
Delegatable ABE with O(1) Delegations from Witness Encryption∗

Rishab Goyal
UW-Madison†

Saikumar Yadugiri
UW-Madison‡

Abstract

Delegatable Attribute-Based Encryption (DABE) is a well-known generalization of ABE,
proposed to mirror organizational hierarchies. We design a DABE scheme from witness encryp-
tion and other simple assumptions. Our construction does not rely on Random Oracles, and we
provide a black-box reduction to polynomial hardness of underlying assumptions.

1 Introduction

Since its inception, Attribute-Based Encryption (ABE) [SW05, GPSW06] has significantly revo-
lutionized data encryption. It supports fine-grained access over encrypted data. Over the past
two decades, ABE has received tremendous attention from the research community, leading to
innumerable designs with varying efficiency, functionalities, security guarantees, and diverse se-
curity assumptions [SW05, GPSW06, BW07, BSW07, KSW08, Wat09, LW10, LOS+10, GVW13,
GGSW13, BGG+14, GVW15]. ABE is extremely useful for many practical applications [PRV12,
GKP+13, GM15, SRGS12, CDEN12, APG+11, TBEM08, BBS+09], and many prominent ABE
schemes are also practically efficient [GPSW06, BSW07, Wat11, CGW15, AC17].

In ABE, a central authority sets up the system where any user can encrypt data under their
choice of attribute, and a user can only decrypt the resulting ciphertext if and only if they can
obtain a secret key for an accepting predicate. In particular, a ciphertext ct encrypting a payload
message m, under attribute x, can be decrypted using a secret key skϕ, associated with predicate
ϕ, if ϕ(x) = 1. For example, consider an academic institution that has deployed an ABE system for
internal communication. Using ABE, a student can encrypt their homework solutions under the
attribute ‘course:CS101’. Clearly, this can be accessed by any of the course staff (i.e., instructors,
TAs, etc), but not by other students.

Delegatable Attribute-Based Encryption (DABE) is a well-known generalization of ABE [GPSW06,
GVW13, BGG+14], that was proposed to mirror organizational hierarchies in ABE systems. In
a few words, DABE enables full key delegation capabilities (i.e., skf can be delegated to another
skf∧g). Connecting to the earlier scenario, an instructor for ‘course:CS101’ can delegate their se-
cret keys to generate new keys for the TAs and other instructional staff, where the access policy

∗An earlier version of this work contained a bug. In the earlier version, we incorrectly claimed an adaptively secure
delegatable attribute-based encryption with unbounded delegations.

†Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding
from the Wisconsin Alumni Research Foundation.

‡Email: saikumar@cs.wisc.edu.

for the staff can even be further restricted. Thus, this reduces the burden on the central author-
ity as it does not need to generate secret keys for all receivers. A very popular specialization of
DABE is the notion of hierarchical identity-based encryption (HIBE) [HL02, GS02]. HIBE is a
very simple DABE, where the class of supported predicates are just prefix matching predicates
(i.e., skf decrypts ctx if f is a prefix of x). There are numerous constructions for DABE (and its
specializations) in the literature [HL02, GS02, Wat05, GPSW06, GH09, Wat09, LOS+10, LW10,
DG17b, DG17a, GVW13, BGG+14, ABG+13, BCG+17].

Due to the hierarchical nature of DABE, the notion of security has to be very carefully defined.
In a few words, unlike vanilla ABE where each secret key can only be generated by the master
key authority, secret keys in DABE can be computed by any honest user and not just the master
key authority. Thus, an attacker can now not only corrupt secret keys generated by the master
key authority, but also the secret keys generated by different users as part of key delegations.
This significantly increases the scope of attackers, and makes the task of defining and proving full
security of DABE significantly more challenging than vanilla ABE.

This gap between ABE and DABE security was first pointed out by Shi and Waters [SW08],
who studied these definitional issues in the context of HIBE. Informally, Shi and Waters noted that,
in delegatable encryption systems, the right approach to capture general adversaries is to let them
initialize an arbitrary number of honest users and adaptively decide which users must be corrupted.
Moreover, this process of honest user initialization and corrupting users can be arbitrarily inter-
leaved. As an example, any reasonable security definition should capture the following attacker.
Attacker A asks the challenger to initialize key skf1 for predicate f1, then it asks it to delegate it
to skf1∧f2 , and later to skf1∧f2∧f3 or to skf1∧f4 (and so on), and meanwhile it can ask to corrupt
any subset of these initialized keys (e.g., corrupt skf1∧f2).

Since a real-world adversary should be allowed to corrupt users as above, proving full security of
DABE is significantly more challenging than ABE without delegations. Briefly, the reason is that,
in (vanilla) ABE, an attacker never initializes user keys but just directly corrupts them. Therefore,
the reduction algorithm is never required to be able to sample even a portion of a secret key that
can distinguish the challenge ciphertext. Specifically, whenever a challenger has to create a secret
key for some predicate f , in the pre-challenge query phase, then it has the guarantee that f(x∗) = 0
(i.e., f will not satisfy the challenge attribute x∗) even though the challenger does not know x∗ yet.
However, this guarantee is not available for DABE. Let us elaborate.

An adaptive attacker in DABE can ask the challenger to initialize a secret key skf for some
predicate f , but not corrupt it. It then can ask the challenger to use skf to generate one or more
delegated keys sk′1, Interestingly, an adaptive attacker can ask to corrupt these delegated keys
sk′1, . . . as long as it ensures that the challenge attribute x∗ (that it picks later) does not satisfy
the predicates corresponding to these delegated keys. The technical challenge this raises is that
if we want to design a reduction algorithm, then as a reduction algorithm we have no clue as
to whether f(x∗) will be 0 or 1. Because the adaptive attacker selects x∗ after it receives the
delegated keys, and it can choose to make f(x∗) be 0 or 1. This causes significant uncertainty
for the challenger/reduction algorithm. Concretely, each delegated key sk′1, . . . is sampled using
the same secret key skf , thus all these secret keys contain some information about skf . Now the
reduction algorithm is tasked with a job where it must answer these delegated secret key queries
in such a way that if f(x∗) = 0, then it must be able to give the attacker a secret key for skf such
that delegated secret keys look like they were generated from the same skf ; while if f(x

∗) = 1, then
the delegated keys must lose enough information about skf such that a challenger could never have

2

a created a valid key for skf .
The above uncertainty does not appear in vanilla ABE, thus a reduction algorithm can always

safely set up the system parameters in a trapdoor way such that it can answer every secret key
query. But in DABE, due to this additional power given to the adversary (in the form of asking
for delegated keys computed from a distinguishing key), it is very difficult to generalize ABE proof
techniques for proving full security for DABE. In the case of HIBE, Lewko-Waters [LW14] already
proved that full security cannot be proven (via black-box reductions) for schemes with certain
checkability properties. Given DABE is much more expressive than HIBE, thus it is safe to say
that proving full security of DABE faces even stronger barriers.

Our results. We provide a new construction for DABE for all poly-sized predicates, that can
support any constant number of delegations, from witness encryption [GGSW13]. We prove selec-
tive security of our DABE scheme by relying on statistically-sound NIZKs and perfectly-binding
commitment schemes. Moreover, we prove full security of our DABE scheme by additionally relying
on (bounded-collusion) fully-secure hierarchical functional encryption.

Related Work. Since ABE was proposed in [SW05, GPSW06], it grasped significant attention
from the community. It has been a versatile tool in constructing encrypted access control systems
[PRV12, GKP+13]. Numerous works [LOS+10, GVW13, BGG+14, Tsa19, Wee22, LLL22, HLL23,
AKY24, HLL24] constructed ABE with varying levels of security and functionality from several
cryptographic assumptions.

Delegatable ABE is a “hierarchical” variant of ABE, and there have been a few designs [GVW13,
BGG+14] of DABE with selective security. A more expressive variant of DABE is referred to
as delegatable FE [BCG+17, BS15], and is known to be nearly equivalent to vanilla FE [BW07,
KSW08, BSW11]. A less expressive variant of DABE is referred to as hierarchical IBE [HL02, GS02],
and is known to be equivalent to IBE [DG17b, DG17a] in the selective security model.

Adaptive security is very challenging problem in ABE with only few approaches. These in-
clude those based on general-purposed functional encryption [GGH+13, Wat15, ABSV15, AJS15,
AJ15, BV15], pairing-based dual-systems methodology [Wat09, LOS+10], and subset functionali-
ties [Tsa19, GLW21]. Recently, [WW24] constructed adaptive ABE for any polynomial-size policy
class from witness encryption which is weaker than functional encryption/ obfuscation.

Concurrent work. In a recent concurrent work, Goyal-Koppula-Rajasree [GKR25] also studied the
problem of adaptive security of delegatable attribute-based encryption, but their focus was on the
less expressive class of prefix predicates which is captured in the form of hierarchical IBE. They
proved existence of adaptively-secure HIBE systems under the assumption of selectively-secure
IBE.

2 Technical Overview

In this section, we provide a high-level overview of techniques we used in constructing a delegatable
ABE scheme for polynomial-size policies. We start by recalling the notion of delegatable ABE
[HL02, GS02, GPSW06, GVW13, BGG+14] as an extension of (key-policy) ABE.

Delegatable ABE. An ABE scheme consists of four algorithms — Setup,KGen,Enc,Dec. Setup
generates public parameters PP and master secret key MSK. KGen is used to generate secret keys
for policy f to create secret key SKf using MSK (this can be thought of as private delegation).

3

That is, KGen uses MSK and description of f to create SKf . Enc encrypts a message µ and an
attribute x to create a ciphertext CTx. Dec using SKf and CTx outputs µ if and only if f(x) = 1.

A delegatable ABE (DABE) scheme facilitates for public delegation on top of KGen. This is done
using Delegate algorithm that uses secret key for policy f (SKf) and description of g to generate
SKf∧g. Note that MSK is not used for this process. Naturally, Dec now reveals µ if and only if
for any f = f1 ∧ . . . ∧ fℓ, f(x) = 1 = (f1(x) = 1) ∧ . . . ∧ (fℓ(x) = 1). We now define the adaptive
security definition that we consider for DABE [SW08, BGG+14, BCG+17].

Adaptive security for DABE. The main idea in adaptive security for DABE is to protect the
ciphertexts of users from active adversaries who can create and delegate secret keys for arbitrary
policies but can only corrupt unsatisfying secret keys. That is, for a ciphertext CTx, an attacker
can create and delegate keys for arbitrary policies f . However, attacker will only corrupt SKg if
g(x) = 0.

To formulate this, we consider a game between a challenger and an attacker where the attacker
asks the challenger to generate and “Store” secret key for policy f . The attacker receives a token h
from challenger in response. Attacker can use h and g to “Delegate” secret key SKf with g to create
SKf∧g and receive a token to access this secret key. The attacker can also “Corrupt” secret key for
any policy p using the corresponding token if p(x∗) = 0 and receive SKp. The attacker in addition
will make a challenge query with (x∗, µ0, µ1) adaptively, i.e, at any point in the game. Note that
there is no admissibility criterion on f, f ∧ g. They could be satisfying queries, i.e f(x) = 1 or
f(x) = 1∧ g(x) = 1 or both. Challenger encrypts (x∗, µb) for randomly chosen b and attacker wins
if it can guess b with non-negligible probability. As mentioned in introduction, this behavior of
attacker to send x∗ after making any of the previous queries is why achieving adaptive security is
hard.

The major tool we use in our construction is witness encryption (WE). A WE scheme for an NP
language (L) can be thought of as a worst-case public-key encryption where the relation between
public and secret key is determined by an NP relation (R). In particular, in a WE scheme, we
encrypt a message (µ) using an instance inst that may or may not be part of L. The resulting
ciphertext can only be decrypted by using a witness wit such that R(inst, wit) = 1, i.e, if and
only if wit is a valid witness for the membership of inst in L. Semantic security of WE can be
argued as long as inst /∈ L. With these definitions and goals, let’s now look at construction of
ABE from WE which we use to construct our fully secure DABE scheme.

Reviewing [GGSW13]. Here, we provide an overview of the selectively-secure ABE1 from WE of
Garg-Gentry-Sahai-Waters (GGSW) [GGSW13]. The public and master secret key of their system
are a verification and signing key of a special dual-mode constrained signature scheme. Secret-key
for f , is a signature (f, σf) generated in the normal mode. In order to encrypt (x∗, µ), GGSW uses
a WE scheme for the language that requires a policy g and signature σg such that (g, σg) is a valid
signature pair and g(x) = 1.

In order to argue security, we constrain each signature to condition f(x∗) = 0 by moving to a
“trapdoor” mode of generating signatures. That is, the signatures now verify only if f(x∗) = 0.
Hence, the WE language will not be satisfiable anymore as it requires a valid signature and f(x∗) =
1. However, in GGSW x∗ needs to be declared a-priori in order to constrain the signatures. Thus,
only selective security is achievable. The signature scheme is constructed using perfectly-binding
commitment schemes (COM) and perfectly sound non-interactive zero-knowledge (NIZK) proof

1In selectively-secure ABE, x∗ is declared by attacker before receiving PP.

4

system for the following language.

