppQq. We define the Rényi Divergence of order α, for α P p1,8q as Rα pP }Qq :“
´

ř

xPSupppP q

P pxqα

Qpxqα´1

¯
1

α´1
.

The following lemma gives basic properties of the Rényi Divergence.
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Lemma 4 (Lemma 4.1 of [LSS14]). Let α P p1,8q and P , Q be discrete probability distributions
with SupppP q Ď SupppQq. Then, the following properties hold:

- Data Processing Inequality: Rα

`

P f }Qf
˘

ď Rα pP }Qq for any function f , where P f (and
Qf ) denotes the distribution which samples x Ð$ P (x Ð$ Q) and outputs fpxq.

- Probability Preservation: Let E Ď SupppQq be an arbitrary event. Then, for α P p1,8q,

Prx Ð$ P rEs ď pPrx Ð$ QrEsRα pP }Qqqpα´1q{α .

Also, we show the following property.

Lemma 5. Let P and Q denote two distributions over the union of a countable number of disjoint
sets tSiuiPU such that P pSiq “ QpSiq for any i P U . Then, for any α ą 1, if there exists δ such that
Rα

`

P|Si
}Q|Si

˘

ď δ for any i P U , then Rα pP }Qq ď δ.

Proof.

Rα pP }Qq
α´1

“
ÿ

xPSupppP q

P pxqα

Qpxqα´1
“

ÿ

iPU

ÿ

xPSi

P pxqα

Qpxqα´1

“
ÿ

iPU

QpSiq
ÿ

xPSi

pP pxq{P pSiqqα

pQpxq{QpSiqqα´1

“
ÿ

iPU

QpSiqRα

`

P|Si
}Q|Si

˘α´1
ď

ÿ

iPU

QpSiqδ
α´1 “ δα´1 ,

which concludes the lemma. [\

We borrow the following lemma from [TT15], which upperbounds the Rényi Divergence between
two discrete Gaussian distributions with different centers.

Lemma 6 (Lemma 5 of [TT15]). For any m-dimensional lattice Λ Ď Rm, σ ą 0, and two
vectors c, c1 P Rm, let P “ Dm

Λ,σ,c and Q “ Dm
Λ,σ,c1. If c, c1 P Λ, set ε “ 0. Otherwise, fix ε P p0, 1q

and assume σ ě ηεpΛq. Then,

Rα pP }Qq ď

ˆ

1 ` ε

1 ´ ε

˙
α

α´1

exp

˜

απ
}c ´ c1}

2

σ2

¸

.

3.6 Threshold signatures

We use the formalization proposed by Bellare et al. [BCK`22], which is also used in [CATZ24,
TZ23].

Syntax.A (partially) non-interactive threshold signature schemes for n signers and threshold t is
a tuple of efficient (randomized) algorithms TS “ pSetup, KeyGen, SPP, LPP, LR,PS,Agg,Vfq that
behave as follows. An execution of the scheme involves a leader as well as n signers. The setup
algorithm Setupp1κq initializes the state sti for each signer i P rns, as well as the state st0 for the
leader, and additionally a public parameter par . (We assume par is given as implicit input to all
other algorithms.) The key generation algorithm KeyGenpq returns a public verification key pk, and
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Game TS-CORA
TSpκ, µ,SSq :

par Ð Setupp1κq ; ppk, tskiuiPrnsq Ð KeyGenpq

For i P rns do sti.sk Ð ski ; sti.pk Ð pk
For i P SS do

pppi, stiq Ð SPPpstiq ; st0 Ð LPPpi, ppi, st0q

plr , st0q Ð LRpµ,SS , st0q

For i P SS do ppsigi, stiq Ð PSplr , i, stiq
sig Ð AggptpsigiuiPSS q

Return Vfppk, µ, sigq “ 0

Fig. 2. The TS-COR game for a threshold signature scheme TS for n signers and threshold t.

a secret key ski for each signer i. (This means in particular that we assume ideal key generation,
and as in prior works, do not model distributed key generation.)

The signing protocol proceeds in two rounds: In a first, message-independent offline round, any
signer i can run SPPpstiq to generate a pre-processing token pp, which is sent to the leader, and the
leader runs LPPpi, pp, st0q to update its state st0 to incorporate token pp. In the second, online,
round, for a signer set SS Ď rns with size t and message µ P t0, 1u˚, the leader runs LRpµ,SS , st0q

to generate a leader request lr with lr .msg “ µ and lr .SS “ SS and sends lr to each signer
i P SS . Then, each signer i runs PSplr , i, stiq to generate its partial signature psig i. Finally, the
leader computes a signature sig for µ by running Aggptpsig iuiPSS q. The (deterministic) verification
algorithm Vfppk, µ, sigq outputs a bit that indicates whether sig is valid for ppk, µq.

An honest execution of the signing protocol to sign a message µ P t0, 1u˚ is represented in the
correctness game TS-COR (defined in Figure 2). We say that TS is correct with correctness error
εcor if for µ P t0, 1u˚ and SS Ď rns with |SS | ě t, we have PrrTS-CORTSpκ, µ,SS q “ 1s ď εcor.

Security. Roughly speaking, unforgeability ensures that an adversary cannot forge a signature
for a message that has not been considered as signed, considering the corruption status and the
adversary’s interactions with honest parties. A hierarchy for unforgeability of threshold signatures
is proposed in [BCK`22]. In this paper, we consider TS-UF-0 and TS-UF-4, which differ only in
how they define when a message is considered as signed. In particular, for TS-UF-0, a message
is considered as signed only if the adversary received a partial signature from at least one honest
signer for µ, and for TS-UF-4, the condition is much stronger - a message is considered as signed
only if there exists a leader request lr for µ such that the adversary received partial signatures
from all honest parties in lr .SS for that leader request lr . Formally, the TS-UF-0 and TS-UF-4
games are defined in Figure 3, where TS.HF denotes the space of the hash functions used in TS
from which the random oracle is drawn. The advantage of A for the TS-UF-X game is defined as
Advts-uf-XTS pA, κq :“ Pr

“

TS-UF-XA
TSpκq “ 1

‰

for X P t0, 4u.

4 Algebraic One-More MISIS Problem

In this section, we first formally define the algebraic one-more MISIS (AOM-MISIS) problem, then
provide a comparison with the AOM-MLWE problem, and finally present a formal reduction from
standard lattice problems to AOM-MISIS.
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Game TS-UF-0ATSpκq , TS-UF-4ATSpκq :

par Ð Setupp1κq ; H Ð$ TS.HF ; S Ð H

curSS Ð pq

pµ, sigq Ð AInit,PPO,PSignO,RO
pparq

Return pµ R S ^ Vfppk, µ, sigq “ 1q

Oracle InitpCSq :

Require: CS Ď rns and |CS| ă t
HS Ð rnszCS
ppk, sk1, . . . , sknq Ð KeyGenpq

For i P HS do sti.sk Ð ski ; sti.pk Ð pk
Return ppk, tskiuiPCSq

Oracle ROpxq :

Return Hpxq

Oracle PPOpiq :

Require: i P HS
ppp, stiq Ð$ SPPpstiq
PPi Ð PPi Y tppu

Return pp

Oracle PSignOpi, lrq :

Require: lr .SS Ď rns and
i P HS X lr .SS

ppsig , st1
iq Ð$ PSplr , i, stiq

If psig “ K then return K

µ Ð lr .msg

S Ð S Y tµu

If curSSplrq “ K then

curSSplrq Ð tiu

Else curSSplrq Ð curSSplrq Y tiu

If curSSplrq “ lr .SS X HS then

S Ð S Y tµu

Return psig

Fig. 3. The game TS-UF-0 and the game TS-UF-4 for a threshold signature scheme TS for n signers and threshold
t, where TS-UF-0 contains all but the highlight boxes and TS-UF-4 contains all but the dashed boxes. In particular,
in TS-UF-4, a table curSS is maintained to record, for each lr , the set of signers that have received a partial signing
query on lr . A message µ is considered signed if and only if curSSplrq contains the set of honest parties in lr .SS.

4.1 Definition of AOM-MISIS

The algebraic one-more MISIS game is defined in Figure 4. The game is defined implicitly over the
cyclotomic ring R “ ZrXs{pXN ` 1q, where N is a power of two, as well as the associated ring
Rq “ R{qR – ZqrXs{pXN ` 1q for an odd prime q. The adversary A is given Q MISIS challenges
t1, . . . , tQ and the goal is to output a short solution ŝ for a linear combination of the challenges
ř

iPrQs b̂iti, where the norm of b̂ is suitably bounded. The adversary can also issue queries to the
oracle PI which reveal linear combinations of the secrets. To win, the adversary also needs to output
an additional vector u which is orthogonal to all queries to PI, but not to the vector b̂. We can
also view the existence of such u as a constraint on the PI queries. We refer the reader to the
introduction for some additional intuition. Here, for par “ pq,N, k,m,Q, pσiqiPrQs, βs, βb, βuq, we
define the advantage of an adversary A as

Advaom-misis
par pA, κq “ Pr

“

AOM-MISISAparpκq “ 1
‰

. (2)

We note that we slightly abuse notation in the asymptotic definition of the game, since it is under-
stood that all parameters grow with κ, including Q, and thus the notation pσiqiPQ is not entirely
well-defined. This will not be an issue in actual use cases, and we dispense with a more rigorous
definition.

Remark 1. We note that for each i P rQs, it is equivalent to sample si from Dm,mod q
σi instead of

Dm
σi
, since the view of A remains unchanged. With this insight, it is natural to allow σi to be 8,

in which case si is sampled uniformly from Rm
q , 1{σi “ 0, and we require b̂i “ 0 in the winning
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Game AOM-MISISA
q,N,k,m,Q,pσiqiPrQs,βs,βb,βu

pκq :

B Ð H

A Ð$ R
kˆpm´kq
q ; A Ð rA|Iks

For i P rQs,
si Ð Dm

σi
; ti Ð Asi mod q

pŝ, b̂,uq Ð API
pA, ttiuiPrQsq // ŝ P Rm, b̂,u P RQ

Return p@b P B : bTu “ 0 mod qq ^ b̂
T
u ‰ 0 ^

}pu1{σ1, . . . , uQ{σQq}2 ď βu ^

}ŝ}2 ď βs ^

›

›

›
pb̂1 ¨ σ1, . . . , b̂Q ¨ σQq

›

›

›

1
ď βb ^

ř

iPrQs
b̂iti “ Aŝ mod q

Oracle PIpb P RQ
q :

B Ð B Y tbu

Return
ř

iPrQs
bisi mod q pP Rm

q q

Fig. 4. The AOM-MISIS game, where R :“ ZrXs{pXN
` 1q and Rq :“ R{qR.

condition (since, o.w.,
›

›

›
b̂i ¨ σi

›

›

›

1
is 8). This extension is used, in particular, in our security reduction

of the CTZ construction (see Section 5.1), where the random values for generating the key shares
are sampled uniformly from Rm

q .

4.2 Comparison with prior work

We present in Figure 5 the AOM-MLWE problem proposed by Espitau et al. [EKT24]. In our
formulation, the PI oracle corresponds to the Osolve oracle in their notation, and the constraints on
PI queries are explicitly stated within the game. More precisely, the constraints are:

- The number of PI queries is exactly Q ´ 1.

- Denote

ˆ

vT

D

˙

“ rd1| ¨ ¨ ¨ |dQ´1s, where di denotes the i-th PI query. D is an invertible matrix.

- Let w Ð pvTD´1qT . The ℓ2-norm of each entry of w is bounded by βd.

We also define, for par “ pq,N, k,m,Q, pσiqiPrQs, βs, βe, βb, βdq, the corresponding advantage

Advaom-mlwe
par pA, κq “ Pr

“

AOM-MLWEA
parpκq “ 1

‰

.

Compared with the AOM-MLWE problem, our problem differs in the following key aspects:

1. Our problem only asks the adversary to output one special solution ŝ for a linear combination of
the challenges, while the AOM-MLWE problem demands one solution for each challenge. This
makes our problem inherently easier to solve, as noted at the beginning of Section 2. Moreover,
this relaxation simplifies the security reduction, as it only needs to extract one solution rather
than multiple, making it easier to reduce from our assumption. Additionally, it enables better
parameter selections, since the norm bound applies to a single solution instead of n solutions.

2. The constraints on the PI queries differ between AOM-MLWE and our problem. In particular,
their constraints are a special case of ours: given the PI queries satisfying their constraints,
we can verify that these queries also satisfy our constraints by setting u “ p1,´wq, since

u

ˆ

vT

D

˙

“ 0. We will show this formally later in this section.

