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Abstract

Goyal and Goyal demonstrated that extractable witness encryption, when
combined with smart-contract equipped proof-of-stake blockchains, can yield
powerful cryptographic primitives such as one-time programs and pay-to-use
programs. However, no standard model construction for extractable witness
encryption is known, and instantiations from alternatives like indistinguishability
obfuscation are highly inefficient.

This paper circumvents the need for extractable witness encryption by combining
signature-based witness encryption (Döttling et al.) with witness encryption for
KZG commitments (Fleischhacker et al.). Inspired by Goyal et al., we introduce
𝑇 + 1-Extractable Witness Encryption for Blockchains (𝑇 + 1-eWEB), a novel
primitive that encrypts a secret, making its decryption contingent upon the
subsequent block’s state. Leveraging 𝑇 + 1-eWEBs, we then build a conditional
one-time memory, leading to a 𝑇 + 1 one-time program (𝑇 + 1-OTP) also
conditional on the next block state. Finally, using our 𝑇 + 1-OTP, we develop a
conditional RAM obfuscation scheme where program execution can be contingent
on the blockchain state, thereby enabling applications like pay-to-use programs.

Despite its theoretical value, our construction is impractical due to a “bit-by-
bit” signing requirement for the state root and an inefficient method for storing
validator keys. We thus posit the construction of a practical 𝑇 + 1-OTP as a
significant open problem. This work provides the first theoretical pathway for
building such primitives without extractable witness encryption, representing a
novel step for blockchain-secured cryptography

1 Introduction
The celebrated Bitcoin paper provided a novel approach to solving a long standing set of
questions in distributed systems, opening the floodgates to cryptocurrencies [1]. The key
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innovation of Bitcoin is an economic mechanism, rather than a purely computational one, that
allows a set of nodes to agree on a single state of the system.

A line of works, started by Goyal and Goyal, asks a similar question for cryptographic primitives
which are either impossible (such as obfuscation and one-time programs) or are challenging to
achieve in a practical way [2]. Specifically, the work asks whether we can use blockchains to
achieve cryptographic primitives which are as secure as the blockchain itself?

Though various primitives have been discussed in the literature, we will highlight one of them,
RAM obfuscation, which is essentially the most powerful primitive we can hope to achieve
in a cryptographic setting: obfuscation of a program with its own internally memory [3].

Ref. [2] uses a very advanced primitive, extractable witness encryption, to build a blockchain
based one-time program and then a variant of RAM obfuscation. However, very little is known
about extractable witness encryption¹. Thus, a line of works “emulate” extractable witness
encryption using a distributed system armed with proactive secret sharing [4–8].

Unfortunately though, these new systems do not easily integrate into existing blockchains, and
thus, to be considered secure (from an crypto-economic perspective), need to bootstrap a new
blockchain or convince an existing blockchain to adopt a highly complex system².

We are then left with a conundrum: how can we build primitives such as one-time programs
and RAM obfuscation that are as secure as the blockchain itself but also have the flexibility to
be used in a wide variety of applications?

1.1 Our Contributions

Rather than trying to build a generic system for all proof of stake blockchains, we will focus on
a blockchain which does three things:
1. Commit to its state via a KZG commitment [9].
2. Have the signing and verification of its committed state be done via a modified BLS signature

[10].
3. Include its set of validators for the next block in the current block.

We then show how, via minor modifications to the BLS signature scheme, we can build a new
primitive which we term T + 1-eWEB (T + 1-extractable witness encryption for blockchains).
eWEBs were introduced by Goyel et al. [4] and allow for “encrypting” a secret to the blockchain
and decrypting the secret if and only if a certain condition, relative to the blockchain state, is
met. Our primitive is similar but only allows for decryption to occur if the condition is met
at the block subsequent to the block in which the secret was encrypted. Importantly, our 𝑇 +
1-eWEBs are as secure as the blockchain itself. In order to decrypt the secret without the
condition being met, an adversary must be able (to at least partially) forge (a signature on)
the blockchain state! We present an illustration of 𝑇 + 1-eWEBs in Figure 1.

¹To the author’s knowledge, it is still not known if extractable witness encryption is possible in the
standard model.

²Most blockchains with a large market cap have a level of inherent “technical conservatism” as technical
overhauls are quite difficult to achieve, have unintended consequences, and risk the entire system. It is
therefore not surprising that leading blockchains have not adopted these systems.
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𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡]

== 𝚝𝚊𝚛𝚐𝚎𝚝

⊥ (Failed) Secret (𝑤)

Figure 1:  An illustration of the 𝑇 + 1-eWEB mechanism. The left panel shows the setup phase,
where the mechanism outputs an identifier that will be used for retrieval. The right panel shows
the reveal phase, where the requester checks the condition on the blockchain state and retrieves

the secret if the condition is met.

Though 𝑇 + 1-eWEBs may seem limited, we show that they are quite powerful and can be used
to build a variety of primitives, including (but not limited to):
• 𝑇 + 1 Conditional one-time programs, which allow a program to be executed exactly once,

contingent on a future blockchain state satisfying a condition. We note that this is a more
general version of a 𝑇 + 1 pay-to-use program, which was introduced in Ref. [2].

• RAM obfuscation: an obfuscation of a program 𝑃  which has its own (encrypted) internal
memory which cannot be rewound. Moreover, the execution of 𝑃  can be contingent on some
condition on the blockchain state as well.

Interestingly, our construction of RAM obfuscation only requires interacting with the blockchain
when a user wants to execute the program and does not suffer from a “liveness” assumption
which is stronger than the underlying blockchain’s liveness assumptions. Unfortunately though,
our construction requires the blockchain to store its set of validator signatures in a specific,
high-overhead way, which is not the case for most blockchains today³.

1.2 Technical Overview

Our construction is based on the following primitives: signature-based witness encryption
(SWE), introduced in the McFly work [11] and extractable witness encryption for KZG
commitments (WE-KZG) [12]. We will first briefly review these primitives and then outline
our constructions.

SWE and WE-KZG
At a high level, SWE allows for encrypting a message 𝑚 towards a signing committee 𝑉 ,
threshold 𝑡, and tag 𝑇  such that the encrypted ciphertext can only be decrypted given an
aggregate signature of parties 𝑈 ⊆ 𝑉  on tag 𝑇  with |𝑈| ≥ 𝑡. In other words, a message can
only be decrypted given a valid aggregate signature to a pre-specified tag. The construction
presented in the McFly protocol [11] constructs SWE based on BLS-type signatures.

³The verification keys for each validator must be stored in a “bit-by-bit” way, where each individual bit of
the verification key is stored in a specific data-slot on the blockchain. We leave the removal of this
requirement to future work.
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WE-KZG on the other hand, allows for encrypting a secret 𝑠 under a KZG commitment 𝚌𝚘𝚖𝚖
to state, 𝚜𝚝𝚊𝚝𝚎, such that 𝑠 can only be recovered via a valid opening 𝜋 to 𝚜𝚝𝚊𝚝𝚎[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝
for 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝 set by the encryptor. In other words, WE-KZG allows for encrypting a message
to a specific opening to a commited vector.

High Level Idea and 𝑇 + 1-eWEBs
Key to this work, we change the BLS signature scheme outlined in the McFly protocol to sign
a KZG commitment “bit-by-bit” rather than as a whole. So, if we have a commitment 𝚌𝚘𝚖𝚖
to the blockchain state 𝚜𝚝𝚊𝚝𝚎𝑇 , the signature does not sign 𝐻(𝑇 ‖ 𝚌𝚘𝚖𝚖) for hash function 𝐻
but rather signs 𝐻(𝑇 ‖ 𝑖 ‖ 𝚌𝚘𝚖𝚖𝑖) for each bit 𝑖 of the commitment. This modification allows
us to use signature-based witness encryption alongside the fact that only one valid signature
is produced per block to create a sort of “one-time” program for the blockchain commitment.
Specifically, using garbled circuits, we can garble a circuit 𝐶(𝚌𝚘𝚖𝚖) which takes as input the
KZG commitment 𝚌𝚘𝚖𝚖. The garbling process then outputs wire labels 𝑤0

1, 𝑤1
1, …, 𝑤0

|𝚌𝚘𝚖𝚖|, 𝑤
1
|𝚌𝚘𝚖𝚖|.

Then, we can encrypt the wire labels such that a user can only decrypt 𝑤𝑏
𝑖  if a valid blockchain

signature, 𝜎𝑖, is produced for message 𝐻(𝑇 + 1 ‖ 𝑖 ‖ 𝚌𝚘𝚖𝚖𝑖). Note that if the blockchain is secure,
we never should have a signature be produced for both 𝐻(𝑇 + 1 ‖ 𝑖 ‖ 0) and 𝐻(𝑇 + 1 ‖ 𝑖 ‖ 1).
Thus, after the blockchain signs the state commitment 𝚌𝚘𝚖𝚖 for the 𝑇 + 1-th state, the garbled
circuit can be executed on input 𝚌𝚘𝚖𝚖 but should never be able to execute on 𝚌𝚘𝚖𝚖′ ≠ 𝚌𝚘𝚖𝚖.

At first glance, using SWE to encrypt a one-time program may seem to have a narrow use-
case, but we now show how to use our second key primitive, extractable witness encryption for
KZG commitments, which will allow us to make much more powerful primitives. Recall that
extractable witness encryption for KZG commitments allows for encrypting a message towards
a commitment to a state 𝑣, opening index 𝑖, and target 𝑡 to get a ciphertext 𝚌𝚝KZG. Then, 𝚌𝚝KZG
can only be decrypted given a valid opening, 𝜋, of the commited state proving that 𝑣[𝑖] = 𝑡.
Armed with this primitive, we can now build build our 𝑇 + 1-eWEB for the following simple
condition: for the next state, 𝚜𝚝𝚊𝚝𝚎𝑇+1 of a blockchain, we decrypt if 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝
for some predefined index 𝚒𝚍𝚡 and target value 𝚝𝚊𝚛𝚐𝚎𝚝. Note that we cannot simply provide
𝚌𝚝KZG for the 𝑇 + 1-th state commitment of the blockchain as, at time 𝑇 , we do not know what
the 𝑇 + 1-th state will be! Instead, we use the previously outlined one-time program technique
where the one-time program will “create” the ciphertext 𝚌𝚝KZG given the state commitment
𝚌𝚘𝚖𝚖𝑇+1. We provide a high-level illustration of our the setup in our construction in Figure 2
and the secret release in Figure 3.
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Phase 1: Setup at Time T (SecretStore)

Input
Secret 𝑠

Position: 𝚒𝚍𝚡
Target: 𝚝𝚊𝚛𝚐𝚎𝚝

Verification keys for block (𝑇 + 1)

1. Garble Circuit 𝐶
Hard-coded: 𝑠, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝

Outputs: 𝚌𝚝KZG

Output: garbled circuit
and wire labels, {𝑤0

𝑗 , 𝑤1
𝑗}{𝑗∈[𝜆𝐺]}

2. SWE Encrypt Wire Labels
For each bit 𝑗 of commitment:

Encrypt 𝑤𝑏
𝑗  under tag 𝐻(𝑇 + 1 ‖ 𝑗 ‖ 𝑏) to get 𝚌𝚝𝑗

Only one wire per bit can be decrypted

Publish ID
Publish the garbled circuit and the encryptions of the wires

Figure 2: A visualization of the setup phase for our 𝑇 + 1-eWEB scheme.

Phase 2: Release at Time T+1 (SecretRelease)

YES NO

Block𝑇 +1 Published
𝚌𝚘𝚖𝚖𝑇+1 = KZG.Commit(𝚜𝚝𝚊𝚝𝚎𝑇+1)
𝜎𝑗 = BLS.Sign(𝐻(𝑇 + 1‖𝑗‖𝚌𝚘𝚖𝚖𝑗))

One signature per commitment bit

3. Decrypt Active Wires
For each 𝑗, decrypt 𝚌𝚝𝑗 to get 𝑤𝚌𝚘𝚖𝚖𝑗

𝑗
using 𝜎𝑗

Get one wire per input bit

4. Evaluate garbled circuit
Evaluate garbled circuit using {𝑤𝚌𝚘𝚖𝚖𝑗

𝑗 }
Outputs 𝚌𝚝KZG = 𝐶(𝚌𝚘𝚖𝚖)

𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] ==
𝚝𝚊𝚛𝚐𝚎𝚝

5a. Decrypt Secret
Decrypt secret in 𝚌𝚝KZG via proof 𝜋

5b. Decryption Fails
Output: ⊥

Figure 3: A visualization of the release phase for our 𝑇 + 1-eWEB scheme.

Constructing One-Time Programs from 𝑇 + 1-eWEBs
Recall that a 𝑇 + 1-eWEB allows us to store a secret such that the secret can only be retrieved
if a specific data-slot on the blockchain has a target value. Given that a data-slot can only
have one value for the 𝑇 + 1-th block4, we can use our 𝑇 + 1-eWEBs two store two messages,
where at most one of the messages can be decoded. In more detail, we would use our eWEB to
encrypt 𝑚0 requiring 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 0 to decrypt and encrypt 𝑚1 requiring 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] =
1 to decrypt.

We now have built a one-time memory where only one-message can be decrypted. As shown
by Goldwasser et al. [13], we can combine one-time memories with garbled circuits to then get
one-time programs. And so, we can get 𝑇 + 1-one time programs, where we can evaluate the
program exactly once and only if the program’s input is contained within the 𝑇 + 1-th state of
the blockchain.

