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Abstract. The key encapsulation mechanism FrodoKEM is a post-quantum al-
gorithm based on plain LWE. While it has not been selected by the NIST for
standardization, FrodoKEM shares a lot of similarities with the lattice-based stan-
dard ML-KEM and offers strong security assumptions by relying on the unstructured
version of the LWE problem. This leads FrodoKEM to be recommended by Euro-
pean agencies ANSSI and BSI as a possible choice to obtain post-quantum security. In
this paper, we discuss the practical aspects of incorporating side-channel protections
in FrodoKEM by describing a fully masked version of the scheme based on several
previous works on LWE-based KEMs. Furthermore, we propose an arbitrary order C
implementation based on the reference code and a Cortex-M4 implementation with
gadgets specialized at order 1 in low level assembly code that incorporates bespoke
modifications to thwart (micro-)architectural leakages. Finally, we validate our order
1 gadgets by performing TVLA on a ChipWhisperer.
Keywords: Frodo · SCA · KEM · Masking · Cortex-M4

1 Introduction
The NIST Post-Quantum Standardization process led to the selection of two Key Encapsu-
lation Mechanism (KEM), Kyber [SAB+22] and HQC [AAB+22], the former being already
standardized under the name ML-KEM [NIS24]. FrodoKEM was a KEM submitted to
the competition which reached the third round as an alternate candidate, and despite not
being selected by the NIST it is still particularly relevant. Indeed, it is currently in a
standardization process at ISO and its use is recommended by several European agencies
such as ANSSI (France) and BSI (Germany). These recommendations are driven by the
security of FrodoKEM which relies on conservatives choices and unlike ML-KEM does
not use structured lattices. FrodoKEM and ML-KEM are actually very related schemes
as they both descend from a line of work aiming at designing “noisy” versions of Diffie-
Hellman/ElGamal using the hardness of the learning with errors problem (LWE). Actually,
tinkering with the parameters of Kyber to set the ring to dimension 1 would basically
lead to FrodoKEM by making Kyber rely on plain LWE instead of MLWE. While
relying on the unstructured case for lattice-based cryptosystem is certainly comforting
security-wise, this comes with the price of larger and slower schemes. It is thus interesting
to have a look at the practical aspects of such schemes to understand their limitations
regarding real-life utilization. During the NIST standardization process, some works have
studied the efficiency of the scheme, both in terms of speed [BFM+18] and compactness
[BBC+23] to enable its use on embedded devices. We believe that the natural way to
move forward toward real-life deployment is to discuss the possibility of incorporating
generic side-channel protections such as masking. We take a first step in this direction by
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proposing a fully masked implementation of the decapsulation procedure of FrodoKEM.
Our plain C implementation supports an arbitrary masking order but is naturally subject
to leakage since it does not target a specific architecture and thus does not incorporate
specific adjustments to thwart micro-architectural effects. Hence, we propose in addition
a Cortex-M4 specific order 1 implementation built upon the C implementation that
incorporates handmade assembly code for the basic gadgets. These gadgets have been
specifically crafted to offer resistance against a side-channel adversary. We validated their
resiliency by performing TVLA using the popular ChipWhisperer platform.

Related works. The core technique used to protect FrodoKEM from side-channel
attacks is masking [ISW03, PR13, BBD+15] and in particular the conversions between
Boolean and arithmetic masked representations that are always required to mask lattice-
based schemes [Gou01, CGV14]. The first attempt to mask a LWE-based PKE that can be
seen as an ancestor of FrodoKEM can be found in [RRVV15], but it was not considering
the CCA-secure version using the Fujisaki-Okamoto transform which is required for the
KEM. This was addressed in [OSPG18] which proposes a masked implementation of the
CCA-secure version of the RLWE encryption scheme that would later lead to NewHope and
Kyber. Later, several works [SPOG19, VDK+20, BGR+21, CGMZ23] concretely masked
the NIST candidates Kyber and Saber, and iteratively improved masking techniques for
the individual components of the scheme such as the binomial sampler and the polynomial
comparison for the FO transform. Since FrodoKEM can be seen as a plain LWE variant
of those schemes, the discussions in those works are for the most part relevant to derive a
masked version of the scheme. An exception is the sampling of the error, since FrodoKEM
does not use a binomial distribution but instead uses a cumulative distribution table.
Fortunately, sampling from such a table in a masked setting has already been studied
in [GR20].

Contribution. In this paper, we take a first step toward enabling generic side-channel
protections for FrodoKEM by proposing a masked version of the scheme. We discuss
what has to be protected, what are the potential pain points and how to approach them
with several techniques already described and well studied in the literature. Next, we
provide a C implementation of the masked scheme based on the reference code that offers
the flexibility to be compiled at any order. The code is written in a modular way such that
it should be easy for anyone to extract the gadgets of FrodoKEM and to use them in
another implementation if desired. Then, we specialize the basic gadgets (see Table 2) to
order 1 in ARM assembly so that we have secure code for the Cortex-M4. The goal here
is to provide security against (micro-)architectural leakage which is not something covered
by the theoretical security proofs of the existing gadgets. Finally, we provide evidences
that the goal has been reached by performing fixed vs random t-tests on the individual
gadgets.

2 Preliminaries

Notations. We use bold lowercase letters for vectors and bold uppercase letters for
matrices. For a matrix B, we note bi the i-th row of B. We denote by JxiK1≤i≤n the
sharing (arithmetic or boolean) into n shares of a value x. When the number of shares
is not ambiguous (i.e. it remains identical during the whole execution of a described
algorithm), we used the simplified notation JxK.
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2.1 FrodoKEM
FrodoKEM is a key encapsulation mechanism constructed from the key exchange protocol
proposed in [BCD+16]. As the title of the paper suggests, the main idea was to construct
a key exchange directly based on LWE and to eliminate the ring structure to increase
confidence in the security of the scheme while still maintaining acceptable practical
performances. To obtain a PKE, the KEX is made noninteractive by considering the
public-key of the receiver as the first message of the protocol. This is very similar to the
transition from the Diffie-Hellman key exchange to the ElGamal public-key encryption
scheme. Then, going from PKE to KEM is achieved through a (variant of) the Fujisaki-
Okamoto (FO) transform. Since the FO transform forces re-encryption to check validity of
the ciphertext, our implementation of the masked Decaps algorithm actually encompasses
both encapsulation and decapsulation.

