
Zeus: Defending against Fee Stealing and Griefing Attacks in
Multi-Hop Payments

Jingyu Liu

jliu514@connect.hkust-gz.edu.cn

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, Guangdong, China

Yingjie Xue

yjxue@ustc.edu.cn

University of Science and Technology

of China

Hefei, Anhui, China

Di Wu

wu.di@zju.edu.cn

Zhejiang University

Hangzhou, Zhejiang, China

Jian Liu

liujian2411@zju.edu.cn

Zhejiang University

Hangzhou, Zhejiang, China

Xuechao Wang

xuechaowang@hkust-gz.edu.cn

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, Guangdong, China

Abstract
Payment Channel Networks (PCNs) are the most scalable and trust-

minimized solution to Bitcoin’s scalability challenges. Within PCNs,

connected payer and payee can make arbitrary off-chain transac-

tions through multi-hop payments (MHPs) over payment channel

paths, while intermediate relays charge relay fees by providing

liquidity. However, current MHP protocols face critical security

threats including fee-stealing attacks and griefing attacks. In this

paper, we identify new fee-stealing attacks targeting most exist-

ing MHP protocols. Second, we prove that eliminating griefing

attacks in current MHP protocols is impossible by reducing the

problem to fair secret exchange. Finally, we introduce Zeus, the
first Bitcoin-compatible MHP protocol that is secure against fee-

stealing attacks and offers bounded griefing protection against

𝑘-cost-sensitive adversaries—those who only launch griefing at-

tacks when the expected damage exceeds a 𝑘 fraction of their own

cost. These guarantees are established through rigorous proofs in

the Global Universal Composability (GUC) framework. Our com-

prehensive evaluation demonstrates that Zeus reduces worst-case
griefing damage to 28% and 75% compared to MHP schemes such as

AMHL (NDSS’19) and Blitz (USENIX SEC’21), respectively. Our re-

sults further show that, even under the most adverse configurations

within the Lightning Network, Zeus imposes costs on adversaries

that are at least ten times greater than their potential damage.

CCS Concepts
• Security and privacy→ Distributed systems security.

Keywords
Payment Channel Networks, Fair Exchange, Griefing Attack,Worm-

hole Attack

1 Introduction
Payment channel networks (PCNs), exemplified by Lightning Net-

work (LN), are one of the most promising solutions to solve the

scalability problem of Bitcoin. Compared to other scalability solu-

tions, such as sidechains, rollups, PCNs stand out by not introducing

additional security assumptions [44] (e.g., reliance on external com-

mittees), rendering them the trust-minimized solutions for scaling

Bitcoin. Since the introduction of LN in 2015, LN now processes

more than 15% of total BTC transactions [51].

In PCNs, transactions can be conducted off-chain. Given a pay-

ment channel, two users can securely conduct numerous payments,

while only burdening the blockchain with two transactions (open-

ing and closing) [43]. Creating direct channels with every potential

user is inefficient due to the need to lock BTC on mainnet. Conse-

quently, multi-hop payment (MHP) protocols emerge [8, 32, 33, 43],

enabling payments between indirect payer and payee through inter-

mediate relays. Most MHP protocols adopt a lock-resolve paradigm

to ensure atomic channel updates [8, 32, 33, 36, 43]. For ease of expo-

sition, we use the most widely adopted Hashed Timelock Contract

(HTLC) based MHP
1
to show how to realize multi-hop payments.

Other solutions share similar basic structures as HTLC-based MHP.

As illustrated in Fig. 1, HTLC-based MHP follows a lock-resolve

paradigm: in the lock phase, starting from the payer 𝑈0, each left

user𝑈𝑖 makes a conditional payment to its right neighbor𝑈𝑖+1, with
the amount 𝑣𝑖 = 𝑥 +∑𝑛

𝑗=𝑖+1 𝑓𝑗 through the intermediate channel 𝛾𝑖 ,

where 𝑥 is the payment amount and 𝑓𝑗 is the relay fee towards relay

𝑈 𝑗 . The unlock condition of 𝑈𝑖 ’s payment is: once the preimage

of a hash ℎ (denoted by 𝑠) is revealed before 𝑡𝑖
2
, the locked fund

is given to𝑈𝑖+1; otherwise, it is refunded to𝑈𝑖 . Once all funds are

locked, payee𝑈𝑛+1 enters the resolve phase, gives the preimage 𝑠 to

𝑈𝑛 and asks 𝑈𝑛 to update channel 𝛾𝑛 , where the new state directly

gives the locked fund 𝑣𝑛 to 𝑈𝑛+1. If 𝑈𝑛 refuses, 𝑈𝑛+1 can always

close channel and redeem 𝑣𝑛 on-chain. Subsequently,𝑈𝑖+1 redeems

the payment from𝑈𝑖 , until𝑈0’s payment gets redeemed.

4.

5. redeem with

6. reveal to directly

3. 2. 1.

6. redeem with 7. redeem with 8. redeem with

7. timeout/revoke funds locked by victim
Adversarial case:

Figure 1: HTLC-based MHP protocol and wormhole attack.

1
It supports LN with ∼ 50M USD TVL as of April 2025, with price ∼ 82k USD per BTC.

We use this price for all conversions between BTC and USD throughout this paper.

2
As shown in the figure, 𝑡0 = 4𝛿 , and 𝑡𝑖+1 = 𝑡𝑖 − 𝛿 , 𝛿 is number of blocks a node has

to settle a stalled payment before it could potentially lose money. In LN, 𝛿 is at least

18 Bitcoin blocks [1]. For comparison, the block confirmation time Δ is 6 blocks.

1

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

1.1 Challenges
The lock-resolve paradigm introduces vulnerabilities for achiev-

ing secure and efficient multi-hop payment over payment channel

networks, as we demonstrate below.

Fee Stealing Attack. MHPs face fee-stealing attacks where the
payee receives payments while relays go unpaid, exemplified by

the wormhole attack [33]. Incremental-lock protocols (Fulgor [32],

AMHL [33], EAMHL+ [54], Astrape [16]) enforce atomicity via

a trusted payer setup (secrets generation), assuming payer hon-

esty [33, 46]. However, we observe that the payer can profitably

deviate (detailed in Section 3), violating incentive compatibility.

These protocols fail to ensure that rational payers behave honestly.

Griefing Attack. Griefing attacks in MHPs allow a malicious payer

to initiate doomed payments (including loop attacks [48]), locking

relay funds until timeout expiration [37, 41, 47]. These attacks

can isolate critical nodes and disrupt network operations. Existing

defenses—path restrictions [47], rerouting [19], and reputation/fee

systems [28, 50]—remain insufficient. As discussed in Section 1.3,

these solutions are either hindered by the permissionless natural

of PCNs, or introduce unfairness for honest participants.

Moreover, in most MHP protocols, such as the HTLC-based

MHP [43], Fulgor [32], and AMHL [33], the timeout set for funds

locked at each channel 𝛾𝑖 must be progressively longer than that of

the subsequent relay 𝑈𝑖+1 to guarantee the balance security [33].

For example, in Fig.1, the timeout 𝑡𝑖 increases by one 𝛿 at each

hop from right to left, where 𝛿 is a safe timelock gap (≥ 18 Bitcoin

blocks in LN [1]). Given a 𝑛-hop payment with value 𝑥 , an adver-

sary can inflict a disproportionately larger griefing damage—defined
as the total fund times their locking time for innocent intermedi-

aries—amounting to Θ(𝑛2 ·𝛿 ·𝑥). Based on the current LN topology,

griefing a single 200 USD MHP can equate to immobilizing 11,878

USD-hours of liquidity for relays. Payment rejection by the payee

enables an infinite griefing factor (damage-to-cost ratio [21]) at

zero cost.

Recent works (Sprites [36], AMCU [17], Blitz [8]) use global

on-chain events to enforce payment atomicity, achieving constant

timeout per hop, reducing the griefing damage to Θ(𝑛 · 𝛿 · 𝑥). Blitz
further forces malicious payers to post on-chain transactions, rais-

ing attack cost. However, it fails to prevent the zero-cost griefing

launched by the payee and remains vulnerable to fee-stealing at-

tacks (Section 3).

Research Question. Is it possible to design a Bitcoin-compatible
MHP protocol that simultaneously achieves both fee-stealing resis-
tance and griefing resistance?

1.2 Contributions
Identification of Fee Stealing Vulnerabilities within Existing
Bitcoin-Compatible MHPs. We identify that, for incremental-

lock based MHPs (e.g., Fulgor [32], AMHL [33], and Astrape [16])

requiring a payer-side trusted setup, it is not incentive compatible

for payers to stay honest after the setup phase. The key insight is

that payers can engage in the illicit sale of setup secrets to malicious

relays, a collusive action which increase the payoff for both the

payer and the complicit malicious relay. For Blitz, we discover that

colluding relays can steal relay fees by exploiting its fast revoke

mechanism (see Section 3.2). Our empirical analysis in Section 8

underscores the acute vulnerability of the current LN topology to

fee-stealing attacks. Remarkably, it is shown that the engagement

of less than 0.6% of total relays in fee-stealing activities allows an

adversary to amass roughly 50% of all distributed relay fees.

Impossibility of Griefing Resistant MHPs. We model lock-

resolve MHPs and prove that no such MHP with multiple relays

can achieve griefing resistance against malicious adversaries. Our

proof reduces the griefing resistant MHPs to fair secret exchanges,

where two parties exchange their secrets atomically. We then prove

that such fair secret exchange is impossible within the context of

public blockchains. This result provides theoretical insights with

direct implications for many blockchain-based protocols, such as

atomic swaps, decentralized data markets, and cross-chain bridges,

which may be of independent interest.

Zeus: A Secure MHP Protocol.We propose Zeus, the first Bitcoin-
compatible MHP simultaneously achieves:

• Fee-Stealing Resistance. We identify that fast-revoke (design to

improve the efficiency) is the root of the fee stealing risks. To

prevent this, we remove the fast-revoke procedure and instead

introduce a refundable deposit that the payer locks before the
payment begins, maintaining the same level of efficiency as Blitz.

We further ensure deposit fairness: a honest payer can always

claim their deposit back, while deposits will be forfeited if the

payer attempts to grief the payment.

• Griefing Resistance against k-Cost-Sensitive Adversaries. As grief-
ing resistance is impossible within the current MHP paradigm,

Zeus defends griefing by (i) lowering the griefing damage via

constant timelocks for all channel funds (payment-length agnos-

tic) and (ii) increasing the griefing cost for any adversary. For (ii),

we first disincentivize payee-side griefing by letting the payee

post a small on-chain stake (a few USD). This stake is then effec-

tively augmented by off-chain premiums locked by the payee,

scaled to the potential griefing damage, thereby increasing the

payee’s griefing cost. Second, to prevent the payer from griefing

these premiums, the payer will place a small refundable off-chain

deposit to the payee (routed by relays). Should the payer attempt

to grief, this deposit is forfeited to compensate the relays and

the payee. Last, even in scenarios involving colluding payer and

payee, griefing the MHP necessitates at least two distinct on-

chain transactions. Our evaluation demonstrates that, even in

the worst-case setting in LN, Zeus maintains a griefing factor

below 0.1. For typical payment scenarios (e.g., payment ≤ $500),

the griefing factor drops significantly to below 0.01 ≪ 1.

Formal Security Analysis and Evaluation.We provide a com-

prehensive security analysis of Zeus using the global universal com-

posability (GUC) framework [14]. This rigorous approach proves

the security of Zeus by defining its ideal functionality capturing

all properties, then demonstrates that our construction securely

realizes it. We implement Zeus within Bitcoinjs-lib [2] and evaluate

it using real LN topology captured in March 2025. Our evaluation

shows that Zeus achieves a griefing factor lower than 0.1 for any

griefing adversaries. For griefing damage, compared to the state-

of-the-art solution Blitz, Zeus reduces griefing damage by 25%, and

achieves a 72% reduction relative to widely adopted HTLC and

AMHL. At the protocol level, Zeus decreases on-chain transaction

2

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

cost by 10.3% in dispute resolution scenarios compared to HTLC

and AMHL.

1.3 Related Works

Protocols Fee Security Collateral Griefing
Factor Script

HTLC-based [43] ✗ Linear ∞ BTC

Sprites [36] ✗ Constant ∞ SC

Fulgor [32], AMHL [33] honest payer Linear ∞ BTC

Payment Tree [26] honest payer & payee Logarithmic ∞ BTC

HTLC-GP [34] honest payee Linear ∞ SC

Blitz [8] ✗ Constant ∞ BTC

Zeus (this work) ✓ Constant ≤ 0.1∗ BTC

Table 1: Comparison of MHP protocols. BTC: Bitcoin script, SC:
Smart Contract. For typical payments ranging from $10 to $500,
griefing factors drop to below 0.01 ≪ 1.

MHPs. Existing MHP protocols have made significant strides, yet

each faces distinct limitations, as summarized in Table 1. Beginning

with Fulgor [32], several protocols (e.g., AMHL [33], EAMHL+ [54],

and Astrape [16]) have emerged to address the wormhole attack.
These protocols, which we term incremental-lock based MHPs, are

widely considered in industry as the replacement to vulnerable

HTLC-based approaches. They employ different cryptographic

primitives (e.g., zero knowledge proofs, homomorphic one-way

functions) to ensure strong atomicity - guaranteeing that𝑈𝑖 ’s pay-

ment can be redeemed only if all preceding sub-payments have

been redeemed. Rain et al. [46] validate that these MHPs can effec-

tively prevent the wormhole attack through game-theoretic anal-

ysis. However, these protocols rely on trusted setup performed

by payers, and require payers to stay honest during the follow-

ing execution. Moreover, these MHPs inherit the linear collateral
inefficiency and griefing risks from HTLC-based MHP. Linear col-

lateral means the timelock along the MHP increases along the

payment, thereby leading to a griefing damage with quadratic com-

plexity with respect to the path length. To reduce the total col-

lateral, Sprites [36] pioneered the use of global state through an

on-chain preimage manager contract. While innovative, this ap-

proach requires smart contract beyond Bitcoin’s capabilities. Sub-

sequent efforts to adapt these concepts to Bitcoin’s UTXO model

include AMCU [17], which was later proven insecure by Payment

Tree [26]. Although Payment Tree achieved logarithmic collateral,

it remains vulnerable to the Domino attack [9], where a party can

force close all involved channels on-chain. Blitz [8] first securely

achieves constant-collateral but only partially mitigates the grief-

ing attacks. Blitz introduced the “pay-or-revoke” paradigm, which

has been widely adopted in protocols like Thora [6], Donner [9]

and X-Transfer [31]. Section 3.2 will further demonstrate that Blitz

remains vulnerable to fee stealing.

Griefing Mitigation. To mitigate griefing attacks within MHPs,

several works [19, 28, 47, 50] introduce different mitigations. Path

restrictions [47] and reputation systems [50] are fundamentally

limited by the permissionless nature of PCNs, making enforcement

and reliable identity tracking infeasible. Fee-based [28] approaches

require endpoints to pre-pay non-refundable fees regardless of

payment success, introducing unfairness and discouraging honest

participation. Rerouting [19] shifts additional cost to victim relays,

exacerbating fairness issues and failing to deter determined adver-

saries. However, these approaches either bring unfairness or require

additional assumptions. For instance, HTLC-GP [34] requires an

“honest payee” setup and utilized smart contract capabilities to

achieve dynamic fee rates.

In atomic swaps [22, 25], a domain closely related to MHPs,

Xue and Herlihy [52] have shown that griefing attacks can be

reduced to a negligible level through multiple rounds of premiums.

However, the dust limit-the minimum payment value in Bitcoin-

compatible PCNs-renders this approach infeasible for MHPs, as

detailed in Section 5. Grief-free Swap [38] uses a similar premium-

based mechanism compatible with Bitcoin scripts and claims to

eliminate griefing by binding the premium and principal locking

within a single transaction. Nevertheless, one participant can refuse

to sign the transaction, thereby implicitly griefing the principal

reserved by its counter-party.

2 Background and Model
UTXO Ledger and Payment Channel Networks. Bitcoin is

an Unspent Transaction Outputs (UTXO) ledger, modeled by an

ideal functionality GL [7]. A valid transaction submitted to GL
consumes existing UTXOs and creates new UTXOs. For a trans-

action 𝑡𝑥 := (id, Ins, ScriptSigs,Outs), tx.id is the unique identifier,

tx.Ins := (𝜇1, . . . , 𝜇𝑛) is the list of inputs, where each 𝜇𝑖 contains

a reference to a UTXO, identified by the source transaction’s id

𝜇𝑖 .id and an index 𝜇𝑖 .idx. tx.ScriptSigs := (𝜆1, . . . , 𝜆𝑛) is the list of
scripts that unlock inputs, and tx.Outs := (𝜃1, . . . , 𝜃𝑚) is the list of
outputs. For each output 𝜃𝑖 , 𝜃𝑖 .amt is the amount of coins, and 𝜃𝑖 .𝜙

is the locking script of this output.

A PCN can be modeled as an ideal functionality F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 [7],
that supports channel opening, updating, and closing. Each channel

𝛾 has a unique identifier 𝛾 .id, left and right users (𝛾 .𝑙𝑢, 𝛾 .𝑟𝑢), a cur-

rent state 𝛾 .state that contains a list of outputs 𝜃1, . . . , 𝜃𝑛 . Channel
splicing [49] is widely-supported scheme in LN that allows chan-

nel owners to partially withdraw/add in-channel funds on-chain

without closing the channel. This operation avoids the standard

overhead of channel closure and reopening while preserving re-

maining funds for continued off-chain operations.

MHP Model. Let a n-hop payment be defined as a tuple M =

(𝑈 , Γ, 𝑥, Fees,S) where 𝑈 = (𝑈0,𝑈1, ...,𝑈𝑛,𝑈𝑛+1) is an ordered se-

quence of 𝑛 + 2 parties with payer𝑈0, payee𝑈𝑛+1, and intermediate

relays 𝑈1 through 𝑈𝑛 . Γ = (𝛾0, ..., 𝛾𝑛) denotes the payment chan-

nels, where 𝑈𝑖 establishes channel 𝛾𝑖 with𝑈𝑖+1. Payer 𝑈0 makes a

payment with amount 𝑥 to the payee𝑈𝑛+1. We denote the payment

𝑥 as principal in the following context. Fees = (𝑓1, ..., 𝑓𝑛) represents
the sequence of relay fees where 𝑓𝑖 is the fee charged by the relay

𝑈𝑖 . We denote the cost of the transaction on the chain as 𝐹 . For each

𝛾𝑖 , S𝑖 ∈ S, S𝑖 defines all the possible states derived from an initial

idle state. Each state specifies a list of token distributions mapped

with spending conditions (signatures or specific constraints). In

lock-resolve MHPs, each 𝛾𝑖 has three possible states:

locked : ({𝑙𝑏𝑖 − 𝑣𝑖 : 𝑈𝑖 }, {𝑟𝑏𝑖 : 𝑈𝑖+1}, {𝑣𝑖 : cond𝑖 }),
paid : ({𝑙𝑏𝑖 − 𝑣𝑖 : 𝑈𝑖 }, {𝑟𝑏𝑖 + 𝑣𝑖 : 𝑈𝑖+1}),

unpaid : ({𝑙𝑏𝑖 : 𝑈𝑖 }, {𝑟𝑏𝑖 : 𝑈𝑖+1}),
3

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

where 𝑙𝑏𝑖 , 𝑟𝑏𝑖 are initial balances of channel 𝛾𝑖 , 𝑣𝑖 = 𝑥 +∑𝑛
𝑗=𝑖+1 𝑓𝑗

is the locked amount, and cond𝑖 is the spending condition for the

locked funds.

Lock-Resolve MHPs execute in two phases:

1) Lock Phase: From 𝑈0 to 𝑈𝑛 , 𝑈𝑖 sends a lock message𝑚𝑖
𝑙𝑜𝑐𝑘

(e.g.,

𝑈𝑖 ’s signature over the locked channel state) to the right user𝑈𝑖+1,
updating channel 𝛾𝑖 to locked state.

2) Resolve Phase: Before a predefined deadline𝑁 , participants invoke

the resolution process, updating each channel 𝛾𝑖 to paid state if

the spending condition cond𝑖 met. Otherwise, reset 𝛾𝑖 to unpaid.
Communication Model. We assume 1) authenticated, private

communication channels F𝑠𝑒𝑐 [13] among adjacent participants;

2) a synchronous network model [27], where communication has

a bounded 1-round delay; 3) any message sent to the ledger GL is

public and is processed by the ledger within Δ rounds. Δ refers to

the upper bound of the blockchain confirmation time. (𝑚) 𝜏←−↪ Q
presents a message𝑚 sent from party Q is received at round 𝜏 .

Minimum Security Requirements. Here we define the well-

established minimum security requirements for MHP protocols [8,

18, 32, 33]. Our definition is directly derived from [18]. Let ΠMHP

be a protocol for M and A be a probabilistic polynomial time

(PPT) adversary controlling all but honest parties. Any ΠMHP must

satisfy:

Definition 2.1 (Balance Security). When ΠMHP terminates: 1) the

balance of any honest relay 𝑈𝑖∈[1,𝑛] will not decrease compared

with its initial balance, and 2) if payer𝑈0 and payee𝑈𝑛+1 are honest,
𝑈0 pays𝑈1 in the first channel 𝛾0 only if𝑈𝑛+1 gets paid in 𝛾𝑛 .

Definition 2.2 (Correctness). If all channels have sufficient bal-

ances and the parties are honest, then the payment will be settled

off-chain, and each relay𝑈𝑖 gets the relay fee 𝑓𝑖 .

Definition 2.3 (Coin Availability). For any honest𝑈𝑖∈[0,𝑛+1] , its
funds will never be locked forever.

These properties provide minimal security, but fail to prevent

sophisticated fee stealing attacks like wormhole attacks or the

griefing attacks.

Fee Security. So we strengthen MHP security by formally intro-

ducing fee security. This definition ensures that once a payment is

settled off-chain, all honest relays are guaranteed to receive their

fees.

Definition 2.4 (Fee Security). Given an MHP, for any honest relay

𝑈𝑖∈[1,𝑛] , if the payee 𝑈𝑛+1 receives the payment off-chain, then 𝑈𝑖

must receive the relay fee 𝑓𝑖 if it has forwarded this payment.

Griefing Resistance. Now we strengthen the MHP security by

introducing griefing resistance. Compared with fee stealing, grief-

ing attacks are usually performed by endpoints, and the attack-

ers do not care whether payments are successful or not. We first

denote the possible griefing coalition as S𝐴 , which includes at

least one endpoint (payer or payee). And the adversary can further

corrupt the relays. Formally, S𝐴 := A
endpoints

∪ A
relays

, where

∅ ≠ A
endpoints

⊆ {𝑈0,𝑈𝑛+1} and Arelays
⊆ {𝑈1, . . . ,𝑈𝑛}. We de-

fine the griefed relay set as 𝑆𝐺 . A relay 𝑈𝑟 ∈ 𝑆𝐺 if 𝑈𝑟 locks funds

but does not get the corresponding relay fee. We formalize griefing

resistance in two different settings: 1) griefing resistance against ma-
licious adversaries (strong griefing resistance): Guarantees honest
relays cannot be grieved against any S𝐴;

Definition 2.5 (Griefing resistance against malicious adversaries).
For any honest𝑈𝑖∈[1,𝑛] and PPT adversary A controlling any S𝐴 ,
if𝑈𝑖 locks funds, then𝑈𝑖 gets the corresponding relay fee 𝑓𝑖 .

2) Griefing resistance against cost-sensitive adversaries: To refine

the analysis of griefing attacks, for𝑈𝑡 ∈ 𝑆𝐺 , we introduce its griefing
damage 𝐺𝐷𝑡 . 𝐺𝐷𝑡 quantifies the liquidity loss from 𝑈𝑡 ’s locked

collateral. This is formally 𝐺𝐷𝑡 := 𝑟 · (𝐹𝐿𝑡−1 ·𝑇𝐿𝑡−1 + 𝐹𝐿𝑡 ·𝑇𝐿𝑡),
where 𝑟 is the effective interest rate (e.g., opportunity cost of capital),

𝐹𝐿𝑡−1 and 𝐹𝐿𝑡 are the fund amounts locked by 𝑈𝑡 in its adjacent

channels𝛾𝑡−1 (with𝑈𝑡−1) and𝛾𝑡 (with𝑈𝑡+1) respectively, and𝑇𝐿𝑡−1

and 𝑇𝐿𝑡 are the corresponding lock durations. Then the griefing

factor 𝜆 is defined as 𝜆 := (∑𝑈𝑡 ∈𝑆𝐺 𝐺𝐷𝑡)/𝑐 , where 𝑐 is the griefing
cost incurred by the adversary. Here, we ensures griefing attacks

are economically irrational by capping the griefing factor 𝜆 lower

than 𝑘 , where 𝑘 be any number smaller than one.

Definition 2.6 (Griefing resistance against 𝑘-cost-sensitive adver-

saries). For a PPT adversary A controlling any S𝐴 and 𝑘 < 1, the

griefing factor 𝜆 ≤ 𝑘 .

3 Exploiting Bitcoin-Compatible MHPs
In this section, we demonstrate fee stealing attacks exploiting vul-

nerabilities in MHPs, specifically incremental-lock based MHPs

(e.g., AMHL) and Blitz.

3.1 Attacking Incremental-Lock Based MHPs
HTLC-based MHPs are vulnerable to the wormhole attack [33],

where colluding relays steal fees from honest intermediaries by

revoking locked funds (Fig. 1).

As instanced by AMHL [33], incremental-lock based MHPs pre-

vent this via a trusted setup: the payer generates secrets 𝑠0, . . . , 𝑠𝑛
(relay 𝑈𝑖∈[1,𝑛] receives 𝑠𝑖 , the payee 𝑈𝑛+1 gets 𝑠𝑛 =

∑𝑛
𝑗=0

𝑠 𝑗) and

uses a homomorphic one-way function 𝑔 [29] with 𝑔(∑ 𝑠 𝑗) =∏
𝑔(𝑠 𝑗). Compared to HTLC, each channel 𝛾𝑖 replaces hashlock

with ℎ𝑖 =
∏𝑖

𝑗=0
𝑔(𝑠 𝑗), requiring 𝑠𝑖 =

∑𝑖
𝑗=0

𝑠 𝑗 for redemption. Hon-

est payer setup ensures 𝑈𝑖 gets paid only if 𝑈𝑖+1 does, enforcing

strong atomicity by induction (Fig. 2).

4.

5. redeem with

3. 2. 1.

7. redeem with 8. redeem with 6. redeem with

Figure 2: Workflow of AMHL. The blue part highlights the
difference between AMHL and HTLC.

Exploiting Incremental-Lock Based MHPs. We start with a

simple observation: once the payer𝑈0 confirms that the last relay

𝑈𝑛 has locked funds in the channel 𝛾𝑛 , payee 𝑈𝑛+1 can always

redeem the payment by sending 𝑠𝑛 to𝑈𝑛 in time. Since𝑈0 possesses

all setup secrets necessary to unlock any locked fund, this creates

perverse incentives:𝑈0 can minimize costs by selling these secrets to
4

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

malicious relays while still ensuring payment settlement. Such secret
resale attack works as follow:

Once the payer 𝑈0 confirms that the last relay 𝑈𝑛 has locked

funds in channel 𝛾𝑛 ,𝑈0 can can publish the identity of the payment

(e.g., lock conditions) on various off-chain communication channels

to orchestrate fee theft. Upon recognition, malicious relays can ne-

gotiate secret acquisition through secure exchange protocols, such

as atomic swaps [25]. Once the adversaries obtain the necessary

secrets, they can execute the wormhole attack by bypassing honest

intermediaries and capturing their intended relay fees.

1.Lock

4. revoke to idle

4.Lock

5. Confirm Locked

6. finalize paid 9. finalize paid

6. revoke to idle 5. revoke to idle

insufficient balance1.Lock 3.Lock

Figure 3: Blitz protocol workflow showing ideal execution
(top) and fast revocation path (bottom).

3.2 Attacking Blitz
To achieve constant collateral, Blitz introduces a “pay-or-revoke"

mechanism where locked payments automatically default to the

paid state after a deadline 𝑇 , unless the payee publishes a revo-

cation transaction 𝐺 on-chain before 𝑇 . Since this requires costly

on-chain revocations for failed payments — which are frequent

due to PCN anonymity constraints and volatile channel balances —

Blitz introduces fast revoke for efficient off-chain cancellation. Blitz

enables two execution paths when participants are honest:

• Fast Confirmation: After the payment locked, once𝑈𝑛+1 confirms

the payment is locked (step 5, top part of Fig. 3), from the payer

to the payee, honest participants settle all channels to the paid
state (step 6 to step 9).

• Fast Revoke: During the lock phase, if a relay 𝑈𝑖 finds it does

not have sufficient balance to continue, 𝑈𝑖 quickly revokes the

payment with its previous 𝑈𝑖−1 (step 4, bottom part of Fig. 3). If

𝑈𝑖−1 receives this revocation within a predefined revoke-period,

𝑈𝑖−1 accepts and continues the Fast Revoke process, canceling

the MHP off-chain.

6. finalize paid 8. finalize paid

7. notify

8. revoke to idle9. revoke to idle

1.Lock 4.Lock

5. Confirm Locked

Figure 4: Fee stealing attack over Blitz.

Exploiting Blitz. However, the fast-revoke introduces protocol
ambiguity where honest relays cannot distinguish between legiti-

mate liquidity failures and adversarial revocations. This indistin-

guishability creates an opportunity for colluding parties to simulate

revocation and effectively steal fees from honest participants.

Consider the example depicted in Fig. 4, which demonstrates

how colluding relays (𝑈1,𝑈3) exploit the fast-revoke ambiguity in

Blitz. The attack proceeds as follows:

• After all channels are successfully locked, honest𝑈0 initiates the

fast confirmation process (step 6), settling the payment directly

off-chain.

• Instead of forwarding the confirmation to 𝑈2, the adversarial

𝑈1 covertly notifies its partner 𝑈3. Once notified, adversarial

𝑈3 initiates a false revocation with 𝑈2 while simultaneously

finalizing the payment with𝑈4 (step 8).

• If this attack is executed within the revoke period, the honest

𝑈2 cannot distinguish this from a legitimate revocation and will

accept it, resulting in 𝑈2 being free-ridden despite providing

liquidity.

As a result, colluding relays (𝑈1 and 𝑈3) capture the additional fee

𝑓2 intended for the honest relay𝑈2. A naive solution to address this

attack would be to remove the fast-revoke logic, but this will bring

much burden for the payer.

4 Impossibilities of Griefing Resistant MHPs
Before diving into the impossibilities of griefing resistant MHPs,

we first provide theoretical background on fair exchange, then re-

duce griefing resistant lock-resolve MHPs to fair secret exchange

problems. Finally, we show that such fair secret exchange is impos-

sible when only public trusted third parties like blockchains are

available.

Fair Exchange.A fair exchange (FE) protocol enables twomutually

distrusting parties P and Q to exchange their items (𝑖P , 𝑖Q) with
descriptions (descP , descQ) [5, 40, 53]. Fairness is divided into

strong fairness and weak fairness in the literature [5, 40]. Here, we

adopt strong fairness.

• Fairness: If P does not obtain 𝑖Q such that desc(𝑖Q) = descQ ,
then Q must not obtain 𝑖P , and vice versa.

• Timeliness: All honest parties eventually terminate before a

finite point of time 𝑇
Deadline

.

• Effectiveness: If both parties are honest, then when the protocol
completes, P gets the item 𝑖Q , and Q gets 𝑖P , while 𝑖P , and 𝑖Q
match corresponding descriptions.

A special case of fair exchanges is fair secret exchanges (FSE).
An FSE requires all items in the exchange to be non-revocable

secrets. Non-revocable means that once a secret is delivered to

the receiver, there is no way to return it. For completeness, Ap-

pendix A gives a formal definition of fair secret exchange. We

further extend two-party exchange to 𝑛-party exchange rings R =

({𝑃 𝑗 }𝑛−1

𝑗=0
, {(𝑖 𝑗 , desc𝑗)}) where party 𝑃 𝑗 sends its inputs 𝑖 𝑗 to party

𝑃 (𝑗+1 mod 𝑛) .

4.1 Reducing Griefing Resistance MHPs to FSE
We establish the fundamental limits of griefing resistance MHPs

through a reduction to fair (secret) exchanges.

4.1.1 One-Relay Case: Link Griefing Resistance with Fair Exchanges.
Consider the payment hub model [45]—a MHP with a single relay

satisfying minimal security requirements. By our definition, grief-

ing resistance must be guaranteed even when both payer and payee

are adversarial. Without loss of generality, we assume the payer

5

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

and payee collude as a single entity. For relay𝑈1, strong griefing

resistance means that 𝑈1 locks funds in 𝛾1 (sends the lock message

𝑚1

𝑙𝑜𝑐𝑘
) only if 𝑈1 gets the relay fee in 𝛾0. In the lock-resolve model,

this means 𝑈1 sends𝑚1

𝑙𝑜𝑐𝑘
only if 𝛾0 ends in the paid state. Illus-

trated in Fig. 5), this creates a fair exchange between relay 𝑈1 and

the entity controlling 𝑈1 and 𝑈2. Fortunately, since the payment

is revocable, we can instantiate such an exchange using a simple

conditional payment within channel 𝛾0 (detailed in Appendix B.1).

Therefore, in the one-relay case, there exists a strongly griefing resis-
tant and minimally secure MHP protocol.

Lock message:

Payment:

Figure 5: Griefing resistance interpreted as a fair exchange. The
green line indicates a revocable input (payment), and the red line
indicates a non-revocable secret input (the lock message).

4.1.2 General Case: MHP with More than One Hop. For minimal se-

cure MHPs with at least 2 relays, we establish impossibility through

a reduction to fair secret exchange:

Payment:
Lock message:

Lock message:

Lock message:

Lock message:

Figure 6: The fair exchange model of two relays.

Lemma 1. For MHP with at least 2 relays, any lock-resolve MHP

protocolΠ𝑀𝐻𝑃 satisfyingminimum security requirements and strong
griefing resistance implies existence of a fair secret exchange proto-

col Π𝐹𝑆𝐸 .

Proof. Step 1: (2-relay MHP ⇒ 3-party FE) Any strong grief-

ing resistance 2-relay MHP protocol ΠMHP implies a 3-party fair

exchange protocol Π3

𝐹𝐸
(left part of Fig. 6):

• Fairness: The strong griefing resistance creates a circular
dependency: 𝑈1 sends 𝑚1

lock
only when guaranteed pay-

ment in 𝛾0,𝑈2 sends𝑚2

lock
only when guaranteed payment

in 𝛾1 (requiring𝑚1

lock
), and 𝑈0 pays𝑈1 only if𝑈3 receives

the payment (requiring 𝑈3 to lock 𝛾3). Therefore, these

three constraints ensure that once any message/payment

is settled, then all settled, and vice versa. This meets the

definition of fairness.

• Effectiveness and timeliness: These follow directly from

the correctness and coin availability of Π𝑀𝐻𝑃 .

Step 2: (3-party fair exchange⇒ 2-party fair secret exchange) We

prove that any 3-party FE protocol Π3

𝐹𝐸
can construct a 2-party FSE

protocol Π𝐹𝑆𝐸 (the right part of Fig. 6). The construction works

as follows: In the constructed Π𝐹𝑆𝐸 , we map the roles as follows:

party P plays both the role of relay 𝑈1 and the combined roles of

endpoints𝑈0&𝑈3 from Π3

𝐹𝐸
, while party Q plays the role of relay

𝑈2. The secret exchange is realized by mapping the lock messages:

P’s secret corresponds to𝑚1

lock
(from 𝑈1), Q’s secret corresponds

to𝑚2

lock
(from 𝑈2), while the revocable payment inputs can be set

to dummy values since our focus is solely on the non-revocable

secret exchange.

This reduction establishes that any strong griefing resistant 2-

relay MHP protocol implies the existence of a fair secret exchange

protocol. □

4.2 Impossibility Results
While the famous impossibility of fair exchanges [20, 39] shows

a FE is impossible without trusted third party (TTP), blockchain-

based systems introduce public TTPs T𝑝𝑢𝑏 , where public TTPs holds
everything(stored data, received messages) in a public ledger. In

this work, we prove even with T𝑝𝑢𝑏 , fair secret exchange remains

impossible:

Theorem 1 (Impossibility of FSE with Public TTP). No FSE proto-

col Π𝐹𝑆𝐸 can simultaneously satisfy Timeliness, Effectiveness, and
Fairness, when only T𝑝𝑢𝑏 is available.

Proof Sketch. The proof uses a contradiction argument similar

to Even and Yacobi [20]. Assume a protocolΠ𝐹𝑆𝐸 exists that satisfies

all three properties with T𝑝𝑢𝑏 . Consider the first round where one

party (say 𝑃) can infer the other party’s (𝑄’s) secret 𝑖𝑄 , while 𝑄

cannot yet infer 𝑖𝑃 (denoted by 𝑁). For 𝑃 to gain this knowledge,

there must exist an earlier round 𝑁 ′ (𝑁 ′ < 𝑁) when𝑄 transmitted

some critical information𝑚𝑁 ′ that enables 𝑃 to infer 𝑖𝑄 .

Since Π𝐹𝑆𝐸 must satisfy fairness and timeliness, at round 𝑁 ′,
the protocol must guarantee that 𝑄 can obtain 𝑃 ’s secret by the

deadline 𝑇
Deadline

despite any subsequent misbehavior by 𝑃 . This

guarantee must hold even if 𝑃 stops communicating after round 𝑁 ′.
Therefore, using only: 1) the information exchanged up to round

𝑁 ′ and 2) the functionality of T𝑝𝑢𝑏 , party𝑄 must be able to extract

𝑖𝑃 by the deadline 𝑇
Deadline

. This implies some extraction function

𝐸𝑥𝑡 exists where 𝐸𝑥𝑡 (view𝑁 ′
𝑃

, view𝑁 ′
𝑇𝑇𝑃
) = 𝑖𝑃 , where view

𝑁 ′
𝑃

and

view
𝑁 ′
𝑇𝑇𝑃

are the information owned by 𝑃 and T𝑝𝑢𝑏 up to time 𝑁 ′,
respectively.

However, since T𝑝𝑢𝑏 is public by definition, 𝑄 has access to

all information in T𝑝𝑢𝑏 and to any extraction function 𝐸𝑥𝑡 that

would be used. This creates a strategic problem: 𝑄 can simply wait

until 𝑇
Deadline

to extract 𝑖𝑃 without sending𝑚𝑁 ′ at round 𝑁 ′. Any
rational 𝑄 would choose this strategy since it allows obtaining 𝑃 ’s

secret while withholding its own. But if𝑄 never sends𝑚𝑁 ′ , then 𝑃

cannot infer 𝑖𝑄 at round 𝑁 – contradicting the definition of round

𝑁 . The formal proof appears in Appendix A. □

Following Lemma 1 and Theorem 1, we naturally derive the

impossibility result of lock-resolve MHPs.

Theorem2 (Impossibility of strong griefing resistantMHPs). Given
a MHP with at lease two relays, there is no minimal secure lock-
resolve MHP protocol satisfying strong griefing resistance.

In summary, we have demonstrated that strong griefing resis-

tance is impossible for MHPs with multiple relays, yet achievable

for single-relay MHPs. Furthermore, for cost-sensitive adversaries,

lock-resolve MHPs present a vulnerability: the payee may incur no

loss, as they lock no collateral and their channel balance in 𝛾𝑛 can

6

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

be zero, enabling them to grief payments at no personal cost. Con-

sequently, achieving griefing resistance against such adversaries

also impossible for lock-resolve MHPs. The subsequent section de-

tails how Zeus addresses these fundamental limitations through its

multi-faceted defense mechanisms.

5 Protocol Overview
In this section, we elaborate on the challenges of defending against

fee stealing and griefing attacks and sketch how our proposed

protocol addresses them.