Though an interesting primitive in its own right, 𝑇 + 1-OTPs are still not as powerful as we
would like. Particularly, we require that the program’s inputs are posted to the blockchain

4Otherwise, we would have two different (valid) blockchain states at block 𝑇 + 1, breaking the blockchain’s
guarantee of a unique and correct state.
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before the 𝑇 + 1-th block which is a sort of strong liveness assumption and decreases the
OTP’s usefulness.

We thus modify our construction to allow for the program’s input to be posted after the 𝑇 + 1
-th block. The key idea is to use our 𝑇 + 1-OTPs in a “recursive way.” At a high level, say we
are encrypting circuit 𝐶 : {0, 1}𝑟 → 𝒴. We will first modify 𝐶 to a circuit 𝐶′ : {⊥} ∪ {0, 1}𝑟 →
𝒴. We then set 𝚜𝚝𝚊𝚝𝚎𝑇 [𝚒𝚍𝚡𝑖] = ⊥ for 𝑖 ∈ [𝑟]. Then, if the input is set to ⊥, we will have 𝐶′(⊥)
output a one-time program for block 𝑇 + 2. If the input is set to 𝑥 ∈ {0, 1}𝑟, we will have 𝐶′(𝑥)
output 𝐶(𝑥). In other words, if the input is not set prior to the 𝑇 + 1-th block, the program
will “refresh” itself to allow for new inputs to be set prior to the 𝑇 + 2-th block. And, given
that 𝚜𝚝𝚊𝚝𝚎𝑇 [𝚒𝚍𝚡𝑖] = ⊥ by default, if the state is not set prior to the 𝑇 + 2-th block, the 𝑇 + 2
-OTP will again refresh itself to allow for new inputs to be set prior to the 𝑇 + 3-th block and
so on. In this way, we can have a program which can be executed at any time, but only once
after block 𝑇 + 𝑗, and only if the program’s input is set prior to the finalization of the 𝑇 + 𝑗-
th block56.

We provide a high-level illustration of our construction in Figure 4.

Otherwise Otherwise Otherwise

x posted
before 𝑇 + 1

x posted
before 𝑇 + 2

x posted
before 𝑇 + 3

𝐶′
𝑇+1 𝐶′

𝑇+2 𝐶′
𝑇+3

𝐶(𝑥) 𝐶(𝑥) 𝐶(𝑥)

Figure 4:  A visualization of our one-time program construction. If input 𝑥 is set before block
𝑇 + 1, then we can evaluate to 𝐶(𝑥). If not, the program will “refresh” itself to output a one-

time program for 𝐶′
𝑇+2.

Constructing RAM Obfuscation
Now that we have our fully fledged one-time program, it is pretty straight forward to build RAM
obfuscation. We can think of RAM obfuscation as an obfuscation of a circuit 𝐶 : 𝒳 × ℳ →
𝒴 × ℳ where ℳ represents the space of memory. Then, an obfuscation of 𝐶 for initial memory
RAM0, allows for evaluating 𝐶(⋅, RAM0) once to get next memory RAM1 and output 𝑦. Then,
the obfuscation allows for evaluating 𝐶(⋅, RAM1) once and so on. So, we start by publishing a
one-time program for 𝐶(⋅, RAM0) where 𝐶(𝑥, RAM0) will output 𝑦 for 𝑦, RAM1 = 𝐶(𝑥, RAM0)
as well as the one-time program for 𝐶(⋅, RAM1). We can then see that this process continues
allowing for the program to be executed once and only once for each memory state while
still allowing for the “next” execution. We provide a high-level illustration of our construction
in Figure 5.

5Our above exposition is slightly simplified. Within the main body of our work, we actually separate out
whether the program’s input is set or not into a separate bit so that now 𝐶′ : {0, 1}𝑟 × {0, 1} → 𝒴. This final
bit acts as our flag bit and decrypts to 0 if the smart contract’s last set block is less than the current block
index. If the block is set at time 𝑇 , then the current block index on the smart contract gets set to 𝑇  and so
we can decrypt to the flag 1 if the program’s input is set.

6Within our construction, we do not separately construct an 𝖮𝖳𝖯 scheme and RAM obfuscation but rather
instantiate RAM obfuscation directly from our 𝑇 + 1-OTPs; the construction of general OTPs then follows
from the construction of RAM obfuscation.
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Next OTP Next OTP Next OTP

𝑥0 𝑥1 𝑥2

𝐶(𝑥0, RAM0) 𝐶(𝑥1, RAM1) 𝐶(𝑥2, RAM2)

𝐶(⋅, RAM0) 𝐶(⋅, RAM1) 𝐶(⋅, RAM2)

Figure 5:  A visualization of our RAM obfuscation construction from our one-time programs.
𝐶(⋅, RAM𝑖) allows for evaluating 𝐶(𝑥, RAM𝑖) once and only once and also outputs the next

one-time program for 𝐶(⋅, RAM𝑖+1).

Smart Contract Gating, Pay to Evaluate, and Variations on our Results
As noted by Goyal and Goyal [2], our use of the blockchain alongside obfuscation allows for a
variety of new applications. Specifically, because program evaluation (for our OTPs and RAM
obfuscation) is contingent on a blockchain state, we can have the setting of the program input
be controlled by a smart contract. And so, we can require one of many possible conditions to be
met before the program can be executed. For example, we can require that the program’s input
is set by a smart contract which requires a payment to be made as pointed out by Ref. [2]. This
allows for a new class of “pay to evaluate” programs. We can also require that a certain number
of (encrypted) transactions are posted to the blockchain prior to the program being executed,
allowing for dark pools and other MEV-free financial applications.

We only skim the surface of the applications of our primitive, but we note that the primitives
we build are extremely flexible and powerful.

1.3 Outline

In Section 2, we provide brief overviews of the cryptographic primitives on which we rely. In
Section 3, we give an overview of our “blockchain” formalization, though not the same exact
specification as the Ethereum blockchain, we aim to be as close as possible. Then, we introduce
our 𝑇 + 1-eWEB construction in Section 4 and use the construction to build one-time programs
in Section 5. Using the one-time program construction, we then build RAM obfuscation in
Section 6. Finally, we conclude our work in Section 7.

2 Preliminaries
We now proceed to define the primitives which we will use in this work.

2.1 KZG Polynomial Commitments and BLS Signatures

Definition 2.1 (KZG Polynomial Commitments [9]) :  A KZG polynomial commitment
scheme over field 𝔽𝑝 consists of four algorithms (Setup, Commit, Open, Verify):
• 𝚌𝚔 ← Setup(1𝜆, 1𝑑): Generates a commitment key for polynomials of degree at most

𝑑.
• 𝚌𝚘𝚖𝚖 ← Commit(𝚌𝚔, 𝑓): Commits to a polynomial 𝑓 ∈ 𝔽𝑝[𝑋].
• 𝜋 ← Open(𝚌𝚔, 𝑓, 𝛼, 𝛽): Generates an opening proving 𝑓(𝛼) = 𝛽.
• 𝑏 ← Verify(𝚌𝚔, 𝚌𝚘𝚖𝚖, 𝜋, 𝛼, 𝛽): Verifies an opening.
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Definition 2.2 (BLS Signatures [10]) :  The modified BLS signature scheme consists of
algorithms (KeyGen, Sign, Verify, Agg, AggVerify):
• (𝚟𝚔, 𝚜𝚔) ← KeyGen(1𝜆): Generates a verification key 𝚟𝚔 = 𝑔𝑥

2  and signing key 𝚜𝚔 = 𝑥.
• 𝜎 ← Sign(𝚜𝚔, 𝑇 ): Signs a message 𝑇  as 𝜎 = 𝐻(𝑇 )𝚜𝚔.
• 𝑏 ← Verify(𝚟𝚔, 𝑇 , 𝜎): Verifies a signature.
• 𝜎 ← Agg((𝜎1, …, 𝜎𝑘), (𝚟𝚔1, …, 𝚟𝚔𝑘)): Aggregates signatures using Lagrange

interpolation.
• 𝑏 ← AggVerify(𝜎, (𝚟𝚔1, …, 𝚟𝚔𝑘), (𝑇1, …, 𝑇𝑘)): Verifies an aggregate signature.

2.2 Signature-Based Witness Encryption

Definition 2.3 (Signature-Based Witness Encryption [11]) :  A 𝑡-out-of-𝑛 swe for an
aggregate signature scheme (KeyGen, Sign, Verify, Agg, AggVerify, Prove, Valid) is a tuple
of two algorithms (Enc, Dec) where:

• 𝚌𝚝 ← Enc(1𝜆, 𝑉 = (𝚟𝚔1, …, 𝚟𝚔𝑛), {𝑇𝑖}𝑖∈[ℓ], {𝑚𝑖}𝑖∈[ℓ]): Encryption takes as input a set
𝑉  of 𝑛 verification keys of the underlying scheme Sig, a list of reference signing messages
𝑇𝑖 and a list of messages 𝑚𝑖 of arbitrary length ℓ ∈ poly(𝜆). It outputs a ciphertext 𝚌𝚝.

• 𝑚 ← Dec(𝚌𝚝, {𝜎𝑖}𝑖∈[ℓ], 𝑈, 𝑉 ): Decryption takes as input a ciphertext 𝚌𝚝, a list of
aggregate signatures {𝜎𝑖}𝑖∈[ℓ] and two sets 𝑈, 𝑉  of verification keys of the underlying
scheme Sig. It outputs messages {𝑚𝑖}𝑖∈[ℓ].

Definition 2.4 (Robust Correctness, [11]) :  A 𝑡-out-of-𝑛 SWE
scheme SWE = (Enc, Dec) for an aggregate signature scheme Sig =
(KeyGen, Sign, Verify, Agg, AggVerify, Prove, Valid) is correct if for all 𝜆 ∈ ℕ and ℓ =
poly(𝜆) there is no PPT adversary 𝒜 with more than negligible probability of outputting
an index ind ∈ [ℓ], a set of keys 𝑉 = (𝚟𝚔1, …, 𝚟𝚔𝑛), a subset 𝑈 ⊂ 𝑉  with |𝑈| ≥ 𝑡, message
lists (𝑚𝑖)𝑖∈[ℓ], (𝑇𝑖)𝑖∈[ℓ] and signatures (𝜎𝑖)𝑖∈[ℓ], such that

AggVerify(𝜎ind, 𝑈, (𝑇ind)𝑖∈⟦𝑈⟧) = 1, (1)

but

Dec(Enc(1𝜆, 𝑉 , (𝑇𝑖)𝑖∈[ℓ], (𝑚𝑖)𝑖∈[ℓ]), (𝜎𝑖)𝑖∈[ℓ], 𝑈, 𝑉 )
ind

≠ 𝑚ind. (2)

Definition 2.5 (Security) :  A 𝑡-out-of-𝑛 swe scheme SWE = (Enc, Dec) for an aggregate
signature scheme Sig = (KeyGen, Sign, Verify, Agg, AggVerify, Prove, Valid) is secure if
for all 𝜆 ∈ ℕ, such that 𝑡 = poly(𝜆), and all ℓ = poly(𝜆), subsets SC ⊂ [ℓ], there is no PPT
adversary 𝒜 that has more than negligible advantage in the experiment 𝖤𝗑𝗉SWE(𝒜, 1𝜆).
We define 𝒜’s advantage by 𝖠𝖽𝗏𝒜

SWE = | Pr[𝖤𝗑𝗉SWE(𝒜, 1𝜆) = 1] − 1
2 |.

Experiment 𝖤𝗑𝗉SWE(𝐴, 1𝜆)

1. Let 𝐻𝒫𝑟 be a fresh hash function from a keyed family of hash functions, available
to the experiment and 𝒜.

2. The experiment generates 𝑛 − 𝑡 + 1 key pairs for 𝑖 ∈ {𝑡, …, 𝑛} as (𝚟𝚔𝑖, 𝚜𝚔𝑖) ←
Sig.KeyGen(1𝜆) and provides 𝚟𝚔𝑖 as well as Sig.Prove𝐻𝒫𝑟(𝚟𝚔𝑖, 𝚜𝚔𝑖) for 𝑖 ∈ {𝑡, …, 𝑛}
to 𝒜.

3. 𝒜 inputs VC = (𝚟𝚔1, …, 𝚟𝚔𝑡−1) and (𝜋1, …, 𝜋𝑡−1). If for any 𝑖 ∈ [𝑡 − 1],
Sig.Valid(𝚟𝚔𝑖, 𝜋𝑖) = 0, we abort. Else, we define 𝑉 = (𝚟𝚔1, …, 𝚟𝚔𝑛).
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4. 𝒜 gets to make signing queries for pairs (𝑖, 𝑇 ). If 𝑖 < 𝑡, the experiment aborts, else
it returns Sig.Sign(𝚜𝚔𝑖, 𝑇 ).

5. The adversary announces challenge messages 𝑚0
𝑖 , 𝑚1

𝑖  for 𝑖 ∈ SC, a list of messages
(𝑚𝑖)𝑖∈[ℓ]\ SC and a list of signing reference messages (𝑇𝑖)𝑖∈[ℓ]. If a signature for a 𝑇𝑖

with 𝑖 ∈ SC was previously queried, we abort.
6. The experiment flips a bit 𝑏 ← {0, 1}, sets 𝑚𝑖 = 𝑚𝑏

𝑖  for 𝑖 ∈ SC and sends
Enc(1𝜆, 𝑉 , (𝑇𝑖)𝑖∈[ℓ], (𝑚𝑖)𝑖∈[ℓ]) to 𝒜.

