
How to Model Unitary Oracles

Mark Zhandry
NTT Research

Abstract

We make the case for modeling unitary oracles by allowing for controlled access to the oracle
as well as its conjugate transpose (inverse), but also its conjugate and transpose. Controlling
and conjugate transposes are common if even standard, but conjugates and transposes appear to
be non-standard. In order to justify our modeling, we give several formal examples of what goes
wrong or is missed when using a more restrictive modeling. We also argue that our model is the
“right” level of granularity, and that other transformations likely do not correspond to efficient
computation. We also discuss other modeling choices, such as ancillas and approximation error.

Through our exploration, we uncover interesting phenomena. Examples include an attack on
the recent pseudorandom unitary construction of Ma and Huang (STOC’25) if used incorrectly
as a publicly evaluatable unitary, and a quantum complexity-theoretic separation that follows
from a purely classical separation.

1 Introduction

Abstractions are ubiquitous in computer science, as they allow for modularizing various components.
In many scenarios, we will treat lower-level components as oracles which can be evaluated via
queries.

Recent advances have raised hopes of full-scale quantum computers in the not-too-distant fu-
ture. The workhorse of quantum computation is a unitary transformation, and as such, oracles
representing unitary abstractions will be fundamental. In this work, we explore some basic ques-
tions about the modeling of unitary oracles for cryptographic and complexity-theoretic purposes:

Question 1. What does it mean to “efficiently implement” a unitary transformation?

Question 2. How should access to (efficiently implemented) oracles be modeled?

Question 3. For black-box separations using unitary oracles (either in cryptography or complexity-
theory), how should the queries to the oracle be modeled to better-reflect the real world?

Question 4. For cryptographic reductions and impossibilities, how should we model the adversary’s
unitaries?

The unifying theme of the above questions is that the oracles are abstracting underlying efficient
computation that is run by individuals locally on their own quantum device. For the first two
questions, we consider for example the design of algorithms, where the oracle represents a subroutine
that was perhaps developed elsewhere. For the last two questions, the unifying feature is that
common techniques for reasoning about complexity classes or cryptographic concepts treat the
underlying adversary/cryptosystem as a black box only accessible through queries. In both cases,
however, the oracle represents underlying cryptosystems that are ultimately implemented by a
quantum circuit known to everyone and run by users themselves.

1

Our thesis: We propose the following answers to the above questions:

• Efficient implementation should mean, if possible, a small circuit computing the unitary,
including the overall global phase, to within negligibly-small error.

• An oracle capturing efficient computation should allow, if possible, access to the controlled
version of U denoted CU , the (controlled) conjugate transpose (aka inverse) CU †, as well as
the (controlled) conjugate CU∗ and transpose CUT .

• An oracle separation relative to a unitary U – and likewise cryptographic reductions making
use of an adversary represented by a unitary – should similarly ideally allow access to CU ,
CU †, CU∗, and CUT .

We provide a number of formal results supporting our proposal, namely showing what may go
wrong or what gets missed with other modeling choices. We note that some of this choices are not
new, and some are even somewhat standard, though perhaps not universal. However, to the best of
our knowledge, ours is the first work to advocate for providing access to U∗ or insisting on paying
attention to global phase when implementing unitaries. Along the way, we uncover a number of
interesting phenomena. For example, we uncover an attack on the recent pseudorandom unitary
construction of [MH25] when used incorrectly as a publicly-accessible unitary,1 and also a quantum
complexity-theoretic separation that follows from a standard classical separation. We now give an
overview of our results.

A new notion of unitary complexity (Section 3). Very recently, [BEM+23] give the notion of
UnitaryBQP, which is intended to capture efficiently implementable unitaries. However, we observe
two weaknesses of their model. First, their model model does not enable controlling, meaning a
unitary U may be in UnitaryBQP, but CU is not. This means that their notion of efficient does
not capture a common algorithmic technique of controlling access to a given unitary, including the
important Hadamard test. The reason their model does not allow controlling is that it ignores global
phases, so U and eiθU are equivalent in their model. But CU and C(eiθU) are different unitaries,
even ignoring global phase. Second, they only require (arbitrarily-small) inverse-polynomial error.
We show that this leads to problems in cryptographic protocols. Namely, a cryptographic algorithm
being in UnitaryBQP according to their definition is not enough for it to be implemented securely
and efficiently. This is because in security experiments, the inverse-polynomial error may lead to
an inverse-polynomial adversary advantage, breaking security. Even worse, if the experiment runs
the cryptographic algorithm many times, the errors could in principle even compound to yield an
overwhelming advantage. We lastly also observe that typical algorithms, such as Solovay-Kitaev,
actually do give exponentially-small error, meaning that typical techniques offer stronger guarantees
than their notion of UnitaryBQP.

We therefore give a new definition of UnitaryBQP (or unitary complexity more generally) with
several desirable features – namely it pays attention to overall phase and insists on negligibly-
small error. We actually give both a negligible error and exponentially-small error variants. The
exponential variant captures typical algorithms such as Solovay-Kitaev, but is sometimes stronger
than necessary. We show that our notion is robust to controlling, as well as conjugating, transposing,

1The model of pseudorandom unitary considered in [MH25] only allows queries to a third-party who implements
the unitary. Our attack when using it as a publicly-accessible unitary does not contradict their work.

2

and conjugate transposes. We also show that negligible error is sufficient for securely implementing
cryptographic protocols.

Remark 5. [BEM+23] also give an average-case notion of UnitaryBQP, and most of their formal
results utilize this average-case notion. Our focus here is on the worst-case notion.

Unitary vs Classical Oracles (Section 4). It is widely accepted that cryptographic and
complexity-theoretic separations relative classical oracles are “better” than those relative to uni-
tary oracles. This is for several reasons. First, a classical oracle separation hints at a possible
standard-model instantiation, as one may be able to use cryptographic tools such as obfusca-
tion [BGI+01, GGH+13] to heuristically obfuscate the classical function. In contrast, we currently
do not know any even heuristic method to obfuscate general quantum oracles. Second, and perhaps
a bit more fundamentally, one is often interested in quantum computers’ ability to solve classical
problems, and this seems better captured by a classical oracle.

Classical procedures are often combined with quantum computation to yield quantum proce-
dures. This leads to a natural question: given a separation using a unitary oracle U , is there a
classical oracle C which can be used to emulate U , so as to achieve a classical oracle separation?
The hope is that a generic version of this – which builds such a C from any U – would allow for
generically lifting unitary oracle separations to classical separations. A version of this question
is the famous open Unitary Synthesis Problem [AK07], which was initially posed as a potential
strategy for lifting the unitary separation between QMA and QCMA into a classical separation.

We explain that unitary synthesis, even if true, actually does not allow for generically translating
unitary oracle separations to classical oracle separations. This is because algorithms would be
simulating the unitary oracle for themselves given access to the underlying classical oracle, but
access to the classical oracle potentially gives these algorithms more flexibility than just having the
quantum oracles. This is not captured by a proof relative to the quantum oracle alone.

For cryptographic purposes, this problem has been well-understood in the classical setting for
some time, and the notion of indifferentiability [MRH04] captures what happens when algorithms
have access to the underlying oracle C being used to implement U . Using the framework of
indifferentiability, we show that for any quantum oracle U , for any construction of U from a
classical oracle C that is indifferentiable, it is possible to approximately construct from U the
unitaries U∗, U †, UT (for an appropriate notion of “approximate”).

This suggests that modeling a unitary U according to our thesis gives a more believable model-
ing: it corresponds to our notion of efficient computation, and is necessary if one wants to generically
replace U with an indifferentiable construction relative to a classical oracle. Moreover, we make
the simple observation that the usual modeling of classical oracles – when viewed as a special case
of unitary oracle – automatically allows access to U∗ = U † = UT = U . We note that this particular
result does not extend to controlled U gates, since indifferentiability does not guarantee that global
phase is preserved.

Remark 6. For complexity-theoretic separations involving witnesses, even indifferentiability does
not seem sufficient. This is because the the witnesses need not be generated efficiently. Nevertheless,
indifferentiability seems necessary for a fully generic lifting result.

Attacking publicly-accessible random unitaries (Section 5). As a concrete application of
our indifferentiability results, we consider the question of publicly-accessible pseudorandom uni-
taries. These are keyless unitaries implemented by a quantum circuit that is known to everyone,

3

but nevertheless “behave” as random oracles. We will call this model the “ideal random unitary
model,” which is an analog of the classical random oracle model [BR93] or ideal cipher model. We
note that this model also appears in some theoretical physics literature (see 1.1 for discussion).
Ideal random unitaries stand in contrast to private pseudorandom unitaries, where the entity eval-
uating the unitary has a secret key, and pseudorandomness only holds to those who do not know
the key.

Recently, [MH25] showed how to construct a (private) pseudorandom unitary from an under-
lying quantum-secure pseudorandom function (PRF) and pseudorandom permutation (PRP). A
natural question is whether the underlying PRF/PRP can be replaced by public random func-
tions/permutations (that is, the random oracle model and ideal cipher model2) to give an ideal
random unitary. This would be a quantum analog of the fundamental classical result that ideal
random functions imply ideal random permutations [CPS08, HKT11].We resolve this question nega-
tively: since this construction is built from a classical oracle, it must be possible to query conjugates.
We crucially leverage conjugates to give an attack. Note that this does not contradict the security
proof of [MH25], as they consider only the standard pseudoarndom unitary case, where the circuit
contains a key that is known only to the evaluator.

Quantum Black-Box Reductions (Section 6). We now turn to black-box constructions and
reductions in the quantum setting. We show a simple method to generically increase the stretch of
pseudorandom state generators (PRS) with 1-time security meeting certain statistical requirements.
The idea is to start from the pseudorandom state |ψ⟩, and construct the state

|ψ′⟩ = 1√
2
(|0⟩|ψ⟩+ |1⟩|ψ∗⟩)

This can be easily constructed by conjugating and controlling the circuit which computes |ψ⟩
(assuming the circuit produces no junk). We show that, under a certain (admittedly non-standard)
anti-correlation property between |ψ⟩ and |ψ∗⟩, this new PRS is 1-time secure, and it has stretched
the output by an additional qubit.

This method conjugates the construction to construct |ψ∗⟩, and the security proof likewise
requires conjugating the adversary. We moreover show that conjugating the adversary is inherent
to the proof.

Thus, any model of black-box constructions and reductions should allow access to the conjugate
of the construction and adversary, lest it fails to capture natural techniques. We note that tech-
niques from the literature involving rewinding (e.g. [Unr12, CMSZ22]) already utilize conjugate-
transposes and controlling. However, to the best of our knowledge ours is the first to consider
conjugates.

Homomorphisms on Unitaries (Section 7). Above we argued for a more fine-grained model-
ing of unitaries that more-closely approximates actual efficient unitary computation. However, the
unitaries abstracted by the oracles still give less access than the full circuit description of the uni-
tary. This is often inherent, especially in the setting of black-box separations. But then a natural
question is: why stop at our modeling, and not try to give an even more-refined model?

We argue that our model captures the “right” level of granularity. In particular, we observe that
the reason controlling and conjugating can be performed efficiently on efficient circuits is exactly

2Here, the model gives superposition-access to these ideal primitives [BDF+11].

4

because these operations are homomorphisms on unitaries, which means they can be applied gate-
by-gate while keeping the overall circuit structure. Likewise, conjugate-transposes and transposes
are efficient because they are antihomomorphisms.

We show, roughly, that these are the only (anti)homomorphisms that can be carried out effi-
ciently. Thus any more fine-grained model that utilizes homomorphisms is attempting to capture
inefficient computation.

From Classical To Quantum Hardness (Section 8). One caveat to our claim that these are
the only efficient homomorphisms is that it only holds true if the original unitary has ancillas (even
a single qubit suffices). What about homomorphisms on unitaries that do not employ ancillas?

In this case, more operations are possible, including taking the determinant. Interestingly,
we show that this leads to a quantum complexity-theoretic separation, under a purely classical
separation assumption. Namely, we show, under the assumption that PH ⊈ BPP, that there are
unitaries that can be implemented efficiently with just 2 qubit ancillas (to within exponentially-
small error), but cannot be implemented efficiently without ancillas (also with exponentially-small
error). Our proof works by taking a supposed ancilla-free implementation, which is a quantum
circuit that has a classical description, and computing the determinant of that circuit. The resulting
value solves a classical problem, and the algorithm to compute the circuit description and take the
determinant is purely classical.

Remark 7. We caution the reader to not over-interpret such a result. While our separation is about
quantum complexity classes, because they are about ancilla complexity, they are of a fundamentally
different nature than the “hard” separations like BPP vs QMA or the classical analogs P vs NP.
In particular, we are not aware of any major barriers to proving our separation unconditionally,
though we are also not aware of any such unconditional separation. Nevertheless, the most natural
way to prove our separation seems to utilize the classical complexity-theoretic separation.

Remark 8. We also note that our separation is sensitive to the error model. If the errors are
allowed to be only negligibly small but not exponential, taking the determinant accumulates too many
errors and gives a meaningless answer. Our result crucially relies on the errors being exponential.

