
MIZAR: Boosting Secure Three-Party Deep Learning with Co-Designed Sign-Bit
Extraction and GPU Acceleration

Ye Dong†, Xudong Chen‡, Xiangfu Song§, Yaxi Yang¶, Tianwei Zhang§, Jin-Song Dong†

†National University of Singapore, Singapore
§Nanyang Technological University, Singapore

¶Singapore University of Technology and Design, Singapore
‡Institute of Information Engineering, CAS, Beijing, China
{dongye, csdjs}@nus.edu.sg, chenxudong@iie.ac.cn,

{xiangfu.song, tianwei.zhang}@ntu.edu.sg, yaxi yang@sutd.edu.sg

Abstract—Three-party secret sharing-based computation has
emerged as a promising approach for secure deep learning,
benefiting from its high throughput. However, it still faces
persistent challenges in computing complex operations such
as secure Sign-Bit Extraction, particularly in high-latency and
low-bandwidth networks. A recent work, Aegis (Lu et al.,
Cryptology ePrint’2023), made significant strides by proposing
a constant-round DGK-style Sign-Bit Extraction protocol with
GPU acceleration on Piranha (Watson et. al., USENIX Se-
curity’2022). However, Aegis exhibits two critical limitations:
it i) overlooks the use of bit-wise prefix-sum, and ii) inherits
non-optimized modular arithmetic over prime fields and exces-
sive memory overhead from the underlying GPU-based MPC
framework. This results in suboptimal performance in terms
of communication, computation, and GPU memory usage.

Driven by the limitations of Aegis, we propose an opti-
mized constant-round secure Sign-Bit Extraction protocol with
communication and GPU-specific optimizations. Concretely, we
construct a new masked randomized list by exploiting the
upper bound of bit-wise prefix-sum to reduce online communi-
cation by up to 50%, and integrate fast modular-reduction and
kernel fusion techniques to enhance GPU utilization in MPC
protocols. Besides, we propose specific optimizations for secure
piecewise polynomial approximations and Maxpool computa-
tion in neural network evaluations. Finally, we instantiate these
protocols as a framework MIZAR and report their improved
performance over state-of-the-art GPU-based solutions: i) For
secure Sign-Bit Extraction, we achieve a speedup of 2–2.5×
and reduce communication by 2–3.5×. ii) Furthermore, we
improve the performance of secure evaluation of nonlinear
functions and neural networks by 1.5–3.5×. iii) Lastly, our
framework achieves 10%–50% GPU memory savings.
Index Terms—Privacy, Secure 3-Party Computation, Sign-Bit
Extraction, Deep Learning

1. Introduction
Deep learning has achieved remarkable success across

a wide range of applications, including image recogni-

tion [10], natural language processing [48], and social graph
analysis [66]. However, deploying deep learning technolo-
gies often requires collecting data from multiple entities for
neural network training or inference, which may conflict
with data security and privacy regulations [2, 3]. To alleviate
relevant security and privacy concerns, recent works have
introduced advanced cryptographic frameworks [26, 35, 43,
44, 53, 67] to enable privacy-preserving deep learning tasks.
Secure Multi-Party Computation (MPC) enables multiple
distrusted parties to jointly compute a function over their
inputs while keeping those inputs cryptographically secure.
It has emerged as one of the most promising solutions for
achieving privacy-preserving deep learning.

Among various MPC techniques, secret sharing-based
three-party computation (3PC) under a semi-honest security
model with an honest-majority assumption has gained sig-
nificant attention [39] due to its balanced trade-off between
security and efficiency. To optimize 3PC-based deep learn-
ing, recent approaches have explored different secret-sharing
schemes, including replicated secret sharing [39, 43], dealer-
based additive secret sharing [62, 73], and masked secret
sharing [36]. These schemes enable efficient secure neu-
ral network evaluation. Additionally, GPU-accelerated MPC
platforms [60, 67] have been developed to enhance compu-
tational performance. However, despite significant improve-
ments in arithmetic operations like matrix multiplication
and convolution, secure Sign-Bit Extraction remains a ma-
jor bottleneck in existing 3PC approaches. This operation,
which extracts the Sign-Bit of signed fixed-point values
represented in two’s complement [71], is crucial for the
nonlinear functions of neural networks.

Existing works have made significant efforts to im-
prove the efficiency of 3PC secret sharing-based Sign-Bit
Extraction, yet they remain constrained by either commu-
nication overhead, round complexity, computation, or all.
We summarize the representative works in Table 1 and
analyze them as follows: i) Replicated secret sharing-based
solutions [43, 60, 65, 67] work in symmetric settings where
each party holds 2-out-of-3 shares. While these solutions
are communication and computation-efficient, they require
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Figure 1: A high-level overview of the modular computation
framework. Gray denotes the techniques from [36].

O(log2 ℓ) rounds to compute a parallel prefix adder (PPA)
for ℓ-bit inputs, leading to high latency in networks with sig-
nificant delays. ii) Garbled circuits (GC)-based approach [8]
and function secret sharing [5] can extract the Sign-Bit
using a binary adder with 2ℓ bits of constant online rounds.
However, their preprocessing phases incur substantial com-
munication overhead of O(ℓκ), where κ is the security pa-
rameter. iii) For the dealer-based approaches, Bicoptor [73]
realizes O(ℓ2) communication comparison from probabilis-
tic truncation [44], but its concrete communication cost
can even exceed FSS-based solutions when targeting a
negligible truncation error. SecureNN [62] and Aegis [36]
can extract the Sign-Bit with constant rounds. Nevertheless,
SecureNN still incurs significantly more concrete communi-
cation overhead compared to ours. Aegis uses dealer-based
masked secret sharing to design the DGK-style [15] Sign-
Bit Extraction protocol with 2 rounds, but it overlooks
the upper bounds of bit-sum, leading to communicating
two randomly masked lists and resulting in an estimated
50% increase in online communication than ours. A very
recent concurrent work [37] optimizes Aegis by designing
a randomly masked list to achieve the same communication
complexity as ours, but it ignores GPU optimizations and
thus is slower and less GPU-memory efficient than MIZAR.
iv) Although some GPU-based MPC platforms have been
introduced [36, 37, 60, 67], they are still at an early stage,
ignoring finite field operations and GPU memory optimiza-
tions. As a result, their GPU utilization remains suboptimal
and requires further improvements. Consequently, we ask
the following question:

Can we design a three-party secure Sign-Bit Extraction
protocol that is communication efficient, maintains constant
round complexity, and improves GPU utilization?

We propose a framework MIZAR to answer the above
question affirmatively. MIZAR starts from the DGK-based
secure Sign-Bit Extraction protocol of Aegis [36], with the
key technical insights summarized as follows.

1.1. Technical Overview

Figure 1 illustrates the hierarchical structure of MIZAR.
Below, we present a high-level technical overview.
Reduced Communication for Sign-Bit Extraction (§ 3.2).
Looking into the details of the semi-honest version of
Aegis [36], we find that the communication overhead
is mostly dominated by that (P0,P1) reveal permuted
{[ui]

p}i∈[0,ℓ) and {[u′
i]
p}i∈[0,ℓ) to P2 (online-2, Figure 3),

which consumes > 90% (resp. > 70%) of online (resp. total)
communication. However, Aegis overlooks the natural upper
bounds of the prefix sum of a bit-string of length ℓ.

Our key insight is that, by leveraging these upper
bounds, (P0,P1) only need to reveal a single permuted
list {[vi]p}i∈[0,ℓ), instead of two. The analysis of Aegis
is detailed in § 3.1 and constructions of {[vi]p}i∈[0,ℓ) are
formulated in § 3.1.1. Apart from the masked list, our
optimized secure Sign-Bit Extraction protocol follows the
same design as Aegis [36].

Consequently, our protocol optimization can reduce the
online communication by approximately 50% while still
maintaining the same 2-round complexity.
GPU Optimizations for MPC (§ 3.3). Piranha [67] is
a high-performance GPU-based MPC framework that sup-
ports other systems [36], but it still exhibits the following
limitations: i) Piranha is designed for arithmetic over rings
and Boolean operations, but lacks optimized arithmetic over
prime fields Fp. Recent constant-round protocols [36, 37],
and ours, rely on such operations, and naively using integer
division (idiv)-based approach is suboptimal on the GPU.
ii) Although Piranha provides in-place element-wise oper-
ators, composing complex expressions necessitates explicit
intermediate buffer allocation. This design choice leads to
increased GPU memory usage.

To address these limitations, we introduce the following
optimizations: i) For general prime, we adopt Barrett modu-
lar multiplication [28] to avoid costly idiv instructions; and
we set p > ℓ as Mersenne prime p = 27 − 1 when ℓ = 32
and 64 [36, 39, 43]: Modular operation over a Mersenne
prime only requires bit-wise left/right shifts and addition.
We further integrate the GPU scan-based parallel prefix-sum
technique [23] for acceleration. ii) We apply the kernel fu-
sion technique to combine multiple element-wise operations
into one fused GPU kernel, thereby reducing intermediate
variables and avoiding repeated kernel launches.

With arithmetic operations over two-power ring [36], we
construct fast 3PC nonlinear functions (§ 4) to boost the
performance of secure evaluation of neural networks (§ 6).