16



Game AOM-MLWEA
q,k,m,Q,pσiqiPrQs,βs,βe,βb,βd

pκq :

cnt Ð 0
A Ð$ R

kˆpm´kq
q ; A Ð rA|Iks

For i P rQs,
si Ð Dm

σi
; ti Ð Asi mod q

pb̂, ŝ1, . . . , ŝQq Ð API
pA, ttiuiPrQsq // ŝ P Rm, b̂

If cnt ‰ Q ´ 1 then return 0

Parse

ˆ

vT

D

˙

Ð rd1| ¨ ¨ ¨ |dQ´1s

If D´1 does not exist then return 0
w Ð pvTD´1

q
T

Return p@i P rQ ´ 1s : }wi} ď βdq ^
›

›pŝ1,rm´ks, . . . , ŝQ,rm´ksq
›

›

2
ď βs ^

›

›pŝ1,rpm´k`1q..ms, . . . , ŝQ,rpm´k`1q..msq
›

›

2
ď βe ^

p@i P rQs : bi ‰ 0 ^ }bi} ď βb ^ b̂iti “ Aŝi mod qq

Oracle PIpb P RQ
q :

cnt Ð cnt ` 1
dcnt Ð b
Return

ř

iPrQs
bisi

Fig. 5. The AOM-MLWE game.

3. The norm bounding approach is different. In AOM-MLWE, the norm of each entry of b̂ and
ŵ is bounded individually. In contrast, we bound the norm of the entire vectors b̂ and û, with
each entry weighted by the standard deviation of the corresponding challenge. This adjustment
leads to better parameter selections.

In short, our problem is easier to reduce from and enables better parameter selections. In Lemma 7,
we formally show that the hardness of our problem implies the hardness of theirs, and we discuss
the improvement in the parameter selections in Section 6.1, Remark 3.

Remark 2. We note that Espitau et al. [EKT24] propose an alternative way of defining constraints,
which, like ours, requires the existence of a nonzero vector u that is orthogonal to all PI queries.
The key difference is that they impose a bound on the norm of each entry of u. We can show that
the hardness of our problem also implies the hardness of theirs under these constraints. However,
we omit a formal analysis here, as the proof idea is very similar, and this alternative version is not
used to establish the security of their threshold signature scheme.

Lemma 7. For any par “ pq,N, k,m,Q, pσiqiPrQs, βs, βe, βb, βdq and any adversary A playing the

game AOM-MLWEA
par, there exists an AOM-MISIS adversary B running in time roughly the same

as A such that

Advaom-mlwe
par pA, κq ď Advaom-misis

par1 pB, κq ,

where par1 “ pq,N, k,m,Q, pσiqiPrQs, β
1
s “ βs`βe, β

1
b “

?
Nβbσ1, βu “ 1{σ1`βd

?
Q{pminiPr2..Qs σiqq.

Roughly, the proof idea is that for an adversary A that wins the game AOM-MLWE, A can win
the game AOM-MISIS by outputting only the solution to the first challenge (i.e., outputting ŝ1 and
pb̂1, 0, . . . , 0q) and outputting u Ð p1,´vTD´1q. It is not hard to check u satisfies the constraints
of the game AOM-MISIS. We do this explicitly in the following proof.
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Proof. For any adversary A described in the lemma, we construct B as follows. To start with, B
runs A on its input A, ttiuiPrQs by forwarding all PI queries from A to its own PI oracle. After

receiving A’s output pb̂, ŝ1, . . . , ŝQq, if A wins the AOM-MLWE game simulated by B, B returns

ppb̂1, 0, . . . , 0q, ŝ1, p1,´wT qq, where w is defined in the AOM-MLWE game. Otherwise B aborts.

We now show B wins the AOM-MISIS game given A wins by checking all the winning conditions
of B.

- For the first condition, since p1,´wT q ¨

ˆ

vT

D

˙

“ vT ´ vTD´1D “ 0, for any i P rQ ´ 1s,

p1,´wT q ¨ di “ 0, so the first condition is satisfied.

- For the second condition, pb̂1, 0, . . . , 0q

ˆ

1
´w

˙

“ b̂1 ‰ 0.

- For the third condition, }p1{σ1, w1{σ2, . . . , wQ´1{σQq} ď 1
σ1

`
ř

iPrQ´1s

}wi}

σi
ď 1

σ1
`

βd
miniPr2..Qs σi

“

βu.

- For the fourth condition, }ŝ1} ď
›

›ŝ1,rm´ks

›

› `
›

›ŝ1,rpm´k`1q..ks

›

› ď βs ` βe “ β1
s.

- For the fifth condition,
›

›

›
pb̂1 ¨ σ1, 0, . . . , 0q

›

›

›

1
ď

›

›

›
b̂1 ¨ σ1

›

›

›

1
ď

?
Nσ1

›

›

›
b̂1

›

›

›
“ β1

b.

- For the final condition, b̂1t1 “ Aŝ mod q.

[\

4.3 Reduction from MSIS and MLWE

This section shows our main result establishing hardness of AOM-MISIS from the hardness of
MLWE and MSIS. (We remind the reader that we also provided a detailed overview of this proof
in Section 2 above.)

Theorem 1. For any ε P p0, 1q, α ą 1, any par “ pq,N, k,m,Q, pσiqiPrQs, βs, βb, βuq such that

mN ě 2κ and σi ě
a

logp6mNq{π, and any AOM-MISIS adversary A, there exist a MSIS adver-
sary B and two MLWE adversaries C and D, such that

Advaom-misis
par pA, κq ď 2δα

´

Advmsis
q,k,m,βsis

pB, κq ` Advmlwe
q,k,m´1,βlwe

pD, κq

¯
α

α´1

` Advmlwe
q,k,m´1,βlwe

pC, κq ` Q ¨ 2´2κ`2 ,

where δα “ 1`ε
1´ε ¨ exp

`

pα ´ 1qπ2{ logp2p1 ` 1{εqq
˘

, βsis “ βs `
?
mNβb, and βlwe “ 1{pβu

?
mN

a

logp2p1 ` 1{εqq{πq. The three adversaries have, roughly the same running time as that of A.

Proof. We prove the theorem via the following series of games.

G0: Same as the AOM-MISIS game.

G1: Same as G0 except that A is sampled with a short solution embedded, i.e., A Ð rDa`e|D|Iks

for pa, eq Ð$ Bm´1
βlwe

, where Bm´1
βlwe

:“ tx P Rm´1| }x}8 ď βlweu, and D Ð$ R
kˆpm´k´1q
q . Since

the only difference between G0 and G1 is that A is replaced with a MLWE challenge, there
exists a MLWE adversary C such that

AdvG0pA, κq ď AdvG1pA, κq ` Advmlwe
q,k,m´1,βlwe

pC, κq . (3)
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G2: Same as G1 except that the game aborts if there exists i P rQs such that }si} ą σi
?
mN .

To bound PrrG2 abortss, since si is sampled from Dm
σi

and σi ě
a

logp6mNq{π “ ηε1pRmq

with ε1 “ 1{2, by Lemma 2, Prr}si} ą σi
?
mN s ď 3 ¨ 2´mN ď 2´2κ`2. By the Union Bound,

PrrG2 abortss ď
ř

iPrQs Prr}si} ą σi
?
mN s ď Q ¨ 2´2κ`2. Therefore,

AdvG1pA, κq ď AdvG2pA, κq ` Q ¨ 2´2κ`2 . (4)

Consider a variant of the MSIS game, where A is sampled with a short solution embedded (same
as the above G1), i.e., A Ð rDa`e|D|Iks for pa, eq Ð$ Bm´1

βlwe
, where Bm´1

βlwe
:“ tx P Rm´1| }x}8 ď

βlweu, and D Ð$ R
kˆpm´k´1q
q . We refer to the game as td-MSIS. We construct B playing the td-MSIS

game as follows. Given the td-MSIS challenge A1 P R
kˆpm´kq
q , B runs A by simulating the game

G2 with A faithfully except that B sets A Ð A1 instead of sampling A by itself. After receiving
the output pŝ, b̂,uq from A, if A wins the game G2 simulated by B, B outputs x Ð ŝ´

ř

iPrQs b̂isi.
Otherwise, B aborts.

Analysis of B. Similar to the hybrid between G0 and G1, the td-MSIS game is computationally
indistinguishable from the MSIS game under the MLWE assumption. Therefore, there exists a
MLWE adversary D such that

Advtd-msis
q,k,m´1,βsis

pB, κq ď Advmsis
q,k,m´1,βsis

pB, κq ` Advmlwe
q,k,m´1,βlwe

pD, κq . (5)

Claim. AdvG2pA, κq ď 2δαAdv
td-msis
q,k,m´1,βsis

pB, κqpα´1q{α .

We can conclude the proof since

Advaom-misis
par pA, κq ď AdvG2pA, κq ` Advmlwe

q,k,m´1,βlwe
pC, κq ` Q ¨ 2´2κ`2

ď 2δαAdv
td-msis
q,k,m´1,βsis

pB, κqpα´1q{α ` Advmlwe
q,k,m´1,βlwe

pC, κq ` Q ¨ 2´2κ`2

ď 2δα

´

Advmsis
q,k,m,βsis

pB, κq ` Advmlwe
q,k,m´1,βlwe

pD, κq

¯
α

α´1

` Advmlwe
q,k,m´1,βlwe

pC, κq ` Q ¨ 2´2κ`2 ,

where the first inequality follows from Equations (3) and (4), the second inequality follows from
the claim, and the third inequality follows from Equation (5). [\

We now prove the above claim.

Proof. Consider a fixed randomness pa, e, Dq of td-MSIS. Also, w.l.o.g. assume A is determinis-
tic. Then, the execution of B is determined by s1, . . . , sQ. We define a map Φa,e,D,A : RQm Ñ

RQm as follows such that the view of A given ps1, . . . , sQq is exactly the same as that given
Φa,e,D,Aps1, . . . , sQq. Consider the execution given ps1, . . . , sQq. To simplify notation, we omit
the subscript of Φ for the rest of the proof. If A does not win the G2 simulated by B, we set
Φps1, . . . , sQq “ ps1, . . . , sQq. Otherwise, we set Φps1, . . . , sQq “ ps1 ` u1∆, . . . , sQ ` uQ∆q, where
u P RQ is output by A and ∆ “ p1,´a,´eq P Rm.

It is not hard to see that the view of A given ps1, . . . , sQq is identical to that given Φps1, . . . , sQq.
In particular, in the case that AWin occurs, Φps1, . . . , sQq leads to the same view since

ř

iPrQs bipsi`
ui∆q “

ř

iPrQs bisi `∆
ř

iPrQs biui “
ř

iPrQs bisi for any pb1, . . . , bQq P B and Apsi ` ui∆q “ Asi for

any i P rQs due to the fact that A ¨ ∆ “ rDa ` e|D|Iks ¨ p1,´a,´eqT “ 0.
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Also, it is not hard to see that Φ is a bijection. For ps1, . . . , sQq P RmQ, suppose Φps1
1, . . . , s

1
Qq “

ps1, . . . , sQq. Since ps1
1, . . . , s

1
Qq leads to the same view ofA as ps1, . . . , sQq, we have either ps1

1, . . . , s
1
Qq “

ps1, . . . , sQq in case that AWin does not occur, or ps1
1, . . . , s

1
Qq “ ps1 ´ u1∆, . . . , sQ ´ uQ∆q in case

that AWin occurs and A outputs u given ps1, . . . , sQq. Also, it also shows that such ps1
1, . . . , s

1
Qq

always exists, which means Φ is a bijection.
In the game G2, the distribution of ps1, . . . , sQq is DmQ

Σ , where Σ “ Im b diagpσ2
1, . . . , σ

2
Qq.

Denote P “ ΦpDmQ
Σ q. Following the idea described in Section 2.1, consider the following two

adversaries B1 and B2.

- B1 is the same as B except that B1 samples ps1, . . . , sQq from P .

- B2 is the same as B except that 1. B2 samples pr1, . . . , rQq Ð$ DmQ
Σ and computes secrets as

ps1, . . . , sQq Ð Φpr1, . . . , rQq; 2. after A returns, B2 outputs ŝi ´ ri if there exists ri ‰ ŝi.

We note that B1 and B2 do not need to be efficient. They are only used to compute the winning
probability of the (efficient) adversary B.

Denote now by PWinX the winning probability of X P tA,B,B1,B2u. Then, we will show the
following three facts.

Fact 1. PWinB1 ď δαPWin
pα´1q{α
B ;

Fact 2. PWinB “ PWinB2 ;
Fact 3. PWinB1 ` PWinB2 ě PWinA.

We can conclude the proof from the facts since

AdvG2pA, κq “ PWinA ď PWinB1 ` PWinB2 ď δαPWin
pα´1q{α
B ` PWinB

ď 2δαPWin
pα´1q{α
B “ 2δαAdv

td-msis
q,k,m´1,βsis

pB, κqpα´1q{α ,

where the last inequality is due to the fact that δα ě 1 and pα ´ 1q{α ă 1.
We now show the above three facts. For Fact 1, since the only difference between B and B1 is

the distribution of ps1, . . . , sQq, by Lemma 4,

PWinB1 ď

´

PWinB ¨ Rα

´

P }DmQ
Σ

¯¯pα´1q{α
.

Therefore, Fact 1 follows from the following lemma, which we will prove below.

