
PICS: Private Intersection over Committed (and reusable) Sets

Aarushi Goel
Purdue University

aarushi@purdue.edu

Peihan Miao
Brown University

peihan miao@brown.edu

Phuoc Van Long Pham
Brown University

phuoc pham van long@brown.edu

Satvinder Singh
Purdue University

sing1745@purdue.edu

Abstract—Private Set Intersection (PSI) enables two parties to
compute the intersection of their private sets without reveal-
ing any additional information. While maliciously secure PSI
protocols prevent many attacks, adversaries can still exploit
them by using inconsistent inputs across multiple sessions. This
limitation stems from the definition of malicious security in
secure multiparty computation, but is particularly problematic
in PSI because: (1) real-world applications—such as Apple’s
PSI protocol for CSAM detection and private contact discovery
in messaging apps—often require multiple PSI executions
over consistent inputs, and (2) the PSI functionality makes it
relatively easy for adversaries to infer additional information.

We propose Private Intersection over Committed Sets (PICS),
a new framework that enforces input consistency across mul-
tiple sessions via committed sets. Building on the state-of-
the-art maliciously secure PSI framework (i.e., VOLE-PSI
[EUROCRYPT 2021]), we present an efficient instantiation
of PICS using lightweight cryptographic tools. We implement
our protocol to demonstrate concrete efficiency. Compared to
VOLE-PSI, for input sets of size 224, our communication over-
head is as low as 1.1%. Our end-to-end performance overhead
is 130% in the LAN setting and decreases to 80%−10% in the
WAN setting with bandwidths ranging from 200 to 5 Mbps.

1. Introduction

Private set intersection (PSI)—a special case of secure
multiparty computation (MPC) [1], [2]—enables two mu-
tually distrusting parties, each holding a private input set,
to jointly compute an intersection of their sets without
revealing anything beyond the intersection itself. This seem-
ingly simple functionality has found numerous applications,
including DNA testing and pattern matching [3], testing
of sequenced human genome [4], password breach detec-
tion [5], mobile private contact discovery [6], [7], and online
advertising measurement [8], among others.

Last few decades have witnessed enormous progress
towards efficient realization of PSI, both in the semi-honest
and malicious security settings. State-of-the-art PSI proto-
cols [9], [10], [11], [12] only use lightweight cryptographic
tools such as vector oblivious linear evaluation (VOLE) [13],
[14], cryptographic hash functions, and symmetric-key op-
erations, resulting in extremely fast implementations.

Maliciously secure PSI protocols protect against the
strongest class of adversaries, i.e., those who may arbitrarily
deviate from the protocol description. While such protocols
provide strong security guarantees in a single execution of
PSI over a given input set, they fail to address concerns that
may arise when parties are expected to use consistent inputs
across multiple PSI executions. Indeed, this is a requirement
in many real-world applications of PSI.

For example, when a service provider runs PSI repeat-
edly with many users, there is no guarantee that it uses the
same input set each time. Since the standard definition of
security against malicious adversaries allows them to arbi-
trarily choose their inputs, it may seem less critical in some
MPC scenarios. However, it can have serious implications
in the context of PSI. Inconsistent inputs across sessions
can lead to unfair treatment, discrimination, or leaking more
information about users’ inputs.

Below, we illustrate these issues through examples of
real-world PSI deployments. A PSI protocol typically in-
volves a sender and a receiver, with only the receiver
learning the output. We discuss how input inconsistency can
potentially impact both parties.

Inconsistent Inputs from a Malicious Receiver. The PSI
protocol proposed by Apple in 2021 [15] to detect child
sexual abuse material (CSAM) sparked worldwide debate
and controversy, leading to the eventual shutdown of the
initiative. In their approach, Apple acted as the receiver
running a (fuzzy, threshold variant of) PSI, comparing a
set of known CSAM images against user content stored in
iCloud Photos. A critical concern raised by many [16], [17]
was that Apple could use different image sets for different
users. This could result in discrimination among users or
extraction of additional information about users’ legitimate
data—effectively enabling a form of client-side surveillance.
Ideally, we would like to prevent Apple (the PSI receiver)
from arbitrarily modifying its CSAM dataset across users,
particularly by injecting benign images into it.

Inconsistent Inputs from a Malicious Sender. In password
breach detection [5], a service provider uses a fixed set of
breached passwords to run PSI with millions of users, each
holding their own set of passwords. In this case, the service
provider acts as the PSI sender, yet there is no guarantee that
it uses a consistent set across all users. This inconsistency
can potentially lead to discrimination or unfair treatment.

mailto:aarushi@purdue.edu
mailto:peihan_miao@brown.edu
mailto:phuoc_pham_van_long@brown.edu
mailto:sing1745@purdue.edu

As in the previous case, we aim to prevent the the PSI
sender from arbitrarily modifying its set across executions,
especially by injecting unbreached passwords.

These vulnerabilities stem from the standard definition
of malicious security in MPC, which allows adversaries to
choose arbitrary inputs. While this is a general limitation
in MPC, it is particularly problematic in PSI because (1)
a single server is often expected to use a consistent set
to run PSI repeatedly with many clients, and (2) the PSI
functionality makes it easy to extract additional information.
This raises the question:

Can we enforce input consistency across multiple PSI
executions, without compromising on concrete efficiency?

1.1. Our Framework

We address the question by introducing a new frame-
work for Private Intersection over Committed (and reusable)
Sets (PICS), which ensures that the adversary uses consis-
tent input sets across multiple PSI executions.

Similar to a standard PSI protocol, PICS is an interactive
protocol executed between two parties—a sender and a
receiver. It consists of two phases:
• Committing Phase: Both parties publicly commit to their

respective input sets using a succinct commitment scheme.
• Intersection Phase: The sender and receiver engage in

a maliciously secure PSI protocol over their committed
input sets while ensuring that neither party can inject new
elements into their committed sets. Only the receiver gets
the output of this intersection.

We emphasize that the Committing Phase is generally
viewed as a one-time setup per party. Once the public
commitments are established, both the sender and receiver
can engage in the Intersection Phase multiple times with
different counter-parties.

We remark that our framework only focuses on pre-
venting malicious adversaries from injecting new elements
into their committed sets. This suffices for our intended
applications discussed in Section 1.3. However, one could
consider a stronger requirement, where adversaries are
forced to use the exact same set in each execution of
the Intersection Phase. In fact, looking ahead, our protocol
achieves this stronger guarantee against a malicious receiver.

1.2. Our Contributions

Our contributions are as follows:
1) We introduce a new framework for Private Intersection

over Committed (and reusable) Sets (PICS), as elabo-
rated above.

2) We present an efficient instantiation of this framework
using lightweight cryptographic tools, while maintaining
black-box use of cryptography. Our construction com-
poses VOLE-based PSI [9], [10], [11], [12] with FRI-
based proof systems [18] in a novel way. Compared to

the underlying maliciously secure VOLE-PSI, our tech-
niques only introduce an additional polylogarithmic (in
the set size) computational overhead, while preserving
the round complexity.

3) We implement our protocol to demonstrate concrete ef-
ficiency. The commitment size of each party is only 32
bytes. The communication overhead of PICS, compared
to VOLE-PSI, is as low as 1.1% for set size n = 224,
while the computational overhead is 60 − 130% for set
sizes between 216 to 224. However, since our commu-
nication overhead is minimal, this gap narrows over
WAN networks. For instance, in WAN networks with
80ms RTT latency and 5Mbps bandwidth, our end-to-end
runtime overhead reduces to 10% for set size n = 224.

4) We compare our performance with prior work on Autho-
rized PSI [19] and client-server PSI [20], which partially
addressed this problem, although with notable limitations
(see Section 5.2 for details).

1.3. Example Applications

Running PSI over committed inputs is critical in many
applications. In this section, we elaborate on applications
of PICS that assures both parties of interest that the other
(potentially malicious) party does not inject harmful ele-
ments into their committed set. Furthermore, the succinct
commitment makes it possible to store “snapshot” of the
set at each time period, enabling easier further audit.

The Apple’s PSI Protocol. Apple introduced a PSI protocol
[15] to combat child sexual abuse in 2021. At its core, the
protocol finds a (fuzzy) intersection between a large dataset
(provided by NCMEC and other child-safety organizations
[21]) with the users’ set of photos on iCloud. Albeit with a
good intention, the protocol sparked controversy as it allows
the dataset holder (i.e., Apple) to inject arbitrary data when
running the protocol, and in the worst case, learn the entire
image library of users. In this case, PICS provides protection
against a malicious receiver.

Private Mobile Contact Discovery. When a new user
registers for a messaging app, the app provider would like
to find out which of the user’s contacts have also already
registered with the app. This can be achieved in a privacy-
preserving manner using PSI [6], [7]. However, the app
provider (acting as a PSI receiver) may learn more infor-
mation about the users’ contacts by providing inconsistent
inputs across different PSI executions. For instance, in the
U.S., for a newly registered phone number, the set of all
numbers that share the same area code with it (such as +1
212 xxx xxxx) is much smaller than the set of all possible
ten-digits phone numbers. By injecting elements from this
smaller set into the PSI protocol, the service provider can
potentially infer the new user’s contacts, especially those
who live nearby, even if they have not registered with the
app. As in the previous example, PICS protects users against
a malicious receiver.

Password Breach Detection. Many web browsers [22],
[23], [24], [25] allow users to check whether their pass-

words are included in a dataset of breached passwords,
in a privacy-preserving way by running PSI. Consider a
threat model where a powerful adversary seizes control
of such a service provider and can also monitor a user’s
internet activity. In this setting, the adversary may learn
more information about the users’ (unbreached) passwords.
Specifically, the adversary injects a set of unbreached pass-
words (curated carefully using prior knowledge about a user)
into the password dataset, and then monitors whether the
user attempts to change their password on any platform.
In this example, PICS protects users against a malicious
sender, preventing this kind of attack.

California Delete Act. The California Delete Act (Senate
Bill 362) [26], [27] plans to grant Californians the right to
demand that data brokers erase their personal information
from their records. At the core of this bill is a requirement
for a centralized deletion platform, which provides an inter-
face for customers to demand deletion from all registered
data brokers.1 To enable each data broker to learn which
data to remove from their database, without learning other
consumers on the list, a PSI protocol is particularly suitable.
The centralized deletion platform acts as a PSI sender with
a set of consumers who requested deletion, while the data
brokers act as PSI receivers, each holding a set of consumers
in their database.

The consistency of inputs from both the sender and
the receivers is crucial to ensure a proper implementation
of the legislation. Note that malicious intention to inject
elements into their sets is not entirely unrealistic: the sender
could inject arbitrary names into their set without consent,
potentially motivated by censorship. A receiver could also
lie about their set during a later audit, which violates this
additional measure enforced by the SB-362 bill.

To the best of our knowledge, it is still unclear how
this bill will be deployed. We position PICS as a potential
technical solution for this problem, due to its lightweight
set commitment (a single Merkle hash), fast committing
time, and low overhead compared to state-of-the-art PSI
protocols. We estimate that, given California’s population
of 40 million, it takes less than 5 minutes for both parties
to compute set commitments on an AWS instance. Addi-
tionally, our protocol support the following extensions (see
Section 4.3 for details), would further solidify other aspects
of the legislation:
• Fast and verifiable refreshing. Each data broker is required

to access the deletion mechanism at least once every 45
days, hence it requires the central platform to regularly
refresh the set of consumers to be deleted. PICS’ fast
committing time makes timely updates practical. Further-
more, it can support proof of consistency between the two
sets before and after each refresh.

• Transparency. With the FRI commitment scheme, PICS
can additionally support membership testing, allowing a

1. The bill “allows a consumer, through a single verifiable consumer
request, to request that every data broker that maintains any personal
information delete any personal information related to that consumer held
by the data broker or associated service provider or contractor.”

consumer to verify that their name is included in the
committed set.

Remark. We note that while in the rest of this paper we
present our construction assuming both the sender and re-
ceiver commit to their respective inputs apriori, our protocol
can be easily stripped down to only having a single party
commit to their inputs in advance, if the application so
demands.

1.4. Our Techniques

In this section, we outline the key ideas behind our
approach to designing a concretely efficient PICS protocol.

