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Abstract. FROST and its variants are state-of-the-art protocols for
threshold Schnorr signatures that are used in real-world applications.
While static security of these protocols has been shown by several works,
the security of these protocols under adaptive corruptions—where an
adversary can choose which parties to corrupt at any time based on
information it learns during protocol executions—has remained a noto-
rious open problem that has received renewed attention due to recent
standardization efforts for threshold schemes.

We show adaptive security (without erasures) of FROST and several
variants under different corruption thresholds and computational assump-
tions. Let n be the total number of parties, t+ 1 the signing threshold,
and tc an upper bound on the number of corrupted parties.
1. We prove adaptive security when tc = t/2 in the random-oracle

model (ROM) based on the algebraic one-more discrete-logarithm
assumption (AOMDL)—the same conditions under which FROST
has been proven statically secure.

2. We introduce the low-dimensional vector representation (LDVR)
problem, parameterized by tc, t, and n, and prove adaptive security
in the algebraic-group model (AGM) and ROM based on the AOMDL
assumption and the hardness of the LDVR problem for the corre-
sponding parameters. In some regimes (including some tc > t/2),
we show the LDVR problem is unconditionally hard, while in other
regimes (in particular, when tc = t), we show that hardness of the
LDVR problem is necessary for adaptive security to hold. In fact, we
show that hardness of the LDVR problem is necessary for proving
adaptive security of a broad class of threshold Schnorr signatures.
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1 Introduction

A (t + 1, n)-threshold signature scheme allows a signing key to be distributed
among n parties such that any t+1 of those parties can jointly generate a signature
on a message, while an adversary corrupting up to some specified number tc ≤ t
of those parties is unable to do so. Motivated primarily by blockchain applications,
several works have considered threshold protocols for ECDSA, Schnorr, and BLS
signatures in recent years.

FROST and its variants [30, 22, 12, 9, 38, 17] (hereinafter collectively referred
to as FROST) represent state-of-the-art protocols for threshold Schnorr signatures;
a version has been codified in an IETF RFC [19] and is currently used in real-
world applications [28]. Security of FROST in a static corruption model—where
the adversary decides at the outset which parties to corrupt—has been shown to
hold in the works cited above. However, proving security of these protocols under
adaptive corruptions—where the adversary can choose which parties to corrupt
at any time based on information it learns from executions of the protocol—has
remained a challenging open problem.1 This problem has become more pressing
with the recent NIST call for threshold protocols [13, 14], which highlights
adaptive security (for up to n = 1024 parties) as a consideration. We remark that
while there has been recent work designing other threshold Schnorr protocols with
adaptive security, those schemes are not currently deployed, are less efficient than
FROST, and have other disadvantages (see Section 1.1 for further discussion);
therefore, it is still important to understand the security of FROST itself.

In this work, we show several results regarding the adaptive security of FROST.
First, we prove adaptive security at half the maximal corruption threshold (i.e.,
when tc = t/2) in the random-oracle model (ROM) based on the algebraic
one-more discrete-logarithm assumption (AOMDL)—the same conditions under
which FROST is known to be statically secure. Our proof methodology here is
similar to the one used to analyze Sparkle+ [23]: we invoke the forking lemma
and exploit the fact that the total number of corruptions in both the “original”
execution and the “rewound” execution is bounded by t. While this result holds
only for a sub-optimal corruption threshold, it nevertheless fills an important
gap in the literature.2

We also prove adaptive security of FROST (under stronger conditions) for
tc beyond t/2. Inspired by recent work [21] proposing an adaptive strategy
for attacking a broad class3 of threshold Schnorr protocols (including FROST),

1 Note that adaptive security implies static security. It is also trivial to show (by simply
guessing in advance the parties to be corrupted) that any statically secure scheme
is adaptively secure with a multiplicative security loss of

(
n
tc

)
. When n, tc are large,

however, this term is super-polynomial.
2 Note that the NIST call for threshold protocols [13, 14] explicitly allows for considera-
tion of sub-optimal corruption thresholds, especially when there are other advantages
(e.g., in terms of required assumptions or efficiency).

3 The attack applies to any scheme where the ith party holds a Shamir share ski of the
secret key and the “commitment” gski can be learned by an adversary. See Section 4.2.



we introduce a problem that we call the low-dimensional vector representation
(LDVR) problem, parameterized by tc, t, and n. If the LDVR problem is easy for
particular values of tc, t, n, then we show there is an explicit (adaptive) adversary
corrupting tc parties who can violate the security of FROST with threshold t+ 1;
in other words, hardness of the LDVR problem is necessary for adaptive security
of FROST to possibly hold. Complementing this result, we show that hardness of
the LDVR problem for particular values of tc, t, n is sufficient to prove security of
FROST (with signing threshold t+1) for up to tc adaptive corruptions, under the
same conditions as above but now also in the algebraic-group model (AGM) [26].
(We remark that, prior to our work, no pairing-free, two-round threshold signature
scheme with adaptive security was known, even assuming the AGM.) Roughly
speaking, then, we isolate the LDVR assumption and show that its hardness is
tightly connected to the adaptive security of FROST.

Because of the centrality of the LDVR problem to the adaptive security of
FROST, we initiate study of the hardness of this problem. For some tc, t, n—
including some values of tc beyond t/2—we show that the LDVR problem is
unconditionally hard. In other regimes, (computational) hardness of the LDVR
problem must be assumed. We justify the assumption in that case by showing
that some natural approaches to solving the problem fail.

1.1 Related Work

Prior works have investigated the adaptive security of threshold protocols for
Schnorr [1, 34, 23, 5, 3, 29], BLS [4, 24], ECDSA [16, 32], RSA [2], and other
signature schemes [6, 7]. In this work, we focus on threshold Schnorr signatures;
all the schemes discussed are in this setting as well.

Abe and Fehr [1] give an adaptively secure protocol with maximal corruption
threshold (i.e., tc = t) based on the decisional Diffie-Hellman (DDH) assumption
(and security of Schnorr signatures). Their scheme has at least three rounds,
relies on strong network assumptions (synchronous broadcast), and requires an
honest majority (i.e., tc < n/2). FROST tolerates a dishonest majority and works
in an asynchronous network, without broadcast or even authenticated channels.

Crites et al. [23] introduce Sparkle+ and show that it is adaptively secure for
t/2 corruptions based on the AOMDL assumption in the ROM, and adaptively
secure for t corruptions based on the AOMDL assumption in the AGM+ROM.4

Like FROST, Sparkle+ allows for pre-processing before the message or signing
set is known, but requires two online signing rounds and authenticated channels.