1.1 Applications to Physics

While our focus was on crytographic applications, we believe that our modeling may be the right
model in some physics settings, and here give some rough criteria for when our modeling should be
used.

Chaotic quantum systems, especially black holes, seem to be good scramblers of information.
As information cannot truly be lost, this scrambling must be complexity-theoretic, meaning it is
only computationally difficult to un-scramble, but information-theoretically decodable. Viewing the
scrambling inside black holes as complexity-theoretic has helped physicists understand phenomena
such as the black hole information paradox.

One way to justify the complexity-theoretic scrambling is to model the dynamics of these
chaotic systems as black-box Haar-random unitaries. This is the approach taken, for example,
by [BFV20, PRV24]. Such a model is an “idealization” of the real-world as the dynamics should
be computable by polynomial-sized circuits, but Haar-random unitaries are exponential-sized ob-
jects. Nevertheless, if the dynamics are complicated enough, it seems reasonable to suppose that
the only thing an observer can do with the circuit representing the black hole is evaluate it on

5

states of its choice – in this case, the idealization seems reasonable. The situation is somewhat
analogous to idealized models in cryptography such as the classical random oracle model. In this
modeling, our results seem applicable: one should model the unitary by having access to (con-
trolled) U,U †, U∗, UT . Note that [BFV20, PRV24] only consider (controlled) U,U †. The intuition
for modelling U † is that the dynamics can be simulated with time reversed to invert the unitary.

Other works take different approaches. For example, [YE23, AEH+24] model the dynamics
as a pseudorandom unitary. The key difference from the modeling above is that pseudorandom
unitaries have a secret key. This key usually considered the internal state of the black hole, which
is inaccessible to the outside observer but determines the input/output behavior of the black hole.
In this case, the observer does not actually have access to the circuit representing the dynamics
due to part of the system being hidden. Therefore, there is no ability to simulate the dynamics -
all that is possible is to actually send information through the system in the real world. As such,
access to U seems sufficient, without the need to have access to U †, U∗ or UT .

Based on the two examples above, the following therefore seems like a reasonable criteria for
when our modeling should be used: if it makes sense to allow queries to U †, then one should likely
allow access to (controlled) U,U †, U∗, UT . On the other hand, if the modeling does not need to
allow queries to U †, then it may also be unnecessary to allow queries to U∗, UT .

2 Preliminaries

2.1 Conventions for quantum gates and circuits

A quantum gate is simply a unitary, usually on a small number of qubits, representing a subsystem
of the overall system. Given a unitary/gate U , we will denote by CU the controlled gate, defined
on basis states |b⟩|ψ⟩ for b ∈ {0, 1} as CU(|b⟩|ψ⟩) = |b⟩U b|ψ⟩.

A quantum circuit is a circuit made of quantum gates, typically from a finite gate set. A
generalized quantum circuit is one that also allows for initializing new qubits, measuring qubits,
and discarding them. To make it clear, we will sometimes use “unitary quantum circuit” or simply
“unitary circuit” to denote a quantum circuit that is not generalized. The Principle of Deferred
Measurements indicates that all measurements can be deferred to the end of the computation, at
the cost of using ancillas. We can also always initialize any needed ancillas at the beginning of a
computation. Thus, a generalized quantum circuit can always be thought of as a unitary circuit
acting on a larger system, where the extra qubits (called ancillas) are initialized to |0⟩.

For any quantum state |ψ⟩ =
∑

x αx|x⟩, let |ψ∗⟩ =
∑

x α
∗
x|x⟩, where {|x⟩} is the computational

basis. Likewise for any unitary U , let U∗ denote the unitary obtained by conjugating each amplitude
in the transition matrix when written in the computational basis.

Paying attention to global phases. The literature usually treats two unitaries/ unitary circuits
U, V as equivalent if they differ by an overall phase: U = eiθV . This is because two quantum states
that differ in an overall phase are considered identical.

However, one of the key points of this work is that there are certain operations that can be
performed on quantum circuits: in particular given any unitary circuit U , one can also build a
controlled circuit CU simply by controlling each gate individually, and then building each controlled
gate from the underlying gate set. However, we point out that the controlled unitaries CU and
C(eiθU) are not equivalent, even if one ignores global phase for the controlled unitaries. For

6

example, if U = I, then CU = I, but C(eiθU) = P(θ)⊗ I. This is because the overall phase in eiθU
becomes a relative phase once controlled.

The takeaway is that, if we have a unitary circuit V that realizes a unitary U , and if we want to
be able to realize the unitary CU , it is important that we actually pay attention to overall phase,
either insisting that V,U are identical unitaries, or at least that we know the overall global phase
difference between them.

Note that the usual notion of a “universal” gate set only requires that the gate set can arbitrarily-
closely approximate any unitary up to global phase. In general, we would not expect a universal
gate set to actually approximate all unitaries when global phase is taken into account. Indeed, the
Clifford+T gate set is universal, but all gates in this set have determinants that are powers of i.
Hence any circuit built from these gates has determinants in the discrete set of powers of i3. Thus,
such circuits cannot get arbitrarily close to all unitaries once global phase is considered, since the
determinant of a general unitary can be any complex number of unit norm.

Thus, in this work we will always consider a quantum circuit to additionally come with a phase
term θ, and the unitary computed by the circuit is the product of all the gates and eiθ.

Remark 9. An alternative would be to update the notion of universal gate set to enable approxi-
mating any unitary including global phase. However, in order to be as consistent as possible with
existing notions, we do not re-define universality but instead modify the circuit model to also specify
global phase.

Paying attention to ancillas. The use of ancillas will also be important for this work. When
defining decisional complexity classes such as BQP, it is fine to imagine the ancillas being initialized
to |0⟩, computed on, and then simply discarded at the end. However, for general quantum processes
mapping quantum inputs to quantum outputs, we need to ensure that the ancillas do not become
entangled with the output. This is, for example, important for controlling unitaries, for similar
reasons as above. For this reason, we will typically insist that the ancillas are returned to contain
|0⟩. This gives rise to the following notion of extensions of unitaries:

Definition 10. Let U be a unitary acting on n qubits. Let U be a unitary acting on n+ a qubits.
Then we say that U is an a-qubit extension of U if U(|ϕ⟩|0a⟩) = (U |ϕ⟩)|0a⟩ for all states |ϕ⟩.

We will often ignore the parameter a, and simply call U an extension of U . Recall our convention
that we keep track of overall phases, so the equality in Definition 10 includes the overall global
phase. Note that Definition 10 places no restriction on how U operates on states |ϕ⟩|x⟩ for x ̸= 0a,
except that unitarity implies the support of U(|ϕ⟩|x⟩) cannot contain any terms of the form |ψ⟩|0a⟩.

2.2 Quantum Complexity

To measure the complexity of a quantum computational problem, we first fix a universal gate set.
The choice of gate set is usually arbitrary up to polynomial losses, but for concreteness we can take
the Clifford+T gate set.

We follow the typical model of computation where a classical Turing machine M generates a
classical description of a (potentially generalized) quantum circuit C, which is then run on an input.
For decisional complexity classes like BQP, M takes as input only the instance length (written in
unary), and then C is run on the instance x encoded as a quantum state |x⟩.

3In fact, as is discussed in Section 7, the determinants of the overall unitary will typically be exactly 1.

7

2.3 Quantum Distance Notions

Distances between quantum states. For two pure states |ψ⟩ =
∑

x αx|x⟩ and |ϕ⟩ =
∑

x βx|x⟩,
their distance is defined using the L2 norm:

∥|ψ⟩ − |ϕ⟩∥2 =
√∑

x

|αx − βx|2 (1)

Consider two mixed states represented by density matrices ρ =
∑

x,x′ ρx,x′ |x⟩⟨x′| and τ =∑
x,x′ τx,x′ |x⟩⟨x′|. Their distance is known as the trace distances, is defined as

∥ρ− τ∥Tr =
∑
λ

|λ| (2)

where λ ranges over the eigenvalues of ρ − τ . Note that we can extend the trace distance to non-
hermitian matrices, where we use the singular values instead of eigenvalues. We can relate the
distance between pure states to their trace distances by ∥|ψ⟩⟨ψ| − |τ⟩⟨τ |∥Tr ≤ 2∥|ψ⟩ − |ϕ⟩∥2.

Distances between quantum operations. A quantum channel is a general map between mixed
states. The diamond distance between channels E and F is defined as

∥E − F∥⋄ = max
ρ
∥(E⊗ IN)(ρ)− (F ⊗ IN)(ρ)∥Tr (3)

That is, it is the maximum distance between the images under the two maps of some mixed state.
Note that the ⊗IN ensures that the diamond norm considers also what happens when the maps
are applied to a sub-system of a larger system. N can be taken to be the dimension of ρ.

For unitary transformations in particular, we can consider multiple notions of distance. The
simplest is to simply view the unitary matrix as a quantum channel. This give the diamond distance
for two unitary matrices U, V , denoted ∥U − V ∥⋄.

One observation is that the diamond distance between unitaries ignores global phase. A stronger
notion of distance is therefore the operator distance

∥U − V ∥op = max
λ
|λ| (4)

where λ ranges over the singular values of U − V .
We finally define an average-case distance notion.

∥U − V ∥avg = 1− |Tr[U †V]|/N (5)

where N is the dimension of U, V .
Our average-case notion is convenient since it can actually be efficiently tested, as shown in the

following few lemmas.

Lemma 11. There exists a quantum algorithm A making a single query to each of U and V , such
that if ∥U − V ∥avg = ϵ, then Pr[AU,V () = 1] = 1−Θ(ϵ).

8

Proof. A constructs two copies of a Haar-random state |ψ⟩, computes U |ψ⟩ and V |ψ⟩, and applies
the swap test to the results. For a given |ψ⟩, the probability of acceptance is

1

2
+
|⟨ψ|V †U |ψ⟩|2

2
=

1

2
+
⟨ψ|V †U |ψ⟩⟨ψ|U †V |ψ⟩

2

=
1

2
+

Tr[(V †U)⊗ (U †V)|ψ⟩⊗2⟨ψ|⊗2]
2

We now average over |ψ⟩. For a Haar random |ψ⟩ over a system H, |ψ⟩⊗2⟨ψ|⊗2 is the totally-mixed
state over the symmetric subspace of H⊗2. We choose a basis B which diagonalizes U †V (and
hence V †U) with eigenvalues λi. In this basis, we can write

Eψ⟩[|ψ⟩⊗2⟨ψ|⊗2] =
2

N(N + 1)

∑
i

|i, i⟩⟨i, i|+ 1

2

∑
i<j

(|i, j⟩+ |j, i⟩)(⟨i, j|+ ⟨j, i|)

(V †U)⊗ (U †V) =

∑
i,j

λiλ
∗
j |i, j⟩⟨i, j|

Then we have that, over the choice of |ψ⟩, the probability of acceptance is:

1

2
+

∑
i λiλ

∗
i +

1
2

∑
i<j λiλ

∗
j + λjλ

∗
i

N(N + 1)

=
1

2
+

2
∑

i λiλ
∗
i +

∑
i ̸=j λiλ

∗
j

2

=
1

2
+

∑
i λiλ

∗
i +

∑
i,j λiλ

∗
j

2N(N + 1)

=
1

2
+

∑
i |λi|2 + |

∑
i λi|2

2N(N + 1)

=
1

2
+
N + |Tr[U †V]|2

2N(N + 1)

=
1

2
+

1

2(N + 1)
+
N(1− ϵ)2

2(N + 1)
= 1− N

N + 1
ϵ(1− ϵ/2) = 1−Θ(ϵ)

Note that in general, choosing a Haar random state is computationally inefficient. But we can
replace the generation of |ψ⟩ with any 2-design instead to make the algorithm efficient.

Lemma 12. There exists a quantum algorithm A making a single query to each of U and V , such
that if ∥U − V −1∥avg = ϵ, then Pr[AU,V () = 1] = 1−Θ(ϵ).

Proof. This runs the algorithm from Lemma 11 on the unitaries UV and I. Lemma 12 follows,
since ∥U − V −1∥avg = ∥UV − I∥avg.

Lemma 13. There exists a quantum algorithm A making a single query to each of U and V , such
that if ∥U − V ∗∥avg = ϵ, then Pr[AU,V () = 1] = 1−Θ(ϵ).

9

Proof. A prepares the maximally-entangled state |ψ⟩ =
∑

x |x, x⟩, applies U to one half and V to
the other half, and then projects onto |ψ⟩. The acceptance probability is then |⟨ψ|U ⊗ V |ψ⟩|2.