Strawman Approach and its Drawbacks. A natural way
to instantiate our framework would be to use the standard
commit-and-prove GMW paradigm [28]. Specifically, par-
ties can run any standard maliciously secure PSI protocol
during the Intersection Phase, while attaching a generic
zero-knowledge proof [29] to each message to demonstrate
that it was computed honestly and is consistent with the
committed inputs.

While theoretically sound, this approach introduces sig-
nificant computational overheads. Recall that a PSI proto-
col involves cryptographic operations, and proving that all
messages in such a protocol were honestly computed using
committed inputs typically requires a non-black-box use of
cryptography, making the protocol impractical.

1.4.1. Starting Idea. We first argue the strawman approach
that requires proving consistency for every computed mes-
sage is excessive.

GMW-Paradigm over a Malicious PSI is Wasteful. The
standard definition of security against a malicious adversary
in a PSI protocol inherently guarantees that if the protocol
ends successfully (i.e., with the receiver learning the output),
then all messages sent by the adversary must be consistent
with some input. We elaborate on this below.

In the real-ideal world security paradigm [30], this is
established by demonstrating the existence of a polynomial-
time simulator that can extract the adversary’s effective in-
put. This extraction is feasible because, after a certain num-
ber of message exchanges, the adversary’s input becomes
“implicitly committed” within the protocol. That is, the
adversary’s strategy up to that point effectively binds them
to a specific input. Consequently, if the receiver obtains an
output, then all subsequent messages sent by the adversary
must also be consistent with the extracted input.

Since malicious security in a PSI protocol (that com-
pletes successfully) already ensures that all messages in the
protocol must have been honestly and consistently computed
with respect to some input, requiring the parties to addition-
ally prove that every message is computed consistently with
their committed inputs is redundant.

Instead, it suffices to select a subset of messages (which
depend on the entire input) and prove their consistency with
the committed inputs. The consistency of the remaining

messages then follows from the malicious security of the
underlying PSI protocol. This observation forms the foun-
dation of our approach.

Our Strategy. To achieve a concretely efficient PICS pro-
tocol, we build upon the state-of-the-art maliciously secure
VOLE-PSI protocol [9], [10], [11], [12].

Leveraging the above observation, we first identify, for
both the sender and the receiver, the subset of messages
in the underlying VOLE-PSI protocol that implicitly bind
them to their respective inputs. We refer to these as their im-
plicit commitments. We then design efficient zero-knowledge
proofs that enable the sender and receiver to demonstrate
that their implicit commitments are consistent with their
explicit input commitments from the Committing Phase.
Importantly, we only make a black-box use of cryptography.

1.4.2. Overview of VOLE-PSI [9]. Before detailing our
implementation of the above strategy, we review the con-
struction of VOLE-PSI. This protocol proceeds as follows:

• VOLE Correlation: As the name suggests, VOLE-PSI
[9] is based on a Vector Oblivious Linear Evaluation
(VOLE) sub-protocol. In the first step, the sender and
receiver execute a VOLE sub-protocol [31], obtaining
the following correlated values: the sender receives a
scalar ∆ and a vector B, while the receiver obtains two
vectors (A,C) such that C = ∆ ·A+B.

• Receiver’s Message: The receiver computes an Obliv-
ious Key-Value Stores (OKVS) encoding (see Sec-
tion 2.2) of their input set, denoted as P. The receiver
then sends A′ = A+P to the sender.

• Sender’s Final Message: The sender processes the
receiver’s message using ∆ and B, obtaining values
t1, . . . , tn, where n is the size of the sender’s set. The
sender then transmits

H(t1∥x1), . . . ,H(tn∥xn)

to the receiver, where H is a random oracle (instanti-
ated as a hash function), and x1, . . . , xn are the sender’s
input elements. This is the only message from the
sender that directly depends on her input.

• Receiver’s Output: Finally, the receiver processes the
sender’s message using A,C, and P to compute the
intersection.

Sender’s Implicit Commitment. The hash values H(ti∥xi)
implicitly bind the sender to her input. To ensure input
consistency in PICS, the sender only needs to prove that
the xi’s used in these hash computations match those in her
initial commitment. Importantly, we do not need to prove
that the ti’s were computed correctly or that the VOLE
sub-protocol was executed honestly. This allows us to avoid
any non-black-box use of the operations in the VOLE sub-
protocol.

Skipping the verification of the ti values is sufficient
to prevent the sender from injecting new elements into her
committed set during the Intersection Phase. However, it
still allows the sender to execute the Intersection Phase on

a strict subset of her committed inputs. As discussed in
Section 1.3, this suffices for our intended applications.

Receiver’s Implicit Commitment. It is clear that A′ is
the only message sent by the receiver that depends on his
entire input. Since A′ is computed using P, which in turn
is derived from his inputs, this message binds the receiver
to his inputs and can be used as an implicit commitment.

1.4.3. Proving Consistency Between Initial and Implicit
Input Commitments. As discussed earlier, our goal is to
design this proof while ensuring black-box use of the cryp-
tographic operations involved in both commitment schemes.
To achieve this, two key design choices must be made:

• Choice of Explicit Initial Commitment: While the im-
plicit commitment is determined by the underlying
PSI protocol, we have the flexibility to choose the
commitment scheme for committing to the inputs in
the Committing Phase.

• Custom Commit-and-Prove Style Proofs: Since we have
no flexibility in choosing an implicit commitment, it is
unclear whether any existing commit-and-prove style
proofs can be used to ensure consistency. Therefore, we
must design custom commit-and-prove style black-box
consistency proofs for both the sender and the receiver.

Crucially, we aim to make these design choices while keep-
ing the underlying VOLE-PSI protocol intact, augmenting
it only with additional messages and introducing minimal
overhead.

Choice of Explicit Initial Commitment Scheme. Ob-
serve that we need to commit to a set of elements in the
Committing Phase. For this, we would require a vector
commitment scheme. However, we instead choose to work
with a polynomial commitment scheme. Since vectors can
be cast as polynomials using polynomial interpolation, poly-
nomial commitment also serves as an easy replacement for
vector commitment.

Our decision to use a polynomial commitment instead
of a vector commitment is driven by two key reasons: (1)
recent advancements in the field of succinct non-interactive
arguments of knowledge (SNARKs) have demonstrated that
it is possible to design efficient proofs for proving statements
about values committed using a polynomial commitment
scheme, while maintaining black-box use of cryptography.
(2) We observe that the sender’s implicit commitment to
her input set in the VOLE-PSI protocol can be reformulated
(with the addition of a few extra messages) as a well-known
polynomial commitment scheme based on FRI [18].

Custom Commit-and-Prove Style Proofs. Since the
sender’s implicit commitment aligns with FRI-based poly-
nomial commitment, proving consistency between her initial
and implicit commitments essentially reduces to a standard
task in modern SNARK literature—proving consistency be-
tween two FRI-based polynomial commitments. We design
our custom proofs using these techniques. The main novelty
lies in how a subset of the VOLE-PSI messages can be

interpreted as a polynomial commitment. We defer details
to Section 4.

The receiver’s side is more challenging, as there is no
direct implicit polynomial commitment to the receiver’s
input. Instead, his implicit commitment is A′ = A + P,
where A comes from VOLE and P is an OKVS encoding.
We now need to prove consistency between A′ and an
initial FRI-based polynomial commitment of the receiver’s
input. Crucially, we must avoid non-black-box use of the
cryptographic operations involved in the OKVS and VOLE
constructions. In Section 4, we explain how we overcome
these challenges by exploiting the linearity of the VOLE
correlation and the security guarantees of VOLE.

2. Preliminaries

In this section, we start by establishing some notation
and then recall preliminary definitions.

2.1. Notation

λ is used to denote the computational security parameter
and κ the statistical security parameter. x $←− S denotes that
x is sampled uniformly at random from the set S. Boldface
alphabets of the form A are used for denoting vectors. For
n ∈ N, let [n] represent the set {1, 2, . . . , n}. We assume
that all algorithms/functions implicitly take the security
parameters as input, but generally omit it for brevity.

Randomized Polynomial Encodings. We will often encode
vectors as polynomials to facilitate their commitment using
a polynomial commitment scheme. Let {ω1, ω2, . . . , ωn}
represent the nth roots of unity i.e., roots of the equation
xn = 1 over F. We define a polynomial encoding of a vector
A = (a1, a2, . . . , an) as a polynomial A(·) of degree less
than n such that A(ωi) = ai for all 1 ≤ i ≤ n.

For privacy, we will also sometimes work with random-
ized low-degree extensions of polynomials. More formally,
a r degree randomized extension of a polynomial p(·) is
the polynomial p′(x) = p(x) + (xd − 1) · R(x) where d is
the degree of the polynomial p(·) and R(x) is a randomly
sampled polynomial of degree r.

We represent converting a vector V into a r degree
randomized extension of the corresponding polynomial as
V (·)← Vec2RandPoly(V; r).

2.2. Oblivious Key-Value Stores (OKVS)

OKVS is a data structure that is used to encode a set
of key-value pairs. OKVS hides the keys associated with
random values.2

Definition 1 (Oblivious Key Value Store [10]). Let K be the
set of keys and V the set of values. An oblivious key-value
store (OKVS) scheme consists of a pair of PPT algorithms
(Encode,Decode) defined as follows:

2. The definition and constructions extend to pseudo-random values
naturally.

1) P ← Encode({(ki, vi)}i∈[n]): The encode function on
input a set of key-value pairs {(ki, vi)}i∈[n] outputs a
vector P representing the OKVS data structure.

2) v ← Decode(P, k): The decode function on input an
OKVS data structure P and a key k outputs a value v.

These algorithms satisfy the following properties:
• Correctness: For each subset A ⊆ K × V comprising

of key-value pairs with distinct keys (i.e., for each pair
(k, v), (k′, v′) ∈ A, k ̸= k′), the following holds for
each (k, v) ∈ A:

Pr[Decode(Encode(A), k) ̸= v] ≤ negl(λ)

• Obliviousness: For any two distinct key sets
{k01, . . . , k0n} and {k11, . . . , k1n}, distributions
R(k01, . . . , k0n) and R(k11, . . . , k1n) are computationally
indistinguishable, where R is defined as:

R(k1, . . . , kn):
for i ∈ [n]: vi

$←− V
return Encode({(k1, v1), . . . , (kn, vn)})

Looking ahead, we additionally require the Decode function
to be linear in P and that the OKVS P is a vector of field
elements. Several existing OKVS constructions ([12], [32],
[33], [9]) satisfy these constraints.

2.3. Secure Multi-Party Computation

Looking ahead, we see that it is easy to define our frame-
work PICS as well as underlying cryptographic primitives
like VOLE as ideal functionalities and then argue security.
Since our framework can be seen as a special form of secure
multi-party computation, we follow standard MPC literature
and consider the real-ideal paradigm. Secure multi-party
computation allows mutually distrusting parties to compute
a function on their joint private inputs without revealing
anything but the output. In the ideal world, there is a trusted
third party (TTP) that computes a function f that cannot be
corrupted. We denote by IDEALf,Sim(z),I(x) the joint output
of the parties where x is the vector of inputs of all parties
and Sim is an adversary that corrupts parties in the set I
and receives auxiliary input z. In the real world, parties
interact with each other according to some protocol π. We
denote by REALπ,A(z),I(x) the joint output of the parties
where x is the vector of inputs of all parties and A is a
malicious adversary that corrupts parties in the set I and
receives auxiliary input z.

Definition 2 (Security with abort against malicious adver-
saries [34]). We say that a protocol π computing a two-party
functionality f achieves security with abort against mali-
cious adversaries if for every non-uniform PPT adversary
A, there exists a non-uniform PPT simulator Sim, such that
for every I ⊊ [n], for all possible inputs x, for all auxiliary
input z,

IDEALf,Sim(z),I(x) ≈ REALπ,A(z),I(x)

2.4. Vector Oblivious Linear Evaluation (VOLE)

VOLE is an input-less secure two-party computation
protocol that allows the sender to obtain random values
∆ ∈ F and B ∈ Fm and the receiver to obtain values
A,C ∈ Fm, such that C = ∆A+B. Formally speaking, a
VOLE protocol πVOLE securely realizes the following ideal
functionality FVOLE according to Definition 2.