Zero S. [34] is adaptively secure for t corruptions in the erasure model, where
honest parties are allowed to securely erase state. It is proven to UC-realize the
threshold signature functionality [15] in the global ROM, assuming the hardness
of the discrete-logarithm problem. Zero S. is a three-round protocol and makes
use of online-extractable zero-knowledge proofs [25], which adds overhead.

4 The work cited previously [21] shows that full adaptive security of Sparkle+ (among
other schemes) cannot be proven without an assumption that implies the hardness of
some instances of a search problem P introduced in their work. We similarly show
this for the LDVR problem.



HARTS [5] is a constant-round scheme achieving robustness and adaptive
security in the asynchronous setting. However, their security proof only considers
the super honest-majority setting (i.e., tc < n/3), and the protocol has high
round complexity.

Katsumata et al. [29] prove adaptive security of two schemes, Crackle and
Snap, for t corruptions. These schemes do not have identifiable abort, whereas
FROST does [38]. Moreover, the schemes require five and four signing rounds,
respectively, as well as authenticated channels.

Crites et al. [20] prove a series of impossibility results for adaptive security of
threshold signature schemes with a certain key-uniqueness property. In particular,
they show that key-unique threshold Schnorr signature schemes cannot be proven
adaptively secure beyond t/2 corruptions under the (A)OMDL assumption in
the programmable ROM using a fully black-box reduction that rewinds the
adversary and programs at least one random-oracle query. This is exactly the
type of reduction we employ in our adaptive security proof against at most t/2
corruptions, and so aligns with their result.

Glacius [3] is a five-round protocol that is proven adaptively secure for t
corruptions based on DDH in the ROM, assuming authenticated channels. Inter-
estingly, the key shares (and commitments thereto) have a different structure than
what is required for the aforementioned attack [21] and impossibility result [20].

Relationship to [21]. Our work was inspired by the recent work of Crites
and Stewart [21] showing an adaptive strategy for attacking a class of threshold
Schnorr protocols including FROST (cf. footnote 3). Their work can be viewed
as showing an efficient attack given access to an oracle solving a particular
computational problem P whose hardness is unclear. The main message of their
work is that an efficient algorithm for solving P would give an efficient adaptive
attack on FROST, in particular, and thus show an example of a natural protocol
that is statically secure but not adaptively secure.

In contrast, our focus is on proving adaptive security of FROST under
well-defined assumptions. (We stress that Crites and Stewart are silent about
whether assumed hardness of problem P could be used to prove adaptive secu-
rity of FROST.) To do so, we formalize the LDVR problem that is related to
problem P , and show that the LDVR problem is sufficient (along with other
assumptions) and necessary to prove adaptive security of FROST. We also analyze
the hardness of the LDVR problem, and show that it is unconditionally hard in
certain parameter regimes. See Section 4.1 for further discussion.

1.2 Future Work

Hardness of the LDVR problem (for parameters where our unconditional hardness
result does not hold) is unclear, and requires further investigation. Note that
any o(

√
p)-time algorithm solving the LDVR problem (where p is the order of

the underlying group) would be interesting, as it would imply an attack on
FROST better than what is currently known using generic discrte-logarithm
algorithms. Beyond the practical implications for FROST, such a result would



also be interesting insofar as it would show a natural example of a protocol where
there is a gap between the known advantages of adaptive and static attackers.

2 Preliminaries

We let κ ∈ N denote the security parameter. We let x←$ S denote sampling
a uniform element of a set S and assigning it to x. We use [n] to represent
{1, . . . , n} and [i..j] to represent {i, . . . , j}. We represent vectors as a⃗ = (a1, . . .).

PPT stands for “probabilistic polynomial time.” Algorithms are randomized
unless explicitly noted otherwise. We let y := A(x; ρ) denote running algorithm
A on input x and randomness ρ and assigning its output to y. Let y←$ A(x)
denote y := A(x; ρ) for a uniform ρ. We let GrpGen be a PPT algorithm that
takes as input 1κ and outputs a description (G, p, g) of a group G of order a
prime p > 2κ, and a generator g of G.

Definition 1 (Schnorr signatures [39]). The Schnorr signature scheme
consists of PPT algorithms (Setup,KeyGen,Sign,Verify) defined as follows:

– Setup(1κ)→ par: On input 1κ, run (G, p, g)← GrpGen(1κ) and select a hash
function H : {0, 1}∗ → Zp. Output public parameters par := ((G, p, g),H)
(which are given implicitly as input to all other algorithms).

– KeyGen()→ (PK, sk): Sample a secret key sk←$ Zp and compute the public
key as PK := gsk. Output key pair (PK, sk).

– Sign(sk,m)→ σ: On input a secret key sk and a message m, sample a nonce
r←$ Zp. Then, compute a commitment R := gr, challenge c := H(R,PK,m),
and response z := r + c · sk. Output signature σ := (R, z).

– Verify(PK,m, σ) → 0/1: On input a public key PK, a message m, and a
purported signature σ = (R, z), compute c := H(R,PK,m) and output 1
(accept) iff the signature verifies as R · PKc = gz.

Schnorr signatures are secure under the discrete-logarithm assumption in the
random-oracle model [37] and the algebraic-group model [26].

Polynomial interpolation. A polynomial f(x) = a0 + a1x+ a2x
2 + · · ·+ atx

t

of degree t over a field F can be interpolated from its value on t+ 1 points. For
distinct elements S = {x1, . . . , xt+1} in F, define the Lagrange polynomial as

L
(S)
i (x) =

∏
j∈S,j ̸=i

x− xj

xi − xj
. (1)

Given (xi, yi)i∈[t+1], we can implicitly evaluate the corresponding polynomial f
at any point x as

f(x) =
∑

k∈[t+1]

f(xk) · L(S)
k (x).



Definition 2 (Shamir secret sharing [40]). The (t+ 1, n)-Shamir secret
sharing scheme over a field F consists of efficient algorithms (Share,Recover),
defined as follows:

– Share(sk, n, t+ 1)→ {(x1, sk1), . . . , (xn, skn)}: On input a secret sk, number
of participants n, and threshold t+ 1, first, define a polynomial f(x) =
sk + a1x + a2x

2 + · · · + atx
t by sampling a1, . . . , at←$ Zp. Choose distinct

elements x1, . . . , xn in F. (These could, for example, be participant indices
1, . . . , n, which is the convention we use.) Then, set each participant’s share
ski, i ∈ [n], to be the evaluation of f(i):

ski := sk+
∑
j∈[t]

aji
j .