Lemma 8. For the discrete Gaussian distribution DmQ
Σ (defined in Section 3.3), where Σ “ Im b

diagpσ2
1, . . . , σ

2
Qq, and the distribution P “ ΦpDmQ

Σ q,

Rα

´

P }DmQ
Σ

¯

ď

ˆ

1 ` ε

1 ´ ε

˙
α

α´1

¨ exp
`

απ2{ logp2p1 ` 1{εqq
˘

.

The arguments for Facts 2 and 3 follow exactly as in Section 2.1. We repeat here for completeness.
For Fact 2, since ViewApr1, . . . , rQq “ ViewApΦpr1, . . . , rQqq “ ViewAps1, . . . , sQq, even if B2 sets
the secrets to pr1, . . . , rQq instead of s1, . . . , sQ, the output of B2 remain the same. However, then,
B2 is identical to B, which implies the second fact.

Finally, to prove the third fact, we can interpret the sampling process of B1 as first sampling
pr1, . . . , rQq from P and then setting ps1, . . . , sQq Ð Φpr1, . . . , rQq. Then, the only difference be-
tween B1 and B2 is that B1 check whether there exists si ‰ ŝi, while B2 check whether there exists
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ri ‰ ŝi. If A wins the game G2 simulated by B1 or B2, we know pr1, . . . , rQq ‰ Φpr1, . . . , rQq “

ps1, . . . , sQq by the definition of Φ, and thus, at least one of B1 and B2 wins, which implies Fact
3. [\

Proof (of Lemma 8). We first partition the support RmQ into disjoint sets, then show that the
Rényi divergence conditioning on each set is small, and finally use Lemma 5 to conclude the lemma.
Denote SL as the set of ps1, . . . , sQq such that the event AWin does not occur. Since Φ is the iden-

tity function over SL, DmQ
Σ pSLq “ P pSLq. For each ps1, . . . , sQq R SL, denote SWrs1, . . . , sQs :“

tps1 ` ku1∆, . . . , sQ ` kuQ∆qukPZ, where u is output by A given ps1, . . . , sQq. By a similar argu-
ment as above, we know any ps1

1, . . . , s
1
Qq P SWrs1, . . . , sQs leads to the same view of A. There-

fore, Φps1 ` ku1∆, . . . , sQ ` kuQ∆q “ ps1 ` pk ` 1qu1∆, . . . , sQ ` pk ` 1quQ∆q, and Φ is a bi-

jection over SWrs1, . . . , sQs, which implies DmQ
Σ pSWrs1, . . . , sQsq “ P pSWrs1, . . . , sQsq. Also, for

any ps1, . . . , sQq, ps1
1, . . . , s

1
Qq R SL, SWrs1, . . . , sQs and SWrs1

1, . . . , s
1
Qs are either equal to disjoint.

Therefore, RmQ can be partitioned into disjoint sets tSLu Y tSWrs1, . . . , sQsups1,...,sQqPRmQzSL
, and

for each set, the probability that ps1, . . . , sQq falls in the set is equal under both distributions DmQ
Σ

and P .

Therefore, by Lemma 5, we just need to show the Rényi divergence conditioning on each set is

small. For SL, since Φ is the identity function over SL, Rα

´

P|SL
}DmQ

Σ |SL

¯

“ 1.

For any SWrs1, . . . , sQs, we show in the following that the conditioned distribution is identical

to a one-dimensional discrete Gaussian distribution under a linear transformation. Let
?
Σ

´1
“

Imbdiagp1{σ1, . . . , 1{σQq. DenoteX :“
?
Σ

´1
pu1∆, . . . , uQ∆q and S :“

?
Σ

´1
ps1, . . . , sQq. Denote

SK :“ S´s0X, where s0 :“ xS,Xy { xX,Xy P R, and we have xSK,Xy “ xS,Xy´s0 xX,Xy “ 0.
Then, for any k P Z,

ρσps1 ` ku1∆, . . . , sQ ` kuQ∆q “ exp

ˆ

´π
›

›

›

?
Σ

´1
ps1 ` ku1∆, . . . , sQ ` kuQ∆q

›

›

›

2
˙

“ exp
´

´π }S ` kX}
2
¯

“ exp
´

´π
´

}SK}
2

` ps0 ` kq2 }X}
2
¯¯

9 exp
´

´πp´s0 ´ kq2 }X}
2
¯

.

Therefore, DmQ
Σ |SWrs1,...,sQs

“ T
´

D
}X}

´1,´s0

¯

, where T : Z Ñ RmQ maps k to ps1`ku1∆, . . . , sQ`

kuQ∆q. Since Φps1 ` pk ´ 1qu1∆, . . . , sQ ` pk ´ 1quQ∆q “ ps1 ` ku1∆, . . . , sQ ` kuQ∆q, we

know P ps1 ` ku1∆, . . . , sQ ` kuQ∆q “ DmQ
Σ ps1 ` pk ´ 1qu1∆, . . . , sQ ` pk ´ 1quQ∆q. By a sim-

ilar argument as above, P|SWrs1,...,sQs “ T
´

D
}X}

´1,´s0`1

¯

. Since }X}
2

“
ř

iPrQspui{σiq
2 }∆}

2
“

}pu1{σ1, . . . , uQ{σQq}
2

}∆}
2

ď
?
mNβuβlwe, we have

}X}
´1

ě 1{p
?
mNβuβlweq “

a

logp2p1 ` 1{εqq{π ě ηεpZq .
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Therefore, by Lemma 6,

R
´

DmQ
Σ |SWrs1,...,sQs

}P|SWrs1,...,sQs

¯

ď

ˆ

1 ` ε

1 ´ ε

˙
α

α´1

¨ exp
´

απ }X}
2
¯

ď

ˆ

1 ` ε

1 ´ ε

˙
α

α´1

¨ exp
`

απmNβ2
uβ

2
lwe

˘

“

ˆ

1 ` ε

1 ´ ε

˙
α

α´1

¨ exp
`

απ2{ logp2p1 ` 1{εqq
˘

.

Therefore, we can conclude the lemma by Lemma 5. [\

5 Analysis of the CTZ Construction

As our first application to threshold signatures, this section applies AOM-MISIS to the analysis of
the CTZ construction [CATZ24].

5.1 Construction and main security theorem

We present the scheme CTZrSecShas in Figure 6, where SecSha “ SecShat,n,Bss is a linear threshold
secret sharing scheme with small coefficients, which is defined in Appendix A. In Figure 7, we give
the description of the parameters used in the protocol. One small change here is that the signing key
is sampled from a discrete Gaussian distribution with standard deviation σsk instead of a uniform
distribution over the set of vectors with ℓ8-norm bounded by σsk. We note that this does not affect
the correctness of the scheme, as the ℓ2-norm of psk remains bounded by

?
mNσsk except for a

negligible probability, which is the exact property needed in the correctness proof.
For unforgeability, we show that TS-UF-0 security of CTZ is implied by the hardness of the

AOM-MISIS problem in the random oracle model, which is formally stated in the following theorem.
In particular, we consider an extension of AOM-MISIS (See Remark 1 for details) in which some
σi can be 8. The full proof of Theorem 2 is given in Section 5.3.

Theorem 2 (TS-UF-0 of CTZ). For any integers q “ qpκq, k “ kpκq,m “ mpκq, any linear
threshold secret sharing scheme SecSha “ SecShat,n,Bss with small coefficients, (see Definition 2)
and any TS-UF-0 adversary A making at most qs “ qspκq queries to PPO and qh “ qhpκq queries
to RO, there exists an AOM-MISIS adversary B running in time roughly two times that of A such
that

Advts-uf-0CTZ pA, κq ď

b

qAdvaom-misis
par pB, κq ` 8q32´2κ .

where q “ qh `qs `1 and par “ pq, k,m,Q “ 1`K`qsp1`ℓq, pσiqiPrQs, βs “ 2βz, βb “ 4σskβc, βu “

1{σsk ` βcBss
?
8Nqs{σrq with σ1 “ σsk, σ1`i “ 8 for i P rKs, σ1`K`i “ σr for i P rqspℓ ` 1qs.

For completeness, we recall the correctness theorem from [CATZ24], which is needed for pa-
rameter selections later.

Theorem 3 (Correctness of CTZ [CATZ24]). For any integers 1 ă t ď n, any linear threshold
secret sharing scheme SecSha “ SecShat,n,Bss with small coefficients, (see Definition 2) given σr ě

2
a

6mN logp2mNqκ{π and βz ě
?
mNp2βcσsk ` σr

a

np1 ` ℓqq, the threshold signature scheme
CTZrSecShas is correct with correctness error εcor ď p2 ` 4npℓ ` 1qq ¨ 2´2κ.
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Setupp1κq :

A Ð$ R
kˆpm´kq
q ; A Ð rA|Iks

par Ð A
For i P rns do

st0.curPPi Ð H

sti.mapPP Ð pq

Return par

KeyGenpq :

psk Ð$ Dm
σsk

; pk Ð A psk mod q
ρ1, . . . ,ρK Ð$ Rm

q

pss1, ..., ssLq
T

Ð

M ¨ p psk,ρ1, . . . ,ρKq
T

For i P rns do ski Ð pssjqjPTi

Return ppk, pskiqiPrnsq

SPPpstiq :

For j P r0..ℓs do rj Ð$ Dm
σr

For j P r0..ℓs do Rj Ð Arj mod q
pp Ð pRjqjPr0..ℓs

sti.mapPPpppq Ð prjqjPr0..ℓs

Return ppp, stiq

LPPpi, pp, st0q :

st0.curPPi Ð st0.curPPi Y tppu

Return st0

LRpµ,SS , st0q :

If D i P SS : st0.curPPi “ H then
Return K

lr .msg Ð µ ; lr .SS Ð SS
For i P SS do

Pick ppi from st0.curPPi

lr .PPpiq Ð ppi

st0.curPPi Ð st0.curPPiztppiu

Return plr , st0q

CompParppk, lrq :

µ Ð lr .msg
For i P lr .SS do

pbjqjPrℓs Ð H1ppk, lrq

pRi,jqjPr0..ℓs Ð lr .PPpiq

R Ð
ř

iPlr.SS

´

Ri,0 `
ř

jPrℓs
bjRi,j

¯

c Ð H2ppk, µ,Rq

Return pR, c, pbjqjPrℓsq

PSplr , i, stiq :

ppi Ð lr .PPpiq
If sti.mapPPpppiq “ K then return
pK, stiq
prjqjPr0..ℓs Ð sti.mapPPpppiq

sti.mapPPpppiq Ð K

pR, c, pbjqjPrℓsqq Ð CompParpsti.pk, lrq

pssjqjPTi Ð sti.sk
z Ð r0 `

ř

jPrℓs
bj ¨ rj

`2c ¨
ř

jPTi
λlr.SS
j ssj mod q

Return ppR,zq, stiq

AggpPS, st0q :

R Ð K ; z Ð 0
For pR1,z1

q P PS do
If R “ K then R Ð R1

If R ‰ R1 then return pK, st0q

z Ð z ` z1

Return ppR,zq, st0q

Vfppk, µ, sigq :

pR,zq Ð sig
If }z} ą βz then return 0
c Ð H2ppk, µ,Rq

Return pAz “ R ` 2c ¨ pk mod qq

Fig. 6. Lattice-based t-out-of-n threshold signatures CTZrSecShas, where SecSha “ SecShat,n,Bss is t-out-of-n a linear
secret sharing scheme with small coefficients (see Definition 2). In particular, K denotes the randomness size of
SecSha, L denotes the total share size, M denotes the sharing matrix, Ti denotes the set of shares of party i, and
λlr.SS
j denotes the reconstruction coefficient. Also, H1 : t0, 1u

˚
Ñ Sℓ

b and H2 : t0, 1u
˚

Ñ Sc. We remark that, as stated
earlier, the public parameter par is implicitly given to all algorithms except Setup.

5.2 Parameter selection

In this section, we first discuss the asymptotic parameters selection derived from the security
theorems and the hardness of AOM-MISIS, then compare these parameters with those proposed
in [CATZ24], and finally estimate the concrete efficiency based on the parameter selections.

Asymptotic parameter selections. Denote βlwe as the norm of the underlying MLWE as-
sumption. Initially, we select N,m, k, βlwe such that N is a power of N ě 2κ, m, k “ polypκq,
and βlwe ě m logpNq.5 (We note that when estimating the concrete efficiency, we will enumerate

5 This is for guaranteeing the underlying MLWE is hard.
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Parameters Description

κ Security parameter
n Number of signers
t Threshold for signing
N N ě 2κ, power of two defining the ring R
q Prime modulus
k Number of rows of A
m m ą k, number of columns of A,

ℓ ` 1 ℓ “ 2κ{ logp2Nq, number of nonces for each signer
Sb Sb “ t˘1,˘X, . . . ,˘XN´1

u, set for the aggregating coefficients bj
βc Satisfying 2βc

`

N
βc

˘

ě 22κ, the ℓ1-norm of the challenge c,

Sc Sc “ tc P R : }c}
8

“ 1, }c}1 “ βcu, set of the challenges c
σsk Standard deviation of the signing key sk
σr Standard deviation of the nonces ri

νpk Only for EKT: satisfying tq{2νpk u “ tq{2νpk s, number of bits saved on pk
νr Only for EKT: satisfying tq{2νr u “ tq{2νr s, number of bits saved on h

qνpk , qνr Only for EKT: pqνpk , qνrq “ ptq{2νpk u , tq{2νr uq the rounded moduli
βz ℓ2-norm bound of a valid signature vector z

(or pz, 2νpkhq for EKT)

Fig. 7. Parameters for CTZ and EKT. Some parameters only apply to EKT.

through plausible pN,m, k, βlweq tuples and pick the one that yields the best efficiency.) Then, we
set other parameters as follows.