7. 𝒜 gets to make further signing queries for pairs (𝑖, 𝑇 ). If 𝑖 ≥ 𝑡 and 𝑇 ≠ 𝑇𝑖 for all
𝑖 ∈ SC, the experiment returns Sig.Sign(𝚜𝚔𝑖, 𝑇 ), else it aborts.

8. Finally, 𝒜 outputs a guess 𝑏′.
9. If 𝑏 = 𝑏′, the experiment outputs 1, else 0.

2.3 Extractable Witness KEM

Definition 2.6 (Indexed Family of NP Relations) :  Let 𝐼 ⊆ {0, 1}∗ be a set. A set ℱ =
{𝑅𝐼}𝐼∈ℐ is a family of NP relations with index set 𝐼 if for all 𝐼 ∈ ℐ, 𝑅𝐼 is an NP relation.
We call 𝐼 the index of 𝑅𝐼 and 𝑅𝐼 the relation identified by 𝐼 . We use ℒ𝐼 to refer to the
corresponding NP language.

Definition 2.7 (Witness Key Encapsulation Mechanism) :  A witness key encapsulation
mechanism for a family of NP relations ℱ and a keyspace 𝒦 is a pair of PPT algorithms
WKEM = (𝖤𝗇𝖼𝖺𝗉, 𝖣𝖾𝖼𝖺𝗉), defined as follows:
• (𝚌𝚝, 𝑘) ← 𝖤𝗇𝖼𝖺𝗉(𝐼, 𝑥): The encapsulation algorithm takes as input an index 𝐼

identifying a relation ℛ𝐼 ∈ ℱ and a statement 𝑥 and returns as output a ciphertext 𝚌𝚝
and a key 𝑘 ∈ 𝐾.

• 𝑘 ← 𝖣𝖾𝖼𝖺𝗉(𝐼, 𝑤, 𝚌𝚝): The deterministic decapsulation algorithm takes as input an index
𝐼 identifying a relation ℛ𝐼 ∈ ℱ, a witness ∗ 𝑤 ∗, and a ciphertext 𝚌𝚝 and returns a key
𝑘 ∈ 𝒦.

Definition 2.8 (Correctness) :  A witness KEM WKEM = (𝖤𝗇𝖼𝖺𝗉, 𝖣𝖾𝖼𝖺𝗉) for a family
of NP relations ℱ is correct, if for any ℛ𝐼 ∈ ℱ, any 𝜆 ∈ ℕ, any (𝑥, 𝑤) ∈ ℛ𝐼 , and any
(𝚌𝚝, 𝑘) ← 𝖤𝗇𝖼𝖺𝗉(𝐼, 𝑥) it holds that 𝖣𝖾𝖼𝖺𝗉(𝐼, 𝑤, 𝚌𝚝) = 𝑘.

Definition 2.9 (Extractability) :  A witness KEM WKEM = (𝖤𝗇𝖼𝖺𝗉, 𝖣𝖾𝖼𝖺𝗉) for a family
of NP-relations ℱ is extractable, if there exists a PPT algorithm 𝖤𝗑𝗍 such that for any
stateful PPT adversary 𝒜 and any relation ℛ𝐼 ∈ ℱ such that

Pr[𝖤𝗑𝗉KEM-CPA
WKEM,𝒜 (1𝜆, 𝐼) = 1] ≥ 1

2
+ 𝜀(𝜆) (3)

for some non-negligible function 𝜀(𝜆), it holds that
Pr[(𝑥, 𝑤) ∈ ℛ𝐼 : 𝑥 ← 𝒜(1𝜆, 𝐼); 𝑤 ← 𝖤𝗑𝗍𝒜(·,·)(𝐼, 𝑥)] ≥ 𝛿(𝜆), (4)

for some non-negligible function 𝛿(𝜆). The latter probability is taken over the random
coins of the adversary and the extractor and the experiment 𝖤𝗑𝗉KEM-CPA

WKEM,𝒜 (1𝜆) is defined
as follows.

Experiment 𝖤𝗑𝗉KEM-CPA
WKEM,𝒜 (1𝜆, 𝐼)

1. 𝑥 ← 𝒜(1𝜆, 𝐼) for relationship 𝐼
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2. Sample 𝑏 ← {0, 1}
3. The experiment run the encapsulation algorithm to get test key 𝑘0 (𝚌𝚝, 𝑘0) ←

𝖤𝗇𝖼𝖺𝗉(𝐼, 𝑥)
4. Sample a random key 𝑘1 ← 𝒦
5. 𝑏′ ← 𝒜(𝚌𝚝, 𝑘𝑏)
6. Return 1 if 𝑏 = 𝑏′ and 0 otherwise.

2.3.1 Witness KEM for KZG Commitments
We can view the work of Ref. [12] as a witness KEM for univariate polynomials where the
relationship, 𝐼 , is identified by a commitment KZG.𝚌𝚘𝚖𝚖 and a pair ((𝛼, 𝛽), 𝜋) ∈ ℛ𝐼 if and only
if KZG.Verify(𝚌𝚔, KZG.𝚌𝚘𝚖𝚖, 𝜋, 𝛼, 𝛽) = 1.

We formalize the above in the following definition:

Definition 2.10 (Witness KEM for KZG Commitments) :  A witness KEM for KZG
commitments is a tuple of algorithms (𝖤𝗇𝖼𝖺𝗉, 𝖣𝖾𝖼𝖺𝗉), where:
• (𝚌𝚝, 𝑘) ← 𝖤𝗇𝖼𝖺𝗉(1𝜆, 𝚌𝚘𝚖𝚖, (𝛼, 𝛽)): The encapsulation algorithm takes as input a KZG

commitment, 𝚌𝚘𝚖𝚖, a point 𝛼 in 𝔽𝑝, and a value 𝛽 in 𝔽𝑝 and returns as output a
ciphertext 𝚌𝚝.

• 𝑘 ← 𝖣𝖾𝖼𝖺𝗉(𝚌𝚘𝚖𝚖, 𝑤, 𝚌𝚝): The decapsulation algorithm takes as input relationship 𝚌𝚘𝚖𝚖
identifying a relation ℛ𝚌𝚘𝚖𝚖, a witness 𝑤, and a ciphertext 𝚌𝚝 and returns a key 𝑘.

2.4 Garbled Circuits

Similar to Ref. [2], we use garbled circuits as defined by Ref. [14] though we modify the definition
to allow for multi-bit outputs.

Definition 2.11 (Garbled Circuit, [14,15]) :  Let {𝒞𝑛}𝑛 be a family of circuits where each
circuit in 𝒞𝑛 has 𝑛 bit inputs. A garbling scheme, 𝙶𝙲, for circuit family {𝒞𝑛}𝑛 consists of
polynomial-time algorithms (𝙶𝚊𝚛𝚋𝚕𝚎, 𝙴𝚟𝚊𝚕):
• 𝙶𝚊𝚛𝚋𝚕𝚎(1𝜆, 𝐶 ∈ 𝒞𝑛): The algorithm takes a security parameter 𝜆 and a circuit 𝐶 as

input and outputs a garbled circuit 𝐺 together with 2𝑛 wire keys {𝑤𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}
• 𝙴𝚟𝚊𝚕(𝐺, {𝑤𝑖}𝑖∈[𝑛]): The evaluation algorithm takes as input a garbled circuit 𝐺 and 𝑛

wire keys {𝑤𝑖}𝑖∈[𝑛] and outputs 𝑦 ∈ {0, 1}𝑚.

Definition 2.12 (Garbling Correctness) :  A garbling scheme 𝙶𝙲 for circuit family {𝒞𝑛}𝑛
is said to be correct if for all 𝜆, 𝑛, 𝑥 ∈ {0, 1}𝑛 and 𝐶 ∈ 𝒞𝑛,

𝙴𝚟𝚊𝚕(𝐺, {𝑤𝑖,𝑥𝑖
}(𝑖 ∈ [𝑛])) = 𝐶(𝑥), (5)

where

(𝐺, {𝑤𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}
) ← 𝙶𝚊𝚛𝚋𝚕𝚎(1𝜆, 𝐶). (6)

Definition 2.13 (Selective Security) :  A garbling scheme 𝙶𝙲 = (𝙶𝚊𝚛𝚋𝚕𝚎, 𝙴𝚟𝚊𝚕) for a class
of circuits 𝒞 = {𝒞𝑛}𝑛 is said to be a selectively secure garbling scheme if there exists
a polynomial-time simulator Sim such that for all 𝜆, 𝑛, 𝐶 ∈ 𝒞𝑛 and 𝑥 ∈ {0, 1}𝑛, the
following holds:
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{Sim(1𝜆, 1𝑛, 1|𝐶|, 𝐶(𝑥))} ≈𝑐 {(𝐺, {𝑤𝑖,𝑥𝑖
}

𝑖∈[𝑛]
)

: (𝐺, {𝑤𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}
) ← 𝙶𝚊𝚛𝚋𝚕𝚎(1𝜆, 𝐶)}

(7)

We also require that if no wire keys are given, then the garbled circuit is indistinguishable from
a random string of the same length.

Definition 2.14 (Indistinguishability) :  A garbling scheme 𝙶𝙲 = (𝙶𝚊𝚛𝚋𝚕𝚎, 𝙴𝚟𝚊𝚕) for a class
of circuits 𝒞 = {𝒞𝑛}𝑛 is said to be indistinguishable from random if for all 𝜆, 𝑛, 𝐶 ∈ 𝒞𝑛,
the following holds:

{Sim(1𝜆, 1𝑛, 1|𝐶|)} ≈𝑐 {𝐺 : (𝐺, {𝑤𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}
) ← 𝙶𝚊𝚛𝚋𝚕𝚎(1𝜆, 𝐶)}. (8)

3 Blockchain Formalization
Rather than defining a fully fledged blockchain, we will define a more abstract and general
notion of a “signature-based blockchain” (which we will denote ℬ𝒞). All a signature-based
blockchain needs to do is have a set of verification keys, a way to define “consensus” based on
some threshold 𝑡 of the signatures, and a way to define the state of the blockchain.

Definition 3.1 (Blockchain Template) :  We define a blockchain as a tuple ℬ𝒞 =
(Verify, 𝚜𝚝𝚊𝚝𝚎) where 𝚜𝚝𝚊𝚝𝚎 is a mutable state of the blockchain and Verify is a fixed
verification algorithm. Further, we have the following verification algorithm:

Verify(𝚜𝚝𝚊𝚝𝚎′) = 1 (9)
if and only if 𝚜𝚝𝚊𝚝𝚎′ is a valid state of the blockchain.

3.1 Signature Based Blockchain

We now narrow down the definition of a blockchain to a more specific notion of a “signature-
based blockchain” off of which we will build. At a high level, a signature-based blockchain is
a blockchain that has a set of verification keys, a way to verify signatures on the state of the
blockchain, and a way to verify the set of verification keys.

Definition 3.2 (Signature Based Blockchain) :  We define a signature-based blockchain at
time 𝑇  as a tuple ℬ𝒞𝑇 = (Verify𝑉 , 𝚜𝚝𝚊𝚝𝚎∗, 𝑡) where 𝚜𝚝𝚊𝚝𝚎∗ = 𝚜𝚝𝚊𝚝𝚎1, …, 𝚜𝚝𝚊𝚝𝚎𝑇−1 and
Verify(𝚜𝚝𝚊𝚝𝚎∗ ‖ 𝚜𝚝𝚊𝚝𝚎𝑇 ) = 1 if and only if for 𝚟𝚔1, …, 𝚟𝚔𝑛 ← 𝑉 (𝚜𝚝𝚊𝚝𝚎𝑇−1) and 𝚜𝚝𝚊𝚝𝚎𝑇 =
(𝜎𝑇 , 𝑉𝑇+1 ‖ 𝚜𝚝𝚊𝚝𝚎𝑇 ) is valid if and only if 𝜎𝑇  is a valid signature for 𝑉𝑇+1 ‖ 𝚜𝚝𝚊𝚝𝚎𝑇  under
at least 𝑡 verification keys in 𝚟𝚔1, …, 𝚟𝚔𝑡 ⊆ 𝑉𝑇 . We also have that Verify(𝚜𝚝𝚊𝚝𝚎1) = 1 if
and only if 𝚜𝚝𝚊𝚝𝚎1 is some the fixed initial state of the blockchain.

4 𝑇 + 1-Extractable Witness Encryption for Blockchain
We now present our modification on “extractable witness encryption” for blockchains (eWEBs)
[4]. We will simplify the definition as, unlike Ref. [4], we will not need to worry about the
underlying commitees in the blockchain. Moreover, we restrict the eWEB to what we term a
𝑇 + 1-eWEB: where decryption can only occur if the state of the next block7 has some target
state at position 𝚒𝚍𝚡 in the blockchain.

7Here time does not literally refer to time on earth, but rather the block number.