5.1 Challenges
Preventing Fee Stealing. As analyzed in Section 3, Blitz’s vulner-

ability to fee stealing stems from its fast-revoke mechanism, which

allows relay𝑈𝑖 to accept off-chain revocations from𝑈𝑖+1 within a

revocation period, even post-payment completion. While enabling

efficient off-chain refunds, this exposes relays to fee theft via ma-

licious downstream revocations. A naive solution-removing the

fast-revoke mechanism-would reintroduce inefficiency that Blitz

originally resolved: locked funds cannot be swiftly reclaimed when

a relay lacks liquidity, necessitating costly on-chain transactions.

This leads to the first challenge:

• Challenge 1. How can we achieve fee stealing resistance without
forfeiting the efficiency gains of fast revocation?

A straightforward solution replaces fast revocation with a probing
round: each node, from the payer to the payee, sequentially sends a

probing message requesting that relays reserve funds. While this

guarantees payment routing capability, it introduces two critical

issues: 1) relays’ reserved funds go uncompensated if the payer does

not use them, and 2) free probing exposes channel balances, com-

promising node privacy. To address these problems, we introduce

a deposit round before locking funds, where the payer and relays

deposit to their downstream peers to ensure compensation for any

unused reservations. Each relay charge a deposit 𝑐
relay

. However,

this approach introduces new problems:

• Problem 1: Deposit fairness. The deposit mechanism must satisfy

two core requirements: (i) refunds when either the payment com-

pletes or a downstream node refuses a liquidity reservation, and

(ii) forfeiture to relays whose reserved liquidity remains unused.

Achieving this demands reconciling each relay’s local channel

view—where they only validate adjacent transactions—with the

global payment outcome. Malicious intermediaries may strate-

gically exploit this discrepancy between local verification and

the system-wide truth, leading to allocation conflicts in off-chain

enforcement.

• Problem 2: Linearly increasing timelock and griefing. Introducing
deposits to Blitz causes timelocks to increase linearly with each

hop, resulting in quadratic collateral requirements and linear

dispute-resolution times—a significant regression from Blitz’s

constant timelock design. Moreover, deposits must exceed Bit-

coin’s dust limit (currently 546 satoshis, ≈ $0.45, denoted as

𝐹
dust

), with cumulative values growing linearly with payment

path length [3]. This creates a systemic vulnerability: adversaries

can exploit multi-hop paths to maliciously lock up deposits, mak-

ing griefing prevention imperative.

Mitigating Griefing Attack. As shown in Section 1, existing

MHP protocols like Blitz remain vulnerable to griefing attacks,

where the payee can stall payments with no cost. Although prior

works [22, 38, 52] propose premium mechanisms to compensate

liquidity providers who locked funds in atomic swaps, adapting

these solutions to Bitcoin-compatible systems presents two key

challenges:

• Challenge 2: How can fair premium distribution be enforced when
a revocation is triggered?

Premium-based solutions face a fundamental conflict when in-

tegrated with global revocation mechanisms like those in Blitz. In

premium-based schemes, liquidity consumers must compensate

providers immediately upon fund reservation to prevent cost-free

griefing. In the context of MHP, this requires the payee to lock

premiums before principal locking, allowing relays to claim com-

pensation once they commit liquidity. However, because global

revocation can reclaim principal regardless of premium settlement,

combining premiums with global revocation leads to an unfair out-

come: if on-chain revocation is triggered after premium settlement,

the honest payee ends up paying premiums to relays without ever
receiving the promised funds.

• Challenge 3: How can we protect premiums from griefing attacks
when fully grief-free is impossible?

Recent work [52] proposes recursive premiums (locking “premiums-

of-premiums”) to mitigate griefing of premiums via infinite recur-

sion. However, this approach suffers from two critical limitations:

it is incompatible with Bitcoin’s dust limits and requires linearly

increasing timelocks. In LN, adversaries can grief up to 483 simulta-

neous 20-hop payments, yielding approximately 140,000 USD-hours

of damage. Although our theoretical analysis shows griefing cannot

be fully eliminated, carefully designed incentives can deter cost-

sensitive attackers by significantly raising the economic barrier to

such attacks.

Deposit fast revoke if channel insuffient

Payee's on-chain stake

Deposit-lock phase

4. Lock
Premium-lock phase

1. Lock

4. Refund

1. Confirm and 4. Confirm and

Principal-lock phase

Deposit-refund phase

1. Lock

0.Lock

4. Lock

1. Refund

Fast Confirmation

1. Lock 4. Lock

Figure 7: Simplified workflow of Zeus in the optimistic case.

7

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

5.2 Our Solution
As depicted in Fig. 7, Zeus integrates deposits and premiums into

Blitz while addressing the above challenges.

To achieve deposit fairness without compromising efficiency

(Challenge 1), Zeus introduces a three-phase deposit revocation

mechanism: (i) During the deposit-lock phase, relays with insuf-

ficient liquidity trigger instant off-chain deposit revocation with

upstream peers within seconds, preserving Blitz’s efficiency; (ii)

In the deposit-refund phase, after the fast deposit revocation win-

dow closes, deposits can only be refunded once the principal is

successfully locked and payment forwarded to enforce deposit com-

mitments; (iii) During the dispute-resolution phase, payers must

lock the full principal directly to the payee on-chain before dead-

line 𝑇 to revoke deposits, with channel splicing enabling reuse

of existing channel 𝛾0’s balance for capital efficiency. This design

guarantees two outcomes: First, it deters cost-sensitive griefing by

making attackers forfeit deposits or incur substantial on-chain fees;

Second, it maintains constant timelocks by making deposit revo-

cation solely rely on on-chain principal locking, eliminating the

linear timelock growth of naive solutions. The unified process re-

solves both deposits and principals in a single on-chain transaction,

removing redundant cost while maintaining deposit fairness.

To address premium fairness violations (Challenge 2), we intro-

duce a conditional premium unlocking mechanism based on the

payee’s actions. Specifically, the premium locked by 𝑈𝑖 (Prm𝑖−1)

is awarded to relay𝑈𝑖−1 unless payee𝑈𝑛+1 redeems the on-chain

principal before 𝑇 + Δ. This ensures: 1) Premium fairness: when a

global revocation occurs, the payee reclaims premiums while relays

receive nothing; 2) Griefing deterrence: the payee must either forfeit

their premiums-which covers the relays’ fees-or pay transaction

fees to reclaim them, a cost that typically exceeds any potential

griefing gain; 3) Constant timelock: global revocation enforces a

constant timelock for all premiums.

To prevent premium griefing (Challenge 3), we design mech-

anisms that counter cost-free griefing attacks by the payer and

payee respectively. To deter payer from griefing payee’s premium,

we require an extra payer-to-payee deposit (𝑐payee in Fig. 7) during

the Deposit-Lock phase, in addition to deposits made with relays.

This additional deposit is subject to the same unlock conditions

as the others, ensuring that any premium-griefing attempt by the

payer incurs a direct economic cost.

Now a malicious payee can grief payer deposits by refusing

to lock premiums after receiving deposits. To prevent this, we

require payees to commit a small, globally slashable on-chain stake

during channel creation. Failure to proceed with premium locking

after receiving payer deposits triggers slashing of this stake. The

stake amount is calibrated so that griefing costs always exceed

potential damage, even under concurrent payments, ensuring the

griefing factor remains below any chosen 𝑘 parameter. Fig. 11c

illustrates how the on-chain stake value affects the griefing factor

under concurrent griefing attacks.

The proposed design still has one inefficiency: relay fees remain

locked until the premium timelock 𝑇 + Δ. To eliminate this delay,

we introduce a fast confirmation protocol (like Blitz) initiated by the
payer, which expedites finalization of both premiums and principals.

Dispute Handling and Incentive Structure.When any payment

stalls off-chain, honest payers trigger on-chain principal locking

through channel splicing to revoke all locked deposits and princi-

pals, while honest payees redeem the principal on-chain to revoke

all locked premiums. Our hybrid design creates strong economic

incentives for honest execution by making dispute resolution a
strictly worse outcome for any participant, thereby deterring

griefing behavior. When disputes arise, payers suffer either deposit

forfeiture or costly on-chain reclamation; payees either forfeit their

on-chain stake or pay transaction fees to trigger premium revoca-

tion; and relays receive no compensation, contrasting sharply with

the relay fees earned through honest execution. This tripartite in-

centive structure ensures that griefing costs always exceed griefing

damage across all attack vectors. Fig. 11a and Fig. 11b show that the

griefing factor remains below 0.1, and Table 4 provides a detailed

cost–damage analysis under various corruption scenarios.

6 Zeus Construction
In this section, we first detail basic primitives, then elaborate on

the two-stage revocable channel update protocol, a critical building

block for constructing our multi-hop protocol. Finally, we describe

the multi-hop protocol.

Digital Signature and Commitment Schemes. A digital sig-

nature scheme is a tuple Σ := (KeyGen, Sign,Vrfy) satisfying EUF-

CMA secure [13], where KeyGen(𝜆) generates a keypair (𝑠𝑘, 𝑝𝑘)
with security parameter 𝜆. 𝜎 := Sign(𝑠𝑘,𝑚) signs a message 𝑚

with the secret key 𝑠𝑘 , and Vrfy(𝑝𝑘,𝑚, 𝜎) returns 1 only if the

signature 𝜎 on message𝑚 with the public key 𝑝𝑘 . For simple no-

tation, we use (𝑠𝑘𝑖 , 𝑝𝑘𝑖) to denote the key-pair of 𝑈𝑖 , and 𝑆𝑖𝑔(𝑈𝑖)
to denote the signature of 𝑈𝑖 . A commitment scheme is a tuple

C := (Com,Open), where Com(𝑠) commits a secret 𝑠 , outputting

commitment ℎ. Open(𝑠, ℎ) returns 1 only if the secret 𝑠 matches ℎ.

We use a hiding and binding commitment scheme as a black-box.

PCN Interface. Channel interactions are handled by the func-

tionality F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , which is an extension of functionality in [7].

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 allows channel owners to create, update, close, and splice
out their payment channels. For simplicity, we highlight following

interfaces:

• UPDATE(𝛾 .id, 𝑡𝑥state): Update channel 𝛾 to the new state 𝑡𝑥state,

co-signed by 𝛾 .𝑙𝑢 and 𝛾 .𝑟𝑢.

• CLOSE(𝛾 .id): Close 𝛾 when called by a user ∈ 𝛾 .𝑙𝑢/𝑟𝑢. A transac-

tion containing the latest state of 𝛾 will be finalize in GL within

𝑡
close

.

• UPDATESPLICING(𝛾 .id, 𝑡𝑥
splicing

): Similar to UPDATE, owners

can provide a co-signed state-update transaction 𝑡𝑥
splicing

to

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , while containing two types of outputs: splicing outputs
and funding outputs. F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 will update 𝛾 to this splicing state

off-chain, and wait for the finalization call-SPLICINGCHANNEL.

• SPLICINGCHANNEL(𝛾 .id): Similar to CLOSE, called by a chan-

nel owner, both splicing outputs and funding outputs of the latest
off-chain state will be finalized overGL within 𝑡𝑐𝑙𝑜𝑠𝑒 . The funding
outputs will serve as the new channel state.

Pay-or-Revoke Paradigm. The “pay-or-revoke" paradigm, ini-

tially proposed in Blitz, enables atomic UTXO synchronization

within Bitcoin’s scripting constraints. In this paradigm, a global

transaction carries dust outputs that serve as event triggers. When

8

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

(Bob)

(Alice)

(Caro)

(Alice)

 & (Bob)

& (Bob)

(Bob)

(Caro)

Figure 8: The pay-or-revoke paradigm.
this transaction is finalized on-chain, corresponding participants

can update their UTXO states by submitting transactions that con-

sume these dust outputs as inputs. For example, consider two 2-of-2

multi-signature UTXOs controlled by Alice-Bob and Bob-Carol

pairs, respectively (Fig. 8). Bob requires that Alice and Carol can

spend their respective outputs (Out𝐴 and Out𝐶) only after Bob

spends output Out𝐵 . To enforce this dependency, Bob’s spending
transaction 𝑡𝑥𝐺 includes two trigger outputs carrying negligible

amounts (e.g., 1 satoshi). These triggers serve as inputs for Alice’s

and Carol’s spending transactions (𝑡𝑥𝐴 and 𝑡𝑥𝐶). Since Bob only

pre-signs these specific spending transactions, outputs Out𝐴 and

Out𝐶 can only be spent after 𝑡𝑥𝐺 is finalized on-chain.

6.1 General Construction for Channel Updates
with Two-Stage Revocation

𝑈𝑖 upon (init, Meta𝐿) from 𝑈̃𝑖 :

1) Create(𝑡𝑥s, 𝑡𝑥𝑙𝑅𝑣𝑘 , 𝑡𝑥
𝑟
𝑅𝑣𝑘
) based on Meta𝐿 .

2) 𝜎𝑖
𝑟 𝑣𝑘−𝑙 := Sign(𝑠𝑘𝑖 , 𝑡𝑥𝑠 .Outs[0] → 𝑡𝑥𝑙

𝑅𝑣𝑘
)

3) 𝜎𝑖
𝑟 𝑣𝑘−𝑟 := Sign(𝑠𝑘𝑖 , 𝑡𝑥𝑠 .Outs[1] → 𝑡𝑥𝑟

𝑅𝑣𝑘
)

4) Fill 𝑡𝑥𝑙
𝑅𝑣𝑘

, 𝑡𝑥𝑟
𝑅𝑣𝑘

with 𝜎𝑖
𝑠 , 𝜎

𝑖
𝑟 𝑣𝑘−𝑙 , and send:

(𝑡𝑥s, 𝑡𝑥𝑙𝑅𝑣𝑘 , 𝑡𝑥
𝑟
𝑅𝑣𝑘
) 0

↩−→ 𝑈𝑖+1

(𝑡𝑥s, 𝑡𝑥𝑙𝑅𝑣𝑘 , 𝑡𝑥
𝑟
𝑅𝑣𝑘
) 1←−↪ 𝑈𝑖 ,𝑈𝑖+1:

5) Check 1) if receiving Meta𝑅 from 𝑈̃𝑖+1, and check; 2) if transactions

are align with Meta𝑅 ; 3) if signature are correct. Abort if any check

fails.

6) (UPDATE, 𝑡𝑥𝑟
𝑅𝑣𝑘
) 1

↩−→ Π𝑖
redeem-handler

7) 𝜎𝑖+1
𝑠 := Sign(𝑠𝑘𝑖+1, 𝑡𝑥𝑓 𝑢𝑛𝑑 .Outs[0] → 𝑡𝑥𝑠)

8) 𝜎𝑖+1
𝑟𝑣𝑘−𝑙 := Sign(𝑠𝑘𝑖+1, 𝑡𝑥𝑠 .Outs[0] → 𝑡𝑥𝑙

𝑅𝑣𝑘
)

9) Send (𝜎𝑖+1
𝑠 , 𝜎𝑖+1

𝑟𝑣𝑘−𝑙)
1

↩−→ 𝑈𝑖

(𝜎𝑖+1
𝑠 , 𝜎𝑖+1

𝑟𝑣𝑘−𝑙)
2←−↪ 𝑈𝑖+1,𝑈𝑖 :

10) Check signatures, sign 𝑡𝑥𝑠 and update channel

(UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑠) → GL
11) Upon GL returns UPDATED, update splicing handler:
(UPDATE, tx𝑙

𝑅𝑣𝑘
) ↩−→ Π𝑖

splicing-handler
12) Return Updated-Ok.
Upon GL returns UPDATED,𝑈𝑖+1: 13) Return Updated-Ok.

Figure 9: Channel update with two stage revocation. 𝑈̃𝑖 de-
notes the external user invoking interface. External func-
tionalities and sub-procedures are highlighted in red.

As overviewed in Section 5, to ensure atomic global revocation

over locked funds thereby achieving a constant timelock, each chan-

nel 𝛾𝑖 should support: 1) 𝑈𝑖 can reclaim its locked deposit and/or

principal (denotes the amount as 𝛼) once the payer locks the princi-

pal on-chain using channel splicing; 2) 𝑈𝑖+1 can reclaim its locked

premium (denotes the amount as 𝛽) if the on-chain redemption oc-

curs; 3) If the splicing event does not occur by a deadline (𝑇𝑙),𝑈𝑖+1

can claim 𝛼 . Conversely, if the redemption event does not occur by

a deadline (𝑇𝑟), 𝑈𝑖 can claim 𝛽 . To this end, here we demonstrates

how to channel owners to update their channel to a state support

above functionalities.

Using the pay-or-revoke paradigm, such splicing and redemption

events are signaled by dust outputs, denoted as event triggers in the

following context. We assume that for each 𝛾𝑖 , there exists a splicing
trigger 𝑡𝑟 𝑖

𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
and a redemption trigger 𝑡𝑟 𝑖

𝑟𝑒𝑑𝑒𝑒𝑚
, associated with

the splicing and redemption events, respectively (detailed in Sec-

tion. 6.2). For brevity, we use Meta := {𝛾𝑖 , 𝛼,𝑇𝑙 , 𝛽,𝑇𝑟 , 𝑡𝑟 𝑖𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔, 𝑡𝑟
𝑖
𝑟𝑒𝑑𝑒𝑒𝑚

}
to denote the parameters governing a state transition. For readabil-

ity, we define the following transactions:

• 𝑡𝑥𝑠 : Transaction representing a two-stage revocable state with

two primary outputs (Fig. 15):

– An output of amount 𝛼 (funded by 𝑈𝑖), spendable either by

𝑈𝑖 (via 𝑡𝑥
𝑙
𝑅𝑣𝑘

) if 𝑡𝑟 𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

is finalized on GL, or by 𝑈𝑖+1 if

timelock 𝑇𝑙 expires.

– An output of amount 𝛽 (funded by𝑈𝑖+1), spendable either by
𝑈𝑖+1 (via 𝑡𝑥𝑟

𝑅𝑣𝑘
) if 𝑡𝑟 𝑖

𝑟𝑒𝑑𝑒𝑒𝑚
is revealed, or by𝑈𝑖 if timelock

𝑇𝑟 expires.

• 𝑡𝑥𝑙
𝑅𝑣𝑘

: The left revoke transaction. It spends the 𝛼-output from

𝑡𝑥𝑠 (when 𝑡𝑟 𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

is revealed) and creates a single output

locked to𝑈𝑖 ’s public key 𝑝𝑘𝑖 .

• 𝑡𝑥𝑟
𝑅𝑣𝑘

: The right revoke transaction. It spends the 𝛽-output from

𝑡𝑥𝑠 (when 𝑡𝑟
𝑖
𝑟𝑒𝑑𝑒𝑒𝑚

is revealed) and creates a single output locked

to𝑈𝑖+1’s public key 𝑝𝑘𝑖+1.
Consider 𝑈𝑖 initiating the update (Fig. 9). Initially, each party

has its respective metadata set (Meta𝐿 for𝑈𝑖 , Meta𝑅 for𝑈𝑖+1), defin-
ing the parameters for the proposed state update of channel 𝛾𝑖 .

The first step for 𝑈𝑖 is to create these three transactions based on

Meta𝐿 and provide its signatures for 𝑡𝑥𝑙
𝑅𝑣𝑘

and 𝑡𝑥𝑟
𝑅𝑣𝑘

. For instance,

Sign(𝑠𝑘𝑖 , 𝑡𝑥𝑠 .Outs[0] → 𝑡𝑥𝑙
𝑅𝑣𝑘
) indicates 𝑈𝑖 approves spending its

locked fund (output 0 of 𝑡𝑥𝑠 , corresponding to 𝛼) via transaction

𝑡𝑥𝑙
𝑅𝑣𝑘

. Then𝑈𝑖 sends 𝑡𝑥𝑠 and partially-signed 𝑡𝑥𝑙
𝑅𝑣𝑘

and 𝑡𝑥𝑟
𝑅𝑣𝑘

(i.e.,

signed by𝑈𝑖) to𝑈𝑖+1.
Now,𝑈𝑖+1 checks if the received transactions align with its view

Meta𝑅 and if𝑈𝑖 ’s signatures are correct. If everything is satisfactory,

𝑈𝑖+1 signs 𝑡𝑥𝑟
𝑅𝑣𝑘

(making it fully signed from 𝑈𝑖+1’s perspective
for its own use) and push this 𝑡𝑥𝑟

𝑅𝑣𝑘
to its redeem handler sub-

protocol, Π𝑖
redeem-handler. Π

𝑖
redeem-handler maintains a list of such

redemption revoke transactions, monitors the channel state, and if

𝑡𝑟 𝑖
𝑟𝑒𝑑𝑒𝑒𝑚

of the latest channel state is confirmed on-chain, it will

invoke a sub-procedure to claim the 𝛽 funds back. Ideally, if 𝑈𝑖

cooperates, 𝑈𝑖 can directly refund the 𝛽 back to 𝑈𝑛+1 off-chain

through a new state. If 𝑈𝑖 does not cooperate, 𝑈𝑖+1 will close 𝛾𝑛
and push 𝑡𝑥𝑟

𝑅𝑣𝑘
on GL, reclaiming𝑈𝑖+1’s funds.

Subsequently,𝑈𝑖+1 signs 𝑡𝑥𝑠 and 𝑡𝑥𝑙𝑅𝑣𝑘 , showing that𝑈𝑖+1 agrees
with the new state and the left revoke transaction.𝑈𝑖+1 then returns
these signatures to 𝑈𝑖 . Now, 𝑈𝑖 possesses a fully signed 𝑡𝑥𝑠 and

a fully signed 𝑡𝑥𝑙
𝑅𝑣𝑘

. 𝑈𝑖 update the channel with 𝑡𝑥𝑠 and submits

𝑡𝑥𝑙
𝑅𝑣𝑘

to its splicing handler protocol, Π𝑖
splicing-handler. Similar to

the redeem handler, this handler monitors for 𝑡𝑟 𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

, and once

𝑡𝑟 𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

is confirmed on-chain before 𝑇𝑙 , Πsplicing-handler will

invoke in the sub-procedure to reclaim 𝛼 back.

9

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

6.2 Multi-Hop Payment Description
In this section, we elaborate the MHP protocol. The formal specifi-

cation are specified in Appendix F. Recall a MHP, where a payer

𝑈0 aims to make a payment of amount 𝑥 to a payee𝑈𝑛+1 through

an 𝑛-relay path (𝑈1, . . . ,𝑈𝑛). Each relay 𝑈𝑖 charges a relay fee 𝑓𝑖 ,

𝑓0 is a padding fee to ensure the premium greater than the dust

limit. We denote a single on-chain transaction cost as 𝐹 , deposit

and principal timelock as 𝑇 . Zeus consists of six phases: Setup,

Lock-deposit, Lock-premium, Lock-principal, Refund-deposit and

Fast-confirmation.

𝑈0 upon (setup,M, ℎ,𝑇) from 𝑈̃0:

0) Stake := checkPayeeStake(𝑈𝑛+1,𝑇) Abort if Stake = ⊥.
1) Create 𝑡𝑥

splicing
, 𝑡𝑥

redeem
, 𝑡𝑥

slash

2) (𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 0

↩−→ 𝑈𝑛+1

(𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 1←−↪ 𝑈0,𝑈𝑛+1:

3) Check transactions and initialize the redeem launcher:

(init, 𝛾0 .𝑖𝑑,𝑇 , 𝑡𝑥splicing .Outs[0], 𝑡𝑥redeem)
1

↩−→ Π
redeem-launcher

4) 𝜎
slash

:= Sign(𝑠𝑘𝑛+1, 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 .Outs[𝑛] → 𝑡𝑥
slash
) ,

𝜎
slash

1

↩−→ 𝑈0

𝜎
slash

2←−↪ 𝑈𝑛+1,𝑈0:

5) Check signature and generate the setup messages.

𝑚setup := genOnion(M, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

)
∀𝑖 ∈ [1, 𝑛 + 1],𝑚setup [𝑖]

2

↩−→ 𝑈𝑖

6) (init, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing)
2

↩−→ Π0

2pSetupSplicing

(𝑚setup [𝑖])
3←−↪ 𝑈0:

7) 𝑈1: Extract information and setup Π
2pSetupSplicing

8) 𝑈𝑖∈ [2,𝑛+1] : Extract information and setup Π𝑖−1

2pSetupDep

𝑈0 upon (slicing-Ok) , then:
9) Enable the splicing and slash launcher.

• (init,𝑇 ,𝛾0 .id) ↩−→ Π0

splicing-launcher

• (init,𝑇 , 𝑡𝑥
splicing

.Outs[0], 𝑡𝑥𝑠𝑙𝑎𝑠ℎ) ↩−→ Π
slash-launcher

Figure 10: Setup phase of ΠZeus, where the 0-th to (𝑛 − 1)-th
outputs of 𝑡𝑥splicing are splicing triggers, and the 𝑛-th output
is the spliced-out principal.

Setup.𝑈0 cooperates with𝑈𝑛+1 and the𝑈1 to prepare transactions

for splicing, redemption, and slashing (Fig. 10):

• 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔: the splicing transaction 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 . 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 repre-

sents the SPLICED state of channel 𝛾0, where 𝑈0 splices out a

HTLC payment with amount 𝑥 + 𝑛𝜖 in exchange for a preimage

𝑠 . In Zeus, 𝑠 can be interpreted as the proof of payment provided

by 𝑈𝑛+1, where 𝑈𝑛+1 gives 𝑠 only after receiving the payment.

Meanwhile, 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 contains 𝑛 dust outputs with value 𝜖 , de-

noted as splicing triggers (𝑡𝑟1

splicing, . . . , 𝑡𝑟
𝑛
splicing). 𝑡𝑟

𝑖
splicing

can be redeemed by𝑈𝑖 ’s signature, or recollected by𝑈0 after a

relative timelock 𝑟𝑒𝑙 (2𝑡
close
+Δ). This timelock ensures that after

the splicing of 𝛾0 (taking up to 𝑡
close

),𝑈𝑖 still has enough time to

close 𝛾𝑖 and revoke its locked deposit or principal if necessary

(see Section 6.1).

• 𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚 : the redeem transaction. 𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚 takes the splicing-

out output of 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 as input along with the preimage 𝑠 , and

contains one output with value 𝑥 to itself and 𝑛 redeem triggers
(𝑡𝑟1

redeem, . . . , 𝑡𝑟
𝑛
redeem) to signal premium revocation (𝑡𝑥𝑟

𝑅𝑣𝑘
in

Section 6.1). 𝑡𝑟 𝑖
𝑟𝑒𝑑𝑒𝑒𝑚

can be spent by𝑈𝑖+1, before a relative time-

lock 𝑟𝑒𝑙 (𝑡
close
+ Δ), leaving enough time for revoking premiums.

• 𝑡𝑥𝑠𝑙𝑎𝑠ℎ : the slash transaction. If 𝑈𝑛+1 fails redeem the spliced

payment with 𝑠 within 𝑟𝑒𝑙 (𝑡
close
+ Δ), 𝑈0 can submit 𝑡𝑥𝑠𝑙𝑎𝑠ℎ to

reclaim its on-chain payment, simultaneously burning 𝑈𝑛+1’s
stake, Stake. This timelock ensures that even splicing takes up

to 𝑡
close

time,𝑈𝑛+1 still has Δ time to redeem it.

Now let’s dive into how to construct these transaction. Step
1. Make payee accountable. At beginning, 𝑈0 first locates and

verifies whether 𝑈𝑛+1 has locked a stake Stake using function

checkPayeeStake. Then𝑈0 requests𝑈𝑛+1 to sign off on 𝑡𝑥𝑠𝑙𝑎𝑠ℎ . Af-

ter this step,𝑈𝑛+1 will be slashed if it refuses to settle the payment

with 𝑠 . To prevent this slash, honest 𝑈𝑛+1 will launch a redeem
launcher sub-protocol Π

redeem-launcher
to finalize the 𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚

once 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 is confirmed on-chain.

Step 2. Prepare the channel splicing. Now𝑈0 sends the correspond-

ing setup metadata 𝑚setup [𝑖] to each 𝑈𝑖 (e.g., payment amounts

and timelocks, triggers in channels 𝛾𝑖 and 𝛾𝑖+1) via standard onion

routing. After receiving this metadata, 𝑈𝑖 verifies that splicing and

redemption triggers are correctly bound within the same transac-

tion and prepares for the subsequent channel update. Specifically,

𝑈1 initializes the splicing sub-protocol Π2pSetupSplicing, preparing

channel 𝛾0 for transition to the SPLICED state. After setup mes-

sage broadcast, 𝑈0 initialize the splicing of 𝛾0 from IDLE state

to SPLICED state by invoking Π
2pSetupSplicing

. In Π
2pSetupSplicing

,

𝑈𝑖+1 and 𝑈𝑖 will co-sign 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 , and splicing 𝛾0 by calling the

UPDATESPLICING interface of F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 . Thereafter, both 𝑈0 and

𝑈1 maintain the off-chain splicing state. Note to avoid race con-

ditions with potential channel splicing in 𝛾0, 𝑈0 actually will not

participate in the deposit, premium and principal locking.

Forward Deposit Locking. The protocol proceeds sequentially
from 𝑈1 to 𝑈𝑛 to lock deposits. Each 𝑈𝑖 engages with the next

participant𝑈𝑖+1 using a channel update sub-protocolΠ𝑖
2pSetupDep

to

lock deposit Dep𝑖 , where Dep𝑖 := 𝑐payee+(𝑛−𝑖) ·𝑐relay), where 𝑐payee
is the deposit required by the payee, and 𝑐

relay
is the deposit charged

by one relay. The value of these deposits is specified in Appendix C.2.

Π𝑖
2pSetupDep

can be considered as an degenerated instance of the

two-stage revocable channel update protocol detailed in Section 6.1

with 𝛼 := Dep𝑖 , 𝛽 := ⊥, 𝑇𝑙 := 𝑇 and 𝑇𝑟 := ⊥, updating their shared
channel 𝛾𝑖 from IDLE to the LOCKED-Dep state.
Backward Premium Locking. After the deposit locking com-

pletes up to 𝛾𝑛 , Zeus proceeds backward from the last channel to-

wards the first. For each𝛾𝑖∈[1,𝑛] ,𝑈𝑖+1 now initiates the sub-protocol

Π𝑖
2pSetupPrm

with 𝑈𝑖 . This updates 𝛾𝑖 further to the LOCKED-Prm

state, committing a premium Prm𝑖 from𝑈𝑖+1 to𝑈𝑖 , where Prm𝑖 :=∑𝑖
𝑗=0

𝑓𝑗 . Similarly, Π𝑖
2pSetupPrm

can be considered as a reversed in-

stance (where𝑈𝑖+1 initializing) of the two-stage revocable update,

with 𝛼 := Dep𝑖 , 𝛽 := Prm𝑖 , 𝑇𝑙 := 𝑇 , and 𝑇𝑟 := 𝑇 + Δ.
10

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

Principal Locking. Once 𝑈1 confirms 𝛾1 has updated to the

LOCKED-Prm state, starting from 𝛾1 to 𝛾𝑛 , each𝑈𝑖 and𝑈𝑖+1 invokes

Π𝑖
2pSetupPrcpl

to cooperatively update 𝛾𝑖 to the LOCKED-Prcpl state,

locking the principal amount Prcpl𝑖 := 𝑥 +∑𝑛
𝑗=0

𝑓𝑗 in channel 𝛾𝑖 ,

containing a base payment 𝑥 plus all relay fees. Similar to previous

setting, but 𝛼 will be modified to 𝛼 := Dep𝑖 + Prcpl.
Deposit Refund. Start from 𝑈𝑛+1 to 𝑈2, 𝑈𝑖+1 refunds Dep𝑛 with

a new REFUNDED-Dep state through an off-chain sub-protocol

Π𝑛
2pRevokeDep

. This step is almost identical to the Lock-premium

stage, but reduces 𝑈𝑛 ’s locked amount 𝛼 from Dep𝑖 + Prm to Prm.
Simultaneously, 𝑈𝑛+1 sends the proof of payment 𝑠 to𝑈0 privately.

Fast Confirmation.Once𝑈0 receives 𝑠 and𝑈1 confirms all deposits

are revoked, to speed up the finalization of the off-chain payment,

starting from 𝑈0, each 𝑈𝑖 invokes the Π2pSettle
sub-protocol to up-

date 𝛾𝑖 to the PAID state, where𝑈𝑖 pays an amount of 𝑥 +∑𝑛
𝑗=𝑖 𝑓𝑗

to𝑈𝑖+1.
Handling Stalled Payments. As illustrated in Fig. 16, if the pay-

ment has not been completed by𝑇 − 2𝑡𝑐𝑙𝑜𝑠𝑒 −Δ, either𝑈0 or𝑈1 can

submit 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 to initiate dispute resolution. By 𝑇 − 𝑡𝑐𝑙𝑜𝑠𝑒 − Δ,
𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 containing 𝑛 splicing triggers finalizes on GL. Once the
splicing handlers observe this finalization, they execute the de-

posit/principal revocation process, ensuring that each 𝑈𝑖 can re-

claim its locked funds by 𝑇 . Concurrently, when 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 finalizes

on GL, the redeem launcher Πredeem-launcher executed by 𝑈𝑛+1
submits 𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚 (taking up to Δ). Following the same revocation

mechanism as the deposit/principal recovery, each𝑈𝑖+1 can always

reclaim its locked premium by 𝑇 + Δ.

7 Security Analysis
We model Zeus in a global universal composability framework,

following similar approaches to recent PCN protocols [7–9]. The

complete security analysis appears in Appendix H. For each channel

update sub-protocol covered in Section 6.2 and dispute resolution

sub-protocols summarized in Fig. 17, we provide corresponding

ideal functionality and prove it with standard simulation paradigm.

Here, we denote all these sub-functionalities as Fsub, and global

ideal functionalities(e.g., GL, F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠) as Fprelim. Then, we pro-
vide the main functionality FZeus in the {Fprelim, Fsub} hybrid
world, and prove:

Theorem 3. Let Σ be an EUF-CMA secure [13] signature scheme

and C be a hiding and binding commitment scheme, then ΠZeus
described in Section 6.2 UC-realizes FZeus.

Due to space constraints, we informally argue here how Zeus
achieves balance security (Def. 2.1), fee security (Def. 2.4), and grief-
ing resistance (Def. 2.6). Formal proofs are provided in Appendix H.

Balance Security: We first show payers pay only if the payee

gets the payment. As shown in Section 6.2, if payee does not re-

ceive the money off-chain, payer can always push 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 on-

chain, revoking all their locked funds and paying payee directly

on-chain. For relays, we discuss𝑈1 and other relays𝑈𝑖∈[2,𝑛] sepa-
rately. For𝑈1, Zeus ensures𝑈1 can initiate on-chain principal lock

with splicing before𝑈1 locks any funds in 𝛾1. The transaction cost

for splicing is covered by 𝑈0’s balance in 𝛾0. Π
1

splicing-launcher
ensures this splicing occurs timely if payments stalled. Concur-

rently, Π1

splicing-handler guarantees that 𝑈1’s funds locked in 𝛾1

can be reclaimed. For any honest𝑈𝑖∈[2,𝑛] , Zeus ensures atomicity

for fund revocation across adjacent channels 𝛾𝑖−1 and 𝛾𝑖 through

linked triggers. Specifically,𝑈𝑖−1 can revoke its funds locked for𝑈𝑖

in 𝛾𝑖−1 only if the corresponding splicing event occurs, consuming

𝑡𝑟 𝑖−1

𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
. Since 𝑡𝑟 𝑖−1

𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
(for 𝛾𝑖−1) and 𝑡𝑟

𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

(for 𝛾𝑖) are bound

within 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 , the occurrence of the former implies the latter is

available, preventing𝑈𝑖 from losing funds but𝑈𝑖+1 does not.

Fee Security: For an honest relay𝑈𝑖∈[1,𝑛] , once𝑈𝑖 locks any funds,

there are two possible cases:

• 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 does not finalize on GL in time: If𝑈𝑖 has locked payer’s

deposit, it is compensated with 𝑐𝑟𝑒𝑙𝑎𝑦 . If𝑈𝑖 has locked principal,

it can claim its relay fee, from the premium locked by𝑈𝑖+1.
• 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 finalized in GL in time. The off-chain principal will be

revoked, so the payment will not settle off-chain. Thereby, the

fee security is always secure.

Griefing Resistance against k-Cost-Sensitive Adversaries: For
simplicity, we only show the griefing damage and cost under the

most dangerous cases. Fig. 4 demonstrates the griefing damage and

cost cross MHP protocols, under different adversary setting.

• Payee griefs multiple deposits by forfeiting payee’s on-chain stakes:
If Stake significantly exceeds the cumulative (and typically

small) liquidity inconvenience across all these minimal deposit

locks, the attack is economically irrational. Fig. 11c shows a 2.5

USD on-chain stakes can make the griefing factor lower than 0.1.

• Payee griefs a single payment right after principals fully locked:
At this time, the griefing damage reach the peak as all funds

are locked and non are refunded, payee could begin griefing

this MHP by triggering the on-chain dispute, and reclaim its

premium back at last minute by submitting 𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚 . Doing so

costs the adversary an on-chain fee 𝐹 while incurring a damage

of cumulative liquidity inconvenience across channels. Fig. 11a

shows even in the worst LN configuration, the griefing factor

𝜆 < 0.1, while 𝜆 ≤ 0.01 for payments lower than $500.

8 Evaluation
Implementation. We implemented Zeus3 using Bitcoin scripts,

leveraging the Taproot [42] upgrade. A key challenge is that current

Bitcoin does not support the slash mechanism for on-chain stakes.

While various proposals exist, contemporary approaches often in-

troduce external trust assumptions or significant computational

overheads [15, 23]. Given that the intended slash amount is rela-

tively small, we approximate this slash by mandating that payees

can only withdraw their collateral with a resource-intensive spend-

ing path. The anticipated high transaction fee incurred to execute

this path effectively serves as the burned amount (Appendix C.1).

Computation & Communication Overheads. Zeus uses only
lightweight primitives (i.e., digital signatures and hash functions),

resulting in negligible computational overhead—comparable to stan-

dard Bitcoin transactions. The requirement to mitigate griefing and

fee-stealing attacks compelled Zeus to introduce three additional

phases. Consequently, the settlement time of Zeus (∼ 11.3s) is 6.4s

longer than that of standard HTLC-basedMHP (4.9s), under a 200ms

network delay.

Transaction Overheads. Ideally, a n-relay payment in Zeus set-
tles entirely off-chain with no on-chain costs. Table 2 compares

3
Code available at https://anonymous.4open.science/r/Zeus-074B

11

https://anonymous.4open.science/r/Zeus-074B

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

(a) # of hops 𝑛 = 20. (b) Payment value 𝑥 = $3400. (c) Payee griefs multiple deposits, 𝑛 = 20.

Figure 11: (a) and (b) evaluate how the griefing factor varies when different adversaries grief a single payment across protocols.
(c) shows the minimum on-chain stake required by the payee for a target upper bound on the griefing factor.

transaction sizes across protocols when payments cannot settle off-

chain. In Bitcoin, transaction fees are calculated as vBytes×fee rate,
where virtual bytes (vBytes) represent the transaction’s size, and

the fee rate (typically 1-10 satoshis/vByte) varies with network

congestion. For context, a standard pay-to-taproot transaction is

111 vBytes, costing approximately 0.33 USD at a moderate fee rate

of 3 satoshis/vByte. When an n-relay payment stalls off-chain, Zeus,
similar to Blitz, allows the payer to revoke the jammed payment

with a single transaction, sizing 154 + 43𝑛 vBytes. Even in a worst-

case scenario where a multi-hop payment reaches the LN’s upper

bound of 20 hops, the resulting revocation transaction size is 914

vBytes. This is substantially below the Bitcoin transaction limit of

10
6
vBytes, and the associated fee remains acceptable at approxi-

mately 2.25 USD. Furthermore, Zeus mandates that the payee must

also redeem the payment on-chain using a transaction also sized at

154 + 43𝑛 vBytes, thereby increasing the cost for adversarial payers

attempting griefing attacks. As with all MHP protocols, if an honest

relay’s neighbor refuses off-chain collaboration, the honest relay

must first update the channel to its latest state on-chain, sizing at

most 197 vBytes (see Table 3), then enforce payment settlement for

138 vBytes or payment revocation for 194 vBytes.