Functionality FVOLE

• Sender sends (Sender, id) and Receiver sends
(Receiver, id) to instantiate FVOLE

• FVOLE now does the following:
– If the Sender is malicious, wait to receive ∆ ∈ F

and B ∈ Fm. Sample A
$←− Fm and set C =

∆A+B
– Else if the Receiver is malicious, wait to receive

A,C ∈ Fm. Sample ∆
$←− F and set B = C−

∆A
– Else, sample ∆

$←− F and A,B
$←− Fm and set

C = ∆A+B

• Send (∆,B) to Sender and (A,C) to Receiver

Figure 1: VOLE Functionality

2.5. Polynomial Commitment Schemes

A polynomial commitment scheme [35] is a type of
functional commitment that enables one to commit to poly-
nomials and later open the commitment at any evaluation
point, accompanied by a proof of consistency with the
committed polynomial.

Definition 3 (Polynomial Commitment). A polynomial com-
mitment for polynomials over a field F consists of a tuple
of PPT algorithms (PCS.Setup,PCS.Commit,PCS.Open,
PCS.Verify) defined as follows:

• pp
$←− PCS.Setup(1λ) : The setup algorithm takes

as input the security parameter λ and outputs public
parameters pp.

• (σ, r)
$←− PCS.Commit(pp, d, p(·)) : The commit algo-

rithm takes as input the public parameters pp along
with a polynomial p of degree less than d, and outputs
a commitment σ along with the randomness used r.

• (y, π) ← PCS.Open(pp, d, p(·), σ, r, x) : The open
algorithm takes as input the public parameters pp,
a polynomial p of degree less than d along with its
commitment σ, randomness r used during commit, and
an evaluation point x and outputs evaluation y = p(x)
along with a proof π certifying that the evaluation is
correct with respect to the commitment σ.

• 0/1 ← PCS.Verify(pp, d, σ, x, y, π) : The verify al-
gorithm takes as input the public parameters pp, a
commitment σ, an evaluation point x along with the

evaluation y, and a proof π and outputs 0/1 depending
upon whether it accepts/rejects the proof.

These algorithms satisfy the following properties:

• Correctness: Let pp $←− PCS.Setup(1λ). The following
holds for any polynomial p(·) of degree less than d
defined over F and for each x ∈ F:

Pr[PCS.Verify(pp, d, σ, x, y, π)) ̸= 1] ≤ negl(λ),

where (σ, r)
$←− PCS.Commit(pp, d, p(·)), and

(y, π)← PCS.Open(pp, d, p(·), σ, r, x).
• Polynomial Binding: Let pp $←− PCS.Setup(1λ). There

exists a PPT extractor E , such that for any n.u. PPT ad-
versary A, (d, σ) ← A(pp), X = {x1, x2, . . . , xd+1}
where each xi

$←− F and (yi, πi)← A(pp, d, σ, xi), the
following holds:

Pr
[{

PCS.Verify(pp, d, σ, xi, yi, πi) = 1
}
i∈[d+1]

∧ P (·) ̸= intp
(
Z
)]
≤ negl(λ)

where P (·) = EA(pp, d, σ), Z = {(xi, yi)}i∈[d+1], and
intp is an algorithm that takes as input a set of (d +
1) polynomial evaluations and outputs the interpolated
polynomial P (·) of degree less than d satisfying the
given evaluations (⊥ if does not exist).

• Hiding: Let pp $←− PCS.Setup(1λ). There exists a PPT
simulator Sim, such that for any polynomial p(·) of
degree less than d, (σ, r) $←− PCS.Commit(pp, d, p(·)),
if for all sets I , (xi, yi, πi)i∈I such that
PCS.Verify(pp, d, σ, xi, yi, πi) = 1, then

{Sim(pp, d, σ, {xi, yi}i∈I)} ≈c {{πi}i∈I}

FRI based Polynomial Commitment Scheme Fast
Reed-Solomon Interactive (FRI) [36] is a renowned and
widely used oracle proof of proximity protocol that
was later extended to a polynomial commitment scheme
[18]. Although we use this commitment in a black-box
manner, our protocol crucially relies on the structure of the
PCS.Commit(·) algorithm which we now briefly describe:

Commit: On input a polynomial p(·) of degree less than
d, define the evaluation domain D to be the set of Dth

roots of unity over F where D = c · d for some suitably
chosen constant c. Let y1, y2, . . . , yD be evaluations of p(·)
on D, that is, yi = p(ωi) where ω is the generator of D.
Now, the commitment of the polynomial p(·) is the Merkle
root corresponding to the Merkle commitment for the vector
(y1, y2, . . . , yD) using a hash function H modeled as a
random oracle.

We make black-box use of the Open and Verify algo-
rithms. We will also omit the randomness r and degree d
when describing our construction for readability.

2.6. Zero-Knowledge Proofs/Arguments

We will use the standard definition of public-coin in-
teractive zero-knowledge arguments of knowledge [29] and
later compile them into non-interactive zero-knowledge ar-
guments of knowledge (NIZKs) in the random oracle model
using the Fiat-Shamir [37] transform. We recall the defini-
tion of NIZKs in the random oracle model now.

We use H to denote the random oracle and H in
the superscript to denote that the corresponding algorithm
makes black-box calls to H .

Definition 4 (NIZK in ROM (simplified from [38])). Let R
be an NP relation corresponding to the language LR i.e.,

LR = {x | ∃w s.t. R(x,w) = 1}

A non-interactive zero-knowledge proof system between a
prover P and verifier V for LR consists of a pair of PPT
algorithms (ProveH ,VerifyH) defined as follows:

• π
$←− ProveH(x,w) : On input a statement x and a

witness w, this (randomized) algorithm outputs a proof
π.

• 0/1 ← VerifyH(x, π) : On input a statement x and
a proof π, this algorithm outputs a bit 0/1 denoting,
reject/accept respectively.

These algorithms satisfy the following properties:

• Completeness: For all x,w such that R(x,w) = 1,

Pr[VerifyH(x,ProveH(x,w)) ̸= 1] ≤ negl(λ)

• Knowledge Soundness: There exists a PPT extrac-
tor E , such that for any malicious PPT prover P ∗,
statement-proof pair (x, π) ← P ∗(1λ), the following
holds:

Pr[R(x,w) ̸= 1 ∧ VerifyH(x, π) = 1] ≤ negl(λ),

where w ← EP∗
(x).

• Zero Knowledge: There exists a PPT simulator SimH ,
such that for all statement-witness pairs (x,w) where
R(x,w) = 1, the following holds:

{SimH(x)} ≈c {ProveH(x,w)}

Commit-and-Prove NIZK. In this work, we will use NIZKs
for a specific class of languages comprising of statements
corresponding to pre-committed polynomials. In particular,
these are languages of the form:

L′ = {(pp, σ) :∃ (p(·), w) s.t.
σ = PCS.Commit(pp, p(·)) ∧R(p(·), w) = 1}

NIZKs corresponding to such pre-committed values are
often referred to as commit-and-prove NIZKs. Since our
protocol is in the ROM, we generally omit the superscript
H in our protocol descriptions.

3. Defining Private Intersection over Commit-
ted Sets (PICS)

In this section, we present a formal definition of our
framework. In this definition, we work in the bounded
intersection model, i.e., we assume that the parties know
the maximum number of intersections ahead of time, that
they might wish to compute in the future. This simplifi-
cation makes the protocol easier to explain and analyze.
Meanwhile, this simplification is justified for the following
reasons:

1) From a practical perspective, for sets of size n, our
implementation supports up to n intersections. In other
words, for input sets with a million elements, our
implemented protocol supports a million intersections,
which suffices for most real world use cases.

2) We discuss a simple extension of our protocol in
Section 4.3 that supports an unbounded number of
intersections at minimal cost.

As discussed previously, a protocol in this framework
of private intersection over committed sets proceeds in two
phases:

1) Committing Phase: In this phase, the parties commit
to their input sets that will later be used to compute the
intersection. More formally, a party P will commit to
their role as sender or receiver together with their input
set. They will also specify the maximum number of
subsequent intersections M that they want to compute.

2) Intersection Phase: Two mutually distrusting parties
who then wish to securely compute the intersection on
their respective input sets, can now do so while ensur-
ing consistency with the inputs committed to during
the Committing Phase.

Let X and Y be the respective inputs of the two parties
that were committed during the Committing Phase. Our
definition ensures that when these parties compute an in-
tersection during the Intersection Phase, they are unable to
inject new elements into the committed sets (without causing
the protocol to fail). Observe that this definition allows them
to choose arbitrary subsets X ′ ⊆ X and Y ′ ⊆ Y , such that
the output of the Intersection Phase is X ′∩Y ′. As we shall
see later, our protocol guarantees strong input consistency
on the receiver side, i.e., Y ′ = Y . It is an interesting open
question whether we can enforce X ′ = X to achieve strong
input consistency on the sender side.

Since our PICS framework supports the ability for mul-
tiple parties to commit to their inputs and later perform an
intersection between any pair of parties, we give a general
definition involving multiple parties. A formal description
of the ideal functionality FPICS, capturing these properties,
is provided in Figure 2. It is parameterized by two values,
m,n ∈ N, where m denotes the input set size of the sender
and n that of the receiver.

Definition 5 (Private Intersection over Committed Sets).
Let π = (πCom, πInt), where πCom and πInt are interactive
protocols for the Committing Phase and Intersection Phase

Functionality FPICS

• Committing Phase:
1) Sender: Send (X, idSen,MSen) to TTP.
2) Receiver: Send (Y, idRec,MRec) to TTP.
3) TTP: If cntSen or cntRec (respectively) doesn’t

already exist, then initialize it to 0 and store the
corresponding data. Else, ignore.

• Intersection Phase:
1) Receiver: Send (idSen, idRec, Y

′) to TTP
2) TTP: Check if cntSen < MSen and cntRec <

MRec If not, abort. Else, send (idSen, idRec, Y
′)

to Sender.
3) Sender: Send (Accept, X ′) or ⊥ to TTP de-

pending upon whether she wishes to compute
an intersection or not.

4) TTP: If the Sender sent abort, send ⊥ to
Receiver. Check if |X| ≤ m, |Y | ≤ n,
X ′ ⊆ X , and Y ′ ⊆ Y . If any check
fails, abort. Else, send (X ′ ∩ Y ′) to the
Receiver, (|X|, |Y |,MSen,MRec) to both the
Sender and Receiver, and update cntSen+ = 1
and cntRec+ = 1.

Figure 2: PICS Functionality

respectively. Suppose n ∈ N parties execute k combined
instances of πCom and πInt in an arbitrary order. Let A be
a malicious, n.u. PPT adversary corrupting at most n − 1
parties. We say that π is a protocol for private intersection
over committed sets if the combined k executions of πCom

and πInt satisfy Definition 2 with respect to FPICS and A.

4. Constructing Private Intersection over Com-
mitted Sets (PICS)

We now describe our construction of a PICS protocol.
We start by discussing the main ideas in Section 4.1 and
present the formal details in Section 4.2. Finally, we con-
clude with some extensions in Section 4.3.

4.1. Main Ideas

Recall from Section 1.4, that we refer to the
commitments computed by the parties during the
Committing Phase as their initial commitments and
their messages in the underlying VOLE-PSI protocol
that implicitly bind them to their respective inputs as
their implicit commitments. Our main goal is to design
efficient consistency checks between these two forms of
commitments. For simplicity, in this section, we assume
both parties have input sets of size n.

4.1.1. Sender. We first outline our approach for the sender.

Re-imagining Sender’s Implicit Commitment as a FRI-
Based Polynomial Commitment. Let us discuss how
one can augment the sender’s implicit commitment, i.e.,
H(t1∥x1), . . . ,H(tn∥xn) (refer Section 1.4), to cast it as
a FRI-based polynomial. Let {δ1, . . . , δ4cn} be the 4cn-th3

roots of unity4, and let T (x) be a degree (2n−1) polynomial
obtained by interpolating points {t1, x1, . . . , tn, xn}, such
that for each i ∈ [n], T (δ4ci) = xi and T (δ4ci−1) = ti.

In order to commit to this polynomial using the FRI-
based polynomial commitment, one would start by evaluat-
ing it at {δ1, . . . , δ4cn} and then create a Merkle tree using
T (δ1), . . . , T (δ4cn) as the leaves of the tree. Observe that
n of the 2cn nodes on the second level from bottom (i.e.,
the level above leaves) are of the form:

H(T (δ4ci−1), T (δ4ci)) = H(ti, xi).