11



Definition 4.1 (𝑇 + 1-eWEB for Signature-Based Blockchain) :  For the 𝑇 -th block
and signature-based blockchain blockchain ℬ𝒞𝑇 = (Verify𝑉 , 𝚜𝚝𝚊𝚝𝚎∗, 𝑡) for 𝚜𝚝𝚊𝚝𝚎∗ =
(𝚜𝚝𝚊𝚝𝚎1, …, 𝚜𝚝𝚊𝚝𝚎𝑇 ), let 𝑉𝑇+1 be the verification algorithm for the 𝑇 + 1-th block. Then,
a 𝑇 + 1-eWEB is a tuple of algorithms (𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎, 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎) where:
• 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑤, 𝑉𝑇+1, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝): the sending party encrypts 𝑤 which can be

released if 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝 and Verify𝑇+1(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 1. The secret then has
an associated identifier, id

• 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id) → 𝑤  or ⊥: a requester can request the secret 𝑤 associated with
id if 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝 is true valid state 𝚜𝚝𝚊𝚝𝚎𝑇+1. If 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝
is not true, then the requester will get “bot” (or some other value) as the output.

We define the security of 𝑇 + 1-eWEBs relative to the security of the underlying blockchain:
i.e. only if we can produce two distinct valid states for the same block (and thus breaking the
blockchain), then we can break the security of the 𝑇 + 1-eWEB. Unfortunately, we are unable
to give a “clean” and general definition of the security of 𝑇 + 1-eWEBs due to our scheme’s
construction in Section 4.1. Thus, we defer the formal definition to Section 4.1 where we will
give a concrete instantiation of a time-based eWEB.

4.1 Instantiating Time-Based eWEBs

We now show how to instantiate time-based eWEBs via a series of circuits and smart-contracts.
First though, we will need to define our underlying blockchain model.

4.1.1 Signature Based Blockchain Instantiation
Before we can fully construct our time-based eWEB, we need to make a few concrete
“design decisions” about the underlying blockchain. We note that the blockchain itself can be
constructed in a variety of ways, but for our purpose we need three main properties:
1. KZG polynomial commitments to the state at each time step
2. BLS signatures for the verification keys and signing of the root (though with a slight

modification as in Ref. [11]).
3. And bit-by-bit signatures of the KZG root. Rather than directly signing the KZG

commitment, 𝚌𝚘𝚖𝚖, we will require a separate BLS signature for each bit of the KZG
commitment when represented in binary.

We note that the first two properties are quite close to the existing Ethereum blockchain, but
the third property is not.

We sketch out what the blockchain verification algorithm looks like in Blockchain 1.

12



Blockchain 1: Sketch of a Signature Based Blockchain. We do not specify a consensus
algorithm

State 𝚜𝚝𝚊𝚝𝚎∗ = (𝚜𝚝𝚊𝚝𝚎1, …, 𝚜𝚝𝚊𝚝𝚎𝑇 ) for the first 𝑇  blocks where for blockchain data 𝚜𝚝𝚊𝚝𝚎𝑇 ,
𝚜𝚝𝚊𝚝𝚎𝑇 = (𝜎𝑇 , 𝑉𝑇+1, 𝚜𝚝𝚊𝚝𝚎𝑇 ) (10)

where

𝜎𝑗 = Agg((𝜎𝑖
𝑗)𝑖∈𝑈

, (𝚟𝚔𝑖)𝑖∈𝑈) (11)

and 𝜎𝑖
𝑗 = Sign(𝚜𝚔𝑖, 𝑃𝑗) for

𝑃𝑗 = 𝐻
(
(((𝑇 ‖ 𝑗 ‖ 0…0⏟

𝑗−1

…𝑏𝑗… 0…0⏟
𝜆𝔾−𝑗−1)

))) (12)

and
𝑏𝑗 = Commit(𝚌𝚔, 𝑉𝑇+1 ‖ 𝚜𝚝𝚊𝚝𝚎𝑇 )[𝑗],  for 𝑗 ∈ [𝜆𝔾] (13)

Verify(𝚜𝚝𝚊𝚝𝚎∗) = 1 if and only if:
For all 𝑖 ∈ 2, …, 𝑇

Let 𝑉𝑖 = (𝚟𝚔1, …, 𝚟𝚔𝑛) be defined by 𝚜𝚝𝚊𝚝𝚎𝑖−1, 𝑈𝑇 ⊆ 𝑉𝑇  and |𝑈𝑇 | ≥ 𝑡, 𝚜𝚝𝚊𝚝𝚎𝑇 = (𝜎𝑇 =
(𝜎𝑇,1, …𝜎𝑇,𝜆𝔾

), 𝑉𝑇+1, 𝚜𝚝𝚊𝚝𝚎𝑇 ) is valid if and only if

AggVerify(𝜎𝑇,𝑗, (𝚟𝚔𝑖)𝑖∈𝑈𝑇
, 𝑃𝑗) = 1 (14)

for all 𝑗 ∈ [𝜆𝔾]
And Verify(𝚜𝚝𝚊𝚝𝚎1) = 1 (i.e. the genesis block is publicly known and acknowledged)

As we can see in Blockchain 1, the verification algorithm is quite simple and almost standard
except for the bit-by-bit signatures.

Now that our blockchain is defined, we define our security definition for the 𝑇 + 1-eWEBs.
Specifically, the security will be defined relative to the security of the underlying blockchain
where we will say that the blockchain is broken if the adversary can produce two distinct though
valid signatures for the 𝑗-th bit of the KZG commitment. As in most proof of stake blockchains,
we can still have a slashing condition which will allow us to “punish” any validators which
produce two distinct signatures for the same bit of the KZG commitment.

Definition 4.2 (Security of 𝑇 + 1-eWEB) :  Let signature-based ℬ𝒞 =
(Verify𝑉 , 𝚜𝚝𝚊𝚝𝚎∗, 𝑡) be a blockchain with 𝑉𝑇+1 = (𝚟𝚔1, …, 𝚟𝚔𝑛) being the verification keys
for time 𝑇 + 1 and 𝚜𝚝𝚊𝚝𝚎 be the state of the blockchain. Let ℬ𝒞0 be the initial state
of the blockchain and ℬ𝒞𝑇  be the state of blockchain immediately prior to calling
𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑠, ℬ𝒞𝑇 , 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝). We say that an 𝑇 + 1-eWEB is secure if for any BPP
adversary 𝒜 which can corrupt up to 𝑡 − 1 parties at any time, then the following holds:
If for any 𝑠, 𝑠′, 𝑇 , 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝,

|Pr[𝑏 = 1 | 𝑏 ← 𝒜(1𝜆, ℬ𝒞, 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑠, ℬ𝒞𝐈𝐧𝐢𝐭, 𝑇 , 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝))] −

Pr[𝑏 = 1 | 𝑏 ← 𝒜(1𝜆, ℬ𝒞, 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑠′, ℬ𝒞𝐈𝐧𝐢𝐭, 𝑇 , 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝))]| > negl(𝜆)
(15)

then there exists a BPP extractor 𝐸 such that for the check in eq. (14) with output 𝐶𝑗 ∈
{0, 1} on 𝚜𝚝𝚊𝚝𝚎∗ and 𝐶𝑗 on 𝚜𝚝𝚊𝚝𝚎∗, and some 𝑗 ∈ [𝜆𝔾]:
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Pr[𝚌𝚘𝚖𝚖𝑗 ≠ 𝚌𝚘𝚖𝚖𝑗  and 𝐶𝑗 = 1, 𝐶𝑗 = 1

 or Verify𝑉 (𝚜𝚝𝚊𝚝𝚎∗) = 1  and 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝 |

𝚜𝚝𝚊𝚝𝚎∗, 𝚜𝚝𝚊𝚝𝚎∗ ← 𝐸(1𝜆, ℬ𝒞)] ≥ poly−1(𝜆).

(16)

In words, our soundness says that if the adversary can break semantic security of the secret 𝑠
without the condition being met, then the adversary can produce two distinct signatures for
the same bit of the KZG commitment, breaking the blockchain8.

4.1.2 eWEB Scheme
We are now ready to present our main technical contribution: our 𝑇 + 1-eWEB scheme, which
will be the building block for the rest of the paper. Protocol 2 is our 𝑇 + 1-eWEB scheme
which is based on the signature-based blockchain with verification procedure along the lines
of Blockchain 1.

Phase 1: Setup at Time T (SecretStore)

Input
Secret 𝑠

Position: 𝚒𝚍𝚡
Target: 𝚝𝚊𝚛𝚐𝚎𝚝

Verification keys: 𝑉𝑇+1

1. Garble Circuit 𝐶
Circuit: 𝙴𝚗𝚌𝚛𝚆𝚒𝚝𝚑𝙺𝚉𝙶 (Circuit 4)

Hard-coded: 𝑠, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝
Output: 𝐺̂, {𝑤̂0

𝑗 , 𝑤̂1
𝑗}{𝑗∈[𝜆𝐺]}

2. SWE Encrypt Wire Labels
For each bit 𝑗 of commitment:
Tag𝑗,𝑏 = 𝐻(𝑇 + 1 ‖ 𝑗 ‖ 𝑏)

𝚌𝚝 ← SWE.Enc(𝑉𝑇+1, {Tag𝑗,𝑏}, {𝑤̂𝑏
𝑗})

Only one wire per bit can be decrypted

Publish ID
𝑖𝑑 = (𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝, 𝚌𝚝, 𝐺̂)

Figure 6: A visualization of the setup phase for our 𝑇 + 1-eWEB scheme.

Phase 2: Release at Time T+1 (SecretRelease)

YES NO

Block𝑇 +1 Published
𝚌𝚘𝚖𝚖𝑇+1 = KZG.Commit(𝚜𝚝𝚊𝚝𝚎𝑇+1)
𝜎𝑗 = BLS.Sign(𝐻(𝑇 + 1‖𝑗‖𝚌𝚘𝚖𝚖𝑗))

One signature per commitment bit

3. Decrypt Active Wires
For each 𝑗: 𝑤̂comm[𝑗]

𝑗  ←
SWE.Dec(𝚌𝚝, 𝜎𝑗, 𝑈, 𝑉 )
Get one wire per input bit

4. Evaluate 𝐺̂
(𝚌𝚝, 𝚌𝚝) ← GC.Eval(𝐺̂, {𝑤̂𝑗})

Outputs:
𝚌𝚝 (WE-KZG), 𝚌𝚝 (SK encrypted)

𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] ==
𝚝𝚊𝚛𝚐𝚎𝚝

5a. Decrypt Secret
𝜋 ← KZG.Open(ck, 𝑓, idx, target)

𝑘 ← WE-KZG.Decap(comm, 𝜋, 𝚌𝚝)
𝑠 ← SK.Decr(𝑘, 𝚌𝚝)

5b. Decryption Fails
Output: ⊥

Figure 7: A visualization of the release phase for our 𝑇 + 1-eWEB scheme.

8Why can we not define the security in terms of an adversary producing two valid states? We use garbled
circuits where security doesn’t hold if the wire values for 0, 1 for the same input bit are known to the
adversary. As we shall see, if an adversary can produce two valid 𝚌𝚘𝚖𝚖𝑗, 𝚌𝚘𝚖𝚖𝑗 with 𝚌𝚘𝚖𝚖𝑗 ≠ 𝚌𝚘𝚖𝚖𝑗, then the
adversary can decrypt two different wires for the same input bit, without necessarily having to come up with
a fully valid blockchain state.
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We provide a block-diagram visualization of the scheme in Figure 6 and Figure 7. Now, we will
describe the formal details in Protocol 2 alongside a helper algorith, Algorithm 3, and a fixed
circuit, Circuit 4.

Protocol 2: 𝑇 + 1-eWEB

𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑠, 𝑉𝑇+1, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝) for message 𝑠 and 𝑉𝑇+1 = (𝚟𝚔1, …, 𝚟𝚔𝑛):

1
Garble the circuit 𝐶 defined in Circuit 4 with hard-coded 𝑠, data position, 𝚒𝚍𝚡, and target
data, 𝚝𝚊𝚛𝚐𝚎𝚝. The labels are 𝑤̂0

𝑗 , 𝑤̂1
𝑗  for 𝑗 ∈ [𝜆𝔾] and the garbled circuit is 𝐺̂.