Output {(xi, ski)}i∈[n].

– Recover(t+ 1, {(xi, ski)}i∈S)→ ⊥/sk: On input threshold t+ 1 and a set of
shares {(xi, ski)}i∈S , output ⊥ if S ̸⊆ [n] or if |S| < t+ 1. Otherwise, recover
sk as follows:

sk :=
∑
i∈S

λS
i ski

where the Lagrange coefficient for the set S is defined as

λS
i =

∏
j∈S,j ̸=i

j

j − i
.

Algebraic one-more discrete-logarithm (AOMDL) assumption. The
AOMDL assumption was introduced formally in [35], though it was used implicitly
in prior work [10, 36, 11, 27]. As in the standard OMDL experiment, the adversary
is given as input (G, p, g) and group elements (X1, . . . , Xℓ). The adversary can
then query an oracle allowing it to learn specific linear combinations of the discrete
logarithms of those group elements. The adversary succeeds if it can compute all
the discrete logarithms (x1, . . . , xℓ) while making fewer than ℓ queries.

Assumption 1 (AOMDL) Define

Advℓ-aomdl
A,GrpGen(κ) = Pr[Exptℓ-aomdl

A,GrpGen(κ) = 1],

where Exptℓ-aomdl
A,GrpGen(κ) is defined in Figure 1. The ℓ-AOMDL assumption holds

relative to GrpGen if Advℓ-aomdl
A,GrpGen(κ) is negligible for all PPT adversaries A.

2.1 Threshold Signatures

We begin with the definition of a threshold signature scheme, adapted to 2-round,
“partially non-interactive” schemes (like FROST), where the first round can be
executed before the message or signing set are determined. In this work, we



main Exptℓ-aomdl
A,GrpGen(κ)

(G, p, g)← GrpGen(1κ)

ctr := 0

for i ∈ [ℓ] do

xi←$ Zp; Xi := gxi

x⃗ := (x1, . . . , xℓ)

X⃗ := (X1, . . . , Xℓ)

x⃗′ := AOdl

((G, p, g), X⃗)

if x⃗′ = x⃗

return 1

return 0

Odl(α, (βi)
ℓ
i=1)

if ctr = ℓ− 1, return ⊥
ctr := ctr + 1

x := α+

t∑
i=0

βi · xi

return x

Fig. 1. Experiment for defining the AOMDL assumption.

abstract out the distribution of key material to the parties and focus on signing
only; thus, we represent key generation via a centralized algorithm (that could be
run by a dealer or implemented by a secure distributed key-generation protocol).

Definition 3. A threshold signature scheme consists of algorithms Setup,
KeyGen, Sign1, Sign2,PreAgg,Combine, and Verify, with the following syntax:

– Setup(1κ) → par: Takes as input a security parameter and outputs public
parameters par (given implicitly as input to all other algorithms).

– KeyGen(n, t+ 1) → (PK, {PKi}i∈[n], {ski}i∈[n]): Takes as input the number
of signers n and the threshold t+ 1 ≤ n and outputs a public key PK, a set
{PKi}i∈[n] of parties’ public keys, and a set {ski}i∈[n] of secret shares.

– (Sign1,Sign2)→ {pmi,1, pmi,2}i∈S : These represent the two rounds of a sign-
ing protocol. We have

(pmi,1, sti,1) := Sign1(i, ski)

pmi,2 := Sign2(i, sti,1,S,m,PM1),

where pmi,1, pmi,2 are protocol messages, sti,1 is the state of party i after the
first round, S ⊆ [n], |S| ≥ t+ 1 is a signing set, m is a message to be signed,
and PM1 = {pmi,1}i∈S .

– PreAgg(S,PM1)→ PM′
1: This is an (optional) deterministic algorithm that

takes as input the signing set S and a set of protocol messages PM1, and
outputs a second set of protocol messages PM′

1. If utilized, this algorithm is
performed after Sign1 and before Sign2.

– Combine(S,m,PM1,PM2)→ (m,σ): This is a deterministic algorithm that
takes as input the signing set S, the message m, and a set of protocol messages
PM1,PM2 = {pmi,2}i∈S , and outputs a signature σ.



– Verify(PK,m, σ)→ 0/1: This is a deterministic algorithm that takes as input
the public key PK, a message m, and a purported signature σ and outputs 1
(accept) iff the signature verifies.

Although the {PKi}i∈[n] are not explicitly used in the above definition (nor in
this work), they can optionally be used for verification purposes (i.e., identifiable
abort). Moreover, many distributed key-generation algorithms reveal {PKi}i∈[n]

during their execution. Finally, we remark that in FROST it is possible for an
adversary to derive {PKi}i∈[n] from executions of the signing protocol.

Correctness. A threshold signature scheme is correct if for all κ, all par output
by Setup(1κ), all n and t < n, all PK, {(PKi, ski)}i∈[n] output by KeyGen(n, t+ 1),
all S ⊆ [n] with |S| ≥ t+ 1, and all m, we have:

Pr[σ ← TSignHon(PK, {ski}i∈[S],S,m) : Verify(PK,m, σ) = 1] = 1,

where TSignHon is defined in Fig. 2.

TSignHon(PK, {ski}i∈[S],S,m)

return ⊥ if S ̸⊆ [n] ∨ |S| < t+ 1

for i ∈ S do (pmi,1, sti,1)← Sign1(i, ski)

for i ∈ S do pmi,2 ← Sign2(i, sti,1,S,m,PM1)

return Combine(S,m,PM1,PM2)

Fig. 2. Algorithm TSignHon for honestly generating a threshold signature.