PP :=
(
com(0) = Com(0; r(0)), com(1) = Com(0ℓ; r(1))

)
NIZK.L =

inst := (PP, f) :
wit := r(0) such that com(0) = Com(0; r(0))

(or)

wit := (r(1), x∗) such that com(1) = Com(x∗; r(1)) ∧ f(x∗) = 0

A bit more formally, in the construction, we generate keys for policies f using the master secret

key r(0) and the instance (PP, f), i.e, σf = πf . This is the normal mode of operation in the signature
scheme. We switch to trapdoor mode by setting com(1) = Com(x∗) and com(0) = Com(1). To argue
selective security, the flow of hybrids look as follows — (1) set com(1) to be a commitment of x∗

(2) during key generation, sample πf using the witness (r(1), x∗) (3) set com(0) to be a commitment
of 1. Thus, in the final hybrid, any valid witness for the WE language will be in the trapdoor
mode. If NIZK and Com are perfectly sound and binding, instance used in WE encryption is no
longer satisfiable because if πg verifies, it must mean that g(x∗) = 0 and the WE language requires
g(x∗) = 1 (a contradiction).

Now, we will discuss our approach in making GGSW scheme delegatable and selectively secure.
At a high level, in this approach we compose proofs on top of πf to construct a delegation chain.
We expand on this below.

Adding delegation capacity to GGSW. In order to make the GGSW ABE delegatable, we need
to first design a public delegation algorithm Delegate that uses (SKf , g) to compute delegated SKf∧g.
To the best of our knowledge, prior to this work it was not known how to design delegatable ABE
using witness encryption. Our idea is to generate a metaproof [DSY91] for the NIZK verification
language using (f,SKf := πf) as witness

2. Let us elaborate.
In the Delegate algorithm, we will use (f, πf) as witness to a NIZK language that checks if

NIZK.Verify((PP, f), πf) = 1 in the normal mode and trapdoor mode remains unchanged. The
resulting proof in conjunction with f, g will be SKf∧g (we will not include πf as part of SKf∧g).
We also modify the WE language appropriately. Specifically, the WE language is now defined
with respect to d-many NIZK languages L1, . . . ,Ld. Key generation is performed using L1 and
delegation uses L2, . . . ,Ld. Li in the normal mode checks if the NIZK proof present in the witness
verifies with respect to Li−1 for i ∈ {2, . . . , d}. Li’s trapdoor mode checks if we have r(1) such
that com(1) is a commitment of x∗ and f1 ∧ . . . ∧ fi(x

∗) = 0 for each i ∈ [d]. WE language when
provided with witness (f1, . . . , fℓ, πℓ) for some ℓ ∈ [d], checks if πℓ verifies with respect to Lℓ and

f1 ∧ . . . ∧ fℓ(x
∗)

?
= 1.

In order to argue selective security, the same ideas from GGSW flow naturally. Firstly, we can
commit x∗ as com(1) instead of 0ℓ similar to GGSW. Secondly, we move to a hybrid where we do
not generate any keys during Store or Delegate phase and push generation of proofs to Corrupt
phase by storing the delegation chain for each Corrupt query. That is, when Store query is made,
we simply note down f1 and do not generate any πf1 . Whenever the attacker asks for delegation
on top of f1, we note down the sequence of functions that f1 is delegated upon, f2, . . . , fℓ. When
Corrupt query is made for fℓ, then we generate πf1 for policy f1 under language L1, πf2 for policy
f2 under language L2, and so on. Next, in a series of hybrids, we simulate all the NIZK proofs
generated for Li for i = 1, . . . d.

2We abuse the notation with SKf = πf and SKf = (f, πf) when the context is clear.

5

At this point, we can observe two things – (1) we are no longer using r(0) anywhere in the game,
(2) we are no longer πfi to generate πfi+1

for any i ∈ [d−1]. Thus, whenever Corrupt query is made
for the policy f1∧ . . .∧fℓ for some ℓ ∈ [d], we simply simulate a NIZK proof πfℓ for the language Lℓ
and send (f1, . . . , fℓ, πfℓ) to the attacker. Finally, we can generate all NIZK proofs in the trapdoor
mode and set com(0) to be a commitment of 1. If NIZK and COM are perfectly sound and binding,
we can argue that the instance in WE is not satisfiable similar to GGSW. Full construction and
security proof is provided in Section 5.

Note that the above construction can only handle constant depth delegations as we can only com-
pose proofs constant-many times. More specifically, if size of NIZK proof |π| = poly(λ, |inst|, |wit|),
then running time of NIZK.Verify is at least poly(λ, |inst|, |wit|). When we use another proof on
top of it, size and running time of prover will grow proportional to |π|. Hence, after d many layers
of delegation, size of proof will be some poly(λ)d. Thus, we cannot delegate more that O(1) times
with this strategy.

Adaptive DABE from GGSW. Making this scheme adaptive requires some additional technical
tools. To this end, we look at the recent work of Waters-Wichs [WW24] that relied on a special
type of functional encryption (FE) system, called Mixed-FE3 [GKW18] that played an important
part in executing the dual-systems paradigm. Below, we briefly recall the definition of Mixed-FE
and how [WW24] used it to realize adaptively secure ABE from WE before circling back to using
it in our DABE scheme to realize adaptive security.

Reviewing Mixed-FE.Amixed functional encryption scheme (Mixed-FE) [GKW18] is a bounded-
collusion4 secure secret-key FE scheme. Although we know how to construct this FE from one-way
functions [SS10, GVW12, AV19], a Mixed-FE scheme has one interesting feature that makes it
non-trivial. The ciphertexts for any policy f can be generated in two modes – a private mode
using skEnc(msk, f) and a public mode using pkEnc(pp). In essence, a Mixed-FE scheme consists
of the following 5 algorithms: Setup,KGen, pkEnc, skEnc,Dec. (skEnc,KGen) of Mixed-FE work like
FE and reveal f(x). (pkEnc,KGen) always outputs 0. Security is defined as an indistinguishability
game where an attacker makes unbounded queries for ciphertexts of policies {fi}i and a single
secret key for input x adaptively5. This attacker cannot distinguish between the modes in which
ciphertexts are generated for any policy as long as ∀i, fi(x) = 0. That is,(
{mfe.ct : mfe.ct← Mix-FE.pkEnc(pp)}i

mfe.skx

)
≈c

(
{mfe.ct : mfe.ct← Mix-FE.skEnc(mfe.msk, fi)}i

mfe.skx

)
where mfe.skx ← Mix-FE.KGen(mfe.msk, x).

Adaptive ABE via Mixed-FE. We briefly provide an overview of the argument used in [WW24]
to argue adaptive security of GGSW. At a high level, in this approach, we will use, (Mix-FE.KGen,

3We point that [WW24] introduced a new notion that they refer to as functional tags, constructed them from one-way
functions, and used functional tags instead of Mixed-FE. However, we observe that functional tags are merely an
alternate approach to define a 1-query bounded version of Mixed-FE [GKW18]. We find it a bit easier to explain our
approach using the Mixed-FE framework. Moreover, we believe that viewing this abstract dual-systems technique
from the lens of Mixed-FE could be more meaningful for future work in adaptive security.

4By bounded-collusion, we mean that security is only going to hold against attackers that corrupt an a-priori bounded
number of secret keys.

5Note that [GKW18, CVW+18] proposed and constructed the “dual” notion of our Mixed-FE where indistinguishabil-
ity holds against an attacker that possesses unbounded number of secret keys and a-priori bounded (not necessarily
one) ciphertexts. In addition, their ciphertexts generated by pkEnc always output 1.

6

Mix-FE.pkEnc) in the functional system and (Mix-FE.KGen,Mix-FE.skEnc) in the semi-functional
system. The switch to semi-functional system is unnoticeable by security of Mix-FE. In a bit
more detail, in the construction, along with πf , they give out ciphertexts for Mix-FE, mfe.ctf
that are generated in the public key mode, i.e, mfe.ctf ← Mix-FE.pkEnc(pp). Along with witness
encryption ciphertext, they sample a new Mix-FE master secret key mfe.msk, generate a secret key
mfe.skx ← Mix-FE.KGen(mfe.msk, x). Normal mode of NIZK language remains the same. However,
in the trapdoor mode, we check if com(1) is a commitment of mfe.msk and mfe.ctf is generated in
the secret key mode, i.e, ∃ r such that mfe.ctf = Mix-FE.skEnc(msk, f ; r). WE language on the

other hand, checks if NIZK proof verifies, Mix-FE.Dec(mfe.skx,mfe.ctf)
?
= 0, and f(x)

?
= 1. Note

that in the construction, as mfe.ctf is generated in the public key mode, WE language is always
satisfied if f(x) = 1.

To argue adaptive security, we start by sampling mfe.msk early and switching mfe.ctf ←
Mix-FE.skEnc(mfe.msk, f) for each key generation query. At this point, we are not using mfe.msk
anywhere in NIZK language and thus this change is unnoticeable by the attacker using the se-
curity of Mix-FE. From here on we proceed similarly to GGSW and set com(1) to be a com-
mitment of mfe.msk, generate proofs in the trapdoor mode, set com(0) to be a commitment of
1. Once this happens, any valid witness for the WE language must be such that f(x) = 1 and
Mix-FE.Dec(mfe.skx,mfe.ctf) = 0. But as com(0) perfectly binds to 1 and com(1) perfectly binds to
mfe.msk, mfe.ctf must be generated in the secret key mode and thus Mix-FE.Dec reveal f(x). Here,
we reach a contradiction as we require f(x) = 0 and 1 simultaneously and thus WE instance is
unsatisfiable. Now, we will look at how to use Mix-FE to argue adaptive security of DABE described
previously.

Adaptive DABE via Mixed-FE? Using Mixed-FE similar to [WW24], it stands to reason that
we can more or less realize adaptive security readily. However, this argument is subtle and not so
straight-forward. Consider the following (erroneous) way of using Mixed-FE to realize adaptively
secure DABE from selectively secure DABE via dual-systems paradigm.

The changes to the selectively secure DABE as follows — in KGen and Delegate algorithm,
we simply generate mfe.ct ← Mix-FE.pkEnc(pp) and give this out along with the secret key. In
Enc, we sample a fresh mfe.msk, generate mfe.skx ← Mix-FE.KGen(mfe.msk, x), and give this out
along with WE ciphertext. WE language checks if NIZK verifies, Mix-FE.Dec(mfe.skx,mfe.ct) = 0,
and f1 ∧ . . . fℓ(x) = 1. Trapdoor for NIZK language Li, similar to [WW24] checks if ∃ r such
that mfe.ct = Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fi; r) and com(1) is a commitment of said mfe.msk.
As values from (Mix-FE.pkEnc,Mix-FE.KGen) always output 0, correctness still holds even for any
delegated keys.

However, we cannot argue adaptive security readily. The issue is that when we are delegating
keys, generating mfe.ctf∧g in the public key mode completely erases any dependence on the underly-
ing mfe.ctf . To see this more clearly, consider the final security hybrid — we set com(0) ← Com(1),
com(1) = Com(mfe.msk; r(1)), and each πℓ is generated in the trapdoor mode using (r(1),mfe.msk, r)
as the witness. At this point, we hope to use WE security and argue that the instance is unsatisfi-
able. However, that is not the case! A satisfying witness for the WE instance can be generated as
follows: sample πf ← NIZK.Prove(inst := (com(0), com(1),mfe.ctf), wit := (r(1),mfe.msk, r)) where
mfe.ctf = Mix-FE.skEnc(mfe.msk, f ; r) and then simply delegate (f, πf). While delegating, we gen-
erate mfe.ctf∧g ← Mix-FE.pkEnc(pp) and verify that πf is a valid witness to generate πf∧g. Note
that πf∧g does not require any secret information to generate and by generating mfe.ctf∧g in the
public key mode, we made sure that Mix-FE.Dec outputs 0 and not f ∧ g(x). Thus, if f ∧ g(x) = 1,

7

this is a valid witness for WE instance and we cannot use WE security anymore. Hence, by using
Mix-FE.pkEnc to delegate, we cannot reach the contradiction6 similar to [WW24].

In order to achieve adaptive security mfe.ctf∧g should be generated such that it contains some
information about f embedded in it and yet it is unnoticeable by the attacker as long as f(x) = 0.
Hence, we require some notion of “hierarchical” variant of mixed functional encryption in which
we have a separate Delegate algorithm that preserves information about f . That is, if Mix-FE
has a public delegation algorithm such that we can generate mfe.ctf∧g ← Delegate(mfe.ctf , g) and
Mix-FE.Dec(mfe.skx,mfe.ctf∧g) = f ∧ g(x) where mfe.ctf ← Mix-FE.skEnc(mfe.msk, f), then we can
overcome this issue. We can readily use the “hierarchical” variant’s Delegate algorithm in DABE’s
delegation algorithm to achieve adaptive security. Towards this end, we propose the notion of mixed
hierarchical functional encryption scheme and prove adaptive security of DABE using this primitive.
We briefly review the algorithms and the security definition we require from this primitive below.