We can instead think of |ψ⟩ as a matrix ψ whose columns are indexed by the first subsystem
and rows are indexed by the second subsystem. Then ψ = I/

√
N . Moreover, acting on the first

subsystem by V is just a left-multiplication, and acting on the right subsystem by U is just right-
multiplication by UT . Then we can write the acceptance probability as

|Tr[ψ†V ψUT]|2 = |Tr[UTV]|2/N2 = |Tr[U †V ∗]|2/N2

= (1− ∥U − V ∗∥avg)2 = (1− ϵ)2 = 1−Θ(ϵ)

2.4 Other Useful Quantum Lemmas

Consider the state |ϕt⟩ of a quantum query algorithm when it makes its t-th quantum query.
Define qx(|ϕt⟩) to be the magnitude squared of x in the superposition of query t, that is qx(|ϕt⟩) =∑

y |αx,y|2. Call this the query magnitude of x. Let qx =
∑

t qx(|ϕt⟩) be the total query magnitude
of x. For a set S, let qS =

∑
x∈S qx be the total query magnitude of S.

Lemma 14 ([BBBV97] Theorem 3.1). Suppose ∥|ψ⟩ − |ϕ⟩∥2 ≤ ϵ. Then, performing the same
measurement on |ψ⟩ and |ϕ⟩ yields distributions with statistical distance at most 4ϵ.

Lemma 15 ([BBBV97] Theorem 3.3 paraphrased). Let A be a quantum query algorithm making
T queries to an oracle O. Let ϵ > 0 and let S be a set such that qS ≤ ϵ. Let O′ be another oracle
that is identical to O on all points not in S. Let p = Pr[AO() = 1] and p′ = Pr[AO

′
() = 1]. Then

|p− p′| ≤ O(
√
Tϵ).

Let O|ψ⟩ be the oracle which reflects around the state |ψ⟩, which is equivalent to having an
oracle which projects onto |ψ⟩.

Lemma 16 ([JLS18] Theorem 4). There exists a stateful simulator S that approximately simulates
O|ψ⟩ using several copies of |ψ⟩. In particular, for any state |ψ⟩ and for any algorithm A making
q queries, ∣∣∣Pr[AO|ψ⟩() = 1]− Pr[AS(|ψ⟩ℓ)() = 1]

∣∣∣ ≤ O(q/
√
ℓ)

Lemma 17. Let |ψ⟩ and |ϕ⟩ denote independent Haar random states over n qubits. Then

∥∥E [
(|ψ⟩⟨ψ|)⊗t ⊗ (|ψ∗⟩⟨ψ∗|)⊗u

]
− E

[
(|ψ⟩⟨ψ|)⊗t ⊗ (|ϕ⟩⟨ϕ|)⊗u

]∥∥ ≤ 3(t+ u)2

2n

.

Proof. Let ρ0 be the density matrix obtained by averaging over |ψ⟩⊗t|ψ∗⟩⊗u. Let P be the projection
onto computational basis states x1, · · · , xt+u that are all distinct. Then let ρ1 be the re-normalized
density matrix Pρ0P/Tr[Pρ0P].

We first compute Tr[Pρ0P]. This is the same as the probability the following accepts: measure
ρ0 in the computational basis, and accept if all entries in the result are distinct. If we write
|ψ⟩ =

∑
x αx|x⟩, then the probability of any particular vector of outcomes (x1, · · · , xt+u) is exactly∏t+u

i=1 |αxi |2. This is identical to the case of receiving t+ u copies of |ψ⟩. Since |ψ⟩ is Haar random,

10

t + u copies are identical to the totally-mixed state over the symmetric subspace of t + u copies.
The symmetric subspace is spanned by vectors labeled by the un-ordered multi-sets of t+ u terms.
The quantity of such vectors is is

(
2n+t+u
t+u

)
. On the other hand, the number of such multi-sets

containing only distinct elements is
(
2n

t+u

)
. Thus, the probability of obtaining all distinct elements

is: (
2n

t+u

)(
2n+t+u
t+u

) =
[(2n)!]2

(2n − t− u)!(2n + t+ u)!

=

(
2n

2n + t+ u
· 2n − 1

2n + t+ u− 1
· · · 2

n − t− u+ 1

2n + 1

)
if t− u < 2n

=

(
1 +

t+ u

2n

)−1
· · ·

(
1 +

t+ u

2n − t− u

)−1
≥

(
1 +

t+ u

2n − t− u

)−t−u
≥

(
1− t+ u

2n − t− u

)t+u
if t− u ≤ 2n/3

≥ 1− (t+ u)2/(2n − t− u)
≥ 1− (2/3)(t+ u)2/2n if t− u ≤ 2n/3

Since Tr[Pρ0P] ≥ 1− (2/3)(t+ u)2/2n, we therefore have that ∥ρ0 − ρ1∥Tr ≤ (2/3)(t+ u)2/2n.
Now we define ρ2 and ρ3. ρ3 is the density matrix obtained by averaging over |ψ⟩⊗t|ϕ⟩⊗u, and

ρ2 = Pρ3P/Tr[Pρ3P]. By a similar argument as above, we have that ∥ρ2 − ρ3∥Tr ≤ (3/2)(t2 +
u2)/2n ≤ (3/2)(t+ u)2/2n.

Now we look at ∥ρ2 − ρ3∥. Both matrices have support only on the product of the symmetric
subspace for the first t sets of n qubits, an the symmetric subspace for the remaining u sets of
n qubits. Let |{xi}i⟩ and ⟩|{yi}i⟩ for un-ordered multi-sets {xi}i and {yi}i denote the uniform
superpositions over all possible orderings of those sets. Then |{xi}i⟩⟩|{yi}i⟩ form a basis for the
symmetric subspace, and we will write ρ2 and ρ3 in this basis.

Since we have projected onto P , we can also keep only the subspaces where all entries are the
same. We can therefore restrict our attention to {xi}i, {yi}i that contain only distinct elements
and have the two multi-sets themselves being disjoint.

Since ρ3 is just the projection of the product of two totally-mixed states on the symmetric
subspace, we see that ρ3 is just the (appropriately scaled) identity matrix.

For ρ2, let us compute some off-diagonal entry. The off-diagonal entry corresponding to basis
state|{xi}i⟩|{yi}⟩ and |{x′i}i⟩|{y′i}i⟩ will be

t∏
i=1

αxi

u∏
i=1

α∗yi

t∏
i=1

α∗x′i

u∏
i=1

αy′i

Due to the phase invariance of Haar random states, averaging over α sampled from a Haar
random state gives 0 unless the un-conjugated α’s are exactly matched by corresponding conjugated
α’s. In other words, these entries average to 0 unless the multi-sets {xi} ∪ {y′i} and {x′i} ∪ {yi} are
equal. But since the xi are distinct and disjoint from the yi (and likewise for the x′i, y

′
i), the only

way for this to happen is for the multisets {xi} and {x′i} to be equal, and likewise for the multisets
{yi} and {y′i} to be equal. In other worrds, ρ2 is also the (scaled) identity matrix. Thus, ρ2 = ρ3.

11

Using the triangle inequality on the trace differences between ρ0, ρ1, ρ2, ρ3 gives the lemma.

Concentration of measure. We recall the concentration of measure lemma:

Lemma 18 (Simplified version of [Mec19]). Let µ be the Haar measure on dimension N . Let f be
an L-Lipshitz function in the Frobenius norm, mapping N -dimensional unitaries to real numbers.
Then the following holds for every ϵ > 0:

Pr
U←µ

[|f(U)− EV←µ[f(V)]| ≥ ϵ] ≤ 2e−
(N−2)ϵ2

24L2

Lemma 19. Let AU be a quantum algorithm making q queries to a Haar random unitary U of
dimension N , and producing a classical string x of length ℓ. Suppose ℓ ≤ Nϵ2/q2. Let D be the
distribution over x for a Haar random U , and let DU be the distribution for a given U . Then

Pr[∥DU −D∥ ≥ ϵ] ≤ e−O(Nϵ2/q2)

In particular, in the usual setting of N = 2n for polynomial n and q polynomial, we can take
ϵ to be exponentially small while keeping the term on the right double-exponentially small. Thus,
DU will almost certainly be close to D.

Proof. We recall that two distributions D1, D2 over {0, 1}ℓ being ϵ-close means there is a subsets
S ⊆ {0, 1}ℓ such that ∥Prx←D1 [x ∈ S] − Pr[x ← D2][x ∈ S]∥ = ϵ. Thus, we fix a set S ⊆ {0, 1}ℓ.
We let f(U) be the probability that AU outputs an x ∈ S. Invoke Lemma 18, to conclude that

Pr
U←µ

[|Pr[x ∈ S : x← DU]− Pr[x ∈ S : x← D]| ≥ ϵ] ≤ 2e
− (N−2)ϵ2

96q2

We then union-bound over all S to get that

Pr[∥DU −D∥ ≥ ϵ] ≤ 2ℓ × 2e
− (N−2)ϵ2

96q2

Then we use that ℓ ≤ Nϵ2/q2 to absorb the exponent ℓ into the a Big-Oh in the exponent, giving
the lemma.

3 Unitary Complexity

In this section, we explore some modeling questions surrounding unitary complexity. In particular,
we argue for some modifications to what were proposed in [BEM+23].

3.1 New Definitions of Unitary Complexity

A unitary synthesis problem is the task of implementing a family of unitaries. In [BEM+23],
definitions for such complexity classes were given. Here, we give our new definitions and argue that
they have certain advantages over [BEM+23].

Definition 20. For a function T : Z→ Z and function δ : Z→ [0, 1], let UnitaryTime(T, δ) be the
collection of families of unitaries {Us}s∈{0,1}∗ for which the following hold. There exists a family of

unitaries {U s}s such that each U s is an extension of Us, together with a Turing machine M(s) that
runs in deterministic time T (|s|) and outputs a unitary circuit Cs such that ∥Cs − U s∥op ≤ δ(|s|).

Note that since M runs in time at most T , the circuit Cs must have size at most T .

12

Unitary BQP, E. We define three variants of Unitary BQP, depending on how close of an
approximation is desired. UnitaryBQPpoly (resp. UnitaryBQPexp) is the set ∩δ (∪pUnitaryTime(p, δ))

where p ranges over all polynomials nO(1) and δ ranges over all inverse-polynomials (resp. inverse

exponentials 2−n
O(1)

). That is, UnitaryBQPpoly (resp. UnitaryBQPexp) is the set of sequences of
unitaries where, for any inverse-polynomial (resp. inverse-exponential) error δ, the unitary can be
implemented to within error δ in polynomial-time. We then define UnitaryBQPnegl to be the set

∪p,δUnitaryTime(p, δ) where p ranges over all polynomials nO(1) and δ ranges over all negligible
functions n−ω(1).

Define UnitaryEpoly = ∩δ (∪cUnitaryTime(2cn, δ)) where c ranges over all integers c and δ ranges
over all inverse-polynomials. Likewise define UnitaryEexp, UnitaryEnegl. We can also extend our
notion to oracle-aided unitaries, by considering circuits that contain oracle gates.

There are two key differences between our definition of UnitaryBQP and the definition given
in [BEM+23]:

• We insist that the unitary Cs is close to Us, when considered as operators over C2n . This
means that the overall phase matters in our definition, and Cs cannot produce any extra
garbage state. In contrast, [BEM+23] only ask that the circuit Cs is close to Us as quantum
channels, where the ancilla qubits of the output are traced out. This means Cs can have an
arbitrary global phase, and can even produce garbage states that get traced out.

• The dependence on error in [BEM+23] matches our poly definition. However, our negl version
insists on negligibly-small error, while exp insists on exponentially-small error.

In the next subsections, we discuss our new modeling choice for these complexity classes.

Ancilla Complexity. We now consider a version of unitary complexity where the circuit is
restricted to having few or no ancilla qubits. Note that ancilla complexity is an important metric
for quantum computation, since it captures how much extra quantum storage is needed to perform
a computation.

Definition 21. For functions T, a : Z → Z and function δ : Z → [0, 1], let UnitaryTimea(T, δ)
be the collection of families of unitaries {Us}s∈{0,1}∗ for which the following hold. There exists a

family of unitaries {U s}s such that each U s is an a(|s|)-extension of Us, together with a Turing
machine M(s) that runs in deterministic time T (|s|) and outputs a unitary circuit Cs such that
∥Cs − U s∥op ≤ δ(|s|).

Similarly define UnitaryBQPaexp, UnitaryBQP
a
negl, UnitaryBQP

a
poly, UnitaryE

a
exp,

UnitaryEanegl, and UnitaryEapoly.

3.2 Features of our Definition

Proposition 22. Let a be a function, C ∈ {UnitaryBQP,UnitaryE} and δ ∈ {exp, negl, poly}. Let

{Us}s ∈ Caδ . Then {CUs}s, {U∗s }s, {U
†
s}s, {UTs }s, {CU∗s }s, {CU

†
s}s, {CUTs }s are all also in Caδ .

Proof. The proofs for all choices of C and δ are essentially identical, so we focus on the case of
UnitaryBQPaexp. For any {Us}s ∈ UnitaryBQPaexp, we will prove that {U∗s }s, {U

†
s}s, {CUs}s are each

in UnitaryBQPaexp. The proposition follows by composing these operations.

Fix any inverse-exponential δ. For each operation ∗, †,C, we will devise a circuit family Cs such
that ∥Cs − V s∥op ≤ δ(|s|), where V s is an extension of U∗s , U

†
s ,CUs, respectively.