Adaptive security. We define adaptive security via the experiment in Figure 3,
which we now describe. Key generation is run, and a (stateful) adversary A is
given the public parameters, public key, and parties’ public keys. A can interact
with a corruption oracle that provides the adversary with both the secret key
and the entire state of any party the adversary chooses to corrupt, subject only
to an upper bound tc on the total number of parties that may be corrupted. We
stress here that we do not assume any erasure of parties’ states. In addition, the
adversary can interact with signing oracles that model the behavior of (honest)
parties executing the protocol. Although the signing oracles are defined as if
targeting general two-round protocols, the definition actually captures the offline-
online (or partially non-interactive) signing pattern, where the first-signing round
serves as a preprocessing round that generates nonces before the message to be
signed or the set of involved signers is known. Note that we do not assume private
or authenticated channels; thus, A can see all messages honest parties send
(even before any parties are corrupted) and send messages of its choice to honest
parties in the second round of the protocol. Furthermore, our model allows for a
concurrent adversary who may open multiple signing sessions simultaneously.



main Exptadp-TS-UFA,TS (κ, n, t, tc)

par← Setup(1κ)

Qst := ∅,Qm := ∅
(PK, {(PKi, ski)}i∈[n])←$ KeyGen(n, t+ 1)

input := (par,PK, {PKi}i∈[n])

for i ∈ [n] do ctri := 0

(m∗, σ∗)←$AOSign1,Sign2,Corrupt

(input)

return 1 if m∗ /∈ Qm

∧ Verify(PK,m∗, σ∗) = 1

return 0

OCorrupt(k)

return ⊥ if (k ̸∈ hon) ∨ (|cor| ≥ tc)

cor := cor ∪ {k}
hon := hon \ {k}
stk := Qst[k, ·, ·] // all state for party k

return (skk, stk)

OSign1(k)

return ⊥ if k /∈ hon

ctrk := ctrk + 1

eid := ctrk

(pmk,eid,1, stk,eid,1)← Sign1(k, skk)

Qst[k, eid, 1] := stk,eid,1

return (eid, pmk,eid,1)

OSign2(k, eid,S,m,PM1)

return ⊥ if k /∈ hon ∨ Qst[k, eid, 1] = ⊥
return ⊥ if Qst[k, eid, 2] ̸= ⊥
parse stk,eid,1 := Qst[k, eid, 1]

Qm := Qm ∪ {m}
pmk,eid,2 ← Sign2(k, stk,eid,1,S,m,PM1)

Qst[k, eid, 2] := pmk,eid,2

return pmk,eid,2

Fig. 3. Experiment for defining adaptive unforgeability. The public parameters par
are implicitly given as input to all algorithms, and A is stateful. Here, t+ 1 ≤ n is the
reconstruction threshold and tc ≤ t is the maximum number of signers A can corrupt.

At the end of the adversary’s execution, it succeeds if it outputs a forgery,
i.e., a valid message/signature pair (relative to PK) for a message that was not
previously queried to any party. (Our definition corresponds to TS-UF-0 from
the hierarchy of definitions in [12, 9].)

Definition 4 (Adaptive Security). For an adversary A and threshold signa-
ture scheme TS, define

Advadp-TS-UFA,TS (κ, n, t, tc) = Pr[Exptadp-TS-UFA,TS (κ, n, t, tc) = 1].

TS is (n, t, tc)-adaptively secure if for all PPT adversaries A, the advantage

Advadp-TS-UFA,TS (κ, n, t, tc) is negligible. (We stress that n, t, tc may depend on κ.)
TS has full adaptive security if it is (n, t, t)-adaptively secure for any t < n.

2.2 The FROST Protocols

FROST1,FROST2, and FROST3 are all 2-round threshold Schnorr signature
schemes where the first round can be run during a pre-processing phase before
the message or signing set are known. FROST1 [30] contains the core ideas of the



scheme. FROST2 [22, 12, 9] provides a computational optimization of FROST1.
(It was later observed [18] that the use of multi-scalar multiplication allows the
computational efficiency of FROST1 to be comparable to FROST2. We include
FROST2 for cases where such optimizations are not possible.) FROST3 [38, 17]
improves the communication complexity of FROST2.

We describe the signing protocol of FROST1, and then highlight the differences
in FROST2 and FROST3. (As discussed previously, we leave key generation out
of scope.) An overview of all the schemes is given in Figure 4.

Parameter generation (Setup). On input 1κ, the parameter-generation algo-
rithm runs (G, p, g) ← GrpGen(1κ) and selects hash functions Hnon,Hsig :
{0, 1}∗ → Zp. It outputs public parameters par← ((G, p, g),Hnon,Hsig).

Key generation (KeyGen). On input the total number of signers n and the
threshold t+ 1, the key-generation algorithm chooses a secret key sk←$ Zp

and sets the public key to PK := gsk. It then performs a Shamir secret sharing
of sk, computing {(i, ski)}i∈[n]←$ Share(sk, n, t+ 1). The corresponding pub-

lic key for each participant is PKi := gski . It outputs (PK, {(PKi, ski)}i∈[n]).
Signing round 1 (Sign1). On input a participant identifier k, party k samples

nonces rk, sk←$ Zp and sets Rk := grk and Sk := gsk . It outputs (Rk, Sk).
Signing round 2 (Sign2). On input a participant identifier k, signing set S,

message m, and set of nonce commitments PM1 = {(i, Ri, Si)}i∈S , party k
first checks that their nonce pair (i.e., (k,Rk, Sk) ∈ {(i, Ri, Si)}i∈S) is what
is recorded in their state from round 1. If so, it computes aggregate nonce
commitment R̃ := CompR(PK,S,m,PM1), a := Hnon(k,PK,S,m,PM1),
c := Hsig(R̃,PK,m), and partial signature zk := rk + ska+ cλS

k skk (where λS
k

is the Lagrange coefficient for party k in S). It outputs zk.
Computing aggregate nonce (CompR). On input PK,S,m, and PM1, where
PM1 = {(i, Ri, Si)}i∈S , the nonce aggregation algorithm computes ai :=
Hnon(i,PK,S,m,PM1) and aggregate nonce R̃ :=

∏
i∈S Ri · Si

ai .
Combining partial signatures (Combine). On input S, m, PM1, and partial

signatures PM2 = {zi}i∈S , the combiner (who may be one of the signers or an
external party) computes the aggregate nonce R̃ := CompR(PK,S,m,PM1)
and z :=

∑
i∈S zi and sets σ := (R̃, z). It outputs σ.

Verification (Verify). On input PK,m, σ, the signature is verified exactly as in
the Schnorr signature scheme.

FROST2 uses a single scalar a (instead of a scalar ai for each party). FROST3
has an additional algorithm PreAgg, which allows for pre-aggregation of nonces,
reducing the communication overhead.

We write FROST1[GrpGen], etc., when we wish to emphasize that the scheme
uses a particular group-generation algorithm GrpGen.

Static security of FROST. Security of FROST1 for static corruptions was first
claimed by Komlo and Goldberg [30]. However, they only gave a security proof for
a less-efficient variant of FROST1, arguing heuristically that the result extends
to the original protocol. Bellare et al. [9] later gave a rigorous proof of security
for FROST1 and FROST2 based on the one-more discrete-logarithm assumption.