Comparison to Concurrent [37]. Concurrent presents
an improved version of Aegis, introducing an alternative
method to reduce the two randomly masked lists in Aegis
to a single list, thereby achieving the same communication
complexity as ours. However, their construction does not
incorporate GPU optimizations for modular reduction over
prime and memory usage. Therefore, it is slower in practice
and incurs approximately 1.5× higher GPU memory con-
sumption than ours. Additionally, we propose several spe-
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TABLE 1: Comparison of Sign-Bit Extraction works in 3PC with semi-honest security under the honest-majority assumption.
RSS/ASS/MSS is respective short for replicated/additive/masked secret sharing, PPA indicates parallel prefix adder. ℓ is the
bit length of inputs, i.e., ℓ = 64, and p ∈ (ℓ, 2log2 ℓ+1] is a prime modulus. κ = 128 is the computational security parameter,
ℓx is the security parameter for truncation error 21−ℓx . P-FALCON denotes the Piranha-based FALCON [67].

Framework Dealer Techniques Preprocessing Online GPURound Communication

ABY3 [43] ✗ RSS, PPA ✗ 2 + log2 ℓ 12ℓ ◦
FALCON [65] ✗ RSS, DGK > 6ℓ2 + 6(ℓ+ 1)⌈log2 p⌉ 3 + log2 ℓ (6ℓ+ 3)⌈log2 p⌉+ 3ℓ ◦
CryptGPU [60] ✗ RSS, PPA ✗ 2 + log2 ℓ 12ℓ •

P-FALCON [67] ✗ RSS, PPA ≈ 2ℓ2 + ℓ 1 + log2 ℓ 12ℓδ‡ •
Boyle et al. [5] ✓ FSS, Adder (ℓ+ 2)κ 1 2ℓ ◦

ASTRA [8] ✓ GC, PPA 5ℓκ 2 ℓκ+ 2 ◦
Bicoptor [73] ✓ (2+1)-ASS, Trunc. ✗ 2 (ℓx + ℓ)(2 + ℓ) ◦

SecureNN [62] ✓ (2+1)-ASS, DGK ✗ 9 8ℓ⌈log2 p⌉+ 19ℓ ◦
Aegis [36] ✓ (2+1)-MSS, DGK (ℓ− 1)⌈log2 p⌉+ 2ℓ 2 4ℓ⌈log2 p⌉+ 2ℓ •

Cocurrent [37] ✓ (2+1)-MSS, DGK (ℓ− 1)⌈log2 p⌉+ 2ℓ 2 2ℓ⌈log2 p⌉+ 2ℓ •
MIZAR (Ours) ✓ (2+1)-MSS, DGK (ℓ− 1)⌈log2 p⌉+ 2ℓ 2 2ℓ⌈log2 p⌉+ 2ℓ ••

‡ P-FALCON encodes each bit as one byte for better computational efficiency, incurring a δ = 8× actual communication expansion.

cific optimizations for secure nonlinear functions, enabling
more efficient secure evaluation of neural networks.

1.2. Contributions

In summary, we make the following contributions:
• Optimized Sign-Bit Extraction. We design an optimized

3PC Sign-Bit Extraction protocol with constant-round
complexity. Inspired by [36], our protocol introduces two
key optimizations: i) By leveraging the upper bounds
of bit-wise prefix-sums, we reduce the communication
cost of masked lists by approximately 50%. ii) We inte-
grate the fast prime modular arithmetic and kernel fusion
techniques on the GPU, enabling better computational
efficiency and GPU memory savings, which could be of
independent interest.

• Improved Secure Nonlinear Functions. Using the opti-
mized secure Sign-Bit Extraction, we construct improved
3PC protocols for nonlinear functions in neural networks.
By exploiting the properties of piecewise polynomials for
complex activation functions, we reduce the preprocess-
ing communication cost of one-vs-many comparisons by
up to 4× and simplify secure Maxpool under heuristic
constraint |x| < L/4, where ZL is the large ring. Ad-
ditionally, we analyze the Activation-Maxpool switching
optimization [18, 65], proving it is only applicable to
monotonic activation functions. To our best knowledge,
we are the first to provide this theoretical formulation.

• Implementation & Evaluation. We implement MIZAR
in C++ and compare it to the GPU-based 3PC frame-
work Piranha [67], Aegis [36], and Concurrent [37]1 to
demonstrate our performance improvements: i) Compared
to Aegis and Piranha, MIZAR achieves a speedup of
2–2.5× and reduces communication by up to 3.5× in
secure Sign-Bit Extraction, and improves the performance
by 1.5–3.5× in secure nonlinear functions and neural
networks, for the online phase. ii) For end-to-end evalua-

1. We focus on semi-honest security, so we implement and compare with
the semi-honest versions of Aegis and Concurrent.

tions, MIZAR reduces the overall communication and run-
time by approximately 1.2–2×. iii) MIZAR still achieves
modest running time savings over Concurrent [37]. iv)
MIZAR significantly reduces the peak GPU memory con-
sumption, achieving 10% to 50% GPU memory savings
over [36, 37, 67], allowing larger models or batch sizes to
be accommodated within the same hardware constraints.

Organization. We first introduce the background and pre-
liminary in § 2. Then, we present our intuition and optimized
Sign-Bit Extraction protocol and GPU optimizations in § 3.
Next, the constructions of improved nonlinear functions are
given in § 4. We give a security analysis in § 5 and report
the experimental performance in § 6. Finally, we summarize
related works in § 7 and conclude this work in § 8.

2. Background & Preliminaries

2.1. Notations

We use Pi to denote the i-th party, where i ∈ {0, 1, 2}.
A lowercase letter x represents a scalar, with xi denoting its
i-th bit in binary representation. We write ZL for the ring
modulo L = 2ℓ and Fp for the finite field modulo a prime
p, with F∗

p = Fp \ {0}. We use [·], ⟨·⟩, and J·K to denote
three linear secret sharing schemes over ZL by default. Their
counterparts over Fp are [·]p, ⟨·⟩p, and J·Kp, respectively.

2.2. Dealer-based Three-Party Computation

In dealer-based 3PC, one dealer (i.e., P2) assists two
computing parties (i.e., P0 and P1) for secure computation,
i.e., generates and distributes correlated randomness.

2.2.1. Sharing Semantics. As illustrated in Table 2, we use
three kinds of linear secret sharing as follows:
• [·]-Sharing: x ∈ ZL is additively shared by two random

values [x]0 = r with r
$← ZL and [x]1 = x−r (mod L),

where Pi gets [x]i for i ∈ {0, 1}, and P2 gets nothing.
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TABLE 2: The secret sharing semantics.

Semantics [x] ⟨x⟩ JxK

P0 [x]0 ⟨x⟩0 = [x]0 JxK0 = (m, ⟨r⟩0)
P1 [x]1 ⟨x⟩1 = [x]1 JxK1 = (m, ⟨r⟩1)
P2 ⊥ ⟨x⟩2 = ([x]0, [x]1) JxK2 = ⟨r⟩2

• ⟨·⟩-Sharing: similar to [·]-sharing, the value x is additively
shared between (P0,P1) as ⟨x⟩0 = [x]0 and ⟨x⟩1 = [x]1,
while P2 holds ⟨x⟩2 = ([x]0, [x]1).

• J·K-Sharing: JxK = (m, ⟨r⟩) with x = m− r (mod L) is
defined as: i) The random r is generated and ⟨·⟩-shared
among three parties, where Pi has ⟨r⟩i for i ∈ {0, 1, 2}.
ii) m = x + r is only revealed to computing parties
(P0,P1) and hidden from dealer P2.

For clarity and brevity, we omit operations (mod L) and
(mod p) when clear from context.

2.2.2. Addition & Multiplication. The addition of shared
values in all three secret sharing schemes can be computed
non-interactively by each party adding its share locally. Let
(JxK, JyK) be two secret-shared values. Their secure multi-
plication is conducted in the preprocessing/online paradigm:
i) In the preprocessing phase, P2 generates [rxy] with
rxy = rx · ry, and all parties generate ⟨rz⟩. ii) In the online
phase, Pi locally computes [mz]i = i ·mxmy −mx ⟨ry⟩i−
my ⟨rx⟩i+[rxy]i+ ⟨rz⟩i for i ∈ {0, 1}, and exchange [mz]i
to reconstruct mz . All parties get JzK = (mz, ⟨rz⟩) with
z = xy. The communication costs of the preprocessing
phase is ℓ bits, and the online phase is 2ℓ bits. The above
operations can be applied to both ring (i.e., L = 2ℓ) and
finite field, and easily extended to vector and matrix.

2.2.3. Fixed-point Representation & Truncation. We en-
code floating-point values as scaled integers in rings [36, 43,
44]. Given floating-point x̃ ∈ R, its encoding is x = ⌊2f · x̃⌋
(mod L). We use [0, L/2) to represent R+, and [L/2, L) for
negative values. The procedure of multiplying z = x · y
results in 2f fractional bits z = ⌊z̃ · 22f⌋. To prevent
overflow, we utilize the truncation protocol proposed in
Aegis (Figure 10, Appendix E).