2

Set

𝚌𝚝 ← SWE.Enc

(
((
((1𝜆, 𝑉𝑇+1,

{{
{
{{

𝑇 + 1 ‖ 𝑗 ‖ 0…0⏟
𝑗−1

…𝑏… 0…0⏟
𝜆𝔾−𝑗−1}}

}
}}

𝑏∈{0,1},𝑗∈[𝜆𝔾]

,

{𝑤̂𝑏
𝑗}𝑏∈{0,1},𝑗∈[𝜆𝔾]

)
))
))

(17)

3 Publish id = (𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝, 𝚌𝚝, 𝐺̂)

𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id = (𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝, 𝚌𝚝, 𝐺̂)) for blockchain ℬ𝒞𝑇+1:

4
For time 𝑇 + 1, let 𝑈𝑇+1 ⊆ 𝑉𝑇+1 be the signing set and 𝑉𝑇+1 = (𝚟𝚔1, …, 𝚟𝚔𝑛) be the
verification keys.

5 If |𝑈𝑇+1| < 𝑡
6 Return ⊥.
7 Call 𝑤̂𝚌𝚘𝚖𝚖1

1 , …, 𝑤̂
𝚌𝚘𝚖𝚖𝜆𝔾
𝜆𝔾

= 𝙳𝚎𝚌𝚛𝚆𝚒𝚛𝚎𝚜(𝜎, 𝑉 , 𝑈, 𝚌𝚝, 𝚌𝚘𝚖𝚖) (Algorithm 3)

8
Let 𝚌𝚝, 𝚌𝚝 = 𝙶𝙲.𝙴𝚟𝚊𝚕(𝐺̂, {𝑤̂𝚌𝚘𝚖𝚖𝑖

𝑖 }
𝑖∈[𝜆𝔾]

) Use the wire labels 𝑤̂𝚌𝚘𝚖𝚖𝑖
𝑖  to evaluate Circuit 4

to get 𝚌𝚝, 𝚌𝚝
9 Set 𝜋 = KZG.Open(𝚌𝚔, 𝑓, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝)

10 Set 𝑘 = 𝖣𝖾𝖼𝖺𝗉(𝚌𝚘𝚖𝚖, 𝜋, 𝚌𝚝)
11 Return 𝑠 = 𝚜𝚔.𝙳𝚎𝚌𝚛(𝑘, 𝚌𝚝)

Algorithm 3: 𝙳𝚎𝚌𝚛𝚆𝚒𝚛𝚎𝚜(𝜎, 𝑉 , 𝑈, 𝚌𝚝, 𝚌𝚘𝚖𝚖), decrypt wire-labels for the first-stage garbled-
circuit

Input: Signatures 𝜎𝑖 for 𝑖 ∈ [𝜆𝔾], verification keys 𝑉 = (𝚟𝚔1, …, 𝚟𝚔𝑛), signing set 𝑈 ⊆ [𝑛],
ciphertexts 𝚌𝚝, and state root commitment 𝑐 = 𝚌𝚘𝚖𝚖.

1 For 𝑖 ∈ [𝜆𝔾],
2 Set 𝑤̂𝑐𝑖

𝑖 = SWE.Dec(𝚌𝚝, 𝜎𝑖, 𝑈, 𝑉 )
3 Return wire labels 𝑤̂𝑐𝑖

𝑖  for 𝑖 ∈ [𝜆garb].
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Circuit 4: 𝙴𝚗𝚌𝚛𝚆𝚒𝚝𝚑𝙺𝚉𝙶(𝚌𝚘𝚖𝚖), first-stage circuit to be garbled

Input: Commitment to KZG polynomial 𝚌𝚘𝚖𝚖
Hard-Coded Values: Message 𝑠 and fixed data-positions, 𝚒𝚍𝚡, and target 𝚝𝚊𝚛𝚐𝚎𝚝

1 For 𝑏 ∈ {0, 1}, let 𝚌𝚝, 𝑘 ← 𝖤𝗇𝖼𝖺𝗉(1𝜆, 𝚌𝚘𝚖𝚖, (𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝)) as in Definition 2.10
2 Set 𝚌𝚝 = 𝚜𝚔.𝙴𝚗𝚌𝚛(𝑘, 𝑠)
3 Return 𝚌𝚝, 𝚌𝚝

Theorem 4.1 (Correctness):  Protocol 2 is correct (Definition 4.1) assuming that the
signature-based witness encryption is correct, and the KZG base witness encryption is
correct.

Proof :  The proof follows from direct inspection of the protocol. If 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] =
𝚝𝚊𝚛𝚐𝚎𝚝, then the blockchain will produce a valid signature 𝜎𝑗 for the 𝑗-th bit of the
KZG commitment, 𝚌𝚘𝚖𝚖, for all 𝑗 ∈ [𝜆𝔾]. Then, we can decrypt the wire labels 𝑤̂𝚌𝚘𝚖𝚖𝑗

𝑗  for
all 𝑗 ∈ [𝜆𝔾] using the signature-based witness encryption correctness (Definition 2.4). By
the simulation soundness of the garbled circuits (Definition 2.13), we can evaluate the
garbled circuit 𝐺̂ on the wire labels 𝑤̂𝚌𝚘𝚖𝚖𝑗

𝑗  to get 𝚌𝚝, 𝚌𝚝. Finally, we can use the KZG base
witness encryption correctness (Definition 2.8) to decrypt 𝚌𝚝 to get the message 𝑘 and
then decrypt 𝚌𝚝 using the secret key 𝑘 to get the message 𝑠. ∎

Theorem 4.2 (Soundness):  Protocol 2 is sound (Definition 4.2) assuming that the
signature-based witness encryption is sound, and the KZG base witness encryption is
sound.

We provide a full proof of the above theorem in Appendix A and sketch the proof here to
provide intuition.

Proof sketch :  The proof proceeds via contrapositive. Assume that there is no PPT
extractor, 𝐸, which can produce two distinct signatures for the same bit of the KZG
commitment for all 𝑗 ∈ [𝜆𝔾] and that 𝐸 cannot produce 𝚜𝚝𝚊𝚝𝚎∗ which is a valid blockchain
state and meets the 𝑇 + 1-eWEB condition.

First, note that for all 𝑗 ∈ [𝜆𝔾], either 𝑤̂0
𝑖  or 𝑤̂1

𝑖  is indistinguishable from random by the
security of signature-based witness encryption (Definition 2.5) as the extractor cannot
produce two valid signatures for the same bit of the KZG commitment. And so, we use
the selective security of the garbled circuits (Definition 2.13) to replace the garbled circuit
with the simulator which allows for evaluating 𝐶′ at most once and learning nothing else
about 𝐶′. And so, we can evaluate 𝐶′ only on KZG commitment 𝚌𝚘𝚖𝚖𝚜𝚝𝚊𝚝𝚎𝑇+1

 as only the
valid signatures for one KZG commitment are revealed. Next, note that the output of 𝐶′,
𝚌𝚝, 𝚌𝚝 are indistinguishable from random by the security of the extractable witness KEM
for KZG commitments (Definition 2.9) as 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] ≠ 𝚝𝚊𝚛𝚐𝚎𝚝 and, by the binding
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property of the KZG commitment, no proof 𝜋 can be produced for 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] =
𝚝𝚊𝚛𝚐𝚎𝚝 in polynomial time. ∎

5 Instantiating One-Time Programs
We now show why 𝑇 + 1-eWEBs, combined with a smart-contract system, are so powerful. We
first start by instantiating 𝑇 + 1 one-time programs which allow for a single evaluation of a
program by posting a message to the blockchain prior to the 𝑇 + 1-th block. We then show how
𝑇 + 1-𝖮𝖳𝖯s can be bootstrapped to extremely powerful primitives such as RAM obfuscation.
We also include “conditional gating” for the one-time programs which allows us to instantiate
“pay-to-use” primitives and other powerful primitives. This section draws heavily from the ideas
of Goyal and Goyal [2].

Definition 5.1 (𝑇 + 1-conditional One-Time Program (𝑇 + 1-𝖮𝖳𝖯)) :  A 𝑇 + 1-
conditional one-time program, 𝑇 + 1-𝖮𝖳𝖯, is a tuple (𝐒𝐞𝐭𝐮𝐩, 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭, 𝐄𝐯𝐚𝐥) where:
• 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟) for ℓ ≤ 𝑇  is a setup algorithm that takes as input a blockchain at

time ℓ, circuit input size 𝑟, and a condition 𝙲𝚘𝚗𝚍 and outputs a setup identifier, id𝐒𝐞𝐭𝐮𝐩.
• 𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩) is an initialization algorithm that outputs an identifier, id𝐈𝐧𝐢𝐭
• 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥) is an algorithm that takes as input a value 𝑥 and sets the

input of the OTP to 𝑥 by updating the blockchain at time 𝑇 .
• 𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝐈𝐧𝐢𝐭) is an algorithm that takes as input the blockchain at time 𝑇 + 1

and attempts to output 𝐶(𝑥).

Definition 5.2 (𝖮𝖳𝖯 Simulation-Based Soundness) :  We say that a 𝖮𝖳𝖯 scheme is sound
for circuit 𝐶 relative and auxiliary information, 𝚊𝚞𝚡, if:
• For every adversary, 𝒜, there exists a simulator 𝖲𝗂𝗆 such the following holds:

𝒜(1𝜆, 1|𝐶|, ℬ𝒞𝑇+1, id𝐒𝐞𝐭𝐮𝐩 ← 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), 𝙲𝚘𝚗𝚍, 𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩))

≈𝑐 𝖲𝗂𝗆𝚂𝚒𝚗𝚐𝚕𝚎(𝐶)(1𝜆, 1|𝐶|, 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), ℬ𝒞𝑇+1, 𝚊𝚞𝚡)
(18)

where 𝚂𝚒𝚗𝚐𝚕𝚎(𝐶) allows for only one evaluation of 𝐶 if and only if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 1.

Notice that the simulator 𝖲𝗂𝗆 also receives the setup output. Given that the setup only contains
publically known information, this is not a problem.

We leave a UC definition of 𝑇 + 1-conditional one-time programs for future work.

5.1 Constructing 𝑇 + 1-𝖮𝖳𝖯s from 𝑇 + 1-eWEB

We now show how to instantiate 𝑇 + 1 one-time programs from 𝑇 + 1 eWEBs, assuming the
existence of a smart contract system.
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Smart-Contract 5: Smart Contract for One-Time Program

Hard-Coded values: State with position 𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟 for functions with 𝑟 input bits
and condition 𝙲𝚘𝚗𝚍(ℬ𝒞).
Initialization:

1 Set ℬ𝒞[𝚒𝚍𝚡𝑖] = −1 for all 𝑖 ∈ [𝑟]

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(𝑥) for 𝑥 ∈ {0, 1}𝑟:
2 If ℬ𝒞[𝚒𝚍𝚡𝑖] ≠ −1 for any 𝑖, then
3 Return “Error: Input already set”
4 If 𝙲𝚘𝚗𝚍(ℬ𝒞) = 1, then
5 Set ℬ𝒞[𝚒𝚍𝚡𝑖] = 𝑥𝑖 for all 𝑖 ∈ [𝑟]
6 If 𝙲𝚘𝚗𝚍(ℬ𝒞) = 0, then
7 Return “Error: Condition not met”

Protocol 6: 𝑇 + 1-eWEB

𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍):
1 Post smart contract 𝒮𝒞 as defined in Smart-Contract 5 to the blockchain at time ℓ

2
Let id𝐒𝐞𝐭𝐮𝐩 = (𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟, 𝚊𝚍𝚍𝚛) be the identifier of the smart contract and 𝚊𝚍𝚍𝚛 be
the address of the smart contract.

3 Return id𝐒𝐞𝐭𝐮𝐩

𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩 = (𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟, 𝚊𝚍𝚍𝚛)):
4 Garble circuit 𝐶 with 𝑟 input bits to wires 𝑤0

1, 𝑤1
1…, 𝑤0

𝑟 , 𝑤1
𝑟 to get garbled circuit 𝐺.

5 For 𝑖 ∈ [𝑟], 𝑏 ∈ {0, 1}
6 Let id𝑏

𝑖 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑤𝑏
𝑖 , 𝑉𝑇+1, 𝚒𝚍𝚡𝑖, 𝑏)

7 Return id𝐈𝐧𝐢𝐭 = (𝐺, {id𝑏
𝑖}𝑖∈[𝑟],𝑏∈{0,1}

)

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥):
8 Call 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 on 𝒮𝒞 at address 𝚊𝚍𝚍𝚛 with the input 𝑥
9 If 𝒮𝒞 returns an error

10 Return the same error
𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝐈𝐧𝐢𝐭 = (𝐺, {id𝑏

𝑖}𝑖∈[𝑟],𝑏∈{0,1}
)):

11 For 𝑖 ∈ [𝑟]
12 Let 𝑤𝑥𝑖

𝑖 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id𝑥𝑖
𝑖 )

13 Call 𝑦 = 𝙶𝙲.𝐄𝐯𝐚𝐥(𝐺, {𝑤𝑥𝑖
𝑖 }

𝑖∈[𝑟]
)

14 Return 𝑦

Intuitively, we can see the above protocol as “enforcing” one-timeness by using a smart contract
to ensure that the input is only set once.
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Theorem 5.1 (One-Time Program Soundness from 𝑇 + 1-eWEB):  Assuming the
soundness of our 𝑇 + 1-eWEBs and that only one blockchain state can be produced per
block, the protocol above is a sound 𝑇 + 1-conditional one-time program, 𝑇 + 1-𝖮𝖳𝖯,
where soundness is defined as in  Definition 5.2.

We give a proof sketch outline below and a more complete proof in Appendix B.

Proof sketch :  The proof follows from a simple inspection of the smart contract alongside
the security properties of the eWEB. Note that it, for any 𝑖 ∈ [𝑟], 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡𝑟] ∈
{−1, 0, 1} and can only be set to one of these values by the soundness of the blockchain.
Moreover, for all 𝑖, 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡𝑖] ≠ −1 if and only if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 1. And so, if
𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) ≠ 1, then all the wires to the garbled circuit are indistinguishable from
random by the security of the eWEB (Definition 4.2). Thus, if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) ≠ 1, the
simulator can simply simulate the garbled circuit (by the indistinguishability of garbled
circuits, Definition 2.14.