Ruffing et al. [38] prove the static security of FROST3 via a reduction to the
static security of FROST2; Chu et al. [17] prove the static security of FROST3
with respect to a concrete distributed key-generation protocol.

3 Adaptive Security of FROST for t/2 Corruptions

We prove adaptive security of all three variants of FROST for a maximum
corruption threshold of tc = t/2 based on the AOMDL assumption in the
random-oracle model.

Theorem 1. Let GrpGen be a group generator. For t < n and tc = ⌊t/2⌋, any
FROST ∈ {FROST1[GrpGen],FROST2[GrpGen],FROST3[GrpGen]}, and any PPT
adversary A making at most qs queries to OSign1 and at most qh random-oracle
queries, there exists a PPT adversary B such that

Advadp-TS-UFA,FROST (κ, n, t, tc) ≤

√
q ·
(
Adv

(2qs + t + 1)-aomdl
B,GrpGen (κ) +

3q2

2κ

)
+

q

2κ
, (2)

where q = n(qs + qh + 1) for FROST1 and q = qs + qh + 1 for FROST2 and
FROST3. The running time of B is roughly twice that of A.

The full proof can be found in Appendix A. The proofs for the three variants
of FROST are largely the same; hence, we provide a unified proof and highlight
the points where the proofs diverge.

Proof Outline. Let A be a PPT adversary against the t/2 adaptive unforgeability
of FROST (Fig. 3). We construct a PPT reduction B against the (2qs+t+1)-aomdl
assumption (Fig. 1). We show that if A produces a forgery with non-negligible
probability, then B breaks the (2qs + t+1)-aomdl assumption with non-negligible
probability.

The reduction B takes as input (2qs+ t+1)-aomdl challenges (X0, X̂1, . . . , X̂t,
X1, X

′
1, . . . , Xqs , X

′
qs) and aims to output xi such that Xi = gxi for all i without

querying its discrete-logarithm solution oracle more than 2qs + t times. It runs a
forking algorithm on a simulator algorithm C that simulates the unforgeability
game to A as follows.
C is given as input the AOMDL challenges and q (= qs + qh + 1) random

values. For all i ∈ [n], C sets each public key share as PKi := X0X̂
i
1 · · · X̂it

t .
The threshold public key is PK := X0. C then returns (PK, {PKi}i∈[n]) to A. C
simulates random-oracle queries using the q random values. C simulates each
query to OSign1 by returning a pair (Xi, X

′
i), and simulates each query to OSign2

by making a single query for the DL of gzk = XiX
′a
i PK

cλS
k

k to obtain zk for party
k. C’s DL solution queries are forwarded to B’s DL solution oracle.
C is forked in order to extract sk = x0 from A’s two forgeries. Assume w.l.o.g.

that A corrupts t parties over the two iterations. (A can corrupt up to t/2
parties in each iteration, and C can corrupt the remaining itself.) Then C, and
therefore B, has made t DL solution queries on gskk = X0X̂

k
1 · · · X̂kt

t to obtain



FROST1 , FROST2 , FROST3 :

Setup(1κ)

(G, p, g)← GrpGen(1κ)

Hnon,Hsig : {0, 1}∗ → Zp

return par := ((G, p, g),Hnon,Hsig)

KeyGen(n, t+ 1)

sk←$ Zp; PK := gsk

{(i, ski)}i∈[n]←$ Share(sk, n, t+ 1)

for i ∈ [n] do PKi := gski

return (PK, {PKi}i∈[n], {ski}i∈[n])

PreAgg(S,PM1)

parse {(i, Ri, Si)}i∈S := PM1

R̂ :=
∏
i∈S

Ri; Ŝ :=
∏
i∈S

Si

return PM′
1 := {(R̂, Ŝ)}

CompR(PK,S,m,PM1)

parse {(i, Ri, Si)}i∈S := PM1

parse (R̂, Ŝ) := PM1

for i ∈ S do

ai := Hnon(i,PK,S,m, {(ℓ, Rℓ, Sℓ)}ℓ∈S)

a := Hnon(PK,S,m,PM1)

R̃ :=
∏
i∈S

Ri · Si
ai

R̃ := R̂Ŝa

return R̃

Sign1(k, skk)

rk, sk←$ Zp; Rk := grk ; Sk := gsk

stk,1 := (Rk, rk, Sk, sk, skk)

pmk,1 := (Rk, Sk)

return (pmk,1, stk,1)

Sign2(k, stk,1,S,m,PM1)

return ⊥ if S ̸⊆ [n] ∨ |S| ≤ t+ 1 ∨ k /∈ S
parse (R′

k, r
′
k, S

′
k, s

′
k, skk) := stk,1

parse {(i, Ri, Si)}i∈S := PM1

return ⊥ if (R′
k, S

′
k) ̸= (Rk, Sk)

R̃ := CompR(PK,S,m,PM1)

a := Hnon(k,PK,S,m,PM1)

a := Hnon(PK,S,m,PM1)

c := Hsig(R̃,PK,m)

zk := rk + ska+ cλS
k skk

return pmk,2 := zk

Combine(S,m,PM1,PM2)

parse {zi}i∈S := PM2

R̃ := CompR(PK,S,m,PM1)

return (R̃, z :=
∑
i∈S

zi)

Verify(PK,m, σ)

parse (R̃, z) := σ

c := Hsig(R̃,PK,m)

return (R̃ · PKc = gz)

Fig. 4. The FROST1, FROST2, and FROST3 threshold signature schemes, where
FROST1 contains only the dashed boxes, FROST2 contains only the highlighted boxes,
and FROST3 contains only the solid boxes. The public parameters par and public key
PK are implicitly given as input to all algorithms. CompR is an algorithm that computes
the aggregate nonce R̃ from a second-round input.



skk. B now knows t+ 1 points on the polynomial f(Z) = x0 + x̂1Z + · · ·+ x̂tZ
t

defining key generation. Thus, B can solve for x̂1, . . . , x̂t. For the remaining
(x1, x

′
1, . . . , xqs , x

′
qs), B first considers nonce pairs (Xi, X

′
i) that remain honest at

the end of the game. (1) If no OSign2 query has been made on (Xi, X
′
i) in either

iteration of A, B queries each DL directly. (2) If one OSign2 query has been made,
B has already made one DL solution query, for zk, and makes one more for Xi.
B can then solve for the DL of X ′

i itself from zk = xi + x′
ia+ cλS

k skk, given that
it knows skk or can compute it as f(k). If two OSign2 queries have been made,
one in each iteration, there are two cases. (3) If the query occurs before the fork,
then it is the same in both iterations and this is the same as case (2). (4) If the
query occurs after the fork, then we have:

x′
i =

zk′
j
− zkj

+ cjγkj
skkj
− cj′γkj′ skk′

j

aj′ − aj

where aj′ ̸= aj due to forking, and B then solves for xi from zk. B then considers
nonce pairs (Xi, X