13

• Conjugation: since {Us}s ∈ UnitaryBQPaexp, there is a Turing machine M such that N(s)

outputs a quantum circuit Ds such that ∥Ds − U s∥op ≤ δ(|s|)/2, where U s is an a-qubit
extension of Us. Then observe that U

∗
s is also an a-qubit extension of U∗s , and ∥D∗s −U

∗
s∥op =

∥Ds − U s∥op ≤ δ(|s|)/2. Thus, let M(s) be the Turing machine that runs N(s) to get the
circuit Ds, and outputs D∗s . Here, D∗s is obtained by replacing each gate G in Ds with its
conjugate G∗. Note that a universal gate set containing G does not necessarily contain G∗, but
would instead need to be approximated. Fortunately, thanks to the Solovay-Kitaev theorem,
we can approximate G∗ to error δ(|s|)/2ℓ using polylog(2ℓ/δ(|s|)) gates (and known global
phase), where ℓ is the size of Ds. This can also be done without any additional ancillas.
Thus, we have that the overall error is at most δ(|s|), and since δ is at most exponential, the
running time/circuit complexity only blows up by a polynomial factor.

• Inversion: This is basically the same as conjugation, except that we replace each gate G with
its inverse G†, and moreover reverse the order of the gates, since (G0G1)

† = G†1G
†
0. Note

that typically universal gate sets are considered to be closed under inverses, so if G is in the
universal gate set, so is G−1. However, [BGT21] shows that this assumption is not necessary.

• Controlling: this is essentially identical to conjugation.

Remark 23. Note that controlling has appeared informally many times in the literature, and a
formal version of controlling was already considered in [KTP20]. However, their proof implicitly
assumes a unitary Us implemented exactly by a quantum circuit. Their proof also implicitly assumes
that the circuit preserves global phase, though this is never stated.

3.3 On our “closeness” metric

Here, we make the case for our closeness metric that pays attention to global phase, as opposed to
that of [BEM+23], which ignores global phase. Concretely, we will see that no analog of Propo-
sition 22 holds for the class as defined in [BEM+23]. Let UnitaryBQP′poly (resp. UnitaryBQP′exp)
denote the definition in [BEM+23], which is the same as UnitaryBQPpoly (resp. UnitaryBQPexp)
except that the circuit Cs only has to be δ-close to Us as quantum channels, which ignores global
phase. Likewise define UnitaryE′poly and UnitaryE′exp.

Proposition 24. There exists a family {Us}s ∈ UnitaryBQP′exp where {CUs}s is not even in
UnitaryE′poly.

Proof. Let Us be the unitary (−1)H(s)I, where H(s) interprets s as a Turing machine and outputs
1 if the machine halts on the empty input, 0 otherwise.

Ignoring global phase, Us is just I, which can be computed exactly trivially. Thus {Us}s ∈
UnitaryBQP′exp. However, we now argue that {CUs}s /∈ UnitaryE′poly. In fact, {CUs}s cannot be
approximated by any computable algorithm, even to within an error as large as 1 − ϵ for any
computable function ϵ.

Suppose to the contrary that {CUs}s ∈ UnitaryE′poly. Let δ be some desireable error, and let
M(s) be the Turing machine which outputs a circuit Cs that is δ-close to an extension of Us.
Consider the quantum algorithm Q(s) which solves the Halting problem. It runs M(s) to get Cs.
Then it repeats the following a poly(1/δ) number of times: it initializes the state |+⟩|0n⟩, applies
Cs, and then measures the first qubit in the |+⟩, |−⟩ basis.

Finally, Q(s) outputs the majority of all the measurements.

14

If Cs were actually CUs, then CUs|+⟩|0n⟩ = (|0⟩+(−1)H(s)|1⟩)|0n⟩, Measuring the first qubit in
the |+⟩, |−⟩ basis reveals H(s). Since Cs actually has error, we instead get a noisy version of H(s).
But taking the majority of a large number of samples gives H(s) the result with overwhelming
probability.

Thus we have a quantum algorithm which solves the Halting problem. As classical and quantum
decidability are equivalent, this gives a classical algorithm for the Halting problem as well, which
is impossible. Thus we have that {CUs}s /∈ UnitaryE′poly.

3.4 On Negligibly-Small Error

Here, we make the case for negligibly-small error, and maybe even exponentially-small error as
opposed to polynomial error as in [BEM+23].

First, we observe that algorithmic results such as the Solovay-Kitaev theorem promise an
exponentially-small error. We also point out that classical algorithms for sampling problems –
such as sampling random numbers in an interval, random primes, (discrete) Gaussians, etc – are
typically expected to have exponentially-small error.

Cryptographic applications. Next, we argue that negligibly-small error is crucial for crypto-
graphic applications. While our discussion applies generally, for concreteness here we will focus
on the case of pseudorandom unitaries [JLS18]. In [JLS18] and many of the works following it
(e.g. [MPSY24, BM24, MH25]), a pseudorandom unitary is roughly defined as follows: it consists
of a collection of unitaries {Us}s such that

1. {Us}s is efficiently computable by a quantum algorithm

2. No polynomial-time quantum query algorithm can distinguish using quantum queries Ux for
a random x of length n from a Haar random unitary V of the same dimension

What it means to be “computable” by a quantum algorithm is not specified. One interpretation is
that there is an algorithm which computes {Us}s exactly. But this is likely too strong: for example,
even implementing relatively simple quantum operations like the quantum Fourier transform (QFT)
from a finite universal gate set seems to require approximations.4 Moreover, there are even universal
gate sets that cannot even simulate classical computation exactly.

Intuitively, however, it makes sense to ask “efficiently computable” {Us}s are captured by
{Us}s ∈ UnitaryBQP, in whatever way the class UnitaryBQP is defined. We now see how the choice
of error in defining UnitaryBQP affects pseudorandom unitaries by considering the cases where Us
is implemented to inverse-polynomial error vs negligibly-small error.

First consider inverse-polynomial error, say 1/p(|x|). Unfortunately, such error actually invali-
dates the security proof of the PRU construction. This is because what is shown is that, for any
polynomial-time adversary A, AUx is indistinguishable from AV (which we will denote AUx ≈ AV)
where x is chosen randomly and V is Haar random. However, in the “real world”, A does not
necessary see the exact unitary Ux, but rather sees the unitary U

′
x provided by the implementation.

4[MZ03] claims to give an “exact” QFT but the computational model is not specified precisely. In particular,
as a subroutine they apply “exact” amplitude amplification [BHMT02] to an inexact algorithm. In general, exact
amplitude amplification requires preparing states whose amplitudes depend in complex ways on the success probability
of the underlying algorithm, and in general it appears unlikely that these states can be generated exactly using a
finite universal gate set.

15

The hope would be to use that AU
′
x ≈ AUx to conclude that AU

′
x ≈ AV by the triangle inequal-

ity. However, in the inverse-polynomial error regime, AU
′
x is only inverse-poly close to AUx and

hence AV , which is not enough to conclude security as security requires negligible distinguishing
advantage. Worse, we could have A make q ≫ p queries, in which case the error over all queries
is actually ≈ 1. One could try moving to a better error p, but no matter what p is used there
may exist an adversary with slightly-smaller distinguishing advantage, or that makes more than
1/p queries to achieve a large distinguishing advantage.

On the other hand, consider the case of negligibly-small error. Then we would indeed have that
AU

′
x is negligibly-close to AUx , for any polynomial number of queries, allowing us to conclude that

AU
′
x ≈ AUx ≈ AV , showing that the actual construction as implemented is secure.
While we focused on PRUs, the above can be applied to any crypographic primitive that utilizes

unitaries, showing that it is sufficient to have the unitaries be in UnitaryBQPnegl.

Remark 25. Note that [BEM+23] draw connections between unitary complexity and certain cryp-
tographic notions. However, their connections consider whether the adversary for the cryptographic
notion is in a complexity class, in contrast to our example above considering the algorithms of the
cryptosystem being in the class. From their perspective, an inverse-poly error makes sense, as an
adversary is typically considered successful even if it incurs such error. More generally, when we
want an upper-bound (i.e., and algorithm), we would typically ask for at least negligibly-small er-
ror, and possibly exponentially-small error. However, when we ask for a lower-bound, we would
typically want the lower-bound to apply even in the polynomial-error case. So whether a complexity
class is more naturally defined using exponentially-small error or polynomial error would depend
on whether that class is supposed to capture upper- or lower-bounds.

4 Oracle Separations and Indifferentiability

Here, we consider a quantum version of indifferentiability, originally defined in the classical setting
by [MRH04].

Definition 26. Let {Dλ}λ, {Eλ}λ be two (families of) distributions over unitary transformations,
and {Cλ}λ a family of oracle-aided unitaries in UnitaryBQPnegl. Let CDλλ denote the distribution

over CDλ where D ← Dλ. We say {CDλλ }λ is quantum indifferentiable from {Eλ}λ if, for every QPT
algorithm A, there exists a quantum polynomial-time stateful simulator S and a negligible negl such
that

∥Pr[ACDλ ,D(1λ) = 1 : D ← Dλ]− Pr[AE,SE(1λ)(1λ) = 1 : E ← Eλ]∥ ≤ negl(λ)

We will often drop the sub-script λ and also the curly braces and just write C,D, E . The case
CD, D is called the “real” world, while the case E,SE is called the “ideal” world.

A single-stage game is an interactive game between a single adversary and challenger. The
adversary is allows arbitrary local computation and storage between its messages, except for being
polynomial-time. The game itself is also polynomial-time. The following is a trivial adaptation of
the analogous classical result of [MRH04].

Theorem 27. Suppose a cryptographic primitive P has security specified by a single-stage game.
Suppose that RE is a secure realization of P relative to the oracle distribution E, and CD is quantum
indifferentiable from E. Then RC

D
is a secure realization of P relative to the oracle D.

16

Proof. We need to prove that RC
D
is secure. Toward that end, we imagine a hypothetical adversary

A breaking RC
D

given oracle access to D. By viewing the game and adversary as a single entity
B making queries to CD (coming from R) and D, indifferentiability tells us that B and hence A
still breaks RE when given access to SE . But then we combine A and S into a third adversary A′
which breaks RE by making queries to E . This breaks the assumption that RE was secure relative
to E .

A simple converse of this theorem is that, in order for a construction CD to securely realize E
in all single-stage games, it must be indifferentiable.

Theorem 27 allows for translating separations between different oracles as follows. Suppose
P exists and Q does not relative to D. Moreover, suppose that D and E are equivalent, in the
sense that there are indifferentiable constructions of E from D and vice versa. Then we conclude
that P exists relative to E as well using Theorem 27. Moreover, Q cannot exist relative to E , lest
Theorem 27 implies it also exists relative to D, a contradiction.

Witness Classes and Perfect Indifferentiability. Unfortunately, the above is actually insuf-
ficient for lifting complexity classes that involve witnesses. The reason is that complexity classes
involve witnesses that are inefficiently computed given the entire description of the oracle. As such,
the “game” modeling a complexity class is not efficient. Nevertheless, indifferentiability is a neces-
sary requirement for generically translating a complexity separation from one-oracle to another.

4.1 On Building Quantum Oracles from Classical Oracles

Definition 28. Let U be a distribution on unitaries U , and M a mapping between unitary trans-
formations. We say that U is M -composable if there exists negligible functions ϵ, δ and algorithm
A such that PrU←U [∥AU −M(U)∥avg > ϵ] < δ.

Theorem 29. Let O be a distribution over classical oracles, U be a distribution over unitaries,
and C an oracle-aided quantum circuit making queries to O. Suppose that CO is indifferentiable
from U . Then U must be M -composable for M ∈ {U → U †, U → U∗, U → UT }.

Note that Theorem 29 does not apply to controlling.

Proof. Suppose that CO is indifferentiable from U . This means for any potential distinguisher D,
there is a simulator S such that Pr[DCO,O() = 1] is negligibly-close to Pr[DU ,S

U
() = 1].

We first handle the U∗ case. Consider the circuit (C∗)O, which conjugates every gate except
query gates. In the real world, O is a classical oracle, which means that the gate representing O is
its own conjugate. Hence (C∗)O = (CO)∗.

By Lemma 13, there is an algorithm AU,V making queries to U, V and outputs 1 with probability
equal to 1 − Θ(∥V − U∗∥avg). Consider running the algorithm AU,(C∗)O . In the real world where

U = CO, this is ACO,(CO)∗ , which outputs 1 with probability 1. Therefore, there is a simulator S

such that in the ideal world, AU,(C∗)S
U

outputs 1 with probability 1−ϵ for some negligible function ϵ.

This means with probability at least 1−
√
ϵ over the choice of U , Pr[AU,(C∗)S

U

() = 1] ≥ 1−
√
ϵ where

the probability now is just over the randomness ofA. Thus, in this event ∥U∗−(C∗)SU ∥avg ≤ O(
√
ϵ).