This precisely correspond to the sender’s implicit commit-
ment in the VOLE PSI protocol. Therefore, in order to send
a polynomial commitment to T (x), it suffices for the sender
to additionally send the remaining 2cn − n nodes in the
second level of the Merkle tree. Given these 2cn hash values,
the receiver can compute the root of the Merkle tree which
corresponds to a polynomial commitment to T (x).

Explicit Initial Commitment. We again use the FRI-based
polynomial commitment to commit to the sender’s inputs
in the Committing Phase. In particular, let {ω1, . . . , ωn}
be the n-th roots of unity, and let X(x) be a degree n −
1 polynomial obtained by interpolating the sender’s inputs
{x1, . . . , xn} on these roots of unity, i.e., for each i ∈ [n],
X(ωi) = xi. The sender then commits to this polynomial
using the FRI-based polynomial commitment.

Proof of Consistency. Now that we have FRI commitments
to T (x) and X(x), all that remains is to show that these
polynomials were defined consistently using the same set
of xi values. In other words, we want to show that ∀i ∈ [n]:

T (δ4ci) = X(ωi) (1)

Recall that since δi’s are 4cn-th roots of unity and ωi’s
are n-th roots of unity, it must hold that for each i ∈ [n],
δ4ci = ωi. Therefore, the above check reduces to ensuring
that for all i ∈ [n], T (ωi) = X(ωi). In other words, there
must exist a polynomial D(x) of degree at most n−1, such
that

T (x)−X(x) = (xn − 1) ·D(x).

This check can be done using a standard approach
employed in the design of commit-and-prove zkSNARKs,
where the prover additionally sends a polynomial commit-
ment to D(x). The verifier then samples a random eval-
uation point r in the field. The prover evaluates all these
polynomials T (x), X(x), and D(x) at this point and sends
the corresponding polynomial opening proofs. The verifier
checks if T (r)−X(r) = (rn−1) ·D(r). Soundness follows
from the Schwartz-Zippel Lemma ([39], [40]).

3. c is the soundness parameter for FRI polynomial commitment.
4. We explain later why we choose this specific set of roots of unity

Input-Hiding Polynomial Commitments. We note that
the FRI-based polynomial commitment, on its own, does
not provide any hiding guarantees. Moreover, as the com-
mitter opens evaluations of the polynomial, progressively
more information about the polynomial is leaked. Since
the polynomial encodes the set X , this leaks information
about X . To remedy this, we use the standard technique
of randomizing the polynomial to which one wishes to
commit to. The degree of freedom in this polynomial is
chosen depending upon the number of times the polynomial
commitment is opened. This ensures that openings of the
polynomial commitment do not leak information about the
underlying vector. Furthermore, this randomization proce-
dure is done outside the roots of unity at which the vector
has been encoded. This is to ensure that the points of interest
on this polynomial (X(ωi) in the previous case) are not
changed.

Choice of Roots of Unity. We now explain our decision to
choose the 4cn-th roots of unity in the previous argument.
Note that the way we define the polynomial T (·) is directly
related to the structure of the FRI polynomial commitment
scheme. Care needs to be taken to ensure that this struc-
ture is compatible with the parameters of the FRI scheme.
Observe that T (·) has degree 2n − 1 and we open T (·)
at a random point r. Thus, the degree of the randomized
extension of T (·) is 2n. To ensure compatibility with FRI,
the roots of unity chosen must have size > 2cn where c is
the soundness parameter for FRI. Furthermore, the order of
the generator for this set of roots of unity must be divisible
by n and 2 for (1) and FFT to hold respectively. The smallest
such value that satisfies all these constraints is 4cn; hence
our choice for the roots of unity.

4.1.2. Receiver. We now focus our attention towards the
receiver.

Receiver’s Input-Binding Message. Recall from Sec-
tion 1.4.2 that the only input-dependent message sent by
the receiver in VOLE-PSI is A′ = A + P, where A is
the output of the VOLE sub-protocol and P is an OKVS
encoding of the receiver’s input. To ensure input consistency,
it suffices for the receiver to convince the sender that A′ was
computed correctly using the inputs committed to during
the Committing Phase. In other words, the receiver has to
essentially prove the following statement:

There exists A,P, where P is an OKVS encoding of the
inputs within the initial commitment and A is the VOLE

output, such that A′ = A+P.

Designing a proof for this statement presents the follow-
ing challenges:

1) Challenge 1: Computing OKVS encodings is computa-
tionally intensive, and proving that this encoding was
computed honestly would introduce significant over-
heads. Furthermore, such proofs typically involve non-
black box use of the underlying crypto primitives.

2) Challenge 2: VOLE is a cryptographic primitive. At
first, it is unclear how the receiver can convince the

sender that A was indeed the output of the VOLE
sub-protocol, without making non-black-box use of the
VOLE sub-protocol.

We now address these challenges one by one.

Explicit Initial Commitment. Since the computation of
P is independent of any other messages exchanged in the
VOLE-PSI protocol and can be re-used across multiple
PSI executions, our idea for overcoming the first challenge
is to use a commitment to P as the initial commitment.
Specifically, during the Committing Phase, instead of just
committing to his inputs {y1, . . . , yn}, the receiver encodes
a set of key-value pairs {(y1, H(y1)), . . . , (yn, H(yn))} into
an OKVS data structure P and then commits to P using the
FRI-based polynomial commitment.

Since the initial commitment to receiver’s input set now
is the commitment to P itself, all that remains is for the
receiver to convince the sender that there exists A, which
is the VOLE output and that A′ = A+P.

Proof of Consistency. Before proceeding with our construc-
tion of this consistency proof, let us review what the sender
and receiver obtain from the VOLE sub-protocol. Recall
from Section 1.4.2 that the sender receives ∆,B, while the
receiver gets A,C, which are correlated as follows:

C = ∆ ·A+B,

or equivalently,

A = ∆−1 · (C−B).

Thus, to prove that A′ = A+P, it suffices to show that

A′ = ∆−1 · (C−B) +P.

Among these vectors, the sender knows B,∆,A′ and has a
polynomial commitment to P.

Let us also view A′,B, and C as polynomials
A′(x), B(x), and C(x), respectively, obtained via determin-
istic polynomial interpolation, as explained in section 2.1.
The relation that we want to check can now be rewritten in
terms of these polynomials as:

A′(x) = ∆−1(C(x)−B(x)) + P (x).

To verify this, it suffices to check whether this equation
holds at a randomly chosen evaluation point. In other words,
using the Schwartz-Zippel lemma, we can conclude that it
suffices to check whether the following holds:

A′(r) = ∆−1(C(r)−B(r)) + P (r),

for a random challenge r sampled by the sender.
For this check, recall that A′(x), B(x), and ∆ are al-

ready known to the sender, and she can obtain P (r) by
asking the receiver to open the commitment to P (x) at r.
All that remains is C(r), which the receiver sends in the
clear to the sender.

However, since we did not pre-commit to C(x), the
receiver could potentially send an incorrect value C ′(r)
instead of C(r). We now show that even if the receiver

sends an incorrect C ′(r), the above check will fail with all
but negligible probability if A′ ̸= A+P.

Soundness. Assume, for the sake of contradiction, that the
check passes, i.e.,

A′(r) = ∆−1(C ′(r)−B(r)) + P (r).

Substituting B(r) = C(r) −∆A(r) into this equation and
rearranging, we get

∆ =
C ′(r)− C(r)

A′(r)−A(r)− P (r)
.

Note that since A′ ̸= A+P, A′(r)−A(r)− P (r) is non-
zero with all but negligible probability, due to the Schwartz-
Zippel lemma, which ensures that we can safely divide by
it. Now, all values on the right-hand side of the equation are
known to the receiver. Therefore, the receiver can compute
∆. However, this violates the security of the VOLE sub-
protocol, since the only value sent after the VOLE execution
was the random challenge r, which is independent of the
VOLE computation.

Thus, the check passes only if the receiver can break the
security of VOLE or if the randomly chosen challenge r is
“lucky,” i.e., A′(r)−A(r)−P (r) = 0. Both of these events
occur with negligible probability.

4.2. Our Construction

In this section, we give a formal description our protocol.
First, we state the parameters and building blocks required
in this construction:

• We work over a field F of size at least 2λ, where |F|−1
is a perfect power of 2. Let out ∈ N be a parameter,
such that out ≥ log |F|.

• Let H : {0, 1}out × {0, 1}out → {0, 1}out and HF :
F→ F be random oracles.

• Let (Encode,Decode) be an OKVS (see Definition 1)
that encodes n key-value pairs to encodings of length
n′ over F.

• Let (PCS.Setup,PCS.Commit,PCS.Open,
PCS.Verify) be the FRI-based polynomial commitment
scheme (see Section 2.5) and c the associated
soundness parameter. Let pp← PCS.Setup(1λ).

• Input sets X and Y are treated as vectors X and Y over
F. We still refer to them as sets to improve readability.
Note that, typically sets X,Y ⊆ {0, 1}∗; however, we
can map them to F using a suitable random oracle H ′ :
{0, 1}∗ → F.

• Let Vec2RandPoly be an algorithm for converting vec-
tors to randomized polynomials, as explained in Sec-
tion 2.1.

The Committing Phase is described in Figure 3a and
Figure 3b, and the Intersection Phase in Figure 3c. Before
proceeding, both the sender and receiver verify that the other
party participated in the Committing Phase with the correct
role and committed their inputs. Each party also checks that
their own counter is below the corresponding threshold, i.e.,

cntSen < MSen and cntRec < MRec. If any check fails, the
protocol aborts. Otherwise, they proceed and increment their
counters by 1. Let m = |X| and n = |Y|.

We defer the proofs of the following theorems to Ap-
pendix A due to space constraints.

Theorem 1. The protocol in Figures 3a, 3b and 3c is a
protocol for private intersection over committed sets (see
Definition 5) against malicious adversaries in the FVOLE-
hybrid model.

Theorem 2. The protocol in Figure 4 is a interactive zero-
knowledge argument of knowledge [29] for L (where L is
as in Figure 3c)

Communication Complexity. The communication
cost for our Committing Phase is O(λ) and for our
Intersection Phase is O(λ · (m + n + log2(m + MSen) +
log2(n+MRec)).

Computation Complexity. The computation cost for
the sender is O(λ(m + MSen) log(m + MSen)) in the
Committing Phase and O(λ·((m+MSen) log

2(m+MSen)+
n+log2(n+MRec))) in the Intersection Phase. The compu-
tation cost for the receiver is O(λ(n+MRec) log(n+MRec))
in the Committing Phase and O(λ · ((n +MRec) log

2(n +
MRec) +m+ log2(m+MSen))) in the Intersection Phase.

4.3. Extensions

In this section, we discuss suitable extensions of our
protocol that are relevant for certain applications, as dis-
cussed in Section 1.3. The ease and efficiency of adding such
desired modifications depending upon relevant use-case also
enforces the generality and flexibility of our framework as
a whole.

Unbounded Intersections. While our protocol works in the
bounded intersection model i.e., the number of future inter-
sections is fixed beforehand during the Committing Phase,
we note that you can support an unbounded number of
intersections. Suppose a party P committed to their inputs
with the number of supported intersections being M . Before
exhausting all the M supported intersections, P can create a
new commitment with supported intersections M ′ and prove
consistency of this new commitment with respect to the old
commitment using standard ZK techniques. Note that this
cost is amortized for all the M ′ intersections and hence,
minimal. Now, P can use this new commitment and support
an additional (M ′ − 1) number of intersections (1 degree
of freedom is used in performing the consistency check).
This process can be repeated an arbitrary number of times
to support an unbounded number of intersections.

Updating Sets. We also note that parties can update their
sets i.e., add or remove elements. This is important for ap-
plications like password breach detection and the California
Delete Act that we discuss in Section 1.3. Suppose a party P
wishes to update the set X to X ′ by adding elements. P can
create a fresh commitment to X ′ and prove that X ⊆ X ′

πCom (Sender)

Input: Set X and maximum number of intersections
MSender

1) Randomly shuffle X. Compute

X(·)← Vec2RandPoly(X;MSen)

σX(·) ← PCS.Commit(pp, X(·)) (2)

2) Broadcast σX(·). Set a local counter cntSen = 0.

(a) Committing Phase (Sender)

πCom (Receiver)

Input: Set Y and maximum number of intersections
MReceiver

1) Randomly shuffle Y and compute OKVS P as

P = Encode
(
{(y,HF (y)) | y ∈ Y}

)
.