- Set βc as the smallest integer such that 2βc
`

N
βc

˘

ě 22κ.

- σsk “ maxt2βlwe
?
mN,

a

logp6mNq{πu. The first term is usually the leading term.

- σr “ maxtσskβcBss
?
8Nqs, 2

a

6mN logp2mNqκ{πu. The first term is usually the leading term.

- βz “
?
mNp2βcσsk ` σr

a

np1 ` ℓqq

- Denote βsis “ 2βz ` 4σskβc
?
mN .

- Select q such that the problem MSISq,k,m,βsis
and the problem MLWEq,N,k,m,βlwe

are assumed to
be exponentially hard in κ.

By Theorem 2 and Theorem 1 with ε “ 1{2 and α “ 2 (we can further optimize the concrete bound
by adjusting α), TS-UF-0 of CTZ is implied by the hardness of MSISq,k,m,βsis

and MLWEq,N,k,m,βlwe
.

Compared with [CATZ24] The differences of the parameter selections between [CATZ24] and
ours shows in the selections of σsk and σr. In particular, the prior work requires

- σsk “ qk{m22κ{pNmq.

- σr “ maxtNβcBssσsk
?
32πqsmN, 16N

?
3m?

π
q

k
m

a

Nplogp2mNq ` 2κqu. The first term is usually

the leading term.

For σsk, q
k{m is significantly larger than 2βlwe

?
mN , which influences the choice of k and m. In

particular, one needs to set m to be several times larger than k to ensure σsk does not cause the
parameters to grow excessively. For σr, we can see a factor of N

?
m improvement by comparing

the first term inside the maximization.

Concrete efficiency.We show a set of concrete parameters and estimated efficiency for κ “ 128
and n “ 32, and compare them with those from [CATZ24] in Figure 8, where we can see improve-
ments in both signature sizes and communication complexity. We derive the parameters following
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log2pqq k m σsk σr βz |pk| |sig | Comm.

[CATZ24] 119 8 50 218 2105.06 2117.25 60.73KB 440.32KB 2.02MB

This work 94.1 7 17 29.1 280.5 291.96 42.14KB 144.47KB 1.24MB

Fig. 8. The concrete parameters and estimated efficiency for κ “ 128 and n “ 32 in [CATZ24] and this work. We set
pN, ℓ, βcq “ p512, 26, 64q. The last second column denotes the communication complexity per signer.

our parameter selections mentioned above, where SecSha are instantiated using Lemma 14. To es-
timate the concrete hardness of MSIS and MLWE, we use the state-of-art tool, lattice estimator,6

which is also used in other prior works [DKM`24, EKT24, BKL`24].

5.3 Security reduction of CTZ

The proof structure generally follows from the security proof of FROST [BTZ22], which reduces
the security of FROST to the algebraic one-more discrete logarithm assumption, as the CTZ con-
struction can be seen as a lattice analog of FROST. The key differences lie in how the reduction
computes u and how we bound the norm of the output solution pŝ, b̂q and u.

To prove Theorem 2, we borrow the following variant of Forking Lemma from [CATZ24]. The
differences from the generalized Forking Lemma [BN06] are that here each hi might be sampled
independently from a different distribution and that if the index output by A is guaranteed to lie
within a subset S Ď rqs, then the final bound on the success probability of ForkA depends on |S|

instead of q (as observed in [BTZ22]). The former is needed in our proof since the ranges of H1 and
H2 differ, whereas the latter provides tighter bounds in our security analysis.

Lemma 9. Let q ě 1 be an integer, S Ď rqs be a set, and HG be an algorithm that outputs
h1, . . . , hq where each hi is independently sampled. Let A be a randomized algorithm that on input
x, h1, . . . , hq outputs a pair pI,Outq, where I P tKu Y S and Out is a side output. Let IG be a
randomized algorithm that generates x. The accepting probability of A is defined as

accpAq “ Prx Ð$ IG,h1,...,hq Ð$ HGrpI,Outq Ð$ Apx, h1, . . . , hqq : I ‰ Ks .

Consider algorithm ForkA described in Figure 9. The accepting probability of ForkA is defined as

accpForkAq “ Prx Ð$ IGrα Ð$ ForkApxq : α ‰ Ks .

Then, accpForkAq ě accpAq2{|S|.

Proof (of Theorem 2). Let A be a TS-UF-0 adversary as described in the theorem. W.l.o.g. we
assume that A is deterministic and corrupts exactly t ´ 1 signers. Also, we assume if A returns
pµ˚, pR˚, z˚qq, the RO query H2ppk, µ˚,R˚q was made by A, which adds at most one RO query.
Also, since the game makes at most one RO query to H1 and H2 respectively for each signing query,
the total number of RO queries to each of H1 and H2 is bounded q “ qh `qs `1. We first construct
an algorithm C compatible with the syntax in Lemma 9 and construct B from ForkC .

6 https://github.com/malb/lattice-estimator
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ForkApxq :

Pick the random coin ρ of A at random
ph1, . . . , hqq, ph̄1, . . . h̄qq Ð$ HG
pI,Outq Ð Apx, h1, . . . , hq; ρq

If I “ K then return K

pĪ ,Outq Ð Apx, h1, . . . , hI´1, h̄I , . . . , h̄q; ρq

If I ‰ Ī then return K

Return pI,Out,Outq

Fig. 9. The forking algorithm build from A.

Construction of C. The input of C consists of A, ptiqiPrK`1`qspℓ`1qs, and a list of hash values
h1, . . . , h2q, where pA, ptiqiPrK`1`qspℓ`1qsq are sampled following the AOM-MISIS game, and for
each i P rqs, h2i´1 is sampled uniformly from Sb and h2i is sampled uniformly from Sc. To start
with, C sets par Ð A, initializes sti.mapPP Ð pq for i P rns, and in addition, initializes a counter
ctrh Ð 0 for counting the number of random oracle queries. Then, C runs A on input par with
access to oracles ĆInit, ĆPPO, ČPSignO and ĄRO, which are simulated as follows.

ĄInitpCSq: C sets pk Ð t1 and views t1`ĵ as Aρĵ for ĵ P rKs. Then, for each i P CS and j P Ti, C
computes ssj Ð PIpdq with

dĵ “

#

Mj,ĵ , ĵ P rK ` 1s ,

0 , o.w.
(6)

Finally, C returns ppk, pski “ pssjqjPTiqiPCSq.
ČPPOpiq: For the j-th query, C setsRĵ Ð tK`1`pj´1qpℓ`1q`ĵ`1 for ĵ P r0..ℓs. Since C does not sample

trĵuĵPr0..ℓs, C uses sti.mapPP to store the index j instead, i.e., C sets sti.mapPPptRĵuĵPr0..ℓsq Ð j.

ČPSignOpi, lrq: The same as PSignOpi, lrq except that C computes z using the PI oracle as follows.
Let j Ð sti.mapPPplr .PPpiqq and d be a vector in RQ such that

dĵ “

$

’

’

’

’

&

’

’

’

’

%

2c ¨
ř

îPTi
λlr .SS
î

Mî,ĵ , ĵ P rK ` 1s ,

1 , ĵ “ K ` 1 ` pj ´ 1qpℓ ` 1q ` 1 ,

bj1 , ĵ “ K ` 1 ` pj ´ 1qpℓ ` 1q ` 1 ` j1, j1 P rℓs ,

0 , o.w.

(7)

C computes z Ð PIpdq.
ĄRO query H1pxq: If H1pxq ‰ K, C returns H1pxq. Otherwise, parse x as pĂpk, lrq. If the parsing

fails or Ăpk ‰ pk, C sets H1pxq Ð$ Sℓ
b and returns H1pxq. Otherwise, C increases ctrh by 1, sets

H1pxq Ð h2ctrh´1. Also, C computes R Ð
ř

iPlr .SSpRi,0 `
ř

jPrℓs bj ¨ Ri,jq, where pRi,jqjPr0..ℓs Ð

lr .PPpiq and tbjujPrℓs Ð h2ctrh´1. If H2ppk, lr .msg,Rq “ K, C sets H2ppk, lr .msg,Rq Ð h2ctrh .
Finally, C returns H1pxq.

ĄRO query H2pxq: If H2pxq ‰ K, C returns H2pxq. Otherwise, parse x as pĂpk, µ,Rq. If the parsing

fails or Ăpk ‰ pk, C sets H2pxq Ð$ Sc. Otherwise, C increases ctrh by 1 and sets H2pxq Ð h2ctrh .
Finally, C returns H2pxq.
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After receiving the output pµ˚, pR˚, z˚qq from A, C aborts if A does not win the TS-UF-0 game.
Otherwise, C finds the index I such that H2ppk, µ˚,R˚q is set to hI during the simulation. By our
assumption of A, we know such I must exist. Then, C returns pI,Out “ pµ˚,R˚, z˚qq.

Analysis of C. To use Lemma 9, we define S :“ t2iuiPrqs, IG as the algorithm that samples
pA, ptiqiPrK`1`qspℓ`1qsq following the AOM-MISIS game, and HG as the algorithm that samples
h2i´1 uniformly from Sb and samples h2i uniformly from Sc for each i P rqs. From the simulation,
we know that the output index I of C is always in S. Also, it is not hard to check that C simulates
the game TS-SUF-0 perfectly, which implies accpCq ě Advts-uf-0CTZ pA, κq. By Lemma 9, we have that

accpForkCq ě Advts-uf-0CTZ pA, κq2{q .

Construct B from ForkC.We now construct the AOM-MISIS adversary B using ForkC . To start
with, B receives pA, ttiuiPrQsq from the AOM-MISIS game with Q “ K ` 1 ` qspℓ ` 1q and

runs ForkCpA, ttiuiPrQsq with access to the PI oracle from the AOM-MISIS game. If ForkC out-

puts pI,Out “ pµ˚,R˚, z˚q,Out “ pµ̄˚, R̄
˚
, z̄˚qq, we know Az˚ “ R˚ ` 2hIpk mod q and

Az̄˚ “ R̄
˚

` 2h̄Ipk mod q, which implies Apz˚ ´ z̄˚q “ 2phI ´ h̄Iqpk mod q. Therefore, B sets
ŝ Ð z˚ ´ z̄˚ and b̂ Ð p2phI ´ h̄Iq, 0, . . . , 0q, and it holds that

ř

iPrQs b̂iti “ 2phI ´ h̄Iqt0 “

2phI ´ h̄Iqpk “ Apz˚ ´ z̄˚q “ ŝ mod q.

We now show how B sets u such that b̂
T
u ‰ 0 and dTu “ 0 for any oracle query PIpdq.

By the linearity of SecSha, there exists a sweeping vector w P ZK`1 such that MCSw “ 0

and w1 “ 1, and we set urK`1s “ w. Therefore, b̂
T
u “ b̂1u1 “ b̂1 ‰ 0. Also, for each PI query

made during the execution of ĆInit, the query is of the form d “ pMj,1, . . . ,Mj,K`1, 0, . . . , 0q, where
j P

Ť

iPCS Ti, and thus dTu “ pMj,1, . . . ,Mj,K`1q ¨ w “ 0.

For j P rqss, B sets uK`1`pj´1qpℓ`1q`rℓ`1s as follows. To simplify notation in the following

analysis, we use v to denote the vector uK`1`pj´1qpℓ`1q`rℓ`1s P Rℓ`1. We say a ČPSignO query
pi, lrq corresponds to the j-th token if and only if it is the valid query with sti.mapPPplr .PPpiqq “ j,

where a valid query means the ČPSignO oracle does not return K. From the simulation, there is at
most one ČPSignO query corresponding to the j-th token during each execution of A. Therefore,
there are the following cases:

Case 1: No query corresponds to the j-th token during both executions. In this case, B set v Ð 0.

Case 2: Only one query corresponds to the j-th token during the two executions. Denote d as the
PI query made during the execution of the ČPSignO query corresponding to the j-th token,
where d follows the form given in Equation (7). B sets v Ð p´

ř

ĵPrK`1s
dĵuĵ , 0, . . . , 0q, which

implies dTu “
ř

ĵPrK`1s
dĵuĵ ` v1 “ 0.