Fee Stealing and Griefing Simulation.We created a realistic test-

ing environment based on current LN topology captured in March

2025 from local LN clients.We formalized this topology as a directed

graph where edges represent channels with capacities and fee poli-

cies (base fee plus fee rate). This graph contains 15,447 nodes and

71,007 edges (channels) with an average capacity of 5.68M satoshis

(∼0.057 BTC). The block delay Δ is configured as 6 Bitcoin blocks

(1 hour). For HTLC, we used the minimum secure lock delta 𝛿 of

18 blocks (3 hours), and channel closure upper bound is configured

as 1 hour. In LN, the single payment limit is 0.042 BTC(est. $3400),

and the maximum number of hops is 20. To simulate MHPs, we

first (uniformly or liquidity-weighted) sampled payer-payee pairs,

then found the lowest-fee path between them.

Griefing Attack Analysis. We assess griefing vulnerability by

measuring griefing damage and griefing factor for MHPs.

Griefing Damage. Fig. 12 and Fig. 18 illustrate how collateral

scales with payment amount across protocols. For a 200 USD pay-

ment under uniform sampling, the linear collateral inefficiency

of linear collateral protocols like AMHL results in approximately

Figure 12: Uniformly sampled collateral with different pay-
ment values. We highlight the mean collateral of each test.

11,877 USD·h of locked collateral during an attack. This vulnera-

bility escalates dramatically if a payee griefs multiple payments

concurrently; with an upper bound of 483 such payments, potential

damage could reach 5.5M USD·h. Both Blitz and Zeus significantly
reduce griefing damage compared to HTLC/AMHL—by approxi-

mately 63% and 72% respectively—by implementing constant time-

locks across channels. Zeus exhibits 25% lower collateral than Blitz

due to its shorter payment timelock (2𝑡𝑐𝑙𝑜𝑠𝑒 + Δ) versus Blitz’s
(𝑡𝑐𝑙𝑜𝑠𝑒 + 3Δ, see [8]’s Fig.10).

Griefing Factor. Zeus enforces a minimal griefing factor (GF),

rendering attacks economically irrational by combining liquidity

costs (opportunity loss from locked funds) and transaction fees.

Unlike Fulgor, AMHL, Astrape, or Blitz—where malicious payees

execute cost-free attacks with unbounded GF—Zeus caps GF at

≤ 0.1 even at maximum payment values (Fig. 11a), regardless of

payer/payee compromise. Fig. 11a further demonstrates that for

typical payments less than $500 USD, GF is less than 0.01 ≪ 1.

Corrupting both parties doubles transaction costs, further reducing

GF. Assuming a 1% annual interest rate (matching ACINQ’s Light-

ning Network rate), Fig. 11b shows GF’s path-length dependence.

Zeus requires payees to forfeit on-chain stake to grief multiple de-

posits; Fig. 11c quantifies the minimum required stake to ensure

the griefing factor remains below a threshold 𝑘 . Even when a payee

12

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

simultaneously griefs 483 MHPs and the required factor is less than

0.1, the necessary on-chain stake remains only a few USD.

Figure 13: Fee ratio under weighted sampling.

Fee Stealing Attack Analysis.We evaluate fee-stealing attacks

by measuring the maximum portion of relay fees that colluding

nodes can capture. We designate the top 𝜇 liquid nodes as potential

colluders. The results demonstrate significant vulnerability. Un-

der weighted sampling (Fig. 13), merely 0.6% of network nodes

can capture over 40% of total relay fees. Under uniform sampling

(Fig. 19), the same fraction captures approximately 25% of fees.

This disparity stems from the LN’s hub-and-spoke structure, where

high-liquidity nodes naturally attract more routing traffic. Under

weighted sampling, payments preferentially traverse these central

nodes, amplifying adversarial advantage.

9 Discussion
UTXO Interoperability. Bitcoin’s UTXO model lacks native sup-

port for direct interaction between arbitrary UTXOs. Protocols

like Zeus rely on dust outputs to signal state changes, increasing

transaction fees and contributing to UTXO set bloat. Exploring

alternatives for UTXO interoperability would benefit the broader

Bitcoin scaling ecosystem like BitVM or Discreet Log Contracts.

Privacy Concerns. Zeus employs channel splicing to improve cap-

ital efficiency. However, this potentially exposes payers’ identities

even when utilizing stealth addresses [8]. A potential mitigation

involves payers utilizing untraceable funds to replace splicing.

Applications of FSEs.We prove FSEs are impossible only with the

existence of public blockchains. FSE is the foundational model to

various applications. For example, [35] frames the pre-confirmation

between users and block proposers as FSE. Investigating how our

results apply to such contexts is an interesting avenue for future

research.

References
[1] Anonymous. 2024. LN BOLT 2: Peer Protocol for Channel Management. https:

//github.com/lightning/bolts/blob/master/02-peer-protocol.md.

[2] Anonymous. 2025. bitcoinjs-lib - v7.0.0. https://bitcoinjs.github.io/bitcoinjs-lib/.

[3] Anonymous. 2025. LN BOLT 3: Bitcoin Transaction and Script Formats. https:

//github.com/lightning/bolts/blob/master/03-transactions.md.

[4] Nadarajah Asokan, Victor Shoup, and Michael Waidner. 1998. Asynchronous

protocols for optimistic fair exchange. In Proceedings of 19th IEEE Symposium on
Security and Privacy (S&P). IEEE, 86–99.

[5] Nadarajah Asokan, Victor Shoup, and Michael Waidner. 1998. Optimistic fair

exchange of digital signatures. In Proceedings of the 16th International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT).
Springer, 591–606.

[6] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. 2022. Thora: Atomic

and Privacy-Preserving Multi-Channel Updates. In Proceedings of the 29th ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[7] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021.

Generalized channels from limited blockchain scripts and adaptor signatures. In

Proceedings of the 27th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT). Springer, 635–664.

[8] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2021.

Blitz: Secure Multi-Hop Payments Without Two-Phase Commits. In Proceedings
of 30th USENIX Security Symposium (USENIX Security).

[9] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2023.

Breaking and Fixing Virtual Channels: DominoAttack andDonner. In Proceedings
of the 30th Network and Distributed System Security Symposium (NDSS).

[10] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro

Moreno-Sanchez, and Matteo Maffei. 2022. Sleepy Channels: Bi-directional

Payment Channels without Watchtowers. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[11] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-

gory Neven. 2018. The Wonderful World of Global Random Oracles. Cryptology

ePrint Archive.

[12] Jan Camenisch and Anna Lysyanskaya. 2005. A formal treatment of onion

routing. In Proceedings of the 25th Annual International Cryptology Conference
(CRYPTO). Springer, 169–187.

[13] Ran Canetti. 2004. Universally composable signature, certification, and authenti-

cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
(CSFW).

[14] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In Proceedings of the 4th Theory of
Cryptography (TCC).

[15] Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse,

Robin LinusWoll, Lei Yang, andMingchao Yu. 2025. Remote Stakingwith Optimal

Economic Safety. arXiv:2408.01896 [cs.CR] https://arxiv.org/abs/2408.01896

[16] Yuhao Dong, Ian Goldberg, Sergey Gorbunov, and Raouf Boutaba. 2022. Astrape:

Anonymous payment channels with boring cryptography. In Proceeding of the
20th International Conference on Applied Cryptography and Network Security
(ACNS). Springer, 748–768.

[17] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic

Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-

Channel Networks. In Proceedings of the 26th ACM SIGSAC Conference on Com-
puter and Communications Security (CCS).

[18] Oğuzhan Ersoy, Jérémie Decouchant, Satwik Prabhu Kimble, and Stefanie Roos.

2022. SyncPCN/PSyncPCN: Payment Channel Networks without Blockchain

Synchrony. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies (AFT). 16–29.

[19] Oğuzhan Ersoy, Pedro Moreno-Sanchez, and Stefanie Roos. 2023. Get Me Out

of This Payment! Bailout: An HTLC Re-routing Protocol. In Proceedings of 27th
Financial Cryptography and Data Security (FC). Springer, 92–109.

[20] S. Even and Yacov Yacobi. 1980. Relations amoung public key signature systems.

Technion - Isrel Institute of Technology, Technical Report 175.
[21] William George. 2023. An analysis of griefs and griefing factors. Frontiers in

Blockchain.
[22] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2019. On the optionality and

fairness of atomic swaps. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies (AFT). 62–75.

[23] Ethan Heilman, Victor I Kolobov, Avihu M Levy, and Andrew Poelstra. 2024.

ColliderScript: Covenants in Bitcoin via 160-Bit Hash Collisions. Cryptology
ePrint Archive.

[24] Ethan Heilman, Victor I. Kolobov, Avihu M. Levy, and Andrew Poelstra. 2024.

ColliderScript: Covenants in Bitcoin via 160-bit hash collisions. Cryptology

ePrint Archive, Paper 2024/1802.

[25] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 37th
ACM Symposium on Principles of Distributed Computing (PODC). 245–254.

[26] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. 2021. Payment trees:

Low collateral payments for payment channel networks. In Proceedings of the
25th Financial Cryptography and Data Security (FC). Springer, 189–208.

[27] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Univer-

sally composable synchronous computation. In Proceedings of Theory of Cryptog-
raphy Conference (TCC).

[28] Satwik Prabhu Kumble, Dick Epema, and Stefanie Roos. 2023. Game-Theoretic

Analysis of (Non-) Refundable Fees in the Lightning Network. In Proceedings
of the 29th IEEE International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 645–652.

13

https://github.com/lightning/bolts/blob/master/02-peer-protocol.md
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md
https://bitcoinjs.github.io/bitcoinjs-lib/
https://github.com/lightning/bolts/blob/master/03-transactions.md
https://github.com/lightning/bolts/blob/master/03-transactions.md
https://arxiv.org/abs/2408.01896
https://arxiv.org/abs/2408.01896

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

[29] Yehuda Lindell. 2021. Fast secure two-party ECDSA signing. Journal of Cryptology
34, 4, 44.

[30] Robin Linus, Lukas Aumayr, Alexei Zamyati, Andrea Pelosi, Zeta Avarikioti,

and Matteo Maffei. 2024. BitVM2: Bridging Bitcoin to Second Layers. https:

//bitvm.org/bitvm_bridge.pdf.

[31] Aumayr Lukas, Avarikioti Zeta, Salem Iosif, Schmid Stefan, and Yeo Michelle.

2025. X-Transfer: Enabling and Optimizing Cross-PCN Transactions. In Proceed-
ings of 20th Financial Cryptography and Data Security (FC).

[32] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-

san Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks. In

Proceedings of the 24th ACM SIGSACConference on Computer and Communications
Security (CCS).

[33] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability. In Proceedings of the 26th Network and Distributed System
Security Symposium (NDSS).

[34] Subhra Mazumdar, Prabal Banerjee, and Sushmita Ruj. 2020. Time is money:

Countering griefing attack in lightning network. In Proceeding of the 19th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom). IEEE, 1036–1043.

[35] Conor McMenamin and Lin Oshitani. 2025. Preconfirmation Fair Ex-

change. Ethereum Research Forum. https://ethresear.ch/t/preconfirmation-

fair-exchange/21891

[36] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster

Than Lightning. In Proceedings of Financial Cryptography and Data Security (FC).
Springer, 508–526.

[37] Ayelet Mizrahi and Aviv Zohar. 2021. Congestion attacks in payment chan-

nel networks. In Proceedings of the 25th International Conference on Financial
Cryptography and Data security (FC). Springer, 170–188.

[38] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. 2022. Grief-

free Atomic Swaps. In Proceedings of the 4th IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE, 1–9.

[39] Henning Pagnia and Felix C. Gartner Darmstadt. 1999. On the Impossibility of

Fair Exchange without a Trusted Third Party.

[40] Henning Pagnia, Holger Vogt, and Felix C Gärtner. 2003. Fair exchange. Comput.
J. 46, 1, 55–75.

[41] Cristina Pérez-Sola, Alejandro Ranchal-Pedrosa, Jordi Herrera-Joancomartí,

Guillermo Navarro-Arribas, and Joaquin Garcia-Alfaro. 2020. Lockdown: Balance

availability attack against lightning network channels. In Proceedings of the 24th
International conference on financial cryptography and data security (FC). Springer,
245–263.

[42] Anthony Towns Pieter Wuille, Jonas Nick. 2020. BIP-341: Taproot: SegWit

version 1 spending rules. https://github.com/bitcoin/bips/blob/master/bip-0341.

mediawiki.

[43] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.

[44] Minfeng Qi, QinWang, ZhipengWang, Manvir Schneider, Tianqing Zhu, Shiping

Chen, William Knottenbelt, and Thomas Hardjono. 2024. SoK: Bitcoin Layer

Two (L2). arXiv:2409.02650 [cs.CR] https://arxiv.org/abs/2409.02650

[45] Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui, Oğuzhan Ersoy, Amin

Sakzad, Muhammed F Esgin, Joseph K Liu, Jiangshan Yu, and Tsz Hon Yuen.

2023. Blindhub: Bitcoin-compatible privacy-preserving payment channel hubs

supporting variable amounts. In Proceedings of the 44th 2023 IEEE symposium on
security and privacy (S&P). IEEE, 2462–2480.

[46] Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. 2023. Towards

a game-theoretic security analysis of off-chain protocols. In Proceedings of the
36th IEEE Computer Security Foundations Symposium (CSF). IEEE, 107–122.

[47] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged payment

channels: Quantifying the lightning network’s resilience to topology-based

attacks. In Proceeding of the 4th IEEE european symposium on security and privacy
workshops (EuroS&PW). IEEE, 347–356.

[48] Rusty Russell. 2015. Loop attack with onion routing. https://diyhpl.us/

~bryan/irc/bitcoin/bitcoin-dev/linuxfoundation-pipermail/lightning-dev/2015-

August/000135.txt.

[49] Rusty russell. 2021. Splicing Proposal. https://github.com/lightning/bolts/pull/

863.

[50] Clara Shikhelman and Sergei Tikhomirov. 2022. Unjamming Lightning: A

Systematic Approach. Cryptology ePrint Archive, Paper 2022/1454. https:

//eprint.iacr.org/2022/1454

[51] Lightspark Team. 2025. 15 persent of Bitcoin Transactions on Coinbase

Now Move Over Lightning. https://www.lightspark.com/blog/news/coinbase-

lightning-network-lightspark.

[52] Yingjie Xue and Maurice Herlihy. 2021. Hedging against sore loser attacks in

cross-chain transactions. In Proceedings of the 40th ACM Symposium on Principles
of Distributed Computing (PODC). Association for Computing Machinery, 155–

164.

[53] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In Proceed-
ings of the 27th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 162–167.

[54] Yi Zhang, Xiaofeng Jia, Bianjing Pan, Jun Shao, Liming Fang, Rongxing Lu, and

Guiyi Wei. 2023. Anonymous multi-hop payment for payment channel networks.

IEEE Transactions on Dependable and Secure Computing (TDSC) 21, 1, 476–485.

A Fair secret exchange with public TTPs
A.1 Modeling Fair secret exchanges
Background. In a fair secret exchangewith a public blockchain, con-
sider two parties, denoted as P and Q, who want to exchange their
secrets. At beginning, P possesses a secret item 𝑖P , and Q possesses

a secret item 𝑖Q with corresponding descriptions (descP , descQ).
The descriptions are common knowledge of all parties. A state ma-

chine (smart contract) deployed on the public blockchain functions

as a public trusted third party T (public TTP). This entity, T ,
processes requests from external users in each round and publicly

responds in the subsequent round, assuming its program is publicly

known from round 0. As the blockchain is public, every message

sent to T at round 𝑟 is considered broadcasted to all participants

and external observers.

Assumptions. In our settings, all protocols operate under the

standard round-based synchronous network model [27]. In this

model, when an honest party transmits a message in round 𝑟 to an

honest recipient, the recipient receives themessage at the beginning

of round 𝑟 + 1. All inter-party communication is conducted through

private, authenticated channels, underpinned bymodern public-key

infrastructure. We consider a static, probabilistic-polynomial-time
(PPT) adversary A capable of corrupting either party P or Q prior

to the protocol’s commencement.

Figure 14: The model of Fair Secret Exchange with/without
public blockchain.

Definition of fair secret exchange. We formally define a Fair
Secret Exchange protocol, denoted as ΠFSE, operating with a pub-

lic blockchain. This definition adheres to the standard structure

outlined in [4, 5, 39]. ΠFSE comprises three processes: 𝑝P , 𝑝Q , and
𝑝T . Each process is characterized by input variables and output
variables. Communication occurs through designated channels.

We use the notation 𝑝𝑥 . input
𝜏
𝑖
and 𝑝𝑥 . output

𝜏
𝑖
to denote the

input or output variable of party 𝑥 ∈ {P,Q,T } at round 𝜏 within
channel 𝑐𝑖 . The notation ℎ

𝜏
𝑥 represents the complete input history

of party 𝑥 up to round 𝜏 . Within the public blockchain, a random
oracle [11] is assumed to exist, which generates a public random

string 𝑟𝑡 ← {0, 1}∗ as input for each party at round 𝑡 through

channel 𝑐0. Fig. 14 illustrates the model of ΠFSE with and without a

public blockchain, depicted in blue and red boxes, respectively. In

the FSE model with public TTP (blue box in Fig. 14), there are the

following channels:
• 𝑐0: the public channel for the random oracle.

14

https://bitvm.org/bitvm_bridge.pdf
https://bitvm.org/bitvm_bridge.pdf
https://ethresear.ch/t/preconfirmation-fair-exchange/21891
https://ethresear.ch/t/preconfirmation-fair-exchange/21891
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://arxiv.org/abs/2409.02650
https://arxiv.org/abs/2409.02650
https://diyhpl.us/~bryan/irc/bitcoin/bitcoin-dev/linuxfoundation-pipermail/lightning-dev/2015-August/000135.txt
https://diyhpl.us/~bryan/irc/bitcoin/bitcoin-dev/linuxfoundation-pipermail/lightning-dev/2015-August/000135.txt
https://diyhpl.us/~bryan/irc/bitcoin/bitcoin-dev/linuxfoundation-pipermail/lightning-dev/2015-August/000135.txt
https://github.com/lightning/bolts/pull/863
https://github.com/lightning/bolts/pull/863
https://eprint.iacr.org/2022/1454
https://eprint.iacr.org/2022/1454
https://www.lightspark.com/blog/news/coinbase-lightning-network-lightspark
https://www.lightspark.com/blog/news/coinbase-lightning-network-lightspark

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

• 𝑐1: the channel for messages sent from P to Q.
• 𝑐2: the channel for messages sent from Q to P.
• 𝑐3: the broadcast channel sent from the public TTP T .
• 𝑐4: the channel for messages sent from P to T .
• 𝑐5: the channel for messages sent from Q to T .

At the initial round (0), 𝑝P receives input (𝑖P , 𝑎𝑢𝑥𝑖P), 𝑝Q re-

ceives input (𝑖Q , 𝑎𝑢𝑥𝑖Q), where 𝑎𝑢𝑥𝑖P and 𝑎𝑢𝑥𝑖Q are auxiliary

inputs. The TTP process 𝑝T receives the initial state state0 as the

input.

For each process 𝑝𝑥 , where 𝑥 ∈ {P,Q,T }, the fair secret ex-

change protocol defines a unique state function 𝑓𝑥 , which deter-

mines the outputs of 𝑝𝑥 .

Now we formally define fairness of fair secret exchange previ-
ously introduced in Section 4. The definition of timeliness and

effectiveness of FSE is equivalent to FE.

Definition A.1 (Fairness). For any party 𝑥 ∈ {P,Q}, for any PPT

adversary A, when process 𝑝𝑥 terminates, if 𝑥 fails to obtain 𝑖−𝑥
matching desc−𝑥 ,A and/or −𝑥 must know nothing about 𝑥 ’s secret.

Formally, this means they can not distinguish the real secret item

of 𝑥 , 𝑖𝑥 with any random secret, 𝑖′𝑥 , sampled in the same domain:���Pr[A(view𝑁
−𝑥 , 𝑖𝑥) = 1] − Pr[A(view𝑁

−𝑥 , 𝑖
′
𝑥) = 1]

��� ≤ 𝑛𝑒𝑔𝑙 (𝜆)

where 𝑛𝑒𝑔𝑙 (𝜆) is a negligible function, view𝜏
−𝑥 represents the view

of the counterparty up to the final round round 𝑁 , 𝑖′𝑥 is sampled

uniformly at random from the same domain as 𝑖𝑥 , and 𝜆 is the

security parameter.

A.2 Impossibility result of fair secret exchange
In this work, our proof adopts a similar contradiction argument as

presented by Even and Yacobi [20], who proving that FE is impos-

sible without a TTP. The central insight of their proof lies in the

observation that during a fair secret exchange, the secrets must,

at some point, be transmitted over the communication channel

between P and Q. However, within a mutually distrustful envi-

ronment, neither party is willing to transmit its secret first. Their

formalization of this proof employed a contradiction argument.

Proof for Theorem 1. We proceed to prove Theorem 1 by con-

tradiction. Given that Effectiveness and Timeliness are satisfied, there
exists a round 𝑛 ≤ 𝑁 such that a party 𝑥 (without loss of generality,

let 𝑥 be P) gains initial information about 𝑖Q , while its counterparty
Q remains uninformed about 𝑖P . Formally, at round 𝑛, there exists

a probabilistic polynomial-time (PPT) distinguisher D satisfying:

| Pr[D(view𝑛
P , 𝑖Q) = 1] − Pr[D(view𝑛

P , 𝑖
′
Q) = 1] | > 𝑛𝑒𝑔𝑙 (𝜆)

for some non-negligible function, where 𝑖′Q is a random secret

sampled from the same distribution as 𝑖Q , and view
𝑛
P represents

P’s history up to round 𝑛.

Conversely, we formally define that Q knows nothing about 𝑖P :
for any PPT distinguisher D′

| Pr[D′ (view𝑛
Q , 𝑖P) = 1] − Pr[D′ (view𝑛

Q , 𝑖
′
P) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆)

for some negligible function 𝑛𝑒𝑔𝑙 (𝜆), where 𝑖′P is a random secret

sampled from the same distribution as 𝑖P , and view
𝑛
Q represents

Q’s history up to round 𝑛.

Based on the synchronous communication model, there must

exist a round 𝑛′ (𝑛′ < 𝑛) where process 𝑝Q sends a message that

helps P to "learn" 𝑖Q at round 𝑛. Now consider the implications

of Q’s fairness at round 𝑛′. This property necessitates that even

if P terminates the protocol at round 𝑛′, Q retains the ability to

deterministically recover 𝑖P within the finite round 𝑁 , aided by T .
As 𝑁 > 𝑛′, by definition, at round 𝑛′, Q must ensure that Q

and T possess the capability to recover 𝑖P deterministically by

round 𝑁 , irrespective of P’s outputs from round 𝑛′ onwards and
the random stream from channel 𝑟0. Formally, at round 𝑛′, Q can

ensure that by round 𝑁 , there exists a DPT extractor 𝐸 such that:

𝐸 (view𝑛′

Q , view
𝑛′
T , {𝑟𝑛′ , . . . , 𝑟𝑁 }) = 𝑖P

Since T is a public TTP, we have:

view
𝑛′
T ⊂ view

𝑛′+1
Q

As 𝑛′ < 𝑛 ≤ 𝑁 , 𝑛′ + 1 ≤ 𝑁 , view
𝑛′+1
T ⊆ view

𝑁
Q , so at round 𝑁 ,

there exists a DPT extractor 𝐸′ such that:

𝐸′ (view𝑁
Q , {𝑟𝑛′ , . . . , 𝑟𝑁 }) = 𝑖P

Therefore, at round 𝑛′, the FSE protocol guarantees that Q will

be capable to extract the secret 𝑖P with probability 1 at round 𝑁 .

So any rational Q will not send the message to P at round 𝑛′.
Therefore, round 𝑛 will never exist, leading to a contradiction.

Symmetrically, a similar contradiction can be demonstrated in

the scenario where Q initially gains information about 𝑖P while P
remains uninformed about 𝑖Q . □

B Extended proof for Griefing Resistant MHPs
B.1 Strong griefing Resistant MHP in Payment

Hubs
Here, we construct a simple MHP protocol Π𝑀𝐻𝑃 to instance the

fair exchange proposed in the payment hub model in Section 4.1.1,

thereby achieving a strong griefing resistance under the assumption

that payer and payee are controlled by the same entity. Π𝑀𝐻𝑃 is a

simple lock-resolve MHP with two phases:

• Lock Setup: Payee 𝑈2 give a lock message verification

function Ver1
lock
(·) to 𝑈0. Ver1

lock
(𝑚) returns true only if

𝑚 is the correct lock message𝑚1

𝑙𝑜𝑐𝑘
, which transfer 𝛾1 to

locked state. And this locked condition allows𝑈2 to unlock

the payment once after 𝛾1 → locked.
• Lock Phase:𝑈0 locks 𝛾0, with amount 𝑥 + 𝑓1, and lock con-

dition cond0 returns true if a message𝑚 satisfying Ver
1

lock

provided before time 𝑇 ".

• Redeem Phase:𝑈1 sends the lock message𝑚1

lock
to𝑈0 and

settles 𝛾0 to paid. Then𝑈0 sends𝑚1

lock
(by mutual trust) to

𝑈2, and finally 𝛾1 → paid.

Security follows from the immediate settlement of 𝛾0 upon𝑚
1

lock

delivery. Strong griefing resistance holds as 𝑈1’s fee is atomically

redeemed with payment forwarding. Fig. 5 illustrates this protocol

in the fair exchange model-𝑈0 (cooperates with 𝑈2) settles 𝛾0 to

𝑝𝑎𝑖𝑑 only if𝑈1 delivers the correct lock message𝑚1

lock
.

15

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

0:

1:

2:

3:

Figure 15: Transaction structure of two-stage revocable chan-
nel state.

Off-chain settlement failue:
 or submits

Once splicing tx finalized
 asks revoke funds locked in

Case 2:
refuses off-chain revoke.

Case 1: revokes off-chain

 closes channel

Splicing finalized:
 submits

 finalized: asks revoke its pyament over channel
 not finalized: submit to punish while claiming its fund back

Case 2:
refuses off-chain revoke.

 closes channel

 closed, submits on chain

 finalized, 's funds reclaimed

 closed, submits on-chain

 finalized, 's funds reclaimed

Case 1: revokes off-chain

Figure 16: The timeline of the Zeus execution. The lower
purple dashed box shows how relay 𝑈𝑖 reclaim its locked
payment over channel 𝛾𝑖 when splicing happens; The upper
blue dashed box shows how the relay𝑈𝑖+1reclaim its locked
payment(premium) over 𝛾𝑖 when the redeem happens.

(1) Π
splicing-launcher

: Automatically initiates channel splicing at

time 𝑇 − 2𝑡
close
− Δ if payment hasn’t settled off-chain.

(2) Π
redeem-launcher

: Monitors the ledger GL for confirmation of

splicing transaction 𝑡𝑥
splicing

and posts redemption transac-

tions when appropriate, enabling payees to claim funds.

(3) Π
slash-launcher

: Enforces protocol accountability by posting

slash transactions when spliced payment remains unspent,

penalizing misbehaving parties.

(4) Π𝑖
splicing-handler

: Maintained by𝑈𝑖 , if the splicing transaction

𝑡𝑥
splicing

is finalized in GL before time𝑇 , then closes channel

𝛾𝑖 and revokes its locked funds (deposit or principal).

(5) Π𝑖
redeem-handler

: Maintained by𝑈𝑖+1, if the redemption trans-

action 𝑡𝑥
redeem

is finalized in GL before time 𝑇 + Δ, then
closes channel 𝛾𝑖 and revokes its locked premium.

Figure 17: Sub-protocols of Zeus for handling disputes.

Case HTLC/AMHL Blitz Zeus

txs vBytes # txs vBytes # txs vBytes

Payer splices/revokes - - 1 154 + 43n 1 154 + 43n

Payee redeems - - - - 1 154 + 43n

Relay revokes 1 138 1 194 1 194

Relay redeems 1 154/138 1 138 1 138

Table 2: Transaction cost comparison across protocols.

State 𝑡𝑥IDLE 𝑡𝑥Lock-Dep 𝑡𝑥Lock-Prm 𝑡𝑥Lock-Prcpl 𝑡𝑥Rfd-Dep 𝑡𝑥Paid

vsize 111 154 197 197 197 111

Table 3: Transaction size of Zeus in different states. For refer-
ence, a standard channel state transaction including a HTLC
output is 154 vBytes.

Figure 18: Weighted sampled collateral.

Figure 19: Relay fee collected by corrupted nodes with uni-
form sampling.

C Supplemental Discussions of Zeus.
C.1 Slash Functionality over Bitcoin Script
Our protocol requires the payee’s on-chain stake to implement a

slash mechanism with conditional spending rules: 1) early with-

drawal before expiry time𝑇expire with penalty 𝑐
burn

, or 2) full with-

drawal after𝑇expire without penalty. Implementing such conditional

forfeiture in Bitcoin’s stateless script environment traditionally re-

quires covenants — proposed opcodes that constrain how UTXOs

16

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

Protocol

Griefing

Damage

Payer corrupted Payee corrupted Both corrupted

payoff𝑎𝑑𝑣 payoff𝑝𝑎𝑦𝑒𝑒 payoff𝑎𝑑𝑣 payoff𝑝𝑎𝑦𝑒𝑟 payoff𝑎𝑑𝑣

HTLC/AMHL 𝑖𝑟 · 𝑝 · Θ(𝑛2𝑥 + 𝑛3 𝑓) - - 0 0 0

Blitz 𝑖𝑟 · 𝑝 · Θ(𝑛𝑥 + 𝑛2 𝑓) −𝑟𝑝 (154 + 43𝑛) 0 0 −43𝑛𝑟 −𝑟𝑝 (154 + 43𝑛)
Zeus(case 1) 𝑖𝑟 · ·Θ(𝑛𝑐𝑝𝑎𝑦𝑒𝑒 + 𝑛2𝑐𝑟𝑒𝑙𝑎𝑦) - - −min {𝑟𝑝 (154 + 43𝑛), 𝑐

burn
} −43𝑛𝑟 −min {𝑟𝑝 (154 + 43𝑛), 𝑐

burn
}

Zeus(case 2)
𝑖𝑟 · 𝑝 · Θ(𝑛(𝑥 + 𝑐𝑝𝑎𝑦𝑒𝑒)
+𝑛2 (𝑓 + 𝑐𝑟𝑒𝑙𝑎𝑦))

−𝑟𝑝 (154 + 43𝑛) −43𝑟𝑝𝑛 −𝑟𝑝 (154 + 43𝑛) −43𝑛𝑟 −2𝑟𝑝 (154 + 43𝑛)

Table 4: Comparison of griefing damage and costs. An adversary controls 𝑝 in-flight payments with amount 𝑥 and 𝑛 relays per
payment, each charging a relay fee 𝑓 , with fee rate 𝑟 USD/vBytes. 𝑖𝑟 is the interest rate for griefed funds locked in channels.
Case 1: Griefing before the Principal Locking phase; Case 2: Griefing during/after the Principal Locking phase. For on-chain
settlement, the payoff for honest parties excludes the idle on-chain transaction costs.

can be spent
4
. While various covenant proposals exist, most require

consensus changes. Alternative approaches like multi-signature

committees [30] or hash-based constructions [24] avoid soft forks

but introduce additional trust assumptions or computational over-

head.

We propose a practical alternative that leverages Bitcoin’s ex-

isting fee market mechanism. Instead of burning 𝑐
burn

, we struc-

ture the early withdrawal path to require excessive transaction

fees, effectively transferring the penalty to miners. This is imple-

mentable using Taproot’s script-path spending by constructing

a computationally expensive witness script for early withdrawal

(e.g., requiring multiple redundant signature verifications or hash

computations). The honest payee uses the key-path spending after

𝑇expire, incurring only standard transaction costs.

The security of this approach relies on the honestly of Bitcoin

miners. Given that 𝑐
burn

represents a small fraction of typical block

rewards ($0.25-5 versus $250,000), and Bitcoin’s mining ecosystem

exhibits strong decentralization, coordination between miners and

adversarial payees is both economically irrational and operationally

infeasible. The penalty mechanism thus provides equivalent secu-

rity guarantees to direct burning while maintaining compatibility

with current Bitcoin consensus rules.

C.2 Value of Deposits and Stakes
At the beginning of payment, the payee needs to lock a stake Stake
on-chain to hedge against potential griefing of the payer’s off-chain

deposit. Recall that the off-chain deposit of the payer in channel 𝛾𝑖
(𝑖 ∈ [1, 𝑛]), denoted as Dep𝑖 , has a value of 𝑐payee + (𝑛 − 𝑖) · 𝑐relay.
This off-chain deposit hedges the griefing risk associated with the

future premium, which amounts to 𝑓0 +
∑𝑛
𝑖=1

𝑓𝑖 , where 𝑓𝑖 is the fee

charged by relay node 𝑈𝑖 , and 𝑓0 is the padding fee. The padding

fee ensures that the relay fee in each hop is sufficient(bigger than

the dust limit 𝐹
dust

) to be safely routed through the PCNs:

For ∀𝑘 ∈ [1, 𝑛],
𝑘∑︁
𝑖=0

𝑓𝑖 ≥ 𝐹
dust

(1)

Next, we show that to ensure balance security, the payer’s deposit

must satisfy

𝑐payee ≥
𝑛∑︁
𝑖=1

𝑓𝑖 + 𝐹dust (2)

4
https://bitcoinops.org/en/topics/covenants/

This requirement can be understood by examining the last step of

the payer’s deposit lock phase (Lock-Dep), where the last relay𝑈𝑛

locks payment amount Dep𝑛 = 𝑐payee in channel 𝛾𝑛 to payee𝑈𝑛+1.
The payee then locks the premium back in channel 𝛾𝑛 with amount

Prm𝑛 = 𝑓0+
∑𝑛
𝑖=1

𝑓𝑖 . To ensure that even if all other parties go offline,

there is no loss for the payee, we require 𝑐payee ≥ 𝑓0 +
∑𝑛
𝑖=1

𝑓𝑖 .

Since the padding fee 𝑓0 must satisfy 𝑓0 ≥ 𝐹
dust
− ∑𝑛

𝑖=1
𝑓𝑖 when∑𝑛

𝑖=1
𝑓𝑖 < 𝐹

dust
, we can derive Equation 2.

Nowwe discuss the maximum values of 𝑐payee and value of 𝑐relay.

According to Equation 2, themaximum value of 𝑐payee is determined

by the maximum total relay fees, which depend on the maximum

payment amount and the maximum number of hops. In the LN, the

default single payment limit is 0.042 BTC (approximately 3400 USD),

and the maximum number of hops is 20. With a typical fee rate of

0.2% (0.01% per hop × 20 hops), the total fees would be around 6.8

USD. Adding the dust limit (typically 546 satoshis, around $0.45),

the value of 𝑐payee is approximately 7.25 USD (around 9k satoshis).

The value of 𝑐
relay

can be considered as the relay fee to route 𝑐payer.

In Zeus, we set 𝑐
relay

to the minimum relay fee of (1 satoshi), as

this minimum fee is sufficient to cover the liquidity cost of routing

payer’s deposit(consider the common fee rate is about 0.01%)

Finally, we calculate the required value of the payee’s on-chain

stake Stake. As shown in Table 4 (case 1), this stake must be suffi-

cient to hedge the griefing risk of 𝑝 in-flight payer deposits. The

worst-case griefing damage(locked amount times locked time) can

be calculated as:

𝑟 · 𝑝 · (𝑐payee · 𝑛max +
𝑛max (𝑛max + 1)

2

𝑐
relay
) (2𝑇

close
+ Δ)

where:

• 𝑝 = 483 is the maximum number of concurrent MHPs in the

Lightning Network.

• 𝑛max = 20 is the maximum number of hops.

• 𝑛max (𝑛max+1)
2

𝑐
relay

is the total 𝑐
relay

locked in this MHP.

• (2𝑇
close
+ Δ) is the timelock and 𝑟 is the interest rate.

Under the worst case, the total griefing collateral is approximate

221k USD·h. Assuming an interest rate of 1% per year(interest

rate charged by ACINQ one of the largest liquidity providers in

Lightning Network), the griefing damage derived from payer’s

collateral is approximately 0.25 USD. If we further constraint the

griefing factor lower than 0.1, a ∼ 2.5 USD global stake will be

sufficient.

17

https://bitcoinops.org/en/topics/covenants/

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

D When payer and payee have conflict interests:
MHP with credential exchange support

Theorem 2 in the paper demonstrates that no minimal secure lock-
resolve MHP protocol with more than one relay can satisfy strong
griefing resistance, even when the payer and payee are assumed to

cooperate.We now extend this finding to scenarios where payer and

payee may have conflicting interests, specifically by considering

MHPs that support credential exchange. In this model, upon success-

ful settlement, the payee receives a predefined credential, 𝑠 (e.g., the

preimage of a hash), from the payer. Such a credential can function

as a proof of payment (receipt). We denote an MHP augmented with

credential exchanges asMCE := (M, 𝑠, ℎ), whereM encompasses

the standard MHP parameters, 𝑠 is the secret credential, and ℎ is

the commitment to 𝑠 .

This extension leads to the following corollary:

Corollary 4. There is no minimal secure lock-resolve MHP with
at lease one relay, Π𝑀𝐻𝑃 , that simultaneously satisfies strong griefing
resistance and supports credential exchange.

Definition D.1 (Credential exchange support.). If 𝑈0 is honest,

𝛾0 settled in paid only if 𝑈0 get a pre-defined credential 𝑠 . Also,

similarly,𝑈𝑛+1 give 𝑠 to𝑈0 only if 𝛾𝑛 settles in paid.

Figure 20: Fair exchange with credential exchange support.

Proof. Credential exchange support (Def. D.1) introduces fair-

ness between𝑈0 and𝑈𝑛+1. For |𝑈 | = 3, similar to the general case

exchange(Fig. 6)), such MHP protocol can be reduced to a 3-party

fair exchange ring, where𝑈0 gives a revocable payment to𝑈1,𝑈1

gives a non-revocable secret(channel lock message of 𝛾1) to 𝑈2,

and𝑈2 give the secret(credential) back to 𝑈0. Same as the proof of

Lemma 1, this is impossible with T𝑝𝑢𝑏 . □

E Zeus Preliminaries
In the GUC framework, a protocol Π is executed between a set of

parties P with an adversary A, who receives as input a security

parameter 𝜆 ∈ N along with an auxiliary input 𝑧 ∈ {0, 1}∗. In our

work, we follow a static corrupt model, where A can corrupt any

party 𝑃𝑖 ∈ P at the beginning of the protocol execution. Corrupting

a party 𝑃𝑖 means thatA takes control over 𝑃𝑖 and learns all its inter-

nal state(e.g., credential, private key). The parties and the adversary

A take their input from the environment E, while E observes the

messages that are output by the parties of the protocol.

E.1 Preliminary ideal functionalities
In our model, we assume a synchronous communication, formal-

ized by a global clock idea functionality [27], in which all parties

have access to the current round number. We further assume that

there are two types of private and secure communication channel

amoung parties: a synchronous channel F𝑠𝑒𝑐 [27] and an asynchro-

nous channel F𝑂𝑛𝑖𝑜𝑛 [12]. In F𝑠𝑒𝑐 , a party 𝑃 can privately send a

message to another party𝑄 with guranteed delivery after precisely

one round. In F𝑂𝑛𝑖𝑜𝑛 , a party 𝑃 can send a private message to an-

other party𝑄 without guaranteed delivery. F𝑂𝑛𝑖𝑜𝑛 is used to model

the onion messages issued from payment issuer(payer) to all the

intermediaries along the path. We denote𝑚
𝜏
↩−→ 𝑄 to represent that

some party sends a message𝑚 to𝑄 at round 𝜏 .𝑄
𝜏+1←−−↪𝑚 represents

that 𝑄 receives the message𝑚 at round 𝜏 + 1. We use ↩→ F𝑂𝑛𝑖𝑜𝑛
to

denote the message sent through F𝑂𝑛𝑖𝑜𝑛 .

We assume there is a perfect hiding and binding commitment

scheme FCommit with interface (Com,Open), where ℎ := Com(𝑠)
return the commitment to a secret 𝑠 , and the Open(𝑠, ℎ) is the

functionality that returns 1 iff the secret 𝑠 matches the commitment

ℎ.

