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Abstract

We present the first construction of multiparty distributed point functions based on one-way func-
tions, where the share sizes remain sublinear in the domain size and grow only polynomially with
the number of parties. In contrast, existing multiparty distributed point function constructions in
Minicrypt have share sizes that grow exponentially with the number of parties.
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1 Introduction

A point function, denoted 𝑓𝛼,𝛽 : D → R, outputs 0 for all inputs 𝑥 ≠ 𝛼 where 𝑥, 𝛼 ∈ D, and outputs 𝛽 ∈ R
when 𝑥 = 𝛼 . A distributed point function (DPF) [GI14, BGI15] enables the point function to be securely
split into shares distributed among a group of mutually distrusting parties. Crucially, the size of these
function shares is significantly smaller than the size of the domain |D|. Given an input 𝑥 ∈ D, each party
can independently compute an additive share of the function’s output using its function share, without
interacting with others.

Over the last few years, DPFs have proven to be immensely useful in a wide range of secure computa-
tion applications, including private information retrieval [GI14], private set intersection [TSS+20, DIL+20,
GRS22, GRS23, GGM24], pseudorandom correlation generators [BCGI18, BCG+19, BCG+20], distributed
oblivious RAM [Ds17, BKKO20], privacy-preserving machine learning [RTPB22, YJG+23, JGB+24], com-
pressing OR proofs [BS24] and secure computation of functions with mixed-mode operations [BGI19,
BCG+21, BDSS25], among others. Consequently, significant research efforts [GI14, BGI15, BGIK22a,
BGIK22b, BDSS25, BGI19, BGH+25] have focused on designing efficient DPFs with share sizes that are
sublinear in the domain size.

However, most advancements in both the design and applications of DPFs have been restricted to the
two-party setting.1 In the multiparty setting, existing DPF constructions in Minicrypt have share sizes
that grow exponentially with the number of parties [BGI15] and are therefore only efficient for a constant
number of parties.2 This inefficiency has also hindered the exploration of applications of multiparty DPFs.
As a result, the following problem, posed in [BGI15], has remained open for the past decade:

Do efficient multiparty DPFs exist in Minicrypt for any number of parties?

In this work, we answer this question affirmatively. We present the first such construction ofmultiparty
DPFs with share sizes growing sublinearly in the domain size and only polynomially in the number of
parties.

1.1 Our Results

We now elaborate upon our results in more detail.

Multiparty Distributed Point Functions. We construct multiparty DPFs based on one-way functions,
where the share sizes are sublinear in the domain size and polynomial in the number of parties. This
construction remains private against collusion of up to all but one of the parties. Our result is summarized
informally as follows (See Corollary 1 for a formal statement).

(Informal) Theorem 1. Let 𝑛 be the total number of parties and 𝑓𝛼,𝛽 : D → Z𝑝𝑞 be a point function, where
𝑝 is an arbitrary constant prime. Assuming the existence of one-way functions, for arbitrary constant 𝜀 > 0,
there exists an (𝑛−1)-private multiparty DPF where the size of each party’s function share is O(|D|1/2+𝜀 ·𝑛3).3

1In the two-party setting, the most efficient constructions of DPFs [BGI16] have share sizes that depend logarithmically on
the size of the domain.

2The only other construction in Minicrypt that we are aware of is limited to at most four parties [BGIK22a] and allows only
a single corrupt party.

3Throughout the remainder of this paper, we will disregard polynomial factors in the security parameter in all asymptotic
analyses.
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In contrast, the only other known construction of multiparty DPFs [BGI15] produces shares of size
O(

√︁
|D| · 2𝑛−1). Similar to this construction and all existing two-party DPF constructions [GI14, BGI15,

BGIK22a, BGIK22b, BDSS25, BGI19, BGH+25], given any input 𝑥 ∈ D, our multiparty DPF allows parties to
independently use their respective function shares to obtain additive shares of the corresponding function
output.

Lower Bound. Our multiparty DPF construction relies on a randomized combinatorial design, whereas the
construction in [BGI15] can be viewed as being based on a deterministic combinatorial design. We show
that any multiparty DPF based on a deterministic combinatorial design must have share sizes that grow
exponentially with the number of parties. Thus, the use of a randomized design is essential to achieve
share sizes that scale sub-exponentially in the number of parties.

(𝑡, 𝑛)-Threshold DPFs. While distributed point functions are typically used to compute additive shares of
a point function, one can also consider an alternative notion where the goal is to compute (𝑡, 𝑛)-threshold
shares instead. In particular, using such function shares, parties can locally compute (𝑡, 𝑛)-threshold shares
of the function output for any given input. We refer to such DPFs as (𝑡, 𝑛)-threshold DPFs.

Using standard share conversion techniques [CDI05], our construction of multiparty DPFs can be ex-
tended to obtain (𝑡, 𝑛)-threshold DPFs for certain thresholds that to the best of our knowledge were pre-
viously unattainable (refer to Corollary 2). Specifically, we show how to efficiently compute replicated and
Shamir secret sharing [Sha79] of point functions for all 𝑡 < 𝑛, where

(
𝑛
𝑡

)
= poly(𝜆), in other words where

either 𝑡 = O(1) or 𝑛 − 𝑡 = O(1). We note that a similar transformation of the multiparty DPF construction
from [BGI15] would only yield an efficient construction for threshold DPFs when 𝑡 = O(1).

1.2 Applications

Our multiparty DPFs and (𝑡, 𝑛)-threshold DPFs can be used to establish new feasibility results for various
secure computation problems in the multiparty setting. We discuss several representative applications.

Multi-Server Private Information Retrieval. Private Information Retrieval (PIR) [CGKS95] enables a
user to privately retrieve the 𝑖-th entry from a public database stored across multiple servers. As noted
in [BGI15], a multiparty DPF enables multiserver PIR protocols with sublinear query length and constant
answer length. Leveraging our multiparty DPF and threshold DPFs, we obtain the first efficient 𝑛-server,
𝑡-private PIR with these properties, for any 𝑛, 𝑡 satisfying

(
𝑛
𝑡

)
= poly(𝜆).

MPC in the Random DPF Preprocessing Model. Recent works [BGI19, BCG+21] have demonstrated
that access to shares of a random point function4 can accelerate secure multiparty computation for func-
tions such as equality testing, where parties hold secret shares of two inputs and need to determine if they
are the same, or zero testing, where parties holding secret shares of a value wish to check whether it is
zero. While these techniques were previously limited to the two-party setting, we show that they naturally
extend to the multiparty setting using our multiparty and threshold DPFs.

In general, these ideas can be extended to show that, given shares of a random point function in a
preprocessing phase, it is possible to efficiently compute shares of the required point function in the online
phase, which can, in turn, be helpful for other tasks. This avoids the need to run an MPC to compute the
DPF share generation algorithm in a distributed manner during the online phase.

Multiparty Distributed ORAM. Oblivious RAM [GO96] (ORAM) is a technique for hiding the memory
access pattern of a RAM program. Distributed ORAM [LO13] extends ORAM to the multiparty setting,

4That is, a point function 𝑓𝛼,𝛽 , where 𝛼 and 𝛽 are randomly sampled and secret shared among the parties along with the
function share.
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where both thememory and access locations are distributed amongmultiple parties in a privacy-preserving
manner. DORAM is a fundamental building block for the secure computation of RAM-based programs.
While it is theoretically possible to design (multiparty) DORAM by generically combining secure com-
putation with existing ORAM constructions, such approaches are highly inefficient in practice. Starting
from the seminal work of [Ds17], a long line of works [IKH+23, HNO+23, VHG23, BPRS23] have leveraged
(two-party) DPFs as a foundational building block to design concretely efficientDORAM among two parties
or three parties.5 Our construction of multiparty DPF can be used as a drop-in replacement within this
framework to enable multiparty DORAM protocols. It remains an exciting direction for future work to
explore the concrete efficiency of such extensions.6

1.3 Related Works

DPF Constructions. The first two-party DPF construction based on one-way functions was proposed by
Gilboa et al. [GI14]. Since then, several works [BGI15, BGI16, BGH+25] have focused on improving the
efficiency of two-party DPFs. Boyle et al. [BGI15] also introduced a multiparty DPF, but the key size in
their scheme grows exponentially with the number of parties.

Multiparty DPF beyond Minicrypt. In the pursuit of secure multiparty computation with sublinear
communication, recent work [CK24] proposed DPF constructions for a fixed number of parties (e.g., 𝑛 = 8)
from (combinations of) public-key assumptions (e.g., DCR and LPN). More recent works [ARS24, CKY25]
show how to extend these constructions to any number of parties.

On a separate note, Boyle et al. [BGIK22a] explored the notion of information-theoretic DPFs for three
and four parties that can tolerate at most 1 corruption.

Variants of DPFs. Since key generation is the most computationally expensive step in DPFs, some recent
works have explored ways to optimize it. For instance, Boyle et al. [BDSS25] designed two-party DPFs
where key generation can be performed non-interactively in a distributed manner. Boyle et al. [BGIK22b]
introduced programmable DPFs, where an input-independent offline key enables sharing multiple point
functions.

FSS Constructions for Related Functions. While recent research has largely focused on optimizing
two-party DPFs or exploring new applications, some works have drawn inspiration from DPF construc-
tions [GI14, BGI15] to design function secret sharing (FSS) schemes for related functions, such as compar-
ison and decision trees [BGI19, BCG+21].

2 Technical Overview

This section presents the main ideas behind our multiparty distributed point function construction. For
the most part, in this paper, we are in the dishonest majority setting. In particular, this requires that the
collusion of all but one party should not learn any information about the point function. Throughout this
paper, we use 𝑁 to denote the domain size, i.e., D = [𝑁 ].

5The works on three-party DORAM still rely on two-party DPF and, hence, they can only allow one corruption.
6Note that the

√︁
|D|-sized DPF shares do not pose an (asymptotic) bottleneck for this DORAM construction framework, as it

inherently relies on the first-generation square-root ORAM [GO96] (i.e., each memory access incurs an asymptotic overhead of
O(

√︁
|D|)).
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Let 𝑓𝛼,𝛽 : [𝑁 ] → F stand for a point function defined as

𝑓𝛼,𝛽 (𝑥) =
{
𝛽 𝑥 = 𝛼

0 𝑥 ≠ 𝛼
.

To distribute a point function among 𝑛 parties, a trusted dealer takes 𝑓𝛼,𝛽 as input and outputs 𝑛 succinct
function shares 𝑘1, . . . , 𝑘𝑛 , one for each of the 𝑛 parties, such that each party can locally expand their
respective private share 𝑘𝑖 into a vector 𝑥𝑖 of dimension-𝑁 such that

𝑥1 + · · · + 𝑥𝑛 = (0, . . . , 0, 𝛽, 0, . . . , 0) .

Note that, this scheme is non-trivial only if the secret share size is o(𝑁 ). Existing works [BGI15] present
constructions where the share size is 2𝑛 ·

√
𝑁 . Looking ahead, in this work, we present a construction with

share size poly(𝑛) ·
√
𝑁 .

Before we develop our ideas, we first need to recall a simple two-party DPF construction with Θ
(√
𝑁

)
share size from [GI14, BGI16].