Case 3: There is one query corresponding to the j-th token during each of the two executions. De-
note d (resp. d̄) as the PI query made during the execution of the ČPSignO query corresponding
to the j-th token before (resp. after) rewinding. If d “ d̄, then C sets v in the same way as Case
2. Otherwise, let k̂ P rℓs be the index such that dK`1`pj´1qpℓ`1q`1`k̂ ‰ d̄K`1`pj´1qpℓ`1q`1`k̂. (If

such k̂ does not exist, B aborts.) Denote b :“ dK`1`pj´1qpℓ`1q`1`k̂ and b̄ :“ dK`1`pj´1qpℓ`1q`1`k̂.

By Equation (7), we know that 2 divides dĵ and d̄ĵ for ĵ P rK ` 1s. Therefore, denote ∆ :“
ř

ĵPrK`1s
pdĵ{2quĵ and ∆̄ :“

ř

ĵPrK`1s
pd̄ĵ{2quĵ . Since b, b̄ P Sb, by Lemma 1, there exists γ P R
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such that γpb ´ b̄q “ 2 mod q. C sets

vĵ Ð

$

’

&

’

%

´2∆ ` bγp∆ ´ ∆̄q , ĵ “ 1 ,

´γp∆ ´ ∆̄q , ĵ “ k̂ ,

0 , o.w.

Then, it holds that dTu “
ř

ĵPrK`1s
dĵuĵ `v1`bvk̂ “ 2∆´2∆`bγp∆´∆̄q´bγp∆´∆̄q “ 0 and

d̄
T
u “

ř

ĵPrK`1s
d̄ĵuĵ`v1`b̄vk̂ “ 2∆̄´2∆`bγp∆´∆̄q´b̄γp∆´∆̄q “ 2∆̄´2∆`pb´b̄qγp∆´∆̄q “

2∆̄ ´ 2∆ ` 2p∆ ´ ∆̄q “ 0.

Analysis of B.Denote BadHash as the event that h1, h̄1, . . . , h2q, h̄2q are not all distinct. We now
show that B wins the AOM-MISIS game if ForkC returns and BadHash does not occur.

We first show that if ForkC returns and BadHash does not occur, B does not abort. Suppose
ForkC returns and BadHash does not occur. Then, the only step where B might abort is in Case 3
above. In Case 3, suppose d ‰ d̄ and dK`1`pj´1qpℓ`1q`1`rℓs “ d̄K`1`pj´1qpℓ`1q`1`rℓs (in which case

B aborts). Let pi, lrq be the ČPSignO query that corresponds to the j-th token before rewinding.
Then, there exists J P rqs such that h2J´1 “ H1ppk, lrq “ dK`1`pj´1qpℓ`1q`1`rℓs. Since BadHash

does not occur, the only possibility is that the 2J ´ 1 ă I and pi, lrq is also the ČPSignO query
that corresponds to the j-th token after rewinding. Let R be the aggregated nonce computed from
CompParppk, lrq. Denote Ĵ P rqs be the index such that h2Ĵ “ H2ppk, lr .msg,Rq before rewinding.

From the simulation of the random oracles, it holds that Ĵ ď J and thus 2Ĵ ď 2J ď I. Also,
since lr .msg ‰ µ˚ (o.w., C would not win the game), we have 2Ĵ ‰ I and thus 2Ĵ ă I. Therefore,
H2ppk, lr .msg,Rq in the second execution of C is also h2Ĵ . This implies d “ d̄, which contradicts
our assumption.

If B does not abort, we have }ŝ} ď }z˚} ` }z̄˚} ď 2βz “ βs and
›

›

›
pb̂1 ¨ σ1, . . . , b̂Q ¨ σQq

›

›

›

1
“

›

›2phI ´ h̄Iqσsk
›

›

1
ď 4σskβc “ βb .

It is left to bound }pu1{σ1, . . . , uQ{σQq}. For j P rqss, denote v :“ uK`1`pj´1qpℓ`1q`rℓ`1s. There
are three cases as mentioned in the construction of B. For the first case, }v} “ 0. For the sec-

ond case, }v} “

›

›

›
2c ¨

ř

p̂i,ĵqPTiˆrK`1s
λlr .SS
î

Mî,ĵwĵ

›

›

›
ď 2Bss }c} ď 2Bss

?
βc. For the third case,

}∆}1 “

›

›

›
c ¨

ř

p̂i,ĵqPTiˆrK`1s
λlr .SS
î

Mî,ĵwĵ

›

›

›

1
ď Bssβc and similarly

›

›∆̄
›

›

1
ď Bssβc. Since }γ} ď

?
N

(by lemma 1),

}v}
2

“
›

›γpb̄∆ ´ b∆̄q, 0, . . . , 0,´γp∆ ´ ∆̄q, 0, . . . , 0q
›

›

2

ď 2p}∆}1 `
›

›∆̄
›

›

1
q2 }γ}

2
ď 8NB2

ssβ
2
c .

Therefore, }pu1{σ1, . . . , uQ{σQq} ď 1{σsk `

b

ř

jPrqss }v{σr}
2

ď 1{βs ` βcBss
?
8Nqs{σr ď βu.

Since each of h1, h3, . . . , h2q´1 and h2, h4, . . . , h2q are sampled uniformly from Sℓ
b and Sc respec-

tively, PrrBadHashs ď p2qq2{ |Sb|
ℓ

` p2qq2{ |Sc| ď 8q22´2κ. Therefore,

Advaom-misis
par pB, κq ě accpForkCq ´ PrrBadHashs

ě Advts-uf-0CTZ pA, κq2{q ´ 8q22´2κ ,

which concludes the theorem.
[\
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6 Analysis of the EKT Construction

We apply AOM-MISIS to the analysis of the EKT construction and discuss the parameter selections
in this section.

6.1 Construction and main security theorem

We recall the EKT construction from [EKT24] in Figure 10. A summary of the parameters used
by the scheme is provided in Figure 7. The scheme also depends on a pseudorandom function PRF
with suitable domain and range. The Lagrange coefficient LU,j P Zq for any subset U Ď rns and
j P U is defined as LU,j :“

ś

iPUztju
´i
j´i .

The following theorem establishes TS-UF-4 security for EKT from the hardness of AOM-MISIS.
In the theorem statement, AdvprfPRFpC, κq refers to the standard PRF advantage of an adversary C.
The full proof of Theorem 4 is given in Section 6.3.

Theorem 4 (TS-UF-4 of EKT). For any integers q “ qpκq, k “ kpκq,m “ mpκq, any pseudo-
random function PRF, and any TS-UF-4 adversary A making at most qs “ qspκq queries to PPO

and qh “ qhpκq queries to RO, given σr ą 2N ¨ q
1
m

` 1
Npm´kq , there exist an AOM-MISIS adversary

B and a PRF adversary C running in time roughly two times that of A such that

Advts-uf-4EKTrPRFspA, κq ď

b

qAdvaom-misis
par pB, κq ` 8q32´2κ ` n2 ¨ AdvprfPRFpC, κq ` q2s ¨ 2´2κ`1 .

where q “ qh ` qs ` 1 and par “ pq, k,m,Q “ 1 ` qsp1 ` ℓq, pσiqiPrQs, βs “
`

2νr`2 ` βc ¨ 2νpk`1
˘

¨
?
Nk ` 4βz, βb “ 4σskβc, βu “ 1{σsk ` βc

?
8Nqs{σrq with σ1 “ σsk, σ1`i “ σr for i P rqspℓ ` 1qs.

Remark 3. We note that we can directly establish TS-UF-0 security of EKT from AOM-MISIS by
applying the unforgeability theorem from [EKT24] and Lemma 7. However, the resulting parameters
are worse than those in Theorem 4. Specifically, βu becomes 1{σsk ` 2βc

?
ℓNqs{σr, and βb becomes

4σsk
?
βcN .

Also, we recall the correctness theorem from [EKT24], which is needed for parameter selection
later.

Theorem 5 (Correctness of EKT [EKT24]). For any integers 1 ă t ď n, any pseudoran-
dom function PRF, given σr ě

a

plogp2Nmq ` κq{π and βz ě pβc2
νpk ` 2νrq

?
mN ` e1{4p2βcσsk `

σr
a

np1 ` ℓqq
?
Np

?
k`

?
m ´ kq, the threshold signature scheme EKTrPRFs is correct with correct-

ness error negligible in κ.

6.2 Parameter selection

In this section, we first discuss the asymptotic parameters selection derived from the security
theorems and the hardness of AOM-MISIS, then compare these parameters with those proposed
in [EKT24], and finally estimate the concrete efficiency based on the parameter selections. We also
discuss how our parameters are compared to the parameters of Ringtail [BKL`24].
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Setupp1κq :

pA Ð$ R
kˆpm´kq
q ; A Ð r pA|Iks

par Ð A
For i P rns do

st0.curPPi Ð H

sti.mapPP Ð pq

Return par

KeyGenpq :

psk Ð$ Dm
σsk

pk Ð

Y

2A ¨ psk
U

νpk

// pk P Rk
qνpk

For pi, jq P rns ˆ rns do
seedi,j Ð t0, 1u

κ

a1, . . . ,at´1 Ð$ Rm´k
q

For i P rns do

si Ð pskrm´ks `
řt´1

j“1 aji
j

ski Ð psi, pseedi,j , seedj,iqjPrnsq

Return ppk, pskiqiPrnsq

SPPpstiq :

For j P r0..ℓs do rj Ð$ Dm
σr

For j P r0..ℓs do Rj Ð A ¨ rj

pp Ð pRjqjPr0..ℓs

sti.mapPPpppq Ð prjqjPr0..ℓs

Return ppp, stiq

LPPpi, pp, st0q :

st0.curPPi Ð st0.curPPi Y tppu

Return st0

LRpµ,SS , st0q :

If D i P SS : st0.curPPi “ H then
Return K

lr .msg Ð µ ; lr .SS Ð SS
For i P SS do

Pick ppi from st0.curPPi

lr .PPpiq Ð ppi

st0.curPPi Ð st0.curPPiztppiu

Return plr , st0q

CompParppk, lrq :

µ Ð lr .msg
For i P lr .SS do

pbjqjPrℓs Ð H1ppk, lrq

pRi,jqjPr0..ℓs Ð lr .PPpiq

R Ð

Y

ř

iPlr.SS

´

Ri,0 `
ř

jPrℓs
bjRi,j

¯U

νr

c Ð H2ppk, µ,Rq

Return pR, c, pbjqjPrℓsq

PSplr , i, stiq :

ppi Ð lr .PPpiq
If sti.mapPPpppiq “ K then return pK, stiq
prjqjPr0..ℓs Ð sti.mapPPpppiq

sti.mapPPpppiq Ð K

pR, c, pbjqjPrℓsqq Ð CompParpsti.pk, lrq

psi, pseedi,j , seedj,iqjPrnsq Ð sti.sk
mask Ð

ř

jPlr.SS PRFpseedi,j , ppk, lrqq

mask1
Ð

ř

jPlr.SS PRFpseedj,i, ppk, lrqq

z Ð r0,rm´ks `
ř

jPrℓs
bj ¨ rj,rm´ks

`2c ¨ Llr.SS,j ¨ sj ` mask ´ mask1 mod q
Return ppR,zq, stiq

AggpPS, st0q :

R Ð K ; z Ð 0
For pR1,z1

q P PS do
If R “ K then R Ð R1

If R ‰ R1 then return pK, st0q

z Ð z ` z1

c Ð H2ppk, µ,Rq

h Ð R ´

Y

pAz ´ 2νpk ¨ c ¨ pk
U

νr
// h P Rk

qνr

Return ppc,z,hq, st0q

Vfppk, µ, sigq :

pc,z,hq Ð sig
If

›

›pz, 2νrh mod qq
›

›

2
ą βz then return 0

c1
Ð H2ppk, µ,

Y

pAz ´ 2νpk ¨ c ¨ pk
U

νr
` hq

Return pc1
“ cq

Fig. 10. Lattice-based t-out-of-n threshold signatures EKTrPRFs, where PRF is a pseudorandom function. Here,
H1 : t0, 1u

˚
Ñ Sℓ

b and H2 : t0, 1u
˚

Ñ Sc. Also, Llr.SS,j denotes the Lagrange coefficient, and pk,h P Rk denote the
lift (see Section 3.1 for more details) of pk and h respectively. Also, we remark that, as stated earlier, the public
parameter par is implicitly given to all algorithms except Setup.

Asymptotic parameter selections. Denote βlwe as the norm of the underlying MLWE as-
sumption. Initially, we select N,m, k, βlwe such that N is a power of N ě 2κ, m, k “ polypκq,
and βlwe ě m logpNq.7 (We note that when estimating the concrete efficiency, we will enumerate
through plausible pN,m, k, βlweq tuples and pick the one that yields the best efficiency.) Then, we
set other parameters as follows.

7 This is for guaranteeing the underlying MLWE is hard.
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- Set βc as the smallest integer such that 2βc
`

N
βc

˘

ě 22κ.