If 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 1 and 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡𝑖] ≠ −1, then an adversary can only
learn the wires 𝑤𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡𝑖]

𝑖  for 𝑖 ∈ [𝑟] by the soundness of the 𝑇 + 1-
eWEB. We then use the soundness of the garbled circuit to show that the
simulator can simulate the garbled circuit and its wires while only learning
𝐶(𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡1] ‖ 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡2] ‖ … ‖ 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡𝑟]). ∎

5.2 Modification to our 𝑇 + 1-𝖮𝖳𝖯 Construction

Note that in the above, if the smart contract is not updated prior to the 𝑇 + 1-th block, then
we can never evaluate the garbled circuit on any input. Thus, we will make modifications to our
construction to allow for the garbled circuit to be evaluated on ⊥ if the smart contract was not
updated. We will later see, in Section 6, how this can be used to construct RAM obfuscation.

Our modifications are as follows; we need the one-time programs to do the following:
1. Have a “global” setup which only needs to be called once for a series of successive 𝑇 +

1-𝖮𝖳𝖯s.
2. Allow for the one-time program to take in the next set of verification keys.
3. Require that the evaluation, 𝐄𝐯𝐚𝐥, outputs 𝐶((𝚟𝚔1, …, 𝚟𝚔𝑛), ⊥) if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 0 or if

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 was not called at time 𝑇 .

We thus modify our 𝑇 + 1-𝖮𝖳𝖯 as follows:

Definition 5.3 (Modified 𝑇 + 1-conditional One-Time Program (𝑇 + 1-𝖮𝖳𝖯′)) :
A modified 𝑇 + 1-conditional one-time program, 𝑇 + 1-𝖮𝖳𝖯′, is a tuple
(𝐆𝐥𝐨𝐛𝐚𝐥𝐒𝐞𝐭𝐮𝐩, 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭, 𝐄𝐯𝐚𝐥) where:
• 𝐆𝐥𝐨𝐛𝐚𝐥𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟) for ℓ < 𝑇  is a setup algorithm that takes as input a

blockchain at time ℓ, circuit input size 𝑟, and a condition 𝙲𝚘𝚗𝚍 and outputs a setup
identifier, (id𝐒𝐞𝐭𝐮𝐩, 𝑇𝐈𝐧𝐢𝐭).

• 𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩, 𝑇𝐈𝐧𝐢𝐭) is an initialization algorithm that outputs an identifier,
id𝐈𝐧𝐢𝐭 for 𝐶 : 𝒱 × {⊥} ∪ {0, 1}𝑟 → 𝒴 where 𝒱 is the domain of possible verification keys.
𝑇𝐈𝐧𝐢𝐭 can be thought of as the last time in which the smart-contract, 𝒮𝒞, was updated.
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• 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥) is an algorithm that takes as input a value 𝑥 and sets the
input of the OTP to 𝑥 by updating the blockchain at time 𝑇 .

• 𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝐈𝐧𝐢𝐭) is an algorithm that takes as input the blockchain at time 𝑇 + 1
and attempts to output 𝐶((𝚟𝚔1, …, 𝚟𝚔𝑛), 𝑥) where 𝚟𝚔1, …, 𝚟𝚔𝑛 are the verification keys
for 𝚜𝚝𝚊𝚝𝚎𝑇+2. If 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 0 or if 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 was not called at time 𝑇 , then
𝐄𝐯𝐚𝐥 outputs 𝐶((𝚟𝚔1, …, 𝚟𝚔𝑛), ⊥).

To accommodate the above change, our construction remains almost the same except that we:

1. Need to have a bit-by-bit encoding of the next set of verification keys within the smart
contract. Specifically, we need to change eq. (13) in our blockchain specification to:

𝑏𝑗 = Commit(𝚌𝚔, 𝙱𝚒𝚝𝚒𝚏𝚢(𝑉𝑇+1) ‖ 𝚜𝚝𝚊𝚝𝚎𝑇 )[𝑗],  for 𝑗 ∈ [𝜆𝔾] (19)

where 𝙱𝚒𝚝𝚒𝚏𝚢 is a function which takes as input a string and outputs the bit-by-bit encoding
of the string9.

2. Need to have a “last-called” slot for the smart contract which is set to 𝑇  when 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 is
called at time 𝑇  and ℓ at initialization block ℓ < 𝑇

3. Allows for the garbled circuit to be evaluated on ⊥ if the last-called slot is ℓ and otherwise
on 𝑥 if 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 was called at time 𝑇 .

We will also slightly modify the security definition:

Definition 5.4 (𝖮𝖳𝖯′ Simulation-Based Soundness) :  We say that a 𝖮𝖳𝖯 scheme is sound
for circuit 𝐶 relative and auxiliary information, 𝚊𝚞𝚡, if:
• For every adversary, 𝒜, there exists a simulator 𝖲𝗂𝗆 such the following holds:

𝒜(1𝜆, 1|𝐶|, ℬ𝒞𝑇+1, id𝐒𝐞𝐭𝐮𝐩 ← 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), 𝙲𝚘𝚗𝚍, 𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩))

≈𝑐 𝖲𝗂𝗆𝚂𝚒𝚗𝚐𝚕𝚎(𝐶)(1𝜆, 1|𝐶|, 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), ℬ𝒞𝑇+1)
(20)

where 𝚂𝚒𝚗𝚐𝚕𝚎(𝐶) allows for only one evaluation of 𝐶. If 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 0, then 𝐶 can
only evaluate on ⊥. Otherwise, 𝐶 can evaluate on 𝑥 or ⊥ if and only if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) =
1.

Notice that the key difference between the above definition and Definition 5.2 is that the
condition on when 𝐶 can be evaluated is depends on whether the input is ⊥ or not.

Instantiating 𝑇 + 1-𝖮𝖳𝖯′

We now show how to instantiate 𝑇 + 1-𝖮𝖳𝖯′ from a smart contract system. The general outline
is similar to Protocol 6 but we need to add a few more details.

9Note that the change to Equation 13 increases the state of the blockchain by a multiplicative factor of
𝑂(𝜆𝔾) bits which can be substantial. We leave the optimization of this to future work.
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Smart-Contract 7: Smart Contract for One-Time Program

Hard-Coded values: State with position 𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟 for functions with 𝑟 input bits
and condition 𝙲𝚘𝚗𝚍(ℬ𝒞).
Initialization at block ℓ:

1 Set ℬ𝒞[𝚒𝚍𝚡𝑖] = 0 for all 𝑖 ∈ [𝑟]
2 Set 𝚕𝚊𝚜𝚝_𝚞𝚙𝚍𝚊𝚝𝚎 = ℓ

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(𝑥) for 𝑥 ∈ {0, 1}𝑟 called at time 𝑇 :
3 If 𝙲𝚘𝚗𝚍(ℬ𝒞) = 1, then
4 Set ℬ𝒞[𝚒𝚍𝚡𝑖] = 𝑥𝑖 for all 𝑖 ∈ [𝑟]
5 Set 𝚕𝚊𝚜𝚝_𝚞𝚙𝚍𝚊𝚝𝚎 = 𝑇 + 1
6 If 𝙲𝚘𝚗𝚍(ℬ𝒞) = 0, then
7 Return “Error: Condition not met”
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Protocol 8: 𝑇 + 1-𝖮𝖳𝖯′ Instantiation

𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍):
1 Post smart contract 𝒮𝒞 as defined in Smart-Contract 5 to the blockchain at time ℓ
2 Let 𝑇𝐈𝐧𝐢𝐭 = ℓ.

3
Let id𝐒𝐞𝐭𝐮𝐩 = (𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟, 𝚊𝚍𝚍𝚛) be the identifier of the smart contract and 𝚊𝚍𝚍𝚛 be
the address of the smart contract. Also, let ℓ be the block time of the smart contract’s
initialization.

4 Return id𝐒𝐞𝐭𝐮𝐩, 𝑇𝐈𝐧𝐢𝐭

𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩 = (𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟, 𝚊𝚍𝚍𝚛), 𝑇𝐈𝐧𝐢𝐭) for 𝐶 : {0, 1}𝑣 × {⊥} ∪ {0, 1}𝑟 → 𝒴
where 𝒱 ⊆ {0, 1}𝑣

5
Define 𝐶′ : {0, 1}𝑣 × {0, 1}𝑟 × {0, 1} → 𝒴 such that 𝐶′(𝑉 , 𝑥, 0) = 𝐶(𝑉 , ⊥) and
𝐶′(𝑉 , 𝑥, 1) = 𝐶(𝑉 , 𝑥)

6 𝐺, ({𝑤̃0
𝑗 , 𝑤̃1

𝑗}{𝑗∈[𝑣]}
, {𝑤0

𝑖 , 𝑤1
𝑖 }{𝑖∈[𝑟]}

, {𝐹𝑏}{𝑏∈{0,1}}) ← 𝙶𝙲.𝙶𝚊𝚛𝚋𝚕𝚎(𝐶′)10

7 For 𝑖 ∈ [𝑟], 𝑏 ∈ {0, 1}
8 Let id𝑏

𝑖 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑤𝑏
𝑖 , 𝑉𝑇+1, 𝚒𝚍𝚡𝑖, 𝑏)

9 For 𝑗 ∈ [𝑣], 𝑏 ∈ {0, 1}

10
Let ĩd𝑏

𝑗 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝑤̃𝑏
𝑗, 𝑉𝑇+1, 𝚒𝚍𝚡ver𝑗

, 𝑏) where 𝚒𝚍𝚡ver𝑗
 is the position of the 𝑗-th bit

for the string of next verification keys.
11 Let id𝐹0

← 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝐹0, 𝑉𝑇+1, 𝚕𝚊𝚜𝚝_𝚞𝚙𝚍𝚊𝚝𝚎, 𝑇𝐈𝐧𝐢𝐭)
12 Let id𝐹1

← 𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎(𝐹1, 𝑉𝑇+1, 𝚕𝚊𝚜𝚝_𝚞𝚙𝚍𝚊𝚝𝚎, 𝑇 + 1)
13 Return id𝐈𝐧𝐢𝐭 = (𝐺, {ĩd𝑏

𝑗}{𝑗∈[𝑣],𝑏∈{0,1}}
, {id𝑏

𝑖}𝑖∈[𝑟],𝑏∈{0,1}
, {id𝐹0

, id𝐹1
})

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥):
14 Call 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭 on 𝒮𝒞 at address 𝚊𝚍𝚍𝚛 with the input 𝑥
15 If 𝒮𝒞 returns an error
16 Return the same error

𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝐈𝐧𝐢𝐭 = (𝐺, {id𝑏
𝑖}𝑖∈[𝑟],𝑏∈{0,1}

)):

17 For 𝑖 ∈ [𝑟]
18 Let 𝑤𝑥𝑖

𝑖 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id𝑥𝑖
𝑖 )

19 If 𝚕𝚊𝚜𝚝_𝚞𝚙𝚍𝚊𝚝𝚎 = 𝑇 + 1:
20 Let 𝐹 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id𝐹1

)
21 Else
22 Let 𝐹 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(id𝐹0

)
23 For 𝑗 ∈ [𝑣] and string representing the next verification keys 𝑉 ∈ {0, 1}𝑣,
24 Let 𝑤̃𝑉𝑗

𝑗 ← 𝚂𝚎𝚌𝚛𝚎𝚝𝚁𝚎𝚕𝚎𝚊𝚜𝚎(ĩd𝑉𝑗
𝑗 )

25 Call 𝑦 = 𝙶𝙲.𝐄𝐯𝐚𝐥(𝐺, ({𝑤̃𝑉𝑗
𝑗 }

𝑗∈[𝑣]
, {𝑤𝑥𝑖

𝑖 }
𝑖∈[𝑟]

, 𝐹))

26 Return 𝑦

10𝐹𝑏 stands for the wires on the “flag” bit which represents if the input is ⊥ or not.
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Lemma 5.1 (Soundness of modified 𝑇 + 1-𝖮𝖳𝖯, Protocol 8) :  The protocol above is a
sound 𝑇 + 1-conditional one-time program, 𝑇 + 1-𝖮𝖳𝖯′ assuming the soundness of the
underlying blockchain, SWE, and WE for KZG commitments, where soundness is defined
as in  Definition 5.4.

Proof sketch :  The proof follows in almost the same way as Theorem 5.1 except for one
key difference: if the input is not set, we can decrypt the wires corresponding to the input
⊥. First, we can see that, per-bit of input, only one of the wire labels can be decrypted
by the security of the blockchain. Next, if 𝐹0 is released, then the smart contract was not
updated, and the user will be able to evaluate 𝐶 on ⊥. If 𝐹1 is released, then the smart
contract was updated and the user will be able to evaluate 𝐶 on 𝑥. ∎

6 Conditional RAM Obfuscation
Stateful obfuscation is a powerful primitive that allows for the obfuscation of a program such
that it can be executed on a RAM machine where the memory itself is “authenticated” in such
a way that the program can not be “reversed” [3].

We recall the simulation-based definition of RAM obfuscation from [3].

Definition 6.1 (RAM-Oracle) :  A stateful RAM-oracle for a program 𝑃 , connoted R𝒪,
with authenticated RAM, is an oracle which maintains an updatable state across queries.
Specifically, we model any algorithm 𝒜 with oracle access to R𝒪𝑝 and starting state RAM0
as follows: the algorithm’s queries to the oracles, 𝑥1, …, 𝑥ℓ with outputs 𝑦1, …, 𝑦ℓ, can be
broken down as follows

(𝑦𝑖, RAM𝑖) = 𝑃(𝑥𝑖, RAM𝑖−1). (21)
where RAM𝑖 is the updated state of the oracle after query 𝑥𝑖.