AParadigm for Two-party DPF. In this construction, the dealer starts by interpreting the index 𝛼 ∈ [𝑁 ]
as a pair of indices (𝑖, 𝑗) ∈ [

√
𝑁 ] × [

√
𝑁 ]. To sample the DPF shares, the dealer performs the following:

first, samples
√
𝑁 fresh PRG seeds 𝑠1, . . . , 𝑠√𝑁 and gives it to the first party P1. Each one of these seeds

can be expanded (using a pseudorandom generator PRG : {0, 1}𝜆 → F
√
𝑁 ) to a

√
𝑁 -sized pseudorandom

vector. Observe that the concatenation of these vectors

PRG(𝑠1)∥PRG(𝑠2)∥ · · · ∥PRG(𝑠√𝑁 )

is a vector of length 𝑁 . Similarly, the second party P2 is also given
√
𝑁 seeds 𝑠′1, . . . , 𝑠

′√
𝑁
such that

𝑠′𝑖 =

{
𝑠𝑖 𝑖 ≠ 𝑖∗

random 𝑖 = 𝑖∗
.

Namely, P2 receives the same set of seeds, except for 𝑠′
𝑖∗ , which is a freshly sampled random seed. The

second party can also expand these seeds into:

PRG(𝑠′1)∥PRG(𝑠′2)∥ · · · ∥PRG(𝑠′𝑚).

Note that the sum of these two vectors (assuming F has characteristics 2)7 computed by P1 and P2 is

0
√
𝑁 ∥ · · · ∥0

√
𝑁 ∥PRG(𝑠𝑖∗) + PRG(𝑠′𝑖∗)∥0

√
𝑁 ∥ · · · ∥0

√
𝑁 .

However, to ensure correctness, parties must correct the sum of the 𝑖∗-th substring (computed as PRG(𝑠𝑖∗)+
PRG(𝑠′

𝑖∗)) such that the overall sum corresponds to the intended vector

𝑒 𝑗∗ = (0, . . . , 0, 𝛽, 0, . . . , 0︸                ︷︷                ︸
√
𝑁

) .

7In other cases, we may simply let P2 multiply its PRG expansion by “-1”. So, this assumption is just for simplicity.
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This can be achieved by having the dealer send the following correction string to both parties

𝑤 = PRG(𝑠𝑖∗) + PRG(𝑠′𝑖∗) + 𝑒 𝑗∗ .

For privacy of 𝛼 , both 𝑖∗ and 𝑗∗ must be kept hidden from both parties. As a result, we cannot have the
parties only shift the 𝑖∗-th substring by 𝑤 . Instead, for each location 𝑖 , the dealer computes an additive
sharing (𝑢𝑖 , 𝑣𝑖) of the bit 1𝑖=𝑖∗ . To summmarize, this two-party DPF construction with shares of size

√
𝑁

works as follows:

P1’s share: 𝑤, (𝑠1, 𝑢1), . . . , (𝑠√𝑁 , 𝑢√𝑁 ) P2’s share: 𝑤, (𝑠′1, 𝑣1), . . . , (𝑠′√𝑁 , 𝑣
√
𝑁
)

P1’s Evaluation: PRG(𝑠1) + (𝑢1 ·𝑤)∥ · · · ∥PRG(𝑠√𝑁 ) + (𝑢√𝑁 ·𝑤)
P2’s Evaluation: PRG(𝑠′1) + (𝑣1 ·𝑤)∥ · · · ∥PRG(𝑠′√𝑁 ) + (𝑣

√
𝑁
·𝑤)

It is easy to verify that the above scheme is correct and yields shares of size Θ
(√
𝑁

)
.

For security, observe that except for 𝑤 , all the other values sent to each party (as part of their shares)
information-theoretically hides 𝑓𝛼,𝛽 , while 𝑤 only computationally hides 𝑓𝛼,𝛽 . This is because, for either
party, 𝑤 is masked with a pseudorandom string, the seed corresponding to which is only known to this
party.8

2.1 Multiparty DPFs from Special Combinatorial Design

In order to extend the above framework to the multiparty setting, we consider a special type of combinato-
rial design on bipartite graphs. We emphasize that, while similar ideas were implicitly employed by Boyle
et al. [BGI15] in their multiparty DPF construction, we view this abstraction as an important conceptual
contribution of our work. Looking ahead, this abstraction is crucial in the design of our construction.

A General Perspective. To motivate this abstraction, let us view the above two-party construction from
a more general perspective that includes it as a special case. Essentially, for every index 𝑖 , the dealer
samples an independent collection of ℓ random seeds 𝑠0, . . . , 𝑠ℓ−1 and each party P𝑗 is given some subsets
𝑆 𝑗 of these seeds (i.e., {𝑠𝑖}𝑖∈𝑆 𝑗

). During expansion, party P𝑗 evaluates the PRG on each seed, adds these
pseudorandom strings and views this sum

∑
𝑖∈𝑆 𝑗

PRG(𝑠𝑖) . as its private share of the 𝑖-th
√
𝑁 -size substring

(i.e., of the vector obtained before applying the correction string).
This seed distribution process should come in two modes, depending on if 𝑖 = 𝑖∗ or not. For 𝑖 ≠ 𝑖∗,

we want the parties’ shares to sum up to the zero string. For this, the dealer must send each seed to an
even number of parties. In the other case, where 𝑖 = 𝑖∗, the shares of all parties should add up to 𝑒 𝑗∗ after
applying the correction string.

To ensure that no information about 𝑖∗ is leaked, we require the following two properties to hold in the
presence of an adversary who corrupts all but one party: (1) First, the correction string needs to appear
pseudorandom to this adversary. This can be achieved if, for any party P, there exists a seed 𝑠 that is
exclusively sent to P. (2) Second, the two modes of distributing seeds should remain indistinguishable for
this adversary.9

If we were to represent the above process of distributing seeds as a bipartite graph, the previously
discussd two-party construction can be viewed as Figure 1. Graph 𝐺0 (resp., 𝐺1) on the left (resp., right)
corresponds to the mode 𝑖 ≠ 𝑖∗ (resp., 𝑖 = 𝑖∗).

8For example, if P1 is corrupted, the seed 𝑠′𝑖∗ guarantees that𝑤 is pseudorandom to P1. On the other hand, if P2 is corrupted,
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P1

P2

𝑠

𝑠′

(a) 𝐺0 with only even degrees

P1

P2

𝑠

𝑠′

(b) 𝐺1 with a dedicated seed per party

Figure 1: Two-party scheme represented as a combinatorial design: 𝑛 = 2 and ℓ = 2.

While this may seem like a convoluted way to view a two-party DPF scheme, the advantage is that this
framework can be naturally extended to any number of parties 𝑛, as long as we have two bipartite graphs
– each with 𝑛 left vertices – that satisfy all the required properties. We refer to such a pair of graphs as a
special combinatorial design.

Special Combinatorial Design. Let us formally summarize what we mean by a special combinatorial de-
sign (see Definition 5 for a technical definition). It comprises of two bipartite graphs𝐺0 and𝐺1, where both
have 𝑛 vertices on the left and ℓ vertices on the right. They should satisfy the following three properties.

1. Correctness. The degree of each right vertex in 𝐺0 must be even.

2. Pseudorandomness. In 𝐺1, for every left vertex, there exists a right vertex that is only incident to
this particular left vertex.

3. Indistinguishability.10 The subgraphs of𝐺0 and𝐺1 induced by any proper subset of the left vertices
are indistinguishable. When the two subgraphs are perfectly indistinguishable, we call such schemes
perfect.

For intuition, 𝐺0 and 𝐺1 represent the seed distribution process for the 𝑖 ≠ 𝑖∗ and 𝑖 = 𝑖∗ case, respec-
tively. The correctness property guarantees the correctness when 𝑖 ≠ 𝑖∗ (i.e., the sum of the evaluations of
the DPF shares is a 0 string), and the pseudorandom property and indistinguishability properties jointly
guarantee the privacy of the (multiparty) DPF scheme. This implication is formally presented in Section 4.1.

(Perfect) Special Combinatorial Design from Existing Constructions. Given such a framework, the
first natural question is whether such special combinatorial designs exist for any number of parties 𝑛.
Fortunately, [BGI15] gives an elegant construction. We include their construction below as it is closely
related to our lower-bound proof later.

For any 𝑛, set ℓ = 2𝑛−1. Label all the right vertices in𝐺0 as 𝑛-bit binary strings with an even Hamming
weight, e.g., (1, 1, 0, 0, . . . , 0).11 Conversely, label all the right vertices in𝐺1 as 𝑛-bit binary strings with an
odd Hamming weight. Let the graph be defined by the labeling of each right vertex as its incident vector.
For example, if 𝑠0 is labeled with the vector (1, 0, 1, 0, . . . , 0), 𝑠0 is connected to P1 and P3.

The reader may verify that this construction satisfies all properties of our special combinatorial design
(refer to [BGI15] for a detailed proof). In particular, Figure 2 pictorially presents this construction for𝑛 = 3.

While the above solution is elegant, we note that it requires exponentially many vertices on the right
— namely, ℓ = 2𝑛−1. Observe that the total number of edges in the special combinatorial design determines

the seed 𝑠𝑖∗ guarantees that𝑤 is pseudorandom to P2.
9Intuitively, the first (resp., second) property ensures that parties cannot infer any information about 𝑖∗ from the correction

string (resp., the collection of seeds) they receive.
10In Definition 5, we refer to this as the privacy property.
11Note that there are exactly 2𝑛−1 such strings.
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P1

P2

P3

𝑠0

𝑠1

𝑠2

𝑠3

(a) 𝐺0 with only even degrees

P1

P2

P3

𝑠0

𝑠1

𝑠2

𝑠3

(b) 𝐺1 with a dedicated seed per party

Figure 2: A perfect combinatorial design for 𝑛 = 3 with ℓ = 4 [BGI15]. The incident vector for (the right
vertices of)𝐺0 consists of all possible 3-bit strings with even Hamming weights; while the incident vector
for (the right vertices of) 𝐺1 consists of all possible 3-bit strings with odd Hamming weights.

the share size of the corresponding multiparty DPF. Consequently, their construction only gives a multi-
party DPF with share size exponential in the number of parties. This naturally leads to the following key
technical question.

Can we construct such a special combinatorial design with smaller size?
In particular, polynomial size?

We answer this question in both directions. First, we show that such a construction cannot exist if
one restricts to deterministic constructions. In particular, our lower bound implies that the construction of
[BGI15] is optimal. On the other hand, we manage to give a randomized construction where ℓ = poly(𝑛),
which leads to a multiparty DPF with poly(𝑛) ·

√
𝑁 share size. On the downside, the indistinguishability

of our construction only holds with inverse polynomial probability. Therefore, we need a privacy ampli-
fication technique borrowed from [BGIK22b]. We elaborate on these points next.

2.2 Deterministic Construction Requires Exponential Size

We first prove an exponential lower bound for any deterministic special combinatorial designs. In par-
ticular, we show that ℓ ⩾ 2𝑛−1, which implies that the construction of [BGI15] is optimal. The proof is
formally presented as Theorem 2 in Section 4.3. We present the main idea here.