As a plain LWE scheme, the main arithmetic operations of FrodoKEM are matrix
operations over Zq and the sampling of the error distribution χ. In particular, q is a power
of two and χ is a discrete Gaussian. While the runtime of an unprotected implementation
would be solely dominated by the cost of sampling matrices and performing arithmetic
operations, in a masked setting, some less significant operations such as comparisons can
present an unforeseen cost.

Because of the absence of structure, the public matrix A would be quite heavy to store
and share. For this reason, a seed is instead included in the keypair and expanded at the
beginning of each algorithm. This operation is denoted by the generic function Gen in
Algorithms 1, 2 and 3. This function can be instantiated with two different algorithms:
either AES128 or SHAKE128. We refer to the official specification for a detailed description
of the Gen function.

Table 1: Security parameters of FrodoKEM
FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

D 15 15 16
q 32768 65536 65536
n 640 976 1344
n̄ 8 8 8
B 2 3 4

lenA 128 128 128
lensec 128 192 256

SHAKE SHAKE128 SHAKE256 SHAKE256

2.1.1 Parameters sets

FrodoKEM proposes multiple sets of parameters depending on the targeted security
level. Those can be found in Table 1, D is the bitsize of the arithmetic values used in the
algorithm, it determines the modulus q = 2D. The values n and n̄ determine the size of
the matrices used in the algorithm, in particular, n is the dimension of the underlying
LWE problem. The value lenA is fixed to 128 and is the size of the seed used to generate
A and lensec is the size of the seeds used for sensitive values, it corresponds to the targeted
bit-security level.

2.1.2 Key generation

The key generation algorithm of FrodoKEM is presented in Algorithm 1. It first samples
a random bitstring containing the dummy key in case of failure s, the seed for the secret
and error matrices seedSE and the (pre-)seed for the “public matrix” A. It will then use
those seeds to explicitly compute A and two n̄ by n matrices ST and E containing entries
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sampled from χ. The matrix ST is the main secret component of the secret key sk and
the public-key pk is the LWE instance (A, AS + E).

Algorithm 1 FrodoKEM.KeyGen()
Input: /
Output: pk, sk

s∥seedSE∥z ← ${0, 1}lensec+lenSE+lenA

seedA ← SHAKE(z, lenA)
A← Gen(seedA)
(r0, r1, . . . , r2n̄n+n̄2−1)← SHAKE(0x5F∥seedSE , 32nn̄)
ST ← SampleMatrix((r0, r1, . . . , rnn̄−1), n̄, n)
E← SampleMatrix((rnn̄, rnn̄+1, . . . , r2nn̄−1), n̄, n)
B← AS + E
b← Pack(B)
pkh← SHAKE(seedA∥b, lensec)
return pk = seedA∥b, sk = s∥seedA∥b∥ST∥pkh

2.1.3 Encapsulation

The encapsulation procedure (described in Algorithm 2) uses the underlying LWE-based
PKE to encrypt a randomly picked value u that is used to derive the shared secret ss. In
a nutshell, two LWE instances (A, B′ = S′A + E′) and (B, V = S′B + E) are computed
and V, which is indistinguishable from a random value under the LWE assumption, is
used to mask u in a one-time pad fashion. The receiver in possession of the secret key will
be able to recover u by computing B′S ≈ V and subtract it from C = V + u while the
adversary will only see two uniformly random looking values C and B′.

Algorithm 2 FrodoKEM.Encaps()
Input: pk = seedA∥b
Output: (c = c1∥c2∥salt, ss)

(salt, u)← ${0, 1}lensalt × {0, 1}lensec

pkh← SHAKE(pk, lensec)
seedSE∥k ← SHAKE(pkh∥u∥salt, lenSE + lensec)
(r0, r1, . . . , r2n̄n+n̄2−1)← SHAKE(0x96∥seedSE , 16(2n̄n + n̄2))
S′ ← SampleMatrix((r0, r1, . . . , rnn̄−1), n̄, n)
E′ ← SampleMatrix((rnn̄, rnn̄+1, . . . , r2nn̄−1), n̄, n)
A← Gen(seedA)
B′ ← S′A + E′

c1 ← Pack(B′)
E′′ ← SampleMatrix((r2n̄n, r2n̄n+1, . . . , r2n̄n+n̄2−1), n̄, n̄)
B← Unpack(b, n, n̄)
V← S′B + E′′

C← V + Encode(u)
c2 ← Pack(C)
ss← SHAKE(c1∥c2∥salt∥k)
return (c = c1∥c2∥salt, ss)

2.1.4 Decapsulation

While the decryption of the PKE simply basically boils down to the computation of
C−B′S, the FO transform used to ensure CCA2 security forces to re-encrypt the plaintext
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to validate the ciphertext. This means that the bulk of the work of the decapsulation
(Algorithm 3) consists in running again the encapsulation once the value u is recovered.
Once the ciphertext is recomputed, it is compared with the initial ciphertext received and
if the values match, the shared secret ss is derived and output. From the side-channel
perspective, this algorithm is very sensitive since it is the heaviest and manipulates
explicitly the secret key as well as the shared secret ss. Since it is basically a superset of
the encapsulation procedure and since it contains all the operations of the key generation,
we will focus on it for the rest of the paper.