2.3. Neural Networks

A neural network is composed of multiple linear and
nonlinear layers. Each layer receives input and produces an
output that serves as input to the next layer.
• Typical linear layers include fully connected and convolu-

tional layers. Taking fully connected layer as an example,
given an input vector x ∈ Rn×1, the output y ∈ Rm×1

is computed as y = Wx+ b, where W ∈ Rm×n is the
weight matrix and b ∈ Rm×1 is the bias term. Generally,
neural networks often take a batch of images as inputs
Xn×|B| (|B| is the batch size). Fully connected layers can
be computed by matrix multiplication. Similarly, convolu-
tional layers can be achieved using matrix multiplication
and vector products [43, 44, 62].

1 1 0 1 0 1 1 1m̂||1

1 1 0 0 1 1 0 0(2ℓ−1 − r̂)||0

0 0 0 1 1 0 1 1(m̂||1) ⊕ ((2ℓ−1 − r̂)||0)

Bit position ξ = 3

m̂ξ = 1

Figure 2: Comparison m̂ ≥ (2ℓ−1 − r̂) using XOR. m̂ and
2ℓ−1 − r̂ are padded with 1 and 0 to solve m̂ = 2ℓ−1 − r̂.

• For nonlinear layers, many different activation functions
and pooling functions are used: i) Activation functions
are applied element-wise to the input tensor. One of the
most popular activation functions is ReLU, defined as
ReLU(x) = max(0, x) = (1 − sgn(x)) · x. Other com-
monly used activation functions include Sigmoid, GeLU,
etc. [47]; ii) Pooling arranges inputs into several windows
and aggregates elements of each window. Maxpool (resp.
Avgpool) calculates the maximum (resp. average) for
each window, i.e., given x = {x1, x2, . . . , xn}, Maxpool
outputs max(x1, x2, . . . , xn) and Avgpool outputs

∑
xi

n .
For other operations commonly used in neural networks, i.e.,
BatchNorm and Softmax, please refer to [1].

2.4. Threat Model & Security Definitions

Following the threat model in prior works [43, 62, 67],
we consider a semi-honest (a.k.a., honest-but-curious) ad-
versary that corrupts no more than one of three parties.
The adversary follows protocol specifications, but may try
to learn others’ private information during the execution.

Definition 1 (Semi-Honest Security). Let Π be a three-
party protocol running in real-world and F be ideal ran-
domized functionality. Π securely computes functionality F
in the presence of a single semi-honest adversary if for
every corrupted party Pi (i ∈ {0, 1, 2}) and every input
x ∈ ({0, 1}∗)3, there exists an efficient simulator S:

{viewi,Π(x), outputΠ(x)}
c
≈ {S(i, xi,Fi(x)),F(x)},

where viewi,Π(x) is the view of Pi in the execution of Π
on x, outputΠ(x) is the output of all parties, and Fi(x)
denotes the i-th output of F(x).

3. Optimized Sign-Bit Extraction

We revisit the two-round secure Sign-Bit Extraction of
Aegis [36] (§ 3.1), and then present our protocol design
(§ 3.2) and GPU optimizations (§ 3.3).

3.1. Revisiting Sign-Bit Extraction of Aegis [36]

Given JxK = (m, ⟨r⟩), the Sign-Bit is sgn(x) =
sgn(m)⊕sgn(−r)⊕(m̂+r̂ ≥ 2ℓ−1), where m = sgn(m)||m̂
and −r = sgn(−r)||r̂, and || denotes bit concatenation. As
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Protocol Sign-Bit Extraction ΠSiBit

Input: JxK = (m, ⟨r⟩) over a ring ZL with L = 2ℓ, public
biggest prime p ∈ (ℓ, 2log2 ℓ+1].
Output: JyK such that y = sgn(x).
Preprocessing:

1: All parties first generate two shared random ⟨r′⟩ and ⟨ry⟩
using PRF non-interactively.

2: (P0,P1) generate common random ∆
$← {0, 1} and reveal

[γ]i = ∆+ [r′]i − 2∆ · [r′]i + [ry]i to each other, where
[r′]i = ⟨r′⟩i and [ry]i = ⟨ry⟩i for i ∈ {0, 1}.

3: P2 computes r̂ = −r − sgn(−r) · 2ℓ−1, extracts 2ℓ−1 − r̂
as bit-values {r̂0, r̂1, . . . , r̂ℓ−2}, and generate secret-shares
[r̂i]

p among P0 and P1.
Online:

1: (P0,P1) compute m̂ = m− sgn(m) · 2ℓ−1, extract m̂ as
bit-values {m̂0, . . . , m̂ℓ−2}, pad (m̂ℓ−1 = 1,
[r̂ℓ−1]

p = [0]p), compute [si]
p = m̂i + [r̂i]

p − 2m̂i[r̂i]
p,

[ti]
p =

∑i
k=0[sk]

p − 2[si]
p + 1.

2: (P0,P1) generate random {wi, w
′
i}

$← (F∗
p)

2 for i ∈ [0, ℓ),
compute [ui]

p = wi · [ti]p + (sgn(m)⊕ m̂i ⊕∆) and
[u′

i]
p = w′

i · (wi · [ti]p + 1), permute π({[ui]
p}i∈[0,ℓ)) and

π({[u′
i]
p}i∈[0,ℓ)) with a common random permutation π,

and reveal permuted results to P2.
3: P2 sets m′ = sgn(−r)− r′ if ∃π(ui) = 0 ∧ π(u′

i) ̸= 0 for
i ∈ [0, ℓ); otherwise, m′ = (1⊕ sgn(−r))− r′. And m′ is
revealed to (P0,P1).

4: return P0 and P1 locally compute my = m′ − 2∆m′ + γ
such that JyK = (my, ⟨ry⟩) with y = sgn(x).

Figure 3: Sign-Bit Extraction protocol ΠSiBit of Aegis [36].

sgn(m) and sgn(−r) can be extracted locally by respective
(P0,P1) and P2, the challenge is computing (m̂ + r̂ ≥
2ℓ−1)⇔ (m̂ ≥ 2ℓ−1− r̂) securely. This is equivalent to m̂ξ,
where ξ ∈ [0, ℓ) is the first index that m̂ξ ̸= (2ℓ−1 − r̂)ξ
(example as Figure 2). Aegis [36] proposes an efficient Sign-
Bit Extraction protocol ΠSiBit in Figure 3. Its correctness
is as follows: Regarding {ti}i∈[0,ℓ) (Online-1, Figure 3), ξ
is the unique index such that tξ = 0, and ti ≥ 1 for ∀i ̸= ξ.
As proved in Aegis [36] (§ 3.1), if π(uξ) = 0∧ π(u′

ξ) ̸= 0,
we have sgn(m)⊕ m̂ξ ⊕∆ = 0, a.k.a., sgn(m)⊕ m̂ξ = ∆.
With m′ = sgn(−r)− r′ provided by P2, we have

my = m′ − 2∆ ·m′ + γ

= (sgn(−r)− r′)− 2∆ · (sgn(−r)− r′)

+ (∆ + r′ − 2∆r′ + ry)

= sgn(−r) + ∆− 2sgn(−r) ·∆+ ry

= (sgn(−r)⊕∆) + ry

= (sgn(−r)⊕ sgn(m)⊕ m̂ξ) + ry

= (sgn(−r)⊕ sgn(m)⊕ (m̂+ r̂ ≥ 2ℓ−1))︸ ︷︷ ︸
sgn(x)

+ry

. (1)

Otherwise, if for ∀i ∈ [0, ℓ), π(ui) = 0 ∧ π(u′
i) ̸= 0 does

not hold, it indicates sgn(m) ⊕ m̂ξ ⊕ ∆ = 1. Similar as
equation (1), we have my = sgn(x) + ry in this case (see

TABLE 3: Benchmarking the throughput (ops/second) of x
(mod L) with L = 2ℓ and x (mod p) on NVIDIA A100-
PCIE-40GB with a batch of 220.

Type Modulus Time Modulus Time

x (mod L) L = 264 43478 L = 28 55556
x (mod p) p ≈ 264 18182 p = 127 27027

Appendix E). During the preprocessing phase, P2 and P1

use PRF to non-interactively generate [r̂i]
p
1, so it requires

communication of (ℓ − 1) log2 ℓ bits from P2 to P0, and
2ℓ bits between P0 and P1, in a single round. In the online
phase, P0 sends 2ℓ log2 ℓ bits and receives ℓ bits to/from P2

over two rounds, and same applies to P1. For more details
about correctness and security, please refer to [36].

3.1.1. Limitations Formulation. There are still limitations
of ΠSiBit in Aegis [36]. We discuss them as follows.

Limitation-I: Online Communication Cost. ΠSiBit is
round efficient but still expensive in online communication,
which mainly comes from revealing the following two lists:{

[ui]
p = wi · [ti]p + (sgn(m)⊕ m̂i ⊕∆),

[u′
i]
p = w′

i · (wi · [ti]p + 1).
(2)

It has been proved that ∃ξ subjected to uξ = 0 if and only if:
1) wξ ·tξ = 0 and sgn(m)⊕m̂ξ⊕∆ = 0, or 2) wξ ·tξ = p−1
and sgn(m)⊕m̂ξ⊕∆ = 1. As u′

ξ ̸= 0 excludes the latter case

and wξ
$← F∗

p, it must be tξ = 0 and sgn(m)⊕m̂ξ⊕∆ = 0.
Aegis [36] has proved the upper bounds ti < ℓ but did not
leverage it completely in the construction of ΠSiBit.