Suppose we have a deterministic special combinatorial design. We are going to label every right vertex
(in both 𝐺0 and 𝐺1) by its 𝑛-bit incidence vector.12 For example, if this vertex is only connected with the
left vertices P1 and P3. We are going to label it with (1, 0, 1, 0, 0, ..., 0).13 In a nutshell, we are going to prove
that, for every possible vector 𝑣 in {0, 1}𝑛 , there exists a right vertex with the label 𝑣 . This suffices for the
proof as it shows that 𝐺0 and 𝐺1 combine for ⩾ 2𝑛 many right vertices. Our proof follows an inductive
structure based on the Hamming weight of the vector to alternatively prove the following two claims.

• For an odd integer wt, if 𝐺1 contains all the vectors of Hamming weight wt, then 𝐺0 must contain
all the vectors of Hamming weight wt + 1.

12In this informal discussion, we interchangeably use the term vector and right vertex.
13Note that the labeling is not unique. Two balls might have the same label.
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• For an even integer wt, if 𝐺0 contains all the vectors of Hamming weight wt, then 𝐺1 must contain
all the vectors of Hamming weight wt + 1.

In this overview, we show why the first two steps (i.e., wt = 2 and wt = 3) are correct. The rest are
analogous. First, the base case wt = 1 of the induction is correct. Namely, 𝐺1 does contain all the vectors
with Hamming weight 1 as mandated by the “pseudorandomness property”.

Now that we know 𝐺1 contains all vectors with wt = 1. Take (1, 0, 0, ..., 0) as an example. Suppose P2
is the only honest party and consider the subgraph induced by {1, 3, 4, . . . , 𝑛}. Then, for𝐺1, this subgraph
contains a vector (1,⊥, 0, 0, . . . , 0).14 Now, for𝐺0, we should see the same vector (1,⊥, 0, 0, . . . , 0) in the in-
duced subgraph (otherwise, the design is completely distinguishable). The question is, what is the original
vector that resulted in (1,⊥, 0, 0, . . . , 0)? It could potentially be

(1, 0, 0, 0, . . . , 0) or (1, 1, 0, 0, . . . , 0).

However, by the “correctness property”, 𝐺0 should only contain vertices with an even degree. Hence, the
original vector can only be (1, 1, 0, 0, . . . , 0), which must be contained by𝐺0. In this manner, one can prove
that 𝐺0 must contain all the vectors with wt = 2.

Now that we know𝐺0 contains all vectors with wt = 2, we are going to prove that𝐺1 contains all vec-
tors with wt = 3. Take the vector (1, 1, 0, 0, ..., 0) in 𝐺0 as an example. Suppose P3 is honest and consider
the subgraph induced by {1, 2, 4, 5, . . . , 𝑛}. Following a similar argument, we know that (1, 1,⊥, 0, 0, ..., 0)
should be contained in both induced subgraphs. However, the above proof strategy runs into an issue be-
cause𝐺1 is not required to contain only odd-degree vertices. We cannot directly argue that (1, 1, 1, 0, 0, ..., 0)
must be contained in 𝐺1. Yet, for deterministic constructions, we can arrive at this conclusion by a more
careful analysis.15

We prove this by contradiction. Suppose we see 𝑚 many (1, 1,⊥, 0, 0, ..., 0) vertices in 𝐺1, and all of
them are due to (1, 1, 0, 0, 0, ..., 0), i.e.,𝐺1 contains𝑚 vertices with the label (1, 1, 0, 0, ..., 0). Now, remember
that𝐺1 also contains at least one vertex with the label (1, 0, 0, 0, ..., 0).16 This means that there are ⩾𝑚 + 1
instances of (1,⊥, 0, 0, ..., 0) for 𝐺1 (when we look at the induced subgraph from {1, 3, 4, . . . , 𝑛}). By our
argument before, in order to match this view, 𝐺0 must have 𝑚 + 1 vertices with labeling (1, 1, 0, ..., 0),
which means that𝐺0 will have𝑚 + 1 instances of (1, 1,⊥, 0, ..., 0) in the induced subgraph — rendering𝐺0
and 𝐺1 completely distinguishable when P3 is the only honest party.

By alternatively invoking these two claims, we can indeed prove that all possible vectors are contained
in either 𝐺0 or 𝐺1 and any deterministic design must have exponential size.

2.3 Randomized Construction with Polynomial Size

To bypass the lower bound, we resort to randomized constructions. Our construction is pictorially pre-
sented in Figure 3.

The 𝐺0 graph is simply a 2-regular bipartite graph where the two neighbors of each right vertex
𝑠1, . . . , 𝑠ℓ are randomly chosen with replacement (i.e., the two neighbors could be the same). For 𝐺1, we
additionally plant 𝑡 more vertices 𝑠′1, . . . , 𝑠

′
𝑡 such that they only have only one random neighbor.17

14Here, ⊥ is a placeholder for the removed second (left) vertex.
15The analysis fails for randomized constructions completely.
16For randomized constructions, the number of instances for (1, 0, 0, . . . , 0) and (1, 1, 0 . . . , 0) could be highly correlated. Thus,

a counting argument will not work.
17One may consider other ways (e.g., a deterministic way) to plant these additional vertices. For instance, one may simply

add 𝑛 vertices, each connected to one distinct party P𝑖 . Our analysis will also apply. We opt for this construction as we find the
statistical analysis simpler in this way.

9



𝐺0

𝑠𝑖

P𝑗

P𝑗 ′

Two random

(possibly identical)

neighbors

𝑠′
𝑖

P𝑘

One random

neighbor

ℓ many

𝑡 many

Figure 3: Our randomized construction: 𝐺0 consists of only the highlighted part, while 𝐺1 consists of the
entire graph. We emphasize that the two random neighbors for 𝑠𝑖 ’s are sampled with replacement (i.e., they
could be identical).

To argue that this is a special combinatorial design, we need to verify the three properties. First,
the correctness property is always guaranteed by the construction. Second, the pseudorandom property
is satisfied as long as the additional vertices 𝑠′𝑖 that we plant will cover all parties. This will hold with
overwhelming probability as long as 𝑡 is sufficiently large (e.g., 𝑡 = 𝑛 · 𝜆).

Finally, the indistinguishability is the most non-trivial to see. In a nutshell, the reason why 𝐺0 and 𝐺1
are hard to distinguish is because the adversary only sees a subgraph of 𝐺0 and 𝐺1. For those ℓ seeds that
have degree-2, there is a significant chance (≈ 1/𝑛) that the adversary sees this vertex has only degree-1
(or even degree-0).18 Consequently, these degree-1 vertices in the adversary’s view play a pivotal role in
masking the additional 𝑡 degree-1 vertices that we plant for 𝐺1.

Technically, we can think of this randomized construction as a balls and bins experiment. There are 𝑛
bins in total and the adversary gets to see the configuration of 𝑛 − 1 out of these 𝑛 bins. In one case, there
are ℓ balls that are dropped twice independently and uniformly randomly into these bins. In the other case,
there are 𝑡 additional balls that are only dropped only once into a random bin. We are interested in the
statistical distance between the adversary’s views in these two cases.

We first observe that, to argue the statistical distance between these cases, it suffices to consider the
(joint) distribution (S,T), where S (resp., T ) is the random variable denoting the number of balls that the
adversary sees once (resp., twice). This is because, conditioned on (S,T), the view of the adversary (i.e.,
the particular configuration of the balls in each bin) is identically distributed in either case (i.e., uniformly
randomly distributed).19 Therefore, for measuring the statistical distance, it suffices to only consider the
distribution (S,T).

Now that we only focus on (S,T), the problem simplifies greatly. Note that, in case one, conditioned
on any fixed T = 𝜏 , S is simply a sum of (ℓ − 𝜏) many Bernoulli distributions with probability ≈ (𝑛 −

18Such events happen when (at least) one of the random neighbors is the honest party.
19This is the benefit of planting the 𝑡 additional 𝑠′

𝑖
’s at random parties compared to deterministically planting a seed per party.
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Δ Δ

Figure 4: A pictorial view of the distribution shift: the blue distribution represents the number of degree-1
balls the adversary sees in 𝐺0. The dashed red distribution represents the number of degree-1 balls the
adversary sees in 𝐺1, and is the “shifted” by some (random) amount Δ from the blue distribution.

1)/𝑛.20 On the other hand, in case two, S is distributed as the same Bernoulli distribution, but shifted
(due to the planted degree-1 vertices) by an amount that roughly equals 𝑡 · (𝑛 − 1)/𝑛. More precisely,
the shift amount (i.e., the additional degree-1 balls in the adversary’s view) is also a sum of independent
Bernoulli distributions (since each planted ball could have degree-0 with probability 1/𝑛 in the adversary’s
view). Figure 4 gives an informal view of the distributions of S in case one and two. We are interested in
the statistical distance between these two distributions. It turns out that this problem is well-studied in
mathematics, and we imported several lemmas to bound the SD (refer to Lemma 1 and Lemma 2). This
proof is formally presented as Theorem 3 in Section 4.3.

Let us also give an informal justification for the asymptotics of the statistical distance. We know
the expectation of 𝜏 is roughly ℓ · 𝑛−1

𝑛
. Hence, S in case one is roughly the sum of ℓ/𝑛 many Bernoulli

distributions with probability (𝑛 − 1)/𝑛. By the Central Limit Theorem, this distribution is going to be
close to a Gaussian distribution with standard deviation 𝜎 = Θ

(√︁
ℓ/𝑛2

)
.21 If one approximates a Gaussian

distribution as a uniform distribution22 over the support of size Θ(𝜎), then any shift Δ will result in a
statistical distance of Θ(Δ/𝜎). Since we are going to shift this distribution by Θ(𝑛) in expectation, the
statistical distance will asymptotically be of the order 𝑛/

√︁
ℓ/𝑛2 = 𝑛2/

√
ℓ .

To summarize, this randomized construction gives a special combinatorial design with ℓ + Θ(𝑛) ≈ ℓ
number of right vertices andΘ

(
𝑛2/
√
ℓ

)
indistinguishability guarantee. In terms of the multiparty DPF, this

will imply a multiparty DPF construction with share size Θ
(
ℓ ·
√
𝑁

)
and Θ

(
𝑛2/
√
ℓ

)
privacy. In particular,

setting ℓ = 𝑛4 · poly(𝜆) will result in an inverse-polynomial error.

Privacy Amplification. Our randomized special combinatorial design will already give us a multiparty
distributed point function with share size poly(𝑛) ·

√
𝑁 . However, it has one downside that the privacy

guarantee is not negligible, but an inverse polynomial. To obtain a schemewith negligible error, we borrow
a result from [BGIK22b], which gives a generic way to amplify the security of (potentially multiparty) DPF
constructions.

We have to use their technique with some extra care with the following reason. On a high level, their
amplification employs a locally decodable code (with some locality parameter 𝑇 ) to reduce one instance
of DPF in the message domain to 𝑇 instances of DPFs in the codeword domain. When we invoke their

20This is the reason why, when we sample the two neighbors, it sampled with replacement (i.e., the two neighbors could be the
same). Note that, if we sample without replacement, conditioned on T = 𝜏 , S is fixed to be ℓ − 𝜏 .

21In our technical proof, we use translated Poisson distributions to approximate these sums of (heavily-)biased Bernoulli dis-
tributions (refer to Lemma 1).