Mixed Hierarchical Functional Encryption. A mixed hierarchical functional encryption
(Mixed-HFE) is the mixed notion of hierarchical functional encryption [BCG+17] where we can
generate ciphertexts in public mode using pkEnc and in secret mode using skEnc. In addition,
there is a public delegation algorithm Delegate that can be used to delegate ciphertexts7. That is,
Delegate takes mfe.ctf and function g to output mfe.ctf∧g. Similar to Mixed-FE, we require that
any mfe.ctf generated using pkEnc and mfe.skx ← Mix-HFE.KGen(msk, x) should always output
0. Moreover, any ciphertext generated as a result of delegation done on top of mfe.ctf should
also output 0. For DABE, we require a stronger notion of skEnc where this algorithm generates
ct for any sequence of policies (f1, . . . , fℓ∗). That is mfe.ctℓ∗ ← Mix-HFE.skEnc(msk, (f1, . . . , fℓ∗))
and mfe.skx should reveal f1 ∧ . . . fℓ∗(x) similar to Mixed-FE. Moreover, we also require that for
any i ∈ [ℓ∗ + 1, ℓ],mfe.cti ← Mix-HFE.Delegate(cti−1, fi), we need that Mix-HFE.Dec(skx, ctℓ) =
f1 ∧ . . . ∧ fℓ(x).

The security of Mixed-HFE we require is quite strong. Essentially, we require an attacker
to adaptively query for one secret key for x and arbitrarily-many ciphertexts in three modes —
Store,Delegate,Corrupt. These are defined similarly to DABE security definition. The attacker’s
job is to distinguish between two oracles O0 and O1. O0 on Store query generates mfe.ctf ←
Mix-HFE.pkEnc(mfe.pp) and stores it, on Delegate query performs mfe.ctf∧g ← Delegate(mfe.ctf , g),
and on Corrupt query sends mfe.ctp to the attacker. O1 on the other hand, on Store and Delegate
query, does not generate any ciphertexts and simply stores the entire delegation tree. O1 only on
the Corrupt query performs mfe.ctp ← Mix-HFE.skEnc(msk, p) where p is interpreted as a sequence
of policies (f1, . . . , fℓ). Both O0 and O1 generate mfe.skx ← Mix-HFE.KGen(mfe.msk, x) and an
admissible attacker only corrupts the policies such that f1 ∧ . . .∧ fℓ(x) = 0. We provide the formal
definition of this notion in Section 6.

Adaptive DABE via Mixed-HFE. Realizing adaptive security via Mixed-HFE is fairly straight-
forward and similar to [WW24]. We alter the Li of selective DABE to check in the normal
mode that mfe.cti of Mixed-HFE is delegated properly by additionally requiring a random r′i
such that mfe.cti = Mix-HFE.Delegate(mfe.cti−1, fi; r

′
i). In the trapdoor mode, we check com(1) =

Com(msk; r(1)) and mfe.cti = Mix-HFE.skEnc(mfe.msk, (f1, . . . , fi)). WE language now checks for

6A prior version of this work made this exact error and incorrectly claimed that using WE, there exists a DABE
scheme with unbounded delegations.

7Note that in regular definition of hierarchical functional encryption, delegation is done on secret keys. However, for
DABE, we require the ability to delegate on ciphertexts generated over functions.

8

any witness of the format (f1, . . . , fℓ, πℓ,mfe.ctℓ) that πℓ verifies with respect to Lℓ, Mix-HFE.Dec(

mfe.ctℓ,mfe.skx)
?
= 0 and f1 ∧ . . . ∧ fℓ(x)

?
= 1.

In the construction as all mfe.ct1 are generated using the pkEnc and delegated appropriately,
correctness holds. In order to argue adaptive security, we proceed similarly to selective version
where we delay generation of NIZK proofs to Corrupt phase and simulate all NIZKs. Now, as
neither delegation randomness r′ nor mfe.msk is present in the view of attacker anywhere, we
can switch to skEnc mode of Mixed-HFE and generate mfe.cti only when Corrupt query is made
using Mix-HFE.skEnc(mfe.msk, (f1, . . . , fℓ)). This change remains unnoticeable by the attacker by
security of Mixed-HFE. Then, we change com(1) = Com(mfe.msk; r(1)), generate NIZKs in the
trapdoor mode, and set com(0) ← Com(1). Now, as com(0) is perfectly binding to 1, com(1) is
perfectly binding to mfe.msk, any satisfying WE witness (f1, . . . , fℓ, πℓ,mfe.ctℓ) must contain an ℓ∗

such that mfe.ctℓ∗ ← Mix-HFE.skEnc(mfe.msk, (f1, . . . , fℓ∗)) and for each i ∈ [ℓ∗ + 1, ℓ],mfe.cti ←
Mix-HFE.Delegate(mfe.cti−1, fi). Thus, Mix-HFE.Dec(mfe.skx,mfe.ctℓ) = f1 ∧ . . . ∧ fℓ(x). Thus, we
reach the same contradiction as [WW24] and can use WE security as the instance is unsatisfiable.
Full construction and proof are provided in Section 7. Note that the same constant-depth delegation
restriction to this construction as well.

3 Preliminaries

Notation. By PPT we denote probabilistic polynomial-time. We denote the security parameter
by λ and the set of positive integers by N. For any a, b ∈ {0} ∪ N, a ≤ b, we denote by [a, b], the
set of all integers from a to b including a and b. In other words, [a, b] = {a, . . . , b}. We denote by

[n] := [1, n]. If a > b, then [a, b] should be interpreted as an empty set. We denote by x
$←− X , the

process of sampling an element x from the set X , with uniform probability. Similarly, for any PPT
algorithm A, x← A(y) denotes the process of sampling x from the output distribution of A when
run on y. By negl(·), we denote negligible functions. By poly(·), we denote positive polynomials.

We say that two efficiently samplable probability distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any non-uniform PPT distinguisher D = {Dλ}λ∈N, and
for large enough λ ∈ N,∣∣∣∣ Pr

α←Xλ

[
1← D(1λ, α)

]
− Pr

α←Yλ

[
1← D(1λ, α)

]∣∣∣∣ ≤ negl(λ)

For all preliminaries below, µ ∈ {0, 1}∗. Note that for encryption schemes we can use hybrid
encryption to encrypt messages of arbitrary length.

3.1 Statistically Binding Commitments

Syntax. A statistically binding commitment scheme (COM) consists of the following polynomial
time algorithms.

Setup(1λ)→ crs. The probabilistic setup algorithm takes as input security parameter λ and outputs
a common reference string crs. The following algorithms take crs implicitly.

Com(µ; r)→ com. The probabilistic commitment algorithm takes as input message µ, randomness
r, and outputs commitment value com.

9

Definition 3.1 (COM). A COM scheme (Setup,Com) is said to be a COM scheme if it satisfies
the following properties.

Computational Hiding. For any stateful PPT adversary A, there exists a negligible function
negl(·) such that ∀ λ ∈ N,∣∣∣Pr [0← AO0(·,·)(crs)

]
− Pr

[
0← AO1(·,·)(crs)

]∣∣∣ ≤ negl(λ)

where crs← Setup(1λ) and Ob(µ0, µ1) responds with com← Com(crs, µb) for b ∈ {0, 1}.

Statistical Binding. There exists negl(·) such that ∀ λ ∈ N,

Pr

[
com = Com(µ0; r0) ∧ com = Com(µ1; r1) :

crs← Setup(1λ),
∃ (com, µ0, µ1, r0, r1)

]
≤ negl(λ)

where probability is taken on the randomness of crs.

3.2 Non-Interactive Zero-Knowledge Proofs

Syntax. A non-interactive zero-knowledge proof system (NIZK) for Ls = {x : ∃ w,Rs(x,w) = 1}
consists of the following polynomial time algorithms.

Setup(1λ, 1s)→ crs. The probabilistic setup algorithm takes as input security parameter λ, lan-
guage index s, and outputs a common reference string crs. The following algorithms take crs
implicitly.

Prove(x,w)→ π. The probabilistic proving algorithm takes as input instance x ∈ L, witness w,
and outputs proof π.

Verify(x, π)→ 0/1. The deterministic verification algorithm takes as input instance x, proof π, and
outputs 0 (reject) or 1 (accept).

Definition 3.2 (NIZK). A NIZK scheme (Setup,Prove,Verify) is said to be a NIZK scheme for
language Ls if it satisfies the following properties.

Correctness. ∀ λ ∈ N, x ∈ L, Pr[1 = Verify(x, π) : crs← Setup(1λ, 1s), π ← Prove(x,w)] = 1.

Statistical Soundness. There exists a negligible function negl(·) such that ∀ λ ∈ N, s = s(λ), x /∈
Ls, ∀ π, Pr[1 = Verify(x, π) : crs← Setup(1λ, 1s),∃ π] ≤ negl(λ).

Computational Zero Knowledge. For any admissible adversary A, there exists a stateful sim-
ulator Sim such that ∀ λ ∈ N, s = s(λ),∣∣∣∣Pr [1← AO0(·,·)(1λ, crs) : crs← Setup(1λ, 1s)

]
−

Pr
[
1← AO

Sim(·)
1 (·,·)(1λ, crs) : crs← Sim(1λ, 1s)

] ∣∣∣∣ ≤ negl(λ)

where O0 uses π ← Prove(x,w) and O1 uses π ← Sim(x) to respond to A’s queries of the form
(x,w). A stateful PPT machine is said to be admissible if for each of its queries, Rs(x,w) = 1.

10

3.3 Witness Encryption

Syntax. A witness encryption (WE) scheme for language Ls = {x : ∃ w,Rs(x,w) = 1} consists
of the following polynomial time algorithms.

Enc(1λ, 1s, x, µ)→ CT. The probabilistic encryption algorithm takes as input the security param-
eter λ, language index s, instance x ∈ Ls, a message µ, and outputs a ciphertext CT.

Dec(CT, w)→ µ′. The deterministic decryption algorithm takes as input a ciphertext CT, a witness
w, and outputs a message µ′.

Definition 3.3 (WE). A WE scheme (Enc,Dec) is said to be a WE scheme for language Ls if it
satisfies the following properties.

Correctness. ∀ λ ∈ N, µ, x ∈ Ls, if Rs(x,w) = 1,Pr[µ = Dec(CT, w) : CT← Enc(1λ, 1s, x, µ)] = 1.

Semantic Security. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀ λ ∈ N, x ̸∈ L, |µ0| = |µ1|,

Pr

[
b← A(CT) : (1s, µ0, µ1)← A(1λ), b

$←− {0, 1},
CT← Enc(1λ, 1s, x, µb)

]
≤ 1

2
+ negl(λ)

4 Delegatable Attribute-Based Encryption

In this section, we provide the definition of a delegatable ABE (DABE) scheme.

Syntax. A DABE scheme for the policy class F = {Fn(λ),s(λ)}λ∈N consists of the following poly-
nomial time algorithms.

Setup(1λ, 1d, 1n, 1s)→ (PP,MSK). The probabilistic setup algorithm takes as input security param-
eter λ, maximum delegation depth d, maximum attribute length n = n(λ), maximum policy
size s = s(λ), outputs public parameters PP and master secret key MSK. The following
algorithms take PP implicitly.

KGen(MSK, f)→ SKf . The possibly randomized key generation algorithm takes as input master
secret key MSK, policy f ∈ Fn,s, and outputs secret key SKf .

Enc(x, µ)→ CTx. The probabilistic encryption algorithm takes attribute x ∈ {0, 1}n, message µ ∈
{0, 1}∗, and outputs ciphertext for attribute x,CTx.

Delegate(SKf , g)→ SKf∧g. The possibly randomized delegation algorithm takes as input a secret
key for policy f, SKf , policy g and outputs a secret key for the policy f ∧ g,SKf∧g.

Dec(SKf ,CT)→ µ′/⊥. The deterministic decryption algorithm takes as input secret key for policy
f , ciphertext for attribute x,CTx, and outputs message µ′ or aborts and outputs ⊥.

Definition 4.1 (Delegatable ABE). A DABE scheme (Setup,KGen,Enc,Dec,Delegate) is said to
be a DABE scheme for Fn,s if it satisfies the following properties.

11

Correctness. There exists a negligible function negl(·) such that for any λ ∈ N, positive polynomial
n = n(λ), s = s(λ), f ∈ Fn,s, x ∈ {0, 1}n,

Pr

 f(x) = 1 ∧
µ = Dec(SKf ,CTx)

:
(PP,MSK)← Setup(1λ, 1d, 1n1s),
SKf ← KGen(MSK, f),
CTx ← Enc(x, µ)

 ≥ 1− negl(λ)

Pr

 f(x) = 0 ∧
⊥ = Dec(SKf ,CTx)

:
(PP,MSK)← Setup(1λ, 1d, 1n1s),
SKf ← KGen(MSK, f),
CTx ← Enc(x, µ), f(x) = 0

 ≥ 1− negl(λ)

Delegation Correctness. This is defined similarly to correctness. Except that the policy f can
now be parsed as (f1 ∧ . . .∧ fℓ) for some ℓ ∈ [d] where delegation depth d = d(λ) is a positive
polynomial. Here, SKf is defined as follows —

SKf1 ← KGen(MSK, f1) and for i ∈ [2, ℓ], SKf1∧...∧fi ← Delegate(SKf1∧...∧fi−1
, fi)

Dec with high probability now outputs ⊥ if for any i ∈ [ℓ], fi(x) = 0 and µ otherwise.