A global digital signature ideal functionality F𝑆𝑖𝑔 [13] has a tuple
of interfaces (KeyGen, Sign,Vrfy) satisfying EUF-CMA secure.

E.2 Ideal functionalities of ledger and a PCN
Ledger. We use the global ideal functionality GL [7] to model a

UTXO based blockchain. G𝐿𝑒𝑑𝑔𝑒𝑟 communicates with a fixed set of

parties P. The environment E first initializes G𝐿𝑒𝑑𝑔𝑒𝑟 by setting

up a key pair (sk𝑃 , pk𝑃) for every party 𝑃 ∈ P and registers it to

the ledger by sending (sid, REGISTER, pk𝑃) to G𝐿𝑒𝑑𝑔𝑒𝑟 . Any party

𝑃 ∈ P can always post a transaction 𝑡𝑥 on L via (sid, POST, 𝑡𝑥).
If a transaction is valid, it will be appear on GL after at most Δ
round, the exact number is chosen by the adversary. Recall that a

transaction is valid, if all its inputs exist and are unspent, there is a

correct witness for each input and a unique id.

GL
Parameters:

• Δ: the maximum time for a transaction to be included in GL.
• F𝑆𝑖𝑔 : a digital signature ideal functionality.

Local vairables:
• PKI: a public key infrastructure mapping public keys to users.

• TXs: a set of valid transactions.

API
• (sid, REGISTER, pk𝑃)

𝜏←−↪ 𝑃 : adds an entry (PKI[pk𝑃] := 𝑃) to
PKI table.

• (sid, POST, 𝑡𝑥) 𝜏←−↪ 𝑃 : in round [𝜏, 𝜏 + Δ], adds 𝑡𝑥 to TXs.

Figure 21: Ideal functionality of UTXO Ledger.

PCN. In this work, we model a payment channel network (PCN) by

global ideal functionality F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 (Fig. 22) based on the standard

payment channel ideal functionality widely adopted inF𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 [6,
7, 9, 10]. Compare with the standard payment channel ideal func-

tionality, We omit the create interface, and assume all channels

required in a multi-hop payment is pre-established. For each chan-

nel 𝛾 , F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 provides standard UPDATE interfaces, where if both
the channel owners 𝛾 .𝑙𝑢/𝑟𝑢 agree, can update the channel state to a

new state represented by the output of a update transaction 𝑡𝑥𝑠𝑡𝑎𝑡𝑒 .

The CLOSE interface allows any channel owner to close the chan-

nel peacefully or forcefully. UPDATESPLICING is almost the same

as the UPDATE interface, but its new state contains both splicing
outputs and funding outputs. When the SPLICINGCHANNEL interface
is triggered, GL will finalize the latest state of 𝛾 by broadcasting a

18

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Local vairables:
• 𝑡𝑐𝑙𝑜𝑠𝑒 : the upper bound for the time to close the channel.

• 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 : the upper bound for the time to update the channel.

API
• (sid, UPDATE, id, 𝑡𝑥𝑠𝑡𝑎𝑡𝑒)

𝜏←−↪ 𝑃 : Let 𝛾 be the channel

where 𝛾 .id = id. When invoked by 𝑃 ∈ 𝛾 .𝑙𝑢𝑜𝑟𝛾 .𝑟𝑢
and both parties agree, the channel 𝛾 is updated to

the new state represented by the outputs of 𝑡𝑥𝑠𝑡𝑎𝑡𝑒 .

(sid,UPDATED, id, 𝑡𝑥𝑠𝑡𝑎𝑡𝑒)
[𝜏,𝜏+𝑡𝑢𝑝𝑑𝑎𝑡𝑒]
↩−−−−−−−−−−→ 𝛾 .users is output.

• (sid, CLOSE, id) 𝜏← 𝑃 : close the channel 𝛾 , where 𝛾 .id =
id, either peacefully or forcefully. In round [𝜏, 𝜏 + 𝑡𝑐𝑙𝑜𝑠𝑒],
a transaction tx

close
with the current state 𝛾 .state as output

(tx
close

.Outs := 𝛾 .state) appears on GL. Then F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 board-

cast (sid, CLOSED, id, tx
close
) .

• (sid, UPDATESPLICING, id, 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔)
𝜏←−↪ 𝑃 : Let 𝛾 be the

channel where 𝛾 .id = id from either channel owner.

When invoked by 𝑃 = 𝛾 .𝑙𝑢/𝑟𝑢 and both parties agree,

𝛾 is updated to the new state represented by the outputs

of 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 . 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 contains splicing outputs (
ˆ𝜃0, . . .)

and funding outputs (
¯𝜃0, . . .). 𝛾 .state := { ˆ𝜃0, . . . , ¯𝜃0, . . .},

UPDATED-SPLICING, id, 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔)
[𝜏,𝜏+𝑡𝑢𝑝𝑑𝑎𝑡𝑒]
↩−−−−−−−−−−→ 𝛾 .𝑙𝑢/𝑟𝑢 is

output.

• (sid, SPLICINGCHANNEL, id) 𝜏←−↪ 𝑃 : For 𝛾 .id = id and

𝑃 = 𝛾 .𝑙𝑢/𝑟𝑢. In round 𝜏 ′ ∈ [𝜏, 𝜏 + 𝑡𝑐𝑙𝑜𝑠𝑒], a transac-

tion 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑒𝑑 containing all outputs within 𝛾 .state appears

on GL. Meanwhile, if the latest state contains funding out-
puts, GL will update the channel state: 𝛾 .state := { ¯𝜃0, . . .}.
(sid, SPLICED, id, 𝑡𝑥𝑠𝑝𝑙𝑖𝑐𝑒𝑑)

𝜏 ′
↩−→ 𝛾 .𝑙𝑢/𝑟𝑢 is output.

Figure 22: Ideal functionality of payment channel.

transaction containing all outputs of the current state. But compare

with the the standard CLOSE interface, the SPLICINGCHANNEL inter-

face will not close te channel, but replace the latest state with the

funding outputs of the transaction.

E.3 UC definition.
Here, we define the prelimilary ideal functionality set as Fprelim,
containing {F𝑐𝑙𝑘 , F𝑠𝑒𝑐 , F𝑂𝑛𝑖𝑜𝑛 , F𝑆𝑖𝑔 , FCommit, GL, F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 }. A
hybrid protocol Π with corresponding ideal functionality F inter-

acts with Fprelim. An environment E that interacts with Π and

an adversary A will on input a security parameter 𝜆 and an auxil-

iary input 𝑧 output EXEC
Fprelim
Π,A,E (𝜆, 𝑧). In the ideal the dummy users

simply forward their input to F . It has access to the same function-

alities F
prelim

. The output of 𝐹 on input 𝜆 and 𝑧 when interacting

with E and a simulator S is denoted as EXEC

Fprelim
F,S,E (𝜆, 𝑧).

Definition E.1. A protocol Π GUC-realizes an ideal functionality

F , w.r.t. Fprelim if for every adversary A there exists a simulator

S such that for all environments E:

EXEC

Fprelim
Π,A,E (𝜆, 𝑧) ≈𝑐 EXEC

Fprelim
F,S,E (𝜆, 𝑧)

where ≈𝑐 denotes computational indistinguishability.

F Formal Protocol Description

Zeus Protocol: ΠZeus

Parameters owned by all parties:
• pidSet: the set of all payment ids. Initially empty.

Setup phase

(sid, pid, setup, 𝑥,𝑇 , 𝑠) 0←−↪ E,𝑈𝑛+1:
0) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet. Save the

setup parameters: 𝑥,𝑇 , 𝑠 . Set ℎ := Commit(𝑠) .
(sid, pid, setup,M, ℎ,𝑇) 0←−↪ E,𝑈0:

1) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet.
2) Check payee’s stake. OutStake := checkPayeeStake(𝑈𝑛+1,𝑇) If

OutStake = ⊥, then abort.

3) Construct setup transactions.
(𝑡𝑥

splicing
, 𝑡𝑥

redeem
, 𝑡𝑥

slash
) := genSplicingTx(𝛾0 .id,OutStake,M, ℎ)

4) Request for accountability. Send:

(sid, pid, request-acc, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 0

↩−→ 𝑈𝑛+1

(sid, pid, request-acc, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 1←−↪ 𝑈0,𝑈𝑛+1:

5) Check the validity. If ⊥ =
checkSlashTx(𝑡𝑥

splicing
, 𝑡𝑥

redeem
, 𝑡𝑥

slash
, ℎ) , then abort.

6) Enable the redeem launcher.
• 𝜎

redeem
:= approveTx(𝑡𝑥

redeem
, 0)

• 𝑡𝑥
redeem

.ScriptSigs[0] := (𝜎
redeem

)

(sid, pid, init, 𝛾0 .𝑖𝑑,𝑇 , 𝑡𝑥splicing .Outs[0], 𝑡𝑥redeem)
1

↩−→ F
redeem-launcher

7) Approve accountability.
• 𝜎

slash
:= approveTx(𝑡𝑥

slash
, 1)

• (sid, pid, approved-acc, 𝜎
slash
) 1

↩−→ 𝑈0

(sid, pid, approved-acc, 𝜎
slash
) 2←−↪ 𝑈𝑛+1,𝑈0:

8) Check signature. If 𝜎
slash

is not a valid signature of 𝑈𝑛+1 over

𝑡𝑥
slash

, abort.

9) Generate the setup messages.
𝑚setup := genOnion(M, 𝑡𝑥

splicing
, 𝑡𝑥

redeem
)

∀𝑖 ∈ [1, 𝑛 + 1], (sid, pid, setup,𝑚setup [𝑖])
2

↩−→F𝑂𝑛𝑖𝑜𝑛
𝑈𝑖

10) Splice 𝛾0. (sid, pid, init, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing)
3

↩−→ F0

2pSetupSplicing

(sid, pid, setup,𝑚setup [𝑖])
3←−↪ 𝑈0:

11) 𝑈1:

• Extract Dep
1
, Prcpl ,𝑇 , splicing trigger (𝑡𝑟 1

splicing
).

• Check if the trigger 𝑡𝑟 1

splicing
has the correct lock condition, and

the payment lifetime 𝜏 ≪ 𝑇 .
• Setup the splicing state of 𝛾0:

(sid, pid, setup, 𝑡𝑟 1

splicing
) 3

↩−→ F
2pSetupSplicing

11) 𝑈𝑖∈ [2,𝑛] :
• Extract Dep𝑖 , Prm𝑖−1, Prcpl , 𝑇 , splicing triggers

(𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖−1

splicing
), and redeem triggers (𝑡𝑟 𝑖

𝑟𝑒𝑑𝑒𝑒𝑚
, 𝑡𝑟 𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
)

from𝑚setup [𝑖]
• Check if the deposit amount is correct: Dep𝑖 = 𝑐payee+𝑟 ·𝑐𝑟𝑒𝑙𝑎𝑦 ,

where 𝑟 ∈ N+; payment lifetime is long enough 𝜏 ≪ 𝑇 , and
the triggers has the correct lock condition.

• Check if splicing triggers share the same splicing transaction,

and the redeem triggers share the same redeem transaction.

• Setup the next state of 𝛾𝑖−1:

(sid, pid, 𝑡𝑟 𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
setup, Dep𝑖 +𝑐𝑟𝑒𝑙𝑎𝑦,𝑇 , 𝑡𝑟 𝑖splicing .𝑡𝑥)

3

↩−→ F𝑖−1

2pSetupDep

11) 𝑈𝑛+1:
• Extract Prm𝑛 , Prcpl ,𝑇 , redeem trigger (𝑡𝑟𝑛

𝑟𝑒𝑑𝑒𝑒𝑚
).

19

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

• Check if Prcpl − Prm𝑛 ≥ 𝑥 ; timelock is consistent (𝑇 = 𝑇);
and the redeem trigger has the correct lock condition.

• Setup the next state of 𝛾𝑛 :

(sid, pid, setup, 𝑐payee,𝑇 , 𝑡𝑟𝑛
splicing

.𝑡𝑥) 3

↩−→ F𝑛
2pSetupDep

Then𝑈1, . . . ,𝑈𝑛+1 enter the lock-deposit phase.
𝑈0 upon (sid, pid, slicing-Ok) , then:
12) Enable the splicing and slash launcher.

• (sid, pid, init,𝑇 ,𝛾0 .id)
𝜏
↩−→ F0

splicing-launcher

• (sid, pid, init,𝑇 , 𝑡𝑥
splicing

.Outs[0], 𝑡𝑥𝑠𝑙𝑎𝑠ℎ)
𝜏
↩−→

F
slash-launcher

• Enter the deposit-refund phase.

Lock-deposit phase

(sid, pid, slicing-Ok)
𝜏1←−↪ F

2pSetupSplicing
,𝑈1:

1) Lock payer’s deposit within 𝛾1. Invoke:

(sid, pid, init, 𝛾1 .id, Dep1
, 𝑡𝑟 1

splicing
,𝑇)

𝜏1

↩−→ F1

2pSetupDep

2) Enable splicing launcher and setup the next state of 𝛾1 If

F1

2pSetupDep
returns (lock-Dep-Ok) , then:

• (sid, pid, init,𝑇 ,𝛾0 .id)
𝜏 ′

1

↩−→ F1

splicing-launcher

• (sid, pid, 𝑡𝑟 1

splicing
, Prm1,𝑇 , 𝑡𝑟

1

redeem
)

𝜏 ′
1

↩−→ F1

2pSetupPrm

and enter the lock-premium phase.

(sid, pid, lock-Dep-Ok)
𝜏𝑖

1←−↪ F𝑖−1

2pSetupDep
,𝑈𝑖∈ [2,𝑛] :

4) Forward the deposit lock. Invoke:

(sid, pid, init, 𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖splicing,𝑇)
𝜏𝑖

1

↩−→ F𝑖
2pSetupDep

5) Setup the Premium-lock state of 𝛾𝑖 . IF receive (lock-Dep-Ok)
from F𝑖

2pSetupDep
, then:

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, Prm𝑖 ,𝑇 , 𝑡𝑟
𝑖
redeem

)
𝜏𝑖
′

1

↩−−→ F𝑖
2pSetupPrm

and enter the lock-premium phase.

(sid, pid, lock-Dep-Ok)
𝜏2←−↪ F𝑛

2pSetupDep
,𝑈𝑛+1:

6) Enter the lock-premium phase.

Lock-premium phase

𝑈𝑛+1:
1) Lock the premium. Invoke:

(sid, pid, init, 𝛾𝑛 .𝑖𝑑, Prm𝑛, 𝑡𝑟𝑛𝑟𝑒𝑑𝑒𝑒𝑚,𝑇 , 𝑡𝑥𝑛revoke-Dep)
𝜏2

↩−→ F𝑛
2pSetupPrm

2) Enable redeem handler and prepare for principal-lock.
If (lock-Prm-Ok) returned at 𝜏 ′

2
, then:

(sid, pid, setup, Prcpl, 𝑡𝑟𝑛
splicing

, 𝑡𝑟𝑛
redeem

)
𝜏 ′

2

↩−→ F𝑛
2pSetupPrcpl

then enter the next phase.

(sid, pid, lock-Prm-Ok)
𝜏𝑖

2←−↪ F𝑖
2pSetupPrm

,𝑈𝑖∈ [2,𝑛] :

3) Lock premium over 𝛾𝑖−1:

(sid, pid, init, 𝛾𝑖−1 .𝑖𝑑, Prm𝑖−1, 𝑡𝑟
𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
,𝑇 , 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
2

↩−→ F𝑖−1

2pSetupPrm

4) Setup the Principal-Lock state.
If (sid, pid, lock-Prm-Ok) received at 𝜏𝑖

′
2
:

(sid, pid, setup, Prcpl, 𝑡𝑟 𝑖−1

splicing
, 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
′

2

↩−−→ F𝑖−1

2pSetupPrcpl

and enter the lock-principal phase. Otherwise, terminate.

(sid, pid, lock-Prm-Ok)
𝜏3←−↪ F1

2pSetupPrm
,𝑈1 :

5) Enter the lock-principal phase.

Lock-principal phase

𝑈1:

1) Lock principal within 𝛾1. Invoke:

(sid, pid, init, 𝛾1 .id, Prm,)
𝜏3

↩−→ F1

2pSetupPrcpl

2) Setup the next phase. If receive (lock-Prcpl-Ok) return at 𝜏 ′
3
:

(sid, pid, setup, 𝑡𝑟 1

splicing
, 𝑡𝑟 1

redeem
, Dep

1
)

𝜏 ′
3

↩−→ F1

2pRfdDep

(sid, pid, lock-Prcpl-Ok)
𝜏𝑖

3←−↪ F𝑖−1

2pSetupPrcpl
,𝑈𝑖∈ [2,𝑛] :

3) Forward the Principal lock. Invoke:

(sid, pid, init, 𝛾𝑖 .id, Prm, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

)
𝜏𝑖

3

↩−→ F𝑖
2pSetupPrcpl

5) Setup the deposit-refund phase. If it returns (lock-Prcpl-Ok)
at 𝜏𝑖

′
3
, Then:

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, Dep𝑖)
𝜏𝑖
′

3

↩−−→ F𝑖
2pRfdDep

and enter the next phase.

(sid, pid, lock-Prcpl-Ok)
𝜏4←−↪ F𝑛

2pSetupPrcpl
,𝑈𝑛+1:

6) Release the secret. (sid, pid, release-secret, 𝑠)
𝜏4

↩−→ 𝑈0, and

enter the deposit-refund phase.

Deposit-Refund phase

𝑈𝑛+1:
1) Refund the payer side deposit. Invoke:

(sid, pid, init, 𝛾𝑛 .𝑖𝑑, Dep𝑛, 𝑡𝑟𝑛splicing, 𝑡𝑟
𝑛
redeem

)
𝜏4

↩−→ F𝑛
2pRfdDep

2) Setup the settle phase.
If (refund-Dep-Ok) received from F𝑛

2pRfdDep
:

(setup, 𝑙𝑏 − Prcpl + Prm𝑛, 𝑟𝑏 + Prcpl − Prm𝑛)
𝜏 ′

4

↩−→ F𝑛
2pSettle

then enter the next phase. Otherwise, terminate.

(sid, pid, refund-Dep-Ok)
𝜏𝑖

4←−↪ F𝑖
2pRfdDep

,𝑈𝑖∈ [2,𝑛] :

3) Forward the revoke over 𝛾𝑖−1:

(sid, pid, init, 𝛾𝑖−1 .𝑖𝑑, Dep𝑖−1
, 𝑡𝑟 𝑖−1

splicing
, 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
′

4

↩−−→ F𝑖−1

2pRfdDep

4) Setup the settle phase.
If (refund-Dep-Ok) received from F𝑖−1

2pRfdDep
:

(sid, pid, setup, 𝑙𝑏−Prcpl+Prm𝑖−1, 𝑟𝑏+Prcpl−Prm𝑖−1)
𝜏𝑖
′′

4

↩−−→ F𝑖−1

2pSettle

then enter the next phase. Otherwise, terminate.

𝑈1

𝜏5←−↪ (refund-Dep-Ok) from F1

2pRfdDep
:

5) Setup the settle phase.

(sid, pid, setup, 𝑙𝑏−Prcpl+Prm1−𝑓1, 𝑟𝑏+Prcpl−Prm1+𝑓1)
𝜏 ′

5

↩−→ F0

2pSettle

6) Notify payer. (sid, pid, revoke-Dep-Ok)
𝜏 ′′

5

↩−→ 𝑈0.

𝑈0

𝜏6←−↪ (sid, pid, revoke-Dep-Ok) from𝑈1:

20

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

7) Check the secret. Check if received (sid, pid, release-secret, 𝑠)
from𝑈𝑛+1, and Open(𝑠,ℎ) = 1, then enter the settle phase. Other-

wise, abort.

Settle phase

𝑈0:

1) Settle the payment.

(sid, pid, init, 𝛾0 .𝑖𝑑, 𝑙𝑏 − 𝑥 −
𝑛∑︁
𝑗=1

𝑓𝑗 , 𝑟𝑏 + 𝑥 +
𝑛∑︁
𝑗=1

𝑓𝑗)
𝜏6

↩−→ F0

2pSettle

And once settle-Ok
𝜏 ′

6←−↪ F0

2pSettle
, then return

(sid, pid, settled, 𝑠)
𝜏 ′

6

↩−→ E, close the splicing launcher

(sid, pid, close)
𝜏 ′

6

↩−→ F0

splicing-launcher

ends the main protocol.

(sid, pid, settle-Ok)
𝜏𝑖

6←−↪ F𝑖−1

2pSettle
,𝑈𝑖∈ [1,𝑛] :

2) Continue settlement chain:

(sid, pid, init, 𝛾𝑖 .𝑖𝑑, 𝑙𝑏−Prcpl+Prm𝑖 , 𝑟𝑏+Prcpl−Prm𝑖)
𝜏𝑖
′

6

↩−−→ F𝑖
2pSettle

3) Close the splicing launcher. If 𝑖 = 1,

(sid, pid, close)
𝜏𝑖
′

6

↩−−→ F1

splicing-launcher

and ends the protocol.

4) (sid, pid, settled)
𝜏7

↩−→ E and end.

F.1 Formal Descriptions of sub-procedures

2pSetupSplicing Protocol: Π𝑖
2pSetupSplicing

Parameters owned by both𝑈0 and𝑈1:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, setup, 𝑡𝑟 1

splicing
) ≤𝜏←−↪ E,𝑈1:

0) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet, save
𝑡𝑟 1

splicing
.

(sid, pid, init, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing)
𝜏←−↪ E,𝑈0:

1) Request splicing. If pid ∈ pidSet, then abort. Otherwise, add pid
to pidSet then sign the new state𝜎𝑙

splicing
:= approveTx(𝑡𝑥

splicing
, 0)

(sid, pid, request-splicing, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing, 𝜎
𝑙
splicing

) 𝜏
↩−→ 𝑈1

(sid, pid, request-splicing, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing, 𝜎
𝑙
splicing

) 𝜏+1←−−↪ 𝑈0,𝑈1:

2) Check splicing transaction. If

⊤ = checkSplicing(𝛾0 .𝑖𝑑, 𝑡𝑥splicing, 𝑡𝑟
1

splicing
, 𝜎𝑙

splicing
)

Otherwise, send (sid, pid, splicing-fail) 𝜏+1
↩−−→ E.

3) Approve splicing.
• 𝜎𝑟

splicing
:= approveTx(𝑡𝑥

splicing
, 0)

• 𝑡𝑥
splicing

:= genUpdateTx(𝑡𝑥
splicing

, 𝜎𝑙
splicing

, 𝜎𝑟
splicing

)
4) Splicing 𝛾0. Send

(sid𝐶 , UPDATE-SPLICING, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing)
𝜏+1
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

5) If (sid𝐶 , UPDATED-SPLICING)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then send

(sid, pid, splicing-Ok) 𝜏 ′
↩−→ E.

By round 𝜏 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 + 1,𝑈0:

6) If (sid𝐶 , UPDATED-SPLICING) ←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 was received, then

send (sid, pid, splicing-Ok) ↩−→ E. Otherwise, close the channel
𝛾0 by sending (sid𝐶 , CLOSE, 𝛾0 .id) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and abort.

2pSetupDeposit Protocol: Π𝑖
2pSetupDep

Parameters owned by both𝑈𝑖 and𝑈𝑖+1:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, setup, Dep𝑖 ,𝑇 , 𝑡𝑟 𝑖
splicing

) ≤𝜏←−↪ E,𝑈𝑖+1:

0) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet, save
Dep𝑖 ,𝑇 , 𝑡𝑟

𝑖
splicing

.

(sid, pid, init, 𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖
splicing

,𝑇) 𝜏←−↪ E,𝑈𝑖 :

1) Generate the lock-deposit transactions. If pid ∈ pidSet, then
abort. Otherwise, add pid to pidSet and:

(𝑡𝑥𝑖lock-Dep, 𝑡𝑥
𝑖
revoke-Dep) := genDepTx(𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖splicing,𝑇)

2) Approve the deposit revoke.
• 𝜎

𝑖,𝑙
revoke-Dep := approveTx(𝑡𝑥𝑖revoke-Dep, 0)

• 𝑡𝑥𝑖revoke-Dep .ScriptSigs[0] := (𝜎𝑖,𝑙
revoke-Dep)

3) Request for lock deposit.

(sid, pid, request-lock-Dep, 𝛾𝑖 .id, 𝑡𝑥𝑖lock-Dep, 𝑡𝑥
𝑖
revoke-Dep)

𝜏
↩−→ 𝑈𝑖+1

(sid, pid, request-lock-Dep, · · ·) 𝜏+1←−−↪ 𝑈𝑖 ,𝑈𝑖+1:
4) Check the proposed state. Check if 𝑠𝑡𝑎𝑡𝑢𝑠 = enabled and

⊤ = checkDep(𝛾𝑖 .id, 𝑡𝑥𝑖lock-Dep, 𝑡𝑥
𝑖
revoke-Dep, Dep𝑖 ,𝑇 , 𝑡𝑟

𝑖
splicing

)

Otherwise, abort.

5) Approve deposit and its revoke logic.
• 𝜎

𝑖,𝑟
revoke-Dep := approveTx(𝑡𝑥𝑖revoke-Dep, 1)

• 𝜎
𝑖,𝑟
lock-Dep := approveTx(𝑡𝑥𝑖lock-Dep, 0)

• Add (𝜎𝑖,𝑟
revoke-Dep) in 𝑡𝑥𝑖revoke-Dep .ScriptSigs[0]

6) Send approval to𝑈𝑖 :

(sid, pid, approved-lock-Dep, 𝑡𝑥𝑖revoke-Dep, 𝜎
𝑖,𝑟
lock-Dep)

𝜏+1
↩−−→ 𝑈𝑖

(sid, pid, approved-lock-Dep, 𝑡𝑥𝑖revoke-Dep, 𝜎
𝑖,𝑟
lock-Dep)

𝜏+2←−−↪ 𝑈𝑖+1,𝑈𝑖 :

7) Check the signatures. Check if 𝑡𝑥𝑖revoke-Dep contains 𝑈𝑖 ’s and

𝑈𝑖+1’s signatures and 𝜎
𝑖,𝑟
lock-Dep is valid.

8) Approve the new state.
• 𝜎

𝑖,𝑙
lock-Dep := approveTx(𝑡𝑥𝑖lock-Dep, 0)

• 𝑡𝑥𝑖lock-Dep := genUpdateTx(𝑡𝑥𝑖lock-Dep, 𝜎
𝑖,𝑙
lock-Dep, 𝜎

𝑖,𝑟
lock-Dep)

9) Update the channel state.

(sid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Dep)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

10) Initialize splicing handler. If (sid𝐶 , UPDATED, 𝛾𝑖 .id)
𝜏 ′←−↪

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then:

(sid𝑖𝑆𝐻 , init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟
𝑖
splicing

, 𝑡𝑥𝑖revoke-Dep)
𝜏 ′
↩−→ F𝑖splicing-handler

Send (sid, pid, lock-Dep-Ok) 𝜏 ′
↩−→ E.

(sid𝐶 , UPDATED, 𝛾𝑖 .id)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,𝑈𝑖+1:

11) Send (sid, pid, lock-Dep-Ok) 𝜏 ′
↩−→ E.

2pSetupPrm Protocol: Π𝑖
2pSetupPrm

21

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

Parameters owned by both𝑈𝑖 and𝑈𝑖+1
• pidSet: the set of all the payment ids.

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, Prm𝑖 ,𝑇 , 𝑡𝑟
𝑖
redeem

) ≤𝜏←−↪ E,𝑈𝑖 :

0) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet. Then
save𝑇, Prm𝑖 , 𝑡𝑟

𝑖
redeem

, 𝑡𝑟 𝑖
splicing

(sid, pid, init, 𝛾𝑖 .id, Prm𝑖 , 𝑡𝑟 𝑖
redeem

,𝑇 , 𝑡𝑟 𝑖
splicing

) 𝜏←−↪ E,𝑈𝑖+1:

1) Construct Premium-Lock txs. If pid ∈ pidSet, then abort. Oth-

erwise, add pid to pidSet and generate the lock-premium txs:

(𝑡𝑥𝑖lock-Prm, 𝑡𝑥
𝑖
revoke-Prm, 𝑡𝑥

𝑖′
revoke-Dep)

:= genPrmTx(𝛾 .𝑖𝑑, Prm𝑖 ,𝑇 , 𝑡𝑟 𝑖
redeem

, 𝑡𝑟 𝑖
splicing

)

2) approve the revoke transactions.
• 𝜎

𝑖,𝑟
revoke-Prm := approveTx(𝑡𝑥revoke-Prm, 0)

• 𝜎
𝑖′,𝑟
revoke-Dep := approveTx(𝑡𝑥𝑖′revoke-Dep, 0)

• 𝑡𝑥𝑖
′
revoke-Prm .ScriptSigs[0] := (𝜎𝑖,𝑟

revoke-Prm)
• 𝑡𝑥𝑖

′
revoke-Dep .ScriptSigs[0] := (𝜎𝑖′,𝑟

revoke-Dep)

(sid, pid, request-Prm, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prm, 𝑡𝑥
𝑖
revoke-Prm, 𝑡𝑥

𝑖′
revoke-Dep)

𝜏
↩−→ 𝑈𝑖

(sid, pid, request-Prm, . . .) 𝜏+1←−−↪ 𝑈𝑖+1,𝑈𝑖 :

3) Check the proposed state. Check if pid ∈ pidSet and

⊤ = checkPrm(𝛾𝑖 .id,𝑇 , Prm𝑖 , 𝑡𝑥𝑖lock-Prm, 𝑡𝑥
𝑖
revoke-Prm,

𝑡𝑥𝑖
′
revoke-Dep, 𝑡𝑥redeem, 𝑡𝑟

𝑖
splicing

, 𝑡𝑟 𝑖
redeem

,𝑇)

4) Approve the revoke transactions.
• 𝜎

𝑖,𝑙
revoke-Prm := approveTx(𝑡𝑥𝑖revoke-Prm, 0)

• 𝜎
𝑖′,𝑙
revoke-Dep := approveTx(𝑡𝑥𝑖′revoke-Dep, 0)

• Add (𝜎𝑖,𝑙
revoke-Prm) in 𝑡𝑥𝑖revoke-Prm .ScriptSigs[0]

• Add (𝜎𝑖′,𝑙
revoke-Dep) in 𝑡𝑥𝑖

′
revoke-Dep .ScriptSigs[0]

5) Approve the new state.

𝜎
𝑖,𝑙
lock-Prm := approveTx(𝑡𝑥𝑖lock-Prm, 0)

6) Update the splicing handler.

(sid𝑖𝑆𝐻 , pid, UPDATE, 𝑡𝑥𝑖
′
revoke-Dep)

𝜏+1
↩−−→ F𝑖

splicing-handler

7) Request to finalize the premium lock.

(sid, pid, approved-Prm, 𝜎𝑖,𝑙
lock-Prm, 𝑡𝑥

𝑖
revoke-Prm, 𝑡𝑥

𝑖′
revoke-Dep)

𝜏+1
↩−−→ 𝑈𝑖+1

(sid, pid, approved-Prm, · · ·) 𝜏+2←−−↪ 𝑈𝑖 ,𝑈𝑖+1:
8) Check the signatures. Check if𝑈0 signs the revoke transactions,

and provide valid signature over the premium lock transaction.

9) Update the channel state.
• 𝜎

𝑖,𝑟
lock-Prm := approveTx(𝑡𝑥𝑖lock-Prm, 0)

• 𝑡𝑥𝑖lock-Prm := genUpdateTx(𝑡𝑥𝑖lock-Prm, 𝜎
𝑖,𝑙
lock-Prm, 𝜎

𝑖,𝑟
lock-Prm)

• (sid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prm)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

10) Initialize redeem handler.

If (sid𝐶 , UPDATED, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prm .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then:

• 𝜎 := approveTx(𝑡𝑥𝑖revoke-Prm, 1), 𝑡𝑥
𝑖
revoke-Prm .ScriptSigs[1] :=

(𝜎)
• (init, 𝛾𝑖 .𝑖𝑑, 𝑡𝑟 𝑖𝑟𝑒𝑑𝑒𝑒𝑚, 𝑡𝑥𝑖revoke-Prm)

𝜏 ′+2′
↩−−−→ F𝑖redeem-handler

• (sid, pid, lock-Prm-Ok) 𝜏 ′
↩−→ E

(sid𝐶 , UPDATED, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prm .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,𝑈𝑖 :

11) Return the final state.

(sid, pid, lock-Prm-Ok) 𝜏 ′
↩−→ E

By round 𝜏 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 + 2, if channel still not updated, terminate this

instance.

2pSetupPrcpl Protocol: Π𝑖
2pSetupPrcpl

Parameters owned by both𝑈𝑖 and𝑈𝑖+1:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, setup, Prcpl, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

) ≤𝜏←−↪ E,𝑈𝑖+1:

0) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet, save
𝑡𝑟 𝑖

splicing
, 𝑡𝑟 𝑖

redeem
, Prcpl.

(sid, pid, init, 𝛾𝑖 .id, Prcpl, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

) 𝜏←−↪ E,𝑈𝑖 :

1) Generate the lock-principal transactions. If pid ∈ pidSet, then
abort. Otherwise, add pid to pidSet and:

(𝑡𝑥𝑖lock-Prcpl, 𝑡𝑥
𝑖′
revoke-Prm, 𝑡𝑥

𝑖
revoke-Prcpl)

:= genPrcplTx(𝛾𝑖 .𝑖𝑑, Prcpl, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

)

2) Approve the revoke transactions.
• 𝜎

𝑖,𝑙
revoke-Prcpl := approveTx(𝑡𝑥𝑖revoke-Prcpl, 0)

• 𝑡𝑥𝑖revoke-Prcpl .ScriptSigs[0] := (𝜎𝑖,𝑙
revoke-Prcpl)

• 𝜎
𝑖′,𝑙
revoke-Prm := approveTx(𝑡𝑥𝑖′revoke-Prm, 0)

• 𝑡𝑥𝑖
′
revoke-Prm .ScriptSigs[0] := (𝜎𝑖′,𝑙

revoke-Prm)
3) Request for locking principal.

(sid, pid, request-lock-Prcpl, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prcpl, 𝑡𝑥
𝑖′
revoke-Prm,

𝑡𝑥𝑖revoke-Prcpl)
𝜏
↩−→ 𝑈𝑖+1

(sid, pid, request-lock-Prcpl, · · ·) 𝜏+1←−−↪ 𝑈𝑖 ,𝑈𝑖+1:
4) Check proposed state. Check if 𝑠𝑡𝑎𝑡𝑢𝑠 = enabled and

⊤ = checkPrcpl(𝛾𝑖 .id, Prcpl, 𝑡𝑥𝑖lock-Prcpl, 𝑡𝑥
𝑖
revoke-Prcpl,

𝑡𝑥𝑖
′
revoke-Prm, 𝑡𝑟

𝑖
splicing

, 𝑡𝑟 𝑖
redeem

)

If any check fails, abort.

5) Approve revoke transactions.
• 𝜎

𝑖,𝑟
revoke-Prcpl := approveTx(𝑡𝑥𝑖revoke-Prcpl, 0)

• 𝜎
𝑖′,𝑟
revoke-Prm := approveTx(𝑡𝑥𝑖′revoke-Prm, 0)

• Add (𝜎𝑖,𝑟
revoke-Prcpl) in 𝑡𝑥𝑖revoke-Prcpl .ScriptSigs[0]

• Add (𝜎𝑖′,𝑟
revoke-Prm) in 𝑡𝑥𝑖

′
revoke-Prm .ScriptSigs[0]

6) Update the redeem handler

(sid𝑖𝑅𝐻 , UPDATE, 𝑡𝑥𝑖
′
revoke-Prm)

𝜏+1
↩−−→ F𝑖

redeem-handler

7) Approve the new state.
• 𝜎

𝑖,𝑟
lock-Prcpl := approveTx(𝑡𝑥𝑖lock-Prcpl, 0)

(sid, pid, approved-lock-Prcpl, 𝑡𝑥𝑖revoke-Prcpl, 𝑡𝑥
𝑖′
revoke-Prm,

𝜎
𝑖,𝑟
lock-Prcpl)

𝜏+1
↩−−→ 𝑈𝑖

(sid, pid, approved-lock-Prcpl, · · ·) 𝜏+2←−−↪ 𝑈𝑖+1,𝑈𝑖 :

8) Check the signature. Check if 𝜎
𝑖,𝑟
lock-Prcpl is valid, and

𝑡𝑥𝑖revoke-Prcpl and 𝑡𝑥
𝑖′
revoke-Prm contain all required signatures.

9) Approve the new state.
• 𝜎

𝑖,𝑙
lock-Prcpl := approveTx(𝑡𝑥𝑖lock-Prcpl, 0)

• 𝑡𝑥𝑖lock-Prcpl := genUpdateTx(𝑡𝑥𝑖lock-Prcpl, 𝜎
𝑖,𝑙
lock-Prcpl, 𝜎

𝑖,𝑟
lock-Prcpl)

22

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

10) Update the channel state.

(sid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prcpl)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

11) Update the splicing trigger. If (sid𝐶 , UPDATED, 𝛾𝑖 .id)
𝜏 ′←−↪

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then:

• 𝜎 := approveTx(𝑡𝑥𝑖revoke-Prcpl, 1)
• 𝑡𝑥𝑖revoke-Prcpl .ScriptSigs[1] := (𝜎)

• (sid𝑖
𝑆𝐻

, UPDATE, 𝑡𝑥𝑖revoke-Prcpl)
𝜏 ′
↩−→ F𝑖

splicing-handler

• Send (sid, pid, lock-Prcpl-Ok) 𝜏 ′
↩−→ E

(sid𝐶 , UPDATED, 𝛾𝑖 .id)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,𝑈𝑖+1:

12) Send (sid, pid, lock-Prcpl-Ok) 𝜏 ′
↩−→ E.

2pRefundDeposit Protocol: Π𝑖
2pRfdDep

Parameters owned by both𝑈𝑖 and𝑈𝑖+1:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, Dep𝑖)
≤𝜏←−↪ E,𝑈𝑖 :

0) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet, save
𝑡𝑟 𝑖

splicing
, 𝑡𝑟 𝑖

redeem
, Dep𝑖 .

(sid, pid, init, 𝛾𝑖 .id, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, Dep𝑖)
𝜏←−↪ E,𝑈𝑖+1:

1) Construct deposit refund txs. If pid ∈ pidSet, then abort. Other-

wise, add pid to pidSet and:

(𝑡𝑥𝑖rfd-Dep, 𝑡𝑥
𝑖′
revoke-Prcpl, 𝑡𝑥

𝑖′′
revoke-Prm) :=

genDepRfdTx(𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖splicing, 𝑡𝑟
𝑖
redeem

)

2) Approve the revoke transactions.
• 𝜎

𝑖′,𝑟
revoke-Prcpl := approveTx(𝑡𝑥𝑖′revoke-Prcpl, 0)

• 𝜎
𝑖′′,𝑟
revoke-Prm := approveTx(𝑡𝑥𝑖′′revoke-Prm, 0)

• 𝑡𝑥𝑖
′
revoke-Prcpl .ScriptSigs[0] := (𝜎𝑖′,𝑟

revoke-Prcpl)
• 𝑡𝑥𝑖

′′
revoke-Prm .ScriptSigs[0] := (𝜎𝑖′′,𝑟

revoke-Prm)
3) Request for deposit refund.

(sid, pid, request-Rfd-Dep, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖rfd-Dep, 𝑡𝑥
𝑖′
revoke-Prcpl,

𝑡𝑥𝑖
′′
revoke-Prm)

𝜏
↩−→ 𝑈𝑖

(sid, pid, request-Rfd-Dep, . . .) 𝜏+1←−−↪ 𝑈𝑖+1,𝑈𝑖 :

4) Check the tx validity. Check if pid ∈ pidSet and

⊤ = checkRfdDep(𝛾𝑖 .id, Dep𝑖 , 𝑡𝑥𝑖rfd-Dep,

𝑡𝑥𝑖
′
revoke-Prcpl, 𝑡𝑥

𝑖′′
revoke-Prm, 𝑡𝑟

𝑖
splicing

, 𝑡𝑟 𝑖
redeem

)

5) Approve revoke transactions.
• 𝜎

𝑖′,𝑙
revoke-Prcpl := approveTx(𝑡𝑥𝑖′revoke-Prcpl, 0)

• 𝜎
𝑖′′,𝑙
revoke-Prm := approveTx(𝑡𝑥𝑖′′revoke-Prm, 0)

• Add (𝜎𝑖′,𝑙
revoke-Prcpl) in 𝑡𝑥𝑖

′
revoke-Prcpl .ScriptSigs[0]

• Add (𝜎𝑖′′,𝑙
revoke-Prm) in 𝑡𝑥𝑖

′′
revoke-Prm .ScriptSigs[0]

6) Update the splicing handler.