22This is certainly not true, but just for the purpose of developing intuition.
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techniques, we need to be careful since we do not have polylog(𝑁 ) share size to begin with. Consequently,
if the locally decodable code has a quadratic blowup (e.g., encode an𝑁 -bit message as an𝑁 2-bit codeword),
the amplified scheme would have a linear share size (e.g.,

√
𝑁 2) — rendering the overall scheme trivial. In

Section 4.4, we carefully argue that we can invoke their result using a locally decodable code with near-
linear codeword length. This will eventually give us our final result — multiparty DPF with share size
poly(𝑛) ·

√
𝑁 and negligible error.

Open Problems. This concludes the overview of our techniques. We end this section with a few fasci-
nating open problems.

• Our lower bound only rules out deterministic special combinatorial designs of polynomial size. Do
there exist randomized special combinatorial designs with negligible error and polynomial size?
This would give a much more efficient construction as one does not need to employ the privacy
amplification techniques of [BGIK22b].

• In this work, we consider the statistical distance for the indistinguishability in the special combina-
torial design. Is there a way to leverage computational assumption to make the construction more
efficient? Several recent works [ABI+23, BJRZ24] have considered a similar problem on distinguish-
ing random graphs from a random graph with a planted minor efficiently.

• So far, all the multiparty DPF functions can only achieve share size square root in the database size.
Is there any way that we can break this barrier to obtain a scheme with share size o

(√
𝑁

)
?

3 Preliminaries

In this section, we establish the notation and recall some preliminaries.
Notation. Weuse 𝜆 to denote the security parameter and [𝑁 ] to denote the set {1, 2, . . . , 𝑁 }. The operators⊕

or ⊕ denote bitwise exclusive-or, while | | denotes string concatenation. The unit vector 𝑒 𝑗 refers to
the vector whose 𝑗-th entry is 1 and all other entries are 0. For a binary string 𝑥 , we use |𝑥 | to denote its
length. For an array or vector 𝑣 , 𝑣 [𝑖] refers to its 𝑖-th entry. The inner product of two vectors 𝑥 and 𝑦 is
denoted by ⟨𝑥,𝑦⟩.

We write 𝑥
$←− X to denote that 𝑥 is sampled according to the probability distribution X. When X is a

finite set, this indicates that 𝑥 is sampled uniformly from that set. We use Bern(𝑝) to denote the Bernoulli
distribution with success probability 𝑝 , defined as: That is,

Bern(𝑝) =
{
1 with probability 𝑝
0 with probability 1 − 𝑝

.

Definition 1 (Statistical Distance). For any two discrete distributions X1 and X2 over the support S, their
statistical distance is defined as

SD (X1,X2) =
1
2
·
∑︁
𝑠∈S
|Pr[X1 = 𝑠] − Pr[X2 = 𝑠] |.

Definition 2 (Chernoff Bound [Che52]). Let𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent random binary variables, and let
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𝑋 :=
∑𝑛

𝑖=1𝑋𝑖 . Let the expectation of 𝑋 be denoted as E(𝑋 ) = 𝜇 and 𝛿 > 0. The Chernoff’s bound states that:

Pr (𝑋 ⩾ (1 + 𝛿)𝜇) ⩽ exp
(
− 𝛿

2𝜇

2 + 𝛿

)
,

Pr(𝑋 ⩽ (1 − 𝛿)𝜇) ⩽ exp
(
−𝛿

2𝜇

2

)
Definition 3 (Poisson Distribution). Let ℓ > 0. A discrete random variable 𝑋 is distributed according to the
Poisson distribution with parameter ℓ , if and only if its probability mass function is defined as follows:

Pr(𝑋 = 𝑘) =
{

ℓ𝑘

𝑒ℓ ·𝑘! if 𝑘 ∈ N
0 otherwise

.

Definition 4 (Multiparty DPF [BGI16]). Let 𝑓𝛼,𝛽 : D → R be a point function. For 𝑛 ∈ N and 𝑡 < 𝑛, an
𝑛-party, 𝑡-secure distributed point function with respect to share reconstruction algorithm Recon, is a pair of
PPT algorithms (Gen, Eval) with the following syntax:
• Gen(1𝜆, 𝛼, 𝛽): On input the security parameter 1𝜆 and function parameters 𝛼 ∈ D, 𝛽 ∈ R, the share
generation algorithm outputs 𝑛 shares, (𝑘0, . . . , 𝑘𝑛−1).

• Eval(𝑖, 𝑘𝑖 , 𝑥): On input a party index 𝑖 , share 𝑘𝑖 , and input string 𝑥 ∈ D, the evaluation algorithm outputs
a value 𝑦𝑖 ∈ R, corresponding to this party’s share of 𝑓𝛼,𝛽 (𝑥).

These two algorithms satisfy the following:
• (1 − 𝛾)-Correctness. For all 𝑥, 𝛼 ∈ D and 𝛽 ∈ R, it holds that,

Pr

[
(𝑘0, 𝑘1, . . . , 𝑘𝑛−1) ← Gen(1𝜆, 𝛼, 𝛽);

Recon (Eval(0, 𝑘0, 𝑥), . . . , Eval(𝑛 − 1, 𝑘𝑛−1, 𝑥)) = 𝑓𝛼,𝛽 (𝑥)

]
⩾ 1 − 𝛾 (𝜆) .

• (𝑡, 𝜈)-Security. Consider the following indistinguishability challenge experiment for any 𝑡-size subset 𝑇 ⊂
{0, 1, . . . , 𝑛 − 1} of corrupted parties:

1. The adversary outputs (𝛼0, 𝛽0, 𝛼1, 𝛽1, state) ← A(1𝜆), where 𝛼0, 𝛼1 ∈ D and 𝛽0, 𝛽1 ∈ R.
2. The challenger samples a bit 𝑏 ← {0, 1} and computes (𝑘0, 𝑘1, . . . , 𝑘𝑛−1) ← Gen(1𝜆, 𝛼𝑏, 𝛽𝑏).
3. The adversary outputs a guess 𝑏′ ← A((𝑘𝑖)𝑖∈𝑇 , state), given the keys for the corrupted 𝑇 .

Denote byAdv(1𝜆,A) :=
��Pr(𝑏′ = 𝑏) − 1

2

��, the advantage ofA in guessing b in the above experiment, where
probability is taken over the randomness of the challenger and ofA. We say that the scheme is (𝑡, 𝜈)-secure
if for all non-uniform PPT adversaries A, it holds that Adv(1𝜆,A) ⩽ 𝜈 (𝜆).

A few remarks are in order.

1. We do not require the function 𝜈 to necessarily be negligible, as we deal with both negligible and
inverse polynomial functions.

2. The indistinguishability based security notion defined here is equivalent to a simulation-based one,
where one must be able to simulate the distribution of corrupt parties’ shares without knowledge of
the shared point function [BGI16].

3. While the above definition is more general, in this work, we will focus on point functions of the
form 𝑓𝛼,𝛽 : D → F𝑝𝑞 , where 𝑝 is an arbitrary constant prime.
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4. While the Eval algorithm is formally defined as taking a single input 𝑥 ∈ D and returning shares
of the corresponding output, as in prior works [BGIK22b], our construction evaluates the entire
domain in a single pass. Consequently, our DPF is only applicable to point functions over domains
of polynomial size, a setting commonly referred to as small-domain DPF in the literature [BGIK22b].

5. Maximal Threshold 𝑡 = (𝑛 − 1). For most of this paper, we focus on the maximal corruption
threshold 𝑡 = 𝑛 − 1. In this case, the reconstruction algorithm Recon is simply a sum over elements
in R. When referring to security in this setting, we use the term 𝜈-security and omit the explicit
mention of 𝑡 = 𝑛 − 1 for simplicity.

6. Threshold 𝑡 < (𝑛 − 1). In Section 4.5, we consider a variant with a smaller corruption threshold,
referred to as the (𝑡, 𝑛)-threshold DPF. Here, privacy is preserved against any coalition of up to 𝑡
corrupt parties, and reconstruction can be performed using any subset of 𝑡 + 1 evaluated shares via
the Recon algorithm.

4 Multiparty Distributed Point Functions

In this section, we present our construction of a multiparty distributed point function (DPF). In Section 4.1,
we show that themultiparty DPF of Gilboa et al. [GI14] can be viewed as reducing the problem of designing
a multiparty DPF to constructing a combinatorial design with specific properties, which we formalize. In
Section 4.2, we prove that the implicit design used in the construction of [BGI15] is optimal, by showing
that any such deterministic combinatorial design must be exponential in the number of parties. Section 4.3
presents a randomized combinatorial design satisfying the required properties, yielding a scheme with
inverse polynomial security. In Section 4.4, we apply security amplification techniques from [BGIK22b] to
achieve negligible security loss. Finally, in Section 4.5, we extend our construction to support threshold
DPFs for certain thresholds.

4.1 Multiparty DPFs from PRGs and a Special Combinatorial Design

As discussed in Section 2, the [GI14] paradigm for designing multiparty DPFs can be viewed as a clever
combination of PRGs and a special combinatorial design. We start by formalizing the properties needed
from such a special combinatorial design.

Definition 5 (Special Combinatorial Design). Let 𝜆, 𝑛 ∈ N and ℓ be a polynomial in 𝜆, 𝑛. A special com-
binatorial design consists of two (possibly random) bipartite graphs 𝐺0 and 𝐺1, each with 𝑛 vertices on the
left-hand side and ℓ = ℓ (𝜆, 𝑛) 23 vertices on the right-hand side, satisfying the following properties:

1. (1 − 𝛿)-Correctness. The probability that each right vertex in 𝐺0 has an even degree is at least 1 − 𝛿 .

2. (1 − 𝜌)-Pseudorandomness. With probability at least (1 − 𝜌), for each left vertex in 𝐺1, there exists
a right vertex to which it is exclusively connected.

3. 𝜀-Privacy. The statistical distance between the subgraphs obtained by removing the 𝑖-th (for any 𝑖 ∈
[𝑛]) left vertices from 𝐺0 and 𝐺1 is at most 𝜀.

Here 𝛿, 𝜌 and 𝜀 are assumed to be functions of 𝜆, 𝑛.24

23We note that for simplicity here we are assuming that both 𝐺0 and 𝐺1 have the same number of right vertices. While this
is the case for the deterministic special combinatorial design that is implicit in [BGI15], in our randomized construction we will
have different number of right vertices in the two graphs.

24We sometimes abuse notation and use ℓ, 𝛿, 𝜌, 𝜀 instead of ℓ (𝜆, 𝑛), 𝛿 (𝜆, 𝑛), 𝜌 (𝜆, 𝑛), 𝜀 (𝜆, 𝑛).
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We now describe how to construct a multiparty DPF using a PRG and a special combinatorial design
that satisfies the properties outlined above. For simplicity, we assume throughout this subsection that the
point function is of the form 𝑓𝛼,𝛽 : D → Z2, where |D| = 𝑁 . At the end of the subsection, we explain how
the construction can be extended to support arbitrary fields as the function’s range. We start by presenting
the main ideas and include a formal description in Algorithms 1, 2 and 3.