Adaptive Security. For any admissible PPT adversary, there exists a negligible function negl(·)
such that ∀ λ ∈ N,∣∣∣∣∣∣∣∣∣Pr

 |µ0| = |µ1| ∧
b← AO(·,·)(CT) :

(1d, 1n, 1s)← A(1λ),
(PP,MSK)← Setup(1λ, 1d, 1n, 1s),

(x∗, µ0, µ1)← AO(·,·)(PP),
b

$←− {0, 1},CT← Enc(x∗, µb)

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ negl(λ)

where O is a stateful oracle that initiates h := 1 and answers these queries:

(Store, f)→ h. A sends policy f . O samples SKf ← KGen(MSK, f), stores (SKf , h,⊥), and
sends with h to A. Also, update h := h+ 1.

(Delegate, (h′, g))→ h. A sends handle h′ and policy g. If there is no tuple of the form
(SKf , h

′, ∗), output⊥. Otherwise, O samples SKf∧g ← Delegate(SKf , g), stores (SKf∧g, h,
h′) and sends h to A. Also, update h := h+ 1.

(Corrupt, h′)→ SKf . A sends handle h′. If there is no tuple of the form (SKf , h
′, ∗), output

⊥. Otherwise, send SKf to A.

A stateful PPT machine A is said to be admissible if for any Corrupt query made by A, SKf

is for a policy such that f(x∗) = 0.

Definition 4.2 (Selectively secure DABE). A DABE scheme (Setup,KGen,Enc,Delegate,Dec) is
said to be a selectively secure DABE scheme for policy class Fn,s if in the above security game, the
challenge attribute x∗ is declared a-priori by A even before receiving PP.

12

5 Selectively Secure DABE with Bounded Delegations from Wit-
ness Encryption

In this section, we provide the construction of a selectively secure DABE scheme with bounded
delegations.

Construction 5.1 (DABE). We provide the construction of a selectively secure DABE scheme
with bounded d-many delegations (Definition 4.2) for any family of polynomial-size policies using
the following components:

• A statistically-sound NIZK scheme (Definition 3.2) for languages L1, . . . ,Ld (Figure 1, 2
resp.).

• A WE scheme (Definition 3.3) for language LWE (Figure 3).

• A statistically-binding COM scheme (Definition 3.1).

Language L1

Instance: com.crs, com(0), com(1), f
Witness: r(0), r(1), x∗

Relation: Output 1 if and only if ϕ1∨ (ϕ2∧ϕ3) = 1 where,

– ϕ1 : com(0) ?
= Com(com.crs, 0; r(0))

– ϕ2 : com(1) ?
= Com(com.crs, x∗; r(1))

– ϕ3 : f(x∗)
?
= 0.

Figure 1: Description of L1

Language Li for i ∈ [2, d]

Instance: nizk.crsi−1, com.crs, com(0), com(1), f1, f2, . . . , fi
Witness: πi−1, r

(1), x∗

Relation: Output 1 if and only if ϕ1 ∨ (ϕ2 ∧ ϕ3) = 1 where,

– ϕ1 : 1
?
= NIZK.Verify(nizk.crsi−1, (com.crs, com(0), com(1), f1, . . . , fi−1), πi−1).

– ϕ2 : com(1) ?
= Com(com.crs, x∗; r(1))

– ϕ3 : f1 ∧ . . . ∧ fi(x
∗)

?
= 0.

Figure 2: Description of L2, . . . ,Ld

13

Language LWE

Instance: nizk.crs1, . . . , nizk.crsd, com.crs, com(0), com(1), n, s, x
Witness: f1, . . . , fℓ, πℓ for some ℓ ∈ [d].
Relation: Output 1 if and only if,

1. If ℓ = 1, 1
?
= NIZK.Verify(nizk.crs1, (com.crs, com(0), com(1), f1), π1). Otherwise,

1
?
= NIZK.Verify(nizk.crsℓ, (nizk.crsℓ−1, com.crs, com(0), com(1), f1, . . . , fℓ), πℓ).

2. 1
?
= f1(x) ∧ . . . ∧ fℓ(x)

Figure 3: Description of LWE

Setup(1λ, 1d, 1n, 1s). Sample nizk.crsi ← NIZKi.Setup(1
λ) for i ∈ [d]. In addition, sample com.crs←

COM.Setup(1λ). Compute com(0) = Com(0; r(0)) and com(1) = Com(0n; r(1)) where r(0), r(1)
$←−

{0, 1}λ.
Set PP := (nizk.crs1, . . . , nizk.crsd, com.crs, com(0), com(1), n, s) and MSK := r(0). Output
(PP,MSK).

KGen(MSK, f). Parse MSK as r(0). Compute πf ← NIZK.Prove(nizk.crs1, inst, wit) where inst :=

(com.crs, com(0), com(1), f), wit := (r(0), 0)8. Output SKf := (f, πf).

Enc(x, µ). Sample we.ct←WE.Enc(1λ, inst, µ) where inst := (PP, x). Output CTx := (x,we.ct).

Delegate(SKf , g). Parse SKf as (f1, . . . , fℓ, πℓ) for some ℓ ∈ [d− 1].

Sample πℓ+1 ← NIZK.Prove(nizk.crsℓ+1, inst, wit) where inst := (nizk.crsℓ, com.crs, com(0),
com(1), f1, . . . , fℓ, g), wit := (πℓ, 0). Output SKf∧g := (f1, . . . , fℓ, g, πℓ+1).

Dec(SKf ,CTx). Parse SKf as (f1, . . . , fℓ, πℓ) for some ℓ ∈ [d] and CTx as (x,we.ct). If fi(x) = 0 for

any i ∈ [ℓ], abort and output ⊥. Otherwise, output µ′ := WE.Dec(we.ct,SKf).

Correctness. The correctness of the construction follows from the correctness of WE, NIZK,
and COM. Since com(0) = Com(0; r(0)) for some r(0), we have by correctness of NIZK and COM,
NIZK.Verify(nizk.crs1, (com.crs, com(0), com(1), f)), π1) = 1. Hence, if f(x) = 1, we have by correct-
ness of WE, µ′ = µ.

Delegation Correctness. We argue this by induction on ℓ ∈ [d]. When ℓ = 1, its the same as
correctness property. Consider ℓ = 2. We have that SKf∧g = (f, g, π2). If SKf was generated using
KGen, we have that NIZK.Verify(nizk.crs1, (com, com(0), com(1), f), π1) = 1 (from correctness prop-
erty). Hence, NIZK.Verify(nizk.crs2, inst2, π2) = 1 for inst2 = (nizk.crs1, com.crs, com(0), com(1), f,
g). Hence, by correctness of WE if (f ∧ g)(x) = 1, i.e, f(x) = 1 ∧ g(x) = 1, we have that µ′ = µ.

For the induction step, assume that delegation correctness holds for some k ∈ [d − 1] lev-
els of delegation. And assume that f1 ∧ . . . ∧ fk(x) = 1 and g(x) = 1. Arguing similarly
as above, NIZK.Verify(nizk.crsk+1, instk+1, πk+1) = 1. This is because by induction hypothesis,

8By 0, we mean a zero string of sufficient length.

14

∀ i ∈ [2, k],NIZK.Verify(nizk.crsi, (nizk.crsi−1, com.crs, com(0), com(1), f1, . . . , fi), πi) = 1. Thus, by
WE correctness, µ′ = µ.

Delegation Depth. It is clear from the description of L1 that NIZK1.Verify runs in poly(λ, n, s)
time. Hence, running time NIZK2.Verify that depends on the circuit NIZK1.Verify is poly(λ, n, s,
poly(λ, n, s)). Proceeding this way, running time of NIZKd.Verify is at most poly(λ, n, s)O(d). Hence,
for decryption to be efficient, we require the LWE to be efficiently verifiable. Thus d = O(1).
Moreover, running times of Delegate and Enc in the worst case are bounded by poly(λ, n, s)O(d).

5.1 Security Analysis

In this section, we prove that Construction 5.1 satisfies selective security as defined in Definition 4.2.
Specifically, we prove the following theorem.

Theorem 5.2. If WE is a WE scheme for LWE (Definition 3.3), COM is a COM scheme (Defi-
nition 3.1), NIZK1, . . .NIZKd are statistically-sound NIZK schemes for L1, . . . ,Ld (Definition 3.2),
then Construction 5.1 is a selectively secure DABE scheme (Definition 4.2) for polynomial-size
policies.

Proof. We prove this theorem using the following experiments and lemmas.

ExptA,b0 (1λ). This is the honest experiment with O where either b = 0/1.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0n; r(1)), nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Sample πf ← NIZK1.Prove(nizk.crs1, inst, wit) where inst = (com.crs, com(0),
com(1), f), wit = (r(0), 0). Set SKf = (f, πf). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf as (f1, . . . , fℓ, πℓ). Sample πℓ+1 ← NIZKℓ+1.Prove(nizk.crsℓ+1, inst, wit) where inst =
(nizk.crsℓ, com.crs, com(0), com(1), . . . , fℓ, g), wit = (πℓ, 0).

Set SKf∧g = (. . . , fℓ, g, πℓ+1). Send h to A. Store (SKf∧g, h, h
′) and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

15

ExptA,b1 (1λ). In this hybrid, we set com(1) to be a commitment of x∗. The changes are highlighted
in red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store, Delegate, Corrupt. Same as ExptA,b0 (1λ).

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b2 (1λ). In this experiment we delay generation of all NIZK proofs to corrupt phase. Changes
are highlighted in red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), nizk.crsi ← NIZKi.Setup1

λ) for i ∈ [d]. Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. Let
ℓ′ < ℓ be the largest value such that (∗, hℓ′ , ∗)-th entry contains a NIZK proof.

If no such ℓ′ exists, sample π1 ← NIZK1.Prove(nizk.crs1, inst1, wit1). For each i ∈ [2, ℓ],
sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for h1, . . . , hℓ with the corre-
sponding proofs. That is, set hi-th entry as ((f1, . . . , fi, πi), hi, hi−1) for i ∈ [2, ℓ] and h1-th
entry as ((f1, π1), h1,⊥).
Otherwise, for each i ∈ [ℓ′ + 1, ℓ], sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update
entries for hℓ′+1, . . . , hℓ with the corresponding proofs.

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). wit1 = (r(0), 0) and witi = (πi−1, 0).

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

16

ExptA,b3,j (1
λ) for j ∈ [d+ 1]. In this experiment we simulate the NIZK proofs for the first j − 1

NIZK instantiations. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Sim(1λ). Otherwise, nizk.crsi ←
NIZKi.Setup(1

λ). Set PP = (nizk.crs1, . . . , nizk.crsd, com.crs, com(0), com(1), n, s), MSK := r(0).
Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. Let
ℓ′ < ℓ be the largest value such that (∗, hℓ′ , ∗)-th entry contains a NIZK proof.

If no such ℓ′ exists, for i ∈ [ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise, sample
πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for h1, . . . , hℓ with the corresponding
proofs. That is, set hi-th entry as ((f1, . . . , fi, πi), hi, hi−1) for i ∈ [2, ℓ] and h1-th entry as
((f1, π1), h1,⊥).
Otherwise, for each i ∈ [ℓ′ + 1, ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise,
sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for hℓ′+1, . . . , hℓ with the
corresponding proofs.

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). wit1 = (r(0), 0) and witi = (πi−1, 0).

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b4 (1λ). In this experiment we do not generate a chain of metaproofs anymore. We simply
simulate the last proof in the chain during the Corrupt query. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), nizk.crsi ← NIZKi.Sim(1λ) for i ∈ [d]. Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

17

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d].
Sample πℓ ← NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b5,j (1
λ) for j ∈ [d+ 1]. In this experiment we generate NIZK proofs using r(1), x∗ as the

witness for the first j − 1 NIZK instantiations. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Setup(1

λ). Otherwise, nizk.crsi ←
NIZKi.Sim(1λ). Set PP = (nizk.crs1, . . . , nizk.crsd, com.crs, com(0), com(1), n, s), MSK := r(0).
Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. If
ℓ < j, πℓ ← NIZKℓ.Prove(nizk.crsℓ, instℓ, witℓ). Otherwise, πℓ ← NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). witi = (0, r(1), x∗) for i ∈ [d].

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b6 (1λ). In this experiment we set com(0) as a commitment of 1. Changes are highlighted in
red.

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(1; r(0)), com(1) =
Com(x∗; r(1)), nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s). Initiate h to 1. Send PP to A.

• Store, Delegate, Corrupt. Same as ExptA,b5,d+1(1
λ).

18

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b7 (1λ). In this experiment, we encrypt all zero string using WE. This experiment is inde-
pendent of b. Changes are highlighted in red.

• Setup, Store, Delegate, Corrupt. Same as ExptA,b6 (1λ).

• Encryption. A sends µ0, µ1. Sample we.ct ← WE.Enc(1λ, instWE, 0
|µb|) where instWE =

(PP, x). Send (x,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

Notation. Let A be an admissible adversary in the DABE security definition. By pAi(,j) we denote

the probability of b′ = b in the experiment ExptA,bi(,j)(1
λ). That is pAi(,j) := Pr

[
b← ExptA,bi(,j)(1

λ)
]
.

Lemma 5.3. Assuming that COM satisfies computational hiding property, for any admissible
adversary A, there exists a negligible function negl(·) such that

∣∣pA0 − pA1
∣∣ ≤ negl(λ).