Limitation-II: Utilization of GPU. Aegis [36] utilized
Piranha [67] to accelerate the computational efficiency by
GPU, but Piranha is only optimized for computation in
ring Z2ℓ and Boolean world, while ΠSiBit involves a large
amount of modular operations over field Fp. Operations
modulo 2ℓ can be performed using bit-masking and shifting:
x (mod 2ℓ) = x ∧ (2ℓ − 1), which is extremely fast.
However, x (mod p) requires computing integer division
w = idiv(x, p) followed by multiplication and subtraction,
i.e., x (mod p) = x−w · p, which is more than 2× slower
than modulo 2ℓ as Table 3. Moreover, Piranha only supports
in-place operators and composes multiple in-place operators
for complex expressions. This approach requires intermedi-
ate buffers to store partial results, resulting in too much
GPU memory usage, e.g., directly implementing [36, 37]
on Piranha consumes 10%–25% more GPU memory usage
than 3PC-Piranha (P-FALCON) (§ 6).

3.2. Upper Bound of {ti}i∈[0,ℓ)

Considering the upper bound of {ti}i∈[0,ℓ), we only need
one masked list, instead of two as Equation (2), thereby re-
ducing online communication by approximately 50%. Recall
that si = m̂i+r̂i−2m̂ir̂i = m̂i⊕r̂i is binary with sℓ−1 = 1.
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Optimized Protocol Sign-Bit Extraction Π+
SiBit

Input: JxK over a ring ZL with L = 2ℓ, public prime p > ℓ.
Output: JyK such that y = sgn(x).
Preprocessing:

1: Same as the preprocessing phase of ΠSiBit.
Online:

1: (P0,P1) compute m̂ = m− sgn(m) · 2ℓ−1, extract m̂ as
bit-values {m̂0, . . . , m̂ℓ−2}, pad (m̂ℓ−1 = 1,
[r̂ℓ−1]

p = [0]p), compute [si]
p = m̂i + [r̂i]

p − 2m̂i[r̂i]
p,

[ti]
p =

∑i
k=0[sk]

p − 2[si]
p + 1.

2: (P0,P1) generate wi
$← F∗

p for i ∈ [0, ℓ) randomly,
compute [vi]

p = wi · ([ti]p + (sgn(m)⊕ m̂i ⊕∆)),
permute π({[vi]p}i∈[0,ℓ)) with a common random
permutation π, and reveal permuted results to P2.

3: P2 sets m′ = sgn(−r)− r′ if ∃π(vi) = 0; otherwise,
m′ = (1⊕ sgn(−r))− r′. And m′ is revealed to (P0,P1).

4: return P0 and P1 locally compute my = m′ − 2∆m′ + γ
such that JzK = (my, ⟨ry⟩) with y = sgn(x).

Figure 4: Optimized Sign-Bit Extraction protocol Π+
SiBit.

Then, for ti =
∑i

k=0 sk−2si+1, we always have ti ≤ ℓ−1:

ti =

i∑
k=0

sk − 2si + 1 =

i−1∑
k=0

sk − si + 1 ≤ i− si + 1.

For i ∈ [1, ℓ−2], we have ti ≤ i−si+1 ≤ i+1 ≤ ℓ−1. For
i = ℓ−1, we have tℓ−1 ≤ (ℓ−1)−sℓ−1+1 ≤ ℓ−1, the last
inequality follows the fact that sℓ−1 = m̂ℓ−1 ⊕ r̂ℓ−1 = 1.

Aegis [36] correctly selects a prime p ∈ (ℓ, 2log2 ℓ+1] to
avoid unintended wrap-around in [ti]

p. However, this upper
bound is overlooked when computing wi · [ti]p. Although
such masking protects the privacy of [ti]

p, it expands the
value range from [0, ℓ) to [0, (p− 1)(ℓ− 1)], thereby intro-
ducing the risk of wrap-around, a.k.a., wi · ti = a · p − 1
and sgn(m) ⊕ m̂i ⊕ ∆ = 1 with a ≥ 1. To mitigate this,
Aegis introduces an auxiliary list {[u′

i]
p} to exclude the case

where wi · ti = a · p− 1.
Our insight is that with (sgn(m)⊕m̂i⊕∆) ∈ {0, 1}, we

have the range of ti + (sgn(m) ⊕ m̂i ⊕∆) ∈ [0, ℓ], which
will not trigger wrap around by setting p > ℓ. Consequently,
it is guaranteed that

ti + (sgn(m)⊕ m̂i ⊕∆) = 0
⇔

(
ti = 0 ∧ (sgn(m)⊕ m̂i ⊕∆) = 0

) . (3)

In this way, we can construct masked [vi]
p for i ∈ [0, ℓ) as

[vi]
p = wi · ([ti]p + (sgn(m)⊕ m̂i ⊕∆)), (4)

where wi
$← Z∗

p and prime p > ℓ. It is guaranteed that
vi = 0 if and only if ti = 0 ∧ (sgn(m) ⊕ m̂i ⊕ ∆) = 0.
As a result, (P0,P1) only need to compute, permute, and
reveal {[vi]p}i∈[0,ℓ) to P2, which not only saves the compu-
tation cost but also reduces the total online communication
from 4ℓ⌈log2 p⌉ + 2ℓ to 2ℓ⌈log2 p⌉ + 2ℓ, approximately

TABLE 4: Benchmarking the throughput (ops/second) of
prefix-sum of naive sequential solution and scan-based op-
timization under three modular reduction methods: idiv,
Barret, and Mersenne. The input is of batchsize n = 220.

Type idiv Barret Mersenne

Naive 8,333 10,417 10,417
Ours 16,667 20,000 21,277

2× improvements. Combining the above optimization with
protocol ΠSiBit, our Π+

SiBit is illustrated in Figure 4.

Remark 1. The concurrent work [37] proposed [vi] =
wi · [ti] ·(1⊕sgn(m)⊕m̂i⊕∆)+wi ·(sgn(m)⊕m̂i⊕∆) for
i ∈ [0, ℓ) to reduce two random lists of ΠSiBit (Figure 3) to
single list. Independently, we design our randomly masked
list as Equation (4). Both achieve total online communica-
tion complexity of 2ℓ⌈log2 p⌉+ 2ℓ, where p > ℓ.

3.3. GPU Modulo-p & Memory Optimizations

We first introduce fast modular reduction over Fp and
scan-based prefix-sum on GPU. Then, we integrate the ker-
nel fusion technique to reduce GPU memory consumption.

3.3.1. Modulo-p Arithmetic. In terms of modular reduction
over p: x (mod p) = x − idiv(x, p) · p, idiv contributes to
majority of the computational overhead. Barrett approach is
one of the most widely fast modular reduction methods [28].
Given x and p, it first searches integer (m, k) such that
m
2k
≈ 1

q , then the modular reduction can be implemented by
only two multiplications, one right shift, one comparison,
and at most two subtractions, which completely eliminate
idiv. Note that we only need to compute (m, k) once for
fixed p. The detailed algorithm is in Appendix E.
Mersenne Prime. Additionally, we consider a special case
with a Mersenne prime. For a k-bit Mersenne prime p =
2k − 1 (a.k.a., p = 111 . . . 1112), its special form enables
highly efficient modular reduction only using bitwise AND,
right shift, and addition operations: x (mod p) = (x∧ p)+
(x ≫ k). This is more computationally efficient than the
idiv-based solution and Barrett approach.
Parallel Prefix-Sum. Beyond modular reduction over prime
fields, our protocols additionally require efficient prefix-sum
computation on GPUs. A naive sequential addition-based
solution incurs a complexity of O(n2). Instead, we employ
a parallel scan-based operation optimized method [23] for
GPU architectures, which only requires O(n) operations.
The empirical evaluation in Table 4 shows that our intro-
duced fast modular methods and GPU scan-based technique
achieve superior computational efficiency.

3.3.2. Kernel Fusion for Better GPU Memory. Pi-
ranha supports operations on vectorized DeviceData shares.
It leverages thrust::transform function to support high-
performance in-place element-wise arithmetic and Boolean
operations. However, composing multiple in-place opera-
tions for complex expressions can lead to additional GPU
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1 void piranha_naive(
2 const DeviceData<uint32_t> &x,
3 const DeviceData<uint32_t> &y0,
4 const DeviceData<uint32_t> &y1,
5 DeviceData<uint32_t> &output) {
6

7 output.zero(); // issue 1 kernel
8 // copy input to inter-variable, as const does not

support in-place operation, issue 2 kernels
9 DeviceData<uint32_t> temp(x.size());

10 temp += x, output += x;
11

12 // compute inter-results & output, issue 3 kernels
13 temp *= y0;
14 output ˆ= y1;
15 output += temp;
16 }
17 // kernel fusion
18 __device__
19 uint32_t fused_op(
20 uint32_t x,
21 thrust::tuple<uint32_t, uint32_t> y) {
22 return (x * thrust::get<0>(y)) + (x ˆ thrust::get

<1>(y));
23 }
24 void mizar_with_kernel_fusion(
25 const DeviceData<uint32_t> &x,
26 const DeviceData<uint32_t> &y0,
27 const DeviceData<uint32_t> &y1,
28 DeviceData<uint32_t> &output) {
29

30 auto zip_iter_start = thrust::make_zip_iterator(y0.
begin(), y1.begin());

31

32 // just one step, issue 1 kernel
33 thrust::transform(thrust::device, x.begin(), x.end

(), zip_iter_start, output.begin(), fused_op);
34 }

Listing 1: Naive implementation of Piranha and our kernel
fusion for z = x · y0 + x⊕ y1 in MIZAR.

memory overhead. For example, when performing element-
wise operations with a constant operand, the constant must
be first explicitly copied into an intermediate variable. More
importantly, complex operator compositions require allocat-
ing many intermediate buffers to store partial results.