Share Generation. As discussed earlier, we reinterpret the 𝑁 -length output vector of 𝑓𝛼,𝛽 as an 𝑚 × 𝜇
matrix 𝑀 , where 𝑚, 𝜇 = O(

√
𝑁 ). Let the coordinate corresponding to 𝛼 in this matrix be ( 𝑗, 𝑘). Let

PRG : {0, 1}𝜆 → {0, 1} |F | ·𝜇 be a pseudorandom generator. Informally, each party receives a set of PRG
seeds – one per row of the matrix. For all rows except the 𝑗-th, seeds are sampled and distributed according
to the bipartite graph 𝐺0; for the 𝑗-th row, seeds follow the distribution defined by 𝐺1 from the special
combinatorial design.

More precisely, sampling and distributing seeds according to a graph 𝐺𝑏 works as follows: for each
right vertex in𝐺𝑏 , sample a random seed. Each left vertex corresponds to a party, and each party 𝑖 receives
the seeds associated with the right vertices connected to its corresponding left vertex. A formal description
of this is included in Algorithm 3.

In addition to these seeds, each party also receives a share of the zero-bit for all rows other than the
𝑗-th, and a share of the one-bit for the 𝑗-th row in𝑀 . We refer to these as shares of control bits. Finally, all
parties receive a correction word cw, computed by XORing the 𝑗-th row of matrix 𝑀 with the outputs of
the PRG evaluated on the ℓ seeds associated with graph 𝐺1. A formal description of this step is provided
in Algorithm 1.

Evaluation. For each row of the matrix 𝑀 , each party computes its output share of the point function
by multiplying the corresponding bit share with the correction word and XORing the result with PRG
evaluations on all the seeds obtained for that row. The output share is the concatenation of these strings
across all rows.

We note that our DPF evaluation process differs slightly from the original construction in [GI14].
This deviation arises from the need to apply security amplification techniques (see Section 4.4 for details).
Rather than compressing the final output, we retain the full domain evaluation as the result. Formal details
are provided in Algorithm 2.

Algorithm 1 Gen(1𝜆, 𝛼, 𝛽)
1: Let PRG : {0, 1}𝜆 → {0, 1} |F | ·𝜇 be a pseudorandom generator.
2: Interpret 𝛼 as ( 𝑗, 𝑘).
3: Compute (𝑆𝑖1, . . . , 𝑆𝑖𝑚)𝑖∈[𝑛] ←− Share( 𝑗, 𝑛,𝑚) using Algorithm 3.
4: Sample 𝑛 ·𝑚 random bits (𝑡𝑖1, . . . , 𝑡𝑖𝑚)𝑖∈[𝑛] such that,

⊕𝑛

𝑖=1 𝑡
𝑖
𝑔 is 0 when 𝑔 ≠ 𝑗 , and is 1 otherwise.

5: Let cw← 𝛽 · e𝑘 and 𝑖 ← 0.
6: for 𝑖 < 𝑛 do
7: Parse 𝑆𝑖𝑗 as a sequence of ℓ𝑖 PRG seeds (𝑟 𝑖𝑗,1, . . . , 𝑟 𝑖𝑗,ℓ𝑖 ).
8: cw := cw

⊕ℓ𝑖
𝑏=1 PRG(𝑟 𝑖𝑗,𝑏) .

9: 𝑖 := 𝑖 + 1.
10: end for
11: For each 𝑖 ∈ [𝑛], let 𝐾𝑖 ←

(
𝑆𝑖1, 𝑡

𝑖
1, . . . , 𝑆

𝑖
𝑚, 𝑡

𝑖
𝑚, cw

)
. Send 𝐾𝑖 to party 𝑖 .
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Algorithm 2 Eval(𝑖, 𝑘𝑖 , 𝑥)
1: Let PRG : {0, 1}𝜆 → {0, 1}𝜇 · |F | be a pseudorandom generator.
2: Parse 𝐾𝑖 as

(
𝑆𝑖1, 𝑡

𝑖
1, . . . , 𝑆

𝑖
𝑚, 𝑡

𝑖
𝑚, cw

)
and each 𝑆𝑖𝑔 as a sequence of ℓ𝑖 PRG seeds (𝑟 𝑖𝑔,1, . . . , 𝑟 𝑖𝑔,ℓ𝑖 )

3: For 𝑔 ∈ [𝑚], compute y𝑖𝑔 = 𝑡𝑖𝑔 · cw
⊕ℓ𝑖

𝑏=1 PRG(𝑟 𝑖𝑔,𝑏)
4: Output (y𝑖1 ∥, . . . , ∥ y𝑖𝑚).

Algorithm 3 Share( 𝑗, 𝑛,𝑚)
1: Let PRG : {0, 1}𝜆 → {0, 1}𝜇 · |F | be a pseudorandom generator.
2: for 𝑔 ∈ [𝑚] do
3: For each 𝑖 ∈ [𝑛], let 𝑆𝑖𝑔 = ∅.
4: if 𝑔 ≠ 𝑗 then
5: Sample a graph 𝐺0 as per Definition 5. Let this graph be denoted as 𝐺0,𝑔.
6: for each right vertex 𝑏 ∈ [ℓ] in 𝐺0,𝑔 do

7: Sample a PRG seed 𝑟 0,𝑔
𝑏

$←− {0, 1}𝜆 .
8: for 𝑖 ∈ [𝑛] do
9: If the 𝑏-th right vertex is connected to the 𝑖-th left vertex, then update 𝑆𝑖𝑔 ← 𝑆𝑖𝑔 ∪ {𝑟

0,𝑔
𝑏
}

10: end for
11: end for
12: else
13: Sample a graph 𝐺1 as per Definition 5. Let this graph be denoted as 𝐺1, 𝑗 .
14: for each right vertex 𝑏 ∈ [ℓ] in 𝐺1, 𝑗 do

15: Sample a PRG seed 𝑟 1,𝑔
𝑏

$←− {0, 1}𝜆 .
16: for 𝑖 ∈ [𝑛] do
17: If the 𝑏-th right vertex is connected to the 𝑖-th left vertex, then update 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ {𝑟

1,𝑔
𝑏
}

18: end for
19: end for
20: end if
21: end for
22: return (𝑆11, . . . , 𝑆1𝑚), . . . , (𝑆𝑛1 , . . . , 𝑆𝑛𝑚)

Theorem 1. Let 𝜆 be the security parameter, 𝑛 the number of parties, and let 𝑓𝛼,𝛽 : D → Z2 be a point
function with |D| = 𝑁 . Assume 𝑚 · 𝜇 = 𝑁 , where 𝑚, 𝜇 = O(

√
𝑁 ). Given a pseudorandom generator

PRG : {0, 1}𝜆 → {0, 1} |F | ·𝜇 and a special combinatorial design (see Definition 5) with (1 − 𝛿)-correctness,
(1 − 𝜌)-pseudorandomness, and 𝜀-privacy, Algorithms 1 and 2 yield a multiparty DPF with:

• O(𝜀 + 𝜌) computational security,

• O(1 −
√
𝑁 · 𝛿) correctness, and

• O(ℓ ·
√
𝑁 ) per-party share size.

Proof. We prove each of the above proerties:
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• Security: Let the advantage of any computationally bounded adversary in breaking the pseudorandom
generator PRG be negl(𝜆). Let K𝛼1 and K𝛼2 denote the set of all shares generated by Gen(1𝜆, 𝛼1, 𝛽)
and Gen(1𝜆, 𝛼2, 𝛽), respectively. Our goal is to bound the maximum advantage of any computationally
bounded adversary in distinguishing between the shares of corrupt parties in K𝛼1 and K𝛼2 .
This advantage can be upper bounded by the sum of three components:

1. The probability of breaking the PRG, which is negl(𝜆).
2. The probability that the PRG seed is leaked due to failure of the psudorandomness property in

Definition 5, which is at most 1 − (1 − 𝑝)2.
3. The statistical distance between the distributions of PRG seeds given to the corrupt parties in the

two configurations, which is at most 2𝜀. To see this, let ( 𝑗1, 𝑘1) and ( 𝑗2, 𝑘2) be the positions in the
𝑚 × 𝜇 matrix corresponding to 𝛼1 and 𝛼2, respectively. Let

((𝐺𝛼1
0,𝑔)𝑔∈[𝑚], 𝑔≠𝑗1,𝐺

𝛼1
1, 𝑗1) and ((𝐺𝛼2

0,𝑔)𝑔∈[𝑚], 𝑔≠𝑗2,𝐺
𝛼2
1, 𝑗2)

be the sets of bipartite graphs sampled by Gen(1𝜆, 𝛼1, 𝛽) and Gen(1𝜆, 𝛼2, 𝛽), respectively. Observe
that (𝐺𝛼1

0,𝑔)𝑔∈[𝑚], 𝑔∉{ 𝑗1, 𝑗2} and (𝐺
𝛼2
0,𝑔)𝑔∈[𝑚], 𝑔∉{ 𝑗1, 𝑗2} are identically distributed. Thus,

SD
(
((𝐺𝛼1

0,𝑔)𝑔≠𝑗1,𝐺
𝛼1
1, 𝑗1), ((𝐺

𝛼2
0,𝑔)𝑔≠𝑗2,𝐺

𝛼2
1, 𝑗2)

)
⩽ SD(𝐺𝛼1

1, 𝑗1,𝐺
𝛼2
0, 𝑗1) + SD(𝐺

𝛼1
0, 𝑗2,𝐺

𝛼2
1, 𝑗2) ⩽ 2𝜀.

Therefore, the advantage is ⩽ negl(𝜆) +
(
1 − (1 − 𝜌)2

)
+ 2𝜀 = O(𝜀 + 𝜌)

We note that it suffices to analyze the difference in the PRG seeds included in the DPF shares. The shares
of the control bits can be ignored in this analysis. This is because, by triangle inequality, when 𝑔 ≠ 𝑗 , it
follows that:

SD
(
(𝑆𝑖𝑔, 𝑡𝑖𝑔)𝑖∈C, (𝑆𝑖𝑗 , 𝑡𝑖𝑗 )𝑖∈C

)
⩽ SD

(
(𝑆𝑖𝑔)𝑖∈C, (𝑆𝑖𝑗 )𝑖∈C

)
+ SD

(
(𝑡𝑖𝑔)𝑖∈C, (𝑡𝑖𝑗 )𝑖∈C

) ,
where C is the subset of parties corrupted by the adversary. Since 𝑡 ’s are additive shares of 0 or 1,
SD

(
(𝑡𝑖𝑔)𝑖∈C, (𝑡𝑖𝑗 )𝑖∈C

)
is 0.

• Correctness: The correctness of our construction follows analogously to the approach in [BGI15] and
is straightforward to verify. When Algorithm 3 is instantiated with a combinatorial design satisfying
(1 − 𝛿)-correctness, there are 𝑚 − 1 instances of 𝐺0 used in total. Therefore, by a union bound, the
overall probability of correctness in the resulting multiparty DPF is at least (1− 𝛿)𝑚−1 = O(1−

√
𝑁 · 𝛿),

since𝑚 = O(
√
𝑁 ).

• Efficiency: Observe that Algorithm 1 samples a total of𝑚 · ℓ balls PRG seeds. Therefore, the per-party
share size is bounded by O(ℓ ·

√
𝑁 ).