2) Compute

P (·)← Vec2RandPoly(P;MRec)

σP (·) ← PCS.Commit(pp, P (·))

3) Broadcast σP (·). Set a local counter cntRec = 0.

(b) Committing Phase (Receiver)

πInt

1) Sender: Sample u
$←− F and send u′ = HF(u) to the Receiver.

2) Invoke FVOLE: Sender obtains ∆ ∈ F,B ∈ Fn′
and Receiver obtains A,C ∈ Fn′

such that C = ∆A+B.
3) Receiver: Sample v

$←− F and define A′ = A+P where P is the OKVS defined during the Committing Phase.
Send (v,A′) to Sender.

4) Sender: Sample r
$←− F and send it to the Receiver.

5) Receiver: Compute (P (r), πP (r)) ← PCS.Open(pp, P (·), σP (·), r), where σP (·) is the commitment made during
the Committing Phase. Send (P (r), πP (r), C(r)) to the Receiver where C(·)← Vec2RandPoly(C; 0).

6) Sender: Does the following:
a) Verify A′ = A+P: Check if

PCS.Verify(pp, σP (.), r, P (r), πP (r)) = 1,

A′(r) = ∆−1 · (C(r)−B(r)) + P (r).

If either check fails, abort.
b) Compute ti values: Define w = u+ v and an OKVS K = ∆A′ +B. For all xi ∈ X, compute

ti = Decode(K, xi)−∆HF(xi) + w

c) Generate NIZK Proof: Let {δ1, δ2, . . . , δ4cm} be the 4cm-th roots of unity. Define a random 2m-degree
polynomial T (·) such that, for all 1 ≤ i ≤ m, T (δ4ci) = xi and T (δ4ci−1) = ti. Define a vector Z,
a polynomial D(·), and a language L = {σX(·),Z | ∃ X(·), T (·), D(·) such that eqs (2), (3) and (4) hold},
where

Z =
(
H(T (δ2i−1), T (δ2i))

∣∣ i ∈ [1, 2cm]
)

(3)

T (x)−X(x) = D(x) · (xm − 1). (4)

where σX(·) is the commitment made during the Committing Phase. Compute a NIZK proof for L:

πNIZK = ProveH((σX(·),Z), (X(·), T (·), D(·))).

(We give an efficient construction of a NIZK for L in Figure 4.) Send (Z, πNIZK, u) to the Receiver.
7) Receiver: Check if u′ = HF(u) and if the NIZK proof verifies i.e., VerifyH((σX(·),Z), πNIZK) = 1. If not, abort.

Else, output {yi ∈ Y | H(Decode(C, yi) + w, yi) ∈ Z}.

(c) Intersection Phase (colored text represents additional steps in our protocol compared to the base VOLE-PSI protocol)

Figure 3: Our PICS Protocol.

ZK Protocol for L

1) P : Compute the polynomial D(·) such that T (x) −
X(x) = D(x) · (xm − 1) and σD(·) ←
PCS.Commit(pp, D(·)) and send σD(·) to V .

2) V : Sample a random challenge r
$←− F and send to P .

3) P : Open all the polynomial commitments at r i.e.,

(X(r), π1)← PCS.Open(pp, X(·), σX(·), r)

(T (r), π2)← PCS.Open(pp, T (·), σT (·), r)

(D(r), π3)← PCS.Open(pp, D(·), σD(·), r)

Send (X(r), π1, T (r), π2, D(r), π3) to V .
4) V : Check if the openings are correct i.e.,

PCS.Verify(pp, σX(·), r,X(r), π1) = 1

PCS.Verify(pp, σT (·), r, T (r), π2) = 1

PCS.Verify(pp, σD(·), r,D(r), π3) = 1

and if T (r) −X(r) = D(r) · (rm − 1) holds. If not,
reject. Else, accept.

Figure 4: Interactive ZK proof for L (defined in Figure 3c),
compiled into NIZK using Fiat-Shamir.

using standard ZK techniques. A similar approach works
for deletions i.e., removing elements as well. Observe that
this cost is amortized across all intersections and hence,
minimal. Furthermore, using techniques similar to our paper,
this update check (insertions and deletions both) can be done
extremely efficiently on the sender side.

Set Membership Verification. For certain applications like
the California Delete Act (see Section 1.3), a verification
process may be required that allows a consumer to verify the
inclusion of their name in the public commitment. We note
that such checks can be done in our framework. Observe
that on the sender side (as is the case for this application),
the public commitment is a FRI polynomial commitment to
X(·). If a value x was included, then it must be the case
that X(ωi) = x for some i. Hence we can simply send
the path in the Merkle tree corresponding to this leaf node
along with its neighbors. The consumer can then verify all
hash computations along this path to confirm the inclusion
of their name. Such a membership verification is extremely
efficient.

5. Implementation and Evaluation

We implement our PICS protocol in Rust and report
the performance in this section. We note that this is the
first implementation of PSI in Rust, which may be of
independent interest. Our implementation is available at
https://anonymous.4open.science/r/PICS-E54E.

5.1. Implementation Details

We choose computational security parameter λ = 128
and statistical security parameter σ = 40. Our plain-PSI
implementation is based on the framework of VOLE-PSI
[9], [11], yet we instantiate the framework with more recent
constructions for VOLE [31] and OKVS [12]. Another
important change is in the finite field, where STARK-252 is
utilized for compatibility with the FRI polynomial commit-
ment scheme.5

Parameters choice. The VOLE construction in [31] is based
on the primal learning parity with noise (LPN) assump-
tion [43] with regular noise distribution in a prime field of
bit size 252. We compute the LPN parameters achieving 128
bits of security using the Python script provided by Liu et
al. [44], which takes into account attacks including Pooled
Gauss [45], statistical decoding (SD) [46], [47], [48], [49],
[50], information set decoding (ISD) [51], [52], [53], and
the algebraic (AGB) attack [54].

For OKVS, we implement the scheme based on Random
Band matrices (RB-OKVS) from [12], modifying into a
“binned” version to support parallelization. More specif-
ically, suppose we want to divide the workload equally
among d threads, the n inputs elements are first hashed
into d bins, and then the encoding algorithm of RB-OKVS
is performed for each bin in parallel.6 We set the OKVS
rate to 2 (namely n′ = 2n in our protocol description),
and set the band-width to be 80, which satisfies the 2−40

statistical failure probability. The proof of security for this
variant (which is omitted due to space) begins with a simple
balls-into-bin argument to prove bound on each bin’s size
(which affects the OKVS rate in each bin), then the failure
probability of each bin follows [12].

Finally, the FRI polynomial commitment scheme im-
plementation is rewritten based on the lambdaworks li-
brary [55], with support for multi-threading in FFT, folding,
and building Merkle trees. We set c = 2 as the blowup factor
and follow the ethSTARK documentation [56] to choose
parameters that achieve 128 bits of soundness security.

5.2. Experimental Results

Our benchmarks are run on Amazon AWS
c5a.16xlarge instances, with computations parallelized
through 32 cores, while communication remains sequential.
We simulate network bandwidth and latency with the Linux
tc command, choosing 0.1ms RRT and 20Gbps bandwidth
for LAN. Experiments in the WAN settings follow the
previous work [19] with 80ms RTT, and bandwidths
200Mbps, 50Mbps, and 5Mbps, respectively. We provide
in Table 5 results of experiments for our protocol, along
with our implementation of VOLE-PSI in STARK-252, and
two previous PSI works that achieve input consistency on

5. Although recent work has extended the FRI degree test to arbitrary
fields [41], [42], their concrete efficiency has not been fully analyzed.

6. The idea of hashing elements into bins is also considered in other PSI
works such as [11].

https://anonymous.4open.science/r/PICS-E54E

Set Protocol Sender Receiver Commitment Phase Intersection Phase Total Total Runtime
Size Commit Commit Comm. Comp. Comm. Comp. Comm. LAN 200Mbps 50Mbps 5Mbps

216

VOLE-PSI ✗ ✗ - - 13.9 1.41 13.9 1.41 8.35 9.27 28.7
[19] ✗ ✓ 7.00 0.21 2.00 1.67 9.00 1.89 2.56 3.64 16.6
[20] ✓ ✗ 0.52 0.37 2,818 28.1 2,818 28.45 141 479 4,537
PICS ✓ ✓ 0.000064 0.43 23.4 1.91 23.41 2.33 11.1 12.2 46.0

218

VOLE-PSI ✗ ✗ - - 34.6 3.16 34.6 3.16 13.8 16.3 66.7
[19] ✗ ✓ 28.0 0.85 8.00 6.83 36.0 7.70 9.44 13.8 65.6
[20] ✓ ✗ 2.10 1.46 11GB 113 11GB 114 564 1,917 18GB
PICS ✓ ✓ 0.000064 1.32 46.1 4.24 46.1 5.56 18.9 22.0 88.7

220

VOLE-PSI ✗ ✗ - - 113 8.02 113 8.02 21.3 32.9 201
[19] ✗ ✓ 112 3.36 32 28.2 144 31.6 37.6 54.9 262
[20] ✓ ✗ 8.39 5.85 45GB 451 45GB 457 2,255 7,665 73GB
PICS ✓ ✓ 0 4.56 127 12.3 127 16.8 33.1 45.4 233

222

VOLE-PSI ✗ ✗ - - 405 23.4 405 23.4 53.2 96.3 706
[19] ✗ ✓ 448 13.5 128 118 576 132 155 224 1,054
[20] ✓ ✗ 33.6 23.4 180GB 1,804 180GB 1,827 9,018 31GB 290GB
PICS ✓ ✓ 0.000064 18.1 421 41.2 421 59.3 92.0 136 767

224

VOLE-PSI ✗ ✗ - - 1,583 111 1,583 111 193 364 2,767
[19] ✗ ✓ 1,792 54.2 512 494 2,304 549 641 917 4,235
[20] ✓ ✗ 134 93.6 721GB 7,214 721GB 7,308 36GB 123GB 1,162GB
PICS ✓ ✓ 0.000064 74.6 1,601 188 1,601 263 348 521 2,948

Figure 5: Experimental comparison. All communication costs are in MB unless otherwise noted, and all computation costs are in seconds.

216 218 220 222 224
0

500

1,000

1,500

Set Size

C
om

m
un

ic
at

io
n

(M
B

)

VOLE-PSI
PICS

(a) Communication

216 218 220 222 224
0

50

100

150

200

250

Set Size

R
un

tim
e

(s
)

VOLE-PSI
PICS

(b) Runtime (LAN)

216 218 220 222 224
0

1,000

2,000

3,000

Set Size

R
un

tim
e

(s
)

VOLE-PSI
PICS

(c) Runtime (5Mbps)

Figure 6: Performance comparison of plain VOLE-PSI and PICS.

180,000

750,000

C
om

m
un

ic
at

io
n

(M
B

)

216 218 220 222 224

0

1,000

2,000

3,000

Set Size

PICS [19] [20]

(a) Total Communication

2,000

7,500

R
un

tim
e

(s
)

216 218 220 222 224

0

200

400

600

Set Size

PICS [19] [20]

(b) Total Runtime (LAN)

Figure 7: Performance comparison of PICS with [19], [20].

either the sender side [20] or the receiver side [19]. All
experiments are run with the same set size for the sender
and receiver.

Except for VOLE-PSI, we divide each protocol into
two phases: Committing Phase and Intersection Phase, and
report the communication and computation costs of each
phase. We also report the end-to-end communication cost
and running time (including both phases) of each protocol
under the four network settings mentioned above.

Since the protocols in [20] and [19] consider differ-

ent settings and (weaker) adversarial models, defining and
evaluating the Committing Phase and Intersection Phase
imposes a challenge. In each paragraph below, we first
provide a short description of the setting in each protocol
before analyzing the experimental results.

Comparison with plain maliciously secure VOLE-PSI.
Our PICS protocol is built on VOLE-PSI, with the original
protocol intact while only adding succinct commitments and
proofs. We discuss the overhead of our protocol compared
to VOLE-PSI. In the Committing Phase, each party only
needs to send a short commitment of 32 bytes (one Merkle
hash). In the Intersection Phase, all proofs are succinct and
only add 10 − 20 MB of communication, which translates
to ≈ 1.1% communication overhead when the set size is
224. The computational overhead is higher due to the cost
of FFT and Merkle Hash. However, the end-to-end running
time overhead decreases significantly in the WAN setting, as
shown in Figure 6, due to the low communication overhead
in PICS. For instance, in WAN networks with bandwidth
50Mbps, the total runtime is only 30 − 45% slower than
VOLE-PSI, and the overhead is further reduced to less than
10% with bandwidth 5Mbps and sufficiently large set sizes
(n = 222 and n = 224).