We make use of kernel fusion, where multiple element-
wise operations are fused into a single GPU kernel to reduce
intermediate variables and issued kernels. This technique
reduces memory usage and kernel issue overhead. An exam-
ple is illustrated in Listing 1: In the naive implementation
of Piranha, an unnecessary intermediate variable temp is
allocated, and 6 separate kernels are issued. In contrast,
our MIZAR eliminates the need for intermediate storage and
requires only a single kernel issue. The logic used in our
kernel fusion is derived from public protocol specifications
and does not depend on any secret information, i.e., no
secret-dependent branching is involved. Therefore, it does
not introduce any additional security risks.

Remark 2. The above techniques are mainly inspired by
established GPU optimization strategies. To the best knowl-
edge, we are the first to leverage them to extend the
GPU-based framework Piranha for better performance and
scalability. These extensions and optimizations could be of
independent interest for accelerating other MPC protocols.

One-vs-Many Comparison Π
(1,n)
CMP

Input: JxK = (m, ⟨r⟩) over a ring ZL with L = 2ℓ, and public
{a0, a1, . . . , an−1}.
Output: {JyiK}n−1

i=0 such that yi = (x ≥ ai).
Preprocessing:

1: Process ⟨r⟩ as the preprocessing phase of Π+
SiBit.

Online:
1: for all i ∈ [0, n− 1] do
2: Compute JbiK = (m− ai, ⟨r⟩) locally with same ⟨r⟩.
3: Execute the online phase of JsiK = Π+

SiBit(JbiK).
4: end for
5: return All parties output {JyiK = 1− JsiK}n−1

i=0 .

Figure 5: Optimized One-vs-Many Comparison Π
(1,n)
CMP .

4. Improved Nonlinear Functions

We apply our Sign-Bit Extraction to improve the effi-
ciency of nonlinear functions, and optimize piecewise poly-
nomial approximations preprocessing phase and Maxpool.

4.1. Faster Activation Functions

Existing works [35, 38, 44] have proposed approximat-
ing complex activation functions using piecewise polynomi-
als. We approximate a function f(x) as follows:

f(x) ≈


f0(x) x < a0,

f1(x) a0 ≤ x < a1,

. . .

fn−1(x) x ≥ an−1.

(5)

where {fi}i∈[0,n) are low-degree polynomials.
All {Jfi(x)K}i∈[0,n) can be computed based on secret

inputs JxK using existing secure multiplication and trun-
cation protocols, so the challenge is how to select the
right Jfi(x)K obliviously. A straightforward approach is to
compare Jx < aiK = Jsgn(x− ri)K for all ai and select the
corresponding splines as [38, 51]. This approach is round-
efficient but its preprocessing communication grows linearly
with the number of splines.
Preprocessing for One-vs-Many Comparison. To compare
Jx < aiK = Jsgn(x − ai)K for all ais, we can observe that
1) JxK is secret while ais are public, and 2) x is identical
for different ais, and all Jx − aiK share the same ⟨r⟩ (⟨r⟩
of JxK = (m, ⟨r⟩)). Therefore, we only need to process ⟨r⟩
once in the preprocessing phase, saving the preprocessing
communication by around log2 ℓ+2

(log2 ℓ)/n+2×: i) When n = 2
and ℓ = 64, we achieve 1.6× communication reduction; ii)
When n ≫ log2 ℓ, we get up to 4× improvements. The
online phase is identical to that of Π+

SiBit but processed in
parallel. Protocol Π(1,n)

CMP is formalized in Figure 5.

4.2. Maxpool with |x| < L/4 & Switching

The maxpool operation can be implemented by a se-
quence of computations max(x, y) = GT(x, y) · (x−y)+y,
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where GT(x, y) = (x ≥ y). In Aegis [36], for signed
values x and y, GT(x, y) = (1⊕ sgn(x)⊕ sgn(y)) · sgn(y−
x) + (sgn(x) ⊕ sgn(y)) · sgn(y), where sgn(x) and sgn(y)
account for the case y − x overflows the range of ZL. For
example, when y = L/2−1 (mod L) and x = −2 = L−2
(mod L), y − x = L/2 + 1 (mod L), which is interpreted
as negative but should be positive indeed (recall values in
the range [0, L/2) are interpreted as non-negative and those
in [L/2, L) are negative ones). However, the probability of
the above example is negligible, so it is unnecessary for
computing GT(x, y) in the Maxpool of neural networks.
Other works [43, 54, 63] have proposed methods to simplify
GT(x, y) = sgn(y−x) ·(y−x)+x. So we employ the latter
method and analyze it as follows: For two commonly used
settings: (ℓ = 32, f = 13) and (ℓ = 64, f = 26), |x| < L/4
can provide 17 and 36 bits for the integral part, which
are enough for neural networks where values are usually
distributed in [−1, 1].

Although Aegis [36] proposed Maxpool-after-ReLU to
ensure inputs are positive, a.k.a., sgn(x) = sgn(y) = 0,
but not all activation functions output non-negative values,
i.e., GeLU and SiLU output positive and negative results.
Compared to [36], we do not require Maxpool-after-ReLU
anymore, so our method is more flexible and efficient when
applied with various activation functions.
Activation-Maxpool Switching. In secure inference, exist-
ing works [18, 65] proposed to switch the order of Maxpool
and ReLU, a.k.a., Maxpool-then-ReLU, to reduce the num-
ber of ReLU evaluations by a factor of k, where k is the
Maxpool window size. Given the existence of various activa-
tion functions beyond ReLU, a natural question arises: can
this switching technique be generalized to other activation
functions? We give an affirmative answer in Theorem 1.

Theorem 1. Let x = (x0, x1, . . . , xk−1) ∈ R be the values
of one Maxpool window, σ(·) : R → R be an activation
function. Then max(σ(x)) = σ(max(x)) holds for all x if
and only if σ(·) is a monotonic function.

Proof. Without losing generality, we assume σ(·) is a non-
decreasing function. For ∀xi ≤ xj ∈ R, we have σ(xi) ≤
σ(xj). Therefore, max(σ(xi), σ(xj)) = σ(max(xi, xj)).
This can be easily generalized to x of k values.

5. Security Proof

We analyze the security of our protocols against static
semi-honest adversaries under honest-majority assumptions
in the hybrid model. We depict our protocol Π+

SiBit im-
plements functionality FSiBit securely in Theorem 2. The
functionality FSiBit and proof are detailed in Appendix A.

Theorem 2. Let PRF be secure pseudo-random functions,
protocol Π+

SiBit implements FSiBit against static semi-
honest PPT adversaries who corrupt up to one party.

We then analyze the security of protocol Π
(1,n)
CMP and

Maxpool optimizations in sketch as follows.
Security of Protocol Π(1,n)

CMP . In protocol Π(1,n)
CMP , we utilize

the fact that one secret x is compared to different public ais

to reduce the cost of the preprocessing phase. In this opti-
mization, we do not change any procedures of the protocol
specification. For the online phase, it only executes Π+

SiBit

in a black-box manner in parallel, we thus can guarantee
the security of Π(1,n)

CMP in FSiBit-hybrid model.
Security of Maxpool. For the optimizations of secure Max-
pool, we only use the heuristic constrict that |x| < L

4 ,
the private data JxK is still secret-shared over ZL, and we
only use Π+

SiBit and ΠMult in a black-box manner. And the
Activation-Maxpool reordering technique does not change
the underlying protocols, so the security of Maxpool is easy
to see in the (FSiBit,FMult)-hybrid model.

6. Experiments

We provide MIZAR implementation setup and study the
performance by answering the following questions.
• Q1: What are the communication and running time ad-

vantages of MIZAR over existing works for secure Sign-
Bit Extraction? What is its GPU memory usage? (§ 6.2)

• Q2: What are the efficiency and GPU memory consump-
tion of MIZAR in 3PC secure non-linear functions? (§ 6.3)

• Q3: Can MIZAR support efficient secure evaluations of
neural networks? (§ 6.4)

6.1. Experimental Setup

6.1.1. Testbed Environments. Experiments are run on a
machine with three NVIDIA A100-PCIE-40GB GPUs with
Driver Version-570.124.06 and CUDA Version-12.8. Operat-
ing System is Ubuntu 22.04.4 LTS with Linux kernel 5.4.0-
172-generic. CPU is Intel(R) Xeon(R) Silver 4314@2.40
GHz and 500GB RAM. LAN is with bandwidth 1Gbps
and latency 1ms. WAN is with bandwidth 160Mbps and
latency 50ms, simulated by linux Traffic Control command.
We select two rings Z232 (with f = 13 fractional bits) and
Z264 (with f = 26), and set Mersenne prime p = 127.