Point Functions overArbitrary Fields. Thus far, for simplicity, we have focused on point functions with
outputs in Z2. To support an arbitrary field F as the range, only minor modifications are needed: replace
all

⊕
operations with addition over F, and augment each PRG seed with an additional bit to indicate its

sign. Specifically, given a seed 𝑥 , the output becomes (−1)𝑏 · PRG(𝑥), where 𝑏 ∈ {0, 1} is the sign bit.
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4.2 Lower Bound

Before presenting our construction of a special combinatorial design, we first show that any deterministic
combinatorial design must require an exponential (in the number of parties) number of right vertices
in both 𝐺0 and 𝐺1. As discussed in Section 2, the multiparty DPF of [BGI15] can be interpreted as an
instantiation of our template from the previous section, using a deterministic special combinatorial design.
The design implicit in their construction indeed requires an exponential number of right vertices in both𝐺0
and𝐺1, resulting in a multiparty DPF with share sizes that grow exponentially with the number of parties.
Our lower bound formally establishes that this is inherent, thereby showing that their construction is
optimal.

Theorem 2. Let 𝑛 ∈ N be the number of left vertices in both𝐺0 and𝐺1 in a special combinatorial design (see
Definition 5). If the design is deterministic, then both 𝐺0 and 𝐺1 must have Ω(2𝑛) right vertices.

Proof. Let us begin by introducing some notation. We represent the incidence pattern of each right vertex
in 𝐺0 and 𝐺1 using binary vectors of length 𝑛. For example, b = (1, 0, 1, 0, . . . , 0) indicates that the right
vertex is connected to the first and third left vertices in the corresponding graph. The Hamming weight
of such a vector, denoted wt(b), is the number of 1s in the vector.

We claim that for every 𝑛-bit binary vector with even Hamming weight, there must exist a correspond-
ing right vertex in𝐺0. Similarly, for every 𝑛-bit binary vector with odd Hamming weight, there must exist
a corresponding right vertex in 𝐺1. We prove this claim by induction on the Hamming weight.

• Base Case: By the pseudorandomness property of the special combinatorial design (see Definition 5),
we know that for every 𝑛-bit binary vector with wt = 1, there exists a corresponding right vertex in
𝐺1.

• Inductive Hypothesis: Suppose that for all 𝑖 ∈ [𝑛 − 1], every 𝑛-bit vector with wt = 𝑖 corresponds
to some right vertex in 𝐺1 if 𝑖 is odd, and in 𝐺0 if 𝑖 is even.

• Inductive Step: We consider the cases of odd and even 𝑖 separately:

– 𝑖 is odd: Suppose the above claim holds for all vectors with wt ⩽ 𝑖 , where 𝑖 is odd. Consider an
arbitrary right vertex in 𝐺1 corresponding to a vector 𝑏𝑖1 with wt(𝑏𝑖1) = 𝑖 . Choose any coordinate
𝑗 ∈ [𝑛] such that the 𝑗-th entry of 𝑏𝑖1 is 0, and assume the 𝑗-th party is honest.
By the privacy property of the special combinatorial design (see Definition 5), the subgraph ob-
served by the corrupt parties must be indistinguishable from that in the alternate configuration
(i.e., 𝐺0). Therefore, there must exist a right vertext corresponding to some vector 𝑏𝑥0 in 𝐺0 such
that it is identical to 𝑏𝑖1 except possibly at coordinate 𝑗 .
Since 𝑖 is odd and the correctness property of a special combinatorial design (see Definition 5)
requires right vertices in 𝐺0 to have even degree, we conclude wt(𝑏𝑥0 ) = 𝑖 + 1. Because both the
choice of 𝑗 and the vector 𝑏𝑖1 were arbitrary, this implies that a right vertex corresponding to every
vector with Hamming weight 𝑖 + 1 must appear in 𝐺0.

– 𝑖 is even: If 𝑖 is an even number, then by the induction hypothesis, all vectors with Hamming
weight 𝑖 have an associated right vertex in 𝐺0. Consider an arbitrary right vertex in 𝐺1 corre-
sponding to a vector 𝑏𝑖0 with wt(𝑏𝑖0) = 𝑖 . Choose any coordinate 𝑗 ∈ [𝑛] such that the 𝑗-th entry
of 𝑏𝑖0 is 0, and assume the 𝑗-th party is honest.
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By the privacy property of the special combinatorial design, there must exist a right vertex corre-
sponding to vector 𝑏𝑥1 in 𝐺1 such that it is identical to 𝑏𝑖0, except possibly at coordinate 𝑗 . How-
ever, at this point, we cannot directly conclude that wt(𝑏𝑥1 ) = 𝑖 + 1. To show that a right vertex
corresponding to such a vector with Hamming weight 𝑖 + 1 must exist in𝐺1, we proceed by con-
tradiction.
Suppose all such vectors 𝑏𝑥1 in 𝐺1 matching 𝑏𝑖0 at all but possibly one position (specifically, the
𝑗-th position) have Hamming weight different from 𝑖 + 1 and let there be 𝑚 such vectors. Let
𝑆 = { 𝑗 ′ ∈ [𝑛] | 𝑏𝑖0 [ 𝑗 ′] = 1}, and choose any 𝑗 ′ ∈ 𝑆 as the honest party. By the induction
hypothesis, there exists a right vertex corresponding to vector 𝑏𝑖−11 in 𝐺1 with Hamming weight
𝑖 − 1 such that it is identical to 𝑏𝑖0 in all but (possibly) the 𝑗 ′-th location.
Now, both 𝑏𝑥1 and 𝑏𝑖−11 match 𝑏𝑖0 on all but one coordinate, but have different Hamming weights.
In particular, we now have ⩾ 𝑚 + 1 vectors of the form 𝑏𝑥1 that match 𝑏𝑖0 in all but possibly the
𝑗 ′-th location and only𝑚 vectors of the form 𝑏𝑥1 that match 𝑏𝑖0 in all but possibly the 𝑗-th location.
But this clearly violates the privacy property of the special combinatorial design, since the corrupt
parties would see two inconsistent matches for 𝑏𝑖0. Therefore, our assumption must be false, and
such a vector with Hamming weight 𝑖 + 1 must exist in 𝐺1. Since the choice of 𝑏𝑖0 and the honest
party is arbitrary, it follows that every vector with Hamming weight 𝑖 + 1 appears in 𝐺1.

Putting everything together, we have proven the claim by induction. Finally, note that the number of
binary vectors of Hamming weight 𝑖 is

(
𝑛
𝑖

)
. Therefore, the number of right vertices in each of𝐺0 and𝐺1 is

at least: ∑︁
0⩽𝑖⩽𝑛
𝑖 even

(
𝑛

𝑖

)
=

∑︁
1⩽𝑖⩽𝑛
𝑖 odd

(
𝑛

𝑖

)
= 2𝑛−1.

4.3 Randomized Special Combinatorial Design

To circumvent the above lower bound, we now present a new randomized construction of a special com-
binatorial design.

Our Construction. We propose to define the two graphs as follows:

1. Graph 𝐺0: This graph has 𝑛 left vertices and 𝑀 right vertices. For each of the 𝑀 right vertices, we
randomly sample (with repetition) two left vertices25 and add edges between the right vertex and
the selected left vertices.

2. Graph𝐺1: This graph has 𝑛 left vertices and𝑀 + 𝑡 right vertices. The first𝑀 vertices are connected
to two (posssibly same) randomly picked left vertices, similarly to 𝐺1. For each of the remaining 𝑡
right vertices, we sample one random left vertex and introduce an edge between them.

We now show that for appropriate values of 𝑀 and 𝑡 , this is a construction of a special combinatorial
design.

Theorem 3. Let 𝜆, 𝑛 ∈ N. For parameters 𝑀 = poly(𝜆, 𝑛) and 𝑡 = poly(𝜆, 𝑛), the above construction yields
a special combinatorial design (see Definition 5) satisfying the following properties:

25Recall from Section 2 that it is possible for the same left vertex to be selected twice, in which case we add two edges between
this pair of vertices.
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1. 1-Correctness.

2.
(
1 − exp

(
−Ω

(
𝑡
𝑛

) ) )
-Pseudorandomness.

3. O
(
𝑡 ·

√︃
𝑛2

𝑀

)
-Privacy.

In particular, setting 𝑡 = Ω(𝑛 · 𝜆) and𝑀 = Ω(𝑛2 · 𝑡2 · 𝜆2) yields a special combinatorial design with negligible
pseudorandomness error and inverse polynomial (in 𝜆) privacy.

Before further analysis, we import two theorems and related definitions that are useful for our proof.

Definition 6 (Translated Poisson Distribution [Röl06]). An integer random variable𝑌 is distributed accord-
ing to the translated Poisson distribution with parameter 𝜎2 and 𝜇 if and only if 𝑌 can be written in the form
of 𝑌 = 𝑍 + ⌊𝜇 −𝜎2⌋. 𝑍 is distributed according to the Poisson distribution with parameter 𝜎2 + {𝜇 −𝜎2} where
{𝜇 − 𝜎2} is the fractional part of 𝜇 − 𝜎2. We denote this distribution with TP(𝜇, 𝜎2).

Lemma 1 (Equation (3.4) of [Röl06]). Let 𝐽1, 𝐽2 · · · 𝐽𝑛 be independent random variables distributed according
to Bernoulli distributions Bern(𝑝1),Bern(𝑝2) · · ·Bern(𝑝𝑛). Denote 𝜇 =

∑𝑛
𝑖=1 𝑝𝑖 and 𝜎

2 =
∑𝑛

𝑖=1 𝑝𝑖 (1 − 𝑝𝑖).
Then we have

SD

(
𝑛∑︁
𝑖=1

𝐽𝑖 , TP(𝜇, 𝜎2)
)
⩽

√︃∑𝑛
𝑖=1 𝑝

3
𝑖
(1 − 𝑝𝑖) + 2
𝜎2

.

Lemma 2 (Lemma 2.1 of [BLU06]). Let 𝜇1, 𝜇2 ∈ R and 𝜎21 , 𝜎
2
2 ∈ R+. If ⌊𝜇1 − 𝜎21⌋ ⩽ ⌊𝜇2 − 𝜎22⌋, we have

SD(TP(𝜇1, 𝜎21 ), TP(𝜇2, 𝜎22 )) ⩽
|𝜇1 − 𝜇2 |
𝜎1

+
|𝜎21 − 𝜎22 | + 1

𝜎21
.

Now we are ready to give a proof of Theorem 3.

Proof of Theorem 3. We prove each property of the special combinatorial design in order.

• 1-Correctness: In our special combinatorial design, since each right vertex in𝐺0 has exactly two edges,
this means the 𝛿 in Property 1 of Definition 5 is always zero.