Algorithm 3 FrodoKEM.Decaps ()
Input: c = c1∥c2∥salt, sk = s∥seedA∥b∥ST ∥pkh
Output: ss

B′ ← Unpack(c1, n̄, n)
C← Unpack(c2, n̄, n̄)
M← C−B′S
u′ ← Decode(M)
seed′

SE∥k′ ← SHAKE(pkh∥u′∥salt, lenSE + lensec)
S′ ← SampleMatrix((r0, r1, . . . , rnn̄−1), n̄, n)
E′ ← SampleMatrix((rnn̄, rnn̄+1, . . . , r2nn̄−1), n̄, n)
A← Gen(seedA)
B′′ ← S′A + E′

E′′ ← SampleMatrix((r2n̄n, r2n̄n+1, . . . , r2n̄n+n̄2−1), n̄, n̄)
B← Unpack(b, n, n̄)
V← S′B + E′′

C′ ← V + Encode(u′)
k̄ ← k′ if B′∥C = B′′∥C′ else k̄ ← s ▷ Constant-time check
ss← SHAKE(c1∥c2∥salt∥k̄) return ss

2.2 Masking
A masked scheme aims at breaking the link between the side-channel leakage of intermediate
values and the actual value of sensitive variables by splitting them into n + 1 shares. The
shares xi of a secret value x are picked such that x = x0 ⋆ x1 · · · ⋆ xn. In the context of
this work, ⋆ will be either the XOR operator (⊕) — we call this Boolean masking — or
the addition modulo q (+) — we call this arithmetic masking — and x will be an integer
of fixed bitsize. In the usual t-probing model [ISW03], the security assumption is that the
adversary is only able to learn at most n shares of a variable through the execution of the
algorithm. The basic idea is that since sensitive values are split into n + 1 shares, any
subset of n shares should not reveal any information on the value itself. The parameter
n is known as the masking order. In the framework of lattice-based cryptography, both
Boolean and arithmetic masking are often required since some operations, such as matrix
multiplications, are more efficient to perform over arithmetic shares while others, such
as the hash function evaluation, require Boolean masking. This implies that conversions
between the two representations are needed.

2.3 Micro-architectural leakage
Standard models for side-channel leakage define the adversary in a formal way which
enables a methodical study of security regardless of any specific real-life framework. This is
very convenient to design new masking schemes since the new gadgets can be proven secure
on paper under the assumptions made on what the adversary can or cannot do. However,
such models do not necessarily translate very well in terms of concrete deployment. While
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circuit-based models can for example be fairly naturally translated to an actual electronic
circuit, it is less clear to which extent it stays relevant when a piece of software is used
to perform the corresponding computation on a CPU. In particular, the leakage can be
specific to the ISA or even the underlying micro-architecture. The sources of leakage due
to the architecture itself have been studied in the literature for a couple of years and even
if some efforts have been made to model them [ZMM23], to characterize them [MPW22]
or to automatically eliminate them [ZM24], it seems very hard to handle them efficiently
besides by relying on ad-hoc handcrafted low level implementations of the gadgets.

3 Masking FrodoKEM
While the masking of FrodoKEM has, to the best of our knowledge, not been considered
previously, masking techniques for the sibling schemes based on RLWE/RLWR have
appeared in the literature [RRVV15, OSPG18, BGR+21, KDvB+22, CGMZ23]. The
techniques described in the recent papers on Kyber and Saber are mostly sufficient to
derive a fully masked version of FrodoKEM. A notable exception is the sampling of the
error distribution. While Saber and Kyber use a centered binomial distribution that is
usually sampled by computing the difference between the hamming weight of two fixed size
integers through a Boolean to arithmetic conversion, the distribution in Frodo is sampled
through a cumulative distribution table (CDT). Fortunately, this is similar to the case
of qTESLA [ABB+20] and a generic gadget to sample from a CDT has been previously
proposed in [GR20].

3.1 Sensitive operations
Let us now describe the several operations that have to be masked in the decapsulation
procedure of FrodoKEM.

3.1.1 Matrix operations

As a lattice-based key exchange based on LWE, FrodoKEM contains operations of the
form AS + E with A, S and E matrices over Zq. These operations are usually heavy and
one of the bottlenecks in terms of computation in an unmasked setting since, unlike the
RLWE case, there is no additional algebraic structure that enables faster techniques such as
NTT-based multiplications. However, using arithmetic masking, these operations will only
scale linearly with the masking order. Indeed, for a masked matrix S = S0 + S1 + · · ·+ Sn
and a public unmasked matrix A, the shares of the product AS can be simply computed
as AS0, AS1, . . . , ASn. Actually, in an unmasked setting, the computation is sometimes
performed from (seedA, S) and the expansion of A from the seed accounts for a large part
of the computational cost of the product. In the masked version, the expansion only has
to be performed once (regardless of whether the full matrix A is stored in memory) and
thus, the overhead of the masked computation is reduced.

3.1.2 Hashing

Since the CCA2 security of the scheme is obtained via a Fujisaki-Okamoto transform,
the decapsulation procedure will actually re-encrypt the plaintext to verify the validity
of the ciphertext. This re-encryption uses SHAKE to derive E, S′ and the shared key,
which means that the hash function has also to be masked. Masking hash functions and
symmetric-key primitives is mainly performed using Boolean masking, but the topic is out
of scope of this paper.
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3.1.3 Encoding and decoding

The Encode function is mapping the randomly drawn bit-string u to a matrix of size n̄× n̄
over Zq in order to use it as a plaintext for the underlying LWE encryption scheme. In
short, it takes as input a bit-string of size B · n̄2 and map each of the n̄2 B-bit substrings
to a value in Zq by multiplying their integer value by q/2B. Those n̄2 values are the
entries of the output matrix. The decode function is the natural inverse operation. It
takes as input a matrix of dimension n̄× n̄ over Zq and decodes coefficient by coefficient.
We refer to the official documentation of FrodoKEM and the accompanying reference
implementation for the full details. Since those functions manipulate the sensitive value u,
they have to be masked. It is also worth noting that the input and output will use different
masking representations. While u is a Boolean masked bit-string, M is the output of an
arithmetic operation and Encode and Decode boil down to conversions between arithmetic
and Boolean masking. This is not a problem since the main operation, that is to say
multiplication or division by q/2B , is simply a shift (q is a power of two) and thus is trivial
to perform in Boolean masked form.