(sid𝑖𝑆𝐻 , pid, UPDATE, 𝑡𝑥𝑖
′
revoke-Prcpl)

𝜏+1
↩−−→ F𝑖

splicing-handler

7) Approve the new state.

𝜎
𝑖,𝑙

rfd-Dep
:= approveTx(𝑡𝑥𝑖rfd-Dep, 0)

8) Send approval to𝑈𝑖+1:

(sid, pid, approved-rfd-Dep, 𝜎𝑖,𝑙

rfd-Dep
, 𝑡𝑥𝑖

′
revoke-Prcpl, 𝑡𝑥

𝑖′′
revoke-Prm)

𝜏+1
↩−−→ 𝑈𝑖+1

(sid, pid, approved-rfd-Dep, . . .) 𝜏+2←−−↪ 𝑈𝑖 ,𝑈𝑖+1:

9) Check the signatures. Check if 𝜎𝑖,𝑙

rfd-Dep
is valid, and 𝑡𝑥𝑖

′
revoke-Prcpl

and 𝑡𝑥𝑖
′′
revoke-Prm contain valid signatures.

10) Approve the new state.
• 𝜎

𝑖,𝑟

rfd-Dep
:= approveTx(𝑡𝑥𝑖

rfd-Dep
, 0)

• 𝑡𝑥𝑖
rfd-Dep

:= genUpdateTx(𝑡𝑥𝑖
rfd-Dep

, 𝜎
𝑖,𝑙

rfd-Dep
, 𝜎

𝑖,𝑟

rfd-Dep
)

11) Update the channel state.

(sid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖rfd-Dep)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

12) Update the redeem handler. If

(sid𝐶 , UPDATED, 𝛾𝑖 .id, 𝑡𝑥𝑖rfd-Dep .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then:

• 𝜎 := approveTx(𝑡𝑥𝑖′′revoke-Prm, 1)
• 𝑡𝑥𝑖

′′
revoke-Prm .ScriptSigs[1] := (𝜎)

• (sid𝑖
𝑅𝐻

, pid, UPDATE, 𝑡𝑥𝑖
′′
revoke-Prm)

𝜏 ′
↩−→ F𝑖redeem-handler

• (sid, pid, rfd-Dep-Ok) 𝜏 ′
↩−→ E

(sid𝐶 , UPDATED, 𝛾𝑖 .id, 𝑡𝑥𝑖rfd-Dep .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,𝑈𝑖 :

13) Return the final state. (sid, pid, rfd-Dep-Ok) 𝜏 ′
↩−→ E

2pSettle Protocol: Π𝑖
2pSettle

Parameters owned by both𝑈𝑖 and𝑈𝑖+1:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, setup, 𝑙𝑏′, 𝑟𝑏′) ≤𝜏←−↪ E,𝑈𝑖+1:
0) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet, save 𝑙𝑏′

and 𝑟𝑏′ .
(sid, pid, init, 𝛾𝑖 .𝑖𝑑, 𝑙𝑏′, 𝑟𝑏′)

𝜏←−↪ E,𝑈𝑖 :

1) Generate paid state over 𝛾𝑖 . If pid ∈ pidSet, then abort. Other-

wise, add pid to pidSet and:

𝑡𝑥𝑖settle := genSettleTx(𝛾𝑖 .𝑖𝑑, 𝑙𝑏′, 𝑟𝑏′)
2) Request for settle.

(sid, pid, request-settle, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖settle)
𝜏
↩−→ 𝑈𝑖+1

(sid, pid, request-settle, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖settle)
𝜏+1←−−↪ 𝑈𝑖 ,𝑈𝑖+1:

3) Check the balance. Check if pid ∈ pidSet and verify that 𝑡𝑥𝑖settle
reflects the agreed balance of 𝑙𝑏′ and 𝑟𝑏′ . If any check fails, abort.

4) Approve the settlement.

𝜎
𝑖,𝑟
settle := approveTx(𝑡𝑥𝑖settle, 0)

5) Send approval to𝑈𝑖 :

(sid, pid, approved-settle, 𝜎𝑖,𝑟
settle)

𝜏+1
↩−−→ 𝑈𝑖

(sid, pid, approved-settle, 𝜎𝑖,𝑟
settle)

𝜏+2←−−↪ 𝑈𝑖+1,𝑈𝑖 :

6) Check the signature validity. Verify that 𝜎
𝑖,𝑟
settle is valid. Other-

wise, abort.

7) Generate the settle state of 𝛾𝑖 .
• 𝜎

𝑖,𝑙
settle := approveTx(𝑡𝑥𝑖settle, 0)

• 𝑡𝑥𝑖settle := genUpdateTx(𝑡𝑥𝑖settle, 𝜎
𝑖,𝑙
settle, 𝜎

𝑖,𝑟
settle)

8) Update the channel state.

(sid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖settle)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

23

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

9) If (sid, UPDATED, 𝛾𝑖 .id, 𝑡𝑥𝑖settle .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then send

(sid, pid, settle-Ok) 𝜏 ′
↩−→ E.

(sid, UPDATED, 𝛾𝑖 .id, 𝑡𝑥𝑖settle .Outs)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,𝑈𝑖+1:

10) Return the final state. (sid, pid, settle-Ok) 𝜏 ′
↩−→ E

By round 𝜏 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 + 2, if channel still not updated, abort.

Splicing Launcher Protocol: Π𝑖
splicing-launcher

, 𝑖 ∈ {0, 1}

Parameters owned by𝑈𝑖 :
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet.
2) Check if𝑈𝑖 = 𝛾𝑖 .𝑙𝑢 or𝑈𝑖 = 𝛾𝑖 .𝑟𝑢. If not, abort.
3) Save𝑇 .
4) At round𝑇 − 𝑡𝑐𝑙𝑜𝑠𝑒 , close channel 𝛾𝑖 :

(ssid, CLOSE, 𝛾𝑖 .𝑖𝑑)
𝑇 −𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

5) If (ssid, CLOSED, 𝛾𝑖 .id)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , then send

(sid, pid, splicing-launched) 𝜏 ′
↩−→ E.

(sid, pid, CLOSE) 𝜏∗≥𝜏←−−−↪ E,𝑈𝑖 :

6) Terminate the protocol.

Redeem Launcher Protocol: Π𝑖
redeem-launcher

Parameters owned by𝑈𝑖 :
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet.
2) Save𝑇 , 𝑡𝑟 , 𝑡𝑥 .
3) At every round 𝜏 ′ ∈ [𝜏,𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ], if 𝑡𝑟 is confirmed over GL,

then:

(ssid, POST, 𝑡𝑥) 𝜏 ′
↩−→ GL

4) If 𝑡𝑥 is confirmed on GL, send (sid, pid, redeem-complete) ↩−→ E,
and terminate.

5) Terminate at round𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ.

Slash Launcher Protocol: Π𝑖
slash-launcher

Parameters owned by𝑈𝑖 :
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet.
2) Save𝑇 , 𝑡𝑟 , 𝑡𝑥 .
3) At round𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ, if 𝑡𝑟 is an unspent transaction output in GL,

then:

• 𝜎 := approveTx(𝑡𝑥, 0)
• 𝑡𝑥 .ScriptSigs[0] := (𝜎)
• (ssid, POST, 𝑡𝑥)

𝑇+𝑡𝑐𝑙𝑜𝑠𝑒+Δ
↩−−−−−−−−→ GL

• If 𝑡𝑥 fails to be confirmed within Δ, generate other 𝑡𝑥 ′ to spend
the UTXO and submit:

(ssid, POST, 𝑡𝑥 ′)
𝑇+𝑡𝑐𝑙𝑜𝑠𝑒+2Δ
↩−−−−−−−−→ GL

• When either 𝑡𝑥 or 𝑡𝑥 ′ is confirmed, send

(sid, pid, slash-complete) ↩−→ E.
4) IF 𝑡𝑟 is not confirmed within𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ, then terminate.

Splicing Handler Protocol: Π𝑖
splicing-handler

Parameters owned by𝑈𝑖 :
• pidSet: the set of all payment ids. Initially empty.

• owner: the owner of the splicing handler.

• 𝑇 : the expire time to end this handler.

• 𝑡𝑟 : the trigger UTXO we need to observe.

• 𝑡𝑥𝑠 : transactions to be broadcasted.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet.
2) Check if𝑈𝑖 = 𝛾𝑖 .𝑙𝑢. If not, abort.
3) Set owner := 𝑈𝑖 ,𝑇 := 𝑇 , 𝑡𝑟 := 𝑡𝑟 , 𝑡𝑥𝑠 := {𝑡𝑥 }.
(sid, pid, UPDATE, 𝑡𝑥 ′) 𝜏 ′←−↪ owner:
4) Add 𝑡𝑥 ′ to 𝑡𝑥𝑠 .
At each round 𝜏 ′ ∈ [𝜏,𝑇], if 𝑡𝑟 is confirmed over GL, then:
5) Close channel 𝛾𝑖 by sending:

(ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)
𝜏 ′
↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

6) After 𝑡𝑐𝑙𝑜𝑠𝑒 rounds, broadcast the valid transaction from 𝑡𝑥𝑠 to GL:

(ssid𝐿, POST, 𝑡𝑥valid)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ GL

7) Send (sid, pid, splicing-handled)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ E, and terminate.

8) Terminate at round𝑇 .

Redeem Handler Protocol: Π𝑖
redeem-handler

Parameters owned by𝑈𝑖+1:
• pidSet: the set of all payment ids. Initially empty.

• owner: the owner of the redeem handler.

• 𝑇 : the expire time to end this handler.

• 𝑡𝑟 : the trigger UTXO we need to observe.

• 𝑡𝑥𝑠 : transactions to be broadcasted.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖+1:

1) If pid ∈ pidSet, then abort. Otherwise, add pid to pidSet.
2) Check if𝑈𝑖+1 = 𝛾𝑖 .𝑟𝑢. If not, abort.
3) Set owner := 𝑈𝑖+1,𝑇 := 𝑇 , 𝑡𝑟 := 𝑡𝑟 , 𝑡𝑥𝑠 := {𝑡𝑥 }.
4) At round𝑇 − 𝑡𝑐𝑙𝑜𝑠𝑒 , close channel 𝛾𝑖 by sending:

(ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)
𝑇 −𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

(sid, pid, UPDATE, 𝑡𝑥 ′) 𝜏 ′←−↪ owner:
5) Check if the sender is the owner. If not, abort.

6) Add 𝑡𝑥 ′ to 𝑡𝑥𝑠 .
At each round 𝜏 ′ ∈ [𝜏,𝑇], if 𝑡𝑟 is confirmed over GL, then:
7) Close channel 𝛾𝑖 by sending:

(ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)
𝜏 ′
↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

8) After 𝑡𝑐𝑙𝑜𝑠𝑒 rounds, find and broadcast the valid transaction from

𝑡𝑥𝑠 to GL:

(ssid𝐿, POST, 𝑡𝑥valid)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ GL

9) Send (sid, pid, redeem-handled)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ E, and terminate.

10) Terminate the protocol at𝑇 .

G Auxiliary Algorithms
G.1 Helper functions.
This section includes several useful functions that help to construct,

approve transactions, and update the state of the payment channel.

genOnion(M, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

)

24

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

(1) ParseM to obtain the number of relays (𝑛), base payment

amount 𝑥 , payment lifetime𝑇 , and the relay fee 𝑓𝑖 for each

𝑖 ∈ [1, 𝑛].
(2) Calculate the padding fee, 𝑓0 := max{𝐹 −∑𝑛

𝑗=1
𝑓𝑗 , 0}.

(3) Initialize message,𝑚 := [].
(4) for 𝑖 ∈ [1, 𝑛]:

• Dep𝑖 := 𝑐payee + (𝑛 − 𝑖)𝑐relay.
• Prm𝑖 :=

∑𝑖
𝑗=0

𝑓𝑗

• Prcpl := 𝑥 +∑𝑛
𝑗=0

𝑓𝑗 .

• 𝑡𝑟 𝑖
splicing

:= (𝑡𝑥
splicing

, 𝑖 − 1)
• 𝑡𝑟 𝑖

redeem
:= (𝑡𝑥

redeem
, 𝑖)

(5) 𝑚[1] := (Dep
1
, Prcpl, 𝑡𝑟1

splicing
,𝑇)

(6) 𝑚[𝑛 + 1] := (Prm𝑛, Prcpl, 𝑡𝑟𝑛
redeem

,𝑇)
(7) ∀𝑖 ∈ [2, 𝑛]: 𝑚[𝑖] :=

(Dep𝑖 , Prm𝑖−1, Prcpl, 𝑡𝑟
𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, 𝑡𝑟 𝑖−1

splicing
, 𝑡𝑟 𝑖−1

redeem
,𝑇)

(8) Return 𝑚.

checkPayeeStake(𝑈 ,𝑇):
(1) If ∃ 𝑡𝑥 ∈ GL .TXs, where 𝑡𝑥 contains an unspent output

with index 𝑖 , such that:

• 𝑡𝑥 .Outs[𝑖] .amt ≥ 𝑐
burn
+ 𝐹 , and

• 𝑡𝑥 .Outs[𝑖] .𝜙 requires the spending transaction

𝑡𝑥spent satisfy:

– If 𝑡𝑥 .Outs[𝑖] is spent before 𝑇expire, then
𝑡𝑥spent .Outs[0] = {amt : 𝑐

burn
, 𝜙 = Sig(⊥))

– After 𝑇expire, 𝑈 can spend the output with a

valid signature.

• 𝑇expire ≫ 𝑇

(2) If all checks pass, return (𝑡𝑥, 𝑖).
(3) Otherwise, return ⊥.
genSplicingTxs(𝛾 .id,Outstake,M):
(1) Lookup the corresponding channel 𝛾 based on 𝛾 .𝑖𝑑 .

(2) Parse M to obtain the parameters within it: M =

(𝑈 , Γ, 𝑥, Fees,S).
(3) Construct the splicing transaction 𝑡𝑥

splicing
:

• ˆ𝜃0 := {amt : 𝑥 + 𝑛𝜖, 𝜙 : ((𝑠 ≤ rel(𝑡
close
+ Δ)) ∧

Sig(𝑈𝑛+1)) ∨ (Sig(𝑈0) ≥ rel(𝑡
close
+ Δ))}

• For 𝑖 ∈ [1, 𝑛], ˆ𝜃𝑖 := {amt : 𝜖, 𝜙 : Sig(𝑈𝑖) ≤
rel(2𝑡

close
+ Δ)}.

• 𝜃0 := {amt : 𝑙𝑏 − 𝑥 − (2𝑛)𝜖, 𝜙 : Sig(𝑈0)}.
• 𝜃1 := {amt : 𝑟𝑏, 𝜙 : Sig(𝑈1)}.
• 𝑡𝑥

splicing
:= genState(𝛾0, { ˆ𝜃0, . . . , ˆ𝜃𝑛, 𝜃0, 𝜃1}).

(4) Generate the redeem transaction 𝑡𝑥
redeem

:

• 𝜃0 := {amt : 𝑥, 𝜙 : Sig(𝑈𝑛+1)}.
• For each 𝑖 ∈ [1, 𝑛], 𝜃𝑖+1 := {amt : 𝜖, 𝜙 : Sig(𝑈𝑖) ≤

rel(𝑡
close
+ Δ)}.

• 𝑡𝑥
redeem

:= {Ins[0] : {𝑡𝑥 : 𝑡𝑥
splicing

, idx : 0},Outs :

(𝜃0, . . . , 𝜃𝑛+1)}.
(5) Generate the slash transaction 𝑡𝑥

slash
:

• 𝜃0 := {amt : 𝑥 + 𝑛𝜖, 𝜙 : Sig(𝑈0)}.
• 𝜃1 := {amt : 𝑐

burn
, 𝜙 : Sig(0)}.

• 𝑡𝑥
slash

:= {Ins[0] : {𝑡𝑥 : 𝑡𝑥
splicing

, idx : 0}, Ins[1] :

Outstake,Outs : (𝜃
slash

, 𝜃return)}.
(6) Return (𝑡𝑥

splicing
, 𝑡𝑥

redeem
, 𝑡𝑥

slash
).

checkSlashTx(𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash

, ℎ, 𝑥):

(1) For 𝑡𝑥
splicing

, check if 𝑡𝑥
splicing

.Outs[0] .amt ≥ 𝑥 and that

𝑡𝑥
splicing

.Outs[0] .𝜙 enables 𝑈𝑛+1 to redeem the payment

within rel(Δ).
(2) For 𝑡𝑥

redeem
and 𝑡𝑥

slash
, check if they are constructed

using the function genSplicingTxs.

(3) If all the above conditions are satisfied, return ⊤. Other-
wise, return ⊥.

approveTx(𝑡𝑥, idx) 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑦 𝑈 :

(1) Parse the "idx"-th input of transaction 𝑡𝑥 to obtain the

spending UTXO, 𝑂𝑢𝑡
spending

:= 𝑡𝑥 .Ins[idx].
(2) If the spending UTXO is locked with Sig(𝑈), then return

𝜎 := Sign(𝑈 .sk, 𝑡𝑥).
(3) Otherwise, return ⊥.
checkSlashSig(𝜎

slash
, 𝑡𝑥

slash
):

(1) Check if 𝜎
slash

is a valid signature to spend 𝑡𝑥
slash

.Ins[0].
(2) If yes, return ⊤, otherwise, return ⊥.
genUpdateTx(𝛾𝑖𝑑 , 𝑡𝑥state, 𝜎𝑙 , 𝜎𝑟):

(1) Construct a channel udpate transaction 𝑡𝑥𝑢𝑝𝑑𝑎𝑡𝑒

copying the state of 𝑡𝑥state, if 𝜎
𝑙
and 𝜎𝑟 are valid sig-

natures to spend the left and right channel states,

respectively.

(2) Return 𝑡𝑥𝑢𝑝𝑑𝑎𝑡𝑒 .

genDepTx(𝛾 .𝑖𝑑, Dep, 𝑡𝑟𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔,𝑇):
(1) Lookup the corresponding channel 𝛾 based on 𝛾 .𝑖𝑑 .

(2) Define the deposit lock output:

𝜃0 :=

{
amt : Dep, 𝜙 :

{
𝑆𝑖𝑔(𝛾 .𝑙𝑢) ∧ 𝑆𝑖𝑔(𝛾 .𝑟𝑢)∨
𝑆𝑖𝑔(𝛾 .𝑟𝑢) ≥ 𝑇

(3) Define the remained outputs:

• 𝜃1 := {amt : 𝑙𝑏 − Dep, 𝜙 : Sig(𝛾 .𝑙𝑢)}
• 𝜃2 := {amt : 𝑟𝑏, 𝜙 : Sig(𝛾 .𝑟𝑢)}

(4) Construct the lock-deposit transaction:

𝑡𝑥lock-Dep .Outs := {𝜃0, 𝜃1, 𝜃2}
(5) Define the deposit revoke output:

𝑡𝑥revoke-Dep .Outs[0] :=

{
amt : Dep + 𝜖, 𝜙 : Sig(𝛾 .𝑙𝑢)

}
(6) In the revoke transaction, set the first input to refer to

the lock transaction:

𝑡𝑥revoke-Dep .Ins[0] := {𝑡𝑥 : 𝑡𝑥lock-Dep, idx : 0}
(7) Link the splicing transaction to the revoke deposit trans-

action:

𝑡𝑥revoke-Dep .Ins[1] := 𝑡𝑟𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

(8) Return (𝑡𝑥lock-Dep, 𝑡𝑥revoke-Dep).
genPrmTx(𝛾 .𝑖𝑑, Prm,𝑇 , 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚, 𝑡𝑟

splicing
):

(1) Lookup the corresponding channel 𝛾 based on 𝛾 .𝑖𝑑 .

(2) Fetch the previously locked deposit:

𝜃0 := 𝛾 .state[0]

25

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

(3) Define the new premium lock output:

𝜃1 :=

{
amt : Prm, 𝜙 :

{
Sig(𝛾 .𝑙𝑢) ∧ Sig(𝛾 .𝑟𝑢)∨
Sig(𝛾 .𝑙𝑢) ≥ 𝑇 + 𝑡

close
+ Δ)

}
(4) Construct the remained outputs:

𝜃2 := 𝛾 .state[2]; 𝜃3 := {amt : 𝑟𝑏 − Prm, 𝜙 : Sig(𝛾 .𝑟𝑢)}
(5) Construct the lock-premium transaction:

𝑡𝑥lock-Prm .Outs := {𝜃0 . . . , 𝜃3}
(6) Construct new deposit revoke (left revoke) tx’ inputs:

𝑡𝑥 ′revoke-Dep .Outs[0] :=

{
amt : 𝛾 .state[0]+𝜖, 𝜙 : Sig(𝛾 .𝑙𝑢)

}
(7) Set the first input to refer to latest state:

𝑡𝑥 ′revoke-Dep .Ins[0] := {𝑡𝑥 : 𝑡𝑥lock-Prm, idx : 0}
(8) Link the splicing trigger to the revoke deposit transaction:

𝑡𝑥 ′revoke-Dep .Ins[1] := 𝑡𝑟
splicing

(9) Define the premium revoke output:

𝜃revoke-Prm :=

{
amt : Prm + 𝜖, 𝜙 : Sig(𝛾 .𝑟𝑢)

}
(10) Construct the revoke-premium transaction:

𝑡𝑥revoke-Prm .Ins[0] := {𝑡𝑥 : 𝑡𝑥lock-Prm, idx : 1}
𝑡𝑥revoke-Prm .Ins[1] := 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚

(11) Return (𝑡𝑥lock-Prm, 𝑡𝑥revoke-Prm, 𝑡𝑥 ′revoke-Dep).
genPrcplTx(𝛾 .𝑖𝑑, Prcpl,𝑇 , 𝑡𝑟

splicing
, 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚):

(1) Fetch the previously locked deposit:

𝜃0 := 𝛾 .state[0] 𝜃1 := 𝛾 .state[1]
(2) Lock the principal 𝑡ℎ𝑒𝑡𝑎0 .amt := 𝜃0 .amt + Prcpl.
(3) Construct the remained outputs:

𝜃2 := {amt : 𝛾 .state[3] .amt − Prcpl, 𝜙 : Sig(𝛾 .𝑙𝑢)}
𝜃3 := 𝛾 .state[3];

(4) Construct the lock-principal transaction:

𝑡𝑥lock-Prcpl .Outs := {𝜃0 . . . , 𝜃3}
(5) Construct new principal revoke (left revoke) tx’ inputs:

𝑡𝑥revoke-Prcpl .Outs[0] :=

{
amt : 𝛾 .state[0]+𝜖, 𝜙 : Sig(𝛾 .𝑙𝑢)

}
(6) Set the first input to refer to latest state:

𝑡𝑥revoke-Prcpl .Ins[0] := {𝑡𝑥 : 𝑡𝑥lock-Prcpl, idx : 0}
(7) Link the splicing trigger to the revoke principal transac-

tion:

𝑡𝑥revoke-Prcpl .Ins[1] := 𝑡𝑟
splicing

(8) Define the premium revoke output:

𝜃revoke-Prm :=

{
amt : 𝛾 .state[1] + 𝜖, 𝜙 : Sig(𝛾 .𝑟𝑢)

}
(9) Construct the revoke-premium transaction:

𝑡𝑥revoke-Prm .Ins[0] := {𝑡𝑥 : 𝑡𝑥lock-Prcpl, idx : 1}
𝑡𝑥revoke-Prm .Ins[1] := 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚

(10) Return (𝑡𝑥lock-Prcpl, 𝑡𝑥revoke-Prm, 𝑡𝑥revoke-Prcpl).

genDepRfdTx(𝛾 .𝑖𝑑, Dep, 𝑡𝑟
splicing

, 𝑡𝑟
redeem

):
(1) Preserve the previously locked deposit:

𝜃0 := 𝛾 .state[0] 𝜃1 := 𝛾 .state[1]
(2) refund the deposit 𝑡ℎ𝑒𝑡𝑎0 .amt := 𝜃0 .amt − Dep.
(3) Construct the remained outputs:

𝜃2 := {amt : 𝛾 .state[3] .amt + Dep, 𝜙 : Sig(𝛾 .𝑙𝑢)}
𝜃3 := 𝛾 .state[3];

(4) Construct the refund-deposit transaction:

𝑡𝑥refund-Dep .Outs := {𝜃0 . . . , 𝜃3}
(5) Construct new revoke tx:

𝑡𝑥revoke-Prcpl .Outs[0] :=

{
amt : 𝛾 .state[0]+𝜖, 𝜙 : Sig(𝛾 .𝑙𝑢)

}
(6) Set the first input to refer to latest state:

𝑡𝑥revoke-Prcpl .Ins[0] := {𝑡𝑥 : 𝑡𝑥refund-Dep, idx : 0}
(7) Link the splicing trigger:

𝑡𝑥revoke-Prcpl .Ins[1] := 𝑡𝑟
splicing

(8) Define the premium revoke output:

𝜃revoke-Prm :=

{
amt : 𝛾 .state[1] + 𝜖, 𝜙 : Sig(𝛾 .𝑟𝑢)

}
(9) Construct the revoke-premium transaction:

𝑡𝑥revoke-Prm .Ins[0] := {𝑡𝑥 : 𝑡𝑥refund-Dep, idx : 1}
𝑡𝑥revoke-Prm .Ins[1] := 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚

(10) Return (𝑡𝑥refund-Dep, 𝑡𝑥revoke-Prm, 𝑡𝑥revoke-Prcpl).
genSettleTx(𝛾 .𝑖, 𝑙𝑏′, 𝑟𝑏′):
(1) Lookup the corresponding channel 𝛾 based on 𝛾 .𝑖𝑑 .

(2) Define the settlement output, which finalizes the pay-

ment.

𝜃0 :=

{
amt : 𝑙𝑏′, 𝜙 : Sig(𝛾 .𝑙𝑢)

}
(3) Define the paid output for the counterparty:

𝜃1 :=

{
amt : 𝑟𝑏′, 𝜙 : Sig(𝛾 .𝑟𝑢)

}
(4) Generate the settle transaction:

𝑡𝑥settle .Outs := genState

(
𝛾, {𝜃0, 𝜃1}

)
(5) Return 𝑡𝑥settle.

checkSplicing(𝛾0 .𝑖𝑑, 𝑡𝑥splicing, 𝑡𝑟
1

splicing
, 𝜎𝑙

splicing
):

(1) Check if 𝑈1’s balance is not reduced in the new state

represented by 𝑡𝑥
splicing

, compared with 𝛾0 .state.

(2) Check if 𝑡𝑥
splicing

contains 𝑡𝑟1

splicing
.

(3) Check if the signature 𝜎𝑙
splicing

is valid to spend the first

input of 𝑡𝑥
splicing

.

(4) If all conditions are satisfied, return ⊤, else return ⊥.
checkDep(𝛾𝑖 .id, 𝑡𝑥𝑖lock-Dep, 𝑡𝑥

𝑖
revoke-Dep, Dep𝑖 ,𝑇 , 𝑡𝑟

𝑖
𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔

):
(1) Ensure construct txs correctly:

𝑡𝑥𝑖lock-Dep, 𝑡𝑥
𝑖
revoke-Dep

= genDepTx(𝛾 .𝑖𝑑, Dep𝑖 , 𝑡𝑟 𝑖splicing,𝑇)

26

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

(2) 𝑈𝑖 provides valid signatures to active the revoke tx.

(3) If all conditions are satisfied, return ⊤, else return ⊥.
checkPrm(𝛾𝑖 .id,𝑇 , Prm𝑖 , 𝑡𝑥𝑖lock-Prm, 𝑡𝑥

𝑖
revoke-Prm, 𝑡𝑥

𝑖′
revoke-Dep,

𝑡𝑥𝑟𝑒𝑑𝑒𝑒𝑚, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

,𝑇):
(1) Check if the latest state and corresponding revoke txs are

correctly constructed.

(𝑡𝑥𝑖lock-Prm, 𝑡𝑥
𝑖
revoke-Prm, 𝑡𝑥

𝑖′
revoke-Dep)

= genPrmTx(𝛾 .𝑖𝑑, Prm𝑖 ,𝑇 , 𝑡𝑟 𝑖
redeem

, 𝑡𝑟 𝑖
splicing

)

(2) 𝑈𝑖+1 provide valid signatures to active the two revoke txs.

(3) If all true return ⊤, else return ⊥.
checkPrcpl(𝛾𝑖 .id, Prcpl,𝑇 , 𝑡𝑥lock-Prcpl, 𝑡𝑥revoke-Prcpl
𝑡𝑥𝑖
′
revoke-Prm, 𝑡𝑟𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔, 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚) :

(1) Check if 𝑡𝑥lock-Prcpl and 𝑡𝑥revoke-Prcpl are correctly

constructed.

(𝑡𝑥lock-Prcpl, 𝑡𝑥revoke-Prcpl, 𝑡𝑥𝑖
′
revoke-Prm)

= genPrcplTx(𝛾 .𝑖𝑑, Prcpl,𝑇 , 𝑡𝑟
splicing

, 𝑡𝑟
redeem

)
(2) Check if𝑈𝑖 provides the correct signature over the revoke

transactions.

(3) If all conditions are satisfied, return ⊤, else return ⊥.
checkRfdDep(𝛾𝑖 .id, Dep𝑖 , 𝑡𝑥𝑖rfd-Dep, 𝑡𝑥

𝑖′
revoke-Prcpl,

𝑡𝑥𝑖
′′
revoke-Prm, 𝑡𝑟𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔, 𝑡𝑟𝑟𝑒𝑑𝑒𝑒𝑚) :

(1) Check if the new state is correctly constructed.

(𝑡𝑥𝑖rfd-Dep, 𝑡𝑥
𝑖′
revoke-Prcpl, 𝑡𝑥

𝑖′′
revoke-Prm)

= genDepRfdTx(𝛾 .𝑖𝑑, Dep𝑖 , 𝑡𝑟splicing, 𝑡𝑟redeem)
(2) Check if 𝑈𝑖+1 provides the correct signature over the

revoke transactions.

(3) If all conditions are satisfied, return ⊤, else return ⊥.

H UC proof
We utilize the global UC framework (GUC) [14] in our formal se-

curity analysis. Compare with standard UC, GUC enables a global

setup, allowing protocol to interact with pre-configured global

functionalities.

H.1 Ideal functionalities
H.1.1 Channel states and revoke transactions. Consider a multi-

hop paymentM𝐶𝐸 following the definition within Section 2 with

𝑛 relays, here we list all the possible state of each channel from 𝛾0

to 𝛾𝑛 . We first define the funds involved in Zeus.
• Payee’s on-chain stake. Stake ≥ 𝑐

burn
≈ 2.3 USD.

• Payer’s off-chain deposit in channel𝛾𝑖∈[1,𝑛] . Dep𝑖 = 𝑐payee+
(𝑛 − 𝑖) · 𝑐

relay
.

• Premium in channel 𝛾𝑖∈[1,𝑛] . Prm
𝑖 = 𝑓0 +

∑𝑖
𝑘=1

𝑓𝑘 .

• Principal in channel 𝛾𝑖∈[1,𝑛] . Prcpl = 𝑥 +∑𝑛
𝑘=1

𝑓𝑘 .

For channel 𝛾0 we define the following states:

• S
0

IDLE: we use SIDLE (𝑙𝑏, 𝑟𝑏) to denotes the initial state of 𝛾0 where

𝑙𝑏 and 𝑟𝑏 are the initial balances of𝑈0 and𝑈1 respectively.

𝜃0 =

{
amt : 𝑙𝑏

𝜙 : Sig(𝑈0)
𝜃1 =

{
amt : 𝑟𝑏

𝜙 : Sig(𝑈1)

• S
0

SPLICED: we use SSPLICED (𝑥, 𝑛) to denotes the state of 𝛾0 after

the splicing transaction, where𝑈0 splices out about 𝑥 +𝑛𝜖 tokens
and creates 𝑛 trigger outputs. The state is represented by 𝑛 + 3

outputs (𝜃0, . . . , 𝑡ℎ𝑒𝑡𝑎𝑛+2):

𝜃0 =


amt : 𝑥 + 𝑛𝜖

𝜙 :

{
reveal 𝑠 ∧ Sig(𝑈𝑛+1)
Sig(𝑈0) ≥ rel(𝑡

close
+ Δ)

for 𝑖 ∈ [1, 𝑛], 𝜃𝑖 =

amt : 𝜖

𝜙 :

{
Sig(𝑈𝑖)
Sig(𝑈0) ≥ rel(2𝑡

close
+ Δ)

𝜃𝑛+1 =

{
amt : 𝑙𝑏 − 𝑥 − (2𝑛)𝜖
𝜙 : Sig(𝑈0)

𝜃𝑛+2 =

{
amt : 𝑟𝑏

𝜙 : Sig(𝑈1)

where 𝜃0 is the main output containing the payment amount

plus triggers, 𝜃𝑖∈[1,𝑛] are the individual trigger outputs, and 𝜃𝑛+1,
𝜃𝑛+2 represent the remaining balances of𝑈0 and𝑈1 respectively.

• S
0

PAID: we use SPAID (𝑙𝑏 − 𝑥 − Fees, 𝑟𝑏 + 𝑥 + Fees) to denotes the
state of 𝛾0 after the payment is successfully completed through

the PCN, where Fees =
∑𝑛
𝑖=1

𝑓𝑖 is the total fees paid to all relays.

The state is represented by 2 outputs (𝜃0, 𝜃1):

𝜃0 =

{
amt : 𝑙𝑏 − 𝑥 − Fees
𝜙 : Sig(𝑈0)

𝜃1 =

{
amt : 𝑟𝑏 + 𝑥 + Fees
𝜙 : Sig(𝑈1)

For channel 𝛾𝑖 , 𝑖 ∈ [1, 𝑛], we define the following states:

• S
𝑖
IDLE: we use S

𝑖
IDLE (𝑙𝑏, 𝑟𝑏) to denotes the initial state of 𝛾𝑖 where

𝑙𝑏 and 𝑟𝑏 are the initial balances of𝑈𝑖 and𝑈𝑖+1 respectively.

𝜃0 =

{
amt : 𝑙𝑏

𝜙 : Sig(𝑈𝑖)
𝜃1 =

{
amt : 𝑟𝑏

𝜙 : Sig(𝑈𝑖+1)

• S
𝑖
LOCKED-Dep: we use S

𝑖
LOCKED-Dep (Dep𝑖 ,𝑇) to denotes the state of

𝛾𝑖 after the deposit is locked by𝑈𝑖 .

𝜃0 =


amt : Dep𝑖

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖+1) ≥ 𝑇

𝜃1 =

{
amt : 𝑙𝑏 − Dep𝑖
𝜙 : Sig(𝑈𝑖)

𝜃2 =

{
amt : 𝑟𝑏

𝜙 : Sig(𝑈𝑖+1)
• S

𝑖
LOCKED-Prm: we use S

𝑖
LOCKED-Prm (Dep𝑖 , Prm,𝑇) to denotes the state

of 𝛾𝑖 after the premium is locked by 𝑈𝑖+1 over the previous

S
𝑖
LOCKED-Dep state.

𝜃0 =


amt : Dep𝑖

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖+1) ≥ 𝑇

𝜃1 =


amt : Prm𝑖

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖) ≥ 𝑇 + 𝑡close + Δ

𝜃2 =

{
amt : 𝑙𝑏 − Dep𝑖
𝜙 : Sig(𝑈𝑖)

𝜃3 =

{
amt : 𝑟𝑏 − Prm𝑖
𝜙 : Sig(𝑈𝑖+1)

27

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

• S
𝑖
LOCKED-Prcpl: we use S

𝑖
LOCKED-Prcpl (Dep𝑖 + Prcpl, Prm𝑖 ,𝑇) to de-

notes the state of 𝛾𝑖 after additional principal is locked by 𝑈𝑖

over the previous S
𝑖
LOCKED-Prm state.

𝜃0 =


amt : Dep𝑖 + Prcpl

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖+1) ≥ 𝑇

𝜃1 =


amt : Prm𝑖

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖) ≥ 𝑇 + 𝑡close + Δ

𝜃2 =

{
amt : 𝑙𝑏 − Dep𝑖 − Prcpl
𝜙 : Sig(𝑈𝑖)

𝜃3 =

{
amt : 𝑟𝑏 − Prm𝑖
𝜙 : Sig(𝑈𝑖+1)

• S
𝑖
REFUNDED-Dep: we use S

𝑖
REFUNDED-Dep (Prcpl, Prm𝑖 ,𝑇) to denotes

the state of 𝛾𝑖 after𝑈𝑖 ’s locked amount reduced by Dep.

𝜃0 =


amt : Prcpl

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖+1) ≥ 𝑇

𝜃1 =


amt : Prm𝑖

𝜙 :

{
Sig(𝑈𝑖) ∧ Sig(𝑈𝑖+1)
Sig(𝑈𝑖) ≥ 𝑇 + 𝑡close + Δ

𝜃2 =

{
amt : 𝑙𝑏 − Prcpl
𝜙 : Sig(𝑈𝑖)

𝜃3 =

{
amt : 𝑟𝑏 − Prm𝑖 + Dep𝑖
𝜙 : Sig(𝑈𝑖+1)

• S
𝑖
PAID: we use S

𝑖
PAID (Prcpl, Prm,𝑇) to denotes the state of 𝛾𝑖 after

𝑈𝑖 gives the principal to 𝑈𝑖+1 while 𝑈𝑖+1 gives the premium to

𝑈𝑖 .

𝜃0 =

{
amt : 𝑙𝑏 − Prcpl + Prm𝑖
𝜙 : Sig(𝑈𝑖)

𝜃1 =

{
amt : 𝑟𝑏 + Prcpl − Prm𝑖
𝜙 : Sig(𝑈𝑖+1)

We define two mappings, which map a channel’s state to a valid

transaction:

Left Revoke Transaction.

RvkTx𝐿 : (𝑆𝑖 , 𝑡𝑟 𝑖
splicing

) ↦→ 𝑡𝑥rvk-L

Given the state of 𝛾𝑖 (𝑆
𝑖
) as input, function RvkTx𝐿 (𝑆𝑖) returns

a valid transaction 𝑡𝑥rvk_L which can revoke all the token (payer’s

deposit or principal) locked by 𝑈𝑖 once 𝛾0 is spliced out in state

S
0

SPLICED, while the UTXO 𝑡𝑟 𝑖
splicing

will finialized within F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 .
This transaction takes the 0-th output of 𝑆𝑖 and 𝑡𝑟

𝑖
splicing

as inputs,

along with the valid spending signatures(Sig(𝑈𝑖)), and a single

output {
amt : sum of inputs’ amount − 𝐹
𝜙 : Sig(𝑈𝑖)

Right Revoke Transaction.

RvkTx𝑅 : (𝑆𝑖 , 𝑡𝑟 𝑖
redeem

) ↦→ 𝑡𝑥rvk-R

We denote RvkTx𝑅 (𝑆𝑖) as the transaction to revoke the token

locked by𝑈𝑖+1 if the redeem trigger 𝑡𝑟 𝑖
redeem

is finalized on GL. The
revoke transaction 𝑡𝑥rvk_R takes the 1-th output of 𝑆𝑖 and 𝑡𝑟

𝑖
redeem

as inputs, along with the valid spending signatures(Sig(𝑈𝑖+1)), and
a single output{

amt : sum of inputs’ amount − 𝐹
𝜙 : Sig(𝑈𝑖+1)

H.1.2 Ideal functionality of main protocol.

FZeus
Parameters:
• pidSet: a set of all payment identifiers. Initially empty.