•
(
1 − exp

(
−Ω

(
𝑡
𝑛

) ) )
-Pseudorandomness: We argue that the term 𝜌 in Definition 5 is exp

(
−Ω

(
𝑡
𝑛

) )
. Let

us define 𝐸 as the following event: For any left vertex in𝐺1, there exists at least one right vertex connected
exclusively to it and Bad𝑖 as the following event: The 𝑖-th left vertex is not connected to any of the additional
degree-1 right vertices in 𝐺1. By definition, we have

𝜌 = Pr(¬𝐸) = Pr(Bad1 ∪ Bad2 ∪ . . . ∪ Bad𝑛)

⩽
𝑛∑︁
𝑖=1

Pr(Bad𝑖) = 𝑛 ·
(
𝑛 − 1
𝑛

)𝑡
,

where the inequality holds by union bound. We conclude the proof by noting that

𝑛 ·
(
𝑛 − 1
𝑛

)𝑡
= 𝑛 ·

(
1 − 1

𝑛

)𝑛 · 𝑡
𝑛

= exp
(
−Ω

( 𝑡
𝑛

))
.
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• O
(
𝑡 ·

√︃
𝑛2

𝑀

)
− Privacy: For simplicity, we will interchangeably use balls and bins to denote the right and

left nodes, respectively. For privacy, we want to argue that given any proper subset of the left vertices,
the distribution of the corresponding induced (random) subgraphs of 𝐺0 and 𝐺1 are statistically close.
Due to symmetry and without loss of generality, we will assume that the last left vertex (last bin) is not
in the adversary’s view and focus on the subgraphs induced by the first 𝑛 − 1 left vertices (first 𝑛 − 1
bins).
We introduce some notations first. Let C (resp., C′) denote the configuration of the balls (i.e., the his-
togram representing how many balls are in each bin) in 𝐺0 (resp., 𝐺1). Therefore, we are interested in
SD(C, C′). Note that C can be represented as a joint distribution of (S,D,H𝑠 ,H𝑑 ).26 Here, S and D
are the random variables denoting the number of balls tossed once and twice, respectively. H𝑠 and H𝑑

are the random variables denoting the configuration of those balls tossed once and twice. Similarly, for
𝐺1, we define (S′,D′,H ′𝑠 ,H ′𝑑 ).
We first note that

SD
(
(S,D,H𝑠 ,H𝑑 ), (S′,D′,H ′𝑠 ,H ′𝑑 )

)
= SD ((S,D), (S′,D′)) .

This is because, conditioned on the numbers of single-tossed balls and twice-tossed balls, the configura-
tions of the balls are identically distributed in 𝐺0 and 𝐺1 (i.e., the bin each ball goes to is independently
randomly chosen). Therefore, in the rest of the analysis, we simply focus on the joint distributions
(S,D) and (S′,D′).
Next, we note that the distributions of D and D′ are identical.27 Therefore, we may write

SD ((S,D), (S′,D′)) = E
𝑑

[
SD

((
S|D = 𝑑

)
,

(
S′ |D′ = 𝑑

))]
.

To upper bound SD
((
S|D = 𝑑

)
,

(
S′ |D′ = 𝑑

))
, we will approximate both distributions by translated

Poisson distributions and rely triangle inequality to argue their closeness. Note that, before conditioning
on D = 𝑑 , each of those𝑀 balls have probability(

𝑛 − 1
𝑛

)2
,
2(𝑛 − 1)
𝑛2

, and
1
𝑛2

to be a twice-tossed, single-tossed, or zero-times-tossed ball. After conditioning on D = 𝑑 , we know
that the remaining𝑀 − 𝑑 balls have conditional probability

2(𝑛 − 1)
2𝑛 − 1 and

1
2𝑛 − 1

to be a single-tossed or zero-times-tossed ball. Therefore, we may write

S =

𝑀−𝑑∑︁
𝑖=1
J𝑖 +

𝑀−𝑑+𝑡∑︁
𝑖=𝑀−𝑑+1

J ′𝑖

S′ =
𝑀−𝑑∑︁
𝑖=1
J𝑖 +

𝑀−𝑑+𝑡∑︁
𝑖=𝑀−𝑑+1

J ′′𝑖

26There could be balls that are tossed zero times into the first 𝑛 − 1 bins. Those balls do not affect the distribution of the
configuration (i.e., subgraph).

27The only difference between D and D′ is due to the additional 𝑡 balls. However, they are only tossed once and, thus, they
have no effect on the distribution of the number of balls tossed twice.
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where

J𝑖 = Bern
(
2(𝑛 − 1)
2𝑛 − 1

)
J ′𝑖 = Bern(0)

J ′′𝑖 = Bern
(
𝑛 − 1
𝑛

)
Now, we invoke Lemma 1 (adopting its notation for 𝑝𝑖 ), we have

SD
(
S, TP(𝜇1, 𝜎21 )

)
⩽

√︃∑𝑀−𝑑+𝑡
𝑖=1 𝑝3

𝑖
(1 − 𝑝𝑖) + 2

𝜎21
=

2(𝑛−1)
2𝑛−1 · 𝜎1 + 2

𝜎21
,

where
𝜎21 = (𝑀 − 𝑑) · 2(𝑛 − 1)(2𝑛 − 1)2 and 𝜇1 = (𝑀 − 𝑑) ·

2(𝑛 − 1)
2𝑛 − 1 .

Note that the above bound is O
(√︁

𝑛
𝑀−𝑑

)
. Similarly, we also have

SD
(
S′, TP(𝜇2, 𝜎22 )

)
⩽

√︃∑𝑀−𝑑+𝑡
𝑖=1 𝑝3

𝑖
(1 − 𝑝𝑖) + 2

𝜎22
=

√︃
(2(𝑛−1) )3
(2𝑛−1)4 · (𝑀 − 𝑑) +

(𝑛−1)3
𝑛4 · 𝑡 + 2

𝜎22
,

where

𝜎22 = (𝑀 − 𝑑) · 2(𝑛 − 1)(2𝑛 − 1)2 + 𝑡 ·
𝑛 − 1
𝑛2

and 𝜇2 = (𝑀 − 𝑑) ·
2(𝑛 − 1)
2𝑛 − 1 + 𝑡 ·

𝑛 − 1
𝑛

.

Again, this bound is O
(√︁

𝑛
𝑀−𝑑

)
. Now, apply Lemma 2, we have

SD
(
TP(𝜇1, 𝜎21 ), TP(𝜇2, 𝜎22 )

)
⩽
𝑡 · 𝑛−1

𝑛

𝜎1
+ 1
𝜎21
,

which is O
(
𝑡 ·

√︁
𝑛

𝑀−𝑑

)
. This gives

SD((S | D = 𝑑), (S′ | D′ = 𝑑))

⩽ SD
((
S|D = 𝑑

)
, TP(𝜇1, 𝜎21 )

)
+ SD

(
TP(𝜇1, 𝜎21 ), TP(𝜇2, 𝜎22 )

)
+ SD

(
TP(𝜇2, 𝜎22 ),

(
S′ |D′ = 𝑑

))
= O

(
𝑡

√︂
𝑛

𝑀 − 𝑑

)
.

Now we go back to
E
𝑑

[
SD

((
S|D = 𝑑

)
,

(
S′ |D′ = 𝑑

))]
.

Let us use D𝑖 as the indicator of the event that the 𝑖-th ball (among the𝑀 balls) is tossed twice into the
remaining bins. Note thatD =

∑𝑀
𝑖=1D𝑖 . Define 𝜇 := E[D] = 𝑀 · (𝑛−1

𝑛
)2. By Chernoff’s bounds, we have

Pr

(
𝑀∑︁
𝑖=1
D𝑖 ⩾ (1 + 𝛿) · 𝜇

)
⩽ exp

(
− 𝛿

2𝜇

2 + 𝛿

)
.
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Setting 𝛿 = 1
𝑛−1 , we get

Pr

(
𝑀 −

𝑀∑︁
𝑖=1
D𝑖 ⩽

𝑀

𝑛

)
= Pr

(
𝑀∑︁
𝑖=1
D𝑖 ⩾

𝑛 − 1
𝑛
·𝑀

)
⩽ exp

(
− 𝑀

2𝑛2 + 𝑛2

𝑛−1

)
.

Finally, we conclude the proof by noting that

E
𝑑
[SD( (S | D = 𝑑), (S′ | D′ = 𝑑))]

=
∑︁

𝑑⩾𝑀 · 𝑛−1
𝑛

Pr(D = 𝑑) · SD ((S | D = 𝑑), (S′ | D′ = 𝑑))

+
∑︁

𝑑⩽𝑀 · 𝑛−1
𝑛

Pr(D = 𝑑) · SD ((S | D = 𝑑), (S′ | D′ = 𝑑))

Note that the bound
√︂

𝑛

𝑀 − 𝑑 is monotonically decreasing in 𝑑

⩽ Pr
(
D ⩾ 𝑀 · 𝑛 − 1

𝑛

)
+

(
1 − Pr

(
D ⩾ 𝑀 · 𝑛 − 1

𝑛

))
· O©«𝑡

√︄
𝑛

𝑀 − 𝑀 (𝑛−1)
𝑛

ª®¬
⩽ exp

(
− 𝑀

2𝑛2 + 𝑛2

𝑛−1

)
+ O

(
𝑡

√︂
𝑛2

𝑀

)
,

which is O
(
𝑡

√︃
𝑛2

𝑀

)
when 𝑀 is sufficiently big, e.g., ⩾ 𝑛2 · 𝑡2. Note that when 𝑀 < 𝑛2 · 𝑡2, the bound is

trivial (i.e., bigger than one). Therefore, the bound O
(
𝑡

√︃
𝑛2

𝑀

)
hold regardless.

4.4 Privacy Amplification with Near-linear Stretch

Our randomized special combinatorial design only achieves inverse polynomial (in 𝜆) privacy. Using this
to instantiate Theorem 1 yields a multiparty DPF with inverse polynomial loss in security. To obtain
a multiparty DPF with negligible security error, we borrow an amplification technique from [BGIK22b,
Section 3.1]. We present the main ideas of their technique here and refer the readers to their paper for
further details.

Overview of the Amplification Technique from [BGIK22b]. Their idea is to first view the point
function 𝑓𝛼,𝛽 with domain size 𝑁 as a unit vector 𝑒𝛼 of the same length.28 Let 𝑥 be the input on which we
wish to evaluate this point function. Observe that the vector

(
𝑓1,𝛽 (𝑥), 𝑓2,𝛽 (𝑥), . . . , 𝑓𝛼,𝛽 (𝑥), . . . , 𝑓𝑁,𝛽 (𝑥)

)
is

identical to 𝛽 · 𝑒𝑥 = 𝑓𝛼,𝛽 (𝑥).
We can now use an instance of Reed-Muller codes (RM-codes) as a 𝑞-query, locally decodable code 𝐶

to encode this vector as 𝐶 (𝑒𝑥 ). Given this encoding, let Δ1,Δ2, . . . ,Δ𝑞 be the set of queries to retrieve the

28This is why we defined Eval in Algorithm 2 such that it evaluates the entire domain in one go. See the third remark of
Definition 4.
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𝛼-th entry of the encoded vector. The 𝛼-th entry in vector 𝛽 · 𝑒𝑥 can be computed as

𝛽 · 𝑒𝑥 [𝛼] = ⟨𝛽 · 𝑒𝑥 , 𝑒𝛼 ⟩ = 𝛽
𝑞∑︁
𝑔=1

𝐶 (𝑒𝑥 ) [Δ𝑔] = 𝛽
𝑞∑︁
𝑔=1

〈
𝐶 (𝑒𝑥 ), 𝑒Δ𝑔

〉
Each 𝑒Δ𝑔

(essentially a point function) can now be shared using our multiparty DPF with inverse poly-
nomial privacy error. In effect, this reduces the problem of constructing a DPF for 𝑓𝛼,𝛽 with strong pri-
vacy guarantees to the problem of constructing DPFs for each 𝑒Δ𝑔

– each of which individually may have
weaker privacy. Although the DPF for each 𝑒Δ𝑔

may incur non-negligible privacy leakage, the overall
scheme achieves negligible leakage. This is analogous to using a not-quite-perfect additive secret sharing
scheme for the original DPF, where the aggregate leakage remains negligible due to the properties of the
Reed-Muller (RM) code (specifically, Property 3 in Lemma 3).