6.1.2. Baselines. We primarily compare MIZAR with prior
GPU-based MPC frameworks, including Piranha-FALCON
(P-FALCON) [67], Aegis [36], and Concurrent [37], to
demonstrate our improvements comprehensively: i) MIZAR
is implemented on top of the Piranha framework using C++.
ii) Since the source code of Aegis and Concurrent is not
publicly available at the time of our work, we re-implement
their semi-honest variants within Piranha for fair compar-
isons. We evaluate all implementations in communication,
time, and GPU memory usage. Communication is measured
as total sent and received bytes by the computing party P0.

6.2. Benchmarking Secure Sign-Bit Extraction

The experimental results in Table 5 highlight the effi-
ciency of our secure Sign-Bit Extraction protocol:
• Communication and Time. Compared to P-FALCON,

we reduce the online communication and running time by
more than 3.5× and 2.5×, respectively. P-FALCON needs
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Figure 6: Profiling the online communication and GPU memory of secure Sign-Bit Extraction for bitlength ℓ = 32 and 64.
As Aegis, Cocurrent, our MIZAR employ the dealer-based approach, we measure the communication between one computing
party (P0) and the dealer (P2). The communication of P-FALCON is symmetric among its three parties, so we measure
its communication between P0 and P2 without losing generality. Figure 6(a) is for P0 → P2 communication, Figure 6(b)
shows the P2 → P0 communication. For GPU memory, Figures 6(c) and 6(d) present peak usage of respective P0 and P2.

TABLE 5: Communication and time of secure Sign-Bit
Extraction of batchsize n = 220, and ℓ = 32 and 64 bits.
Communication is in MB, LT and WT are respective for
LAN and WAN time, which is in seconds.

Bitlength Protocol Preprocessing Online

Comm. LT WT Comm. LT WT

ℓ = 32

P-FALCON – – – 198.000 1.690 10.683
Aegis 60.000 0.639 4.410 102.000 1.192 7.737

Cocurrent 60.000 0.640 4.410 54.000 0.630 4.251
MIZAR 60.000 0.638 4.409 54.000 0.618 4.269

ℓ = 64

P-FALCON – – – 402.000 3.471 24.802
Aegis 120.000 1.170 8.110 204.000 2.364 15.904

Cocurrent 120.000 1.180 8.011 108.000 1.244 8.545
MIZAR 120.000 1.171 8.011 108.000 1.238 8.466

to generate (extended) doubly-authenticated bits (edaBits)
for sharing conversion in the preprocessing phase, but [67]
does not provide an implementation. Therefore, we com-
pare our end-to-end costs to their online costs. Even
though this comparison puts P-FALCON at an advantage,
we still achieve more than 40% communication reduc-
tion and approximately 20% running time improvements.
Compared to Aegis, we achieve comparable preprocessing
efficiency and improve the online performance by nearly
2×. Besides, we achieve comparable and better efficiency
over Concurrent [37] in some circumstances.

• Online Communication Breakdown. We present the
online communication breakdown with bit-length ℓ = 32
and 64 in Figures 6(a) and 6(b): Compared to P-FALCON,
Aegis, Concurrent, and MIZAR exhibit significantly better
communication efficiency. Aegis’s improvements primar-
ily arise from reduced P2 → P0 communication, as
its P0 → P2 communication remains comparable to P-
FALCON. In contrast, Concurrent and MIZAR achieve
additional savings by halving the communication from
computing parties to the dealer.

• GPU Memory Usage. We highlight our GPU memory
savings over baseline methods. As Aegis, Concurrent,
and MIZAR work in the dealer-based model, we trace
the GPU memory for computing parties (i.e., P0 and P1)
and dealer party (P2) in respective Figures 6(c) and 6(d).
For computing party, Aegis and Concurrent require more
GPU memory than P-FALCON, and MIZAR is the most
GPU memory efficient, a.k.a., we reduce the peak GPU
memory by 20–37% over them; For party P2, since

Aegis, Concurrent, and MIZAR only require P2 to assist
computation, they consume less GPU memory than P-
FALCON. Moreover, MIZAR only requires 50% of the
GPU memory used by Aegis and Concurrent.

6.3. Efficiency of Secure Nonlinear Functions

We present results of secure nonlinear functions (c.f.,
Appendix B) in Table 6, and below are the improvements:
• Online Improvements. Regarding P-FALCON and

Aegis, we achieve approximately 2.5× and 1.5× reduc-
tions in online communication and running time, respec-
tively. MIZAR is faster than Concurrent for most cases.

• Preprocessing Improvements. Notably, our total com-
munication cost is even cheaper, by approximately 1.5×,
than the online cost of P-FALCON. For Sigmoid and
GeLU, we adopt piecewise polynomial approximations
using 3-segment and 4-segment spline functions (see Ap-
pendix B). Benefiting from our optimized one-vs-many
comparison in § 4, we reduce the preprocessing commu-
nication by approximately 3× compared to [36, 37].

• Online Communication Breakdown & GPU Memory
Usage. Figure 7 presents the online communication break-
down and GPU memory usage across various nonlin-
ear functions: i) Similar to secure Sign-Bit Extraction,
Aegis’s improvements over P-FALCON primarily arise
from reduced P2 → P0 communication, while Concurrent
and MIZAR achieve additional savings by halving the
communication from computing parties to the dealer. ii)
For GPU consumption, we still achieve up to 50% peak
GPU memory savings compared to existing methods.

6.4. Secure Evaluation of Neural Networks

As we follow existing fixed-point representation, trun-
cation methods, and approximations [36, 67], the model ac-
curacy guarantees established in these works directly apply
to our approach. As shown in Figure 9 (Appendix C), [36,
37, 67] and MIZAR achieve comparable test accuracy af-
ter 10 training iterations of LeNet-5 and VGG-16 using
the Stochastic Gradient Descent (SGD) optimizer with a
batchsize of 32 images. Other hyperparameters are set
following [67]. Next, we mainly report the performance
improvements of secure inference and training.
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TABLE 6: Communication and runtime of non-linear functions. For functions ReLU, Sigmoid, and ReLU, we set batchsize
n = 220. Maxpool is with inputs of size 210 × 210, window of 2× 2, and stride = 2. The bitlength ℓ = 32 and 64 bits.

Functions Protocol
ℓ = 32 ℓ = 64

Preprocessing Online Preprocessing Online

Comm. LT WT Comm. LT WT Comm. LT WT Comm. LT WT

ReLU

P-FALCON – – – 213.000 1.821 11.705 – – – 429.000 3.711 29.399
Aegis 66.000 0.554 4.091 114.000 1.276 9.190 132.000 1.102 8.140 228.000 2.543 17.995

Cocurrent 66.000 0.554 4.092 66.000 0.711 5.987 132.000 1.098 8.112 132.000 1.440 10.988
MIZAR 66.000 0.554 4.092 66.000 0.695 5.588 132.000 1.097 8.110 132.000 1.436 10.608

Sigmoid

P-FALCON – – – 477.000 4.186 25.841 – – – 957.000 8.427 51.634
Aegis 138.000 1.092 8.327 240.000 2.645 18.530 276.000 2.162 16.490 480.000 5.273 37.519

Cocurrent 138.000 1.092 8.327 144.000 1.534 11.191 276.000 2.162 16.490 288.000 3.046 19.683
MIZAR 54.324 0.676 5.155 144.000 1.503 10.964 90.563 1.546 11.790 288.000 3.016 19.001

GeLU

P-FALCON – – – 822.000 7.262 45.671 – – – 1650.000 14.624 89.586
Aegis 234.000 1.478 12.387 414.000 4.320 31.612 468.000 2.861 23.972 828.000 8.551 64.325

Cocurrent 234.000 1.478 12.387 270.000 2.635 17.144 468.000 2.860 23.982 540.000 5.213 33.566
MIZAR 67.832 1.083 9.069 270.000 2.611 16.988 130.478 2.032 17.023 540.000 5.184 33.379

Maxpool

P-FALCON – – – 165.750 1.403 9.217 – – – 327.750 2.788 17.869
Aegis 61.500 0.589 4.135 109.500 1.130 8.162 123.000 1.152 8.086 219.000 2.193 15.285

Cocurrent 61.500 0.601 4.221 73.500 0.720 4.878 123.000 1.138 7.992 147.000 1.407 9.536
MIZAR 61.500 0.589 4.139 73.500 0.699 4.736 123.000 1.127 7.911 147.000 1.383 9.371

TABLE 7: Communication and time of secure inference for a single image and training for a batch of 32 images. The
bitlength ℓ = 64 bits and fractional bits f = 26 following [67].