Proof. Assume that there exists an adversary A such that
∣∣pA0 − pA1

∣∣ = ϵ(λ) for some non-negligible
ϵ(·). We will construct a reduction adversary B that can break the computational hiding property
of COM. The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s, x∗. Receive com.crs from O. Compute com(0) = Com(0; r(0)). Send
(0n, x∗) to O to receive com(1). Sample nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Set PP =
(nizk.crs1, . . . , nizk.crsd, com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to
A.

• Store, Delegate, Corrupt. Same as ExptA,b0 (1λ).

• Encryption. Sample b
$←− {0, 1}. A sends µ0, µ1. Sample we.ct ← WE.Enc(1λ, instWE, µb)

where instWE = (PP, x). Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A outputs b′. If b = b′, output 0. Otherwise output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O commits
to 0n, B simulates ExptA,b0 (1λ) and if O commits to x∗, B behaves like ExptA,b1 (1λ). Hence, B is a
valid adversary against the computational hiding property of COM that can break its security with
probability ϵ(λ). Thus, ExptA,b0 (1λ) and ExptA,b1 (1λ) are computationally indistinguishable.

Lemma 5.4. For any admissible adversary A, pA1 = pA2 .

19

Proof. Note that all that’s changed is we are delaying KGen and Delegate procedures to Corrupt
query. Rest all is done similarly to Store,Delegate queries. There are 3 cases to consider —

• None of the keys for f1, . . . , fℓ are generated. In this case, we start from the root node using
Store and keep on running Delegate procedure to get the final key.

• There exists 1 < ℓ′ < ℓ such that key for f1 ∧ . . . ∧ fℓ′ is generated. In this case, keep on
delegating like in Delegate procedure to generate final key but using NIZKi.Prove.

• A requested key for f1 ∧ . . . ∧ fℓ′ when we have a key for f1 ∧ . . . ∧ fℓ with ℓ > ℓ′ ≥ 1. In this
case, we already generated πℓ previously. This forms a key for the required policy.

Hence, these two experiments are identical. Thus, lemma follows.

Lemma 5.5. For any admissible adversary A, pA2 = pA3,1.

Proof. In ExptA,b3,1 (1
λ), we are not simulating any NIZK instantiations. Hence, both experiments

are identical. Thus, the lemma follows.

Lemma 5.6. For any j ∈ [d], assuming that NIZKj satisfies adaptive computational zero-knowledge
property, for any admissible adversary A, there exists a negligible function negl(·) such that∣∣∣pA3,j − pA3,j+1

∣∣∣ ≤ negl(λ).

Proof. Assume that there exists admissible adversary A such that
∣∣∣pA3,j − pA3,j+1

∣∣∣ = ϵ(λ) for some

j ∈ [d] and non-negligible ϵ(·). We will construct a reduction adversary B that can break the
adaptive computational zero-knowledge property of NIZKj . The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Sim(1λ). Otherwise, if i = j, receive
nizk.crsj from O. Otherwise, nizk.crsi ← NIZKi.Setup(1

λ). Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. Let
ℓ′ < ℓ be the largest value such that (∗, hℓ′ , ∗)-th entry contains a NIZK proof.

If no such ℓ′ exists, for i ∈ [ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise, if i = j,
send (insti, witi) toO to receive πi. Otherwise, sample πi ← NIZKi.Prove(nizk.crsi, insti, witi).
Update entries for h1, . . . , hℓ with the corresponding proofs. That is, set hi-th entry as
((f1, . . . , fi, πi), hi, hi−1) for i ∈ [2, ℓ] and h1-th entry as ((f1, π1), h1,⊥).
Otherwise, for each i ∈ [ℓ′+1, ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise, if i = j,
send (insti, witi) toO to receive πi. Otherwise, sample πi ← NIZKi.Prove(nizk.crsi, insti, witi).
Update entries for hℓ′+1, . . . , hℓ with the corresponding proofs.

20

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). wit1 = (r(0), 0) and witi = (πi−1, 0).

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A outputs b′. If b = b′, output 0. Otherwise, output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
uses (NIZKj .Setup,NIZKj .Prove), B simulates ExptA,b3,j (1

λ) and if O use NIZKj .Sim, B behaves like

ExptA,b3,j+1(1
λ). Hence, B is a valid adversary against the adaptive computational zero-knowledge

property of NIZKj that can break its security with probability ϵ(λ). Thus, ExptA,b3,j (1
λ) and

ExptA,b3,j+1(1
λ) are computationally indistinguishable.

Lemma 5.7. For any admissible adversary A, pA3,d+1 = pA4 .

Proof. In both ExptA,b3,d+1(1
λ) and ExptA,b4 (1λ), πℓ and πℓ+1 are completely unrelated for any

ℓ ∈ [d+1]. Thus, it wouldn’t matter whether all proofs are generated or only the final proof in the
chain is generated. Thus, the lemma follows.

Lemma 5.8. For any admissible adversary A, pA4 = pA5,1.

Proof. In ExptA,b5,1 (1
λ), we do not stop simulating NIZK instantiations. Hence, both experiments

are identical. Thus, the lemma follows.

Lemma 5.9. For any j ∈ [d], assuming that NIZKj satisfies adaptive computational zero-knowledge
property, for any admissible adversary A, there exists a negligible function negl(·) such that∣∣∣pA5,j − pA5,j+1

∣∣∣ ≤ negl(λ).

Proof. Assume that there exists admissible adversary A such that
∣∣∣pA5,j − pA5,j+1

∣∣∣ = ϵ(λ) for some

j ∈ [d] and non-negligible ϵ(·). We will construct a reduction adversary B that can break the
adaptive computational zero-knowledge property of NIZKj . The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s, x∗. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(x∗; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Setup(1

λ). Otherwise, if i = j, receive
nizk.crsi from O. Otherwise, nizk.crsi ← NIZKi.Sim(1λ). Set PP = (nizk.crs1, . . . , nizk.crsd,
com.crs, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

21

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. If
ℓ < j, πℓ ← NIZKℓ.Prove(nizk.crsℓ, instℓ, witℓ). Otherwise, if ℓ = j, send (insti, witi) to O
to receive πℓ. Otherwise, πℓ ← NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs, com(0), com(1), f1) and insti = (nizk.crsi−1, com.crs, com(0), com(1),
f1, . . . , fi). witi = (0, r(1), x∗) for i ∈ [d].

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends µ0, µ1. Sample we.ct←WE.Enc(1λ, instWE, µb) where instWE = (PP, x).
Send CT = (x∗,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A sends b′. If b = b′, output 0. Otherwise, output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O uses
(NIZKj .Setup,NIZKj .Prove), B simulates ExptA,b5,j+1(1

λ) and if O use NIZKj .Sim, B behaves like

ExptA,b5,j (1
λ). Hence, B is a valid adversary against the adaptive computational zero-knowledge

property of NIZKj that can break its security with probability ϵ(λ). Thus, ExptA,b5,j (1
λ) and

ExptA,b5,j+1(1
λ) are computationally indistinguishable.

Lemma 5.10. Assuming that COM satisfies computational hiding property, for any admissible

adversary A, there exists a negligible function negl(·) such that
∣∣∣pA5,d+1 − pA6

∣∣∣ ≤ negl(λ).

Proof. Note that in both ExptA,b5,d+1(1
λ) and ExptA,b6 (1λ), we no longer use r(0) anywhere. Thus,

we can readily construct a reduction to computational hiding property of COM. The proof of this
lemma is similar to proof of Lemma 5.3.

Lemma 5.11. Assuming the semantic security property of WE, for any admissible adversary A,
there exists a negligible function negl(·) such that

∣∣pA6 − pA7
∣∣ ≤ negl(λ)

Proof. In experiments ExptA,b6 (1λ) and ExptA,b7 (1λ), instWE = (nizk.crs1, . . . , nizk.crsd, com.crs,
com(0), com(1), n, s, x) is unsatisfiable with high probability. Assume that there is witWE = (f1, . . . ,
fℓ, πℓ) for some ℓ ∈ [d] such that WE.R(instWE, witWE) = 1. Then as com(0) is a statistically
binding commitment of 1 and com(1) is a statistically binding commitment of x∗, there must exist
an ℓ∗ ∈ [ℓ] such that f1 ∧ . . . ∧ fℓ∗(x

∗) = 0. But as WE.R(instWE, witWE) = 1, it also means
that f1 ∧ . . . ∧ fℓ∗(x∗) = 1 which is a contradiction. Hence, with high probability due to statistical
soundness of NIZK1, . . . ,NIZKd, we have that LWE is an empty language. Thus, we can use the
semantic security of WE to switch µb to 0|µb|. Any PPT adversary that can notice this switch can
be easily reduced to break semantic security of WE.

Note that the ciphertext in ExptA,b7 (1λ) is independent of b. Thus pA7 = 1
2 . Hence, security of

Construction 5.1 follows.

22

6 Mixed Hierarchical Functional Encryption

In this section, we formally define a mixed hierarchical functional encryption scheme (Mixed-HFE)
that is sufficient to realize adaptively secure delegatable attribute-based encryption scheme. As
mentioned in Section 2, a Mixed-HFE scheme is an extension of mixed functional encryption scheme
[GKW18] with the capacity to delegate ciphertexts.

Syntax. A mixed hierarchical functional encryption scheme (Mixed-HFE) for any polynomial-size
policies consists of the following polynomial-time algorithms.

Setup(1λ, 1n, 1s)→ PP. The probabilistic setup algorithm takes as input security parameter λ,
input size n, and outputs public parameters PP. The following algorithms take PP implicitly.

Gen(PP)→ MSK. The probabilistic master key generation algorithm takes as input public param-
eters PP and outputs master secret key MSK.

KGen(MSK, x)→ SKx. The possibly randomized key generation algorithm takes as input master
secret key MSK, maximum policy size s, input x, and outputs secret key SKx.

skEnc(MSK, f1, . . . , fℓ)→ CT. The probabilistic secret key delegation encryption algorithm takes
as input master secret key MSK, policies f1, . . . , fℓ, and outputs ciphertext CT.

pkEnc(PP)→ CT. The probabilistic public-key encryption outputs ciphertext CT.

Delegate(CT, g)→ CT′. The probabilistic delegation algorithm takes as input a ciphertext CT for
some sequence of policies f1, . . . , fℓ, policy g, and outputs a ciphertext CT′ for policies
f1, . . . , fℓ, g.

Dec(SKx,CT)→ 0/1. The deterministic decryption algorithm takes as input secret key SKx, ci-
phertext for some sequence of policies f1, . . . , fℓ, CT, and outputs either 0 or 1.

Definition 6.1 (Mixed-HFE). A Mix-HFE scheme (Setup,KGen, skEnc, pkEnc,Delegate,Dec) is said
to be a Mixed-HFE scheme for policy class F = {Fn(λ))}λ∈N if it satisfies the following properties.

Public Correctness. There exists a negligible function negl(·) such that for any λ ∈ N, positive
polynomial s = s(λ), n = n(λ), ℓ = ℓ(λ), input x ∈ {0, 1}n, and any policies f1, . . . , fℓ such
that size of f1 ∧ . . . ∧ fℓ is at most s and each policy takes n-bit inputs,

Pr

 0 = Dec(SKx,CT) :
PP← Setup(1λ, 1n, 1s),MSK← Gen(PP),
SKx ← KGen(MSK, x),
CT← pkEnc(PP)

 ≥ 1− negl(λ)

Pr

 0 = Dec(SKx,CTℓ) :

PP← Setup(1λ, 1n, 1s),MSK← Gen(PP),
SKx ← KGen(MSK, x),
CT1 ← pkEnc(PP),
∀ i ∈ [2, ℓ],CTi ← Delegate(CTi−1, fi)

 ≥ 1− negl(λ)

23

Secret Correctness. There exists a negligible function negl(·) such that for any λ ∈ N, positive
polynomial s = s(λ), n = n(λ), ℓ = ℓ(λ), input x ∈ {0, 1}n, and policies f1, . . . , fℓ such that
size of f1 ∧ . . . ∧ fℓ is at most s and each take n-bit inputs, and any ℓ∗ ∈ [ℓ],

Pr

 f1 ∧ . . . ∧ fℓ(x) =
Dec(SKx,CTℓ)

:

PP← Setup(1λ, 1n, 1s),MSK← Gen(PP),
SKx ← KGen(MSK, x),
CTℓ∗ ← skEnc(MSK, f1, . . . , fℓ∗),
∀ i ∈ [ℓ∗ + 1, ℓ],CTi ← Delegate(CTi−1, fi)

 ≥ 1− negl(λ)

Mode Indistinguishability. For any admissible PPT adversary A, there exists a negligible func-
tion negl(·) such that ∀ λ ∈ N,∣∣∣∣Pr [b← ExptAb (1

λ) : b
$←− {0, 1}

]
− 1

2

∣∣∣∣ ≤ negl(λ)

where ExptAb (1
λ) is defined as follows:

• Setup. A sends 1n, 1s. Sample PP ← Setup(1λ, 1n, 1s),MSK ← Gen(PP). Send PP to A.
Initialize h := 1.

• Store. A sends policy f . If b = 0, sample CT ← pkEnc(PP) and store (CT, f, h,⊥) and
send h to A. Otherwise, store (f, h,⊥) and send h to A. Increment h := h+ 1.

• Delegate. A sends handle h′ and policy g.

If b = 0: and there is no entry for (CT, (f1, . . . , fℓ), h
′, ∗), respond with ⊥. Otherwise,

sample CT′ ← Delegate(CT, g), store (CT′, (f1, . . . , fℓ, g), h, h
′), and send h to A.