Comparison with [19] (receiver input consistency). In
the Authorized Private Set Intersection (APSI) protocol of
[19], a trusted third party (the Judge) authorizes the in-
puts of the receiver, preventing the receiver from injecting
unauthorized elements when running PSI with the sender.
APSI realizes a variant of the PICS functionality, where the
receiver’s set is committed. We report in Table 5 the com-
munication cost of the Committing Phase as all messages
exchanged between the receiver and the Judge, and that of
the Intersection Phase as all messages between the sender
and receiver afterward. We also report the computational

cost of each phase, as well as the end-to-end runtime (both
phases combined), in which the LAN and WAN performance
is estimated based on the communication cost.7

The advantage of PICS is three-fold: (1) we don’t require
a trusted third-party to authorize the set, (2) we achieve input
consistency on both sides, and (3) we achieve malicious
security against both parties while APSI [19] only achieves
security against a malicious receiver (and a semi-honest
sender).

In terms of performance, in the Committing Phase,
PICS has comparable running time with [19] and requires
significantly less communication—we only require one
Merkle hash whereas their communication grows linearly
with the set size. Furthermore, our protocol is completely
non-interactive, i.e., no interaction with a Judge is required.
In the Intersection Phase, PICS falls short in communi-
cation but has more efficient computation, as it relies on
lightweight cryptography while [19] requires expensive pair-
ings operations. Considering the end-to-end performance
combining both phases, as shown in Figure 5 and Figure 7,
PICS has an advantage with 1.5× improvement in com-
munication cost. In terms of running time, PICS is 2.5×
faster in the LAN setting (which reflects the computation
efficiency) and 1.5× in the WAN setting with bandwidth
5Mbps (which reflects the communication efficiency).

Comparision with [20] (sender input consistency). Sun et.
al. [20] proposed a PSI protocol in the client-server setting,
where the server (sender) publishes a one-time encoding of
its input set, which can be reused across multiple clients
(receivers). This protocol can be considered as PICS with
the sender’s set committed. We measure the communication
cost in the Committing Phase as the size of the published
encoding by the sender, and define the Intersection Phase
communication as all subsequent interactions between the
sender and a receiver (in a single PSI execution).

We estimate their performance based on the per-element
cost reported in [20].8 In the Committing Phase, PICS and
[20] have comparable runtime, while PICS provides a much
more succinct commitment (O(1) versus O(n) in size). In
the Intersection Phase, PICS achieves 20× speedup in com-
putation and more than 120× reduction in communication.
Overall, as shown in Figure 5 and Figure 7, the end-to-end
running time of PICS is 30− 390× faster than [20].

5.3. Related Work

PSI was introduced by Meadows [57] and has been stud-
ied intensively from various techniques, including Diffie-
Hellman [57], [58], [8], RSA [59], [60], garbled cir-
cuits [61], [62], [63], [32], fully homomorphic encryption
(FHE) [64], [65], [66], oblivious transfer (OT) [67], [68],
[69], [70], [71], and most recently VOLE [9], [10], [11],
[12]. However, even the maliciously secure PSI protocols
suffer from the vulnerabilities discussed above.

7. The source code of [19] does not simulate message-sending activities.
8. The implementation of [20] is not open-sourced.

Authorized PSI. Camenisch and Zaverucha [72] proposed
a notion called PSI for certified sets, where they introduce a
trusted third party (certification authority) to certify the input
sets, ensuring that the inputs are valid and binding them
to each party. However, their protocol requires quadratic
communication and computational complexity in the set
size. De Cristofaro and Tsudik [59] introduced the notion
of Authorized PSI (APSI), where they identify one party
as the server (providing PSI service) and the other party as
the client (receiving the PSI result). Each element in the
client set must be authorized (signed) by a trusted authority.
Their protocol achieves linear communication and compu-
tational complexity. A follow-up work by Kerschbaum [73]
presented a more efficient APSI protocol from Bloom filters
and homomorphic encryption. The work of Debnath and
Dutta [74] further improved the efficiency for both APSI and
APSI-Cardinality (where parties only learn the size of the
intersection). Faber et al. [75] presented an APSI protocol
with both sides authenticated. A more recent work [19]
presented an APSI protocol with a single round of com-
munication from the server to the client in the online phase,
achieving security against a malicious client and semi-honest
server. They also introduced the notion of Partial APSI
which allows for partial verification of the sets.

However, all these works crucially rely on a trusted
third party to (fully or partially) access and authorize the
sets, which defeats the purpose of PSI. Moreover, they
require a co-design of the authorization process and the
PSI protocol. In contrast, our new framework separates
the validation and intersection phases, allowing them to be
designed independently while connecting them through a
succinct commitment. From a technical perspective, all the
existing approaches for APSI rely on computationally ex-
pensive public-key operations, such as Diffie-Hellman-based
OPRF, homomorphic encryption, or bilinear pairings, which
make the online PSI protocol orders of magnitude slower
than state-of-the-art ones that primarily use symmetric-key
cryptography. Finally, even under the APSI framework, our
new PICS protocol provides an extremely efficient way for
a trusted party to authorize the set, namely, by generating a
digital signature on the succinct commitment.

Client-Server PSI. Another related direction is reusable
PSI in the client-server setting, introduced by Sun et al.
[20]. In this work, a server publishes a one-time, linear-
sized encoding of its set. Afterwards, multiple clients can
independently execute a PSI protocol with the server, with
complexity linear in the size of each client’s set. The pub-
lished encoding can be viewed as a set commitment that
ensures input consistency of the server, without the need
for a trusted third party.

Acknowledgments

Aarushi Goel would like to thank Gabriel Kaptchuk for
helpful discussions on the applications of this framework.
Peihan Miao and Phuoc Van Long Pham were supported in
part by NSF SaTC Award 2247352, NSF CAREER Award

2442384, Meta Research Award, Google Research Scholar
Award, and Amazon Research Award. Satvinder Singh was
supported in part by Supra Labs.

References

[1] A. C.-C. Yao, “How to generate and exchange secrets (extended
abstract),” in 27th FOCS. IEEE Computer Society Press, Oct. 1986,
pp. 162–167.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to prove all NP-
statements in zero-knowledge, and a methodology of cryptographic
protocol design,” in CRYPTO’86, ser. LNCS, A. M. Odlyzko, Ed.,
vol. 263. Springer, Berlin, Heidelberg, Aug. 1987, pp. 171–185.

[3] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy
preserving error resilient dna searching through oblivious automata,”
in ACM CCS 2007, P. Ning, S. De Capitani di Vimercati, and P. F.
Syverson, Eds. ACM Press, Oct. 2007, pp. 519–528.

[4] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik, “Coun-
tering GATTACA: efficient and secure testing of fully-sequenced
human genomes,” in ACM CCS 2011, Y. Chen, G. Danezis, and
V. Shmatikov, Eds. ACM Press, Oct. 2011, pp. 691–702.

[5] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein,
“Protecting accounts from credential stuffing with password breach
alerting,” in USENIX Security 2019, N. Heninger and P. Traynor, Eds.
USENIX Association, Aug. 2019, pp. 1556–1571.

[6] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “PIR-PSI: Scaling
private contact discovery,” PoPETs, vol. 2018, no. 4, pp. 159–178,
Oct. 2018.

[7] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in USENIX Security 2019,
N. Heninger and P. Traynor, Eds. USENIX Association, Aug. 2019,
pp. 1447–1464.

[8] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, and M. Yung, “On deploying
secure computing: Private intersection-sum-with-cardinality,” in
IEEE European Symposium on Security and Privacy, EuroS&P
2020, Genoa, Italy, September 7-11, 2020. IEEE, 2020, pp.
370–389. [Online]. Available: https://doi.org/10.1109/EuroSP48549.
2020.00031

[9] P. Rindal and P. Schoppmann, “VOLE-PSI: Fast OPRF and circuit-
PSI from vector-OLE,” in EUROCRYPT 2021, Part II, ser. LNCS,
A. Canteaut and F.-X. Standaert, Eds., vol. 12697. Springer, Cham,
Oct. 2021, pp. 901–930.

[10] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,”
in CRYPTO 2021, Part II, ser. LNCS, T. Malkin and C. Peikert, Eds.,
vol. 12826. Virtual Event: Springer, Cham, Aug. 2021, pp. 395–425.

[11] S. Raghuraman and P. Rindal, “Blazing fast PSI from improved
OKVS and subfield VOLE,” in ACM CCS 2022, H. Yin, A. Stavrou,
C. Cremers, and E. Shi, Eds. ACM Press, Nov. 2022, pp. 2505–2517.

[12] A. Bienstock, S. Patel, J. Y. Seo, and K. Yeo, “Near-optimal oblivious
key-value stores for efficient PSI, PSU and volume-hiding multi-
maps,” in USENIX Security 2023, J. A. Calandrino and C. Troncoso,
Eds. USENIX Association, Aug. 2023, pp. 301–318.

[13] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai, “Compressing vector
OLE,” in ACM CCS 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. ACM Press, Oct. 2018, pp. 896–912.

[14] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient pseudorandom correlation generators: Silent OT extension
and more,” in CRYPTO 2019, Part III, ser. LNCS, A. Boldyreva and
D. Micciancio, Eds., vol. 11694. Springer, Cham, Aug. 2019, pp.
489–518.

[15] A. Bhowmick, D. Boneh, S. Myers, K. Talwar, and K. Tarbe, “The
Apple PSI System,” https://www.apple.com/child-safety/pdf/Apple
PSI System Security Protocol and Analysis.pdf, 2021.

[16] S. Scheffler, A. Kulshrestha, and J. R. Mayer, “Public verification for
private hash matching,” in 2023 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2023, pp. 253–273.

[17] H. Abelson, R. J. Anderson, S. M. Bellovin, J. Benaloh,
M. Blaze, J. Callas, W. Diffie, S. Landau, P. G. Neumann,
R. L. Rivest, J. I. Schiller, B. Schneier, V. Teague, and
C. Troncoso, “Bugs in our pockets: the risks of client-side
scanning,” J. Cybersecur., vol. 10, no. 1, 2024. [Online]. Available:
https://doi.org/10.1093/cybsec/tyad020

[18] E. Ben-Sasson, L. Goldberg, S. Kopparty, and S. Saraf, “DEEP-
FRI: Sampling outside the box improves soundness,” in ITCS 2020,
T. Vidick, Ed., vol. 151. LIPIcs, Jan. 2020, pp. 5:1–5:32.

[19] F. Falzon and E. A. Markatou, “Re-visiting authorized private set
intersection: A new privacy-preserving variant and two protocols,”
Proceedings on Privacy Enhancing Technologies, 2025.

[20] Y. Sun, J. Katz, M. Raykova, P. Schoppmann, and X. Wang, “Ac-
tively secure private set intersection in the client-server setting,” in
Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, 2024, pp. 1478–1492.

[21] Apple Inc., “Csam detection technical summary,” Ap-
ple Inc., Tech. Rep., 2021, accessed: 2025-05-22. [On-
line]. Available: https://www.apple.com/child-safety/pdf/CSAM
Detection Technical Summary.pdf

[22] “Protect your accounts from data breaches with Pass-
word Checkup,” https://security.googleblog.com/2019/02/
protect-your-accounts-from-data.html.

[23] “Firefox Password Manager – Alerts for
breached websites,” https://support.mozilla.org/sl/kb/
firefox-password-manager-alerts-breached-websites.

[24] “Password Monitor: Safeguarding passwords in Microsoft
Edge,” https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge/.

[25] “Password Monitoring – Apple Platform Security,” https://support.
apple.com/en-al/guide/security/sec78e79fc3b/web.

[26] “ Senate Bill No. 362,” https://leginfo.legislature.ca.gov/faces/
billTextClient.xhtml?bill id=202320240SB362.

[27] “California’s Data Deletion Law: Understanding the California
Delete Act for Regulating Data Brokers,” https://secureprivacy.ai/
blog/california-delete-act-guide.