3.1.4 Sampling

Sampling the error distribution in lattice-based schemes is a recurring problem that is often
blown-up by adding a countermeasure such as masking on top of the scheme. Small uniform
or binomial distributions are usually sampled using Boolean to arithmetic conversions, this
is the case in e.g Dilithium, Saber or Kyber. In FrodoKEM, a table is used to encode
(half of1) the distribution. To sample, one picks a random 15-bit integer s, finds the index
of the last value in the table that is bigger than s and returns this index, augmented
with a randomly picked sign, as the sample. A masked version of this algorithm has been
presented in [GR20]. Since the whole table has to be read to avoid timing attacks, this
technique scales poorly with the size of the table. Thankfully, FrodoKEM uses quite
short tables, from 7 entries for FrodoKEM-1344 to 13 entries for FrodoKEM-640.

3.1.5 Comparison

The last step of the FO transform is to compare the received ciphertext B′||C with the
recomputed ciphertext B′′||C′. The topic has been discussed extensively in [CGMZ23]
in the context of comparing RLWE ciphertexts. However, the techniques described do
not use the fact that the mathematical objects manipulated are polynomials since they
interpret them as vectors of elements in Zq, so the discussion is relevant to FrodoKEM.
Unfortunately, most of the techniques use the fact that, in Kyber, q is a prime. This
means that to mask FrodoKEM, we have to rely on (a variant of) what they call
PolyZeroTestAB, which is basically converting coefficients of the matrix one by one
from arithmetic to Boolean masked form and then performing a masked logical OR between
the bits to check if they all equal zero or not.

3.2 Gadgets
3.2.1 Basic gadgets

While the masking techniques used in our implementation are known in the literature,
they appeared across multiple papers. Table 2 is summarizing the basic gadgets that we
used in the implementation. The order 1 versions of those gadgets are the ones that have
been rewritten in assembly for the Cortex-M4 implementation described in Section 4.2
in order to limit (micro)-architectural leakage.

1Since the distribution is centered, a sign is randomly picked once the absolute value of the sample is
known.
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3.2.2 Masked compare

Algorithm 4 provides a high-level description of the maskedCompare gadget. Its goal
is to verify that the masked ciphertext recomputed in the FO transform is actually the
same as the ciphertext received by the encapsulation procedure. The idea is to transform
an equality test into a zero test by computing the difference between the two values and
testing whether the result is zero. Since both B′′ and C’ are results of matrix operations,
they are already in arithmetic masked form, which means that B′ and C can be trivially
(coefficient-wise) subtracted from the first share to obtain the difference. The gadget will
then iterate over all the coefficients of B′′ and C′ - that are now masking of 0 if the inputs
are equal -, perform an arithmetic to Boolean conversion, negate the value and aggregate
the result using SecAND. If every coefficient was a masking of 0, the logical AND of
their negation is a −1. A zero-test on the negation of the result will yield whether or
not all coefficients were actually zeroes. After this ultimate zero test, some cheap bitwise
operations are performed on the result in order to obtain the desired output format, that
is to say a masking of 0 if the inputs are equal, or a masking of −1 if they are different.

Algorithm 4 maskedCompare
Input: An arithmetic masking of the re-encryption JB′′||C′

iK1≤i≤n and the unmasked
ciphertext B′||C

Output: Boolean masking of the selector JsiK1≤i≤n such that s = 0 if the re-encryption
is equal to the ciphertext and s = −1 otherwise.

1: JacciK1≤i≤n ← (1, 0, . . . , 0)
2: B′′

0 ← B′′
0 −B′

3: C′
0 ← C′

0 −C
4: for j = 0 to size(B′) do
5: JxaiK1≤i≤n ← JB′′[j]iK1≤i≤n

6: JxbiK1≤i≤n ← ArithmeticToBoolean(JxaiK1≤i≤n)
7: JacciK1≤i≤n ← SecAND(JacciK1≤i≤n,¬JxbiK1≤i≤n)
8: end for
9: for j = 0 to size(C) do

10: JxaiK1≤i≤n ← JC′[j]iK1≤i≤n

11: JxbiK1≤i≤n ← ArithmeticToBoolean(JxaiK1≤i≤n)
12: JacciK1≤i≤n ← SecAND(JacciK1≤i≤n,¬JxbiK1≤i≤n)
13: end for
14: JtiK1≤i≤n ← SecZeroTest(¬JacciK1≤i≤n)
15: JsiK1≤i≤n ← −(JtiK1≤i≤n ∧ 1)
16: s0 ← ¬s0
17: return JsiK1≤i≤n

3.2.3 Masked Sampler

The explicit description of the maskedSampler procedure is given in Algorithm 5. The
core part of the algorithm (based on [GR20]) consists in picking a random value r and
iterating through the different entries of the table until a value smaller than r is found.
The index of the current entry once the exploration stops corresponds to the sample. In a
side-channel protected environment, one cannot stop directly after finding the value in
the table. Even though this would not be problematic from the masking point of view, an
early stop would enable an obvious timing attack. Instead, the algorithm always explores
the whole table during the loop (Line 4) and update the output with the current index
if the condition is met. In the core of the loop, the random value r of precision k (15
bits in the case of FrodoKEM) is subtracted to the current entry t and the sign bit b
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of the result is extracted in order to determine whether r > t. A masked constant-time
conditional statement of the form

x = (x ∧ b)⊕ (j ∧ ¬b)

is then used to select the index j or to keep the previous value depending on the result
of the comparison. After the loop, x will actually contain the last index for which the
condition is met and a random sign is added to get a symmetric distribution. In the fully
masked description of the algorithm, maskedSampler is taking as input random values
and outputting a matrix. Since we did not want to overload the notations, it is understood
in this case that the random values correspond to pre-sampling of r and s and that the
matrix is populated with a call to Algorithm 5 entry-wise.