Networks
(Datasets) Protocol

Secure Inference (n = 1) Secure Training (n = 32)

Preprocessing Online Preprocessing Online

Comm. LT WT Comm. LT WT Comm. LT WT Comm. LT WT

LeNet-5
(MNIST)

P-FALCON – – — 4.672 0.492 6.304 – – – 280.711 4.420 25.536
Aegis 2.545 0.132 0.544 4.488 0.465 1.919 93.234 1.765 9.257 167.245 3.011 17.879

Concurrent 2.545 0.132 0.535 2.886 0.244 1.985 93.234 1.894 9.241 115.956 1.988 12.343
MIZAR 1.618 0.105 0.430 1.959 0.192 1.818 93.234 1.894 9.208 115.956 1.988 11.926

VGG-16
(CIFAR-10)

P-FALCON – – – 58.924 2.100 16.716 – – – 2908.521 38.911 312.313
Aegis 25.360 0.451 2.213 44.379 1.031 7.449 1038.378 16.326 115.986 1873.893 27.693 177.579

Concurrent 25.360 0.443 2.213 27.472 0.728 6.149 1038.378 16.948 115.257 1332.893 19.360 117.753
MIZAR 25.360 0.421 2.213 27.472 0.681 5.906 1038.378 16.216 115.252 1332.893 18.355 116.844

TABLE 8: The peak GPU memory in MB of one pass secure
training. As before, we show the results of party P0 and P2.

Protocol LeNet VGG-16

P0 P2 P0 P2

P-FALCON 232.339 232.339 1801.703 1801.703
Aegis 291.537 187.826 2281.266 1691.266

Concurrent 269.388 187.826 2018.016 1554.016
MIZAR 199.076 120.326 1755.266 1307.266

• Secure Inference. Compared to P-FALCON, we reduce
the online runtime by more than 3.5× and communication
by 2×. Compared to Aegis, MIZAR reduces communica-
tion by 1.6–2×, leading to at least 1.2× improvement in
online runtime across most scenarios. Our preprocessing
phase is more efficient for LeNet, as we can leverage
Maxpool–ReLU switching, whereas Aegis must rely on
ReLU’s non-negative results to simplify their secure Max-
pool. Besides, MIZAR achieves modest time savings over
Concurrent due to our GPU optimization.

• Secure Training. Following [67], we adopt its secure
logits computation method. Leveraging our optimized
protocols, our efficiency improvements in a single secure

forward–backward pass are as follows: Compared to P-
FALCON, we reduce online communication and runtime
by approximately 2.5×. Notably, our improvements over
Aegis in secure training are even more significant than
those in secure inference, with an average 1.5× reduction
in both communication and runtime. We also achieve
some time savings over Concurrent. It is worth noting that
the Maxpool–ReLU switching optimization is not applied
in the training setting, resulting in our preprocessing costs
comparable to those of Aegis and Concurrent.

• GPU Memory Usage. We monitor the GPU memory
usage during a single pass of secure training for both
LeNet and VGG-16 and compare their required peak GPU
memory in Table 8. MIZAR achieves notable improve-
ments by requiring less peak GPU memory. Specifically,
it reduces the peak GPU memory consumption by 1.2–
1.5× over the most recent work, Concurrent [37].

• Comparison with CPU frameworks. Additionally, we
provide a comparison between MIZAR and two state-
of-the-art CPU-based 3PC frameworks, ABY3 and Se-
cureNN, in Table 9, Appendix D. We benchmark the
efficiency of ABY3 and SecureNN implemented in
SecretFlow-SPU [39] using 64 threads. Compared to
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Figure 7: Profiling the online communication and peak GPU memory usage of P-FALCON, Aegis, Cocurrent, and MIZAR
for various non-linear functions. Figure 7(a) is for P0 → P2 communication, 7(b) shows the P2 → P0 communication,
Figures 7(c) and 7(d) present the peak GPU memory usage of P0 and P2, respectively.

ABY3, while MIZAR incurs slightly higher communi-
cation, it achieves 2–3× reduction in online running
time and is still faster in end-to-end execution. These
gains stem from our optimized constant-round Sign-Bit
Extraction and GPU-based computation. Compared to
SecureNN, the improvements exceed an order of magni-
tude in both communication and time. MIZAR remains
the fastest framework for secure training of VGG-16,
highlighting its superior scalability and effectiveness for
large-scale neural network training.

7. Related Work

Secure multiparty computation (MPC) can enable dis-
trusted parties to compute a function while keeping each in-
put privately [12, 58, 69, 70]. In this line of work [4, 16, 20,
41, 43, 57], the parties can compute the given functions with
high throughput using secret sharing-based protocols. Secure
neural network inference using MPC has gained much at-
tention recently. In the area of two-party computation (2PC),
[19, 25] proposed to use Homomorphic Encryption for se-
cure inference. Some works [26, 27, 35, 44, 50, 53, 56] pro-
posed to use mixed MPC technologies, i.e., Homomorphic
Encryption and Oblivious Transfer, and use secret sharing to
connect them, to accelerate the linear and non-linear layers
as much as possible. To overcome inherent 2PC limitations,
the field has explored three-party variants employing ei-
ther replicated secret sharing or dealer-assisted paradigms.
ABY3 proposed a 3-party replicated secret sharing-based so-
lution, and [13, 64] followed this technology and improved

the concrete efficiency and extended the supported functions.
[8, 32, 36, 55, 62] proposed to use a dealer to assist
the other two parties for improved efficiency, i.e., generate
the correlations for the computing parties. Function secret
sharing [6, 21, 22, 61] can provide fast online efficiency
of secure evaluation of neural networks. However, it incurs
substantial communication overhead in the preprocessing
phase due to the need for a dealer to distribute correlated
keys, making real-world deployment challenging. To re-
sist malicious adversaries, some works [7, 9, 29, 30, 52]
constructed various maliciously secure machine learning
approaches under honest-majority, and [14, 72] propose
SPDZ-based protocols to provide maliciously secure SVM,
decision tree, and neural networks in a dishonest-majority
setting. Besides, [17, 21, 38, 49, 68] have attempted to
achieve the secure inference of large language models.

On the other hand, some recent works turned to utilize
hardware, such as GPUs, to accelerate the computation of
MPC [11, 42, 46, 60, 67]. Specially, these works mainly
utilize the existing CUDA kernels to implement existing
MPC protocols to accelerate the computational efficiency.
Piranha [67] is one of the state-of-the-art frameworks and
has integrated 2/3/4-PC protocols to meet different require-
ments. However, these GPU-based frameworks mainly focus
on the computation on power-of-two rings, and pay little
attention to optimizing the computation over prime moduli.
Aegis [36] proposed an efficient constant-round Sign-Bit Ex-
traction protocol under the dealer-based 3-party setting and
utilized Piranha to boost the computational efficiency. In this
work, we focus on resisting semi-honest adversaries in the
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3-party honest-majority setting and adopt the dealer-based
solution along with GPU-acceleration for better efficiency.

8. Conclusion

In this work, we present a dealer-based three-party GPU-
based constant-round secure Sign-Bit extraction protocol
that facilitates secure evaluation of non-linear functions and
neural networks. Building on this, we introduce MIZAR,
a highly efficient framework for secure three-party deep
learning, including secure neural network inference and
training, that leverages improved secure nonlinear functions,
GPU-acceleration, and better GPU memory usage.
Future Work. MIZAR enjoys attractive efficiency for deep
learning inference and training. We suggest some possible
directions for future work. We mainly focus on semi-honest
security, and extending our solution to defend against ma-
licious adversaries is meaningful. Another direction is to
extend MIZAR to support large language models (LLMs).
Since we can support faster complex activation functions
like GeLU and GPU is highly efficient for large matrix
multiplication, it is promising to extend MIZAR to improve
the concrete efficiency of secure evaluations of LLMs.
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Appendix A.
Proof of Theorem 2

Proof. We prove Theorem 2 depending on whether Pb, b ∈
{0, 1} or P2 is corrupted.
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Corrupted Pb(b ∈ {0, 1}). When Pb(b ∈ {0, 1}) is cor-
rupted, the simulator S simulates Pb’s view as follows:

• For the offline phase, S samples r′ and ry uniformly over
ZL instead of using PRF.

• For the offline phase, S chooses γ
$← ZL. S also ran-

domly samples r̂i and sends their random shares to Pb,
which emulates the message from P2.

• For the online phase, the view of Pb consists of the
message m′ from P2. S simulates m′ $← ZL.

We argue that the above simulated view is indistinguish-
able from real-protocol execution. The first difference is
about generating r′ and ry. In the real-protocol execution,
the parties generate them using a PRF, while in the sim-
ulation, they are generated by uniform sampling over ZL.
The security of PRF ensures the indistinguishability. Based
on that, γ is uniformly distributed over ZL since r′ and
ry are uniformly sampled over ZL. Thus, the second step
of the simulation is perfectly indistinguishable. Similarly,
m′ = sgn(−r) − r′ or (1 ⊕ sgn(−r)) − r. Note that r′

is uniformly distributed over ZL, hence, m′ is uniformly
distributed over ZL. Thus, our third-step simulation is also
perfectly indistinguishable, conditioned on steps 1 and 2.
Overall, the simulation is computationally indistinguishable
from real-protocol execution.
Corrupted P2. The goal of the simulator is to simulate an
indistinguishable view for a corrupted P2.

• For the offline phase, S samples r′ and ry uniformly from
ZL instead of using PRF.