- σsk “ maxt2βlwe
?
mN,

a

logp6mNq{πu. The first term is usually the leading term.

- σr “ maxtσskβc
?
8Nqs,

a

plogp2Nmq ` κq{π, 2N ¨ q
1
m

` 1
Npm´kq u. The first term is usually the

leading term.

- νpk “ log2pσr{βcq and νr “ log2pσrq.

- βz is set as shown in Theorem 5

- Denote βsis “ 2βz ` 4σskβc
?
mN .

- Select q such that the problem MSISq,k,m,βsis
and the problem MLWEq,N,k,m,βlwe

are assumed to
be exponentially hard in κ.

By Theorem 4 and Theorem 1 with ε “ 1{2 and α “ 2 (we can further optimize the concrete bound
by adjusting α), TS-UF-4 of EKT is implied by the hardness of MSISq,k,m,βsis

and MLWEq,N,k,m,βlwe
.

Comparison with [EKT24].Although the prior work does not give a security reduction to stan-
dard lattice assumptions, they provide candidate asymptotic parameters based on the heuristic
assumption that the selective version of AOM-MLWE is as hard as the adaptive version. Still, our
asymptotic parameters are slightly better than their candidate asymptotic parameters provided
in [EKT24]. The key difference lies in the choice of σr, which significantly impacts efficiency. In par-
ticular, the prior work requires σr “ ΩpβcβlweN

?
qsNkq, while we require σr “ ΩpβcβlweN

?
qsmq.

Therefore, there is roughly a factor of
?
N improvement.

Comparison with Ringtail [BKL`24].Ringtail is very close to EKT. The main differences are
that the output space of hash function H1 changes and the nonces rj are sampled from unbalanced
discrete Gaussian distributions. In particular, in Ringtail, the first m ´ k entries of each nonce
rj,rm´ks is sampled from Dm´k

σr
, while the rest rj,rpm´k`1q..ms is sampled from Dk

σ1
r
with σ1

r ‰ σr.
Therefore, it is possible to compare the parameter selections directly.

The key difference still lies in the choice of σr. In particular, Ringtail requires σr “ Ωpβc
?
qhq,

where qh denotes the number of random oracle queries. Here we offer different trade-offs. A key
drawback of their parameters is that σr depends on qh, which is typically assumed to be much larger
than qs. This is because qs refers to the number of online signing queries and is a system parameter
that can be enforced, while qh scales with the offline computational power of the adversary. However,
if we set qh “ qs, their σr is smaller than ours roughly by a factor of βlweN

?
m.

Concrete efficiency. We show a set of concrete parameters and estimated efficiency for κ P

t128, 192, 256u and n “ 1024 in Figure 11. We derive the parameters following our parameter
selections mentioned above, and similar to the CTZ scheme, we estimate the concrete hardness
of MSIS and MLWE using the lattice estimator. We note that our concrete parameters are worse
than those given in [EKT24], although in a similar ballpark. However, worse parameters are to
be expected. This is because their parameter selection is based on their direct cryptanalysis of
AOM-MLWE, whereas we rely on a reduction from two standard lattice assumptions. In a similar
spirit, our parameters are worse than those claimed for Ringtail in [BKL`24], however this is to be
expected, too, as they heuristically assume qh “ qs (also see the above discussion) to set parameters.
In practice, however, we expect qh to be best approximated conservatively by the running time of
the adversary, and this can be as high as 2256, whereas qs could typically be 260. The authors of
Ringtail were aware of this fact, and their choice was motivated by their conjecture that a better
dependency would be possible. We confirm their conjecture for the case of EKT.
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κ log2pqq k m σsk σr βz |pk| |sig | Comm.

128 69.3 6 11 210.6 252.6 266.2 8.72KB 30.88KB 766.83KB

192 69.6 8 15 210.6 252.6 266.5 11.74KB 42.90KB 1.01MB

256 70.2 10 18 211.17 253.2 267.1 14.76KB 50.72KB 1.29MB

Fig. 11. The concrete parameters and estimated efficiency of the EKT scheme for κ “ 128, 192, 256 and n “ 1024.
We set pN, ℓ, βcq “ p512, 26, 64q. The last second column denotes the communication complexity per signer.

Game Ideal-TUFA
pκq :

pA Ð$ R
kˆpm´kq
q ; A Ð r pA|Iks

H Ð$ TS.HF ; S Ð H

For i P rns do
sti.mapPP Ð pq

pµ, sigq Ð AInit,PPO,PSignO,RO
pAq

Return pµ R S ^ Vfppk, µ, sigq “ 1q

Oracle InitpCSq :

Require: CS Ď rns and |CS| ă t
HS Ð rnszCS
sk Ð$ Dm

σsk

pk Ð t2A ¨ sksνpk
Return pk

Oracle ROpxq :

Return Hpxq

Oracle PPOpiq :

Require: i P HS
rj Ð$ Dm

σr

For j P r0..ℓs do Rj Ð A ¨ rj

pp Ð pRjqjPr0..ℓs

sti.mapPPpppq Ð prjqjPr0..ℓs

Return pp

Oracle SignOplrq :

Require: lr .SS Ď rns and |lr .SS| ě t
hon Ð lr .SS X HS
If D i P hon : sti.mapPPplr .PPpiqq “ K then

Return K

S Ð S Y tlr .msgu

pc, b1, . . . , bℓq Ð CompParppk, lrq

z Ð 2c ¨ skrm´ks

For i P hon do
prjqjPr0..ℓs Ð lr .PPpiq
sti.mapPPplr .PPpiqq Ð K

z Ð z ` r0,rm´ks `
ř

jPrℓs
bj ¨ rj,rm´ks

Return z

Fig. 12. The Ideal-TUF game, where the algorithms CompPar and Vf are defined in Figure 10.

6.3 Security reduction of EKT

Unlike other security analyses [DKM`24, EKT24] of lattice-based threshold signatures that use
masking techniques, our reduction follows a two-step approach, which we believe has independent
interest.

In the first step, we reduce the TS-UF-4 game of EKTrPRFs to an ideal unforgeability game
Ideal-TUF for threshold signatures (defined in Figure 12). In this game, no secret sharing of signing
key or masking is involved. Moreover, the adversary directly obtains an aggregation of all partial
signatures from honest parties in lr .SS via a second-round signing oracle SignO, provided that the
tokens in lr for honest signers are all valid. Intuitively, the ideal game captures the information
hidden by the masks. In particular, all the secret key shares and the partial signatures (except their
aggregation) are entirely hidden by the masks.

In the second step, we establish the hardness of the ideal unforgeability game based on AOM-MISIS.
The approach is cleaner than prior proofs, as it clearly separates the effects of masks from the main
security reduction to the AOM-MISIS problem. In particular, the first step relies only on the secu-
rity of PRF, while the second step does not involve masking at all.
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Concretely, Theorem 4 is a corollary from the following two lemmas.

Lemma 10. For any integers q “ qpκq, k “ kpκq,m “ mpκq, any PRF scheme PRF, and any
TS-UF-4 adversary A making at most qs “ qspκq queries to PPO and qh “ qhpκq queries to RO,

given σr ą 2N ¨ q
1
m

` 1
Npm´kq , there exists an Ideal-TUF adversary B making at most qs queries to

PPO and qh queries to RO and an PRF adversary C running in time roughly the same as A such
that

Advts-uf-4EKTrPRFspA, κq ď Advideal-tufpB, κq ` n2 ¨ AdvprfPRFpC, κq ` q2s ¨ 2´2κ`1 .

where n denotes the number of signers.

Lemma 11. For any integers q “ qpκq, k “ kpκq,m “ mpκq and any Ideal-TUF adversary A
making at most qs queries to PPO and qh queries, there exists an AOM-MISIS adversary B running
in time roughly two times that of A such that

Advideal-tufpA, κq ď

b

qAdvaom-misis
par pB, κq ` 8q32´2κ .

where q “ qh ` qs ` 1 and par “ pq, k,m,Q “ 1 ` qsp1 ` ℓq, pσiqiPrQs, βs “
`

2νr`2 ` βc ¨ 2νpk`1
˘

¨
?
Nk ` 4βz, βb “ 4σskβc, βu “ 1{σsk ` βc

?
8Nqs{σrq with σ1 “ σsk, σ1`i “ σr for i P rqspℓ ` 1qs.

The rough idea behind the first reduction (Lemma 10) is as follows. Due to masking, the
reduction can simulate the PSignO oracle by responding with a uniformly random vector, unless
the adversary has made PSignO queries to all honest party in lr .SS. In this case, the reduction
queries its own SignO oracle to obtain an aggregated signature and derives the requested partial
signature from it. Thus, the reduction only queries SignO for message lr .msg when all honest
signers in lr .SS were queried. This implies that the set S of messages considered signed in TS-UF-4
is exactly the same as the set S defined in Ideal-TUF. The second reduction (Lemma 11) is the
similar to the proof of Theorem 2, and its proof is provided in Section 6.4.

Proof (of Lemma 10).
Let A be a TS-UF-4 adversary described in the theorem. We show the lemma via the following

series of games.

G0: This is the same as TS-UF-4. The game is formally defined in Figure 13
G1: The same as G0 except that in the oracle PSignO, the response z is computed in a dif-

ferent way, and the game aborts if there are two valid PSignO queries for the same in-
put pi, lrq (denoted as BNonce). The game is formally defined in Figure 14. We first show
that if BNonce does not occur, the game is identical to G0. From the description of G1, if
curSSplrq ‰ hon, we have z “ v ` maskc “ r0,rm´ks ` p

ř

jPrℓs bj ¨ rj,rm´ksq ` 2c ¨ Llr .SS,i ¨

si ` maskh ` maskc, which is exactly the same as G0. Otherwise, z “ curSumRplrq ` 2c ¨

pskrm´ks ´ curSumplrq ´
ř

jPcor 2c ¨ Llr .SS,j ¨ sj ` maskc. Here, curSumRplrq “
ř

i1Phon r
pi1q

0,rm´ks
`

p
ř

jPrℓs bj ¨r
pi1q

j,rm´ks
q, where tr

pi1q

j ujPr0..ℓs denotes the nonces for signer i
1 P hon, and curSumplrq “

ř

i1Phonztiu v
pi1q “

ř

i1Phonztiupr
pi1q

0,rm´ks
` p

ř

jPrℓs bj ¨ r
pi1q

j,rm´ks
q ` 2c ¨ Llr .SS,i1 ¨ si1 ` maskh

pi1qq, where

p¨qpi1q denotes the value computed during the query pi1, lrq. Since psk “
ř

i1Plr .SS Llr .SS,i1 ¨ si1 and
ř

i1Phonmaskh
pi1q “

ř

i1Phon

ř

jPhonpPRFpseedi1,j , ppk, lrqq ´ PRFpseedj,i1 , ppk, lrqqq “ 0, we have

z “ r
piq
0,rm´ks

` p
ř

jPrℓs bj ¨ r
piq
j,rm´ks

q ` 2c ¨Llr .SS,i ¨ si `maskh
piq `maskc, which is identical to G0.
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Game GA
0 pκq :

pA Ð$ R
kˆpm´kq
q ; A Ð r pA|Iks

H Ð$ TS.HF ; S Ð H ; curSS Ð pq

pµ˚, sig˚
q Ð AInit,PPO,PSignO,Open,RO

pAq

Return pµ˚
R S ^ Vfppk, µ˚, sig˚

q “ 1q

Oracle InitpCSq :

HS Ð rnszCS
psk Ð$ Dm

σsk
; pk Ð

Y

2A ¨ psk
U

νpk

For pi, jq P rns ˆ rns do
seedi,j Ð t0, 1u

κ

a1, . . . ,at´1 Ð$ Rm´k
q

For i P rns do

si Ð pskrm´ks `
řt´1

j“1 aji
j

ski Ð psi, pseedi,j , seedj,iqjPrnsq

Return pskiqiPCS

Oracle PPOpiq :

Require: i P HS
For j P r0..ℓs do rj Ð$ Dm

σr

For j P r0..ℓs do Rj Ð A ¨ rj

pp Ð pRjqjPr0..ℓs

sti.mapPPpppq Ð prjqjPr0..ℓs

Return pp

Oracle PSignOpi, lrq :

Require: lr .SS Ď rns and i P HS X lr .SS
ppi Ð lr .PPpiq
If sti.mapPPpppiq “ K then return K

If curSSplrq “ K then
curSSplrq Ð tiu

Else curSSplrq Ð curSSplrq Y tiu
If curSS “ lr .SS X HS then

S Ð S Y tlr .msgu

prjqjPr0..ℓs Ð sti.mapPPpppiq

sti.mapPPpppiq Ð K

pR, c, pbjqjPrℓsqq Ð CompParppk, lrq

psi, pseedi,j , seedj,iqjPrnsq Ð ski
mask Ð

ř

jPlr.SS PRFpseedi,j , ppk, lrqq

mask1
Ð

ř

jPlr.SS PRFpseedj,i, ppk, lrqq

z Ð r0,rm´ks `
ř

jPrℓs
bj ¨ rj,rm´ks

`2c ¨ Llr.SS,j ¨ sj ` mask ´ mask1 mod q
Return pR,zq

Oracle ROpxq :

Return Hpxq

Fig. 13. The G0 game, where the algorithms CompPar and Vf are defined in Figure 10.