Algorithm 5 maskedSampler
Input: Table T of probabilities of size L
Output: Arithmetic masking JxK of a value following the distribution encoded by T

1: JxK← J0K
2: JrK← Rand(k)
3: JsK← Rand(1)
4: for j = 0 to L− 1 do
5: JtK← (−T [j]− 1, 0, . . . , 0)
6: JδK← SecADD(JrK, JtK)
7: JbK← JδK >> 15
8: JtK← (j + 1, 0, . . . , 0)
9: JδK← SecAND(¬JbK, t)

10: JbK← SecAND(JbK, JxK)
11: JxK← JδK⊕ JbK
12: JxK← Refresh(JxK)
13: end for
14: JxK← JxK⊕ (−JsK)
15: JxK← SecADD(JxK, JsK)
16: return BooleanToArithmetic(JxK)

3.3 Masked decapsulation of FrodoKEM

The fully masked version of FrodoKEM.Decaps () is shown in Algorithm 6. We assume
that the secret-key is received already in shared form. Line 1 and 2 compute the full
arithmetic form of the received ciphertext. Since c1 and c2 are considered public values,
this can be recomputed by the adversary and shall not be masked. The computation of M
at line 3 is the first that has to be protected. The reason is twofold: first, the computation
involves the secret-key and second, the matrix M allows to recover the plaintext u′ from
which it is trivial to compute the shared secret ss. From there, almost all the subsequent
operations will be masked since knowing their input or their result would lead to either
the knowledge of the secret or the result of the comparison (see [CGMZ23] for a discussion
about the need to mask the comparison). The two notable exceptions are the generation of
the public matrix A at line 8 and the unpacking of b at line 11 since those values are both
computable by anyone from the public-key. All the needed gadgets have been described in
the previous sections and we thus have all the ingredients to implement a fully masked
decapsulation of FrodoKEM.
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Table 2: Basic gadgets used in our implementation
Order 1 Arbitrary Order

SecAND Alg.12 [ISW03] Alg.12 [ISW03]
SecADD Alg.15 [Gou01] Alg.8 [CGV14]

ArithmeticToBoolean Alg.14 [Gou01] Alg.10 [CGV14]
BooleanToArithmetic Alg.13 [Gou01] Alg.11 [CGV14]

SecZeroTest Alg.7 [CGMZ23] Alg.7 [CGMZ23]

3.3.1 Masked encapsulation and key generation

While the encapsulation and key generation of FrodoKEM have not been integrated
into our implementation, they should be both fairly easy to derive from the masked
decapsulation. The encapsulation procedure is basically a subset of the decapsulation
since the FO transform is requiring a re-encryption of the ciphertext to ensure that it is
well-formed and the key generation only uses procedures that have been masked for the
decapsulation, that is to say, matrix operations, maskedSHAKE and maskedSampler.

Algorithm 6 MaskedFrodoKEM.Decaps ()
Input: c = c1∥c2∥salt, sk = JsK∥seedA∥b∥JST K∥pkh
Output: JssK

1: B′ ← Unpack(c1, n̄, n)
2: C← Unpack(c2, n̄, n̄)
3: JMK← C−B′JSK
4: Ju′K← maskedDecode(JMK)
5: Jseed′

SE∥k′K← maskedSHAKE(pkh∥Ju′K∥salt, lenSE + lensec)
6: JS′K← maskedSampler(Jr0, r1, . . . , rnn̄−1K, n̄, n)
7: JE′K← maskedSampler(Jrnn̄, rnn̄+1, . . . , r2nn̄−1K, n̄, n)
8: A← Gen(seedA)
9: JB′′K← JS′KA + JE′K

10: JE′′K← maskedSampler(Jr2n̄n, r2n̄n+1, . . . , r2n̄n+n̄2−1K, n̄, n̄)
11: B← Unpack(b, n, n̄)
12: JVK← JS′KB + JE′′K
13: JC′K← JVK + maskedEncode(Ju′K)
14: Jk̄K← Jk′K if maskedCompare(B′∥C, JB′′∥C′K) else k̄ ← JsK
15: JssK← maskedSHAKE(c1∥c2∥salt∥Jk̄K)
16: return JssK

4 Implementation

4.1 High order C implementation
We provide a C implementation of the decapsulation following our masking strategy
described in Section 3. This implementation builds upon the FrodoKEM reference
implementation [ABD+] 2 and the masking gadgets are provided and compiled as a
separated library. The whole implementation is available on the following public repository:

https://github.com/fragerar/masked_Frodo

2Note that to keep the API intact, we receive the secret key unmasked and artificially mask it at the
start of the decapsulation. this should of course be modified in a real-life implementation.
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Organization of the code. The code is split between two directories and aims to be
modular and easy to iterate on in order to obtain additional masked schemes. The first
one /masking contains all the non-trivial gadgets, from the basic ones like SecAND to
the large ones like the sampler. Its goal is to act as an independent library that can
be used to write a masked implementation of FrodoKEM or, more generally, of any
other scheme (by reusing the basic gadgets). It also contains the ARM assembly gadgets
for the Cortex-M4. The second one /FrodoKEM contains the reference implementation
of FrodoKEM augmented by files implementing a masked version of the scheme. The
objective was to make it somewhat oblivious to the implementation details of the gadgets
in /masking. The file masked_interface.c and its associated header links the masking
library to the code of masked FrodoKEM. We believe that this organization can facilitate
code reuse in the future.