If b = 1: If there is no entry for ((f1, . . . , fℓ), h
′, ∗), respond with ⊥. Otherwise, store

((f1, . . . , fℓ, g), h, h
′) and send h to A.

Increment h := h+ 1.

• Corrupt. A sends handle h′.

If b = 0: and there is no entry for (CT, (f1, . . . , fℓ), h
′, ∗), respond with ⊥. Otherwise,

retrieve the entry and send CT to A.
If b = 1: If there is no entry for ((f1, . . . , fℓ), h

′, ∗), respond with ⊥. Otherwise, retrieve
the entry and sample CT← skEnc(MSK, f1, . . . , fℓ) and send CT to A.

• Secret Key. A sends input x ∈ {0, 1}n. Sample SKx ← Mix-HFE.KGen(MSK, x). Send
SKx to A.

• Store, Delegate, Corrupt. These are handled similarly to the queries before secret key
declaration.

• Guess. A outputs guess b′. Output b′.

A stateful PPT machine A is said to be admissible if for any Corrupt query made by A, CT
is for any sequence of policies f1, . . . , fℓ such that f1(x) ∧ . . . ∧ fℓ(x) = 0.

7 Adaptively Secure DABE with Bounded Delegations from Wit-
ness Encryption and Mixed Hierarchical Functional Encryption

In this section, we provide the construction of an adaptively secure DABE scheme with bounded
delegations by realizing delegatable dual-systems framework via delegatable Mixed-HFE.

24

Construction 7.1. We provide the construction of an adaptively secure DABE scheme with
bounded d-many delegations (Definition 4.1) for any family of polynomial-size policies using the
following components:

• A statistically-sound NIZK scheme (Definition 3.2) for languages L1, . . . ,Ld (Figure 4, 5
resp.).

• A WE scheme (Definition 3.3) for language LWE (Figure 6).

• A statistically-binding COM scheme (Definition 3.1).

• A Mixed-HFE scheme (Definition 6.1) for polynomial-size policies.

Language L1

Instance: com.crs,mfe.pp, com(0), com(1), f,mfe.ct
Witness: r(0), r(1), r∗, rct1
Relation: Output 1 if and only if ϕ1 ∨ (ϕ2 ∧ ϕ3) = 1 where,

– ϕ1 : com(0) ?
= Com(com.crs, 0; r(0))

– ϕ2 : com(1) ?
= Com(com.crs, r∗; r(1))

– ϕ3 : mfe.msk
?
= Mix-HFE.Gen(mfe.pp; r∗)∧mfe.ct

?
= Mix-HFE.skEnc(mfe.msk, f ; rct1)

Figure 4: Description of L1

Language Li for i ∈ [2, d]

Instance: nizk.crsi−1, com.crs,mfe.pp, com(0), com(1), f1, f2, . . . , fi,mfe.ct′

Witness: πi−1,mfe.ct, r′, r(1), r∗, rcti
Relation: Output 1 if and only if (ϕ1 ∧ ϕ2) ∨ (ϕ3 ∧ ϕ4) = 1 where,

– ϕ1 : 1
?
= NIZK.Verify(nizk.crsi−1, (com.crs, com(0), com(1), f1, . . . , fi−1), πi−1)

– ϕ2 : mfe.ct′
?
= Mix-HFE.Delegate(mfe.ct, fi; r

′)

– ϕ3 : com(1) ?
= Com(com.crs, r∗; r(1))

– ϕ4 : mfe.msk
?
= Mix-HFE.Gen(mfe.pp; r∗)∧mfe.ct′

?
= Mix-HFE.skEnc(mfe.msk, f1∧. . .∧fi; rcti)

Figure 5: Description of L2, . . . ,Ld

Setup(1λ, 1d, 1n, 1s). Sample nizk.crsi ← NIZKi.Setup(1
λ) for i ∈ [d]. In addition, sample com.crs←

COM.Setup(1λ). Compute com(0) = Com(0; r(0)) and com(1) = Com(0λ; r(1)) where r(0), r(1)
$←−

{0, 1}λ. mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s).

Set PP := (nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s) and MSK := r(0). Out-
put (PP,MSK).

25

Language LWE

Instance: nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), s, x,mfe.skx
Witness: f1, . . . , fℓ, πℓ,mfe.ctℓ for some ℓ ∈ [d].
Relation: Output 1 if and only if,

1. If ℓ = 1, 1
?
= NIZK.Verify(nizk.crs1, inst1, π1). Otherwise, 1

?
= NIZK.Verify(nizk.crsℓ, instℓ, πℓ).

2. 1
?
= f1(x) ∧ . . . ∧ fℓ(x)

3. 0
?
= Mix-HFE.Dec(mfe.skx,mfe.ctℓ)

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and
instℓ = (nizk.crsℓ−1, com.crs,mfe.pp, com(0), com(1), f1, . . . , fℓ,mfe.ctℓ)

Figure 6: Description of LWE

KGen(MSK, f). Parse MSK as r(0). Sample mfe.ct ← Mix-HFE.pkEnc(mfe.pp). Compute πf ←
NIZK.Prove(nizk.crs1, inst, wit) where inst := (com.crs,mfe.pp, com(0), com(1), f,mfe.ct), wit
:= (r(0), 0). Output SKf := (f, πf ,mfe.ct).

Enc(x, µ). Sample mfe.msk ← Mix-HFE.Gen(mfe.pp) and mfe.skx ← Mix-HFE.KGen(mfe.msk, x).

Sample we.ct←WE.Enc(1λ, inst, µ) where inst := (PP, x,mfe.skx).

Output CTx := (x,mfe.skx,we.ct).

Delegate(SKf , g). Parse SKf as (f1, . . . , fℓ, πℓ,mfe.ctℓ) for some ℓ ∈ [d − 1]. Compute mfe.ctℓ+1 =

Mix-HFE.Delegate(mfe.ctℓ, g; r
′) for some r′

$←− {0, 1}λ.
Sample πℓ+1 ← NIZK.Prove(nizk.crsℓ+1, inst, wit) where inst := (nizk.crsℓ, com.crs,mfe.pp,
com(0), com(1), f1, . . . , fℓ, g,mfe.ctℓ+1), wit := (πℓ,mfe.ctℓ, r

′, 0).

Output SKf∧g := (f1, . . . , fℓ, g, πℓ+1,mfe.ctℓ+1).

Dec(SKf ,CTx). Parse SKf as (f1, . . . , fℓ, πℓ,mfe.ctℓ) for some ℓ ∈ [d] and CTx as (x,mfe.skxwe.ct).

If fi(x) = 0 for any i ∈ [ℓ], abort and output ⊥. Otherwise, output µ′ := WE.Dec(we.ct, SKf).

Correctness. The correctness of the construction follows from the correctness of WE, NIZK,
Mix-HFE, and COM. Since com(0) = Com(0; r(0)) for some r(0), we have by correctness of NIZK,
and COM, NIZK.Verify(nizk.crs1, (com.crs,mfe.pp, com(0), com(1), f,mfe.ct)), π1) = 1. Moreover as
mfe.msk← Mix-HFE.Gen(mfe.pp), mfe.ct← Mix-HFE.pkEnc(mfe.pp), andmfe.skx ← Mix-HFE.KGen(
mfe.msk, x), with high probability, Mix-HFE.Dec(mfe.skx,mfe.ct) = 0. Hence, if f(x) = 1, we have
by correctness of WE, µ′ = µ.

Delegation Correctness. We argue this by induction on ℓ ∈ [d]. When ℓ = 1, its the same as
correctness property. Consider ℓ = 2. We have that SKf∧g = (f, g, π2,mfe.ct′) where mfe.ct′ =

Mix-HFE.Delegate(mfe.ct, g; r′) for some r′
$←− {0, 1}λ. If SKf was generated using KGen, we

have that NIZK.Verify(nizk.crs1, (com.crs,mfe.pp, com(0), com(1), f,mfe.ct), π1) = 1 (from correctness
property). Hence, NIZK.Verify(nizk.crs2, inst2, π2) = 1 for inst2 = (nizk.crs1, com.crs,mfe.pp, com(0),
com(1), f, g,mfe.ct′). Thus, with high probability, 0 = Mix-HFE.Dec(mfe.skx,mfe.ct′). Hence, by
correctness of WE if (f ∧ g)(x) = 1, i.e, f(x) = 1 ∧ g(x) = 1, we have that µ′ = µ.

26

For the induction step, assume that delegation correctness holds for some k ∈ [d − 1] lev-
els of delegation. And assume that f1 ∧ . . . ∧ fk(x) = 1 and g(x) = 1. Arguing similarly as
above, NIZK.Verify(nizk.crsk+1, instk+1, πk+1) = 1. This is because by induction hypothesis, ∀ i ∈
[2, k],NIZK.Verify(nizk.crsi, (nizk.crsi−1, com.crs,mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti), πi) = 1 where

mfe.cti = Mix-HFE.Delegate(mfe.cti−1, fi; ri) for some ri
$←− {0, 1}λ. Thus, by WE correctness,

µ′ = µ.

Delegation Depth. Similar to Construction 5.1, we require d = O(1). Moreover, running times
of Delegate and Enc in the worst case are bounded by poly(λ, n, s)O(d).

7.1 Security Analysis

In this section, we prove that Construction 7.1 satisfies adaptive security as defined in Definition 4.1.
Specifically, we prove the following theorem.

Theorem 7.2. If WE is a WE scheme for LWE (Definition 3.3), COM is a COM scheme (Defi-
nition 3.1), NIZK1, . . .NIZKd are statistically-sound NIZK schemes for L1, . . . ,Ld (Definition 3.2),
Mix-HFE is a Mixed-HFE scheme (Definition 6.1) for polynomial-size predicates, then Construc-
tion 7.1 is an adaptively secure DABE scheme (Definition 4.1) for polynomial-size policies.

Proof. We prove this theorem using the following experiments and lemmas.

ExptA,b0 (1λ). This is almost the honest experiment with Ob where either b = 0/1. In this experi-
ment, we sample mfe.msk during setup. The distributions remain identical nonetheless.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s)

andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗) where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd,

com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Computemfe.ct← Mix-HFE.pkEnc(mfe.pp). Sample πf ← NIZK1.Prove(nizk.crs1,
inst, wit) where inst = (com.crs,mfe.pp, com(0), com(1), f,mfe.ct), wit = (r(0), 0). Set SKf =
(f, πf ,mfe.ct). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf as (f1, . . . , fℓ, πℓ,mfe.ctℓ). Sample mfe.ctℓ+1 ← Mix-HFE.Delegate(mfe.ctℓ, g; r
′) Sample

πℓ+1 ← NIZKℓ+1.Prove(nizk.crsℓ+1, inst, wit) where inst = (nizk.crsℓ, com.crs,mfe.pp, com(0),
com(1), . . . , fℓ, g,mfe.ctℓ+1), wit = (πℓ,mfe.ctℓ, r

′, 0).

Set SKf∧g = (. . . , fℓ, g, πℓ+1,mfe.ctℓ+1). Send h to A. Store (SKf∧g, h, h
′) and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

27

ExptA,b1 (1λ). In this experiment we delay generation of all NIZK proofs to corrupt phase. Changes
are highlighted in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s)

andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗) where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd,

com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f,mfe.ct, h), h,⊥) where mfe.ct← Mix-HFE.pkEnc(mfe.pp), send h to
A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf to get mfe.ct, sample mfe.ct′ = Mix-HFE.Delegate(mfe.ct, g; r′) where r′
$←− {0, 1}λ store

((SKf , g,mfe.ct′, r′, h), h, h′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a NIZK

proof, send SKf toA. Otherwise, parse SKf as (f1,mfe.ct1, h1, f2,mfe.ct2, r2, h2, . . . , fℓ,mfe.ctℓ,
rℓ, hℓ) for some ℓ ∈ [d]. Let ℓ′ < ℓ be the largest value such that (∗, hℓ′ , ∗)-th entry contains a
NIZK proof.

If no such ℓ′ exists, sample π1 ← NIZK1.Prove(nizk.crs1, inst1, wit1). For each i ∈ [2, ℓ],
sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for h1, . . . , hℓ with the corre-
sponding proofs. That is, set hi-th entry as ((f1, . . . , fi, πi,mfe.cti), hi, hi−1) for i ∈ [2, ℓ] and
h1-th entry as ((f1, π1,mfe.ct1), h1,⊥).
Otherwise, for each i ∈ [ℓ′ + 1, ℓ], sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update
entries for hℓ′+1, . . . , hℓ with the corresponding proofs.

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti). wit1 = (r(0), 0) and witi = (πi−1,mfe.cti−1, ri, 0).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b2,j (1
λ) for j ∈ [d+ 1]. In this experiment we simulate the NIZK proofs for the first j − 1

NIZK instantiations. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Sim(1λ). Otherwise, nizk.crsi ←
NIZKi.Setup(1

λ). Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s) andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗)

where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s),

MSK := r(0). Initiate h to 1. Send PP to A.