[28] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in 19th ACM STOC, A. Aho, Ed. ACM Press, May 1987, pp. 218–
229.

[29] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof-systems (extended abstract),” in 17th ACM
STOC. ACM Press, May 1985, pp. 291–304.

[30] Y. Lindell, “How to simulate it - A tutorial on the simulation
proof technique,” in Tutorials on the Foundations of Cryptography,
Y. Lindell, Ed. Springer International Publishing, 2017, pp. 277–346.
[Online]. Available: https://doi.org/10.1007/978-3-319-57048-8 6

[31] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and
arithmetic circuits,” in 2021 IEEE Symposium on Security and Pri-
vacy. IEEE Computer Society Press, May 2021, pp. 1074–1091.

[32] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient
circuit-based PSI with linear communication,” in EUROCRYPT 2019,
Part III, ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11478.
Springer, Cham, May 2019, pp. 122–153.

[33] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI from PaXoS:
Fast, malicious private set intersection,” in EUROCRYPT 2020,
Part II, ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12106.
Springer, Cham, May 2020, pp. 739–767.

https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/EuroSP48549.2020.00031
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://doi.org/10.1093/cybsec/tyad020
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://support.mozilla.org/sl/kb/firefox-password-manager-alerts-breached-websites
https://support.mozilla.org/sl/kb/firefox-password-manager-alerts-breached-websites
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202320240SB362
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202320240SB362
https://secureprivacy.ai/blog/california-delete-act-guide
https://secureprivacy.ai/blog/california-delete-act-guide
https://doi.org/10.1007/978-3-319-57048-8_6

[34] Y. Lindell, “How to simulate it - A tutorial on the simulation
proof technique,” Cryptology ePrint Archive, Report 2016/046, 2016.
[Online]. Available: https://eprint.iacr.org/2016/046

[35] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in ASIACRYPT 2010,
ser. LNCS, M. Abe, Ed., vol. 6477. Springer, Berlin, Heidelberg,
Dec. 2010, pp. 177–194.

[36] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast reed-
solomon interactive oracle proofs of proximity,” in ICALP 2018, ser.
LIPIcs, I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
Eds., vol. 107. Schloss Dagstuhl, Jul. 2018, pp. 14:1–14:17.

[37] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in CRYPTO’86, ser. LNCS,
A. M. Odlyzko, Ed., vol. 263. Springer, Berlin, Heidelberg, Aug.
1987, pp. 186–194.

[38] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and
transparent recursive proofs from holography,” in EUROCRYPT 2020,
Part I, ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12105.
Springer, Cham, May 2020, pp. 769–793.

[39] J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, pp. 701–717, 1980.
[Online]. Available: https://doi.org/10.1145/322217.322225

[40] R. Zippel, “Probabilistic algorithms for sparse polynomials,”
in Symbolic and Algebraic Computation, EUROSAM ’79, An
International Symposiumon Symbolic and Algebraic Computation,
Marseille, France, June 1979, Proceedings, ser. Lecture Notes in
Computer Science, E. W. Ng, Ed., vol. 72. Springer, 1979, pp. 216–
226. [Online]. Available: https://doi.org/10.1007/3-540-09519-5 73

[41] E. Ben-Sasson, D. Carmon, S. Kopparty, and D. Levit, “Scalable
and transparent proofs over all large fields, via elliptic curves -
(ECFFT part II),” in TCC 2022, Part I, ser. LNCS, E. Kiltz and
V. Vaikuntanathan, Eds., vol. 13747. Springer, Cham, Nov. 2022,
pp. 467–496.

[42] H. Zeilberger, B. Chen, and B. Fisch, “BaseFold: Efficient field-
agnostic polynomial commitment schemes from foldable codes,” in
CRYPTO 2024, Part X, ser. LNCS, L. Reyzin and D. Stebila, Eds.,
vol. 14929. Springer, Cham, Aug. 2024, pp. 138–169.

[43] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton, “Cryptographic
primitives based on hard learning problems,” in CRYPTO’93, ser.
LNCS, D. R. Stinson, Ed., vol. 773. Springer, Berlin, Heidelberg,
Aug. 1994, pp. 278–291.

[44] H. Liu, X. Wang, K. Yang, and Y. Yu, “The hardness of LPN over any
integer ring and field for PCG applications,” in EUROCRYPT 2024,
Part VI, ser. LNCS, M. Joye and G. Leander, Eds., vol. 14656.
Springer, Cham, May 2024, pp. 149–179.

[45] A. Esser, R. Kübler, and A. May, “LPN decoded,” in CRYPTO 2017,
Part II, ser. LNCS, J. Katz and H. Shacham, Eds., vol. 10402.
Springer, Cham, Aug. 2017, pp. 486–514.

[46] A. K. A. Jabri, “A statistical decoding algorithm for general
linear block codes,” in Cryptography and Coding, 8th IMA
International Conference, Cirencester, UK, December 17-19, 2001,
Proceedings, ser. Lecture Notes in Computer Science, B. Honary,
Ed., vol. 2260. Springer, 2001, pp. 1–8. [Online]. Available:
https://doi.org/10.1007/3-540-45325-3 1

[47] R. Overbeck, “Statistical decoding revisited,” in Information Security
and Privacy, 11th Australasian Conference, ACISP 2006, Melbourne,
Australia, July 3-5, 2006, Proceedings, ser. Lecture Notes in
Computer Science, L. M. Batten and R. Safavi-Naini, Eds.,
vol. 4058. Springer, 2006, pp. 283–294. [Online]. Available:
https://doi.org/10.1007/11780656 24

[48] M. P. C. Fossorier, K. Kobara, and H. Imai, “Modeling bit flipping
decoding based on nonorthogonal check sums with application to
iterative decoding attack of mceliece cryptosystem,” IEEE Trans.
Inf. Theory, vol. 53, no. 1, pp. 402–411, 2007. [Online]. Available:
https://doi.org/10.1109/TIT.2006.887515

[49] T. Debris-Alazard and J. Tillich, “Statistical decoding,” in 2017
IEEE International Symposium on Information Theory, ISIT 2017,
Aachen, Germany, June 25-30, 2017. IEEE, 2017, pp. 1798–1802.
[Online]. Available: https://doi.org/10.1109/ISIT.2017.8006839

[50] K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, and J.-P. Tillich,
“Statistical decoding 2.0: Reducing decoding to LPN,” in ASI-
ACRYPT 2022, Part IV, ser. LNCS, S. Agrawal and D. Lin, Eds.,
vol. 13794. Springer, Cham, Dec. 2022, pp. 477–507.

[51] E. Prange, “The use of information sets in decoding cyclic codes,”
IRE Trans. Inf. Theory, vol. 8, no. 5, pp. 5–9, 1962. [Online].
Available: https://doi.org/10.1109/TIT.1962.1057777

[52] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes
in Õ(20.054n),” in ASIACRYPT 2011, ser. LNCS, D. H. Lee and
X. Wang, Eds., vol. 7073. Springer, Berlin, Heidelberg, Dec. 2011,
pp. 107–124.

[53] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information
set decoding,” in EUROCRYPT 2012, ser. LNCS, D. Pointcheval and
T. Johansson, Eds., vol. 7237. Springer, Berlin, Heidelberg, Apr.
2012, pp. 520–536.

[54] P. Briaud and M. Øygarden, “A new algebraic approach to the regular
syndrome decoding problem and implications for PCG constructions,”
in EUROCRYPT 2023, Part V, ser. LNCS, C. Hazay and M. Stam,
Eds., vol. 14008. Springer, Cham, Apr. 2023, pp. 391–422.

[55] lambdaworks contributors, “lambdaworks,” 2023. [Online]. Available:
https://github.com/lambdaclass/lambdaworks

[56] S. Team, “ethstark documentation–version 1.1,” IACR preprint
archive 2021, Tech. Rep., 2021.

[57] C. Meadows, “A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available
third party,” in Proceedings of the 1986 IEEE Symposium on
Security and Privacy, Oakland, California, USA, April 7-9, 1986.
IEEE Computer Society, 1986, pp. 134–137. [Online]. Available:
https://doi.org/10.1109/SP.1986.10022

[58] B. A. Huberman, M. K. Franklin, and T. Hogg, “Enhancing
privacy and trust in electronic communities,” in Proceedings of
the First ACM Conference on Electronic Commerce (EC-99),
Denver, CO, USA, November 3-5, 1999, S. I. Feldman and
M. P. Wellman, Eds. ACM, 1999, pp. 78–86. [Online]. Available:
https://doi.org/10.1145/336992.337012

[59] E. De Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity,” in FC 2010, ser. LNCS, R. Sion,
Ed., vol. 6052. Springer, Berlin, Heidelberg, Jan. 2010, pp. 143–159.

[60] G. Ateniese, E. De Cristofaro, and G. Tsudik, “(If) size matters: Size-
hiding private set intersection,” in PKC 2011, ser. LNCS, D. Catalano,
N. Fazio, R. Gennaro, and A. Nicolosi, Eds., vol. 6571. Springer,
Berlin, Heidelberg, Mar. 2011, pp. 156–173.

[61] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS 2012. The Internet
Society, Feb. 2012.

[62] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Secu-
rity 2015, J. Jung and T. Holz, Eds. USENIX Association, Aug.
2015, pp. 515–530.

[63] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, “Efficient circuit-
based PSI via cuckoo hashing,” in EUROCRYPT 2018, Part III, ser.
LNCS, J. B. Nielsen and V. Rijmen, Eds., vol. 10822. Springer,
Cham, Apr. / May 2018, pp. 125–157.

[64] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in ACM CCS 2017, B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017,
pp. 1243–1255.

[65] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from fully
homomorphic encryption with malicious security,” in ACM CCS 2018,
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM Press,
Oct. 2018, pp. 1223–1237.

https://eprint.iacr.org/2016/046
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-45325-3_1
https://doi.org/10.1007/11780656_24
https://doi.org/10.1109/TIT.2006.887515
https://doi.org/10.1109/ISIT.2017.8006839
https://doi.org/10.1109/TIT.1962.1057777
https://github.com/lambdaclass/lambdaworks
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1145/336992.337012

[66] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko,
K. Laine, and M. Rosenberg, “Labeled PSI from homomorphic
encryption with reduced computation and communication,” in ACM
CCS 2021, G. Vigna and E. Shi, Eds. ACM Press, Nov. 2021, pp.
1135–1150.

[67] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets
big data: an efficient and scalable protocol,” in ACM CCS 2013, A.-R.
Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press, Nov. 2013,
pp. 789–800.

[68] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersec-
tion based on OT extension,” in USENIX Security 2014, K. Fu and
J. Jung, Eds. USENIX Association, Aug. 2014, pp. 797–812.

[69] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,”
in ACM CCS 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds. ACM Press, Oct. 2016, pp. 818–829.

[70] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “SpOT-light:
Lightweight private set intersection from sparse OT extension,” in
CRYPTO 2019, Part III, ser. LNCS, A. Boldyreva and D. Micciancio,
Eds., vol. 11694. Springer, Cham, Aug. 2019, pp. 401–431.

[71] M. Chase and P. Miao, “Private set intersection in the internet setting
from lightweight oblivious PRF,” in CRYPTO 2020, Part III, ser.
LNCS, D. Micciancio and T. Ristenpart, Eds., vol. 12172. Springer,
Cham, Aug. 2020, pp. 34–63.

[72] J. Camenisch and G. M. Zaverucha, “Private intersection of certified
sets,” in FC 2009, ser. LNCS, R. Dingledine and P. Golle, Eds., vol.
5628. Springer, Berlin, Heidelberg, Feb. 2009, pp. 108–127.

[73] F. Kerschbaum, “Outsourced private set intersection using homomor-
phic encryption,” in ASIACCS 12, H. Y. Youm and Y. Won, Eds.
ACM Press, May 2012, pp. 85–86.

[74] S. K. Debnath and R. Dutta, “Secure and efficient private set intersec-
tion cardinality using bloom filter,” in ISC 2015, ser. LNCS, J. Lopez
and C. J. Mitchell, Eds., vol. 9290. Springer, Cham, Sep. 2015, pp.
209–226.