As with our one-time program, we will change the definition of RAM obfuscation to allow for
conditional execution. Moreover, we will change the API from [3] to better fit the blockchain
context.

We then say that a scheme is a RAM-blackbox obfuscator if it can be used to construct a RAM-
oracle for any program 𝑃 . Specifically, we use the following definition:

Definition 6.2 (RAM-Blackbox Obfuscator) :  A RAM-blackbox obfuscator is a tuple of
algorithms (R𝒪.𝚜𝚎𝚗𝚍, R𝒪.𝚎𝚟𝚊𝚕) such that:
• 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟) for ℓ ≤ 𝑇  is a setup algorithm that takes as input a blockchain at

time ℓ, circuit input size 𝑟, and a condition 𝙲𝚘𝚗𝚍 and outputs an identifier, id𝐒𝐞𝐭𝐮𝐩.
• 𝐈𝐧𝐢𝐭(ℬ𝒞𝑇 , 𝑃 , id𝐒𝐞𝐭𝐮𝐩, RAM0) is an initialization algorithm that outputs an initial

identifier, id0 with initial state RAM0
• 𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥) is an algorithm that takes as input a value 𝑥 and sets the

input of the OTP to 𝑥 by updating the blockchain at time 𝑇 .
• 𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+𝑝+1, id𝑝) is an algorithm that takes as input the blockchain at time 𝑇 + 1

and attempts to output 𝑃(𝑥, RAM𝑝). 𝐄𝐯𝐚𝐥 also returns id𝑝+1 which is the identifier
of the next RAM-oracle.

Then, we define the security of a RAM-blackbox obfuscator as follows:

Definition 6.3 (RAM-Blackbox Obfuscator Simulation Soundness) :
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A RAM-blackbox obfuscator is secure if for every polynomial-time adversary 𝒜 there
exists a polynomial-time simulator 𝖲𝗂𝗆 such that:

𝒜(1𝜆, 1|𝑃 |, ℬ𝒞𝑇+𝑝+1, id𝐒𝐞𝐭𝐮𝐩 ← 𝐈𝐧𝐢𝐭(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟), 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞𝑇 , 𝑃 , id𝐒𝐞𝐭𝐮𝐩))

≈𝑐 𝖲𝗂𝗆R𝒪(𝑃)(1𝜆, 1|𝑃 |, 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), ℬ𝒞𝑇+𝑝+1)
(22)

where R𝒪(𝑃) is the RAM-oracle for program 𝑃 .

6.1 Instantiating RAM Obfuscation

We now show how we can use Definition 5.3 to construct a RAM obfuscator.

First, we need to define a “recursive” circuit for RAM obfuscation, in a similar way to Ref. [3].
We note that our RAM programs have some notion of time (denoted as subscript 𝑖) which is
the last block in which the RAM program was executed. Upon execution of the RAM program,
the time is increased to 𝑇 + 1.

Definition 6.4 (Recursive RAM Encoding) :  For circuit class 𝒫 : {0, 1}𝑟 × {0, 1}𝑚 → 𝒴 ×
{0, 1}𝑚 where {0, 1}𝑚 represents the “internal” state of the RAM, we define a recursive
circuit 𝑃 ′

𝑖 for 𝑃 ′
𝑖 = 𝑃(⋅, RAM𝑖) and 𝑃 ∈ 𝒫 as follows: Let (𝑦, RAM𝑇+1) = 𝑃 ′

𝑇 (𝑥) where
𝑥 ∈ {0, 1}𝑟 and RAM𝑇+1 is the next internal state of the RAM. Moreover, let 𝚟𝚔1, …, 𝚟𝚔𝑛
be the verification keys for 𝑇 + 1-th block. Then, we define the recursive circuit as follows
for 𝑥 ∈ {⊥} ∪ {0, 1}𝑟: if 𝑥 ≠ ⊥, then for verification keys 𝑉𝑇+2 for the 𝑇 + 2-th block:

𝑃 ′
𝑇 (𝑉𝑇 , 𝑥) =

(𝑃 ′(𝑥), 𝑇 + 1-𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝑃 ′
𝑇+1, id𝐒𝐞𝐭𝐮𝐩, 𝑇 )) = (𝑦, id𝑇+1

𝐈𝐧𝐢𝐭 ).
(23)

Otherwise, if 𝑥 = ⊥, then we define the circuit as:
𝑃 ′

𝑇 (𝑉𝑇 , ⊥) = (⊥, 𝑇 + 1-𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝑃 ′
𝑇+1, id𝐒𝐞𝐭𝐮𝐩, 𝑇Last)) = (⊥, id𝑇+1

𝐈𝐧𝐢𝐭 ) (24)

where 𝑇Last is the prior block time, 𝑇 , for which the RAM program was executed on an
input which was not ⊥.

Finally, now that we have setup our technical machinery, we can define our RAM obfuscation
protocol in a relatively straightforward manner.
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Protocol 9: RAM Obfuscation for circuit class 𝒫 : {0, 1}𝑟 × {0, 1}𝑚 → 𝒴 × {0, 1}𝑚 where
{0, 1}𝑚 represents the “internal” state of the RAM

𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍):
1 Call id𝐒𝐞𝐭𝐮𝐩, 𝑇𝐈𝐧𝐢𝐭 ← 𝑇 + 1-𝖮𝖳𝖯′.𝐆𝐥𝐨𝐛𝐚𝐥𝐒𝐞𝐭𝐮𝐩 (ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟)

𝐈𝐧𝐢𝐭(ℬ𝒞𝑇 , 𝑃 , id𝐒𝐞𝐭𝐮𝐩 = (𝚒𝚍𝚡1, …, 𝚒𝚍𝚡𝑟, 𝚊𝚍𝚍𝚛), RAM0, 𝑇𝐈𝐧𝐢𝐭):
2 Let 𝑃 ′ = 𝑃(⋅, RAM0) and

id𝑇
𝐈𝐧𝐢𝐭 = 𝑇 + 1-𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝑃 ′

𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑇𝐈𝐧𝐢𝐭) (25)

where 𝑃 ′ is the recursive RAM encoding of 𝑃 ′ for time 𝑇 + 1 (Definition 6.4).
3 Return id𝑇

𝐈𝐧𝐢𝐭

𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥):
4 Call 𝑇 + 1-𝖮𝖳𝖯′.𝐒𝐞𝐭𝐈𝐧𝐩𝐮𝐭(ℬ𝒞𝑇 , id𝐒𝐞𝐭𝐮𝐩, 𝑥)
5 If the smart contract, 𝒮𝒞, returns an error
6 Return the same error

𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝑇
𝐈𝐧𝐢𝐭):

7 Call 𝑦, id𝑇+1
𝐈𝐧𝐢𝐭 ← 𝑇 + 1-𝖮𝖳𝖯′.𝐄𝐯𝐚𝐥(ℬ𝒞𝑇+1, id𝑇

𝐈𝐧𝐢𝐭)
8 Return 𝑦 and publish id𝑇+1

𝐈𝐧𝐢𝐭

Theorem 6.1 (RAM-Blackbox Obfuscator):  The RAM-blackbox obfuscator
(R𝒪.𝚜𝚎𝚗𝚍, R𝒪.𝚎𝚟𝚊𝚕) is a secure RAM obfuscator as defined in Definition 6.4 assuming the
soundness of the one-time program 𝑇 + 1-𝖮𝖳𝖯′ and underlying blockchain.

We provide a proof of the above theorem in Appendix C and a sketch of the proof below.

Proof sketch :  The proof follows along the lines of Ref. [3]. As we have a one-time program
from the previous section, we can use the one-time programs simulation soundness to show
that only one query per RAM state is possible. Then, we recursively replace each call to
one-time program with its simulation based definition. So, for a polynomial number of
queries to the RAM oracle, we can simulate each query using the one-time program. ∎

7 Conclusion
In this work, we show how to construct some of the most powerful cryptographic primitives
where the security is based on the underlying security of a blockchain. Specifically, we construct
a 𝑇 + 1-eWEB scheme, a conditional one-time program scheme, and a conditional RAM
obfuscation scheme. Along the way, we give a simple yet formal description of a proof of stake
blockchain model as well.

Though our construction is relatively simple, it is not without its drawbacks; follow up work is
needed to improve the construction. First, our construction requires a modified BLS signature
scheme with 𝜆𝔾 multiplicative blowup in the signature size. We are thus left with the following
open questions:
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Can we construct a scheme without 𝜆𝔾 multiplicative blowup in the signature size?

It seems as though we can use the aggregation of messages in BLS to reduce the size of the
signature though this would require modifying the underlying SWE scheme.

Moreover, in order to instantiate our RAM obfuscation scheme, we require a bit-by-bit
representation of the verification keys in the blockchain state, which can lead to a large size
blowup in the blockchain state. So, we have the next open question:

Can we construct a scheme that does not require a bit-by-bit representation of the verification
keys?

Moreover, our construction is heavily based on pairing-based cryptography, a notably not post-
quantum secure primitive. Unlike a blockchain, which uses cryptography for consensus, our
primitives can also be used for privacy. Thus, our work is vulnerable to “store-now-decrypt-
later” attacks, where an adversary can store ciphertexts and decrypt them later once a functional
quantum computer is available. So, we are left with the following open questions:

Can we construct a scheme that is post-quantum secure while simultaneously keeping its
simplicity?

Finally, we note that our construction is relatively inefficient. For example, on the Ethereum
blockchain, the set of signers does not completely change from block to block. Thus, we could
potentially improve the efficiency of our scheme by having some update rule for the set of signers
rather than having to feed the whole set of signers into our garbled circuits.
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A Proofs for T+1-eWEB
We now provide the missing proof for Section 4 and Theorem 4.2. We restate the theorem
for convenience.

Theorem 1.1 (Soundness of Protocol 2):  Protocol 2 is sound (Definition 4.2) assuming
that the signature-based witness encryption is sound, and the KZG base witness
encryption is sound.

Proof :  The proof proceeds via contrapositive. Assume that there is no PPT extractor,
𝐸, which can produce two distinct signatures for the same bit of the KZG commitment
for all 𝑗 ∈ [𝜆𝔾] and that 𝐸 cannot produce 𝚜𝚝𝚊𝚝𝚎∗ which is a valid blockchain state and
meets the 𝑇 + 1-eWEB condition.

We now proceed to show that the adversary cannot distinguish between the two messages
𝑠 and 𝑠′ for any fixed 𝚒𝚍𝚡 and 𝚝𝚊𝚛𝚐𝚎𝚝 given blockchain ℬ𝒞 at block 𝐹 ≥ 𝑇  via a series
of hybrid arguments.

• 𝖧𝗒𝖻0: The first hybrid is the real protocol where the adversary receives the output of
𝚂𝚎𝚌𝚛𝚎𝚝𝚂𝚝𝚘𝚛𝚎 and the blockchain ℬ𝒞𝐹  for 𝐹 ≥ 𝑇

• 𝖧𝗒𝖻1: The second hybrid is the same except that if 𝐹 = 𝑇 , we replace all the wire labels
in the encryption with random values, i.e. 𝑤̂0

𝑗 , 𝑤̂1
𝑗  are replaced with random values for

𝑗 ∈ [𝜆𝔾].
• 𝖧𝗒𝖻2: The same as 𝖧𝗒𝖻1 except that if 𝐹 > 𝑇 , then let 𝜎 be the signature for the 𝑇 +

1 block. Then let 𝜎 be the negation of 𝜎 (𝜎𝑗 = 1 − 𝜎𝑗). Then, set 𝑤̂𝜎𝑗
𝑗 = 𝑟̂𝑗 where 𝑟̂𝑗 is

a random value for 𝑗 ∈ [𝜆𝔾].
• 𝖧𝗒𝖻3: The same as 𝖧𝗒𝖻2 except that we replace the garbled circuit 𝐺̂ with its simulator:

‣ Let 𝐺̂ be the garbled circuit for the first stage circuit Circuit 4 and the adversary’s
view is

𝐺̂, {𝑤̂𝑥𝑗
𝑗 }

𝑗∈[𝜆𝔾]
, 𝚌𝚝, ℬ𝒞, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝 (26)

and gets replaced with simulator 𝖲𝗂𝗆3 with view
1𝜆, 1𝑛, 1|𝐶|, 𝐶(𝑥), ℬ𝒞, 𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝 (27)

where 𝖲𝗂𝗆3 first simulates 𝚌𝚝 and then uses the garbled circuit simulator. If 𝐹 = 𝑇 ,
then we set 𝐶(𝑥) = ⊥.

• 𝖧𝗒𝖻4: The same as 𝖧𝗒𝖻3 except that if 𝐹 > 𝑇 , we replace 𝚌𝚝, 𝚌𝚝 = 𝐶(𝑥) with 𝚌𝚝, 𝚌𝚝′

where 𝚌𝚝′ is an encryption of a random value.