The construction for U † is analogous, but uses the algorithm from Lemma 12. UT is simply a
composition of the two.

17

Remark 30. The above does not work for controlling. This is because the simulator may introduce
a global phase, and there is no way to account for this in the analysis.

5 Breaking the Indifferentiability of [MH25]

In this section, we show that the very recent construction of a pseudorandom unitary by [MH25]
cannot be indifferentiable from a random unitary. Their construction has the form U = C0PFC1,
where:

• C0,C1 are random Cliffords in Cn (or C′n).

• P is a random permutation matrix

• F is a diagonal matrix where each diagonal entry is chosen randomly from the q-th roots of
unity, for some q ≥ 2.

We will call this the CPFC construction, which is a generalization of the PFC construction
from [MPSY24]. [MH25] show that this construction looks like a random unitary give only query
access to U (and U−1). This allows it to give a pseudorandom unitary, by replacing P,F with
appropriate pseudorandom objects. This captures settings where the unitary is being computed by
a third party, rather than users themselves.

We will now consider whether this can be used to give publicly accessible random-looking unitary.
In other words, we want CPFC to look like a random unitary, even if it is publicly evaluatable,
meaning users compute it for themselves using the underlying P,F,C0,C1. In this setting, the correct
notion of security indifferentiability, since the attacker will have access to P,F,C0,C1 themselves in
order to compute U.

Note that while F is not a classical unitary, it can be implemented by a random function from
{0, 1}n → Zq by putting the output of the function in the phase. The Cliffords C0,C1 are also given
by an oracle which simply outputs their description.

Our main result, unfortunately, shows that this construction cannot possibly be indifferentiable
from a random unitary.

Theorem 31. Regardless of the distribution over P,F,C0,C1, the CPFC construction cannot be
indifferentiable from a random unitary.

Proof. Suppose that the CPFC construction is indifferentiable. Then in the “ideal” world, there is
a simulator for the oracles P,F,C0,C1 which itself makes queries to a Haar random U. Since the
adversary may as well query to obtain C0,C1, we can assume these are given as classical strings.
Then Lemma 19 says that we can consider C0,C1 to be sampled independently of U. Let V = C†0UC

†
1.

Then since U is Haar random and C0,C1 are independent of U, this means V is Haar random.
Also, per Theorem 29, we can assume that the adversary and simulator have access to both U

and U∗, which implies that the adversary has access to V,V∗. Technically they only have access
to a circuit that is close to U∗ in an average-case sense, but this is sufficient for our proof. We
therefore ignore this distinction and assume for simplicity that access to U∗ itself is provided.

Our main observation is that, in the “real” world, P∗ = P and F∗ = F†. Thus, if U is sampled
from the CPFC construction and we define V = C†0UC

†
1 = PF, then V∗ = PF†. In particular, this

means that if we apply V ⊗ V∗ to a basis state |x⟩⊗2, the phases cancel out and we are left with

18

|y⟩⊗2 for |y⟩ = P|x⟩. We can then test for this property by comparing the two output registers,
and this property will almost certainly not hold for a general random unitary V. We now give the
attack in more detail.

Prepare phased EPR state. Choose a random pairwise independen function f : {0, 1}n →
{0, 1}, and prepare |ψ0

f ⟩ =
1

2n/2

∑
x(−1)f (x)|x, x⟩.

Apply V ⊗ V∗. Now we compute |ψ1
f ⟩ = V ⊗ V∗|ψ0

f ⟩. This equals:

|ψ1
f ⟩ =

1

2n/2

∑
x,y,y′

Vy,xV
∗
y′,x(−1)f(x)|y, y′⟩

where Vy,x are the entries of V.

Project onto y = y′. Now we apply the projection S =
∑

y |y, y⟩⟨y, y|, obtaining the un-
normalized state

|ψ2
f ⟩ = S|ψ1

f ⟩ =
1

2n/2

∑
x,y

|Vy,x|2(−1)f(x)|y, y⟩

The amplitude squared of ⟨ψ2
f |ψ2

f ⟩ is exactly the probability the projection accepts. Let this
probability be denoted by pf . Then we have that:

pf =
1

2n

∑
y

∣∣∣∣∣∑
x

|Vy,x|2(−1)f(x)
∣∣∣∣∣
2

=
1

2n

∑
y,x,x′

|Vy,x|2 · |Vy,x′ |2(−1)f(x)+f(x
′)

Let p = Ef [pf] over the choice of f . Observe that since f is pairwise independent, then
Ef [(−1)f(x)+f(x

′)] is 1 if and only if x = x′, and otherwise it is 0. Therefore we have that

p =
1

2n

∑
x,y

|Vy,x|4

We see for real world matrices V = PF that p = 1 since the sum is over the 2n non-zero entries,
each of which have norm 1. On the other hand, for Haar random V, p will in general be very small.
In particular, for a Haar random matrix V, it is not hard to show that EV[p] =

2
2n−1 , which is

negligible. Thus, our attack distinguishes the two cases.

6 On Quantum Black Box Reductions

Definition 32. Let n(λ) > λ be a function on Z. A one-time pseudorandom state (1-PRS) is a
family of states {|ψk⟩}k such that:

• There exists a family of unitaries {Uk}k ∈ UnitaryBQP′negl such that for all k ∈ {0, 1}λ,
Uk|0n(λ)⟩ = |ψk⟩. In particular, if k ∈ {0, 1}λ, then |ψk⟩ is a state over n(λ) qubits.

19

• For any QPT adversary A, there exists a negligible negl such that for all λ ∈ Z, ∥Pr[A(|ψk⟩) =
1 : k ← {0, 1}λ]− Pr[A(|x⟩) = 1 : x← {0, 1}n(λ)]∥ ≤ negl(λ)

Definition 33. A PRS is called junk-free if Uk ∈ UnitaryBQPnegl.

We are not aware of any PRS in the literature that is not junk-free. In known constructions, it
seems any side-information can always be uncomputed.

Definition 34. A PRS is called ∗-anti-correlated if ∥Ek|ψk⟩⟨ψ∗k|∥ is negligible in |k|.

∗-anti-correlation, intuitively, means that |ψ∗⟩ is fairly un-related to |ψ⟩. For example, if |ψ∗⟩ =
|ψ⟩, then the expectation is actually just the totally mixed state, which has trace norm 1.

Note that ∗-anti-correlation is a very strong statistical property, and we do not expect it to
hold for many or even most PRS constructions. However, it is straightforward to devise PRSs that
have this property. For example, by slightly increasing the key length, we can apply to any PRS
a global phase eiθ where θ is determined from bits of the key that are independent of the original
PRS. then |ψk⟩⟨ψ∗k| picks up a phase ei2θ. As long as this phase averages to 0 – for example, if θ is
uniform in {0, π/2} – then ∥Ek|ψk⟩⟨ψ∗k|∥ = 0.

Construction 35. Let {|ψk⟩}k be a 1-PRS. Then define the new family {|ψ′k⟩}k where

|ψ′k⟩ =
1√
2
|0⟩|ψk⟩+

1√
2
|1⟩|ψ∗k⟩

Theorem 36. If {|ψk⟩}k is a 1-PRS that is junk-free and ∗-anti-correlated, then {|ψ′k⟩}k in Con-
struction 35 is also a 1-PRS.

Proof. First, we need to show that |ψ′k⟩ can be implemented efficiently. This is straightforward.
Given a circuit for a unitary {Uk}k ∈ UnitaryBQPnegl on n qubits which computes |ψk⟩, we define
the unitary U ′ = (CU∗k)X1(CUk)X1H1, where the subscripts indicate applying the gate to the first
wire, which is also the control for CUk,CU

∗
k . By Proposition 22, the unitary U ′ is in UnitaryBQPnegl.

Next, we need to argue security. Consider an adversary A′ for {|ψ′k⟩}k and define ϵ(λ) =
∥Pr[A′(|ψ′k⟩) = 1 : k ← {0, 1}λ]−Pr[A′(|x⟩) = 1 : x← {0, 1}n(λ)+1]∥. Our goal is to show that ϵ is
negligible.

Toward that end, we define

p0 = Pr[A′(|ψ′k⟩) = 1 : k ← {0, 1}λ]

p1 = Pr

[
A′(|b⟩, |ϕb⟩) = 1 :

b←{0,1},k←{0,1}λ
|ϕ0⟩←|ψk⟩
|ϕ1⟩←|ψ∗

k⟩

]
p2 = Pr

[
A′(|b⟩, |ϕb⟩) = 1 :

b←{0,1},k←{0,1}λ,x←{0,1}n(λ)
|ϕ0⟩←|x⟩
|ϕ1⟩←|ψ∗

k⟩

]
p3 = Pr

[
A′(|b⟩, |x⟩) = 1 : b← {0, 1}, x← {0, 1}n(λ)

]

We now argue that ϵ = |p3 − p0| is small by showing that |pi − pi−1| is small for each i and using
the triangle inequality.

Claim 1. If {|ψk⟩}k ∗-anti-correlated, then |p0 − p1| is negligible in λ.

20

Proof. The mixed state A′ sees in p0 is ρ = Ek[|ψ′⟩⟨ψ′|], whereas the state seen in p1 is the result
of measuring the first qubit of ρ. Call this ρ′. Then we have that

ρ− ρ′ = |0⟩⟩1| ⊗ |ψk⟩⟩ψ∗k|+ |1⟩⟩0| ⊗ |ψ∗k⟩⟩ψk|

Then we have that |p0 − p1| ≤ ∥ρ − ρ′∥ = ∥Ek|0⟩⟩1| ⊗ |ψk⟩⟩ψ∗k|∥ + |Ek1⟩⟩0| ⊗ |ψ∗k⟩⟩ψk| =
2∥Ek|0⟩⟩1| ⊗ |ψk⟩⟩ψ∗k|∥ = 2∥Ek|ψk⟩⟩ψ∗k|∥ ≤ 2negl(λ), where the inequality is exactly the definition
of ∗-anti-correlation.

Claim 2. If {|ψk⟩}k is a secure 1-PRS, then |p1 − p2| is negligible in λ.

Proof. Let A(|ϕ⟩) be the following adversary for {|ψk⟩}k:

• Choose a random b.

• If b = 1, choose a random k′ and run A′(|1⟩|ψ∗k⟩)

• If b = 0, run A′(|0⟩|ϕ⟩)

• Output whatever A outputs

Observe that if |ϕ⟩ is a random |x⟩, then the probability A outputs 1 is exactly p2. Likewise, if
|ϕ⟩ is |ψk⟩ for a random k, then the probability A outputs 1 is exactly p1.

5 Thus, by the assumed
1-PRS security of {|ψk⟩}k, we must have that |p2 − p1| is negligible.

Claim 3. If {|ψk⟩}k is a secure 1-PRS, then |p2 − p3| is negligible in λ.

Proof. Let A(|ϕ⟩) be the following adversary for {|ψk⟩}k:

• Choose a random b.

• If b = 0, choose a random x and run (A′)∗(|1⟩|x⟩)

• If b = 1, run (A′)∗(|0⟩|ϕ⟩)

• Output whatever A outputs

Observe that by conjugating everything in the definitions of p2, p3, an equivalent expression for
p2, p3 is the following:

p2 = Pr

[
(A′)∗(|b⟩, |ϕb⟩) = 1 :

b←{0,1},k←{0,1}λ,x←{0,1}n(λ)
|ϕ0⟩←|x⟩
|ϕ1⟩←|ψk⟩

]
p3 = Pr

[
(A′)∗(|b⟩, |x⟩) = 1 : b← {0, 1}, x← {0, 1}n(λ)

]

Then we see that if |ϕ⟩ is given |x⟩ for a random x, the probability A outputs 1 is exactly p3.
Likewise if |ϕ⟩ = |ψk⟩ for a random k, the probability A outputs 1 is exactly p2. Thus, by the
assumed 1-PRS security of {|ψk⟩}k, we must have that |p3 − p2| is negligible.

Thus, p3 is negligibly close to p0, showing that {|ψ′k⟩}k is a 1-PRS and proving Theorem 36.
5Note that the definition of p1 has |ϕ0⟩ and |ϕ1⟩ both use the same k, whereas this simulation sets |ϕ1⟩ = |ψ∗

k′⟩
for an independent k′. However, since the view of A′ only depends on at most one of |ϕ0⟩, |ϕ1⟩, the cases where the
index k is the same or independent are identical.

21

6.1 Construction 35 requires conjugating the adversary

Here, we show that, relative to an oracle, there is no black box reduction proving the security of
Construction 35 that does not conjugate the adversary.

Definition 37. Let O be an oracle. A black-box reduction proving the security of Construction 35
relative to O consists of the following. For every purported 1-PRS family {|ψOk ⟩}k relative to O,
and for any purported adversary A for the 1-PRS {|(ψ′k)O⟩}k from construction 1, there exists a
polynomial-time reduction R which makes queries to A such that the following is true: if {|ψOk ⟩}k
is a secure PRS and A is a possibly inefficient algorithm which breaks {|(ψ′k)O⟩}k, then RA breaks
{|ψOk ⟩}k.