• For each pid ∈ pidSet, store:
a) 𝑥 : payment amount configured by payee.

b) M: The multi-hop payment metadata configured by the payer.

M = (𝑈 , Γ, 𝑥, Fees, S) , where:
– 𝑈 is the payment path,𝑈 = (𝑈0,𝑈1, . . . ,𝑈𝑛,𝑈𝑛+1) .
– Γ is the sequence of payment channels, Γ = (𝛾0, . . . , 𝛾𝑛) ,

where𝑈𝑖 establishes channel 𝛾𝑖 with𝑈𝑖+1 for 𝑖 = 0 to 𝑛.
– Fees is the sequence of relay fees, Fees = (𝑓1, . . . , 𝑓𝑛) ,

where 𝑓𝑖 is the fee charged by intermediary𝑈𝑖 .

– S is the sequence of channel states.

c) 𝑇,𝑇 :𝑇 is the principal timelock set by payer,𝑇 is the principal

timelock set by payee.

d) 𝑠 : credential that payee wants to sell.

e) ℎ: commitment of payer-wanted credential, configured by the

payer.

f) status𝑖 for 𝑖 ∈ [0, 𝑛 + 1]: status flags for each participant

Functionality:
Payee setup call

(sid, pid, setup, 𝑥,𝑇 , 𝑠) 0←−↪ E,𝑈𝑛+1:

(1) If pid ∈ pidSet, ignore. Otherwise:
• Add pid to pidSet.
• Store 𝑥,𝑇 , 𝑠 .

• Set
¯ℎ := Commit(𝑠) .

• Set status𝑛+1 := setup-complete.
Payer setup call

(sid, pid, setup,M, ℎ,𝑇) 0←−↪ E,𝑈0:

(1) If pid ∈ pidSet, ignore. Otherwise:
• Add pid to pidSet.
• StoreM,𝑇 ,ℎ.
• Check if payee has sufficient stake:

Outstake := checkPayeeStake(𝑈𝑛+1,𝑇)
If not abort this payment instance.

• Set status0 := setup-complete
• If𝑈0 is honest, generate:

(𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) := genSplicingTx(𝛾0 .id,Outstake,M, ℎ)

Accountability request
Upon status0 = setup-complete and status𝑛+1 = setup-complete:

(1) If𝑈0 is honest:

• Send (sid, pid, request-acc, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 1

↩−→ S
• Set status0 := acc-requested

(2) If𝑈0 is corrupted, allow S to provide the request:

(sid, pid, set-request, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 1←−↪ S

• Store the provided transactions.

• Set status0 := acc-requested.
Accountability approval
Upon status0 = acc-requested and status𝑛+1 = setup-complete:

(1) If𝑈𝑛+1 is honest:
• Check if checkSlashTx(𝑡𝑥

splicing
, 𝑡𝑥

redeem
, 𝑡𝑥

slash
, ¯ℎ, 𝑥) ≠ ⊥

• If valid:

– Send (sid, pid, approved-acc, 𝜎
slash
) 2

↩−→ S

28

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

– Set up redeem launcher:

(sid, pid, init, 𝛾0 .𝑖𝑑,𝑇 , 𝑡𝑥splicing .Outs[0], 𝑡𝑥redeem)
1

↩−→ F
redeem-launcher

– Set status𝑛+1 := acc-approved
(2) If𝑈𝑛+1 is corrupted, allow S to set the approval signature:

(sid, pid, set-approval, response, 𝜎
slash
) 2←−↪ S

If provided 𝜎
slash

is valid:

• Store 𝜎
slash

• Set status𝑛+1 := acc-approved
Generate and distribute setup messages
Upon status0 = acc-requested and status𝑛+1 = acc-approved:

(1) If𝑈0 is honest:

• Generate𝑚setup := genOnion(M, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

)
• Notify the simulator the setup message is set. For each 𝑖 ∈
[1, 𝑛], send (sid, pid, setup-msg-sent) 2

↩−→ S
• Set status0 := setup-generated

(2) If𝑈0 is corrupted, allow S to provide setup messages:

(sid, pid, set-setup-msgs,𝑚setup)
2←−↪ S

• Store the provided setup messages

• Set status0 := setup-generated
Splice channel
Upon status0 = setup-generated:

(1) If𝑈0 is honest:

• Send (sid, pid, init, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing)
3

↩−→ F0

2pSetupSplicing

• Set status0 := splicing-initiated
(2) If𝑈0 is corrupted, allow S to indicate if splicing occurs:

(sid, pid, set-splicing, initiated) 3←−↪ S
• Set status0 := splicing-initiated

Process setup messages by intermediaries
Upon status0 = splicing-initiated:

(1) For each 𝑖 ∈ [1, 𝑛 + 1] with𝑚setup [𝑖] available:
• If𝑈𝑖 is honest:

(a) If 𝑖 = 1,𝑈1 set the next state of channel𝛾0 to the splicing-

out state(𝑆0

SPLICED):

– Extract Dep
1
, Prcpl ,𝑇 , splicing trigger (𝑡𝑟 1

splicing
).

– Setup the splicing state of 𝛾0:

(sid, pid, setup, 𝑡𝑟 1

splicing
) 3

↩−→ F
2pSetupSplicing

(b) If 𝑖 > 1: 𝑈𝑖 set the next state of channel 𝛾𝑖−1 to the

lock-premium state(𝑆𝑖−1

LOCKED-Prm):

– Extract Dep𝑖 , Prm𝑖−1, Prcpl ,𝑇 , 𝑡𝑟
𝑖
splicing

, 𝑡𝑟 𝑖−1

splicing
,

𝑡𝑟 𝑖
𝑟𝑒𝑑𝑒𝑒𝑚

, 𝑡𝑟 𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
.R

– Setup the lock-deposit state of𝛾𝑖−1 by calling F2pSetupDep:

(sid, pid, 𝑡𝑟 𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
setup, Dep𝑖 +𝑐𝑟𝑒𝑙𝑎𝑦,𝑇 , 𝑡𝑟 𝑖splicing .𝑡𝑥)

3

↩−→ F𝑖−1

2pSetupDep

and set status𝑖 := Lock-Dep
(c) If 𝑖 = 𝑛 + 1,𝑈𝑛+1 sets the next state of channel 𝛾𝑛 to the

lock-premium state(𝑆0

LOCKED-Prm):

– Extract Prm𝑛 , Prcpl ,𝑇 , 𝑡𝑟𝑛
𝑟𝑒𝑑𝑒𝑒𝑚

.

– If Prcpl − Prm𝑛 ≥ 𝑥 and 𝑇 = 𝑇 , then setup the

next state of channel 𝛾𝑛 to state 𝑆𝑛Lock-Prm:

(sid, pid, setup, 𝑐payee,𝑇 , 𝑡𝑥splicing)
3

↩−→ F𝑛
2pSetupDep

and set status𝑛+1 := Lock-Dep
Complete setup phase
Upon receiving (sid, pid, splicing-Ok) from F0

2pSetupSplicing
:

(1) If𝑈0 is honest, enable splicing and slash launchers:

• (sid, pid, init,𝑇 ,𝛾0 .id) ↩−→ F0

splicing-launcher

• (sid, pid, init,𝑇 , 𝑡𝑥
splicing

.Outs[0], 𝑡𝑥
slash
) ↩−→ F

slash-launcher

• Set status0 := Refund-Dep

Lock-deposit phase

(sid, pid, slicing-Ok)
𝜏1←−↪ F

2pSetupSplicing
, if𝑈1 :

𝑈1 honest and status1 = Lock-Dep:

1) Lock payer’s deposit within 𝛾1. Invoke:

(sid, pid, init, 𝛾1 .id, Dep1
, 𝑡𝑟 1

splicing
,𝑇)

𝜏1

↩−→ F1

2pSetupDep

2) Enable splicing launcher and setup the next state of 𝛾1 If

F1

2pSetupDep
returns (lock-Dep-Ok) , then:

• (sid, pid, init,𝑇 ,𝛾0 .id)
𝜏 ′

1

↩−→ F1

splicing-launcher

• (sid, pid, 𝑡𝑟 1

splicing
, Prm1,𝑇 , 𝑡𝑟

1

redeem
)

𝜏 ′
1

↩−→ F1

2pSetupPrm

and set status1 := Lock-Prm

(sid, pid, lock-Dep-Ok)
𝜏𝑖

1←−↪ F𝑖−1

2pSetupDep
,𝑈𝑖∈ [2,𝑛] :

𝑈𝑖 honest and status𝑖 = Lock-Dep:

4) Forward the deposit lock. Invoke:

(sid, pid, init, 𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖splicing,𝑇)
𝜏𝑖

1

↩−→ F𝑖
2pSetupDep

5) Setup the Premium-lock state of 𝛾𝑖 . IF receive (lock-Dep-Ok)
from F𝑖

2pSetupDep
, then:

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, Prm𝑖 ,𝑇 , 𝑡𝑟
𝑖
redeem

)
𝜏𝑖
′

1

↩−−→ F𝑖
2pSetupPrm

and Set status𝑖 := Lock-Prm

(sid, pid, lock-Dep-Ok)
𝜏2←−↪ F𝑛

2pSetupDep
,𝑈𝑛+1:

𝑈𝑛+1 honest and status𝑛+1 = Lock-Dep:

6) Set status𝑛+1 := Lock-Prm

Lock-premium phase

𝑈𝑛+1 honest and status𝑛+1 = Lock-Prm:

1) Lock the premium. Invoke:

(sid, pid, init, 𝛾𝑛 .𝑖𝑑, Prm𝑛, 𝑡𝑟𝑛𝑟𝑒𝑑𝑒𝑒𝑚,𝑇 , 𝑡𝑥𝑛revoke-Dep)
𝜏2

↩−→ F𝑛
2pSetupPrm

2) Enable redeem handler and prepare for principal-lock.
If (lock-Prm-Ok) returned at 𝜏 ′

2
, then:

(sid, pid, setup, Prcpl, 𝑡𝑟𝑛
splicing

, 𝑡𝑟𝑛
redeem

)
𝜏 ′

2

↩−→ F𝑛
2pSetupPrcpl

then set status𝑛+1 := Lock-Prcpl

(sid, pid, lock-Prm-Ok)
𝜏𝑖

2←−↪ F𝑖
2pSetupPrm

,𝑈𝑖∈ [2,𝑛] :

𝑈𝑖 honest and status𝑖 = Lock-Prm:

3) Lock premium over 𝛾𝑖−1:

(sid, pid, init, 𝛾𝑖−1 .𝑖𝑑, Prm𝑖−1, 𝑡𝑟
𝑖−1

𝑟𝑒𝑑𝑒𝑒𝑚
,𝑇 , 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
2

↩−→ F𝑖−1

2pSetupPrm

4) Setup the Principal-Lock state.
If (sid, pid, lock-Prm-Ok) received at 𝜏𝑖

′
2
:

(sid, pid, setup, Prcpl, 𝑡𝑟 𝑖−1

splicing
, 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
′

2

↩−−→ F𝑖−1

2pSetupPrcpl

and set status𝑖 := Lock-Prcpl Otherwise, terminate.

(sid, pid, lock-Prm-Ok)
𝜏3←−↪ F1

2pSetupPrm
,𝑈1 :

𝑈1 honest and status1 = Lock-Prm:
5) Set status1 := Lock-Prcpl

29

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

Lock-principal phase

𝑈1 honest and status1 = Lock-Prcpl:

1) Lock principal within 𝛾1. Invoke:

(sid, pid, init, 𝛾1 .id, Prm,)
𝜏3

↩−→ F1

2pSetupPrcpl

2) Setup the next phase. If receive (lock-Prcpl-Ok) return at 𝜏 ′
3
:

(sid, pid, setup, 𝑡𝑟 1

splicing
, 𝑡𝑟 1

redeem
, Dep

1
)

𝜏 ′
3

↩−→ F1

2pRfdDep

and set status1 := Rfd-Dep

(sid, pid, lock-Prcpl-Ok)
𝜏𝑖

3←−↪ F𝑖−1

2pSetupPrcpl
,𝑈𝑖∈ [2,𝑛] :

𝑈𝑖 honest and status𝑖 = Lock-Prcpl:

3) Forward the Principal lock. Invoke:

(sid, pid, init, 𝛾𝑖 .id, Prm, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

)
𝜏𝑖

3

↩−→ F𝑖
2pSetupPrcpl

5) Setup the deposit-refund phase. If it returns (lock-Prcpl-Ok)
at 𝜏𝑖

′
3
, Then:

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, Dep𝑖)
𝜏𝑖
′

3

↩−−→ F𝑖
2pRfdDep

and set status𝑖 := Rfd-Dep

(sid, pid, lock-Prcpl-Ok)
𝜏4←−↪ F𝑛

2pSetupPrcpl
,𝑈𝑛+1:

𝑈𝑛+1 honest and status𝑛+1 = Lock-Prcpl:

6) Leak the secret. If𝑈0 is corrupted, (sid, pid, release-secret, 𝑠)
𝜏4

↩−→
S, Set status𝑛+1 := Rfd-Dep

deposit-Refund phase

𝑈𝑛+1 honest and status𝑛+1 = Rfd-Dep:

1) Refund the payer side deposit. Invoke:

(sid, pid, init, 𝛾𝑛 .𝑖𝑑, Dep𝑛, 𝑡𝑟𝑛splicing, 𝑡𝑟
𝑛
redeem

)
𝜏4

↩−→ F𝑛
2pRfdDep

2) Setup the settle phase.
If (refund-Dep-Ok) received from F𝑛

2pRfdDep
:

(setup, 𝑙𝑏 − Prcpl + Prm𝑛, 𝑟𝑏 + Prcpl − Prm𝑛)
𝜏 ′

4

↩−→ F𝑛
2pSettle

then set status𝑛+1 := Settle.

(sid, pid, refund-Dep-Ok)
𝜏𝑖

4←−↪ F𝑖
2pRfdDep

,𝑈𝑖∈ [2,𝑛] :

𝑈𝑖 honest and status𝑖 = Rfd-Dep:

3) Forward the revoke over 𝛾𝑖−1:

(sid, pid, init, 𝛾𝑖−1 .𝑖𝑑, Dep𝑖−1
, 𝑡𝑟 𝑖−1

splicing
, 𝑡𝑟 𝑖−1

redeem
)

𝜏𝑖
′

4

↩−−→ F𝑖−1

2pRfdDep

4) Setup the settle phase.
If (refund-Dep-Ok) received from F𝑖−1

2pRfdDep
:

(sid, pid, setup, 𝑙𝑏−Prcpl+Prm𝑖−1, 𝑟𝑏+Prcpl−Prm𝑖−1)
𝜏𝑖
′′

4

↩−−→ F𝑖−1

2pSettle

then set status𝑖 := Settle.

𝑈1

𝜏5←−↪ (refund-Dep-Ok) from F1

2pRfdDep
:

𝑈1 honest and status1 = Rfd-Dep:

5) Setup the settle phase.

(sid, pid, setup, 𝑙𝑏−Prcpl+Prm1−𝑓1, 𝑟𝑏+Prcpl−Prm1+𝑓1)
𝜏 ′

5

↩−→ F0

2pSettle

6) Notify payer. (sid, pid, revoke-Dep-Ok)
𝜏 ′′

5

↩−→ 𝑈0.

𝑈0

𝜏6←−↪ (sid, pid, revoke-Dep-Ok) from𝑈1:

7) Check the secret. If𝑈𝑛+1 is corrupted, check if received

(sid, pid, replace-secret, 𝑠)
from S, and Open(𝑠, ℎ) = 1, then set status0 := Settle. If 𝑈𝑛+1
honest, directly set status0 := Settle.

Settle phase

𝑈0 honest and status0 = Settle:

1) Settle the payment.

(sid, pid, init, 𝛾0 .𝑖𝑑, 𝑙𝑏 − 𝑥 −
𝑛∑︁
𝑗=1

𝑓𝑗 , 𝑟𝑏 + 𝑥 +
𝑛∑︁
𝑗=1

𝑓𝑗)
𝜏6

↩−→ F0

2pSettle

Once settle-Ok
𝜏 ′

6←−↪ F0

2pSettle
, then return

(sid, pid, settled, 𝑠)
𝜏 ′

6

↩−→ E
and close the splicing launcher

(sid, pid, close)
𝜏 ′

6

↩−→ F0

splicing-launcher

ends the main protocol.

(sid, pid, settle-Ok)
𝜏𝑖

6←−↪ F𝑖−1

2pSettle
,𝑈𝑖∈ [1,𝑛] :

𝑈𝑖 honest and status𝑖 = Settle:

2) Continue settlement chain:

(sid, pid, init, 𝛾𝑖 .𝑖𝑑, 𝑙𝑏−Prcpl+Prm𝑖 , 𝑟𝑏+Prcpl−Prm𝑖)
𝜏𝑖
′

6

↩−−→ F𝑖
2pSettle

3) Close the splicing launcher. If 𝑖 = 1,

(sid, pid, close)
𝜏𝑖
′

6

↩−−→ F1

splicing-launcher

and ends the protocol.

(sid, pid, settle-Ok)
𝜏7←−↪ F𝑛

2pSettle
,𝑈𝑛+1:

𝑈𝑛+1 honest and status𝑛+1 = Settle:

4) (sid, pid, settled)
𝜏7

↩−→ E and end.

H.1.3 Sub protocol ideal functionalities.

F
2pSetupSplicing

Parameters:
• pidSet: a set of all payment identifiers.

• For each pid ∈ pidSet, store:
a) 𝛾0: the channel instance 𝛾0 to be updated.

b) S
0

L
, S0

R
: variables for the proposed next states of 𝛾0.

c) 𝑡𝑟 𝑙
splicing

: the trigger proposed by the left party𝑈0.

d) 𝑡𝑟𝑟
splicing

: the trigger proposed by the right party𝑈1.

Functionality:
Setup call.

(sid, pid, setup, 𝑡𝑟 1

splicing
) ≤𝜏←−↪ E,𝑈1:

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Set the right trigger: 𝑡𝑟𝑟

splicing
:= 𝑡𝑟 1

splicing
.

Initialization call.
(sid, pid, init, 𝛾0 .id, 𝑡𝑥splicing)

𝜏←−↪ E,𝑈0:

I1) If pid ∈ pidSet, ignore. Otherwise:
• Add pid to pidSet.
• Set S

0

L
:= 𝑡𝑥

splicing
.Outs.

30

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

• Extract splicing triggers from 𝑡𝑥
splicing

, set 𝑡𝑟 𝑙
splicing

accord-

ingly.

I2) At round 𝜏 :
• If𝑈0 is dishonest, the simulator may modify the left-proposed

state and trigger:

(sid, pid, reset-left, 𝑆0, 𝑡𝑟 𝑙
splicing

) 𝜏←−↪ S

If received, set S
0

L
:= 𝑆0

, 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑙
splicing

.

I3) At round 𝜏 + 1:

• If𝑈1 is corrupted, then send

(sid, pid, left-state, S0

L
) 𝜏+1
↩−−→ S

• If𝑈1 is honest:

– if 𝑡𝑟 𝑙
splicing

≠ 𝑡𝑟𝑟
splicing

or the proposed state is invalid,

send:

(sid, pid, splicing-fail) 𝜏+1
↩−−→ E

– if statesmatch (𝑆 = S
0

L
= S

0

R
) and triggersmatch (𝑡𝑟 𝑙

splicing
=

𝑡𝑟𝑟
splicing

):

(ssid𝐶 , UPDATE-SPLICING, 𝛾0 .id, stateTx(𝑆)) 𝜏+1
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Final outputs.

I4) If𝑈0 is honest and receives

(ssid𝐶 , UPDATED-SPLICING, 𝛾0 .id, S
0

L
) 𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality:

• Returns (sid, pid, splicing-Ok) 𝜏 ′
↩−→ E .

I5) If𝑈1 is honest and receives

(ssid𝐶 , UPDATED-SPLICING, 𝛾0 .id, S
0

R
) 𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, splicing-Ok) 𝜏 ′
↩−→ E .

I6) If by round 𝜏 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 + 1, the honest𝑈0 has not received confir-

mation, the functionality:

• Sends channel close request:

(ssid𝐶 , CLOSE, 𝛾0 .id) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

F𝑖
2pSetupDep

Parameters:
• pidSet: a set of all payment identifiers.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance 𝛾𝑖 to be updated.

b) S
𝑖
L
, S𝑖

R
: variables for the proposed next states of 𝛾𝑖 .

c) 𝑡𝑟 𝑙
splicing

: the trigger proposed by the left party𝑈𝑖 .

d) 𝑡𝑟𝑟
splicing

: the trigger proposed by the right party𝑈𝑖+1.

e) 𝑇 : the timelock parameter.

f) Dep𝑖 : the amount of deposit to be locked by𝑈𝑖 .

Functionality:
Setup call.

(sid, pid, setup, Dep𝑖 ,𝑇 , 𝑡𝑟 𝑖
splicing

) ≤𝜏←−↪ E,𝑈𝑖+1:

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Set S

𝑖
R

:= S
𝑖
LOCKED-Dep (Dep𝑖 ,𝑇) .

• Set the right triggers: 𝑡𝑟𝑟
splicing

:= 𝑡𝑟 𝑖
splicing

.

• Save𝑇 and Dep𝑖 .

Initialization call.
(sid, pid, init, 𝛾𝑖 .id, Dep𝑖 , 𝑡𝑟 𝑖

splicing
,𝑇) 𝜏←−↪ E,𝑈𝑖 :

I1) If pid ∉ pidSet, ignore. Otherwise:
• Set S

𝑖
L

:= S
𝑖
LOCKED-Dep (Dep𝑖 ,𝑇) .

• Set the left triggers: 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑖
splicing

.

I2) At round 𝜏 :
• If𝑈𝑖 is dishonest, the simulator may modify the left-proposed

state and triggers:

(sid, pid, reset-left, 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

) 𝜏←−↪ S

If received, set S
𝑖
L

:= 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑙
splicing

.

I3) At round 𝜏 + 1:

• If𝑈𝑖+1 is corrupted, then send

(sid, S𝑖
L
, RvkTx𝐿 (S𝑖L, 𝑡𝑟

𝑙
splicing

)) 𝜏+1
↩−−→ S

and let the simulator modify the right-proposed state:

(sid, pid, reset-right, 𝑆𝑖 , 𝑡𝑟𝑟
splicing

) 𝜏+1←−−↪ S

If received, set S
𝑖
R

:= 𝑆𝑖 , 𝑡𝑟𝑟
splicing

:= 𝑡𝑟𝑟
splicing

.

I4) At round 𝜏 + 2: If states match (𝑆 = S
𝑖
L

= S
𝑖
R
), triggers match

(𝑡𝑟 𝑙
splicing

= 𝑡𝑟𝑟
splicing

)

• If𝑈𝑖 honest:

(ssid𝐶 , UPDATE, 𝛾𝑖 .id, stateTx(𝑆)) 𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If𝑈𝑖 dishonest,

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟 𝑙
splicing

)) 𝜏+2
↩−−→ S

Final outputs.

I5) If𝑈𝑖 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖L)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality:

• Initialize splicing handler:

(ssid𝑖𝑆𝐻 , init, 𝛾𝑖 .id,𝑇 , 𝑡𝑟
𝑙
splicing

, RvkTx𝐿 (S𝑖L, 𝑡𝑟
𝑙
splicing

))
𝜏 ′
↩−→ F𝑖splicing-handler

• Returns (sid, pid, lock-Dep-Ok) 𝜏 ′
↩−→ E .

I6) If𝑈𝑖+1 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖R)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, lock-Dep-Ok) 𝜏 ′
↩−→ E .

F𝑖
2pSetupPrm

Parameters:
• pidSet: a set of all payment identifiers. item 𝛾𝑖 : the channel instance

𝛾𝑖 to be updated.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance 𝛾𝑖 to be updated.

b) S
𝑖
L
, S𝑖

R
: variables for the proposed next states of 𝛾𝑖 .

c) 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

: the trigger proposed by the left party𝑈𝑖 .

d) 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

: the trigger proposed by the right party𝑈𝑖+1.

Functionality:

31

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

Setup call.

(sid, pid, setup, 𝛾𝑖 .id, 𝑡𝑟 𝑖
splicing

, Prm𝑖 ,𝑇 , 𝑡𝑟
𝑖
redeem

) ≤𝜏←−↪ E,𝑈𝑖 :

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Set S

𝑖
L

:= 𝑆𝑖Lock-Prm (𝑃𝑟𝑚𝑖 ,𝑇) .
• Set the left triggers: 𝑡𝑟 𝑙

splicing
:= 𝑡𝑟 𝑖

splicing
and 𝑡𝑟 𝑙

redeem
:= 𝑡𝑟 𝑖

redeem
.

Initialization call.
(sid, pid, init, 𝛾𝑖 .id, Prm𝑖 , 𝑡𝑟 𝑖

redeem
,𝑇 , 𝑡𝑟 𝑖

splicing
) 𝜏←−↪ E,𝑈𝑖+1:

I1) If pid ∉ pidSet, ignore. Otherwise:
• Set S

𝑖
R

:= S
𝑖
LOCKED-Prm (Prm𝑖 ,𝑇) .

• Set the right triggers: 𝑡𝑟𝑟
splicing

:= 𝑡𝑟 𝑖
splicing

and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟 𝑖
redeem

.

I2) At round 𝜏 :
• If𝑈𝑖+1 is dishonest, the simulatormaymodify the right-proposed

state and triggers:

(sid, pid, reset-right, 𝑆𝑖 , 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

) 𝜏←−↪ S

If received, set S
𝑖
R

:= 𝑆𝑖 , 𝑡𝑟𝑟
splicing

:= 𝑡𝑟𝑟
splicing

, and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟𝑟
redeem

.

I3) At round 𝜏 + 1:

• If𝑈𝑖 is corrupted, then send

(sid, S𝑖
R
, RvkTx𝐿 (S𝑖R, 𝑡𝑟

𝑟
splicing

), RvkTx𝑅 (S𝑖R, 𝑡𝑟
𝑟
redeem

)) 𝜏+1
↩−−→ S

and let the simulator modify the left-proposed state:

(sid, pid, reset-left, 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

) 𝜏+1←−−↪ S

If received, set S
𝑖
L

:= 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑙
splicing

, and 𝑡𝑟 𝑙
redeem

:=

𝑡𝑟 𝑙
redeem

.

• If states match (𝑆 = S
𝑖
L

= S
𝑖
R
), triggers match (𝑡𝑟 𝑙

splicing
=

𝑡𝑟𝑟
splicing

and 𝑡𝑟 𝑙
redeem

= 𝑡𝑟𝑟
redeem

), and𝑈𝑖 honest:

(ssid𝑖𝑆𝐻 , pid, UPDATE, RvkTx𝐿 (𝑆, 𝑡𝑟 𝑖
splicing

)) 𝜏+1
↩−−→ F𝑖

splicing-handler

I3) At round 𝜏 + 2: If states match (𝑆 = S
𝑖
L

= S
𝑖
R
), triggers match

(𝑡𝑟 𝑙
splicing

= 𝑡𝑟𝑟
splicing

and 𝑡𝑟 𝑙
redeem

= 𝑡𝑟𝑟
redeem

)

• If𝑈𝑖+1 honest:

(ssid𝐶 , UPDATE, 𝛾𝑖 .id, stateTx(𝑆)) 𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If𝑈𝑖+1 dishonest,

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆), RvkTx𝑅 (𝑆))
𝜏+2
↩−−→ S

Final outputs.

I4) If𝑈𝑖+1 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖R)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality:

• update redeem handler:

(ssid𝑖𝑅𝐻 , init, 𝛾𝑖 .id, 𝑡𝑟
𝑖
redeem

,TxRvk𝑅 (S𝑖R, 𝑡𝑟
𝑖
redeem

))
𝜏
↩−→ F𝑖redeem-handler

• Returns (sid, pid, lock-Prm-Ok) 𝜏 ′
↩−→ E .

I4) If𝑈𝑖 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖L)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, lock-Prm-Ok) 𝜏 ′
↩−→ E .

F𝑖
2pSetupPrcpl

Parameters:
• pidSet: a set of all payment identifiers.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance 𝛾𝑖 to be updated.

b) S
𝑖
L
, S𝑖

R
: variables for the proposed next states of 𝛾𝑖 .

c) 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

: the trigger proposed by the left party𝑈𝑖 .

d) 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

: the trigger proposed by the right party𝑈𝑖+1.

e) Prcpl: the amount of principal to be locked by𝑈𝑖 .

Functionality:
Setup call.

(sid, pid, setup, Prcpl, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

) ≤𝜏←−↪ E,𝑈𝑖+1:

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Set S

𝑖
R

:= S
𝑖
LOCKED-Prcpl (Prcpl) .

• Set the right triggers: 𝑡𝑟𝑟
splicing

:= 𝑡𝑟 𝑖
splicing

and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟 𝑖
redeem

.

• Save Prcpl.

Initialization call.
(sid, pid, init, 𝛾𝑖 .id, Prcpl, 𝑡𝑟 𝑖

splicing
, 𝑡𝑟 𝑖

redeem
) 𝜏←−↪ E,𝑈𝑖 :

I1) If pid ∉ pidSet, ignore. Otherwise:
• Set S

𝑖
L

:= S
𝑖
LOCKED-Prcpl (Prcpl) .

• Set the left triggers: 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑖
splicing

and 𝑡𝑟 𝑙
redeem

:= 𝑡𝑟 𝑖
redeem

.

I2) At round 𝜏 :
• If𝑈𝑖 is dishonest, the simulator may modify the left-proposed

state and triggers:

(sid, pid, reset-left, 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

) 𝜏←−↪ S

If received, set S
𝑖
L

:= 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑙
splicing

, and 𝑡𝑟 𝑙
redeem

:=

𝑡𝑟 𝑙
redeem

.

I3) At round 𝜏 + 1:

• If𝑈𝑖+1 is corrupted, then send

(sid, S𝑖
L
, RvkTx𝐿 (S𝑖L, 𝑡𝑟

𝑙
splicing

), RvkTx𝑅 (S𝑖L, 𝑡𝑟
𝑙
redeem

)) 𝜏+1
↩−−→ S

and let the simulator modify the right-proposed state:

(sid, pid, reset-right, 𝑆𝑖 , 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

) 𝜏+1←−−↪ S

If received, set S
𝑖
R

:= 𝑆𝑖 , 𝑡𝑟𝑟
splicing

:= 𝑡𝑟𝑟
splicing

, and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟𝑟
redeem

.

I4) At round 𝜏 + 2: If states match (𝑆 = S
𝑖
L

= S
𝑖
R
), triggers match

(𝑡𝑟 𝑙
splicing

= 𝑡𝑟𝑟
splicing

and 𝑡𝑟 𝑙
redeem

= 𝑡𝑟𝑟
redeem

)

• If𝑈𝑖 honest:

(ssid𝐶 , UPDATE, 𝛾𝑖 .id, stateTx(𝑆)) 𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If𝑈𝑖 dishonest,

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟 𝑙
splicing

), RvkTx𝑅 (𝑆, 𝑡𝑟 𝑙
redeem

)) 𝜏+2
↩−−→ S

Final outputs.

I5) If𝑈𝑖 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖L)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality:

• Update splicing handler:

(ssid𝑖𝑆𝐻 , UPDATE, RvkTx𝐿 (S𝑖L, 𝑡𝑟
𝑙
splicing

)) 𝜏 ′
↩−→ F𝑖splicing-handler

32

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

• Returns (sid, pid, lock-Prcpl-Ok) 𝜏 ′
↩−→ E .

I6) If𝑈𝑖+1 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖R)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, lock-Prcpl-Ok) 𝜏 ′
↩−→ E .

F𝑖
2pRfdDep

Parameters:
• pidSet: a set of all payment identifiers.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance 𝛾𝑖 to be updated.

b) S
𝑖
L
, S𝑖

R
: variables for the proposed next states of 𝛾𝑖 .

c) 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

: the trigger proposed by the left party𝑈𝑖 .

d) 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

: the trigger proposed by the right party𝑈𝑖+1.

e) Dep𝑖 : the amount of deposit to be refunded to𝑈𝑖 .

Functionality:
Setup call.

(sid, pid, setup, 𝑡𝑟 𝑖
splicing

, 𝑡𝑟 𝑖
redeem

, Dep𝑖)
≤𝜏←−↪ E,𝑈𝑖 :

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Set S

𝑖
L

:= S
𝑖
REFUNDED-Dep (Dep𝑖) .

• Set the left triggers: 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑖
splicing

and 𝑡𝑟 𝑙
redeem

:= 𝑡𝑟 𝑖
redeem

.

• Save Dep𝑖 .

Initialization call.
(sid, pid, init, 𝛾𝑖 .id, 𝑡𝑟 𝑖

splicing
, 𝑡𝑟 𝑖

redeem
, Dep𝑖)

𝜏←−↪ E,𝑈𝑖+1:

I1) If pid ∉ pidSet, ignore. Otherwise:
• Set S

𝑖
R

:= S
𝑖
REFUNDED-Dep (Dep𝑖) .

• Set the right triggers: 𝑡𝑟𝑟
splicing

:= 𝑡𝑟 𝑖
splicing

and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟 𝑖
redeem

.

I2) At round 𝜏 :
• If𝑈𝑖+1 is dishonest, the simulatormaymodify the right-proposed

state and triggers:

(sid, pid, reset-right, 𝑆𝑖 , 𝑡𝑟𝑟
splicing

, 𝑡𝑟𝑟
redeem

) 𝜏←−↪ S

If received, set S
𝑖
R

:= 𝑆𝑖 , 𝑡𝑟𝑟
splicing

:= 𝑡𝑟𝑟
splicing

, and 𝑡𝑟𝑟
redeem

:=

𝑡𝑟𝑟
redeem

.

I3) At round 𝜏 + 1:

• If𝑈𝑖 is corrupted, then send

(sid, S𝑖
R
, RvkTx𝐿 (S𝑖R, 𝑡𝑟

𝑟
splicing

), RvkTx𝑅 (S𝑖R, 𝑡𝑟
𝑟
redeem

)) 𝜏+1
↩−−→ S

and let the simulator modify the left-proposed state:

(sid, pid, reset-left, 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

, 𝑡𝑟 𝑙
redeem

) 𝜏+1←−−↪ S

If received, set S
𝑖
L

:= 𝑆𝑖 , 𝑡𝑟 𝑙
splicing

:= 𝑡𝑟 𝑙
splicing

, and 𝑡𝑟 𝑙
redeem

:=

𝑡𝑟 𝑙
redeem

.

I4) At round 𝜏 + 2: If states match (𝑆 = S
𝑖
L

= S
𝑖
R
), triggers match

(𝑡𝑟 𝑙
splicing

= 𝑡𝑟𝑟
splicing

and 𝑡𝑟 𝑙
redeem

= 𝑡𝑟𝑟
redeem

)

• If𝑈𝑖+1 honest:

(ssid𝐶 , UPDATE, 𝛾𝑖 .id, stateTx(𝑆)) 𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If𝑈𝑖+1 dishonest,

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟𝑟
splicing

), RvkTx𝑅 (𝑆, 𝑡𝑟𝑟
redeem

)) 𝜏+2
↩−−→ S

Final outputs.

I5) If𝑈𝑖 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖L)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, rfd-Dep-Ok) 𝜏 ′
↩−→ E .

I6) If𝑈𝑖+1 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖R)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality:

• Update splicing and redeem handlers:

(ssid𝑖𝑆𝐻 , UPDATE, RvkTx𝐿 (S𝑖R, 𝑡𝑟
𝑟
splicing

)) 𝜏 ′
↩−→ F𝑖splicing-handler

(ssid𝑖𝑅𝐻 , UPDATE, RvkTx𝑅 (S𝑖R, 𝑡𝑟
𝑟
redeem

)) 𝜏 ′
↩−→ F𝑖redeem-handler

• Returns (sid, pid, rfd-Dep-Ok) 𝜏 ′
↩−→ E .

F𝑖
2pSettle

Parameters:
• pidSet: a set of all payment identifiers.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance 𝛾𝑖 to be updated.

b) 𝑙𝑏′: the new left balance for𝑈𝑖 .

c) 𝑟𝑏′: the new right balance for𝑈𝑖+1.

Functionality:
Setup call.

(sid, pid, setup, 𝑙𝑏′, 𝑟𝑏′) ≤𝜏←−↪ E,𝑈𝑖+1:

S1) If pid ∈ pidSet, then do nothing (ignore the message). Otherwise:

• Add pid to pidSet.
• Save 𝑙𝑏′ and 𝑟𝑏′ .

Initialization call.
(sid, pid, init, 𝛾𝑖 .id, 𝑙𝑏′, 𝑟𝑏′)

𝜏←−↪ E,𝑈𝑖 :

I1) If pid ∉ pidSet, ignore. Otherwise:
• Set S

𝑖
L

:= S
𝑖
PAID (𝑙𝑏

′, 𝑟𝑏′) .
I2) At round 𝜏 :

• If𝑈𝑖+1 is honest, leak (sid, S𝑖
L
) 𝜏
↩−→ S.

I3) At round 𝜏 + 1:

• If𝑈𝑖 is honest, leak (sid, S𝑖
R
) 𝜏+1
↩−−→ S.

I4) At round 𝜏 + 2: If states match (𝑆 = S
𝑖
L
= S

𝑖
R
):

• Let 𝑡𝑥𝑖settle := stateTx(𝑆) .

• Send (ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖settle)
𝜏+2
↩−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 .

Final outputs.

I5) If𝑈𝑖 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖L)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, settle-Ok) 𝜏 ′
↩−→ E .

I6) If𝑈𝑖+1 is honest and receives

(ssid𝐶 , UPDATED, 𝛾𝑖 .id, S𝑖R)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

then the functionality outputs (sid, pid, settle-Ok) 𝜏 ′
↩−→ E .

F𝑖
splicing-launcher

Parameters:
• pidSet: the set of all payment ids. Initially empty.

33

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet.
2) Check if𝑈𝑖 = 𝛾𝑖 .𝑙𝑢 or𝑈𝑖 = 𝛾𝑖 .𝑟𝑢. If not, ignore.
3) Save𝑇 . If𝑈𝑖 is honest, then:

• At round𝑇 − 𝑡𝑐𝑙𝑜𝑠𝑒 , send:

(ssid, CLOSE, 𝛾𝑖 .𝑖𝑑)
𝑇 −𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If (sid𝐶 , CLOSED, 𝛾𝑖 .id)
𝜏 ′←−↪ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , output

(sid, pid, splicing-launched) 𝜏 ′
↩−→ E.

(sid, pid, CLOSE) 𝜏∗≥𝜏←−−−↪ E,𝑈𝑖 :

4) Terminate the protocol if𝑈𝑖 honest.

F𝑖
redeem-launcher

Parameters:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet.
2) Save𝑇 , 𝑡𝑟 , 𝑡𝑥 . If𝑈𝑖 is honest, then:

• At each round 𝜏 ′ ∈ [𝜏,𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ], if 𝑡𝑟 is confirmed on

GL, send:

(ssid, POST, 𝑡𝑥) 𝜏 ′
↩−→ GL

• If 𝑡𝑥 is confirmed on GL, output
(sid, pid, redeem-complete) ↩−→ E.

3) Terminate this instance if𝑈𝑖 is honest.

F𝑖
slash-launcher

Parameters:
• pidSet: the set of all payment ids. Initially empty.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet, ignore. Otherwise, add pid to pidSet.
2) Save𝑇 , 𝑡𝑟 , 𝑡𝑥 . If𝑈𝑖 is honest, then:

• At round𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ, if 𝑡𝑟 is an unspent transaction output

in GL, send:

(ssid, POST, 𝑡𝑥)
𝑇+𝑡𝑐𝑙𝑜𝑠𝑒+Δ
↩−−−−−−−−→ GL

• If 𝑡𝑥 fails to confirm within Δ, send an alternative transaction:

(ssid, POST, 𝑡𝑥 ′)
𝑇+𝑡𝑐𝑙𝑜𝑠𝑒+2Δ
↩−−−−−−−−→ GL

• When either transaction confirms, output

(sid, pid, slash-complete) ↩−→ E.
3) Terminate this instance if 𝑈𝑖 is honest and 𝑡𝑟 not finalized when

𝑇 + 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ.