28

• Store. A sends f . Store ((f,mfe.ct, h), h,⊥) where mfe.ct← Mix-HFE.pkEnc(mfe.pp), send h to
A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf to get mfe.ct, sample mfe.ct′ = Mix-HFE.Delegate(mfe.ct, g; r′) where r′
$←− {0, 1}λ store

((SKf , g,mfe.ct′, r′, h), h, h′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, parse SKf as

(f1,mfe.ct1, h1, f2,mfe.ct2, r2, h2, . . . , fℓ,mfe.ctℓ, rℓ, hℓ) for some ℓ ∈ [d]. Let ℓ′ < ℓ be the
largest value such that (∗, hℓ′ , ∗)-th entry contains a NIZK proof.

If no such ℓ′ exists, for i ∈ [ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise, sample
πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for h1, . . . , hℓ with the corresponding
proofs. That is, set hi-th entry as ((f1, . . . , fi, πi,mfe.cti), hi, hi−1) for i ∈ [2, ℓ] and h1-th
entry as ((f1, π1,mfe.ct1), h1,⊥).
Otherwise, for each i ∈ [ℓ′ + 1, ℓ], for i ∈ [ℓ′ + 1, ℓ], if i < j, sample πi ← NIZKi.Sim(insti).
Otherwise, sample πi ← NIZKi.Prove(nizk.crsi, insti, witi). Update entries for hℓ′+1, . . . , hℓ
with the corresponding proofs.

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti). wit1 = (r(0), 0) and witi = (πi−1,mfe.cti−1, ri, 0).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b3 (1λ). In this experiment we do not generate a chain of metaproofs anymore. We simply
simulate the last proof in the chain during the Corrupt query. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), nizk.crsi ← NIZKi.Sim(1λ) for i ∈ [d]. Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s)

andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗) where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd,

com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f,mfe.ct, h), h,⊥) where mfe.ct← Mix-HFE.pkEnc(mfe.pp), send h to
A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf to get mfe.ct, sample mfe.ct′ = Mix-HFE.Delegate(mfe.ct, g; r′) where r′
$←− {0, 1}λ store

((SKf , g,mfe.ct′, r′, h), h, h′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a NIZK

proof, send SKf toA. Otherwise, parse SKf as (f1,mfe.ct1, h1, f2,mfe.ct2, r2, h2, . . . , fℓ,mfe.ctℓ,
rℓ, hℓ) for some ℓ ∈ [d]. Sample πℓ ← NIZKℓ.Sim(instℓ).

29

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b4 (1λ). In this hybrid, we sample mfe.ct’s in the secret mode. The changes are highlighted
in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), nizk.crsi ← NIZKi.Sim(1λ) for i ∈ [d]. Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s)

andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗) where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd,

com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a NIZK

proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d]. Sample

mfe.ctℓ = Mix-HFE.skEnc(mfe.msk, f1, . . . , fℓ; r
ct
ℓ), r

ct
ℓ

$←− {0, 1}λ, and πℓ ← NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b5 (1λ). In this hybrid, we set com(1) to be a commitment of r∗. The changes are highlighted
in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =

Com(r∗; r(1)) where r∗
$←− {0, 1}λ, nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Also, mfe.pp ←
Mix-HFE.Setup(1λ, 1n, 1s) and mfe.msk = Mix-HFE.Gen(mfe.pp; r∗). Set PP = (nizk.crs1, . . . ,
nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

30

• Store, Delegate, Corrupt. Same as ExptA,b4 (1λ).

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b6,j (1
λ) for j ∈ [d+ 1]. In this experiment we generate NIZK proofs using r(1), r∗, rctℓ as the

witness for the first j − 1 NIZK instantiations. Changes are highlighted in red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =

Com(r∗; r(1)) where r∗
$←− {0, 1}λ, for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Setup(1

λ). Other-
wise, nizk.crsi ← NIZKi.Sim(1λ). Also, mfe.pp ← Mix-HFE.Setup(1λ, 1n, 1s) and mfe.msk =
Mix-HFE.Gen(mfe.pp; r∗). Set PP = (nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s),
MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a NIZK

proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d], mfe.ctℓ =

Mix-HFE.skEnc(mfe.msk, f1, . . . , fℓ; r
ct
ℓ), r

ct
ℓ

$←− {0, 1}λ. If ℓ < j, πℓ ← NIZKℓ.Prove(nizk.crsℓ,
instℓ, witℓ). Otherwise, πℓ ← NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti). witi = (0, r(1), r∗, rctℓ) for i ∈ [d].

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b7 (1λ). In this experiment we set com(0) as a commitment of 1. Changes are highlighted in
red.

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(1; r(0)), com(1) =

Com(r∗; r(1)) where r∗
$←− {0, 1}λ, nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Also, mfe.pp ←
Mix-HFE.Setup(1λ, 1n, 1s) and mfe.msk = Mix-HFE.Gen(mfe.pp; r∗). Set PP = (nizk.crs1, . . . ,
nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

31

• Store, Delegate, Corrupt. Same as ExptA,b6,d+1(1
λ).

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b8 (1λ). In this experiment, we encrypt all zero string using WE. This experiment is inde-
pendent of b. Changes are highlighted in red.

• Setup, Store, Delegate, Corrupt. Same as ExptA,b7 (1λ).

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, 0

|µb|) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct)
to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

Notation. Let A be an admissible adversary in the DABE security definition. By pAi(,j) we denote

the probability of b′ = b in the experiment ExptA,bi(,j)(1
λ). That is pAi(,j) := Pr

[
b← ExptA,bi(,j)(1

λ)
]
.

Lemma 7.3. For any admissible adversary A, pA0 = pA1 .

Proof. Note that all that’s changed is we are delaying NIZK proving in KGen and Delegate proce-
dures to Corrupt query. We are still generating mfe.ct exactly as ExptA,b0 (1λ). In Corrupt phase
everything is done similarly to Store,Delegate queries. There are 3 cases to consider —

• None of the keys for f1, . . . , fℓ are generated. In this case, we start from the root node using
Store and keep on running Delegate procedure to get the final key.

• There exists 1 < ℓ′ < ℓ such that key for f1 ∧ . . . ∧ fℓ′ is generated. In this case, keep on
delegating like in Delegate procedure to generate final key but using NIZKi.Prove.

• A requested key for f1 ∧ . . . ∧ fℓ′ when we have a key for f1 ∧ . . . ∧ fℓ with ℓ > ℓ′ ≥ 1. In this
case, we already generated πℓ,mfe.ctℓ previously. This forms a key for the required policy.

Hence, these two experiments are identical. Thus, lemma follows.

Lemma 7.4. For any admissible adversary A, pA1 = pA2,1.

Proof. In ExptA,b2,1 (1
λ), we are not simulating any NIZK instantiations. Hence, both experiments

are identical. Thus, the lemma follows.

32

Lemma 7.5. For any j ∈ [d], assuming that NIZKj satisfies adaptive computational zero-knowledge
property, for any admissible adversary A, there exists a negligible function negl(·) such that∣∣∣pA2,j − pA2,j+1

∣∣∣ ≤ negl(λ).

Proof. Assume that there exists admissible adversary A such that
∣∣∣pA2,j − pA2,j+1

∣∣∣ = ϵ(λ) for some

j ∈ [d] and non-negligible ϵ(·). We will construct a reduction adversary B that can break the
adaptive computational zero-knowledge property of NIZKj . The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Sim(1λ). Otherwise, if i = j, receive
nizk.crsi fromO. Otherwise, nizk.crsi ← NIZKi.Setup(1

λ). Also, mfe.pp← Mix-HFE.Setup(1λ, 1n, 1s)

andmfe.msk = Mix-HFE.Gen(mfe.pp; r∗) where r∗
$←− {0, 1}λ. Set PP = (nizk.crs1, . . . , nizk.crsd,

com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1. Send PP to A.

• Store. A sends f . Store ((f,mfe.ct, h), h,⊥) where mfe.ct← Mix-HFE.pkEnc(mfe.pp), send h to
A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, parse

SKf to get mfe.ct, sample mfe.ct′ = Mix-HFE.Delegate(mfe.ct, g; r′) where r′
$←− {0, 1}λ store

((SKf , g,mfe.ct′, r′, h), h, h′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, parse SKf as

(f1,mfe.ct1, h1, f2,mfe.ct2, r2, h2, . . . , fℓ,mfe.ctℓ, rℓ, hℓ) for some ℓ ∈ [d]. Let ℓ′ < ℓ be the
largest value such that (∗, hℓ′ , ∗)-th entry contains a NIZK proof.

If no such ℓ′ exists, for i ∈ [ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Otherwise, if i = j,
send (insti, witi) toO to receive πi. Otherwise, sample πi ← NIZKi.Prove(nizk.crsi, insti, witi).
Update entries for h1, . . . , hℓ with the corresponding proofs. That is, set hi-th entry as
((f1, . . . , fi, πi,mfe.cti), hi, hi−1) for i ∈ [2, ℓ] and h1-th entry as ((f1, π1,mfe.ct1), h1,⊥).
Otherwise, for each i ∈ [ℓ′+1, ℓ], for i ∈ [ℓ′+1, ℓ], if i < j, sample πi ← NIZKi.Sim(insti). Oth-
erwise, if i = j, send (insti, witi) to O to receive πi. Otherwise, sample πi ← NIZKi.Prove(
nizk.crsi, insti, witi). Update entries for hℓ′+1, . . . , hℓ with the corresponding proofs.

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti). wit1 = (r(0), 0) and witi = (πi−1,mfe.cti−1, ri, 0).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A outputs guess b′. Output 0 if and only if b = b′. Otherwise, output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
uses (NIZKj .Setup,NIZKj .Prove), B simulates ExptA,b2,j (1

λ) and if O use NIZKj .Sim, B behaves like

33

ExptA,b2,j+1(1
λ). Hence, B is a valid adversary against the adaptive computational zero-knowledge

property of NIZKj that can break its security with probability ϵ(λ). Thus, ExptA,b2,j (1
λ) and

ExptA,b2,j+1(1
λ) are computationally indistinguishable.

Lemma 7.6. For any admissible adversary A, pA2,d+1 = pA3 .

Proof. In both ExptA,b2,d+1(1
λ) and ExptA,b3 (1λ), πℓ and πℓ+1 are completely unrelated for any

ℓ ∈ [d+1]. Thus, it wouldn’t matter whether all proofs are generated or only the final proof in the
chain is generated. Thus, the lemma follows.

Lemma 7.7. Assuming that Mix-HFE satisfies mode indistinguishability property, for any admis-
sible adversary A, there exists a negligible function negl(·) such that

∣∣pA3 − pA4
∣∣ ≤ negl(λ).

Proof. Assume that there exists an adversary A such that
∣∣pA3 − pA4

∣∣ = ϵ(λ) for some non-negligible
ϵ(·). We will construct a reduction adversary B that can break the mode indistinguishability
property of Mix-HFE. The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0λ; r(1)), nizk.crsi ← NIZKi.Sim(1λ) for i ∈ [d]. Also, receive mfe.pp from O(1n, 1s). Set
PP = (nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to
1. Send PP to A.

• Store. A sends f . Send (Store, f) to O. Store ((f, h), h,⊥), send h to A, and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send

(Delegate, (h′, g)) to O, store ((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a

NIZK proof, send SKf to A. Otherwise, send (Corr, h′) to O to receive mfe.ctℓ, and πℓ ←
NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti).

Send (f1, . . . , fℓ, πℓ,mfe.ctℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Send x to O to receive mfe.skx. Sample we.ct ← WE.Enc(1λ,
instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A outputs guess b′. If b = b′, output 0. Otherwise output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
uses bit β = 0 B simulates ExptA,b3 (1λ) and if O uses bit β = 1, B behaves like ExptA,b4 (1λ).
Hence, B is a valid adversary against the mode indistinguishability property of Mix-HFE that can
break its security with probability ϵ(λ). Thus, ExptA,b3 (1λ) and ExptA,b4 (1λ) are computationally
indistinguishable.

Lemma 7.8. Assuming that COM satisfies computational hiding property, for any admissible
adversary A, there exists a negligible function negl(·) such that

∣∣pA4 − pA5
∣∣ ≤ negl(λ).

34

Proof. Assume that there exists an adversary A such that
∣∣pA4 − pA5

∣∣ = ϵ(λ) for some non-negligible
ϵ(·). We will construct a reduction adversary B that can break the computational hiding property
of COM. The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s. Receive com.crs from O, sample com(0) = Com(0; r(0)). Send (0λ, r∗)

to O to receive com(1) where r∗
$←− {0, 1}λ, nizk.crsi ← NIZKi.Setup(1

λ) for i ∈ [d]. Also,
mfe.pp ← Mix-HFE.Setup(1λ, 1n, 1s) and mfe.msk = Mix-HFE.Gen(mfe.pp; r∗). Set PP =
(nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1.
Send PP to A.

• Store, Delegate, Corrupt. Same as ExptA,b4 (1λ).

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. A outputs guess b′. Output 0 if and only if b = b′. Otherwise, output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O commits
0λ B simulates ExptA,b4 (1λ) and if O commits r∗, B behaves like ExptA,b5 (1λ). Hence, B is a valid
adversary against the computational hiding property of COM that can break its security with
probability ϵ(λ). Thus, ExptA,b4 (1λ) and ExptA,b5 (1λ) are computationally indistinguishable.

Lemma 7.9. For any admissible adversary A, pA5 = pA6,1.