We now argue that BNonce occurs with a negligible probability. Since sti.mapPPpppiq is set
to K after the query pi, lrq, BNonce occurs only if the PPO oracle generates a new token
pR0, . . . ,Rℓq that is exactly the same as ppi. Therefore, by the following lemma from [DKM`24],
the probability that this occurs is at most q2s ¨ 2´N`1, and thus, since N ě 2κ,

AdvG1pA, κq ě AdvG0pA, κq ´ q2s ¨ 2´2κ`1 . (8)

Lemma 12 (Lemma 3.8, [DKM`24]). For any integers q,m, k ą 0, any real number σ ą 0
and any matrix A P Rkˆm

q , denote a distribution DpAq :“ trA|Iks ¨ s | s Ð$ Dm`k
σ u. If σ ą

2N ¨ q
1

k`m
` 1

Nm ,

PrA Ð$ Rkˆm
q

rH8pDpAqq ě N ´ 1s ě 1 ´ 2´N`1 ,

where H8pDpAqq :“ ´ log2pmaxx1PRk
q
Prx Ð$ DpAqrx “ x1sq denotes the min-entropy of DpAq.8

G2: The same as G1 except in the oracle PSignO, the aggregated mask maskh computed from
honest parties’ seeds are replaced with a uniformly random value. The game is formally defined
in Figure 14. We can show this game is computationally close to G1 by first replacing each
PRFpseedi,j , ¨q for honest parties i and j with a truly random function, which incurs at most a

8 We omit the bit dropping from the original lemma, as it is not needed here and it only reduces the min-entropy.

34



Game GA
1 pκq , GA

2 pκq , GA
3 pκq :

Oracle PSignOpi, lrq :

Require: lr .SS Ď rns and
i P HS X lr .SS

ppi Ð lr .PPpiq
If sti.mapPPpppiq “ K then return K

If i P curSSplrq then the game aborts // Bad event BNonce
hon Ð lr .SSzCS ; cor Ð lr .SS X CS
If curSSplrq “ K then curSSplrq Ð tiu
Else curSSplrq Ð curSSplrq Y tiu
If curSS “ hon then S Ð S Y tlr .msgu

pR, c, pbjqjPrℓsqq Ð CompParppk, lrq

maskc Ð
ř

jPcor PRFpseedi,j , ppk, lrqq ´
ř

jPcor PRFpseedj,i, ppk, lrqq

prjqjPr0..ℓs Ð sti.mapPPpppiq

sti.mapPPpppiq Ð K

curSumRplrq Ð curSumRplrq ` r0,rm´ks `
ř

jPrℓs
bj ¨ rj,rm´ks

If curSSplrq ‰ hon then
// i is not the last queried honest party in lr .SS

psi, pseedi,j , seedj,iqjPrnsq Ð ski

maskh Ð$
ř

jPhonpPRFpseedi,j , ppk, lrqq ´ PRFpseedj,i, ppk, lrqqq

maskh Ð$ Rm´k
q

v Ð r0,rm´ks ` p
ř

jPrℓs
bj ¨ rj,rm´ksq ` 2c ¨ Llr.SS,i ¨ si ` maskh

v Ð$ Rm´k
q

curSumplrq Ð curSumplrq ` v
Else // i is the last queried honest signer

v Ð curSumRplrq ` 2c ¨ pskrm´ks ´ curSumplrq ´
ř

jPcor 2c ¨ Llr.SS,j ¨ sj

z Ð v ` maskc
Return pR,zq

Fig. 14. The PSignO oracle of the games G1, G2, and G3, where G1 only contains dashed boxes, G2 only contains
highlighted boxes, and G3 only contains solid boxes. In addition, each entry of the tables curSum and curSumR is
initialized to 0. The rest of each game is identical to G0.

reduction loss of n2 ¨AdvprfPRFpC, κq. Then, the game is identical to G1, since for each lr , denoting

hon “ lr .SS X HS and maskh
piq “

ř

jPhonpPRFpseedi,j , ppk, lrqq ´ PRFpseedj,i, ppk, lrqqq, we have

tmaskh
piquiPhonzti1u is uniformly distributed over R

kp|hon|´1q
q for any i1 P hon. Therefore,

AdvG2pA, κq ě AdvG1pA, κq ´ n2 ¨ AdvprfPRFpC, κq . (9)

G3: The same as G2 except the value v is uniformly sampled from Rm´k
q if i is not the last queried

honest party in lr .SS. The game is formally defined in Figure 14. Since maskh is sampled
uniformly from Rm´k

q and only used to mask v, the distribution of v is identical in both games.
Therefore, we have

AdvG3pA, κq “ AdvG2pA, κq . (10)
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We construct an Ideal-TUF adversary B as follows. To start with, after receiving A from the
Ideal-TUF game, B initializes sti.mapPP for i P rns, tables curSS and curSum following the game
G3, then initializes a map curLR to an empty map, recording whether a lr request has made, and
runs A with input A and access to oracles ĆInit, ĆPPO, ČPSignO and ĄRO, which are simulated as
follows.
ĄInitpCSq: B queries pk Ð InitpCSq. For each i P CS, B samples si Ð$ Rm´k

q and seedi,j Ð$ t0, 1uκ

for each j P rns. Finally, B returns psi, pseedi,j , seedj,iqjPrnsqiPCS.
ČPPO, ĄRO: B forwards queries directly to PPO and RO respectively.

ČPSignOpi, lrq: The same as PSignOpi, lrq in G3 except that when curSSplrq “ hon, B queries
ẑ Ð SignOplrq and sets z Ð ẑ ´ curSumplrq ´

ř

jPcor 2c ¨Llr .SS,j ¨ sj `maskc. Also, B does not
need to retrieve tri,jujPr0..ℓs and update curSumR, as the table curSumR is not used anymore.

After A returns, B outputs the output of A.
We observe that B wins the Ideal-TUF game if A wins the game G3, since the message lr .msg

is added to S in G3 if and only if curSSplrq “ hon, which is exactly the scenario where B makes a
SignO query on lr . Also, since B simulates the gameG3 perfectly, it follows that Adv

ideal-tufpB, κq ě

AdvG3pA, κq. Therefore, we can conclude the lemma by Equations (8) to (10). [\

6.4 Proof of Lemma 11

Let A be a Ideal-TUF adversary as described in the lemma. W.l.o.g. we assume that A is deter-
ministic. Also, we assume if A returns pµ˚, pR˚, z˚qq, the RO query H2ppk, µ˚,R˚q was made by
A, which adds at most one RO query. Also, since the game makes at most one RO query to H1

and H2 respectively for each signing query, the total number of RO queries to each of H1 and H2 is
bounded q “ qh `qs `1. We now construct an algorithm C compatible with the syntax in Lemma 9
and construct B from ForkC .

Construction of C. The input of C consists of A, ptiqiPr1`qspℓ`1qs, and a list of hash values
h1, . . . , h2q, where pA, ptiqiPr1`qspℓ`1qsq are sampled following the AOM-MISIS game, and for each
i P rqs, h2i´1 is sampled uniformly from Sb and h2i is sampled uniformly from Sc. To start with, C
initializes sti.mapPP Ð pq for i P rns, and in addition, initializes a counter ctrh Ð 0 for counting

the number of random oracle queries. Then, C runs A on input A with access to oracles ĆInit, ĆPPO,
ČPSignO and ĄRO, which are simulated as follows.

ĄInitpCSq: The same as InitpCSq except C sets pk Ð t2t0sνpk
.

ČPPOpiq: For the j-th query, C sets Rĵ Ð t1`pj´1qpℓ`1q`ĵ`1 for ĵ P r0..ℓs and sets

sti.mapPPppRĵqĵPr0..ℓsq Ð j .

Note that since C does not sample prĵqĵPr0..ℓs, C uses sti.mapPP to store the index j instead.

ČSignOplrq: The same as SignOplrq except that C computes z Ð PIpdq, where

dĵ “

$

’

’

’

’

&

’

’

’

’

%

2c , ĵ “ 1 ,

1 , ĵ “ 1 ` pj ´ 1qpℓ ` 1q ` 1 , j P honR

bj1 , ĵ “ 1 ` pj ´ 1qpℓ ` 1q ` 1 ` j1, j1 P rℓs, j P honR ,

0 , o.w. ,

(11)

and honR :“ tsti.mapPPplr .PPpiqquiPhon.
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ĄRO query H1pxq: If H1pxq ‰ K, C returns H1pxq. Otherwise, parse x as pĂpk, lrq. If the parsing

fails or Ăpk ‰ pk, C sets H1pxq Ð$ Sℓ
b and returns H1pxq. Otherwise, C increases ctrh by 1, sets

H1pxq Ð h2ctrh´1. Also, C computes R Ð
ř

iPlr .SSpRi,0 `
ř

jPrℓs bj ¨ Ri,jq, where pRi,jqjPr0..ℓs Ð

lr .PPpiq and tbjujPrℓs Ð h2ctrh´1. If H2ppk, lr .msg,Rq “ K, C sets H2ppk, lr .msg,Rq Ð h2ctrh .
Finally, C returns H1pxq.

ĄRO query H2pxq: If H2pxq ‰ K, C returns H2pxq. Otherwise, parse x as pĂpk, µ,Rq. If the parsing

fails or Ăpk ‰ pk, C sets H2pxq Ð$ Sc. Otherwise, C increases ctrh by 1 and sets H2pxq Ð h2ctrh .
Finally, C returns H2pxq.

After receiving the output pµ˚, pc˚, z˚,h˚qq from A, C aborts if A does not win the Ideal-TUF

game. Otherwise C computes R˚ Ð

Y

pAz˚ ´ 2νpk ¨ c˚ ¨ pk
U

νr
` h˚ and finds the index I such that

H2ppk, µ˚,R˚q is set to hI during the simulation. By our assumption of A, we know such I must
exist. Then, C returns pI,Out “ pµ˚,R˚, c˚, z˚,h˚qq.

Analysis of C. To use Lemma 9, we define S :“ t2jujPrqs and IG as the algorithm that samples
pA, ptiqiPr1`qspℓ`1qsq following the AOM-MISIS game, and HG as the algorithm that samples h2i´1

uniformly from Sb and samples h2i uniformly from Sc for each i P rqs. From the simulation, we
know that the output index I of C is always in S. Also, it is not hard to check that C simulates the
game Ideal-TUF perfectly, which implies accpCq ě Advideal-tufpA, κq. By Lemma 9, we have that

accpForkCq ě Advideal-tufpA, κq2{q .

Construct B from ForkC.We now construct the AOM-MISIS adversary B using ForkC . To start
with, B receives pA, ttiuiPrQsq from the AOM-MISIS game with Q “ K ` 1 ` qspℓ ` 1q and

runs ForkCpA, ttiuiPrQsq with access to the PI oracle from the AOM-MISIS game. If ForkC out-

puts pI,Out “ pµ˚,R˚, c˚, z˚,h˚q, ĄOut “ prµ˚, rR
˚
,rc˚, rz˚, rh

˚
qq and c˚ ‰ rc˚, B sets ŝ Ð pz˚ ´

rz˚, 2pc˚ ´ rc˚qt0 ´ pApz˚ ´ rz˚
qq and b̂ Ð p2pc˚ ´ rc˚q, 0, . . . , 0q. Otherwise, B aborts. It is clear that

Aŝ “ pApz˚ ´ rz˚
q ` 2pc˚ ´ rc˚qt0 ´ rApz˚ ´ rz˚

q “ 2pc˚ ´ rc˚qt0 “
ř

iPrQs b̂iti.

We now show how B sets u such that b̂
T
u ‰ 0 and dTu “ 0 mod q for any oracle query

PIpdq. Note that B only makes PI queries while simulating oracle ČSignO. We set u1 “ 1 and thus

b̂
T
u “ 2pc˚ ´ rc˚q ‰ 0.

Enumerating j from 1 to qs, C sets u1`pj´1qpℓ`1q`rℓ`1s such that

ÿ

iPr1`jpℓ`1qs

uidi “ 0 for each PI query d with d1`rjpℓ`1qs ‰ 0 . (12)

To simplify notation in the following analysis, we use v to denote the vector u1`pj´1qpℓ`1q`rℓ`1s P

Rℓ`1. Concretely, C sets v as follows. Suppose Equation (12) holds for j ´ 1 (except when j “ 1,

i.e., no condition is required for the case j “ 1). We say a ČSignO query lr corresponds to the
j-th token if and only if it is the valid query with sti.mapPPplr .PPpiqq “ j, where a valid query

means the ČSignO oracle does not return K. From the simulation, there is at most one ČSignO query
corresponding to the j-th token during each execution of A. Therefore, there are the following cases:

Case 1: No query corresponds to the j-th token during both executions. In this case, B set v Ð 0.