• For the online phase, S randomly chooses vi
$← F∗

p for
i ∈ [1, ℓ). Then, S replaces v0 = 0 with probability 1/2. S
randomly permutes {vi}i∈[0,ℓ); this serves as the protocol
message for P2 in the online phase.

As in the simulation for P0/P1, the first difference on
generating r′ and ry using PRF is computationally indis-
tinguishable from real-protocol execution. We show that
the second step simulation is indistinguishable from real-
protocol execution. To this end, we need to show that (1)
the probability that 0 exists among {vi}i∈[0,ℓ) is 1/2, and (2)
the other non-zero values vis follow uniform distribution
over F∗

p in the real-protocol execution. For (1), first note
that there is only one ti = 0 among all {ti}i∈[0,ℓ) by
the definition, vi = wi · (ti + sgn(m) ⊕ m̂i ⊕ ∆), and
sgn(m) ⊕ m̂i ⊕ ∆ follows uniform distribution over Z2.
Therefore, vi = 0 happens with probability 1/2 when ti = 0.
Also note that for other tj with j ̸= i, tj ̸= 0 and tj < ℓ,
thus tj + sgn(m)⊕ m̂j ⊕∆ ≤ ℓ < p. Recall that vj cannot
be 0 since wj is sampled over F∗

p. For (2), note that wj is
uniformly distributed over F∗

p. Thus wj multiplying any non-
zero tj+sgn(m)⊕m̂j⊕∆ ∈ F∗

p will be uniformly distributed
over F∗

p. Combining the above analysis, we conclude that the
simulation is indistinguishable from real-protocol execution.
Overall, the simulation is computationally indistinguishable
from real-protocol execution.

Functionality Sign-Bit Extraction FSiBit

Upon receiving JxK from all parties, this functionality operates
as follows:

1) Reconstruct x from secret shares of JxK.
2) Compute y = sgn(x).
3) Secret-share JyK and distribute the shares to all parties.

Figure 8: Sign-Bit Extraction Functionality.

Appendix B.
Approximations of Sigmoid and GeLU

We present the approximations for Sigmoid and GeLU
from existing works [17, 40] as follows:
• Sigmoid(x) = 1

1+e−x . The concrete piece-wise polyno-
mials for Sigmoid(x) are:

Seg3 Sigmoid(x) =


1, x > 4

0.5 + 0.125x, −4 ≤ x ≤ 4

0, x < −4
.

• GeLU(x) = x
2 ·
(
1 + tanh

(√
2
π ·

(
x+ 0.044715 · x3

)))
.

We utilize the 4-piece polynomials [17] as:

Seg4 GeLU(x) =


0, x < T0

F0(x) T0 ≤ x < T1

F1(x), T1 ≤ x ≤ T2

x, x > T2

,

where (T0 = −4, T1 = −1.95, T2 = 3),

F0(x) = −0.011034134030615728x3

− 0.11807612951181953x2

− 0.42226581151983866x

− 0.5054031199708174)

F1(x) = 0.0018067462606141187x6

− 0.037688200365904236x4

+ 0.3603292692789629x2

+ 0.5x

+ 0.008526321541038084

Appendix C.
Neural Networks and Datasets

The architectures of neural networks are as follows.
• LeNet-5 [34] consists of two convolutional layers, each

followed by a ReLU activation function and a Maxpool
layer. Finally, two fully connected layers, with ReLU after
the first, map the extracted features to the output classes.
LeNet has around 60K parameters.

• VGG-16 [59]. We use the VGG-16 defined in [67], which
is composed of 13 convolutional layers (each followed by
a ReLU activation function), 5 Averagepool layers, and
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Figure 9: The test accuracy after completing 10 training
iterations. The training data is of batchsize n = 32 images.

TABLE 9: Communication and runtime of secure inference
and training of neural networks over CPU-based 3PC works
ABY3 and SecureNN. The settings are the same as Table 7.

Networks
(Datasets) Protocol Preprocessing Online

Comm. LT WT Comm. LT WT

Secure Inference (n = 1)

LeNet-5
(MNIST)

ABY3 0 0 0 1.943 0.515 4.120
SecureNN 0 0 0 73.246 4.608 41.473

MIZAR 1.618 0.105 0.430 1.959 0.192 1.818

VGG-16
(CIFAR-10)

ABY3 0 0 0 32.312 2.573 20.562
SecureNN 0 0 0 1319.025 22.250 200.247

MIZAR 25.360 0.421 2.123 27.472 0.681 5.906

Secure Training (n = 32)

LeNet-5
(MNIST)

ABY3 0 0 0 101.879 3.787 22.727
SecureNN 0 0 0 2592.314 51.953 311.718

MIZAR 93.234 1.894 9.208 115.956 1.988 11.926

VGG-16
(CIFAR-10)

ABY3 0 0 0 2137.417 34.003 259.421
SecureNN 0 0 0 55222.779 640.345 5373.704

MIZAR 1038.378 16.216 115.252 1332.893 18.355 116.844

3 fully connected layers. VGG-16 has about 138 million
trainable parameters.

We use datasets MNIST and CIFAR-10 in our experi-
ments: i) MNIST [33] consists of 60K images in the training
set and 10K in the test set. Each image is a 28 × 28 pixel
image of a handwritten digit with a label between 0 and 9. ii)
CIFAR-10 [31] consists of 50K training and 10K test images
of 10 different classes (such as airplanes, dogs, horses etc..).
There are 6K colored 32× 32 images of each class.

Appendix D.
Additional Experiments

The test accuracy after 10 iterations of training is il-
lustrated in Figure 9. We compare MIZAR to CPU-based
solutions ABY3 and SecureNN in secure inference and
training in Table 9.

Appendix E.
Other Analysis

Secure Truncation. In Figure 10, we present our secure
fixed-point truncation with one least significant bit error
inspired by Aegis [36]. We analyze the one least signif-
icant bit error E ∈ {−1, 0} as follows: First, we have

Protocol Secure Fixed-Point Truncation ΠTrunc

Input: JxK = (mx, ⟨rx⟩) over a ring ZL with L = 2ℓ,
truncated bits f .
Output: JyK such that y = ⌊ x

2f
⌋+ E, where E ∈ {−1, 0}.

Preprocessing:
1: P2 computes rx = ⟨rx⟩0 + ⟨rx⟩1.
2: P2 computes ry = ⌊ rx

2f
⌋, and secret-shares ry among three

parties as ⟨ry⟩, such that Pi get ⟨ry⟩i for i ∈ {0, 1} and
P2 get (⟨ry⟩0 , ⟨ry⟩1).

Online:
1: P0 and P1 compute my = ⌊mx

2f
⌋ locally.

2: return All parties output JyK = (my, ⟨ry⟩).

Figure 10: Secure Fixed-Point Truncation protocol ΠTrunc.

BarretReduce BarretR(x, p)

Input: x and prime p, 0 ≤ x < p2.
Output: x (mod p).

1: Set k = 2 · ⌈log2 p⌉, m = ⌊ 2
k

p
⌉.

2: Compute t = (x ·m)≫ k and x = x− t · p.
3: if x ≥ p then
4: x = x− p.
5: end if
6: return x.

Figure 11: Barret fast modular reduction algorithm.

my − ry = ⌊mx

2f
⌋ − ⌊ rx

2f
⌋. As ⌊ x

2f
⌋ = ⌊mx−rx

2f
⌋, we get

E = ⌊mx−rx
2f
⌋ − (⌊mx

2f
⌋ − ⌊ rx

2f
⌋) Since ⌊a⌋ − ⌊b⌋ − 1 ≤

⌊a− b⌋ ≤ ⌊a⌋ − ⌊b⌋, it is easy to see −1 ≤ E ≤ 0.
Barret Modular Reduction. The detailed algorithm is il-
lustrated in Figure 11. For its correctness, please refer to the
analysis [28]. While the Montgomery [45] and Shoup [24]
approaches are commonly employed for fast modular reduc-
tion, they are not suitable for our case: The Montgomery
method requires expensive conversions to and from Mont-
gomery form, while Shoup’s technique is restricted to com-
putations of the form a · b (mod p) with fixed parameters
(b, p). To circumvent these constraints and optimize GPU-
based MPC protocols, we employ Barrett modular reduction
for MIZAR.Correctness of sgn(m) ⊕ m̂ξ ⊕ ∆ = 1 when tξ = 0
of [36]. As shown in ΠSiBit (Figure 3), we have m′ =
(1⊕ sgn(−r))−r′ in this case. Also, sgn(m)⊕m̂ξ⊕∆ = 1
means sgn(m)⊕ m̂ξ = 1⊕∆. Then, we have

my = m′ − 2∆ ·m′ + γ

= ((1⊕ sgn(−r))− r′)− 2∆ · ((1⊕ sgn(−r))− r′)

+ (∆ + r′ − 2∆r′ + ry)

= (1⊕ sgn(−r))− 2∆(1⊕ sgn(−r)) + ∆ + ry

= (1⊕ sgn(−r)⊕∆) + ry

= (sgn(−r)⊕ sgn(m)⊕ m̂ξ) + ry

= (sgn(−r)⊕ sgn(m)⊕ (m̂+ r̂ ≥ 2ℓ−1))︸ ︷︷ ︸
sgn(x)

+ry

.

(6)
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