Definition 38. An ϵ-net is a family of states {|ψk}k such that (1) for every k, there exists a
distribution Dk with support on states |ϕ⟩ such that ||ϕ⟩ − |ψ⟩|2 ≤ ϵ, and (2) the mixture of Dk for
random k is Haar random.

Theorem 39. Relative to a random oracle O, there is no conjugate-free black box reduction proving
the security of Construction 35.

Proof. Let Df be a unitary in UnitaryBQPnegl which maps |0n⟩ into a quantum state |ϕf ⟩ on n-

qubits, such that if f is a random function then |ϕf ⟩ is an ϵ-net, for an exponentially-small ϵ. Such
states were constructed e.g. in [LQS+24].

Given an oracle O, consider the PRS with seed (s, t) ∈ {0, 1}m × {0, 1} defined as |ψs,t⟩ =
it|ϕO(s,·)⟩

Secure PRS. This follows a standard argument. We first replace |ψs,t⟩ with it|ϕf ⟩ for a random
function f independent of the oracle O. This change is indistinguishable via a straightforward ap-
plication of Lemma 15. Then we replace |ϕf ⟩ with a Haar-random state, which is indistinguishable
by the ϵ-net property.

*-anti-correlation. Observe that

Es,t[|ψs,t⟩⟨ψ∗s,t| = Es,t[it|ϕO(s,·)⟩⟨(ϕO(s,·))∗|it] = Es,t[(−1)t|ϕO(s,·)⟩⟨(ϕO(s,·))∗|]

Factor out the expectation Et[(−1)t], which is 0.

No conjugate-free black box reduction. Apply Construction 35 to our PRS. Thus, we obtain
the new PRS |ψ′s,t⟩ = 1√

2
it|0⟩|ϕO(s,·)⟩+ 1√

2
(−i)t|0⟩|(ϕO(s,·))∗⟩.

Now consider the following exponential-time adversary A: let P be the projection onto the span
of {|1⟩|(ϕO(s,·))∗⟩}s for all s. Then A projects its input state |τ⟩ onto P ; if this projection accepts
is outputs 1, and otherwise it rejects.

Observe that for our PRS, A outputs 1 with probability at least 1/2, whereas for Haar random
states it outputs 1 with probability equal to the ratio of the dimension of the projection to the
overall space, which is at most 2−(n−s) ≪ 1/2. Thus A is a valid adversary.

Now consider a supposed conjugate-free reduction R breaking |ψs,t⟩ given queries to A. Let q
be the number of queries R makes to O (not including queries made by A), which is a polynomial.
We prove that R must fail to distinguish |ψs,t⟩ from random. We do so through a sequence of
hybrids.

22

Hybrid 0: Run RO,A(|ϕ⟩) for a Haar random state |ϕ⟩. Let p0 be the probability R outputs 1.

Hybrid 1: Here, we choose a random s∗ ∈ {0, 1}m, and we “puncture” the oracle O at all prefixes
s∗, setting O(s∗, x) = 0 for all x. Call this oracle O′. Let p1 be the probability RA,O′

outputs 1.
In Hybrid 0, let w0 be the expected total query weight of all queries R makes to O (not including

queries made by A) on points with prefix s∗. Since Hybrid 0 is independent of s∗, s∗ is random in
{0, 1}m, and the total query weight is q, w0 is exactly q× 2−m. Let w1 be the expected total query
weight in Hybrid 1.

We therefore invoke Lemma 15 to conclude that |p0 − p1| ≤ O(
√
q22−m) = O(q2−m/2). Let B

be the algorithm which runs R to a random query to O or O′, measures the query, and outputs 1 if
and only if the measured prefix s is identical to s∗. The probability B outputs 1 is exactly the query
weight of s∗, divided by the number of queries. Thus, by invoking Lemma 15 on B, we see that
|w0/q−w1/q| ≤ O(q2−m/2). In particular, we have that w1 ≤ O(q×2−m+q22−m/2) ≤ O(q22−m/2).

Hybrid 2: Now we give R a different adversary A′ that does not make any queries of the form
O(s∗, x). Instead, A′ will be initialized with ℓ copies of the state |τ∗⟩ := |ϕO(s∗,·))∗⟩. If first
projects onto the span of {|1⟩|(ϕO(s,·))∗⟩}s ̸=s∗ , is the same as A except that it does not include the
projection onto |1⟩|(ϕO(s∗,·))∗⟩. Therefore, if the first projection fails, A′ simulates the projection
onto |ϕO(s∗,·))∗⟩ using the simulator S from Lemma 16.

We will let ℓ = min((q/ϵ)2/3, (q2n)2/5), which will minimize certain terms in the proceeding
derivations.

Let p2 be the probability RA′,O′
(|ϕ⟩) outputs 1. Let w2 be the expected query magnitude of

s∗. Invoking Lemma 16 on A, we have that |p2 − p1| ≤ O(q/
√
ℓ), and invoking it on B we have

|w2/q − w1/q| ≤ O(q/
√
ℓ). In particular, this means that |p2 − p0| ≤ O(q2−m/2 + q/

√
ℓ) and

w2 ≤ O(q22−m/2 + q2/
√
ℓ).

Hybrid 3. Next, we replace the state |τ∗⟩ given to A′ with a Haar random state. Let p3 be the
probability R outputs 1, and w3 be the query weight on s∗. Observe that in Hybrid 2, no queries
are made to O(s∗, x), and thus these values are independent of the view of R except through
|τ∗⟩. We can therefore invoke the ϵ-net property to conclude that each copy of |τ∗⟩ in Hybrid 2
is ϵ-close to a Haar random state. Thus, by applying Lemma 14 to both A and B, we have that
|p3 − p2|, |w3/q − w2/q| ≤ O(ℓϵ). In particular, this means |p3 − p0| ≤ O(q2−m/2 + q/

√
ℓ+ ℓϵ) and

w3 ≤ O(q22−m/2 + q2/
√
ℓ+ qℓϵ).

Hybrid 4. Now we switch to |τ∗⟩ = |ϕ∗⟩. Define p4, w4 analogously to the previous hybrids. We
invoke Lemma 17 to conclude that |p4 − p3|, |w4/q − w3/q| ≤ O(ℓ3 × 2−2n). In particular, this
means |p4 − p0| ≤ O(q2−m/2 + q/

√
ℓ + ℓϵ + ℓ22−n), which using our choice of ℓ give |p4 − p0| ≤

O(q2−m/2 + q4/52−n/5 + q2/3ϵ1/3). Likewise, w4 ≤ O(q22−m/2 + q9/52−n/5 + q5/3ϵ1/3).

Hybrid 5. Now we switch to |ϕ⟩ = |τ⟩ = |ϕO(s∗,·)⟩ and |ϕ∗⟩ = |τ∗⟩ = |(ϕO(s∗,·))∗⟩. This move
is essentially identical to the move between Hybrid 2 and Hybrid 3, but in reverse. We have
|p5 − p0| ≤ O(q2−m/2 + q4/52−n/5 + q2/3ϵ1/3), w5 ≤ O(q22−m/2 + q9/52−n/5 + q5/3ϵ1/3).

23

Hybrid 6. Now we switch back to giving R access to the adversary A instead of A′. This is
essentially identical to the move betwen Hybrid 1 and Hybrid 2 but in reverse. We have |p6−p0| ≤
O(q2−m/2 + q4/52−n/5 + q2/3ϵ1/3), w6 ≤ O(q22−m/2 + q9/52−n/5 + q5/3ϵ1/3).

Hybrid 7. Finally, we switch back to giving R the unpunctured oracle O. This is analogous to
the transition between between Hybrid 0 and Hybrid 1, except that we have to use the bound on
w6 rather than the trivial bound on w0. The result is that |p7 − p6| ≤ O(

√
qw6), which we can

bound as O(q3/22−m/4 + q14/102−n/10 + q4/3ϵ1/6). This bound dominates all the other terms, and
so by slightly increasing the constant hidden by Big-Oh, this is also a bound on |p7 − p0|.

Hybrid 7 is the case where RO,A(|ϕO(s∗,·)), which is the PRS. Thus, we have proved that no
polynomial-query R can distinguish the PRS from Haar random.

7 Homomorphisms on Unitaries

Here, we we discuss possible refinements of our model for public quantum oracles. More precisely,
we ask: what makes computing U †, U∗, or controlled-U possible? Could these be part of a larger
class of operations on U that need to be modeled in a quantum oracle?

Our key observation is that the maps U 7→ CU , U 7→ U∗ are homomorphisms between unitary
groups. Moreover they are “nicely behaved” – for example their entries are continuous functions
of the entries of U (we will call these “continuous” homomorphisms). Given a circuit description
of U , we can evaluate these homomorphisms on U by evaluating the homomorphism on each gate.
In turn, the homomorphism on each gate simply gives another finite gate set, and any efficient
circuit over any finite gate set can be efficiently simulated by any universal gate set using the
Solovay-Kitaev theorem.

U 7→ U † is not a homomorphism, but an anti -homomorphism (like a homomorphism but re-
versing the order of multiplication). Similarly U 7→ UT is an anti-homomorphism. We can evaluate
such an anti-homomorphism by by evaluating the anti-homomorphism on each gate, and then re-
versing the order of gates. Note that every anti-homomorphism is just a homomorphism followed
by conjugate transpose. Hence, we will just focus on understanding the case of homomorphisms.

One may expect from the preceding discussion that any homomorphism could be computed, as
long as the homomorphism applied to each gate in the starting gate set gave rise to an efficiently
computable unitary. This turns out to be true in a certain restricted sense, but as we will see, this
does not give rise to any additional “power”, and it suffices to consider only access to CU,CU∗.

Determinant. As an illustrative example, we consider the case of the determinant, which is not
a member of U,U †, U∗, UT , and in general cannot be computed efficiently given black box access to
these oracles. If we could compute the determinant of a general unitary U given a quantum circuit
implementing it, this would have profound implications. In particular, for a binary-output classical
function f , consider the unitary Uf |x, b⟩ = |x, b⊕ f(x)⟩. Then the determinant of Uf is just (−1)p
where p is the number of accepting inputs of f , or equivalent p is the parity of f since (−1)p loses
all information about the higher-order bits. If we could compute the parity of f for any efficiently
computable f , then a result of [Tod91] tells us that PH ⊆ BPP, which is considered highly unlikely.

But det is a homomorphism between unitary groups, since we have the multiplicative identity
det(UV) = det(U) det(V). So why can’t we compute det(U) by computing the determinant of each
gate and multiplying?

24

First, we must observe that if U has a gate G acting on m qubits, but U acts on n qubits, then
G is really acting on all n qubits as G ⊗ In−m (for an appropriate permutation of the n qubits),
where In−m acts on n−m qubits. When we evaluate a homomorphism gate-by-gate, we must apply
the homomorphism to this overall unitary operation on n qubits. This gives rise to the following
property of a homomorphism:

Definition 40. A homomorphism Φ is called extendable if, for any fixed unitary U acting on a
constant m qubits, there is a polynomial-time (in n) algorithm which evaluates the unitary Φ(U ⊗
In−m) for any ordering of the n qubits.

Taking conjugates and controlling are both easily seen to be extendable, as (G ⊗ In−m)
∗ =

G∗ ⊗ I and C(G ⊗ In−m) = (CG) ⊗ I. This means that we can evaluate both homomorphisms by
simply evaluating the homomorphism applied to the finite gate G. Since G is finite, computing the
homomorphism is constant-time.

It turns out that computing the determinant is also easily extendable: det(G ⊗ In−m) =
det(G)2

n−m
,6 which can be computed by repeated squaring. So extendability alone is not an issue

with determinants. A more problematic issue is the fact that the determinant of G gets raised to
a power. Indeed, observe that any Clifford+T gate has determinant in {±1,±i} and m ≤ 2. As
such, for n ≥ 4, the determinant of any Clifford+T circuit acting on n qubits is identically 1. Thus,
the determinant gives us no useful information, at least for the Clifford+T gate set.

A more general view. But wait, can’t Clifford+T simulate any quantum circuit since they are
universal? Thus, shouldn’t we be able simulate any unitary, even ones that don’t have determinant
1? Yes, but there are two caveats. First, recall that universal gate sets only simulate arbitrary
unitaries up to global phase, and a global phase would naturally alter the determinant. This can
be remedied by our convention that a circuit also carry a global phase term; then to compute the
determinant of the unitary, we can compute the determinant of each gate (when considered as a
unitary over all n qubits), multiply the determinants together, and also multpily by the result by
the global phase (raised to the appropriate power). Using the Clifford+T universal gate set, all the
information about the determinant is actually in the global phase, so the gates themselves can be
ignored.

The second caveat is that efficient quantum circuits often involve ancilla qubits. If we had an
ancilla-free circuit C computing a unitary U (including global phase), then we can in fact compute
det(U) by computing the determinant of each gate of C (when considering the gates as a unitary
over all n qubits), and then multiplying. However, it turns out that the presence of ancilla qubits
complicates our goal of applying homomorphisms to the circuits.