Case 2: Only one query corresponds to the j-th token during the two executions. Denote d as
the PI query made during the execution of the ČSignO query corresponding to the j-th token,
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where d follows the form given in Equation (11). B sets v Ð p´
ř

iPr1`pj´1qpℓ`1qs uidi, 0, . . . , 0q,
and it follows

ř

iPr1`jpℓ`1qs uidi “
ř

iPr1`pj´1qpℓ`1qs uidi ` v1 “ 0. Also, since d is the PI query
with d1`pj´1qpℓ`1q`rℓ`1s ‰ 0, it follows that Equation (12) holds.

Case 3: There is one query corresponding to the j-th token during each of the two executions.
Denote d (resp. rd) as the PI query made during the execution of the ČSignO query corresponding
to the j-th token before (resp. after) rewinding. If d “ rd, then C sets v in the same way as Case
2.

Otherwise, let k̂ P rℓs be the index such that d1`pj´1qpℓ`1q`1`k̂ ‰ rd1`pj´1qpℓ`1q`1`k̂. (If such k̂

does not exist, B aborts.) Denote b :“ d1`pj´1qpℓ`1q`1`k̂ and rb :“ d1`pj´1qpℓ`1q`1`k̂. Since Equa-

tion (12) holds for j ´1, we have either
ř

iPr1`pj´1qpℓ`1qs uidi “ 0 or
ř

iPr1`pj´1qpℓ`1qs uidi “ d1 P

2Sc by Equation (11), where 2Sc :“ t2c | c P Scu. Therefore, denote ∆ :“ 1
2

ř

iPr1`pj´1qpℓ`1qs uidi

and r∆ :“ 1
2

ř

iPr1`pj´1qpℓ`1qs ui
rdi. Since b,rb P Sb, by Lemma 1, there exists γ P R such that

γpb ´ rbq “ 2 mod q. C sets

vĵ Ð

$

’

&

’

%

´2∆ ` bγp∆ ´ r∆q , ĵ “ 1 ,

´γp∆ ´ r∆q , ĵ “ k̂ ,

0 , o.w.

Then, it holds that
ř

iPr1`jpℓ`1qs uidi “
ř

iPr1`pj´1qpℓ`1qs uidi ` v1 ` bvk̂ “ 2∆ ´ 2∆ ` bγp∆ ´

∆̄q ´ bγp∆ ´ ∆̄q “ 0 and
ř

iPr1`jpℓ`1qs ui
rdi “

ř

iPr1`pj´1qpℓ`1qs ui
rdi ` v1 ` rbvk̂ “ 2 r∆ ´ 2∆ `

bγp∆´ r∆q ´rbγp∆´ r∆q “ 2 r∆´2∆` pb´rbqγp∆´ r∆q “ 2 r∆´2∆`2p∆´ r∆q “ 0. Finally, since
d and rd are the PI queries with d1`pj´1qpℓ`1q`rℓ`1s ‰ 0, it follows that Equation (12) holds.

Analysis of B.Denote BadHash as the event that h1,rh1, . . . , h2q,rh2q are not all distinct. We now
show that B wins the AOM-MISIS game if ForkC returns and BadHash does not occur.

We first show that if ForkC returns and BadHash does not occur, B does not abort. (The following
argument is similar to the one provided in the security reduction of the CTZ protocol.) Suppose
ForkC returns and BadHash does not occur. Then, the only step where B might abort is in Case
3 above. In Case 3, suppose d ‰ rd and d1`pj´1qpℓ`1q`1`rℓs “ rd1`pj´1qpℓ`1q`1`rℓs (in which case B
aborts). Let lr be the ČSignO query that corresponds to the j-th token before rewinding. Then, there
exists J P rqs such that h2J´1 “ H1ppk, lrq “ d1`pj´1qpℓ`1q`1`rℓs. Since BadHash does not occur,

the only possibility is that the 2J ´ 1 ă I and lr is also the ČSignO query that corresponds to the
j-th token after rewinding. Let R be the aggregated nonce computed from CompParppk, lrq. Denote
Ĵ P rqs be the index such that h2Ĵ “ H2ppk, lr .msg,Rq before rewinding. From the simulation of

the random oracles, it holds that Ĵ ď J and thus 2Ĵ ď 2J ď I. Also, since lr .msg ‰ µ˚ (o.w., C
would not win the game), we have 2Ĵ ‰ I and thus 2Ĵ ă I. Therefore, H2ppk, lr .msg,Rq in the
second execution of C is also h2Ĵ . This implies d “ d̄, which contradicts our assumption.

Suppose B does not abort. From the way B sets u, Equation (12) holds for j “ qs. Then, since
for each PI query d, the component d1`rqspℓ`1qs ‰ 0, it follows that dTu “

ř

iPr1`qspℓ`1qs uidi “ 0.

It is left to bound the norms of vectors ŝ, b̂ and u.

We first bound the norm of ŝ. We have

}ŝrm ´ ks} “ }z˚ ´ rz˚
} ď 2βz (13)
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and, by Lemma 13 (proved in [EKT24]),

}ŝrpm ´ k ` 1q..ms} “

›

›

›
2pc˚ ´ rc˚qt0 ´ pApz˚ ´ rz˚

q

›

›

›

ď

›

›

›
pc˚ ´ rc˚q2νpkpk ´ pApz˚ ´ rz˚

q

›

›

›
`

›

›pc˚ ´ rc˚q ¨ p2t0 ´ 2νpkpkq
›

›

ď

›

›

›
pc˚ ´ rc˚q2νpkpk ´ pApz˚ ´ rz˚

q

›

›

›
` βc2

νpk`1
?
Nk (by Lemma 13)

ď

›

›

›

›

2νr
Y

pArz˚
´ 2νpkrc˚pk

U

νr
´ 2νr

Y

pAz˚ ´ 2νpkc˚pk
U

νr
mod q

›

›

›

›

`

›

›

›

›

p pAz˚ ´ 2νpkc˚pkq ´ 2νr
Y

pAz˚ ´ 2νpkc˚pk
U

νr

›

›

›

›

`

›

›

›

›

p pArz˚
´ 2νpkrc˚pkq ´ 2νr

Y

pArz˚
´ 2νpkrc˚pk

U

νr

›

›

›

›

` βc2
νpk`1

?
Nk

ď

›

›

›

›

2νr
ˆ

Y

pArz˚
´ 2νpkrc˚pk

U

νr
´

Y

pAz˚ ´ 2νpkc˚pk
U

νr

˙

mod q

›

›

›

›

` 2νr`1
?
Nk ` βc2

νpk`1
?
Nk . (by Lemma 13)

(14)

Lemma 13 (Lemma 3.14 [EKT24]). For any integers v ě 4 and q ą 2v, let qv “ tq{2vu.
Moreover, assume q and v satisfies qv “ tq{2vs. Then, for any x P Zq, we have

ˇ

ˇ

ˇ
x ´ 2v ¨ txsv

ˇ

ˇ

ˇ
ď 2v ´ 1 .

Since
Y

pAz˚ ´ 2νpkc˚pk
U

νr
` h˚ “ R˚ “ rR

˚
“

Y

pArz˚
´ 2νpkrc˚pk

U

νr
` rh

˚
, there exists δ P Rk such

that }δ}8 ď 2 and
Y

pAz˚ ´ 2νpkc˚pk
U

νr
` h˚ “

Y

pArz˚
´ 2νpkrc˚pk

U

νr
` rh

˚
` qνr ¨ δ. Therefore,

›

›

›

›

2νr
ˆ

Y

pArz˚
´ 2νpkrc˚pk

U

νr
´

Y

pAz˚ ´ 2νpkc˚pk
U

νr

˙

mod q

›

›

›

›

ď
›

›2νrh˚ mod q
›

› `

›

›

›

›

2νr rh
˚

mod q

›

›

›

›

` }2νrqνr ¨ δ mod q}

ď 2βz ` 2νr }δ} ď 2βz ` 2νr`1
?
Nk .

(15)

Therefore, by Equations (13) to (15), }ŝ} ď
`

2νr`2 ` βc ¨ 2νpk`1
˘

¨
?
Nk ` 4βz ď βs.

Also,
›

›

›
pb̂1 ¨ σ1, . . . , b̂Q ¨ σQq

›

›

›

1
“ }2pc˚ ´ rc˚qσsk}1 ď 4σskβc ď βb.

It is left to bound }pu1{σ1, . . . , uQ{σQq}. For j P rqss, denote v :“ uK`1`pj´1qpℓ`1q`rℓ`1s. There
are three cases as mentioned in the construction of B. For the first case, }v} “ 0. For the second

case, since v1 P 2Sc Y t0u, }v} “ }v} ď 2
?
βc. For the third case, since ∆, r∆ P Sc Y t0u, }∆}1 ď βc

and
›

›

›
∆̃

›

›

›

1
ď βc. Since }γ} “

?
N (by lemma 1),

}v}
2

“

›

›

›
γprb∆ ´ b r∆q, 0, . . . , 0,´γp∆ ´ r∆q, 0, . . . , 0q

›

›

›

2

ď 2p}∆}1 `
›

›∆̄
›

›

1
q2 }γ}

2
ď 8Nβ2

c .
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Therefore, }pu1{σ1, . . . , uQ{σQq} ď u1{σsk `

b

ř

jPrqss }v{σr} ď 1{σsk ` βc
?
8Nqs{σr ď βu. The

above shows that B wins the AOM-MISIS game, given that ForkC returns and BadHash does not
occur.

Finally, since each of h1, h3, . . . , h2q´1 and h2, h4, . . . , h2q are sampled uniformly from Sℓ
b and

Sc respectively, PrrBadHashs ď p2qq2{ |Sb|
ℓ

` p2qq2{ |Sc| ď 8q22´2κ. Therefore,

Advaom-misis
par pB, κq ě accpForkCq ´ PrrBadHashs

ě Advideal-tufpA, κq2{q ´ 8q22´2κ ,

which concludes the lemma. [\
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A Linear secret sharing

We adopt the following definition from [CATZ24], simplifying the small coefficient property by
bounding only the term required in the security proof (Section 5.3).

Definition 2 (Linear Threshold Secret Sharing with Small Coefficients). Let 1 ă t ď n
and Bss be positive integers and G be an abelian group. A t-out-of-n linear threshold secret sharing
scheme SecShat,n,Bss for G consists of two algorithms pShare,Reconq with the following syntax:

42

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022


- Shareps P G;ρ P GKq ñ pssjqjPrLs P GL: takes as input a secret s P G and a randomness vector

ρ P GK (sampled uniformly from GK), and returns the secret shares pssjqjPrLs. We note that
each party i P rns has a subset of indices Ti Ď rLs such that the share of party i is pssjqjPTi.
We say that the individual share size of party i is |Ti|, the total share size is L, and the
randomness size is K.

- ReconpU, pssjqjP
Ť

iPU Ti
q ñ s P G: takes as input a set U Ď rns with |U | ě t and the secret shares

corresponding to each party in U , and returns the reconstructed secret s.

We require that SecShat,n,Bss satisfies the following properties:

- Linearity: The sharing algorithm Share can be written as an integer matrix M P ZLˆpK`1q

mapping a vector v “ ps, ρ1, . . . , ρKqT P GK`1 to Mv P GL. We refer to M as the sharing
matrix of SecShat,n,Bss. Moreover, for any U Ď rns denote MU as the matrix M restricted to
the rows indexed with

Ť

iPU Ti, the following is also true:
‚ For any U Ď rns, |U | ě t, there exists a reconstruction coefficient vector λU P ZL such
that λU

j “ 0 for j R
Ť

iPU Ti and pλU qTM “ p1, 0, . . . , 0q. Then, the output of ReconpU, ¨q on

input pssjqjP
Ť

iPU Ti
can be written as

ř

iPU

ř

jPTi
λU
j ssj. Hence, for pssjqjPrLs Ð Shareps;ρq

for any s P G and ρ P GK , we have that
ř

iPU

ř

jPTi
λU
j ssj “ s.

‚ For any CS Ď rns with |CS| ă t, there exists a vector wCS P ZK`1 such that w1 “ 1 and
MCSw

CS “ 0. We call such wCS the sweeping vector of MCS.

- Small Coefficients: For any U Ď rns with |U | ě t and any CS Ă rns with |CS| ă t, it holds
that

ř

p̂i,ĵqPTiˆrK`1s
λU
î
Mî,ĵw

CS
ĵ

ď Bss.

Also, [CATZ24] shows the existence of such secret sharing scheme from the generic construction
by Benaloh and Leichter [BL90], which can be stated as the following lemma.

Lemma 14 ([CATZ24]). For any 1 ă t ď n, there exists a t-out-of-n linear threshold secret shar-
ing with small coefficients with total share size L “ Opt14.3n log nq making the individual share size
|Ti| ď Opt14.3n log nq for t1 “ minpt, n ´ tq and the small coefficient bound Bss “ Opt14.3nplog nq2q.
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