Performances. The performances of the C implementation is summarized in Tables 3, 4
and 5. The code has been compiled with GCC version 13.3.0 and optimization level
O3 and run on an Intel(R) Core(TM) i5-6500 CPU. Unless specified otherwise, all the
benchmarks are running code that uses the AES variant for the generation of the matrix
A. The results for the gadgets in Table 4 use the parameters of FrodoKEM-640. The
sampler has been run on matrix of dimension n× n̄. Since it has to be called twice during
decapsulation and clearly appears as the largest gadget, finding more efficient way to
sample from the distribution would significantly reduce the cost of masked FrodoKEM.

Randomness generation. We did not change the way the algorithm is sampling values
used for the variables of the scheme. However, we decided to use a Xorshift PRNG called
Xoroshiro to quickly extract the randomness required for the masks. Such a PRNG has
been used in the past to speed-up FrodoKEM [BFM+18] by accelerating the sampling of
A. Discussing the quality of the randomness required for a masking scheme in practice is
out of scope of this work but the PRNG is easily replaceable by a CSPRNG if needed.

Table 3: Benchmarks on x64 of the basic gadgets (in cycles).
Order 1 2 3 4 5 6 7

SecAND 77 95 110 173 249 318 379
SecADD 55 1039 1505 2379 3248 4383 5642

BooleanToArithmetic 20 2247 3363 6090 9303 12253 15322
ArithmeticToBoolean 38 1170 1687 3504 5555 7275 9056

SecZeroTest 140 504 760 1142 1609 2148 2712

Table 4: Benchmarks on x64 of the large gadgets used in FrodoKEM (in kilocycles).
Order 1 2 3 4 5 6 7

Key encode 2 152 219 392 596 788 994
Key decode 4 76 113 234 368 483 602
Compare 408 6312 9370 19358 31125 40369 49756
Sampler 9647 94967 144200 223058 318535 422430 531283

Table 5: Benchmarks on x64 of all versions of FrodoKEM (in kilocycles).
Order 1 2 3 4 5 6 7

FrodoKEM-640 57395 293703 498200 809345 1138708 1523870 2010644
FrodoKEM-976 93498 446945 781157 1258737 1844603 2490802 3143712
FrodoKEM-1344 117860 522497 903360 1550615 2215093 2962697 3874540
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4.1.1 Randomness usage.

Table 6 shows the randomness usage of the decapsulation function in terms of calls to our
random generation function rand_u16(), which generates randomness 16 bits at a time.
An interesting observation is that the randomness consumption does not increase much
between FrodoKEM-976 and FrodoKEM-640 (and is even smaller up to order 3). This
is due to the fact that most of the randomness is consumed by maskedSampler, and the
length of the CDT decreases as the security level of FrodoKEM increases, resulting in
less randomness consumption for each coefficient sampling. This somewhat mitigates the
increased number of coefficients to generate for the ephemeral matrices S′, E′ and E′′.

Table 6: Number of calls to rand_u16() for the Decaps function.
Order 1 2 3 4 5 6 7

FrodoKEM-640 855,481 9,388,635 18,632,934 31,628,890 47,673,783 66,720,765 88,816,684
FrodoKEM-976 1,113,553 12,524,699 24,861,150 42,336,282 63,884,495 89,434,749 119,058,084
FrodoKEM-1344 1,013,993 12,392,155 24,611,670 42,342,362 64,121,191 89,850,621 119,628,188

4.1.2 Memory usage.

Table 7 shows the memory footprint of the decapsulation in bytes. The main factor driving
the memory usage at high order is the storage of the masked matrices S, S′, E′, B′′ since
they are of dimension n × n̄, have 2 bytes entries, and scale linearly with the masking
order. The total size of a single share of those masked matrices ranges from 10240 to
21504 bytes, depending on the version of FrodoKEM used. However, at low order, the
unmasked matrices also add some significant overhead. The public matrix A stored in
full would alone take 2 × 640 × 640 = 819200 bytes. Fortunately, the implementation
never fully stores it and uses instead a submatrix of dimensions n× 8, which accounts to
a memory footprint equivalent to one share of the n× n̄ matrices. However, beside this
basic well-needed optimization, the reference code that is the basis of our implementation
does not make any effort at limiting the memory footprint of the algorithm, hence why
the values in Table 7 are large. In [BBC+23] can be found an in-depth discussion about
trade-offs to greatly reduce the memory usage of FrodoKEM. Applying those techniques
to our implementation would be a great next step since side-channel countermeasures are
mainly relevant on small devices that mostly have extremely limited memory.

Table 7: Memory usage for the Decaps function (in bytes).
Order 1 2 3 4 5 6 7

FrodoKEM-640 196,368 268,232 340,112 412,008 483,880 555,760 627,632
FrodoKEM-976 300,016 410,320 520,560 630,856 741,064 851,344 961,616
FrodoKEM-1344 412,144 563,728 715,312 866,896 1,018,480 1,170,056 1,321,648

4.2 First order implementation for Cortex-M4
Masking gadgets implemented in plain C are known to exhibit micro-architectural leakage
as this will be discussed later in Section 4.2.2. For this reason, we implemented five of
our gadgets in assembly language (ARM) targeted for Cortex-M4. The assembly code
can be compiled and run for any Cortex-M4 target but it has been specifically hardened
and tested for STM32F303RCT7 target. The gadgets have been implemented only at
order 1 and may be vulnerable to a higher order attacker. Due to the quite high resources
consumption of unmasked FrodoKEM in terms of both memory and CPU, it is unlikely
that a high order masked implementation would be suitable for a Cortex-M4 target and
such implementation is thus out of scope of this work. Similarly to our C implementation
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ldrh rx0 , [px], #2
ldrh r, [pool]
ldrh rx1 , [px], #2

ldrh rx0 , [px], #2
ldrh r, [pool]
ldrh rx1 , [px], #2

strh t1 , [pool]

ldrh rx0 , [px], #2
ldrh r, [pool]
ldrh rx1 , [px], #2

eor t2 , t2 , t2
strh t1 , [pool]

Figure 1: Leakage on load/store operations (2000 traces)

described in Section 4.1, all of our code is open source and can be found in the dedicated
repository.