′
i) that are corrupted by the end of the game. When a party

is corrupted, B queries its DL solution oracle on PKk to get skk. If no OSign2

query has been made on (Xi, X
′
i), B queries for each DL directly. This is the

same as case (1); the cases (2), (3), and (4) are similar. Thus, B has made the
same queries for these cases at the time of corruption. Overall, B has made
exactly two DL queries for each nonce pair (Xi, X

′
i). Thus, B has solved for

(x0, x̂1, . . . , x̂t, x1, x
′
1, . . . , xqs , x

′
qs) using only 2qs + t DL solution queries to win

the (2qs + t+ 1)-aomdl game.

4 Full Adaptive Security of FROST

In this section we introduce the low-dimensional vector representation (LDVR)
problem and the corresponding assumption that the problem is hard. In Section 4.2
we then show that the LDVR assumption is necessary for adaptive security of a
broad class of threshold Schnorr schemes (including FROST), in the sense that an
efficient algorithm solving the LDVR problem implies an explicit adaptive attack
on those schemes. In Section 4.3, we prove full adaptive security of FROST under
the AOMDL and LDVR assumptions in the AGM and ROM. In Section 4.4
we study the hardness of the LDVR problem itself, showing that, for some
parameters, the problem is unconditionally hard, and in other cases providing
evidence that the problem is computationally hard.

4.1 The Low-Dimensional Vector Representation Problem

The low-dimensional vector-representation (LDVR) problem is parameterized by
tc, t, n with tc ≤ t < n. (Looking ahead to the application to threshold schemes,
n will correspond to the total number of parties, t+ 1 to the signing threshold,
and tc to the corruption bound.) Roughly speaking, an adversary A is given



main Expt
(tc,t,n)-ldvr
A (κ)

ctr := 0

(p, st)←$A(κ)
// 2

κ
< p < 2

κ+1
, p prime

for j ∈ [0..n] do

v⃗j := (1, j, . . . , jt) ∈ Zt+1
p

(CS, i)←$AO(st)

// CS ⊆ [n], |CS| ≤ tc, i ∈ [ctr]

w⃗ := civ⃗0 +

n∑
j=0

α⃗i[j] · v⃗j

if w⃗ ∈ span({v⃗i}i∈CS)

return 1

return 0

O(α⃗)
// α⃗ ∈ Zn+1

p

ctr := ctr + 1

α⃗ctr := α⃗

cctr←$ Zp

return cctr

Fig. 5. The LDVR experiment with parameters tc ≤ t < n.

vectors v⃗0, . . . , v⃗n ∈ Zt+1
p and is then asked to find α⃗ ∈ Zn+1

p such that the vector

w⃗ := O(α⃗) · v⃗0 +
n∑

i=0

α[i] · v⃗i

lies in a tc-dimensional subspace of Zt+1
p , where O : Zn+1

p → Zp can be viewed as a
random oracle. More specifically, in the formal experiment defining the problem (cf.
Figure 5) the v⃗0, . . . , v⃗n are “Vandermonde vectors” v⃗i = (1, i, . . . , it); moreover,
A must specify a set CS ∈ [n] of size tc defining the tc-dimensional subspace
span({v⃗i}i∈CS) in which w⃗ must lie. We also allow O to be queried multiple times
with the same input; each such query results in a fresh random output.

We denote the advantage of A in solving the (tc, t, n)-LDVR problem as

Adv
(tc, t, n)-ldvr
A (κ) = Pr

[
Expt

(tc,t,n)-ldvr
A (κ) = 1

]
.

We formulate in particular the following assumption.

Definition 5 (LDVR Assumption). We say the (tc, t, n)-LDVR assumption

holds (where tc, t, n may be functions of κ) if Adv
(tc, t, n)-ldvr
A (κ) is negligible for

any PPT algorithm A.

We analyze the hardness of this problem in Section 4.4. There, we show that
the assumption holds unconditionally for several interesting values of tc, t, n.
When tc = t, it seems reasonable to conjecture that solving the problem requires
time Ω(

√
p) (as hinted by our preliminary cryptanalysis in Section 4.5), which



roughly matches the conjectured hardness of the discrete-logarithm problem in a
group of order p on a well-chosen elliptic curve.

Relationship to prior work [21]. Prior work [21] shows an attack against a
large class of Schnorr threshold signature schemes (the same class we discuss in the
next section) given access to an oracle OP that takes an arbitrary vector w⃗ ∈ Zt+1

p

as input and returns a subset CS ⊆ [n] of size tc such that w⃗ ∈ span({u⃗i}i∈CS),
if such a subset exists. The problem solved by the oracle OP is referred to as
problem P . (We refer to w⃗ for which such a subset CS exists as good.) Clearly,
the LDVR assumption cannot hold relative to OP if any of the w⃗-vectors defined
by a query to O during the adversary’s execution in the LDVR experiment are
good. For this reason, the ideas from [21] give an efficient algorithm for the
LDVR problem given access to OP , as their analysis implies that when the α⃗
queried to O are uniform, the resulting vector w⃗ is good with high probability
(depending on tc, t, and n). Thus, with the same probability, OP can be used to
find a suitable set CS such that w⃗ ∈ span({v⃗i}i∈CS), and thus solve the LDVR
problem. In the case tc = t, they show that this happens with probability 1/2 if
(roughly)

(
n
t

)
> p; their argument extends to tc < t, albeit with a sharp drop in

probability.
Conversely, if the resulting vector w⃗ is good with negligible probability, the

LDVR problem is unconditionally hard. In Section 4.4, we show an explicit upper
bound on this probability, which shows for certain choices of (tc, t, n), the LDVR
problem is unconditionally hard. However, it is unclear whether problem P is
hard or not in those scenarios.5

Summarizing: prior work [21] shows an oracle OP relative to which there is
an attack on both a certain class of Schnorr threshold schemes and the LDVR
problem for certain choices of (tc, t, n). That is, if P is easy, LDVR is easy for
the same parameter regimes where the attack from [21] applies. We do not know
whether our unconditional analysis is tight; thus, there is a range of parameter
choices where it is possible that LDVR is hard, but P is easy. And of course, it is
always possible that LDVR is easy, but P is hard in the worst case. In Section 4.2,
we show that an oracle solving the LDVR problem also suffices to implement the
attack on the same class of Schnorr threshold schemes.