Then, we can see in 𝖧𝗒𝖻4, as either 𝐶(𝑥) = ⊥ or 𝐶(𝑥) output 𝚌𝚝′ which is an encryption
of a random value, the adversary cannot distinguish between 𝑠 and 𝑠′ as we have removed
𝑠 from the view of the adversary. ∎

Lemma 1.1 (𝖧𝗒𝖻0 ≈𝑐 𝖧𝗒𝖻1) :  The first hybrid, 𝖧𝗒𝖻0, is computationally indistinguishable
from the second hybrid, 𝖧𝗒𝖻1, we have a blockchain at time 𝑇  and thus no signature
is revealed for the 𝑇 + 1 block. And so, by the security of the signature-based witness
encryption (Definition 2.5), the wire labels 𝑤̂0

𝑗 , 𝑤̂1
𝑗  are indistinguishable from encryptions

of random messages for all 𝑗 ∈ [𝜆𝔾].
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Lemma 1.2 (𝖧𝗒𝖻1 ≈𝑐 𝖧𝗒𝖻2) :  Note that by our assumption, the extractor 𝐸 cannot
produce two distinct signatures for the same bit of the KZG commitment for all 𝑗 ∈ [𝜆𝔾].
And so, by the security of the signature-based witness encryption (Definition 2.5), one
of the wire labels 𝑤̂0

𝑗 , 𝑤̂1
𝑗  are indistinguishable from encryptions of random messages for

all 𝑗 ∈ [𝜆𝔾]. Because the signature 𝜎 is revealed, then the indistinguishable wire labels
correspond to 𝜎

Lemma 1.3 (𝖧𝗒𝖻2 ≈𝑐 𝖧𝗒𝖻3) :  Define the circuit family for our garbled circuit 𝒞 as
𝒞 = {𝐶(𝚌𝚘𝚖𝚖) = 𝙴𝚗𝚌𝚛𝚆𝚒𝚝𝚑𝙺𝚉𝙶𝚒𝚍𝚡, 𝚝𝚊𝚛𝚐𝚎𝚝,𝑠(𝚌𝚘𝚖𝚖) | 𝑠 ∈ 𝒮} (28)

where the subscript indicates the fixed values of the circuit. Then, by the previous two
hybrids, at least one of the wire labels 𝑤̂𝜎𝑗

𝑗  is indistinguishable from random for all 𝑗 ∈
[𝜆𝔾]. And so, the simulator can choose a random value for 𝑤̂𝜎𝑗

𝑗  and encrypt it using the
blockchain ℬ𝒞. As the blockchain itself is independent of 𝒞 as well, then we can use the
selective security of the garbled circuits (Definition 2.13) to replace the garbled circuit 𝐺̂
with its simulator.

Lemma 1.4 (𝖧𝗒𝖻3 ≈𝑐 𝖧𝗒𝖻4) :  If 𝐹 = 𝑇 , then 𝐶(𝑥) = ⊥, and so 𝑠 is removed from the
view of the adversary. If 𝐹 > 𝑇 , then we have 𝚌𝚝, 𝚌𝚝 ← 𝐶(𝚌𝚘𝚖𝚖). Note that 𝚌𝚝 can only
be decrypted to reveal 𝑘 if an extractor can produce a valid proof 𝜋 for 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] =
𝚝𝚊𝚛𝚐𝚎𝚝. Moreover, note that we can only run 𝐶(𝚌𝚘𝚖𝚖) once on a valid signature for
block 𝑇 + 1. And so, 𝚌𝚘𝚖𝚖 must pass verification for 𝚜𝚝𝚊𝚝𝚎𝑇+1 (i.e. Verify𝑉 (𝚜𝚝𝚊𝚝𝚎𝑇+1) =
1) and, by our assumption, 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] ≠ 𝚝𝚊𝚛𝚐𝚎𝚝. Assume towards contradiction that
the adversary can decrypt 𝑘 and so an extractor exists, 𝐸′, which can produce a valid
proof 𝜋 for 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝 in polynomial time. And so, either the adversary
has state 𝚜𝚝𝚊𝚝𝚎′ which has commitment 𝚌𝚘𝚖𝚖 and 𝚜𝚝𝚊𝚝𝚎′ ≠ 𝚜𝚝𝚊𝚝𝚎∗, or the adversary
has 𝚜𝚝𝚊𝚝𝚎∗ which has commitment 𝚌𝚘𝚖𝚖 and 𝚜𝚝𝚊𝚝𝚎∗[𝚒𝚍𝚡] ≠ 𝚝𝚊𝚛𝚐𝚎𝚝. In the first case, the
adversary breaks the binding property of the KZG commitment as it can produce two
distinct signatures for the same bit of the KZG commitment. In the second case, the
adversary can produce a valid proof 𝜋 for 𝚜𝚝𝚊𝚝𝚎𝑇+1[𝚒𝚍𝚡] = 𝚝𝚊𝚛𝚐𝚎𝚝 in polynomial time,
breaking the soundness of the KZG commitment.

B Proofs for T+1-OTP
We now provide the missing details for the proof of Theorem 5.1. Recall the theorem statement:

Theorem 2.1 (One-Time Program Soundness from 𝑇 + 1-eWEB):  Assuming the
soundness of our 𝑇 + 1-eWEBs and that only one blockchain state can be produced per
block, the protocol above is a sound 𝑇 + 1-conditional one-time program, 𝑇 + 1-𝖮𝖳𝖯,
where soundness is defined as in  Definition 5.2.

We note that the following proof is a rather straightforward application of the soundness of the
𝑇 + 1-eWEB (Definition 4.2) and the security of the garbled circuits (Definition 2.13).

Proof :  We proceed via a series of hybrid arguments.

• 𝖧𝗒𝖻0: the real protocol, here the view of the adversary is
{1𝜆, 1|𝐶|, ℬ𝒞𝑇+1, id𝐒𝐞𝐭𝐮𝐩 ← 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), 𝙲𝚘𝚗𝚍, 𝐈𝐧𝐢𝐭(𝑉𝑇+1, 𝐶, id𝐒𝐞𝐭𝐮𝐩)} (29)
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• 𝖧𝗒𝖻1: For all 𝑖, ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖] = −1, replace both 𝑤0
𝑖  and 𝑤1

𝑖  with random values.
• 𝖧𝗒𝖻2: If for all 𝑖, ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖] ≠ −1, let 𝑥𝑖 = ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖]. Replace 𝑤1−𝑥𝑖

𝑖  with a
random value.

• 𝖧𝗒𝖻3: If ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖] ≠ −1 for all 𝑖, replace the garbled circuit with its simulator,
giving away 𝐶(𝑥). We now have the simulated view

{1𝜆, 1|𝐶|, 𝐶(𝑥), 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍), ℬ𝒞𝑇+1}. (30)

We can then see that in 𝖧𝗒𝖻4, if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 0, then, by the soundness of the
blockchain, ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖] = −1 for all 𝑖 ∈ [𝑟] and so the garbled circuit is indistinguishable
from random by Definition 2.14. Otherwise, if 𝙲𝚘𝚗𝚍(𝚜𝚝𝚊𝚝𝚎𝑇+1) = 1, by the security of the
eWEB (Definition 4.2) and Definition 2.13, the simulator can only get one evaluation of
𝐶 under input 𝑥. ∎

Lemma 2.1 :  𝖧𝗒𝖻0 ≈𝑐 𝖧𝗒𝖻1

Proof :  The first hybrid follows from the soundness of the eWEB (Definition 4.2) as we
can replace the message with a random value if the blockchain’s state at time 𝑇 + 1 does
not match the target. ∎

Lemma 2.2 :  𝖧𝗒𝖻1 ≈𝑐 𝖧𝗒𝖻2

Proof :  The second hybrid follows from the soundness of the eWEB (Definition 4.2) as
well: if ℬ𝒞𝑇+1[𝚒𝚍𝚡𝑖] = 𝑥𝑖 can only equal 0 or 1 and thus by the soundness of the eWEB,
𝑤1−𝑥𝑖

𝑖  is removed from the view of the adversary as we can replace its encryption with an
encryption of a random value. ∎

Lemma 2.3 :  𝖧𝗒𝖻2 ≈𝑐 𝖧𝗒𝖻3

Proof :  Note that the adversary’s view can only contain at most one set of wires,
{𝑤𝑥𝑖

𝑖 }
{𝑖∈[𝑟]}

. So, we can replace the garbled circuit with its simulator, which outputs 𝐶(𝑥),
by the soundness of the garbled circuit (Definition 2.13). ∎

C Proof for RAM-Orcale Construction
Here, we will provide a proof of soundness for our RAM obfuscation scheme. As before, we
restate the theorem for convenience:

Theorem 3.1 (RAM-Blackbox Obfuscator):  The RAM-blackbox obfuscator
(R𝒪.𝚜𝚎𝚗𝚍, R𝒪.𝚎𝚟𝚊𝚕) is a secure RAM obfuscator as defined in Definition 6.4 assuming the
soundness of the one-time program 𝑇 + 1-𝖮𝖳𝖯′ and underlying blockchain.

The proof will follow the proof of RAM obfuscation in Ref. [3] closely. The high level idea will
be to use a series of induction steps, alongside the strong notion of one-time simulation security
for our 𝑇 + 1-𝖮𝖳𝖯′ to replace each call to the one-time program with a call to two separate
programs: one which outputs the program’s result and the other which outputs the setup for
the next one-time program. We then recursively simulate the next-one time program.

Proof :  We proceed via a series of inductive hybrids. Specifically, for ℓ ∈ poly(𝜆), we will
show that
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𝒜(1𝜆, 1|𝑃 |, ℬ𝒞𝑇+𝑝+1, id𝐒𝐞𝐭𝐮𝐩 ← 𝐈𝐧𝐢𝐭(ℬ𝒞ℓ, 𝙲𝚘𝚗𝚍, 𝑟), 𝙲𝚘𝚗𝚍, 𝐒𝐞𝐭𝐮𝐩(ℬ𝒞𝑇 , 𝑃 , id𝐒𝐞𝐭𝐮𝐩)) ≈𝑐

𝑆ℓ⚬(𝕀, 𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAMℓ−1, ⋅))⚬
…⚬(𝕀, 𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM1, ⋅))⚬𝑆1 ⚬ (𝕀, 𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM0, ⋅)))⚬𝑆0.

(31)

for PPT algorithms 𝑆 where ℓ ∈ poly(𝜆).

Consider the following sequence of hybrids:
• 𝖧𝗒𝖻0: the real protocol
• 𝖧𝗒𝖻1: replace 𝒜 with the simulator for the 𝑇 + 1-OTP’: 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃 ′

𝑇+1). Then break up
𝑆 into 2, 𝑆0, 𝑆1 such that

𝑆 = 𝑆
𝚂𝚒𝚗𝚐𝚕𝚎(𝑇+1−𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(⋅,𝑃 ′

1 , id𝐒𝐞𝐭𝐮𝐩,𝑇Last)))
1  ⚬ 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM0,⋅))

0 . (32)
In words, we split the simulator into two parts, one which returns the output of the
program 𝑃(RAM0, ⋅) and the other which returns the setup for the next one-time
program, 𝑇 + 1-OTP’.

• 𝖧𝗒𝖻𝑖 for 𝑖 ∈ {2, …, ℓ′} for some ℓ′ ≥ ℓ choosen later in the proof. Replace the simulator,
𝑆𝑖−1 with 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃 ′

RAM𝑖−1). Then, take 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃 ′
RAM𝑖−1) and replace it with the two

simulators, 𝑆𝑖−1, 𝑆𝑖 such that

𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃 ′
𝑖−1) = 𝑆

𝚂𝚒𝚗𝚐𝚕𝚎(𝑇+1−𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(⋅,𝑃 ′
𝑖 , id𝐒𝐞𝐭𝐮𝐩,𝑇Last)))

𝑖  ⚬ 𝑆(𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM𝑖−1,⋅)).
𝑖−1 (33)

To see that the above hybrids are valid, note that 𝑃 ′
𝑖  simultaneously evaluates 𝑃 ′

𝑖 , outputs
id𝑖+1

𝐈𝐧𝐢𝐭 via a call to 𝑇 + 1 − 𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭. So, a simulator which can first evaluate 𝑃(RAM𝑖, ⋅
) and then evaluate 𝑇 + 1 − 𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(⋅, 𝑃 ′

𝑖 , id𝐒𝐞𝐭𝐮𝐩, 𝑇Last)) is strictly stronger than (and
can thus simulate) the adversary in the real protocol.

Finally, note that after the ℓ′-th hybrid, we have

𝑆 = 𝑆
𝚂𝚒𝚗𝚐𝚕𝚎(𝑇+1−𝖮𝖳𝖯′.𝐈𝐧𝐢𝐭(⋅,𝑃 ′

ℓ′, id𝐒𝐞𝐭𝐮𝐩,𝑇Last)))
ℓ′  ⚬ 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAMℓ′−1,⋅))

ℓ′−1  ⚬ 

… ⚬ 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM1,⋅))
1  ⚬ 𝑆𝚂𝚒𝚗𝚐𝚕𝚎(𝑃(RAM0,⋅))

0

(34)

Given that 𝑆 runs in polynomial time, we can always find some polynomially large ℓ′ ≥
ℓ such that 𝑆ℓ′ is the null simulator as 𝑆’s runtime is consumed by 𝑆ℓ−1, …, 𝑆0.

We thus have our desired result as we can re-write 𝑆 as a set of RAM oracle calls:
𝑆ℓ⚬(𝕀, R𝒪[𝑃 , RAMℓ−1])⚬…⚬(𝕀, R𝒪[𝑃 , RAM1])⚬𝑆1 ⚬ (𝕀, R𝒪[𝑃 , RAM0])⚬𝑆0. (35)

∎
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