4.2.1 Hardening strategy

Hardened gadgets. We provide a hardened implementation of the five gadgets referenced
in Table 2. We focused our implementation efforts on generic gadgets that can be reused
for a high number of post-quantum schemes.

During the hardening process, we experimented many of the micro-architectural leakages
demonstrated in [MPW22]. As our gadgets are not concerned by branching, we only discuss
mitigation strategies for leakage caused by memory accesses and by consecutive operations
in the pipeline.

Memory accesses. In our experiments and similarly to [MPW22], loading or storing two
different values induces leakage of their Hamming distance, even if those two memory
accesses were separated by several nop or ALU instructions. In the case of gadgets operating
on a single secret variable such as ArithmeticToBoolean or BooleanToArithmetic,
this micro-architectural leakage was easy to mitigate by simply loading (resp. storing) a
random value between the load (resp. store) of the two shares of the secret input (resp.
output). This countermeasure is essentially free, as the loading of the random value is
required for execution of the gadget. The additional store is however a dummy operation.
For the gadgets operating on two secret variables such as SecAND or SecADD, it
was surprisingly not enough to intertwine dummy memory accesses between the loading
and storing of the shares. It was necessary to add dummy ALU and nop operations to
prevent the leakage, and we could not find an explanation to this behavior. An example of
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(a) ArithmeticToBoolean (b) BooleanToArithmetic

(c) SecAdd (d) SecAnd

(e) ZeroTest

Figure 2: t-tests for gadgets with naive ASM implementation (5,000 traces)

unexpected leakage due to loads and stores is displayed in Figure 1. While the load of
r interleaved between the loads of the shares rx0 and rx1 causes no leakage, adding an
additional, seemingly unrelated, store worsens the situation. The leakage disappears again
by performing a dummy ALU operation.

Consecutive ALU operations. It is well known that performing consecutive ALU op-
erations on values that should not be recombined can lead to leakage. The experiments
presented in [MPW22] as well as the discussion in [ZM24] illustrate the issue and how
difficult it is to fix without incurring a large performance penalty. The micro-benchmarks
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from [MPW22] certainly give good guidance but it appears that larger gadgets create more
complex situations, with intricate interconnections between intermediate variables that
depend on the shares or the randomness and are not strictly consecutive. Thus, a lot of
the leakage removal boiled down to good practices, common sense and trial and error,
interleaving a combination of dummy ALU, load/store, or nop operations when leakage is
detected. Fortunately, as the basic gadgets were not too large at order 1, we were still able
to greatly reduce leakage without adding a substantial overhead as would have automated
tools such that the one presented in [ZM24].

4.2.2 Leakage assessment

A commonly used means to assess the resistance of masked implementations against
side-channel attacks is to perform TVLA and compare the results with a fixed threshold.
In this work, we perform a TVLA in the setting known as fixed vs random: we generate
two sets of traces, one with fixed data being processed, while in the other set the data
being processed are randomly chosen. We then perform a Welch t-test on each point of
the trace, and we compare the result with a threshold computed from an error rate of
α = 10−5 and taking into account the number of samples for each gadget as proposed
in [DZD+18]. More precisely, the threshold TH is computed as follows:

TH = CDF−1
N (0,1)(1− σT H/2), σT H = 1− (1− σ)(1/Ns)

In Appendix B are shown the result of the TVLA performed on the gadgets output
by the compiler from the naive C implementation. As expected, all are leaking. More
interestingly, in Figure 2, the TVLA shows micro-architectural leakage happening with the
“naive” ASM implementation with as few as 5,000 power traces. This means that bypassing
potentially dangerous compiler optimizations by switching to handmade assembly code
is not sufficient. Finally, the TVLA performed on the hardened gadgets that include the
countermeasures described previously is displayed in Figure 3. We see no leakage even with
100,000 power traces. These versions of the gadget have been included in the Cortex-M4
version of the implementation. It is also possible for the reader to replicate our results on
a ChipWhisperer-Lite by using the appropriate files available on the repository.

Table 8: Benchmarks on Cortex-M4 of the basic gadgets at order 1 (in cycles).
C ASM ASMh

SecAND 49 51 68 (+39%)
SecADD 206 149 248 (+20%)

BooleanToArithmetic 33 47 54 (+64%)
ArithmeticToBoolean 154 125 222 (+44%)

SecZeroTest 144 126 223 (+55%)

4.2.3 Performances

Since removing leakage often implies adding dummy operations to reduce the interaction
between sensitive variables, it comes at a certain cost. Performances for our hardened
gadgets are displayed in Table 8. The overhead of the leakage reduction compared to the
C version is presented in the third column. For the record, the table also gives the number
of cycles taken by the implementation of the gadgets before any leakage reduction effort.
Since the final goal was to erase the leakage, the naive version of the gadgets have not been
particularly optimized, even if some of them already show an improvement over the code
output by the compiler. Although the overhead can be large, it is still very reasonable
compared to what would be achieved by an automatic tool such as the one presented
in [ZM24] (see their Table 1). Furthermore, if the randomness needed by the gadgets is
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(a) ArithmeticToBoolean (b) BooleanToArithmetic

(c) SecAdd (d) SecAnd

(e) ZeroTest

Figure 3: t-tests for hardened gadgets (100,000 traces)

sampled by an on-chip TRNG, it is possible to amortize the cost of the dummy operations
by waiting for the random values to be available.
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A Basics gadgets

Algorithm 7 SecZeroTest
Input: JxiK1≤i≤n ∈ {0, 1}k

Output: b ∈ {0, 1} with b = 1 if
n⊕

i=1
xi = 0 and b = 0 otherwise

1: m← ⌈log2 k⌉
2: y1 ← x1 or (22m − 2k)
3: for i = 2 to n do yi ← xi

4: for j = 0 to m− 1 do
5: JziK1≤i≤n ← Refresh(y1 ≫ 2i, . . . , yn ≫ 2i)
6: JyiK1≤i≤n ← SecAND(m, JyiK1≤i≤n, JziK1≤i≤n)
7: end for
8: return RecombineShares(y1 & 1, . . . , yn & 1)
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Algorithm 8 SecADD
Input: JxiK1≤i≤n and JyiK1≤i≤n