Consider a circuit C implementing an n-qubit unitary U , but where C makes use of m ancilla
qubits. That is, C is actually approximating an m-qubit extension U of U (see Definition 10).
Define N = 2n, W = 2m+n, and M = W − N . This means that for any state |ψ⟩ on n qubits,
U |ψ⟩|0m⟩ = (U |ψ⟩)|0m⟩. Writing U out in matrix form, it will look like:

U =

(
U

V

)
Above, V ∈ CM×M , and it is allowed to be truly arbitrary, as it corresponds to the action of U
when the ancillas are something other than |0m⟩.

6Recall that In−m acts on n−m qubits, so it is actually a matrix of size 2n−m.

25

Now observe that det(U) = det(U) det(V). Moreover, if C approximates U to sufficiently-
small exponential error, then det(C) ≈ det(U) = det(U) det(V). But since V has no necessary
relationship to U , det(U) and hence det(C) is completely untied to det(U). Hence, computing the
determinant of a circuit with ancillas yields no useful information about the unitary that the circuit
evaluates.

Ancilla-respecting homomorphisms. What we need then is not an arbitrary homomorphism,
but one that in some sense preserves the ancilla structure. To simplify the discussion, we will
assume that C exactly implements the unitary U ; this assumption can be relaxed to sufficiently
small exponential error, but would not apply to the more relaxed polynomial-error case.

Specifically, we want to compute some homomorphism Φ(U) taking an n-qubit unitary U and
outputting an n′-qubit unitary, but we only have a circuit C implementing an m-qubit extension
of U . We want to implement the homomorphism Φ on U by implementing a homomorphism Φ′ on
C. This gives rise to the following definition:

Definition 41. Let Φ,Ψ be two homomorphisms on unitary groups, where Φ acts on n qubit
unitaries and Ψ acts on n +m-qubit unitaries. We say that Ψ is an (m → m′)-Ancilla-respecting
Implementation of Φ if the following holds. For unitaries U on n qubits and all unitaries C that
are m-qubit extensions of U , then Ψ(C) is an m′-qubit extension of Φ(U).

That is, if C implements U using m ancilla qubits, then Ψ(C) implements Φ(U) using m′ ancilla
qubits. This is because Ψ(C)(|ψ⟩ ⊗ |0m′⟩) = (Φ(U)|ψ⟩)⊗ |0m′⟩.

U∗,CU , and by composition, CU∗, each have efficient ancilla-respecting implementations. For
example, U ′ 7→ CU ′ for U ′ acting on n + m qubits is an ancilla-respecting implementation of
U 7→ CU for U acting on n qubits.

The question is then: what “nice” unitary homomorphisms admit ancilla-respecting implemen-
tations? Are there any other nice unitary homomorphisms besides U∗,CU , and compositions?

7.1 Efficient Ancilla-respecting Implementations

Now we explain that the only homomorphisms that admit efficient ancilla-respecting implementa-
tions are U∗,CU , and compositions thereof. Formally:

Theorem 42. Let Φ be a group homomorphism from unitaries on n qubits to unitaries on n′ qubits.
Suppose that Φ is continuous. Let m ≥ 1. Then Φ admits an efficient (m→ m′)-ancilla-respecting
implementation for some m′ if and only if Φ(U) can be computed by a polynomial number of queries
to oracles for CU and CU∗.

Proof. We prove Theorem 42 by showing that, for any continuous homomorphism Φ that cannot
be obtained by a polynomial number of queries to CU and CU∗, m′ must be super-polynomial. In
other words, in order to implement Φ, one must use a super-polynomial number of ancillas. Such
an implementation cannot be efficient.

Representation Theory of Unitary Groups. A group homomorphism between unitary groups
is just a unitary representation of the unitary group. It is therefore useful to recall the representation
theory of finite-dimensional unitary groups.

26

Let V = C2n and W = V q. The symmetric group Sq acts on W by permuting the copies of V .
There are certain subspaces of W which are preserved under action by Sq. We will denote these
by WD, where the indices D are Young diagrams of q boxes.

Given any unitary U acting on V , U⊗q acting on W preserves the subspace WD for every D.
Its action on WD is described by the Schur functor SD(U). If WD has dimension M , we can get a
homomorphism from unitaries on n qubits to unitaries on logM qubits by mapping C2m into WD,
and then performing the unitary U⊗q.

The representation theory of finite unitary groups tells us that any continuous representation
of U is a direct sum of unitaries that are isomorphic SD(U)⊗ det(U)k for integers k. For example,
CU is just the direct sum I⊕U . For another example, U∗ is isomorphic to U under the non-trivial
C homomorphism z 7→ z∗.

What representations admit efficient ancilla-respecting implementations? Direct sums
can be implemented by controlling on other qubits, and direct products simply correspond to
independently acting on two sets of qubits. Thus, it suffices to explore which SD(U) have efficient
ancilla-respecting implementations.

Note that for polynomial q, the representation SD(U) is query efficient, since it can be imple-
mented using q queries to U . However, we now argue that, for super-polynomial q, this is no longer
the case.

We focus on the case of determinants for simplicity. Consider unitaries acting on n qubits, and
suppose there is even a single ancilla qubit. This means the circuit computing the unitary acts on
n+ 1 qubits. Thus we have N = 2n and M = 2n+1 −N = N .

Now suppose there is an ancilla-respecting implementation Φ′ of the determinant. We will
consider applying Φ′ to diagonal unitaries C, where we will treat the diagonal entries of C as
formal variables. Since C is diagonal, it automatically has the form

C =

(
U

V

)
,

Hence by the fact that Φ′ is an ancilla-respecting implementation, we have that

Φ′(C) =

(
det(U)

V ′

)
.

Let S be a subset of {0, 1}2n of size N . Let PS be some permutation of {0, 1}2n which maps S
into the first N positions. We will abuse notation and let PS also denote the associated permutation
matrix. Let QS = Φ′(PS).

Consider PCP−1, which is also a diagonal matrix obtained by permuting the diagonal entries
of C according to P . Let US denote the upper-left N × N diagonal matrix of C. Then US is a
diagonal matrix whose entries are exactly the entries of C belonging to the set S. Moreover, observe
that Φ′(PSCP

−1
S) = QSΦ

′(C)Q−1S . The upper-left entries of QSΦ
′(C)Q−1S therefore contains the

determinant det(US). Thus, we can construct det(US) as a linear combination of the elements in
Φ′(C). On the other hand, det(US) is just the product of the diagonal entries of C belonging to
the set S.

By varying over all possible sets S, we can therefore obtain all possible products of N diagonal
elements of C as linear combinations of the elements of Φ′(C). Each of these products are linearly
independent formal functions of the underlying elements, and therefore span a space of

(
2N
N

)
≈

27

22N/
√
πN . Therefore, the elements of Φ′(C) must span a space of at least this dimension. But

since there are only (N ′+M ′)2 such elements of Φ′(C), we must have that N ′+M ′ ≳ 2N/(πN)1/4.
The number of qubits is therefore at least n′+m′ = log(N ′+M ′) ≳ N − log(πN)/4 ≥ 2n−n/4−1.
Thus, any ancilla-respecting implementation of the determinant must have an exponential number
of qubits, and therefore cannot be efficient.

A similar analysis extends to any representation, showing that an ancilla-respecting represen-
tation of SD(U) must operate on a number of qubits that grows polynomially with q. Hence, only
the case of polynomial q can be efficient.

7.2 Is This The End?

Above, we argued that “natural” homomorphisms aside from U,U∗,CU,CU∗ and those computable
via polynomially-many queries to these cannot be implemented efficiently. Specifically, we assumed
that the homomorphisms are computable by continuous functions, and moreover that they exactly
preserved ancillas.

There are therefore two possible ways to overcome this barrier to give more general homomor-
phisms:

• Develop a homomorphism that uses non-continuous functions. This seems very unlikely to
yield an efficient homomorphism

• Develop a homomorphism with an efficient implementation that only approximately preserves
ancilla structure. This means that if

C =

(
U

V

)
,

then Φ′(C) satisfies

Φ′(C) ≈
(

Φ(U)
V ′

)
.

for an appropriate notion of “≈.” We leave it as an interesting direction for future work to
develop such homomorphisms or show barriers to constructing them.

8 Ancilla-Free Complexity, and from Classical to Quantum Hard-
ness

For a function C : {0, 1}n → {0, 1}, let UC be the unitary UC |x, b⟩ = |x, b ⊕ C(x)⟩. We recall a
result of [Cle91].

Theorem 43 ([Cle91]). If C is computable by log-depth classical circuits, then there is a polynomial-
sized classical reversible circuit U ′C mapping (x, b, c, d) to (x, b⊕ C(x), c, d), where b, c, d are bits.

As any classical reversible circuit is also a quantum circuit, then we can compute the unitary
UC using two ancilla qubits for c, d, with a polynomial-sized circuit (assuming C is log-depth). As
a result, we have:

Corollary 44. For C being log-depth circuits, {UC}C ∈ UnitaryBQP2
exp.

We next explore the interesting question eliminating the need for ancillas.

28

8.1 Exponential-sized ancilla-free computation of UC

Theorem 45. For {Us}s being any sequence of unitaries where the matrix for Us can be computed
to polynomially-many bits of precision in exponential time in |s|. Then {Us}s ∈ UnitaryE0

exp.

The proof is given in Appendix B following the standard proof of universality of single qubit
gates and CNOT. The main difference is that the standard proof uses ancilas, and we need to
carefully modify the proof to eliminate ancillas.

Note that for circuits C, the entries of UC can be computed in polynomial-time. Namely,
⟨x, b|UC |x′, b′⟩ is 1 if x = x′ and b⊕ b′ = C(x), and otherwise the value is 0. Thus, we have that:

Corollary 46. For C being interpreted as circuits, {UC}C ∈ UnitaryE0
exp.

8.2 No polynomial-sized ancilla-free circuits unless PH ⊆ BPP

Theorem 47. Suppose PH ⊈ BPP. Then for C being log-depth circuits, we have {UC}C /∈
UnitaryBQP0

exp. In particular, PH ⊈ BPP implies UnitaryBQP0
exp ⊊ UnitaryBQP2

exp.

Proof. Suppose {UC}C ∈ UnitaryBQP0
exp, when C is interpreted as log-depth circuits. We will give

a deterministic algorithm for solving ⊕P, the set of languages decideable by polynomial-time non-
deterministic Turing machines, where acceptance means that the number of accepting paths is odd.
Thus, ⊕P ⊆ P. Then recall that PH ⊆ BPP⊕P [Tod91]. Thus, if {UC}C /∈ UnitaryBQP0

exp, we have

that PH ⊆ BPPP = BPP, contradicting the assumption of Theorem 47.
We now give the algorithm. Set ϵ = 2−n/10. Since we assume {UC}C ∈ UnitaryBQP0

exp, there

is a deterministic Turing machine M(C) which outputs a circuit ÛC computing UC up to error ϵ
in polynomial time.

First, we show det(ÛC) is very close to det(UC). Indeed, recall the inequality of ([IR08], Corol-
lary 2.14), which states that for matrices A,B of dimension N ,

| det(A)− det(B)|
| det(A)|

≤ (1 + ∥A∥−1∥B −A∥)N − 1.

where ∥ · ∥ denotes the operator norm. Set N = 2n, A = UC , and B = ÛC . Since UC is unitary,
∥A∥ = ∥A∥−1 = 1. Recall that ∥ÛC − UC∥ ≤ ϵ = 2−n/10. Then

| det(UC)− det(ÛC)| ≤ (1 + ϵ)2
n − 1 = (1 + ϵ)1/10ϵ − 1 ≤ e1/10 − 1 ≤ 0.11.

Observe that det(UC) is exactly (−1)p where p is the number of accepting inputs of C; in
particular det(UC) ∈ {1,−1}. Since det(ÛC) is within 0.11 of det(UC), rounding the real part to
the nearest integer gives ⌊Re(det(ÛC))⌉ = det(ÛC). Hence by computing det(ÛC) we learn (−1)p
and hence p mod 2.

This gives us a polynomial-time algorithm for computing p mod 2 for any log-depth circuit C.
In particular, this captures formula, allowing us to solve ⊕SAT, which is ⊕P-complete. Thus,
⊕P = P. This completes the proof of Theorem 47.

29

References

[AEH+24] Chris Akers, Netta Engelhardt, Daniel Harlow, Geoff Penington, and Shreya Vardhan.
The black hole interior from non-isometric codes and complexity. Journal of High Energy
Physics, 2024(6):155, 2024.

[AK07] Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice.
Theory of Computing, 3(7):129–157, 2007.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523,
1997.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Berlin,
Heidelberg, December 2011.

[BEM+23] John Bostanci, Yuval Efron, Tony Metger, Alexander Poremba, Luowen Qian, and
Henry Yuen. Unitary complexity and the uhlmann transformation problem, 2023.