F𝑖splicing-handler
Parameters:
• pidSet: the set of all payment ids. Initially empty.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance.
b) 𝑇 : expiration time.

c) 𝑡𝑟 : trigger UTXO.
d) 𝑡𝑥𝑠 : set of transactions to broadcast.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖 :

1) If pid ∈ pidSet or𝑈𝑖 ≠ 𝛾𝑖 .𝑙𝑢, ignore. Otherwise:
• Add pid to pidSet.
• Set 𝑡𝑥𝑠 := {𝑡𝑥 }, and store𝑇 , 𝑡𝑟 .

(sid, pid, UPDATE, 𝑡𝑥 ′) 𝜏 ′←−↪ 𝑈𝑖 :

2) If pid ∉ pidSet or𝑈𝑖 ≠ 𝛾𝑖 .𝑙𝑢, ignore. Otherwise:
• Add 𝑡𝑥 ′ to 𝑡𝑥𝑠 .

If𝑈𝑖 is honest:
3) At each round 𝜏 ′ ∈ [𝜏,𝑇], if 𝑡𝑟 is confirmed on GL:

• Send (ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)
𝜏 ′
↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 .

• After 𝑡𝑐𝑙𝑜𝑠𝑒 rounds, send (ssid𝐿, POST, 𝑡𝑥valid)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ GL.

• Output (sid, pid, splicing-handled)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ E.

4) Terminate this instance if 𝑡𝑟 is not confirmed on GL by𝑇 .

F𝑖redeem-handler
Parameters:
• pidSet: the set of all payment ids. Initially empty.

• For each pid ∈ pidSet, store:
a) 𝛾𝑖 : the channel instance.
b) 𝑇 : expiration time.

c) 𝑡𝑟 : trigger UTXO.
d) 𝑡𝑥𝑠 : set of transactions to broadcast.

(sid, pid, init, 𝛾𝑖 .𝑖𝑑,𝑇 , 𝑡𝑟, 𝑡𝑥)
𝜏←−↪ E,𝑈𝑖+1:

1) If pid ∈ pidSet or𝑈𝑖+1 ≠ 𝛾𝑖 .𝑟𝑢, ignore. Otherwise:
• Add pid to pidSet.
• Set 𝑡𝑥𝑠 := {𝑡𝑥 }, and store𝑇 , 𝑡𝑟 .

(sid, pid, UPDATE, 𝑡𝑥 ′) 𝜏 ′←−↪ 𝑈𝑖+1:
2) If pid ∉ pidSet or𝑈𝑖+1 ≠ 𝛾𝑖 .𝑟𝑢, ignore. Otherwise:

• Add 𝑡𝑥 ′ to 𝑡𝑥𝑠 .
If𝑈𝑖+1 is honest:
3) At round𝑇 − 𝑡𝑐𝑙𝑜𝑠𝑒 , send:

(ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)
𝑇 −𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

4) At each round 𝜏 ′ ∈ [𝜏,𝑇], if 𝑡𝑟 is confirmed on GL:
• Send (ssid𝐶 , CLOSE, 𝛾𝑖 .𝑖𝑑)

𝜏 ′
↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 .

• After 𝑡𝑐𝑙𝑜𝑠𝑒 rounds, send (ssid𝐿, POST, 𝑡𝑥valid)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ GL.

• Output (sid, pid, redeem-handled)
𝜏 ′+𝑡𝑐𝑙𝑜𝑠𝑒
↩−−−−−−→ E.

5) Terminate this instance if 𝑡𝑟 is not confirmed on GL by𝑇 .

Here, we denotes all the sub ideal functionalities as Fsub.

H.2 UC proofs
In this section, we prove that our main/sub protocols GUC realizes

the corresponding ideal functionalities.

H.2.1 UC proofs for the main protocol.

Lemma 2. Given EUF-CMA secure signature scheme Σ
and perfectly hiding and binding commitment scheme

C, the setup phase of ΠZeus GUC-realizes FZeus in the

{Fprelim, F 0

splicing-launcher
, F

redeem-launcher
,F 0

2pSetupSplicing
,

{F 𝑖
2pSetupPrm

}𝑖∈[1,𝑛] }-hybrid world.

Proof. We prove that for any environment E and adversary

A, there exists a simulator S such that E cannot distinguish be-

tween the real world execution with ΠZeus and A from the ideal

world execution with FZeus and S. As the commitment scheme is

perfectly hiding, if 𝑈𝑛+1 is honest, no one can compute a 𝑠′ ≠ 𝑠 ,

such that Open(𝑠′, ℎ) = 1. And by secure Σ, adversary can not forge

signatures of honest parties.

34

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

Our simulator S observe the attacks in the real world and sim-

ulates the behavior of corrupted parties in the ideal world. We

analyze all possible corruption scenarios:

Simulator for the setup phase of FZeus
Case 1: All parties honest. S does nothing since the ideal functionality

handles all operations correctly.

Case 2: Only payer𝑈0 corrupted.

• At round 𝜏 , S intercepts when corrupted 𝑈0 sends

(sid, pid, setup,M, ℎ,𝑇) to the environment. S records these

values.

• At round 1, S intercepts when corrupted 𝑈0 sends

(sid, pid, request-acc, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) to 𝑈𝑛+1 in

the real world. Then the simulator S replay the attack to FZeus
through the set-request interface:

(sid, pid, set-request, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 1

↩−→ FZeus
• At round 2, S receives the valid slash signature leaked from the ideal

functionality:

(sid, pid, approved-acc, 𝜎
slash
) 2←−↪ FZeus

S forwards relay this message in the ideal world.

• At round 2, if corrupted𝑈0 sends setup messages𝑚setup to interme-

diaries in the real world, S captures them and forwards to the ideal

functionality:

(sid, pid, set-setup-msgs,𝑚setup)
2

↩−→ FZeus
• At round 3, if corrupted 𝑈0 initiates splicing by sending

(sid, pid, init, 𝛾0 .𝑖𝑑, 𝑡𝑥splicing) to F0

2pSetupSplicing
, S relays this to the

ideal functionality:

(sid, pid, set-splicing, initiated) 𝜏+4
↩−−→ FZeus

• If𝑈0 deviates from the protocol or aborts at any point, S replicates

this behavior in the ideal world by not forwarding the corresponding

message(s) to the ideal functionality or the𝑈0 in the ideal world.

Case 3: Only payee𝑈𝑛+1 corrupted.

• At round 𝜏 , S intercepts when corrupted 𝑈𝑛+1 sends

(sid, pid, setup, 𝑥,𝑇 , 𝑠) to the environment. S records these

values.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, pid, request-acc, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) 𝜏+1←−−↪ FZeus

S forwards this message to corrupted𝑈𝑛+1.
• At round 𝜏 + 2, S observes how corrupted𝑈𝑛+1 responds:

– If 𝑈𝑛+1 verifies the transactions and sends

(sid, pid, approved-acc, 𝜎
slash
) with a valid signature

𝜎
slash

, S forwards to the ideal functionality:

(sid, pid, set-approval, approve, 𝜎
slash
) 𝜏+2
↩−−→ FZeus

– If𝑈𝑛+1 rejects or provides an invalid signature, S indicates re-

jection:

(sid, pid, set-approval, reject,⊥) 𝜏+2
↩−−→ FZeus

• If corrupted𝑈𝑛+1 sets up the redeem launcher, S simulates this action

internally since it’s handled automatically by the ideal functionality

for honest𝑈𝑛+1.

Case 4: Both payer𝑈0 and payee𝑈𝑛+1 corrupted.

• S observes all messages exchanged between corrupted𝑈0 and𝑈𝑛+1
in the real world.

• S replicates the behavior by forwarding the necessary messages to

the ideal functionality:

– When𝑈0 sends (sid, pid, request-acc, 𝑡𝑥splicing, 𝑡𝑥redeem, 𝑡𝑥slash)
to𝑈𝑛+1, S forwards:

(sid, pid, set-request, 𝑡𝑥
splicing

, 𝑡𝑥
redeem

, 𝑡𝑥
slash
) ↩−→ FZeus

– When𝑈𝑛+1 responds with (sid, pid, approved-acc, 𝜎slash) , S
forwards:

(sid, pid, set-approval, approve, 𝜎
slash
) ↩−→ FZeus

– When𝑈0 generates𝑚setup, S forwards:

(sid, pid, set-setup-msgs,𝑚setup) ↩−→ FZeus
– When𝑈0 initiates splicing, S indicates:

(sid, pid, set-splicing, initiated) ↩−→ FZeus
• If either party deviates from the protocol or aborts, S replicates this

in the ideal world by not forwarding the corresponding message(s).

Case 5: Some intermediaries𝑈𝑖 corrupted.

• Since intermediaries don’t participate in the setup phase beyond re-

ceiving setup messages, S only needs to handle the forwarding of

these messages.

• At round 3, when setup messages are distributed, S receives:

(sid, pid, setup-msg, 𝑖,𝑚setup [𝑖])
3←−↪ FZeus

for each corrupted intermediary𝑈𝑖 and forwards these messages to

the corresponding corrupted party. The simulator S will also mimic

the real-world interaction with other ideal functionalities in the ideal

world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E

cannot distinguish between the real and ideal executions:

Case 1: All parties honest. The simulator does nothing as the ideal

functionality handles all operations correctly according to the pro-

tocol specification. The execution follows exactly the same steps as

the real-world protocol, so indistinguishability holds.

Case 2: Only payer𝑈0 corrupted.When𝑈0 is corrupted, the simula-

tor S ensures that:

• All messages sent by corrupted 𝑈0 in the real world are

properly forwarded to the ideal functionality.

• All responses issued from honest 𝑈𝑛+1 in the real world,

are simulated by the leaked message from the ideal func-

tionality in the real world.

• The transaction validation logic in the ideal world matches

the real world.

From E’s perspective, the interaction between corrupted 𝑈0

and honest𝑈𝑛+1 proceeds identically in both worlds. The message

formats, timing, and validation checks are identical. If𝑈0 deviates

or aborts, this behavior is accurately reflected in both worlds.

Case 3: Only payee𝑈𝑛+1 corrupted. When 𝑈𝑛+1 is corrupted, the

simulator S ensures that:

• All messages sent by honest𝑈0 (in the real world) are prop-

erly simulated to corrupted𝑈𝑛+1 in the ideal world, using

the leaked messages from the ideal functionality.

• All responses from corrupted𝑈𝑛+1 are properly translated

into instructions for the ideal functionality.

• The signature validation and transaction verification logic

in the ideal world matches the real world.

From E’s perspective, the interaction between honest 𝑈0 and

corrupted 𝑈𝑛+1 proceeds identically in both worlds. If 𝑈𝑛+1 pro-

vides an invalid signature or rejects the accountability request, this

behavior is accurately reflected in both worlds.

35

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

Case 4: Both payer𝑈0 and payee𝑈𝑛+1 corrupted. When both main

parties are corrupted, the simulator simply replicates their behavior

in the ideal world by forwarding appropriate messages to the ideal

functionality. Since all messages and protocol steps are replicated

exactly, the real and ideal worlds are indistinguishable to E.
Case 5: Some intermediaries𝑈𝑖 corrupted. Intermediaries only re-

ceive setup messages during the setup phase. The simulator ensures

that corrupted intermediaries receive exactly the same messages

in both worlds. Since their role in the setup phase is limited to

receiving these messages, indistinguishability holds.

Therefore, ΠZeus GUC-realizes FZeus in the {Fprelim, Fsub}-
hybrid world. □

Theorem 5. Given EUF-CMA secure signature scheme Σ and

perfectly hiding and binding commitment scheme C, the ΠZeus
UC-realizes FZeus in the {Fprelim, Fsub}-hybrid world.

Proof. This is trivial to prove considering Lemma. 2 and the

fact that in the rest phases of ΠZeus, the parties are only interacting

with outside ideal functionalities in Fsub and Fprelim. The only

interaction among the users is that 𝑈𝑛+1 sends the secret 𝑠 to 𝑈0

at the end of the Lock-Principal phase, and 𝑈0 verifies this at

the end of the Deposit-refund phase. FZeus allows S to modify

the secret if𝑈𝑛+1 is corrupted. As𝑈𝑛+1 is corrupted, S can directly

replay the actual secret 𝑠 sent from𝑈𝑛+1 to FZeus. By the perfectly

binding of C, the execute trace will be the same no matter if 𝑠 = 𝑠

or not. □

H.2.2 UC proofs for the sub-protocols.

Lemma 3. Π𝑖
2pSetupSplicing

GUC-realizes F 𝑖
2pSetupSplicing

in the

Fprelim - hybrid world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution with Π𝑖
2pSetupSplicing

andA from the ideal

world execution with F 𝑖
2pSetupSplicing

and S.
Our simulator S handles the communication with the ideal func-

tionalityF 𝑖
2pSetupSplicing

and simulates the behavior of the corrupted

parties in the ideal world. We construct the simulator S for all pos-

sible corruption scenarios:

Simulator for F𝑖2pSetupSplicing

Case 1: Both𝑈0 and𝑈1 honest. S does nothing.

Case 2: Only𝑈1 honest,𝑈0 corrupted.

• At round 𝜏 , S intercepts the request-splicing messages from cor-

rupted𝑈0 to𝑈1 in the real-world protocol:

– The proposed splicing transaction 𝑡𝑥
splicing

– 𝑈0’s signature 𝜎
𝑙
splicing

• S verifies if 𝜎𝑙
splicing

is valid. Then S extracts the proposed state

𝑆𝑙𝑒 𝑓 𝑡 := (𝑡𝑥
splicing

.Outs) and corresponding trigger from 𝑡𝑥
splicing

,

and resets the left-proposed state in the ideal functionality:

(sid, pid, reset-left, 𝑆𝑙𝑒 𝑓 𝑡 , 𝑡𝑟 𝑙splicing)
𝜏
↩−→ F𝑖

2pSetupSplicing

• At 𝜏 ′ , when channel updated to the new state and corrupted𝑈0 returns

UPDATED-SPLICING, S replays this the UPDATED-SPLICING message

in the ideal world.

Case 3: Only𝑈0 honest,𝑈1 corrupted.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, pid, left-state, S0

L
) 𝜏+1←−−↪ F𝑖

2pSetupSplicing

The simulator S extract the corresponding transaction,𝑈0’s signature

𝜎𝑙
S over the new state, and the trigger 𝑡𝑟 𝑙

splicing
from S

0

L
.

• In the ideal world, S simulate𝑈0’s ’ message to corrupted𝑈1:

(sid, pid, request-splicing, 𝛾0 .𝑖𝑑, 𝑡𝑥
0

S, 𝜎
𝑙
S) ↩−→ 𝑈1

where 𝑡𝑥0

S .Outs = S
0

L
.

• At round 𝜏 + 1, S observes how corrupted 𝑈1 responds in the real

world:

– If 𝑈1 verifies the transaction and update the channel with sig-

nature 𝜎𝑟
splicing, as𝑈1 is corrupted, S can construct this valid

update message and forward to the channel ideal functionality

F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 in the ideal world.

Case 4: Both𝑈0,𝑈1 corrupted. S just blocks any inputs to the ideal func-

tionality, and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E

cannot distinguish between the real and ideal executions:

Case 1: Both𝑈0 and𝑈1 honest. The simulator does nothing, and the

ideal functionality handles all the logic. The execution follows the

same steps as the real-world protocol, so indistinguishability holds.

Case 2: Only𝑈1 honest,𝑈0 corrupted. When 𝑈0 is corrupted, the

simulator S ensures that:

• In the ideal world, the left-proposed state configured in the

ideal functionality exactly matches what the corrupted 𝑈0

proposes in the real world.

• The channel update in the ideal world happens if and only

if the state is valid and would have been accepted in the

real world.

• If𝑈0 aborts in the real world, the behavior is replicated in

the ideal world.

For the honest 𝑈1, from E’s perspective, the ideal world’s trace is
indistinguishable from the real world’s trace.𝑈1 receives the same

request message, verifies it in the same way, and proceeds with the

channel update if valid.

Case 3: Only𝑈0 honest,𝑈1 corrupted. When 𝑈1 is corrupted, the

simulator S ensures that:

• The right-proposed state in the ideal functionality reflects

the corrupted𝑈1’s response to the proposal.

• The channel update occurs in the ideal world if and only if

𝑈1 trigger such update in the real world.

• If𝑈1 reports failure in the real world, the same happens in

the ideal world.

For the honest 𝑈0, its view in both worlds is identical: it sends a

proposal of new state, and if 𝑈1 approved, the channel is updated

to the new proposed state.

Case 4: Both𝑈0 and𝑈1 corrupted. The simulator directly replays all

messages in the ideal world, ensuring the behavior is identical to

the real world.

Therefore, Π𝑖
2pSetupSplicing

GUC-realizes F 𝑖
2pSetupSplicing

in the

Fprelim-hybrid world. □
36

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

Lemma 4. Π𝑖
2pSetupDep

GUC-realizes F 𝑖
2pSetupDep

in the {Fprelim,
F 𝑖
splicing-handler

}-hybrid world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution with Π𝑖
2pSetupDep

and A from the ideal

world execution with F 𝑖
2pSetupDep

and S.
Our simulator S handles the communication with the ideal func-

tionality F 𝑖
2pSetupDep

and simulates the behavior of the corrupted

parties. We analyze the possible corruption scenarios:

Simulator for F𝑖2pSetupDep

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. S does nothing.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted.

• At round 𝜏 , S intercepts the messages from corrupted𝑈𝑖 to𝑈𝑖+1 in
the real-world protocol:

– The proposed deposit-lock transaction 𝑡𝑥𝑖lock-Dep

– The associated revoke transaction 𝑡𝑥𝑖revoke-Dep
• S verifies if𝑈𝑖 provided valid signatures for the revoke transaction.

Then S extracts the proposed state 𝑆𝑙𝑒 𝑓 𝑡 := (𝑡𝑥𝑖lock-Dep .Outs) , and
corresponding trigger (𝑡𝑟 𝑙

splicing
:= 𝑡𝑥𝑖revoke-Dep .Ins[1]), and resets the

left-proposed state in the ideal functionality:

(sid, pid, reset-left, 𝑆𝑙𝑒 𝑓 𝑡 , 𝑡𝑟 𝑙splicing)
𝜏
↩−→ F𝑖

2pSetupDep

• At round 𝜏 + 2, if S receives:

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟 𝑙
splicing

)) 𝜏+2←−−↪ F𝑖
2pSetupDep

then S saves these values for future use.

• S observes whether the corrupted𝑈𝑖 updates the channel and initial-

izes the splicing handler in the real world:

– If 𝑈𝑖 sends (ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Dep) to F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,

then S simply replays the same message in the ideal world:

(ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, stateTx(𝑆)) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

– If 𝑈𝑖 initializes the splicing handler after successful channel

update, S replays this action in the ideal world.

– If 𝑈𝑖 aborts or deviates, S replicates the same behavior in the

ideal world.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, S𝑖
L
, 𝑡𝑥𝑖revoke-Dep)

𝜏+1←−−↪ F𝑖
2pSetupDep

• In the ideal world, S simulates 𝑈𝑖 sending the request message to

corrupted𝑈𝑖+1:

(sid, pid, request-lock-Dep, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖S, ¯𝑡𝑥𝑖revoke-Dep) ↩−→ 𝑈𝑖+1

where 𝑡𝑥𝑖S .Outs = S
𝑖
L
, ¯𝑡𝑥𝑖revoke-Dep just contains𝑈𝑖 ’s signature.

• S observes how corrupted𝑈𝑖+1 responds at 𝜏 + 1:

– If𝑈𝑖+1 verifies the transactions and sends a valid approval mes-

sage containing signatures, S extracts the right-proposed state

and sets:

(sid, pid, reset-right, S𝑖
L
, 𝑡𝑟 𝑙

splicing
) 𝜏+1
↩−−→ F𝑖

2pSetupDep

– If𝑈𝑖+1 aborts or sends invalid signatures, S sets:

(sid, pid, reset-right,⊥,⊥) 𝜏+1
↩−−→ F𝑖

2pSetupDep

Case 4: Both𝑈𝑖 ,𝑈𝑖+1 corrupted. S just blocks any inputs to the ideal func-

tionality, and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E

cannot distinguish between the real and ideal executions:

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. The simulator does nothing, and

the ideal functionality handles all the logic. The execution follows

exactly the same steps as the real-world protocol, so indistinguisha-

bility holds.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted. When 𝑈𝑖 is corrupted, the

simulator S ensures that:

• At round 𝜏 , the left-proposed state in the ideal functionality

exactly matches what the corrupted𝑈𝑖 proposes in the real

world.

• At round 𝜏 + 2, if 𝑈𝑖 updates the channel in the real world,

S replicates this behavior in the ideal world.

• If 𝑈𝑖 initializes the splicing handler in the real world, S
ensures the same happens in the ideal world.

For the honest𝑈𝑖+1, from E’s perspective, the ideal world’s trace
is indistinguishable from the real world’s trace.𝑈𝑖+1 receives the
same request message, verifies it in the same way, and provides

approval if the state is valid.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.When𝑈𝑖+1 is corrupted, the
simulator S ensures that:

• At round 𝜏+1, the right-proposed state in the ideal function-

ality reflects the corrupted 𝑈𝑖+1’s response to the proposal.

• The channel update occurs in the ideal world if and only if

𝑈𝑖+1 approves the proposal in the real world.

• The splicing handler is initialized in the ideal world if and

only if the channel update succeeds in the real world.

For the honest𝑈𝑖 , its view in both worlds will be identical:𝑈𝑖 sends

a request, and if approved, updates the channel and initializes the

splicing handler.

Case 4: Both𝑈𝑖 and𝑈𝑖+1 corrupted. The simulator directly replays

all messages in the ideal world, ensuring the behavior is identical

to the real world.

Therefore,Π𝑖
2pSetupDep

GUC-realizesF 𝑖
2pSetupDep

in the {Fprelim,
F 𝑖
splicing-handler

}-hybrid world. □

Lemma 5. Π𝑖
2pSetupPrm

GUC-realizes F 𝑖
2pSetupPrm

in the {Fprelim,
F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution with F 𝑖
2pSetupPrm

and A from the ideal

world execution with F 𝑖
2pSetupPrm

and S.
Our simulator S handles the communication with the ideal func-

tionality F 𝑖
2pSetupPrm

and simulates the behavior of the corrupted

parties. We analyze the three possible corruption scenarios:

Simulator for F𝑖2pSetupPrm

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. S does nothing.

Case 2: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.

• At round 𝜏 , S intercepts the messages from corrupted𝑈𝑖+1 to𝑈𝑖 in

the real-world protocol:

37

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

– The proposed premium-lock transaction 𝑡𝑥𝑖lock-Prm

– The associated revoke transactions 𝑡𝑥𝑖revoke-Prm and 𝑡𝑥
𝑖′
revoke-Dep

• S verifies if 𝑈𝑖+1 provided valid signatures for the revoke transac-

tions. Then S extracts the proposed state 𝑆𝑟𝑖𝑔ℎ𝑡 := (𝑡𝑥𝑖lock-Prm .Outs) ,
and corresponding triggers (𝑡𝑟𝑟

redeem
:= 𝑡𝑥𝑖revoke-Prm .Ins[1] and

𝑡𝑟𝑟
splicing

:= 𝑡𝑥𝑖
′
revoke-Dep .Ins[1]), replay in the ideal world, and resets

the right-proposed state in the ideal functionality:

(sid, pid, reset-right, 𝑆𝑟𝑖𝑔ℎ𝑡 , 𝑡𝑟𝑟splicing, 𝑡𝑟
𝑟
redeem

) 𝜏
↩−→ F𝑖

2pSetupPrm

• At round 𝜏 + 2, if S receives:

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆), RvkTx𝑅 (𝑆))
𝜏+2←−−↪ F𝑖

2pSetupPrm

then S saves these values for future use.

• S observes whether the corrupted 𝑈𝑖+1 updates the channel in the

real world:

– If 𝑈𝑖+1 sends (ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prm) to F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,

then S simply replays the same message in the ideal world:

(ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, stateTx(𝑆)) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

– If𝑈𝑖+1 aborts or deviates, S replicates the same behavior in the

ideal world.

• Similarly, S also observes if𝑈𝑖+1 updates the redeem handler. If𝑈𝑖+1
updates the redeem handler, then S can replay it in the ideal world.

Case 3: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, S𝑖
R
, 𝑡𝑥𝑅

𝑟𝑣𝑘−𝐿, 𝑡𝑥
𝐿
𝑟𝑣𝑘−𝑅)

𝜏+1←−−↪ F𝑖
2pSetupPrm

• In the ideal world, S simulates𝑈𝑖+1 sending the approval message to

corrupted𝑈𝑖 :

(sid, pid, approve-Prm, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖S, ¯𝑡𝑥𝑅
𝑟𝑣𝑘−𝐿, ¯𝑡𝑥𝑅

𝑟𝑣𝑘−𝑅) ↩−→ 𝑈𝑖

where 𝑡𝑥𝑖
𝑆
.Outs = S

𝑖
R
, ¯𝑡𝑥𝑅

𝑟𝑣𝑘−𝐿, ¯𝑡𝑥𝑅
𝑟𝑣𝑘−𝑅 just remove𝑈𝑖 ’s signature.

• S observes how corrupted𝑈𝑖 responds at 𝜏 + 1:

– If 𝑈𝑖 verifies the transactions and sends a valid signature

𝜎
𝑖,𝑙
lock-Prm for 𝑡𝑥

𝑖
lock-Prm, then S does not need to reset the left-

proposed state in the ideal functionality.

– If𝑈𝑖 aborts or sends invalid signatures, S sets:

(sid, pid, reset-left,⊥,⊥,⊥) 𝜏+1
↩−−→ F𝑖

2pSetupPrm

• S also observes if𝑈𝑖 updates the splicing handler. If𝑈𝑖 , then S can

replay this action is the ideal world, as the corresponding revoke txs

are leaked from the ideal functionality.

Case 4: Both𝑈𝑖 ,𝑈𝑖+1 corrupted. S just block any inputs to the ideal func-

tionality, and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E can-

not distinguish between the real and ideal executions. It is obvious

that in case 1, and case 4, such indistinguishability holds. We focus

on the remaining cases.

Case 2: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.When𝑈𝑖+1 is corrupted, the
simulator S ensures that:

• At 𝜏 + 1, the right-proposed state and the corresponding

revoke txs in the ideal functionality exactly matches what

the corrupted𝑈𝑖+1 proposes sent in the approve-lock-Prm
message in the real world.

• At 𝜏 +2, theS will replay the approved-lock-Prmmessage

sent from𝑈𝑖 , when the state and triggers match.

• The channel update occurs in the ideal world if and only if

it occurs in the real world.

For the honest𝑈𝑖 , from E’s perspective, the ideal world’s trace is
indistinguishable from the real world’s trace. In the real world, 𝑈𝑖

updates the splicing handler only if the proposed state and triggers

match. So as the idea world’s, guranteed by ideal functionality’s

logic.

Case 3: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted. When 𝑈𝑖 is corrupted, the

simulator S ensures that:

• At round 𝜏 + 1, he left-proposed state in the ideal

functionality reflects the corrupted 𝑈𝑖 ’s response (the

approved-lock-Prm) to the proposal, dynamically updated

by S.
• The channel update occurs in the ideal world if and only

if𝑈𝑖 ackowledge the𝑈𝑖+1 proposal in the real world. This

is guaranteed by the ideal functionality’s logic in the ideal

world.

• The splicing handler is updated in the ideal world if and

only if𝑈𝑖 updates it in the real world. And S has the access

to the revoke txs leaked by the ideal functionality, so it can

replay the same action in the ideal world.

For the honest𝑈𝑖+1, its view in both worlds will be identical:𝑈𝑖+1
updates the channel if approval is received, and the redeem handler

is initialized if the channel update succeeds.

Therefore, Π𝑖
2pSetupPrm

GUC-realizes F 𝑖
2pSetupPrm

the {Fprelim,
F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world. □

Lemma 6. Π𝑖
2pSetupPrcpl

GUC-realizesF 𝑖
2pSetupPrcpl

in the {Fprelim,
F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution with Π𝑖
2pSetupPrcpl

and A from the ideal

world execution with F 𝑖
2pSetupPrcpl

and S.
Our simulator S handles the communication with the ideal func-

tionality F 𝑖
2pSetupPrcpl

and simulates the behavior of the corrupted

parties. We analyze the possible corruption scenarios:

Simulator for F𝑖2pSetupPrcpl

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. S does nothing.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted.

• At round 𝜏 , S intercepts the messages from corrupted𝑈𝑖 to𝑈𝑖+1 in
the real-world protocol:

– The proposed principal-lock transaction 𝑡𝑥𝑖lock-Prcpl

– The associated revoke transactions 𝑡𝑥𝑖revoke-Prcpl and

𝑡𝑥𝑖
′
revoke-Prm

• S verifies if𝑈𝑖 provided valid signatures for the revoke transactions.

Then S extracts the proposed state 𝑆𝑙𝑒 𝑓 𝑡 := (𝑡𝑥𝑖lock-Prcpl .Outs) ,
and corresponding triggers (𝑡𝑟 𝑙

splicing
:= 𝑡𝑥𝑖revoke-Prcpl .Ins[1] and

𝑡𝑟 𝑙
redeem

:= 𝑡𝑥𝑖
′
revoke-Prm .Ins[1]), and resets the left-proposed state in

the ideal functionality:

(sid, pid, reset-left, 𝑆𝑙𝑒 𝑓 𝑡 , 𝑡𝑟 𝑙splicing, 𝑡𝑟
𝑙
redeem

) 𝜏
↩−→ F𝑖

2pSetupPrcpl

• At round 𝜏 + 2, if S receives:

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟 𝑙
splicing

), RvkTx𝑅 (𝑆, 𝑡𝑟 𝑙
redeem

)) 𝜏+2←−−↪ F𝑖
2pSetupPrcpl

38

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

then S saves these values for future use.

• S observes whether the corrupted𝑈𝑖 updates the channel and splicing

handler in the real world:

– If 𝑈𝑖 sends (ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖lock-Prcpl) to F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,

then S simply replays the same message in the ideal world:

(ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, stateTx(𝑆)) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

– If𝑈𝑖 updates the splicing handler after successful channel update,

S also replays this action in the ideal world.

– If 𝑈𝑖 aborts or deviates, S replicates the same behavior in the

ideal world.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, S𝑖
L
, 𝑡𝑥𝑖rvk-L, 𝑡𝑥

𝑖
rvk-R)

𝜏+1←−−↪ F𝑖
2pSetupPrcpl

• In the ideal world, S simulates 𝑈𝑖 sending the request message to

corrupted𝑈𝑖+1:

(sid, pid, request-lock-Prcpl, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖S, 𝑡𝑥
𝑖
rvk-Prcpl, 𝑡𝑥

𝑖′
rvk-Prm) ↩−→ 𝑈𝑖+1

where 𝑡𝑥𝑖S .Outs = S
𝑖
L
, 𝑡𝑥𝑖rvk-Prcpl and 𝑡𝑥𝑖

′
rvk-Prm contain 𝑈𝑖 ’s signa-

tures.

• S observes how corrupted𝑈𝑖+1 responds at 𝜏 + 1:

– If𝑈𝑖+1 verifies the transactions and sends a valid approval mes-

sage with signatures for the revoke transactions and the principal

lock transaction, S extracts the right-proposed state and sets:

(sid, pid, reset-right, S𝑖
L
, 𝑡𝑟 𝑙

splicing
, 𝑡𝑟 𝑙

redeem
) 𝜏+1
↩−−→ F𝑖

2pSetupPrcpl

– If𝑈𝑖+1 updates the redeem handler in the real world, S ensures

this happens in the ideal world as well.

– If𝑈𝑖+1 aborts or sends invalid signatures, S sets:

(sid, pid, reset-right,⊥,⊥,⊥) 𝜏+1
↩−−→ F𝑖

2pSetupPrcpl

Case 4: Both𝑈𝑖 ,𝑈𝑖+1 corrupted. S just blocks any inputs to the ideal func-

tionality and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E

cannot distinguish between the real and ideal executions:

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. Similar to previous proofs, the sim-

ulator does nothing, and the ideal functionality handles all the logic.

The execution follows exactly the same steps as the real-world

protocol, so indistinguishability holds.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted. When 𝑈𝑖 is corrupted, the

simulator S ensures that:

• At round 𝜏 , the left-proposed state in the ideal functionality

exactly matches what the corrupted𝑈𝑖 proposes in the real

world.

• At round 𝜏 + 2, if 𝑈𝑖 updates the channel in the real world,

S replicates this behavior in the ideal world.

• If 𝑈𝑖 updates the splicing handler in the real world after

channel update, S ensures the same happens in the ideal

world.

For the honest𝑈𝑖+1, from E’s perspective, the ideal world’s trace
is indistinguishable from the real world’s trace.𝑈𝑖+1 receives the
same request message, verifies it in the same way, and provides

approval if the state is valid. The revoke transactions and update of

the redeem handler proceed identically in both worlds.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted. Similar to the proof for

F 𝑖
2pSetupPrm

, when𝑈𝑖+1 is corrupted, the simulator S ensures that:

• At round 𝜏+1, the right-proposed state in the ideal function-

ality reflects the corrupted 𝑈𝑖+1’s response to the proposal.

• The channel update occurs in the ideal world if and only if

𝑈𝑖+1 approves the proposal in the real world.

• The redeem handler is updated in the ideal world if and

only if𝑈𝑖+1 updates it in the real world.

For the honest𝑈𝑖 , its view in both worlds will be identical:𝑈𝑖 sends

a request, and if approved, updates the channel and the splicing

handler.

Case 4: Both𝑈𝑖 and𝑈𝑖+1 corrupted. The simulator directly replays

all messages in the ideal world, ensuring the behavior is identical

to the real world.

Therefore, Π𝑖
2pSetupPrcpl

GUC-realizes F 𝑖
2pSetupPrcpl

in the

{Fprelim, F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world. □

Lemma 7. Π𝑖
2pRfdDep

GUC-realizes F 𝑖
2pRfdDep

in the {Fprelim,
F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution withΠ𝑖
2pRfdDep

andA from the ideal world

execution with F 𝑖
2pRfdDep

and S.
Our simulator S handles the communication with the ideal func-

tionality F 𝑖
2pRfdDep

and simulates the behavior of the corrupted

parties. We analyze the possible corruption scenarios:

Simulator for F𝑖2pRfdDep

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. S does nothing.

Case 2: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.

• At round 𝜏 , S intercepts the messages from corrupted𝑈𝑖+1 to𝑈𝑖 in

the real-world protocol:

– The proposed deposit refund transaction 𝑡𝑥𝑖
rfd-Dep

– The associated revoke transactions 𝑡𝑥𝑖
′
revoke-Prcpl and

𝑡𝑥𝑖
′′
revoke-Prm

• S verifies if𝑈𝑖+1 provided valid signatures for the transactions. Then

S extracts the proposed state 𝑆𝑟𝑖𝑔ℎ𝑡 := (𝑡𝑥𝑖
rfd-Dep

.Outs) , and corre-

sponding triggers (𝑡𝑟𝑟
splicing

:= 𝑡𝑥𝑖
′
revoke-Prcpl .Ins[1] and 𝑡𝑟𝑟

redeem
:=

𝑡𝑥𝑖
′′
revoke-Prm .Ins[1]), and resets the right-proposed state in the ideal

functionality:

(sid, pid, reset-right, 𝑆𝑟𝑖𝑔ℎ𝑡 , 𝑡𝑟𝑟splicing, 𝑡𝑟
𝑟
redeem

) 𝜏
↩−→ F𝑖

2pRfdDep

• At round 𝜏 + 2, if S receives following from F𝑖
2pRfdDep

.

(sid, pid, stateTx(𝑆), RvkTx𝐿 (𝑆, 𝑡𝑟𝑟
splicing

), RvkTx𝑅 (𝑆, 𝑡𝑟𝑟
redeem

))

then S saves these values for future use.

• S observes whether the corrupted𝑈𝑖+1 updates the channel and the

handlers in the real world:

– If 𝑈𝑖+1 sends (ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖rfd-Dep) to F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ,

then S simply replays the same message in the ideal world:

(ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, stateTx(𝑆)) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

– If𝑈𝑖+1 updates the splicing and redeem handlers after successful

channel update, S also replays these actions in the ideal world.

– If𝑈𝑖+1 aborts or deviates, S replicates the same behavior in the

ideal world.

Case 3: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted.

39

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, S𝑖
R
, 𝑡𝑥𝑖rvk-L, 𝑡𝑥

𝑖
rvk-R)

𝜏+1←−−↪ F𝑖
2pRfdDep

• In the ideal world, S simulates𝑈𝑖+1 sending the request message to

corrupted𝑈𝑖 :

(sid, pid, request-Rfd-Dep, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖rfd-Dep, 𝑡𝑥
𝑖′
revoke-Prcpl, 𝑡𝑥

𝑖′′
revoke-Prm)

↩−→ 𝑈𝑖

where 𝑡𝑥𝑖
rfd-Dep

.Outs = S
𝑖
R
, and the revoke transactions contain𝑈𝑖+1’s

signatures.

• S observes how corrupted𝑈𝑖 responds at 𝜏 + 1:

– If𝑈𝑖 verifies the transactions and sends a valid approval message

with signature 𝜎
𝑖,𝑙

rfd-Dep
for the refund transaction, S extracts

the left-proposed state and sets:

(sid, pid, reset-left, S𝑖
R
, 𝑡𝑟𝑟

splicing
, 𝑡𝑟𝑟

redeem
) 𝜏+1
↩−−→ F𝑖

2pRfdDep

– If𝑈𝑖 aborts or sends invalid signatures, S sets:

(sid, pid, reset-left,⊥,⊥,⊥) 𝜏+1
↩−−→ F𝑖

2pRfdDep

Case 4: Both𝑈𝑖 ,𝑈𝑖+1 corrupted. S just blocks any inputs to the ideal func-

tionality and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
We now analyze each case to show that the environment E

cannot distinguish between the real and ideal executions:

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. Similar to previous proofs, the sim-

ulator does nothing, and the ideal functionality handles all the logic.

The execution follows exactly the same steps as the real-world

protocol, so indistinguishability holds.

Case 2: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.When𝑈𝑖+1 is corrupted, the
simulator S ensures that:

• At round 𝜏 , the right-proposed state in the ideal function-

ality exactly matches what the corrupted𝑈𝑖+1 proposes in

the real world.

• At round 𝜏 +2, if𝑈𝑖+1 updates the channel in the real world,

S replicates this behavior in the ideal world.

• If𝑈𝑖+1 updates the splicing and redeem handlers in the real

world after channel update, S ensures these same actions

occur in the ideal world.

For the honest 𝑈𝑖 , from E’s perspective, the ideal world’s trace

is indistinguishable from the real world’s trace. 𝑈𝑖 receives the

same request message, verifies it in the same way, and provides

approval if the state is valid. The transaction verification process

and signature checks proceed identically in both worlds.

Case 3: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted. Similar to previous proofs,

when𝑈𝑖 is corrupted, the simulator S ensures that:

• At round 𝜏 + 1, the left-proposed state in the ideal function-

ality reflects the corrupted𝑈𝑖 ’s response to the proposal.

• The channel update occurs in the ideal world if and only if

𝑈𝑖 approves the proposal in the real world.

For the honest𝑈𝑖+1, its view in both worlds will be identical:𝑈𝑖+1
sends a request, and if approved, updates the channel and the splic-

ing/redeem handlers.

Case 4: Both𝑈𝑖 and𝑈𝑖+1 corrupted. The simulator directly replays

all messages in the ideal world, ensuring the behavior is identical

to the real world.

Therefore, Π𝑖
2pRfdDep

GUC-realizes F 𝑖
2pRfdDep

in the {Fprelim,
F 𝑖
splicing-handler

, F 𝑖
redeem-handler

}-hybrid world. □

Lemma 8. Π𝑖
2pSettle

GUC-realizes F 𝑖
2pSettle

in the Fprelim-hybrid
world.

Proof. We prove that for any environment E and adversaryA,

there exists a simulator S such that E cannot distinguish between

the real world execution with Π𝑖
2pSettle

andA from the ideal world

execution with F 𝑖
2pSettle

and S.
Our simulator S handles the communication with the ideal func-

tionality F 𝑖
2pSettle

and simulates the behavior of the corrupted par-

ties. We analyze the possible corruption scenarios:

Simulator for F𝑖2pSettle

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. S does nothing.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted.