We note that the RM-code decoding in our construction involves evaluating over a curve. For further
details, we refer the reader to [Yek10].

Lemma 3 (Lemma 2 from [BGIK22b]). Fix integers 𝜎, 𝑁, 𝑟,𝑤 > 0, such that 𝑁 ⩽
(
𝑟+𝑤
𝑤

)
and let 𝑝 be a prime.

There exists a deterministic mapping29 𝐶 : Z𝑁
𝑝 → Z𝐿

𝑝 and a randomized mapping 𝑑 : [𝑁 ] → [𝐿]𝑞 , 𝐿, 𝑞 ∈ N,
such that for every 𝑧 ∈ Z𝑁

𝑝 and 𝛼 ∈ [𝑁 ] it holds that

Pr

(
Δ← 𝑑 (𝛼) :

𝑞∑︁
𝑔=1

𝐶 (𝑧) [Δ𝑔] = 𝑧𝛼

)
= 1,

where the probability is taken over the internal randomness of 𝑑 . Moreover, the following properties hold:

1. 𝑞 = O(𝜎2𝑟 ) and 𝐿 = O(𝑝𝜔+1𝜎𝜔+1𝑟𝜔+1).

2. 𝐶 and 𝑑 can be computed efficiently.

3. For every 𝛼 ∈ [𝑁 ], the random variables Δ1, . . . ,Δ𝑞 are 𝜎-wise independent. Namely, the marginal
distribution of any 𝜎 coordinates is independent of 𝛼 .

𝐶 will encode a vector of size 𝑁 to another vector of size 𝐿 > 𝑁 . A randomized mapping 𝑑 determines
the set of 𝑞 queried symbols of the codeword given a target index 𝛼 ∈ [𝑁 ] of the “message” vector. The
decoding procedure is simply the sum of the queried symbols

∑𝑞

𝑔=1𝐶 (𝑧) [Δ𝑔]. For simplicity, we let 𝑝 be 2.

Our Parameters. When using the RM codes, we can actually set 𝐿 to be less than 𝑁 2 (otherwise the
overall construction becomes trivial). These Δ’s will then correspond to evaluations of a random 𝜎-degree
polynomial (similar to Shamir’s secret sharing). We argue here that the parameters can be set to meet our
demands, and we refer the readers to [BGIK22b] for details on security proofs.

Formally, we have the following theorem.

Theorem 4. Let 𝜎,𝑤, 𝑟, 𝑁 ∈ N and let 𝜀 > 0 be a real number such that 𝑁 ⩽
(
𝑟+𝑤
𝑤

)
. Assume the prime 𝑝 is

constant, and let 𝑞 = (𝜎 + 1) (𝜎𝑟 + 1). Suppose there exists an 𝑛-party DPF with share size O(poly(𝑛) ·
√
𝐿)

and privacy error O(1/𝑞), for point functions with 𝐿-sized domain and outputs in Z𝑝 . Then using Reed-Muller
codes and following the transformation of [BGIK22b, Theorem 6], we obtain an 𝑛-party DPF with share size
O(poly(𝑛) · 𝑁 1/2+𝜀) and privacy error O(2−Ω (𝜎 ) + negl(𝜆)), for point functions with 𝑁 -sized domain and
outputs in Z𝑝 .

29Basically, 𝐶 is the RM encoding when one treats the message as a𝑤-variate 𝑟 -degree multivariate polynomial.
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Proof. We employ Reed–Muller (RM) codes that encode messages of length 𝑁 into codewords of length 𝐿.
The point function is split into 𝑞 smaller point functions, so the overall share size becomes O(𝑞 · poly(𝑛) ·√
𝐿). We begin by setting the RM-code parameter 𝑟 = poly(log𝑁 ), which implies 𝑞 = poly(log𝑁 ) (since

𝑞 = (𝜎 + 1) (𝜎𝑟 + 1)). Hence, the dominant contributor to the share size is 𝐿. Our goal is to choose 𝑟 and𝑤
such that the constraint 𝑁 ⩽

(
𝑟+𝑤
𝑤

)
holds, and 𝐿 remains near-linear in 𝑁 . From Lemma 3, we have

𝐿 = O(𝑝𝜔+1 · 𝜎𝜔+1 · 𝑟𝜔+1) .

We fix 𝜎 = log2(𝜆) to ensure negligible privacy error in the final scheme (we refer the reader to [BGIK22b]
to details). To target a final share size of 𝑁 1+𝜀 for any 𝜀 > 0, we set:

𝑤 =
𝛿 · log𝑁
log log𝑁

and 𝑟 = (log𝑁 )1+1/𝛿 ,

for a sufficiently small constant 𝛿 > 0. To verify that 𝑁 ⩽
(
𝑟+𝑤
𝑤

)
, observe:(

𝑟 +𝑤
𝑤

)
⩾
𝑟𝑤

𝑤 !
=
𝑁 1+𝛿

𝑤 !
,

and using the fact that𝑤 ! ⩽ 𝑤𝑤 = 𝑁 𝛿 , we get:(
𝑟 +𝑤
𝑤

)
⩾
𝑁 1+𝛿

𝑁 𝛿
= 𝑁 .

To estimate 𝐿, recall:
𝐿 = O(𝑝𝜔+1 · 𝜎𝜔+1 · 𝑟𝜔+1) = 𝑁𝑜 (1) · 𝑁 𝛿 · log log𝜆log log𝑁 · 𝑁 1+𝛿 ,

which is ⩽ 𝑁 1+𝜀 for a suitably small choice of 𝛿 .
Thus, the resulting scheme achieves domain size 𝑁 , negligible privacy loss, and share size O(poly(𝑛) ·

𝑁 1/2+𝜀), completing the proof.

Putting Everything Together. Let us summarize our multiparty DPF construction with the following
corollary.

Corollary 1. Let 𝜆, 𝑁 , 𝑛 ∈ N. Let 𝑓𝛼,𝛽 : D → Z𝑝𝑞 be a point function, |D| = 𝑁 , 𝑝 be an arbitrary constant
prime and 𝜀 be an arbitrary constant. Assuming the existence of one-way functions, there exists a construction
of a 𝑛-party negl(𝜆)-secure distributed point function, where the total share size is O

(
𝑛4 · 𝑁 1/2+𝜀 ) and each

per-party share size is O
(
𝑛3 · 𝑁 1/2+𝜀 ) in expectation.

4.5 (𝑡, 𝑛)-Threshold DPFs

In this section, we consider a threshold variant of DPFs, where privacy is guaranteed against at most 𝑡 cor-
ruptions and any subset of 𝑡 +1 shares can be used for reconstructing the output. In the following theorem
we show a simple transformation from any multiparty DPF to a (𝑡, 𝑛)-threshold DPF using standard share
conversion techniques from [CDI05].

Theorem 5. Let 𝑛 ∈ N, 𝑓𝛼,𝛽 : D → R be a point function and (Gen, Eval) be an 𝑛-party (𝑛 − 1, 𝜈)-secure
DPF with total share size 𝑠 . There exists a (𝑡, 𝑛,

(
𝑛
𝑡+1

)
· 𝜈)-secure threshold DPF with total share size 𝑠 ·

(
𝑛
𝑡+1

)
.
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Proof. Given any (𝑛−1, 𝑛, 𝜈)-securemultiparty DPF (Gen, Eval), one can construct a simple (𝑡, 𝑛)-threshold
DPF (Gen′, Eval′,Recon′) with respect to replicated secret sharing as follows:

• Gen′(1𝜆, 𝛼, 𝛽): Let S be the set of all subsets of 0, . . . , 𝑛 − 1 of size 𝑡 + 1. For each 𝑆 ∈ S, compute
(𝑘𝑆

𝑆 [0], . . . , 𝑘
𝑆
𝑆 [𝑛−1]) ← Gen(1𝜆, 𝛼, 𝛽). For each 𝑏 ∈ 0, . . . , 𝑛 − 1, the party 𝑏 receives share 𝐾𝑏 = {𝑘𝑆

𝑏
|

𝑆 ∈ S, 𝑏 ∈ 𝑆}.

• Eval′(𝑏, 𝐾𝑏, 𝑥): Party 𝑏 parses 𝐾𝑏 = {𝑘𝑆
𝑏
| 𝑆 ∈ S, 𝑏 ∈ 𝑆}. For each 𝑆 ∈ S, where 𝑏 ∈ 𝑆 , compute

𝑦𝑆
𝑏
← Eval(𝑏, 𝑘𝑆

𝑏
, 𝑥). Output 𝑦𝑏 = {𝑦𝑆

𝑏
| 𝑆 ∈ S, 𝑏 ∈ 𝑆}.

• Recon(𝑆,𝑦𝑆 [0], . . . , 𝑦𝑆 [𝑛−1]): For each 𝑖 ∈ {0, . . . , 𝑛 − 1}, parse 𝑦𝑆 [𝑖 ] = {𝑦𝑆
′

𝑆 [𝑖 ] | 𝑆
′ ∈ S, 𝑆 [𝑖] ∈ 𝑆 ′}.

Output
∑

𝑖∈{0,...,𝑛−1} 𝑌
𝑆
𝑆 [𝑖 ] .

Correctness follows from the fact that any subset of 𝑡+1 parties will have access to all 𝑡+1 shares associated
with one of the underlying multiparty DPF instances, allowing them to reconstruct the output of the
point function for any given input. Security follows from the security of each underlying multiparty DPF
instance, as no subset of ⩽ 𝑡 parties will have access to all the keys associated with any of the underlying
instances.

Instantiating the above theoremwith the multiparty DPF from Corollary 1, we get the following Corol-
lary:

Corollary 2. Let 𝜆, 𝑁 , 𝑛 ∈ N. Let 𝑓𝛼,𝛽 : D → Z𝑝𝑞 be a point function, |D| = 𝑁 , 𝑝 be an arbitrary constant
prime and 𝜀 be an arbitrary constant, and 𝑡 < 𝑛 be such that

(
𝑛
𝑡+1

)
= poly(𝜆). Assuming the existence of one-

way functions, we have an explicit construction of a (𝑡, 𝑛, negl(𝜆))-secure distributed point function, where
the total share size is O

(
𝑡4 · 𝑁 1/2+𝜀 ·

(
𝑛
𝑡+1

) )
.

We note that, before our work, one may instantiate Theorem 5 with the multiparty DPFs from [BGI15],
yields an efficient (𝑡, 𝑛)-threshold DPF only when 𝑡 = O(1).

Shamir Variant. Cramer et al. [CDI05] proposed a generic method for parties to locally transform their
shares associated with a replicated secret sharing scheme into Shamir shares. This approach can be applied
to the transformation in Theorem 5 to obtain Shamir shares of the output of a point function.
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