[75] S. Faber, R. Petrlic, and G. Tsudik, “Unlinked: Private proximity-
based off-line OSN interaction,” in Proceedings of the 14th ACM
Workshop on Privacy in the Electronic Society, WPES 2015,
Denver, Colorado, USA, October 12, 2015, I. Ray, N. Hopper, and
R. Jansen, Eds. ACM, 2015, pp. 121–131. [Online]. Available:
https://doi.org/10.1145/2808138.2808149

Appendix

1. Proof of Theorem 1

Proof. We first argue for a single execution of the
Committing Phase and the Intersection Phase and later
show how to extend to the general definition.

Corrupt sender: Consider the simulator SimSen:
• Committing Phase:

1) SimSen sends a polynomial commitment σ′ to a
random polynomial of degree n+MRec to the sender
and receives back a commitment σ.

2) SimSen extracts the input X based upon σ. More
formally, recall that to commit to a polynomial, a
party commits to the Merkle root corresponding to
the Merkle tree on the evaluations of the polynomial
at roots of unity. Thus, X can be extracted based
upon the queries made to the RO by the sender in a
top-down fashion in the Merkle tree.

3) SimSen sends X to the ideal functionality FPICS.
• Intersection Phase:

1) The simulator receives some value α from the sender.
2) When the sender invokes FVOLE, SimSen plays the

role of FVOLE. Given ∆ ∈ F,B ∈ Fn′
from the

sender, the simulator samples random A
$←− Fn′

and
sets C = ∆A+B.

3) SimSen samples random A′ $←− Fn′
and v

$←− F and
sends it to the sender.

4) Upon receiving r from the sender, the simulator
opens the commitment σ′ at r, to say a value β, and
sends C(r) = (A′(r)− β)∆ +B(r) to the sender.

5) Observe that the check A′(r) = ∆−1 · (C(r) −
B(r)) + P (r) passes by our definition of C ′(r).
SimSen now receives (Z, u, π) from the sender.

6) If the NIZK proof is accepted, SimSen runs the
knowledge soundness extractor to obtain the witness
(X′′,T). Based on the H(T (δ2i−1), T (δ2i)) queries
made to the RO, the simulator can also extract X′

i.e., compute all x′ such that the sender queries
(t′, x′) to the RO where t′ = Decode(K, x′) −
∆HF(x′) + w If either X ̸= X′′ or X′ is not a
subset of X, abort.

7) SimSen sends X′ to the ideal functionality FPICS.
We first argue correctness i.e., that the receiver receives X ′∩
Y ′ if an abort did not happen. Observe that the soundness of
our NIZK proof implies that T (x)−X(x) = D(x).(xm−1)
holds. This implies that the m-th roots of unity are roots of
T (x) − X(x). Thus, T (ωi) = X(ωi) = xi. Recall that
ωi = δ4ci and thus T (δ4ci) = xi. This implies that the
values in Z are of the form (t′i, xi). Observe that only the
xi such that t′i = ti occur in the output because X ′ satisfies
this condition. More formally, for all ti, for all j, i = 2c · j,
we have

H(T (δ2i−1), T (δ2i)) = H(T (δ4cj−1), T (δ4cj))

= H(tj , xj) = H(Decode(K, xj)−∆HF(xj) + w, xj)

Now, if xj = y for some y ∈ Y , we have

Decode(K, xj)−∆HF(xj) + w

= Decode(∆A′ +B, xj)−∆HF(xj) + w

= Decode(∆A+B, xj) + Decode(∆P, xj)

−∆HF(xj) + w

= Decode(C, y) + ∆Decode(P, y)−∆HF(y)

= Decode(C, y) + w

Therefore, we have H(T (δ2i−1), T (δ2i)) =
H(Decode(C, y) + w, y) and so, xj appears in the output.
By a similar argument, it can be seen that all xj /∈ Y do
not appear in the output (∵ Decode(P, xj) ̸= HF(xj) and
∆ ̸= 0 both hold with very high probability).
All that remains to be shown is that the output of SimSen

is computationally indistinguishable from the view of the
sender. We show this via a sequence of hybrids:

• H0: Transcript is generated as in the real protocol.

https://doi.org/10.1145/2808138.2808149

• H1: This hybrid is identical to the previous one, except
that we replace C ′(r) with the value in SimSen.

• H2: This hybrid is identical to the previous one, except
that we change A′ to a random value as in SimSen.

• H3: This hybrid is identical to the previous one, except
that we substitute σP () with σ′ as in SimSen. Also,
replace the actual opening with β. and the correspond-
ing opening proof with the output of the simulator for
the polynomial commitment scheme (hiding property).
Observe that we now arrive at the output of SimSen.

Now,
• H0 ≈c H1: Even though C ′(r) was defined differently,

it is the same value if abort does not happen.
• H1 ≈c H2: Since A is a random n′ length vector,
A+P hides P similar to a one-time pad.

• H2 ≈c H3: Observe that the value P (r) sent is iden-
tical in both distributions since we work with MRec

randomized degree extensions. The opening proof is
identically distributed as well via the hiding property
of the polynomial commitment scheme.

Corrupt receiver: Consider the simulator SimRec:
• Committing Phase:

1) SimRec sends a polynomial commitment σ′ to a ran-
dom polynomial of degree n+MSen to the receiver
and receives back a commitment σ.

2) SimRec extracts the input Y of the receiver based
upon σ. Similar to SimSen, the OKVS P can be
extracted and Y can be extracted from P based on
RO queries made and consistency checks with P.

3) SimRec sends Y to the ideal functionality FPICS.
• Intersection Phase:

1) SimRec sends α
$←− F to the receiver.

2) When the receiver invokes FVOLE, SimRec plays the
role of FVOLE. Given A,C ∈ Fn′

from the receiver,
sample ∆

$←− F and sets B = C−∆A.
3) Upon receiving (A′, v) from the receiver, extract

P = A′ − A and check consistency with Y. If
inconsistent, SimRec finds r such that the check fails
and sends it to the receiver. Else, send r

$←− F.
4) When the receiver opens the commitment σ at r and

sends C(r), SimRec aborts based on the last step.
5) SimRec sends Y to FPICS and gets back the output

O. Sample a random u
$←− F and program the RO

such that HF(u) = α. Define w = u + v and K =
∆A′ + B. For oi ∈ O, compute H(ti, oi) (where
ti = Decode(K, oi)−∆HF(oi)+w) and interpolate
these values to obtain the polynomial T (·) (If degree
is less, pad random evaluations.) SimRec can now
compute Z using T (·). Generate πNIZK using the
simulator for the NIZK (zero knowledge property).
Send all these values to the receiver.

Since the sender receives no output, correctness follows
directly. We now show that the output of SimRec is com-
putationally indistinguishable from the view of the receiver.
We show this via a sequence of hybrids:

• H0: Transcript is generated as in the real protocol.

• H1: This hybrid is identical to the previous one, except
that we send random α at the start and later choose a
random u and program HF(u) = α

• H2: This hybrid is identical to the previous one, except
that we now change the way the set Z is defined

• H3: This hybrid is identical to the previous one, except
that we replace the ZK proof with the one in SimRec

• H4 : This hybrid is identical to the previous one, except
that we now replace r and the abort condition

• H5: This hybrid is identical to the previous one, except
that we now replace σX() with σ′. Also, replace the
opening proof with the output of the simulator for
the polynomial commitment scheme (hiding property).
Observe that we now arrive at the output of SimRec.

Now,
• H0 ≈c H1: Observe that since u is sampled u.a.r, it is

never queried to the RO with very high probability, in
which case both distributions are identical.

• H1 ≈c H2: This follows since u is sampled randomly
at the last step, w is independently and randomly sam-
pled, and thus all the elements of O corresponding to
the non-output entries look random since ∆ is sampled
u.a.r. Interested readers can refer to [9] for more details.

• H2 ≈c H3: This follows from ZK property of NIZK.
• H3 ≈c H4: Suppose the receiver committed to a poly-

nomial P (x) during the Committing Phase. Assume
that the receiver sent A′ ̸= A+P and some potentially
incorrect value C ′(r). Now, assume the check passed.
Then, ∆(A′(r) − P (r)) = C ′(r) − B(r) Substituting
and rearranging, we get ∆ = C′(r)−C(r)

A′(r)−A(r)−P (r)

Observe that the polynomial A′(x) − A(x) − P (x) is
non-zero since A′ ̸= A + P and so by the Schwartz-
Zippel lemma, A′(r) − A(r) − P (r) ̸= 0 which is
why we can divide in the above equation. Observe that
all values in the RHS are known to the receiver. This
allows him to compute ∆, but the only value given after
the VoLE execution was a randomly sampled r. This
violates the security of VOLE. Therefore, A′ must be
equal to A+P with very high probability if the check
passed. Thus, we can safely change the abort condition.

• H4 ≈c H5: Observe that X(r) is identical in both
distributions since we work with MSen randomized
degree extensions and cntSen < MSen. The opening
proof is identically distributed as well via the hiding
property of the polynomial commitment scheme.

To extend this proof to Definition 5, we can compose
the simulators directly i.e., for each event Ei, if Ei is
a Committing Phase (or Intersection Phase), we run the
corresponding simulator respectively. This works because:

1) All hash queries during the Intersection Phase used
in computing the output involve the use of a random
coin w which is different for each execution with high
probability and so, programming the RO can be done
independently during each execution.

2) The polynomials committed during the
Committing Phase have enough randomness to
support MSen and MRec intersections respectively.

Thus, the ZK property and hiding property of
polynomial commitments hold across all executions.

2. Proof of Theorem 2

Proof. We show that the protocol satisfies all properties:
Completeness: Follows trivially.
Knowledge Soundness: Consider the following extractor E :

1) E interacts with P ∗ to get a commitment σD

2) Sample r u.a.r. and send it to P ∗ who sends back
X(r), T (r), D(r).

3) Keep rewinding to the start of step 2 until you receive
max deg(X(·), T (·), D(·)) many values that satisfy the
check. Use these to interpolate all polynomials. Abort
if you rewind more than a polynomial number of times.

Note that the max degree is polynomial in |X|. Furthermore,
we abort after some polynomial number of rewinds. Thus,
E is clearly poly-time. It is also easy to see that if an
adversary succeeds in coming up with a valid proof with
non-negligible probability, then our extractor that rewinds
a polynomial number of times also succeeds with non-
negligible probability.
Zero Knowledge: Consider the following simulator S:

1) S commits to a random polynomial D(·).
2) S queries V on the statement to get r. Program the RO

such that D(r) opens to (T (r)−X(r))/(rm − 1). We
note that this can be done in the FRI polynomial com-
mitment scheme. For the sake of completeness, we give
a high-level idea for the same: The FRI opening proof
can be seen as a O(log d) round interactive protocol (d
is the degree of the polynomial committed), where in
each round, a set of O(λ) checks are done. Each check
requires opening authentication paths in the Merkle tree
corresponding to certain roots of unity. Now, we can
program all values along these authentication path such
that each check passes. More concretely, the check is
a linear relation between D(ωi), D(−ωi) and D′(ω2).
Irrespective of D(ωi) and D′(ω2) 9, we can find a value
V such that the check passes. We program the parent
of the leaf node corresponding to D(−ωi) to be a valid
evaluation of the RO on either V ||R or L||V , where
L,R are the respective left and right nodes, depending
upon the position of V .

3) S opens X(r), T (r), D(r)

Observe that the check done by the verifier clearly
passes. Since all polynomials are suitable randomized degree
extensions, revealing evaluation at a single point does not
reveal anything about the witness. The opening proofs also
leak nothing via the hiding property of the polynomial
commitment scheme.

9. This polynomial D′(·) is dependent on D(·). We refer the reader to
[18] for further details.

	Introduction
	Our Framework
	Our Contributions
	Example Applications
	Our Techniques
	Starting Idea
	Overview of VOLE-PSI EC:RinSch21
	Proving Consistency Between Initial and Implicit Input Commitments

	Preliminaries
	Notation
	Oblivious Key-Value Stores (OKVS)
	Secure Multi-Party Computation
	Vector Oblivious Linear Evaluation (VOLE)
	Polynomial Commitment Schemes
	Zero-Knowledge Proofs/Arguments

	Defining Private Intersection over Committed Sets (PICS)
	Constructing Private Intersection over Committed Sets (PICS)
	Main Ideas
	Sender
	Receiver

	Our Construction
	Extensions

	Implementation and Evaluation
	Implementation Details
	Experimental Results
	Related Work

	References
	Appendix
	Proof of thm:maintheorem
	Proof of thm:nizktheorem