Proof. In ExptA,b5,1 (1
λ), we do not stop simulating NIZK instantiations. Hence, both experiments

are identical. Thus, the lemma follows.

Lemma 7.10. For any j ∈ [d], assuming that NIZKj satisfies adaptive computational zero-
knowledge property, for any admissible adversary A, there exists a negligible function negl(·) such
that

∣∣∣pA6,j − pA6,j+1

∣∣∣ ≤ negl(λ).

Proof. Assume that there exists admissible adversary A such that
∣∣∣pA6,j − pA6,j+1

∣∣∣ = ϵ(λ) for some

j ∈ [d] and non-negligible ϵ(·). We will construct a reduction adversary B that can break the
adaptive computational zero-knowledge property of NIZKj . The description of BO is as follows:

• Setup. A sends 1d, 1n, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =

Com(r∗; r(1)) where r∗
$←− {0, 1}λ, for i ∈ [d], if i < j, nizk.crsi ← NIZKi.Setup(1

λ). Oth-
erwise, if i = j, receive nizk.crsi from O. Otherwise, nizk.crsi ← NIZKi.Sim(1λ). Also,
mfe.pp ← Mix-HFE.Setup(1λ, 1n, 1s) and mfe.msk = Mix-HFE.Gen(mfe.pp; r∗). Set PP =
(nizk.crs1, . . . , nizk.crsd, com.crs,mfe.pp, com(0), com(1), n, s), MSK := r(0). Initiate h to 1.
Send PP to A.

• Store. A sends f . Store ((f, h), h,⊥), send h to A, and h := h+ 1.

35

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, store

((SKf , g, h), h, h
′), send h to A, and set h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, if SKf contains a NIZK

proof, send SKf to A. Otherwise, parse SKf as (f1, h1, . . . , fℓ, hℓ) for some ℓ ∈ [d], mfe.ctℓ =

Mix-HFE.skEnc(mfe.msk, f1, . . . , fℓ; r
ct
ℓ), r

ct
ℓ

$←− {0, 1}λ. If ℓ < j, πℓ ← NIZKℓ.Prove(nizk.crsℓ,
instℓ, witℓ). Otherwise, if ℓ = j, send (instℓ, witℓ) to O to receive πℓ. Otherwise, πℓ ←
NIZKℓ.Sim(instℓ).

Here, inst1 = (com.crs,mfe.pp, com(0), com(1), f1,mfe.ct1) and insti = (nizk.crsi−1, com.crs,
mfe.pp, com(0), com(1), f1, . . . , fi,mfe.cti). witi = (0, r(1), r∗, rctℓ) for i ∈ [d].

Send (f1, . . . , fℓ, πℓ) to A.

• Encryption. A sends x∗, µ0, µ1. Samplemfe.skx ← Mix-HFE.KGen(mfe.msk, x∗). Sample we.ct←
WE.Enc(1λ, instWE, µb) where instWE = (PP, x,mfe.skx). Send CT = (x∗,mfe.skx,we.ct) to
A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O uses
(NIZKj .Setup,NIZKj .Prove), B simulates ExptA,b6,j+1(1

λ) and if O use NIZKj .Sim, B behaves like

ExptA,b6,j (1
λ). Hence, B is a valid adversary against the adaptive computational zero-knowledge

property of NIZKj that can break its security with probability ϵ(λ). Thus, ExptA,b6,j (1
λ) and

ExptA,b7,j+1(1
λ) are computationally indistinguishable.

Lemma 7.11. Assuming that COM satisfies computational hiding property, for any admissible

adversary A, there exists a negligible function negl(·) such that
∣∣∣pA5,d+1 − pA6

∣∣∣ ≤ negl(λ).

Proof. Note that in both ExptA,b6,d+1(1
λ) and ExptA,b7 (1λ), we no longer use r(0) anywhere. Thus,

we can readily construct a reduction to computational hiding property of COM. The proof of this
lemma is similar to proof of Lemma 7.8.

Lemma 7.12. Assuming the semantic security property of WE, for any admissible adversary A,
there exists a negligible function negl(·) such that

∣∣pA7 − pA8
∣∣ ≤ negl(λ)

Proof. In experiments ExptA,b7 (1λ) and ExptA,b8 (1λ), instWE = (nizk.crs1, . . . , nizk.crsd, com.crs,
mfe.pp, com(0), com(1), n, s, x,mfe.skx) is unsatisfiable with high probability. Assume that there is
witWE = (f1, . . . , fℓ, πℓ,mfe.ctℓ) for some ℓ ∈ [d] such that WE.R(instWE, witWE) = 1. Then as
com(0) is a statistically binding commitment of 1 and com(1) is a statistically binding commit-
ment of r∗, there must exist an ℓ∗ ∈ [ℓ] such that mfe.ctℓ∗ = Mix-HFE.skEnc(mfe.msk, f1 ∧ . . . ∧
fℓ∗ ; r

ct
ℓ∗),mfe.msk = Mix-HFE.Gen(mfe.pp; r∗). Moreover asmfe.cti = Mix-HFE.Delegate(mfe.cti−1, fi)

for i ∈ [ℓ∗ + 1, ℓ], we have that Mix-HFE.Dec(mfe.skx,mfe.ctℓ) = f1 ∧ . . . fℓ(x
∗) = 0. But as

WE.R(instWE, witWE) = 1, it also means that f1∧ . . .∧fℓ(x∗) = 1 which is a contradiction. Hence,
with high probability due to statistical soundness of NIZK1, . . . ,NIZKd, we have that LWE is an
empty language. Thus, we can use the semantic security of WE to switch µb to 0|µb|. Any PPT
adversary that can notice this switch can be easily reduced to break semantic security of WE.

36

Note that the ciphertext in ExptA,b8 (1λ) is independent of b. Thus pA8 = 1
2 . Hence, security of

Construction 7.1 follows.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 657–677, Santa Barbara, CA, USA,
August 16–20, 2015. Springer Berlin Heidelberg, Germany.

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex pred-
icate encryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes
in Computer Science, pages 627–656, Paris, France, April 30 – May 4, 2017. Springer,
Cham, Switzerland.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Cryptology ePrint Archive, 2015.

[AKY24] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute based encryption for
turing machines from lattices. In Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology – CRYPTO 2024, Part III, volume 14922 of Lecture Notes in Computer
Science, pages 352–386, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham,
Switzerland.

[APG+11] Joseph A Akinyele, Matthew W Pagano, Matthew D Green, Christoph U Lehmann,
Zachary NJ Peterson, and Aviel D Rubin. Securing electronic medical records using
attribute-based encryption on mobile devices. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, pages 75–86, 2011.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Theory of Cryptography Conference, pages 174–198. Springer,
2019.

[BBS+09] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin.
Persona: an online social network with user-defined privacy. In Proceedings of the
ACM SIGCOMM 2009 conference on Data communication, pages 135–146, 2009.

[BCG+17] Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil
Segev. Hierarchical functional encryption. In 8th Innovations in Theoretical Computer

37

Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. In
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings 33, pages 533–556. Springer, 2014.

[BS15] Zvika Brakerski and Gil Segev. Hierarchical functional encryption. Cryptology ePrint
Archive, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE symposium on security and privacy (SP’07), pages 321–334.
IEEE, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography: 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8, pages 253–273. Springer,
2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography: 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007. Proceedings 4, pages 535–554.
Springer, 2007.

[CDEN12] Jan Camenisch, Maria Dubovitskaya, Robert R Enderlein, and Gregory Neven. Obliv-
ious transfer with hidden access control from attribute-based encryption. In Security
and Cryptography for Networks: 8th International Conference, SCN 2012, Amalfi, Italy,
September 5-7, 2012. Proceedings 8, pages 559–579. Springer, 2012.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 595–624, Sofia, Bulgaria, April 26–30, 2015. Springer Berlin
Heidelberg, Germany.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from lwe made simple and attribute-based. In Theory of Cryptogra-
phy: 16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018,
Proceedings, Part II 16, pages 341–369. Springer, 2018.

[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 372–
408, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

38

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages
537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham, Switzerland.

[DSY91] Alfredo De Santis and Moti Yung. Cryptographic applications of the non-interactive
metaproof and many-prover systems. In Advances in Cryptology-CRYPTO’90: Pro-
ceedings 10, pages 366–377. Springer, 1991.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–
49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially
many levels. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Con-
ference, volume 5444 of Lecture Notes in Computer Science, pages 437–456. Springer
Berlin Heidelberg, Germany, March 15–17, 2009.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA, USA,
August 18–22, 2013. Springer Berlin Heidelberg, Germany.

[GKR25] Rishab Goyal, Venkata Koppula, and Mahesh Sreekumar Rajasree. A note on adap-
tive security in hierarchical identity-based encryption. In Advances in Cryptology –
CRYPTO 2025 (to appear), 2025.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 660–670, 2018.

[GLW21] Rishab Goyal, Jiahui Liu, and Brent Waters. Adaptive security via deletion in attribute-
based encryption: Solutions from search assumptions in bilinear groups. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part IV, volume 13093 of Lecture Notes in Computer Science, pages 311–341, Singapore,
December 6–10, 2021. Springer, Cham, Switzerland.

[GM15] Matthew D Green and Ian Miers. Forward secure asynchronous messaging from punc-
turable encryption. In 2015 IEEE Symposium on Security and Privacy, pages 305–320.
IEEE, 2015.

39

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on
Computer and Communications Security, pages 89–98, Alexandria, Virginia, USA, Oc-
tober 30 – November 3, 2006. ACM Press. Available as Cryptology ePrint Archive
Report 2006/309.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566, Queenstown, New Zealand, December 1–5,
2002. Springer Berlin Heidelberg, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, pages 162–179. Springer, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523. Springer, 2015.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 466–481, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer Berlin Heidelberg, Germany.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of un-
bounded depth from lattices. In 64th Annual Symposium on Foundations of Computer
Science, pages 415–434, Santa Cruz, CA, USA, November 6–9, 2023. IEEE Computer
Society Press.

[HLL24] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. A general framework for lattice-based ABE
using evasive inner-product functional encryption. In Marc Joye and Gregor Leander,
editors, Advances in Cryptology – EUROCRYPT 2024, Part II, volume 14652 of Lecture
Notes in Computer Science, pages 433–464, Zurich, Switzerland, May 26–30, 2024.
Springer, Cham, Switzerland.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Advances in Cryptology–
EUROCRYPT 2008: 27th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings
27, pages 146–162. Springer, 2008.

40

[LLL22] Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size secret keys
and adaptive security. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022:
20th Theory of Cryptography Conference, Part I, volume 13747 of Lecture Notes in
Computer Science, pages 680–710, Chicago, IL, USA, November 7–10, 2022. Springer,
Cham, Switzerland.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Wa-
ters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In Advances in Cryptology–EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29, pages 62–91. Springer, 2010.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th
Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer Science,
pages 455–479, Zurich, Switzerland, February 9–11, 2010. Springer Berlin Heidelberg,
Germany.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 58–76,
Copenhagen, Denmark, May 11–15, 2014. Springer Berlin Heidelberg, Germany.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of
Lecture Notes in Computer Science, pages 422–439, Taormina, Sicily, Italy, March 19–
21, 2012. Springer Berlin Heidelberg, Germany.

[SRGS12] Nuno Santos, Rodrigo Rodrigues, Krishna P Gummadi, and Stefan Saroiu. {Policy-
Sealed} data: A new abstraction for building trusted cloud services. In 21st USENIX
Security Symposium (USENIX Security 12), pages 175–188, 2012.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings 24, pages 457–473. Springer, 2005.

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption sys-
tems. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International
Colloquium on Automata, Languages and Programming, Part II, volume 5126 of Lec-
ture Notes in Computer Science, pages 560–578, Reykjavik, Iceland, July 7–11, 2008.
Springer Berlin Heidelberg, Germany.

41

[TBEM08] Patrick Traynor, Kevin RB Butler, William Enck, and Patrick D McDaniel. Realizing
massive-scale conditional access systems through attribute-based cryptosystems. In
NDSS, 2008.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages
62–85, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Cham, Switzerland.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings 24, pages 114–127. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 619–636, Santa Barbara, CA,
USA, August 16–20, 2009. Springer Berlin Heidelberg, Germany.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011: 14th International Conference on Theory
and Practice of Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 53–70, Taormina, Italy, March 6–9, 2011. Springer Berlin Heidelberg,
Germany.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Sci-
ence, pages 678–697, Santa Barbara, CA, USA, August 16–20, 2015. Springer Berlin
Heidelberg, Germany.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and cp-abe from evasive lattice assump-
tions. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 217–241. Springer, 2022.

[WW24] Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from
witness encryption. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024:
22nd Theory of Cryptography Conference, Part III, volume 15366 of Lecture Notes in
Computer Science, pages 65–90, Milan, Italy, December 2–6, 2024. Springer, Cham,
Switzerland.

42

	Introduction
	Technical Overview
	Preliminaries
	Statistically Binding Commitments
	Non-Interactive Zero-Knowledge Proofs
	Witness Encryption

	Delegatable Attribute-Based Encryption
	Selectively Secure DABE with Bounded Delegations from Witness Encryption
	Security Analysis

	Mixed Hierarchical Functional Encryption
	Adaptively Secure DABE with Bounded Delegations from Witness Encryption and Mixed Hierarchical Functional Encryption
	Security Analysis