4.2 Necessity of the LDVR Assumption for Adaptive Security

Here, we show that if the (tc, t, n)-LDVR problem is easy, there is an explicit
adaptive attack on a broad class of threshold Schnorr schemes for the same
parameters. The attack does not require the adversary to request any signatures;
it also does not require the adversary to learn anything about the parties’ internal
states other than their secret keys, so applies even if secure erasure is assumed.
This shows that the LDVR assumption is necessary if there is to be any hope of
proving such schemes adaptively secure.

Specifically, we consider protocols with the following properties:

5 Here, we refer to the worst-case hardness of P .



– The secret-key shares of the parties are Shamir shares of the master secret
key sk, with the ith party holding share ski.

– “Commitments” {PKi = gski}i∈[n] can be computed by the adversary. Note
that for the purposes of the attack it does not matter whether these com-
mitments are required by the protocol itself, are available to the adversary
because of the distributed key-generation (DKG) protocol used, or computable
from other information available to the adversary.

The above conditions apply to a wide range of schemes [33, 38, 41, 23, 31]
in addition to FROST and its variants. For the case of FROST in particular,
note that (1) although commitments to the parties’ key shares are not required
to run the signing protocol, such commitments are assumed to be publicly
available in the IETF RFC [19] and are necessary for identifiable abort; in any
event (2) commitments to the parties’ key shares can be computed from honest
executions of the FROST signing protocol. Moreover, (3) we are not aware of any
dlog-based DKG protocol that does not reveal these commitments.

Fix tc, t, n for which the (tc, t, n)-LDVR is easy, and let A′ be an efficient
algorithm solving it. Consider a Schnorr threshold scheme of the type above
with n parties and signing threshold t+ 1. We show an adversary A (similar to
the prior one [21]) who corrupts at most tc parties and forges a signature. At
the outset, A is given PK = gsk and {PKi = gski}i∈[n], where ski = a(i) for a
polynomial a(X) = a0 + a1X + · · · + atX

t with a0 = sk. Then A runs A′ (we
assume here that A′ uses the same prime p used by the scheme). When A′ issues
its ith query to O with input α⃗i, adversary A computes

Ri := PKα⃗i[0] ·
n∏

j=1

PK
α⃗i[j]
i

followed by ci := Hsig(Ri,PK,mi) where mi is distinct from {mj}j<i. A returns
ci to A′. When A′ outputs (CS, i∗), adversary A obtains {ski}i∈CS by corrupting
all signers i ∈ CS, and (via linear algebra) computes (βj)j∈CS such that

w⃗i∗
def
= ci∗ · v⃗0 +

n∑
j=0

α⃗i∗ [j] · v⃗j =
∑
j∈CS

βj · v⃗j .

Finally, A outputs (mi∗ , σ = (Ri∗ , zi∗)) where zi∗ =
∑

j∈CS βj · skj .

If Hsig is modeled as a random oracle, the view of A′ is the same as its view

in Expt
(tc,t,n)-ldvr
A′ (κ). Moreover, A succeeds when A′ does. To see this, let ⟨·, ·⟩

denote the dot product and note that if we let a⃗ = [a0, a1, . . . , at] be the vector



of coefficients of the sharing polynomial a, then ski = ⟨⃗a, v⃗i⟩. We have

zi∗ =
∑
j∈CS

βj · ⟨⃗a, v⃗j⟩ =

〈
a⃗,
∑
j∈CS

βj · v⃗j

〉
= ⟨⃗a, w⃗i∗⟩

= (ci∗ + α⃗i∗ [0]) · sk+
n∑

j=1

α⃗i∗ [j] · skj ,

which is exactly the discrete logarithm of Ri∗ · PKci∗ . Thus, (Ri∗ , zi∗) is a valid
signature on mi∗ .

4.3 Proof of Full Adaptive Security

We prove that full adaptive security of all three variants of FROST is implied
by the hardness of the LDVR problem and the AOMDL assumption in the
algebraic-group model and the random-oracle model.

Theorem 2. Let GrpGen be a group generator. For all tc ≤ t < n, any FROST ∈
{FROST1[GrpGen],FROST2[GrpGen],FROST3[GrpGen]}, and any algebraic PPT
adversary A making at most qs queries to Sign1 and at most qh random-oracle
queries, there is a PPT adversary B and a PPT adversary C, who makes at most
q queries to its oracle, such that

Advadp-TS-UFA,FROST (κ, n, t, tc) ≤ Adv
(2qs + t + 1)-aomdl
B,GrpGen (κ) + Adv

(tc, t, n)-ldvr
C (κ) +

2(nq)2

2κ
,

(3)
where q = qs + qh + 1. The running times of B and C are roughly the same as
that of A.

The security proofs for the three FROST variants are largely the same; hence,
we provide a unified proof and highlight the places where the proofs diverge.

Proof Outline. Suppose A outputs a valid forgery (m∗, σ∗ = (R∗, z∗)) satisfying

gz
∗
= R∗ · PKc∗ with c∗ = Hsig(R

∗,PK,m∗). We show that given a successful
adversary, we can either define an efficient reduction to AOMDL, or an efficient
reduction to the LDVR problem, using the following steps. The rough idea of
the AOMDL reduction can be described as follows. The reduction first sets the
public key PK and public key shares {PKk}k∈[n] using (t+1) AOMDL challenges

X0, . . . , Xt, where PK := X0 and PKk = X0

∏
i∈[t] X

ki

i . Then, the reduction runs
the adversary A with the public key and public key shares by simulating the
signing and corruption oracles on its own. For OSign1(k), the reduction returns
(Rk, Sk), which it sets as two new AOMDL challenges. For OSign2 and OCorrupt,
the reduction simulates the responses by querying its own Odl oracle. After A
returns a valid forgery as described above, the reduction attempts to extract a
new linear relation among the challenges from the forgery, which helps it to win



the AOMDL game. Here, “new” means that the relation does not lie in the linear
span of the Odl oracle queries made by the reduction. More precisely, there are
the following three cases.