[BFV20] Adam Bouland, Bill Fefferman, and Umesh V. Vazirani. Computational pseudoran-
domness, the wormhole growth paradox, and constraints on the AdS/CFT duality (ab-
stract). In Thomas Vidick, editor, ITCS 2020, volume 151, pages 63:1–63:2. LIPIcs,
January 2020.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Berlin, Heidelberg,
August 2001.

[BGT21] Adam Bouland and Tudor Giurgica-Tiron. Efficient universal quantum compilation:
An inverse-free solovay-kitaev algorithm, 2021.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation, 2002.

[BM24] Zvika Brakerski and Nir Magrafta. Real-valued somewhat-pseudorandom unitaries. In
Elette Boyle and Mohammad Mahmoody, editors, TCC 2024, Part II, volume 15365 of
LNCS, pages 36–59. Springer, Cham, December 2024.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press,
November 1993.

[Cle91] Richard Cleve. Complexity theoretic issues concerning block ciphers related to DES. In
Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS,
pages 530–544. Springer, Berlin, Heidelberg, August 1991.

30

[CMSZ22] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum
succinct arguments: Breaking the quantum rewinding barrier. In 62nd FOCS, pages
49–58. IEEE Computer Society Press, February 2022.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model
and the ideal cipher model are equivalent. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 1–20. Springer, Berlin, Heidelberg, August 2008.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random
oracle model and the ideal cipher model, revisited. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 89–98. ACM Press, June 2011.

[IR08] Ilse C. F. Ipsen and Rizwana Rehman. Perturbation bounds for determinants and char-
acteristic polynomials. SIAM Journal on Matrix Analysis and Applications, 30(2):762–
776, 2008.

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 126–152. Springer, Cham, August 2018.

[KTP20] Isaac Kim, Eugene Tang, and John Preskill. The ghost in the radiation: robust encod-
ings of the black hole interior. Journal of High Energy Physics, 2020(6):31, 2020.

[LQS+24] Chuhan Lu, Minglong Qin, Fang Song, Penghui Yao, and Mingnan Zhao. Quan-
tum pseudorandom scramblers. In Elette Boyle and Mohammad Mahmoody, editors,
TCC 2024, Part II, volume 15365 of LNCS, pages 3–35. Springer, Cham, December
2024.

[Mec19] Elizabeth S. Meckes. The Random Matrix Theory of the Classical Compact Groups.
Cambridge Tracts in Mathematics. Cambridge University Press, 2019.

[MH25] Fermi Ma and Hsin-Yuan Huang. How to construct random unitaries. In STOC’25,
2025.

[MPSY24] Tony Metger, Alexander Poremba, Makrand Sinha, and Henry Yuen. Simple con-
structions of linear-depth t-designs and pseudorandom unitaries. In 65th FOCS, pages
485–492. IEEE Computer Society Press, October 2024.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Berlin,
Heidelberg, February 2004.

[MZ03] Michele Mosca and Christof Zalka. Exact quantum fourier transforms and discrete
logarithm algorithms, 2003.

31

[PRV24] Alexander Poremba, Seyoon Ragavan, and Vinod Vaikuntanathan. Cloning games,
black holes and cryptography. Cryptology ePrint Archive, Paper 2024/1826, 2024.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20:865–877, 1991.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152. Springer,
Berlin, Heidelberg, April 2012.

[YE23] Lisa Yang and Netta Engelhardt. The complexity of learning (pseudo)random dynamics
of black holes and other chaotic systems, 2023.

A Gates and identities

P(θ) =

(
1

eiθ

)
T =

(
1

eiπ/4

)
CU =

(
I

U

)
X = NOT =

(
1

1

)
Y =

(
−i

i

)
Z =

(
1
−1

)
(Pauli)

CNOT =

1

1
1

1

 H =
1√
2

(
1 1
1 −1

)
S =

(
1

i

)
(Clifford)

Above, U is a unitary matrix, and I is the identity matrix of the same dimensions as U . CU is
called a “controlled” gate.

Useful Quantum Gate Identities. Let U be a 1-qubit unitary. U is diagonalizeable, with

eigenvalues of norm 1. Thus we can write U as U = V †
(
eiα

eiβ

)
V . Then:

U

=

P
(
α+β
2

)

P
(
β−α
2

)
V P

(
α−β
2

)
V †

(6)

=

T

T T†

H T† T T† T H

(7)

32

B Proof of Theorem 45

The proof follows the usual proof for showing the universality of 2-qubit quantum gates, but we
are careful to implement the circuit in such a way so as to not use ancillas, and also to make sure
we preserve the global phase. We will assume we have access to CNOT gates, plus arbitrary single-
qubit gates, which can be approximated from any universal gate set using Solovay-Kitaev, up to
global phase. Since our model allows for specifying a global phase, we can therefore implement any
single-qubit gate even with phase.

Implementing CnU for single-qubit U . Let U be a single-qubit unitary. We now explain how
to implement CnU , the circuit controlled on n qubits, which applies U to a target qubit if and only
if the control qubits are identically |0n⟩. This is the main part of the proof where we need to be
careful regarding ancillas, and where we depart from typical treatments.

Our construction is inductive. If n = 0, the task is just to implement U , which requires only
one single-qubit gate. Now assume we have written Cn−1U as a circuit of size T (n− 1) comprising
CNOT gates and single qubit gates. To get CnU , we simply control every single gate in Cn−1U
on the n-th control qubit. Thus, we have a circuit of size T (n− 1) consisting of CCNOT and CU ′

gates for various single-qubit U ′ gates. We can implement CCNOT using a constant number of
CNOT and single-qubit gates in a standard way (provided in Equation 7 for completeness). We can
likewise implement an arbitrary CU ′ gate using a constant number of CNOT and single-qubit gates
(provided in Equation 6 for completeness). Thus, we have a circuit of size at most c ∗ T (n− 1) for
computing CnU for some constant c, giving the recurrence T (n) ≤ c∗T (n−1), or T (n) ≤ cn = 2O(n).
The running time to construct the circuit is proportional to the size of the circuit, meaning the
overall running-time is exponential.

Implementing “2-level” Unitaries. A “2-level” unitary U is one for which there exist compu-
tational basis vectors x, y ∈ {0, 1}n such that:

• On computational basis vectors |z⟩ such that z /∈ {x, y}, U |z⟩ = |z⟩.

• On the computational basis vectors |x⟩ and |y⟩, the action of U is that of a single-qubit
unitary U ′.

U = Cn−1U ′ is an example where x = 1n−10 and y = 1n−11. Viewing U as a matrix, a “2-level”
unitary is one that is the identity except for two rows and the corresponding two columns.

We can easily implement the 2-level unitary U using Cn−1U ′. First, by applying an X gate if
needed, we can assume that x, y are both not 0n. The idea is to find a linear bijection V over
Fn2 such that V x = 1n−10 and V y = 1n−11. We will overload notation and define V also as the
unitary such that V |z⟩ = |V z⟩. The elementary row operations making up V (as an invertible linear
transformation over Fn2) will consist of adding one row to another (mod 2) or swapping two rows
(which in turn can be decomposed into three operations of adding one row to another). Adding
one row to another corresponds to applying a CNOT gate on the appropriate qubits. Thus, the
map V |z⟩ = |V z⟩ can be implemented with just O(n2) CNOT gates. Then U = V †Cn−1U ′V .

Implementing General Unitaries. We now explain how to implement a general unitary U on
n qubits. This will roughly correspond to performing Gaussian elimination on the 2n × 2n matrix
representing U , except modified so that the elementary row operations are “2-level” unitaries.

33

Consider the matrix corresponding to the U ; the (i, j) entry will be denoted by Ui,j . By unitarity,
some entry in the first column will be non-zero; by swapping into the first entry if necessary using
a 2-level unitary, we can assume that U1,1 is non-zero.7 Then there will exist some 2-level unitary
V 1,2 operating on just the first two rows such that (V 1,2U)2,1 = 0. Let U ′ = V 12U . Then there
will exist some 2-level unitary V 1,3 operating on the first and third rows such that (V 1,3U ′)3,1 = 0.
Observe that the second row is unaffected, so (V 1,3U ′)2,1 = 0. Define U ′′ = V 1,3U ′.

Continuing in this way, we eventually arrive at V 1,nV 1,n−1 · · ·V 1,2U being a matrix whose entire
first column except the first entry is 0. By unitarity, we therefore know that the entire first row
except the first entry is 0 as well. By unitarity we also know that the first entry in the first row
has norm 1; by putting an appropriate phase in V 1,n we can assume the entry is exactly 1.

Then the sub-matrix of V 1,2nV 1,2n−1 · · ·V 1,2U excluding the first row and column must also be a
unitary matrix, and we can apply the same procedure to it. By iterating this process, we eventually
arrive at (

∏
1≤i<j≤2n V

i,j)U = I, where each V i,j is a 2-level unitary. Thus U =
∏

1≤i<j≤2n(V
i,j)†,

where each (V i,j)† is also a 2-level unitary. Thus, we have expressed U as a product of O(4n) 2-level
matrices; the overall running time of this procedure is also exponential time.

As each V i,j takes exponential time to construct and there are an exponential number of them,
the overall running time to construct the circuit for U is exponential. Moreover, the resulting
circuit requires no ancilla qubits.

C Implementing Controlled Gates

In this section, we recall known results showing that we can implement controlled gates for the
gate set {H,CNOT,T} with a constant blow-up and zero error. Thus, for a Clifford+T circuit,
controlling that circuit only gives a constant blow-up. This is in contrast to general gate sets, for
which the best seems to be something like Proposition 22, which in turn employs Solovay-Kitaev,
and thus incurs some error, with a blow-up that depends logarithmically on the error.

In the following, observe that T2 = S, T4 = Z = Z†, T6 = S†, and T7 = T†, so we can assume we
have the gates S,Z = Z†,S†,T† without introducing new gates to our gate set. Likewise, X = HZH,
so we can assume we have the gate X.

Controlled CNOT (Toffoli). For a single-qubit gate U ∈ {H,T}, write UA to denote the gate
applied to qubit A. Write CNOTA,B to denote CNOT applied to the two qubits A,B, NOT acting
on qubit B and being controlled by qubit A. Similarly write CCNOT as the controlled CNOT, also
known as Tofolli, with the CNOTB,C being controlled by qubit A. Then we have that:

CCNOTA,B,C = HCCNOTB,CT
†
CCNOTA,CTCCNOTB,CT

†
CCNOTA,CTBCNOTA,BTAT

†
BTCCNOTA,BHC .

Controlled H. We can implement a Controlled H gate, denoted CHA,B with H acting on qubit B
and controlled by qubit A, as follows: CHA,B = eiπ/4HBSAS

†
BCNOTA,BHBTBCNOTA,BTBHBSBXB.

We can eliminate the global phase using that XT†XT† = e−iπ/4.

Controlled T. We can implement a Controlled T gate, denoted CTA,B with T acting on qubit B
and controlled by qubitA, using an ancilla qubit C, as follows: CTA,B = CCNOTA,B,CTCCCNOTA,B,C .

7It is not actually strictly necessary to make U1,1 zero, and we could instead just re-index the rows of U so that
the row we call “1” has a non-zero entry in the first column.

34

Introducing the gate
√
T, we can get rid of the ancilla qubit and implement CT as CTA,B =

√
TA
√
TBCNOTA,B

√
T
†
BCNOTA,B.

Also, note that CT cannot be implemented using just CNOT,H,T gates, without incurring a
global phase. To see this, note that CNOT,H ⊗ I,T ⊗ I all have determinants in {0, i,−1,−i},
since the eiπ/4 term in T gets repeated in T⊗ I. Thus, any 2-qubit circuit comprised of the gates
CNOT,H,T will have a determinant in this set. Meanwhile, CT has determinant eiπ/4. Note that
the implementation above using an ancilla, the circuit over A,B, C also has determinant in this set
for the same reason. However, the 4 × 4 sub-matrix corresponding to C being |0⟩ will be exactly
CT and have the correct determinant eiπ/4. The other 4 × 4 sub-matrix corresponding to C being
|1⟩ will actually be the unitary eiπ/4CT†, which has determinant ei3π/4. The overall determinant is
the product of these two, giving −1, which is in the set of allowed determinants {0, i,−1,−i}.

35

	Introduction
	Applications to Physics

	Preliminaries
	Conventions for quantum gates and circuits
	Quantum Complexity
	Quantum Distance Notions
	Other Useful Quantum Lemmas

	Unitary Complexity
	New Definitions of Unitary Complexity
	Features of our Definition
	On our ``closeness'' metric
	On Negligibly-Small Error

	Oracle Separations and Indifferentiability
	On Building Quantum Oracles from Classical Oracles

	Breaking the Indifferentiability of MH24
	On Quantum Black Box Reductions
	Construction 35 requires conjugating the adversary

	Homomorphisms on Unitaries
	Efficient Ancilla-respecting Implementations
	Is This The End?

	Ancilla-Free Complexity, and from Classical to Quantum Hardness
	Exponential-sized ancilla-free computation of UC
	No polynomial-sized ancilla-free circuits unless PH in BPP

	Gates and identities
	Proof of Theorem 45
	Implementing Controlled Gates