• At round 𝜏 , S intercepts the messages from corrupted𝑈𝑖 to𝑈𝑖+1 in
the real-world protocol:

– The proposed settlement transaction 𝑡𝑥𝑖settle
• S verifies that 𝑡𝑥𝑖settle reflects the balances specified in the setup

call. Then S extracts the proposed state 𝑆𝑙𝑒 𝑓 𝑡 := (𝑡𝑥𝑖settle .Outs) and
resets the left-proposed state in the ideal functionality:

(sid, pid, reset-left, 𝑆𝑙𝑒 𝑓 𝑡)
𝜏
↩−→ F𝑖

2pSettle

• At round 𝜏 + 2, if S receives:

(sid, pid, stateTx(𝑆)) 𝜏+2←−−↪ F𝑖
2pSettle

then S checks if the corrupted𝑈𝑖 would have updated the channel

state in the real world.

• If the state would have been updated in the real world, S replicates

this behavior in the ideal world:

(ssid𝐶 , UPDATE, 𝛾𝑖 .𝑖𝑑, stateTx(𝑆)) ↩−→ F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• If𝑈𝑖 aborts or deviates in the real world, S replicates the same behav-

ior in the ideal world.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted.

• At round 𝜏 + 1, S receives from the ideal functionality:

(sid, S𝑖
L
) 𝜏+1←−−↪ F𝑖

2pSettle

• In the ideal world, S simulates 𝑈𝑖 sending the request message to

corrupted𝑈𝑖+1:

(sid, pid, request-settle, 𝛾𝑖 .𝑖𝑑, 𝑡𝑥𝑖settle) ↩−→ 𝑈𝑖+1

where 𝑡𝑥𝑖settle .Outs = S
𝑖
L
.

• S observes how corrupted𝑈𝑖+1 responds:
– If𝑈𝑖+1 verifies the transaction and sends a valid approval with

signature 𝜎
𝑖,𝑟
settle, S sets:

(sid, pid, reset-right, S𝑖
L
) 𝜏+1
↩−−→ F𝑖

2pSettle

– If𝑈𝑖+1 aborts or sends invalid signatures, S sets:

(sid, pid, reset-right,⊥) 𝜏+1
↩−−→ F𝑖

2pSettle

Case 4: Both𝑈𝑖 ,𝑈𝑖+1 corrupted. S just blocks any inputs to the ideal func-

tionality and directly replays all the messages observed from the real

world within the ideal world.

Indistinguishability Analysis:
40

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

We now analyze each case to show that the environment E
cannot distinguish between the real and ideal executions:

Case 1: Both𝑈𝑖 and𝑈𝑖+1 honest. Similar to previous proofs, the sim-

ulator does nothing, and the ideal functionality handles all the logic.

The execution follows exactly the same steps as the real-world

protocol, so indistinguishability holds.

Case 2: Only𝑈𝑖+1 honest,𝑈𝑖 corrupted. When 𝑈𝑖 is corrupted, the

simulator S ensures that:

• At round 𝜏 , the left-proposed state in the ideal functionality

exactly matches what the corrupted𝑈𝑖 proposes in the real

world.

• At round 𝜏 + 2, if 𝑈𝑖 updates the channel in the real world,

S replicates this behavior in the ideal world.

For the honest𝑈𝑖+1, from E’s perspective, the ideal world’s trace
is indistinguishable from the real world’s trace.𝑈𝑖+1 receives the
same settlement request, verifies it in the same way, and provides

approval if the state correctly reflects the agreed balances.

Case 3: Only𝑈𝑖 honest,𝑈𝑖+1 corrupted. Similar to previous proofs,

when𝑈𝑖+1 is corrupted, the simulator S ensures that:

• At round 𝜏+1, the right-proposed state in the ideal function-

ality reflects the corrupted𝑈𝑖+1’s response to the settlement

proposal.

• The channel update occurs in the ideal world if and only if

𝑈𝑖+1 approves the proposal in the real world.

For the honest𝑈𝑖 , its view in both worlds will be identical:𝑈𝑖 sends

a settlement request, and if approved, updates the channel to the

new balances.

Case 4: Both𝑈𝑖 and𝑈𝑖+1 corrupted. The simulator directly replays

all messages in the ideal world, ensuring the behavior is identical

to the real world.

Therefore, Π𝑖
2pSettle

GUC-realizes F 𝑖
2pSettle

in the Fprelim-hybrid
world. □

Lemma 9. Π𝑖
splicing-launcher

GUC-realizes F 𝑖
splicing-launcher

in the

Fprelim-hybrid world.

Lemma 10. Π𝑖
redeem-launcher

GUC-realizes F 𝑖
redeem-launcher

in the

Fprelim-hybrid world.

Lemma 11. Π𝑖
slash-launcher

GUC-realizes F 𝑖
slash-launcher

in the

Fprelim-hybrid world.

Lemma 12. Π𝑖
splicing-handler

GUC-realizes F 𝑖
splicing-handler

in the

Fprelim-hybrid world.

Lemma 13. Π𝑖
redeem-handler

GUC-realizes F 𝑖
redeem-handler

in the

Fprelim-hybrid world.

Lemma 9, Lemma 10, Lemma 11, Lemma 12, and Lemma 13 are

trivial to prove, as the protocol and corresponding ideal functional-

ities only consists of a single party. By the honest assumption, the

real-world execution is identical to the ideal world.

For abbreviation, we denote the set of all sub protocols as Fsub,
including all the 2psetup protocols and the sub-protocols in the

splicing and redeem launcher/handlers.

H.3 Proof of security and efficiency goals
In this section, we formally prove the main ideal functionality FZeus
in the {Fprelim, Fsub}-hybridmodel achieves the design goals. Here,

we provide the formal definition of the design goals, and then prove

the security of Zeus.
Setup. Given a multi-hop payment denoted by M𝐶𝐸 , where

MCE := (M, 𝑠, ℎ). M contains the metadata for the multi-hop

payment, and 𝑠 is the credential required by the payer, ℎ is the

corresponding commitment.

For the metadata M, M := (𝑈 , Γ, 𝑥, Fees,S) where 𝑈 =

(𝑈0,𝑈1, ...,𝑈𝑛,𝑈𝑛+1) is an ordered sequence of 𝑛 + 2 parties with

payer 𝑈0, payee 𝑈𝑛+1, and intermediate relays 𝑈1 through 𝑈𝑛 .

Γ = (𝛾0, ..., 𝛾𝑛) denotes the sequence of payment channels, where

𝑈𝑖 establishes channel 𝛾𝑖 with 𝑈𝑖+1, for 𝑖 = 0 to 𝑛. The payment

amount is 𝑥 , and Fees = (𝑓1, ..., 𝑓𝑛) represents the sequence of relay
fees where 𝑓𝑖 is the fee charged by intermediary𝑈𝑖 . We denote the

on-chain transaction cost as 𝐹 . S contains all the states of channel,

as defined in Appendix H.1.1. In Zeus,𝑇 denotes the timelock for the

principal, while Δ is the time required for the on-chain transaction

to be confirmed.

Assumptions. Our model follows a synchronous and authenti-

cated communication model, with a PPT adversary A controlling

all but explicitly-specified honest parties.

H.3.1 Balance security. Here, we give the formal definition of bal-

ance security in Zeus.

Definition H.1. (Balance Security) Given a multi-hop payment

MCE, we say an ideal functionality F𝑀𝐻𝑃 achieves balance security:
1) if for any PPT adversary A, the balance of any honest party

𝑈𝑖∈[1,𝑛+1] will not decrease compared with their initial balance;

and 2) if payer 𝑈0 and payee 𝑈𝑛+1 are honest, 𝑈0 pays 𝑈1 in the

first channel 𝛾0 only if𝑈𝑛+1 gets paid in 𝛾𝑛 .

Theorem 6 (Zeus achieves balance security). Given a multi-hop

paymentMCE, the main ideal functionality FZeus is executed in

the {Fprelim, Fsub}-hybrid world achieves balance security.

Proof. We prove balance security by analyzing all possible

channel states that an honest party might encounter during pro-

tocol execution. For each honest party, we demonstrate that their

total balance across all channels will not decrease below their initial

balance, regardless of adversarial behavior.

For simplicity, we assume all channels have the same initial

balance (𝑙𝑏, 𝑟𝑏), where 𝑙𝑏 is the left balance and 𝑟𝑏 is the right

balance for any channel 𝛾𝑖∈[0,𝑛] . We use the notation 𝛾𝑖 → 𝑆𝑖STATE
to denote that channel 𝛾𝑖 is in state 𝑆𝑖STATE. When the on-chain

splicing-redemption happens, the relays can optimistically revokes

its locked funds off-chain. So we omit the cost of revocation in our

analysis.

We first shows that if payer and payee are honest, payer pays

relay 𝑈1 in channel 𝛾0 iff payee receives the payment 𝑥 . In FZeus,
if𝑈0 and𝑈𝑛+1 are honest,𝑈0 settles 𝛾0 to Paid iff𝑈𝑛+1 ensures 𝛾𝑛
is in the Refunded-Dep state. Once the Refunded-Dep state times

out, it is equivalent to the Paid state (in both states, the payee

has a new balance of 𝑟𝑏 + 𝑥). If 𝛾𝑛 never enters the Refunded-Dep
state, the honest payer 𝑈0 will never settle 𝛾0 to Paid, and the

splicing-redemption process will revoke all off-chain payments.

41

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

We then analyze balance security for the other three parties: hon-

est first relay 𝑈1, honest intermediate relays 𝑈𝑖∈[2,𝑛] , and honest

payee𝑈𝑛+1 under different cases.

Case 1: Honest first relay𝑈1. We analyze all possible state combi-

nations of 𝛾0 and 𝛾1:

• Idle states: 𝛾0 → 𝑆0

IDLE and 𝛾1 → 𝑆1

IDLE.

In this case, the balance of𝑈1 remains unchanged at 𝑙𝑏 + 𝑟𝑏.
• Spliced first channel: 𝛾0 → 𝑆0

SPLICED and 𝛾1 → 𝑆1

IDLE.

When 𝛾0 is in state 𝑆0

SPLICED, as defined in Appendix H.1.1,

𝑈1 still has its original balance 𝑟𝑏. Combined with balance

𝑙𝑏 from 𝛾1,𝑈1’s total balance remains 𝑙𝑏 + 𝑟𝑏.
• Spliced first channel with payer’s deposit locked in

second channel: 𝛾0 → 𝑆0

SPLICED and 𝛾1 → 𝑆1

LOCKED-Dep.

If 𝛾1 settles in state 𝑆1

LOCKED-Dep after 𝛾0 is spliced, the ideal

functionality FZeus ensures𝑈1 can revoke its locked deposit

Dep
1
through transaction RvkTx𝐿 (𝑆1

LOCKED-Dep, 𝑡𝑟
1

𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
).

This is guaranteed by the temporal constraints enforced by

F 1

splicing-launcher
and F 1

splicing-handler
, which ensures𝑈1 has

sufficient time (𝑡𝑐𝑙𝑜𝑠𝑒 + Δ) to perform this revocation after

splicing. Thus,𝑈1’s balance remains 𝑙𝑏 + 𝑟𝑏.
• First channel splicedwhile premium locked in second:
𝛾0 → 𝑆0

SPLICED and 𝛾1 → 𝑆1

LOCKED-Prm.

Similar to the previous case,𝑈1 can revoke its locked deposit

through F 1

splicing-handler
while maintaining its balance of

𝑙𝑏 + 𝑟𝑏.
• First channel spliced while principal locked in sec-

ondk: 𝛾0 → 𝑆0

SPLICED and 𝛾1 → 𝑆1

LOCKED-Prcpl.

Similar to the previous case, 𝑈1 can revoke its locked de-

posit through F 1

splicing-handler
while maintaining its balance

of 𝑙𝑏 + 𝑟𝑏.
• First channel spliced while deposit refunded in sec-

ond: 𝛾0 → 𝑆0

SPLICED and 𝛾1 → 𝑆1

REFUNDED-Dep.

Similar to the previous case,𝑈1 maintains its balance of at

lease 𝑙𝑏 + 𝑟𝑏. If payee fails to revoke its premium in-time,

𝑈1 will get an extra payoff of Prm1 = 𝑓0 + 𝑓1 in channel 𝛾1.

• Paid first channel while deposit refunded in second:
𝛾0 → 𝑆0

PAID and 𝛾1 → 𝑆1

REFUNDED-Dep.

When 𝛾0 reaches state 𝑆
0

PAID,𝑈1’s balance in 𝛾0 increases to

𝑟𝑏 +𝑥 +∑𝑛
𝑖=1

𝑓𝑖 by definition. In 𝛾1 with state 𝑆1

REFUNDED-Dep,

𝑈1’s balance becomes 𝑙𝑏 − Prcpl + Prm1. Substituting

Prcpl = 𝑥 +∑𝑛
𝑖=1

𝑓𝑖 and Prm1 = 𝑓0 + 𝑓1, we get:

𝑙𝑏 − (𝑥 +
𝑛∑︁
𝑖=1

𝑓𝑖) + (𝑓0 + 𝑓1) = 𝑙𝑏 − 𝑥 −
𝑛∑︁
𝑖=2

𝑓𝑖

Therefore,𝑈1’s total balance becomes:

(𝑟𝑏 + 𝑥 +
𝑛∑︁
𝑖=1

𝑓𝑖) + (𝑙𝑏 − 𝑥 −
𝑛∑︁
𝑖=2

𝑓𝑖) = 𝑙𝑏 + 𝑟𝑏 + 𝑓1

This exceeds the initial balance by 𝑓1, achieving balance

security.

• Both channels in paid state: 𝛾0 → 𝑆0

PAID and 𝛾1 → 𝑆1

PAID.

In this optimal case, 𝑈1 securely earns its relay fee 𝑓1, and

its total balance increases to 𝑙𝑏 + 𝑟𝑏 + 𝑓1.

Therefore, Zeus achieves balance security for honest relay𝑈1 in

all possible channel state combinations.

Case 2: Honest intermediate relays𝑈𝑖∈[2,𝑛] . We analyze all pos-

sible state combinations of 𝛾𝑖−1 and 𝛾𝑖 , considering both on-chain

and off-chain scenarios:

• Idle states: 𝛾𝑖−1 → 𝑆𝑖−1

IDLE and 𝛾𝑖 → 𝑆𝑖IDLE.

In this baseline case, 𝑈𝑖 maintains its initial balance of 𝑙𝑏 +
𝑟𝑏.

• Left channel with deposit locked, right channel idle:
𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Dep and 𝛾𝑖 → 𝑆𝑖IDLE.

This analysis has two subcases:

– If 𝛾0 is not spliced before time 𝑇 (optimistic case):𝑈𝑖 ’s

balance in 𝛾𝑖−1 increases by Dep𝑖−1
when the timelock

expires, while balance in 𝛾𝑖 remains 𝑙𝑏. Total balance

increases to 𝑙𝑏 + 𝑟𝑏 + Dep𝑖−1
.

– If 𝛾0 is spliced before 𝑇 (dispute case): The splicing

trigger activates F 𝑖−1

splicing-handler
, allowing𝑈𝑖 to revoke

any locked funds in 𝛾𝑖−1 through RvkTx𝐿 . Balance

remains 𝑙𝑏 + 𝑟𝑏.
• Both channels with deposit locked: 𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Dep

and 𝛾𝑖 → 𝑆𝑖LOCKED-Dep.

This analysis has two subcases:

– Without splicing: 𝑈𝑖 ’s balance in 𝛾𝑖−1 increases by

Dep𝑖−1
while decreasing in 𝛾𝑖 by Dep𝑖 . By protocol

design (as specified in F 𝑖
2pSetupDep

), Dep𝑖−1
− Dep𝑖 =

𝑐
relay

> 0, ensuring total balance doesn’t decrease.

– With splicing: The ideal functionality F 𝑖
splicing-handler

allows𝑈𝑖 to recover its locked deposit in 𝛾𝑖 , so balance

is at least 𝑙𝑏 + 𝑟𝑏. If its left relay𝑈𝑖−1 fails to revoke its

locked funds in 𝛾𝑖−1,𝑈𝑖 get a bonus of Dep𝑖−1
in 𝛾𝑖−1.

• Left channel with deposit locked, right channel
with premium locked: 𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Dep and 𝛾𝑖 →
𝑆𝑖LOCKED-Prm.

This analysis has two subcases:

– Without splicing:𝑈𝑖 gains Dep𝑖−1
in 𝛾𝑖−1 and Prm𝑖 in

𝛾𝑖 . So total balance increases to 𝑙𝑏 + 𝑟𝑏 + 𝑐
relay
+ Prm𝑖 .

– With splicing: 𝑈𝑖 can revoke its deposit in 𝛾𝑖 through

F 𝑖
splicing-handler

, while maintaining balance in 𝛾𝑖−1. If

redemption doesn’t occur,𝑈𝑖 also retains Prm𝑖 . So the

balance of𝑈𝑖 is at least 𝑙𝑏 + 𝑟𝑏.
• Both channelswith premium locks:𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Prm
and 𝛾𝑖 → 𝑆𝑖LOCKED-Prm.

This analysis has three subcases:

– Without splicing: 𝑈𝑖 ’s balance changes by (Prm𝑖 −
Prm𝑖−1) + (Dep𝑖−1

− Dep𝑖). By protocol design in

F 𝑖
2pSetupPrm

, we have Prm𝑖 − Prm𝑖−1 = 𝑓𝑖 and Dep𝑖−1
−

Dep𝑖 = 𝑐
relay

, ensuring non-negative change.

– With splicing but no redemption: 𝑈𝑖 can recover de-

posit in𝛾𝑖 and retain premium Prm𝑖 , increasing balance
by 𝑓𝑖 .

– With splicing and redemption: Both deposit and pre-

mium are revoked, maintaining original balance (𝑙𝑏 +
𝑟𝑏).

42

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

• Left channel with principal, right with premium:

𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Prcpl and 𝛾𝑖 → 𝑆𝑖LOCKED-Prm.

This analysis has three subcases:

– Without splicing: 𝑈𝑖 gains additional principal Prcpl
compared to the previous "Both channels with pre-

mium locks, no splicing"case, increasing balance fur-

ther.

– With splicing but no redemption: 𝑈𝑖 can revoke prin-

cipal in 𝛾𝑖 , with a balance of at least (𝑙𝑏 + 𝑟𝑏 + 𝑓𝑖).
– With splicing and redemption: All locked funds are

revoked, maintaining initial balance.

• Both channels with principal locks: 𝛾𝑖−1 →
𝑆𝑖−1

LOCKED-Prcpl and 𝛾𝑖 → 𝑆𝑖LOCKED-Prcpl.

This analysis has three subcases:

– Without splicing: Prcpl is identical in both channels

by design, so total balance remains (𝑙𝑏+𝑟𝑏+𝑐
relay
+ 𝑓𝑖).

– With splicing: 𝑈𝑖 can revoke principal in both

channels through RvkTx𝐿 transactions facilitated by

F 𝑖−1

splicing-handler
and F 𝑖

splicing-launcher
, maintaining bal-

ance of (𝑙𝑏 + 𝑟𝑏 + 𝑓𝑖)
– With splicing and redemption: All locked funds are

revoked, maintaining initial balance.

• Left channel with principal, right with deposit refund:
𝛾𝑖−1 → 𝑆𝑖−1

LOCKED-Prcpl and 𝛾𝑖 → 𝑆𝑖REFUNDED-Dep.

This analysis has three subcases:

– Without splicing: Compare with "Both channels with

principal locks, no splicing" case,𝑈𝑖 has a better payoff,

as its pay less in channel 𝛾𝑖 .

– With splicing and no redemption:𝑈𝑖 can revoke prin-

cipal in 𝛾𝑖−1 through RvkTx𝐿 , while retaining the de-

posit refund in 𝛾𝑖 .

– With splicing and redemption: All locked funds are

revoked, maintaining initial balance.

• Both channels with deposit refunds: 𝛾𝑖−1 →
𝑆𝑖−1

REFUNDED-Dep and 𝛾𝑖 → 𝑆𝑖REFUNDED-Dep.

In this state, 𝑈𝑖 ’s balance in 𝛾𝑖−1 is 𝑙𝑏 − Prcpl + Prm𝑖−1,

and in 𝛾𝑖 it’s 𝑟𝑏 −Prm𝑖 +Dep𝑖 . By protocol design, Prm𝑖−1 ≥
Prcpl and Dep𝑖 ≥ Prm𝑖 , ensuring total balance doesn’t

decrease. This holds regardless of whether splicing or re-

demption occurs.

• Left channel paid, right with deposit refund: 𝛾𝑖−1 →
𝑆𝑖−1

PAID and 𝛾𝑖 → 𝑆𝑖REFUNDED-Dep

When 𝛾𝑖−1 → 𝑆𝑖−1

PAID, 𝑈𝑖 ’s balance becomes 𝑟𝑏 + Prcpl −
Prm𝑖−1 = 𝑟𝑏 + 𝑥 +∑𝑛

𝑗=𝑖 𝑓𝑗 . In 𝛾𝑖 , the balance is 𝑙𝑏 − Prcpl +
Prm𝑖 = 𝑙𝑏 − 𝑥 −∑𝑛

𝑗=𝑖+1 𝑓𝑗 . Therefore, total balance is 𝑙𝑏 +
𝑟𝑏 + 𝑓𝑖 , which exceeds the initial amount. This remains true

regardless of splicing activity since 𝛾𝑖−1 has already settled.

• Both channels paid: 𝛾𝑖−1 → 𝑆𝑖−1

PAID and 𝛾𝑖 → 𝑆𝑖PAID
In this optimal case, 𝑈𝑖 securely earns relay fee 𝑓𝑖 , with

total balance increasing to 𝑙𝑏 + 𝑟𝑏 + 𝑓𝑖 .

Therefore, Zeus achieves balance security for all honest relays

𝑈𝑖∈[2,𝑛] across all possible channel state combinations.

Case 3: Honest payee 𝑈𝑛+1. We analyze the payee’s balance secu-

rity:

• Without splicing: For all possible states of channel 𝛾𝑛
without splicing, the balance of𝑈𝑛+1 never decreases below
𝑟𝑏. In optimal case (𝛾𝑛 → 𝑆𝑛PAID), the balance increases to

𝑟𝑏 + 𝑥 .
• With splicing: If 𝛾0 is spliced, the payee𝑈𝑛+1 can redeem

the payment on-chain through F𝑛
redeem-launcher

and obtain

the payment amount 𝑥 , while successfully revoking all off-

chain locked funds. The timing guarantees provided by

FZeus ensure 𝑈𝑛+1 has sufficient time to complete this re-

demption within 𝑡𝑐𝑙𝑜𝑠𝑒 + Δ after splicing.

Through this comprehensive analysis of all possible channel

states and transitions, we have demonstrated that Zeus achieves
balance security for all honest parties under any adversarial behav-

ior. □

H.3.2 Correctness.

Definition H.2. Given a multi-hop paymentMCE, we say a MHP

ideal functionality F𝑀𝐻𝑃 achieves correctness if the final state of
all channels will be in the Paid state when all parties are honest.

Theorem 7 (Zeus achieves correctness). Given a multi-hop pay-

ment MCE, if the ideal functionality FZeus is executed in the

{Fprelim, Fsub}-hybrid model, then FZeus achieves correctness.

The proof of this theorem is straightforward, when every party

honest, all channel will be in the Paid state.

H.3.3 Coin availability.

Definition H.3. Given a multi-hop paymentMCE, we say a ideal

functionality F𝑀𝐻𝑃 achieves coin availability if for any corrupted

PPT A, the locked funds issued from honest 𝑈𝑖 will not be locked

forever.

Theorem 8 (Zeus achieves coin availability). Given a multi-hop

paymentMCE, if the ideal functionality FZeus is executed in the

{Fprelim, Fsub}-hybrid model, then FZeus achieves coin availability.

This theorem is straightforward, by examining all possible states

listed in Appendix H.1.1 as the locked funds in any channel will be

released after a limited timelock. The timelock is irrelevant with

the length of payment path, so no funds will be locked forever.

H.3.4 Fee security. Here, we provide the formal definition of fee

security for a MHP ideal functionality. We demonstrate that our

main ideal functionality FZeus achieves fee security.

Definition H.4 (Fee Security). Given a multi-hop paymentMCE,

we say an ideal functionality F𝑀𝐻𝑃 satisfies fee security if for any

honest relay 𝑈𝑖 (𝑖 ∈ [1, 𝑛]), in the presence of a PPT adversary A
controlling all other parties, the following guarantee holds: if the

payee𝑈𝑛+1 receives the payment with the amount 𝑥 off-chain, then

𝑈𝑖 must receive its corresponding relay fee 𝑓𝑖 if it has provided

liquidity (locked funds) during the protocol execution.

Theorem 9 (Zeus achieves fee security). Given a multi-hop pay-

ment MCE, if the ideal functionality FZeus is executed in the

{Fprelim, Fsub}-hybrid model, then FZeus achieves fee security.

Proof. We analyze three distinct cases to demonstrate that Zeus
achieves fee security as defined in Definition H.4. For each case,

we show that when the payee receives the payment 𝑥 off-chain,

43

Jingyu Liu, Yingjie Xue, Di Wu, Jian Liu, and Xuechao Wang

any honest relay 𝑈𝑖 that has provided liquidity must receive its

corresponding fee 𝑓𝑖 .

Case 1: No on-chain process occurs. For an honest relay 𝑈𝑖 , we

show that if the payee receives the payment off-chain, relay𝑈𝑖 will

receive its corresponding relay fee 𝑓𝑖 . Recall the proof of balance

security (Appendix H.3.1), where we analyzed the balance of any

honest relay𝑈𝑖 under all possible conditions. We observe that once

𝑈𝑖 locks the payer’s deposit off-chain, it can achieve one of the

following payoff states:

• 𝑙𝑏 + 𝑟𝑏 + 𝑐
relay

: This occurs when the protocol aborts dur-

ing the premium-lock phase. Here, 𝑈𝑖 has only locked the

payer’s deposit, with amount Dep𝑖 = 𝑐payee + (𝑛 − 𝑖)𝑐relay.
As demonstrated in Appendix C.2, the value of 𝑐

relay
is suf-

ficient to compensate for the relay cost associated with the

locked Dep𝑖 .
• 𝑙𝑏+𝑟𝑏+𝑐

relay
+ 𝑓𝑖 : This occurs when the protocol aborts dur-

ing the deposit-refund phase. In this scenario,𝑈𝑖 receives a

payoff of 𝑐
relay
+ 𝑓𝑖 , which adequately covers the liquidity

cost of both the locked principal and the payer’s deposit.

• 𝑙𝑏 + 𝑟𝑏 + 𝑓𝑖 : This represents either successful payment com-

pletion or protocol abortion during the settlement phase.

In either case, relay𝑈𝑖 receives its designated relay fee 𝑓𝑖 ,

satisfying the fee security requirement.

Case 2: Splicing transaction finalizes on-chain before timeout 𝑇 .
Based on our analysis in Appendix H.3.1, an honest relay 𝑈𝑖 can

achieve one of the following payoffs:

• 𝑙𝑏 + 𝑟𝑏: This occurs when the off-chain protocol aborts be-

fore𝑈𝑖+1 locks the premium, and the splicing transaction is

finalized. Although𝑈𝑖 receives no additional compensation

in this scenario, the payer has chosen to settle the payment

directly on-chain rather than through the relay network.

Therefore, the fee security property is not violated since𝑈𝑖

did not contribute to the successful payment routing.

• 𝑙𝑏 + 𝑟𝑏 + 𝑓𝑖 : This occurs when the premium is successfully

locked in 𝛾𝑖 . In this case, relay 𝑈𝑖 receives its fee 𝑓𝑖 as re-

quired by the fee security definition.

In both subcases, the fee security guarantee is maintained: either

𝑈𝑖 did not contribute to payment routing (no premium locked) or

it receives its fee 𝑓𝑖 .

Case 3: Splicing transaction finalizes on-chain before𝑇 , with payee
redemption on-chain before 𝑇 + Δ. In this final scenario, if all neigh-

bors of the honest relay 𝑈𝑖 behave rationally, 𝑈𝑖 may achieve a

zero additional payoff (receiving only its initial balance 𝑙𝑏 + 𝑟𝑏).
However, this does not violate fee security because the payment

is settled directly on-chain rather than through the off-chain re-

lay path. Since Definition H.4 specifically addresses fee security

when "the payee 𝑈𝑛+1 receives the payment with the amount 𝑥

off-chain," this on-chain settlement case falls outside the scope of

the guarantee.

Across all three cases, we have demonstrated that whenever

the payee receives the payment off-chain, any honest relay that

has provided liquidity during protocol execution receives its cor-

responding fee, thereby satisfying the fee security requirement as

defined in Definition H.4. □

H.3.5 Griefing resistance against cost-sensitive adversaries. In this

part, we prove that our ideal functionality FZeus achieves griefing
resistance against cost-sensitive adversaries defined in Section 2,

which requires that the cost incurred by an adversary to conduct

a griefing attack exceeds the financial damage inflicted on honest

parties.

Theorem 10 (Zeus achieves griefing resistance against cost-sen-

sitive adversaries). Given a multi-hop paymentMCE, if the ideal

functionality FZeus is executed in the {Fprelim, Fsub}-hybrid model,

then FZeus achieves griefing resistance against 1-cost-sensitive ad-

versaries.

Proof. We demonstrate that FZeus satisfies Theorem 10 by

showing that for any possible PPT adversary A controlling 𝑆𝐴 ,

the griefing damage (liquidity cost imposed on honest parties due

to locked funds) is strictly less than the griefing cost (minimum

transaction costs incurred by the adversary to execute the attack).

Let us denote by 𝐹 the cost of executing a standard (1 input, 1 out-

put) Bitcoin transaction, 𝑓 the relay fee charged by each party, 𝑟 the

time-value interest rate for locked Bitcoin,𝑇 the principal timelock

duration, and Δ the confirmation time for on-chain transactions.

We analyze all possible adversarial collusion patterns:

Case 1: Corrupted payer𝑈0. We consider two attack strategies:

• Attack 1: Abort after premium-lock phase. If 𝑈0 aborts the

protocol after the premium-lock phase. If the splicing re-

vocation does not occur before time 𝑇 , each honest relay

𝑈𝑖∈[1,𝑛] receive a compensation of 𝑐
relay
+ 𝑓𝑖 . If splicing oc-

curs, the adversary𝑈0 incurs a transaction cost of at least 𝐹 .

The total liquidity cost (griefing damage) for honest parties

(GD1) is:

𝑟 ·
[(
𝑛𝑐payee +

𝑛(𝑛 + 1)
2

𝑐
relay

)
𝑇 +

(
𝑛𝑓0 +

𝑛(𝑛 + 1)
2

𝑓

)
(𝑇 + Δ)

]
Using the configuration parameters specified in Appendix

C.2, even in the worst-case scenario with 𝑇 = 2 hours and

Δ = 1 hour, GD1 < 0.01 USD, which is significantly less

than the adversary’s griefing cost of 𝐹 ≈ 0.3 USD.

• Attack 2: Revoke payment after reaching refunded-deposit
state. If the payer attempts to revoke an off-chain payment

after all channels have reached the refunded-deposit state,

the liquidity cost (GD2) is:

𝑟 ·
[
(𝑛𝑥 + 𝑛𝑓0 + 𝑛2 𝑓) (𝑇) +

(
𝑛𝑓0 +

𝑛(𝑛 + 1)
2

𝑓

)
(𝑇 + Δ)

]
For a rational payment system, the total relay fees must

satisfy 𝑛𝑓 ≤ 𝐹 , as otherwise direct on-chain payments

would be more economical. With a standard fee rate of

𝑓 𝑟 = 0.01%, we can rewrite the payment amount as 𝑥 =
𝑓

𝑓 𝑟
,

yielding:

GD2 = 𝑟 ·
[(
𝑛𝑓

𝑓 𝑟
+ 𝑛𝑓0 + 𝑛2 𝑓

)
(𝑇) +

(
𝑛𝑓0 +

𝑛(𝑛 + 1)
2

𝑓

)
(𝑇 + Δ)

]
≤ 𝑟 ·

[(
𝐹

𝑓 𝑟
+ 2𝑛𝐹

)
𝑇 + (𝑛𝐹 + (𝑛 + 1)𝐹/2) (𝑇 + Δ)

]
≈ 0.23𝐹 < 𝐹

Thus, the griefing cost exceeds the griefing damage.

44

Zeus: Defending against Fee Stealing and Griefing Attacks in Multi-Hop Payments

Case 2: Corrupted payee 𝑈𝑛+1. 𝑈𝑛+1 has two griefing strategy: 1)

grief multiple payer’s deposit while burning its on-chain stake by

aborting Zeus once after payer’s deposit fully locked; 2) griefing the
whole principal by aborting after the lock-principal phase when

locked funds reach their maximum, forcing the honest payer to

splice 𝛾0, and then redeeming it. For the first strategy, Appendix C.2

in the manuscript have shown that given a small payer’s deposit,

we can reduce the griefing factor lower than one. Now we focus

on the second strategy, where adversary incurs a griefing cost of at

least 𝐹 , and the griefing damage (GD3) is:

𝑟 ·
[
(𝑛(𝑥 + 𝑐payee) + 𝑛2 (𝑓 + 𝑐

relay
)) (𝑇) +

(
𝑛𝑓0 +

𝑛(𝑛 + 1)
2

𝑓

)
(𝑇 + Δ)

]
Under the same assumption that 𝑛𝑓 ≤ 2𝐹 , this griefing damage

is approximately 0.25 USD, which remains less than the griefing

cost of 𝐹 .

Case 3: Corrupted payer𝑈0 and payee𝑈𝑛+1. With both endpoints

corrupted, the griefing damage remains the same as in Case 2:

GD4 = GD3

However, the adversary now incurs a significantly higher griefing

cost of at least 2𝐹 , as both corrupted endpoints must place on-

chain transactions to execute the attack. Therefore, the griefing

cost exceeds the griefing damage.

Case 4: Corrupted payer𝑈0 with some relays. This case is similar

to Case 1, where the griefing cost remains 𝐹 , but the griefing damage

decreases since liquidity provided by corrupted relays is excluded

from the damage calculation. Thus, the griefing cost exceeds the

griefing damage.

Case 5: Corrupted payee𝑈𝑛+1 with some relays. Similar to Case 2,

the griefing cost is 𝐹 , but the griefing damage decreases due to the

exclusion of corrupted relays’ liquidity from the damage calculation.

Therefore, the griefing cost exceeds the griefing damage.

Case 6: Corrupted payer 𝑈0, payee 𝑈𝑛+1, and some relays. This
case combines the characteristics of Case 3 and Cases 4-5. The

griefing cost remains at least 2𝐹 due to the necessary on-chain

transactions, while the griefing damage is reduced compared to

Case 3. Therefore, the griefing cost strictly exceeds the griefing

damage.

For all possible adversarial coalitions defined in Section 2, we

have demonstrated that the griefing cost consistently exceeds the

griefing damage. Therefore, the ideal functionality FZeus achieves
the griefing resistance property. □

H.3.6 Constant collateral.

Definition H.5. Given a multi-hop paymentMCE, we say an ideal

functionality F𝑀𝐻𝑃 achieves constant collateral if the locked funds

in any channel 𝛾𝑖∈[0,𝑛] have constant timelocks, independent of

the payment path length 𝑛.

Theorem 11 (Zeus achieves constant collateral). Given a multi-

hop paymentMCE, if the ideal functionality FZeus is executed in

the {Fprelim, Fsub}-hybrid model, then FZeus achieves constant
collateral.

Similar to the coin availability, the theorem is straightforward,

ranging all funds locked in any possible state, the timelock is

bounded and irrelevant with the length of payment path, so no

funds will be locked forever.

H.3.7 Credential exchange support.

Definition H.6 (Credential exchange support). Given a multi-

hop paymentMCE :=M, 𝑠, ℎ, we say an ideal functionality FZeus
achieves credential exchange if:

• Honest payer 𝑈0 pays 𝑥 iff it receives credential 𝑠 from

payee𝑈𝑛+1.
• Honest payee𝑈𝑛+1 gives credential 𝑠 iff it receives payment

𝑥 from payer𝑈0.

Theorem 12 (Zeus achieves credential exchange). Given a multi-

hop paymentMCE, if the ideal functionality FZeus is executed in

the {Fprelim, Fsub}-hybrid model, then FZeus achieves credential
exchange.

Proof. We prove credential exchange by analyzing two cases:

honest payer and honest payee.

Case 1: Honest payer 𝑈0. We demonstrate that𝑈0 pays 𝑥 if and

only if it receives credential 𝑠 from payee𝑈𝑛+1. According to FZeus
and the sub-functionality F

splicing-launcher
:

• If 𝑈0 receives credential 𝑠: This occurs only when the

protocol successfully reaches the settlement phase, allowing

𝑈0 to update channel 𝛾0 to the PAID state. In this state, the

payer transfers amount 𝑥 to the first relay.

• If𝑈0 does not receive credential 𝑠 by round𝑇 −2𝑡𝑐𝑙𝑜𝑠𝑒 −
Δ: The payer will splice channel 𝛾0, revoking all off-chain

payments. In this case, 𝑈0 can offer the payment directly

on-chain through the HTLC mechanism, which guarantees

𝑈0 pays 𝑥 if and only if it receives 𝑠 .

Case 2: Honest payee𝑈𝑛+1. We prove that𝑈𝑛+1 gives credential

𝑠 if and only if it receives payment 𝑥 . According to FZeus, the payee
𝑈𝑛+1 reveals the secret 𝑠 only in two scenarios:

• Off-chain settlement: When channel 𝛾𝑛 reaches the

REFUNDED-Dep state. We can verify that in all possible res-

olution paths of this state:

– If channel 𝛾𝑛 times out in REFUNDED-Dep state, 𝑈𝑛+1
receives amount 𝑥 .

– If channel𝛾𝑛 further settles to PAID state,𝑈𝑛+1 receives
amount 𝑥 .

– If splicing occurs before the timeout, 𝑈𝑛+1 can submit

a redemption transaction with credential 𝑠 on-chain,

receiving amount 𝑥 .

• On-chain settlement: When the splicing transaction fi-

nalizes in F𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 before time𝑇 , the payee reveals 𝑠 only

during the redemption transaction, which guarantees re-

ceipt of amount 𝑥 on-chain.

In both cases, the honest payee reveals credential 𝑠 if and only if

it receives payment 𝑥 , either off-chain or on-chain.

Therefore, FZeus achieves credential exchange as defined in Def-

inition H.6. □

45

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Related Works

	2 Background and Model
	3 Exploiting Bitcoin-Compatible MHPs
	3.1 Attacking Incremental-Lock Based MHPs
	3.2 Attacking Blitz

	4 Impossibilities of Griefing Resistant MHPs
	4.1 Reducing Griefing Resistance MHPs to FSE
	4.2 Impossibility Results

	5 Protocol Overview
	5.1 Challenges
	5.2 Our Solution

	6 Zeus Construction
	6.1 General Construction for Channel Updates with Two-Stage Revocation
	6.2 Multi-Hop Payment Description

	7 Security Analysis
	8 Evaluation
	9 Discussion
	References
	A Fair secret exchange with public TTPs
	A.1 Modeling Fair secret exchanges
	A.2 Impossibility result of fair secret exchange

	B Extended proof for Griefing Resistant MHPs
	B.1 Strong griefing Resistant MHP in Payment Hubs

	C Supplemental Discussions of Zeus.
	C.1 Slash Functionality over Bitcoin Script
	C.2 Value of Deposits and Stakes

	D When payer and payee have conflict interests: MHP with credential exchange support
	E Zeus Preliminaries
	E.1 Preliminary ideal functionalities
	E.2 Ideal functionalities of ledger and a PCN
	E.3 UC definition.

	F Formal Protocol Description
	F.1 Formal Descriptions of sub-procedures

	G Auxiliary Algorithms
	G.1 Helper functions.

	H UC proof
	H.1 Ideal functionalities
	H.2 UC proofs
	H.3 Proof of security and efficiency goals