Output: JziK1≤i≤n such that
n⊕

i=1
zi =

n⊕
i=1

zi +
n⊕

i=1
yi

1: JwiK1≤i≤n ← SecAND(JxiK1≤i≤n, JyiK1≤i≤n)
2: JuiK1≤i≤n ← 0
3: JaiK1≤i≤n ← JxiK1≤i≤n ⊕ JyiK1≤i≤n

4: for j = 1 to k − 1 do
5: JuaiK1≤i≤n ← SecAND(JuiK1≤i≤n, JaiK1≤i≤n)
6: JuiK1≤i≤n ← JuaiK1≤i≤n ⊕ JwiK1≤i≤n

7: JuiK1≤i≤n ← 2JuiK1≤i≤n

8: end for
9: JziK1≤i≤n ← JxiK1≤i≤n ⊕ JyiK1≤i≤n ⊕ JuiK1≤i≤n

10: return JziK1≤i≤n

Algorithm 9 Expand
Input: JxiK1≤i≤n

Output: JyiK1≤i≤2n such that
2n⊕

i=1
yi =

n∑
i=1

xi

1: JriK1≤i≤n ← Rand(k)
2: Jy2iK1≤i≤n ← Jxi ⊕ riK1≤i≤n

3: Jy2i+1K1≤i≤n ← JriK1≤i≤n

4: return JyiK1≤i≤2n

Algorithm 10 ArithmeticToBoolean
Input: JAiK1≤i≤n

Output: JziK1≤i≤n such that
n⊕

i=1
zi =

n∑
i=1

Ai

1: if n = 1 then
2: return A1
3: end if
4: JxiK1≤i≤n/2 ← ArithmeticToBoolean(JAiK1≤i≤n/2)
5: Jx′

iK1≤i≤n ← Expand(JxiK1≤i≤n/2)
6: JyiK1≤i≤n/2 ← ArithmeticToBoolean(JAiKn/2+1≤i≤n)
7: Jy′

iK1≤i≤n ← Expand(JyiK1≤i≤n/2)
8: JziK1≤i≤n ← SecADD(Jx′

iK1≤i≤n, Jy′
iK1≤i≤n)

9: return JziK1≤i≤n
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Algorithm 11 BooleanToArithmetic
Input: JxiK1≤i≤n

Output: JAiK1≤i≤n such that
n∑

i=1
Ai =

n⊕
i=1

xi

1: JAiK1≤i≤n−1 ← Rand(k)
2: JA′

iK1≤i≤n−1 ← J−AiK1≤i≤n−1, A′
n ← 0

3: JyiK1≤i≤n ← ArithmeticToBoolean(JA′
iK1≤i≤n)

4: JziK1≤i≤n ← SecADD(JxiK1≤i≤n, JyiK1≤i≤n)
5: JziK1≤i≤n ← Refresh(JziK1≤i≤n)
6: An ← Xor(JziK1≤i≤n)
7: return JAiK1≤i≤n

Algorithm 12 SecAND
Require: JxiK1≤i≤n ∈ {0, 1}k, JyiK1≤i≤n ∈ {0, 1}k

Ensure: JziK1≤i≤n ∈ {0, 1}k, with
n⊕

i=1
zi = (

n⊕
i=1

xi) ∧ (
n⊕

i=1
yi)

1: for i = 1 to n do zi ← xi ∧ yi

2: for i = 1 to n do
3: for j = i + 1 to n do
4: r ← {0, 1}k

5: r′ ← (r ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
6: zi ← zi ⊕ r
7: zj ← zj ⊕ r′

8: end for
9: end for

10: return JziK1≤i≤n

Algorithm 13 BooleanToArithmetic (Order 1)
Input: x1, x2
Output: y1, y2 such that y1 + y2 = x1 ⊕ x2

1: G← Rand(k)
2: T ← x1 ⊕G
3: T ← T −G
4: T ← T ⊕ x1
5: G← G⊕ x2
6: y1 ← x1 ⊕G
7: y1 ← y1 −G
8: y1 ← y1 ⊕ T
9: y2 ← x2

10: return y1, y2
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Algorithm 14 ArithmeticToBoolean (Order 1)
Input: x1, x2
Output: y1, y2 such that y1 ⊕ y2 = x1 + x2

1: G← Rand(k)
2: T ← 2G
3: y1 ← G⊕ x2
4: O ← G ∧ y1
5: y1 ← T ⊕ x1
6: G← G⊕ y1
7: G← G ∧ x2
8: O ← O ⊕G
9: G← T ∧ x1

10: O ← O ⊕G
11: for k = 1 to 15 do
12: G← T ∧ x2
13: G← G⊕O
14: T ← T ∧ x1
15: G← G⊕ T
16: T ← 2G
17: end for
18: y1 = y1 ⊕ T
19: y2 = x2
20: return y1, y2

Algorithm 15 SecADD (Order 1)
Input: x1, x2, y1, y2
Output: z1, z2 such that z1 ⊕ z2 = x1 ⊕ x2 + y1 ⊕ y2

1: xa1, xa2 ← BooleanToArithmetic(x1, x2)
2: ya1, ya2 ← BooleanToArithmetic(y1, y2)
3: za1 = xa1 + ya1
4: za2 = xa2 + ya2
5: z1, z2 ← ArithmeticToBoolean
6: return z1, z2

B Leakage Assessment of C code
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(a) ArithmeticToBoolean (b) BooleanToArithmetic

(c) SecAdd (d) SecAnd

(e) ZeroTest

Figure 4: t-tests for gadgets implemented in C (5,000 traces)
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