1. We first show one possible strategy by which the AOMDL reduction can win.
Given a forgery as described above, since A is algebraic, it must provide a
representation of R∗ with respect to g, PK, {PKk}k∈[n], and all the nonce
commitments (Ri,k, Si,k) output by honest signers k ∈ hon during executions
of the protocol, where (Ri,k, Si,k) is the i-th pair sent by the k-th signer.
The AOMDL reduction can replace each term in the representation of R∗

involving (Ri,k, Si,k) (denoted by R
γi,k

i,k S
γ′
i,k

i,k ) with a term involving g and PKk

alone. This is possible if (1) there is a Sign2 query corresponding to this
nonce commitment pair for which the oracle outputs zk satisfying gzk =
Ri,kS

a
i,k ·PK

cλk

k , and (2) γ′
i,k = a ·γi,k. If one of these conditions does not hold

for some (i, k), then the equation gz
∗
= R∗ · PKc∗ gives a new linear relation

among Ri,k, Si,k, and other group elements. From this, the AOMDL reduction
can solve for a non-trivial discrete-logarithm solution without querying its
own Odl oracle.

2. If both conditions (1) and (2) hold for all (Ri,k, Si,k), then R
γi,k

i,k S
γ′
i,k

i,k can be

replaced with (gzkPK−cλk

k )γi,k , and we show a second strategy by which an
AOMDL reduction can win. The AOMDL reduction again defines R∗ with the
representation described in the step above, resulting in a representation of R∗

with respect to g,PK, {PKk}k∈[n] only, i.e., we have R
∗ = gδPKβ0

∏n
k=1 PK

βk

k

for known δ, β0, {βk}nk=1. Since gz
∗
= R∗ · PKc∗ , we have

PKβ0+c∗
n∏

k=1

PKβk

k = g−δ+z∗
. (4)

Denote v⃗k := (1, k, k2, . . . , kt) for k ∈ [0..n] and v⃗∗ = c∗v⃗0 +
∑

k∈[0..n] βkv⃗k.

Since PKk =
∏t

j=0 X
vk,j

j and PK =
∏t

j=0 Xjv0,j (recalled that X0, . . . , Xt

are (t+ 1) AOMDL challenges), by Equation (4),

t∏
j=0

X
v∗
j

j = g−δ+z∗
. (5)

Then, if v⃗∗ ̸∈ span({v⃗j}j∈cor), Equation (5) gives a new linear relation among
X0, . . . , Xt. Therefore, the AOMDL reduction can again solve for a non-trivial
discrete-logarithm solution without querying its own Odl oracle.

3. If the check in Step 2 fails, i.e., v⃗∗ ∈ span({v⃗j}j∈cor), then A can compute

logg

(
PKβ0+c∗ ∏n

k=1 PK
βk

k

)
using {skj}j∈cor, and thus the AOMDL reduction

cannot hope to obtain a new linear relation from the above equation. However,
in this case, we can define a second reduction that solves the LDVR problem.
In particular, (β0, . . . , βn) can be seen as an oracle query in the (tc, t, n)-LDVR
game with response c∗, and since |cor| ≤ tc and c∗v⃗0 +

∑
k∈[0..n] βkv⃗k ∈



span({v⃗j}j∈cor), this gives a valid solution for the LDVR problem. The formal
reduction is more complicated. In particular, a key challenge is that the
{βk}k∈[0..n] need to be extracted at the time A makes the random-oracle
query to Hsig(R

∗,PK,m∗). We refer to the proof of Lemma 1 for details.

Proof (of Theorem 2). Let A be an algebraic PPT adversary in the adaptive

unforgeability experiment Exptadp-TS-UFA,FROST (κ, n, t, tc) that makes up to qh queries
to Hnon and Hsig, up to qs queries to Sign1, and up to tc queries to Corrupt. We
assume, without loss of generality, that A queries Hsig on its forgery (R∗,PK,m∗),
and that it always queries Hnon(PK,S,m,PM1) (resp., Hnon(k,PK,S,m,PM1)
for FROST1) before querying Sign1(k,S,m,PM1) for some k ∈ S ∩hon. We now
define a PPT algorithm B for the AOMDL experiment.
B is initialized by the AOMDL challenger with the group description (G, g, p)

and a set of 2qs+t+1 AOMDL challenges (X0, X̂1, . . . , X̂t, X1, X
′
1, . . . , Xqs , X

′
qs).

B has access to a discrete-logarithm solution oracle Odl, and its goal is to output
discrete logarithms (x0, x̂1, . . . , x̂t, x1, x

′
1, . . . , xqs , x

′
qs) without querying O

dl more
than 2qs + t times. B begins by initializing the following values:

1. Tables Qnon := ∅, Qsig := ∅ to store random-oracle queries to Hnon,Hsig and
corresponding simulated responses;

2. Table Qm := ∅, to store the set of messages queried by A to Sign2;
3. Table Qst := ∅ of participants’ states for all signing sessions initiated by A;
4. Counter ctr := 0 to iterate through pairs of AOMDL challenges;
5. Counter ctrk := 0 for k ∈ [n] to count the number of Sign1 queries for party k.

To simulate key generation, B uses the AOMDL challenges (X0, X̂1, . . . , X̂t)
to define a polynomial f(Z) = x0 + x̂1Z + · · · + x̂tZ

t “in the exponent” by
deriving each party’s public key as:

PKi = X0X̂
i
1 · · · X̂it

t , (6)

where implicitly ski = f(i). The threshold public key is PK := X0 with corre-
sponding secret key sk = x0 = f(0). B then runs A((G, g, p),PK, {PKi}i∈[n]) with
the random oracles and signing oracles simulated as follows.

Random oracles: These are simulated in the natural way, choosing a uniform
output for each fresh query made by A. Queries/responses to Hnon (resp.,
Hsig) are stored in Qnon (resp., Qsig).

OSign1 queries: When A queries Sign1 for party k ∈ hon, algorithm B does the
following:

1. Increment ctrk := ctrk + 1 and set eid := ctrk.
2. Increment ctr := ctr + 1 and set (Rk, Sk) := (Xctr, X

′
ctr).

3. Set stk,eid,1 := (Rk,⊥, Sk,⊥,⊥). # L-Note: i.e., rk, sk, skk are not yet
defined.

4. Update Qst[k, eid, 1] := stk,eid,1.

Finally, B returns (Rk, Sk) to A.



OSign2 queries: When A queries OSign2(k, eid,S,m,PM1) for k ∈ hon, algo-
rithm B first performs the checks in the OSign2 oracle (Fig. 3) and the Sign2
algorithm (Fig. 4). If they pass, then in particular stk,eid,1 = (Rk,⊥, Sk,⊥,⊥).
# L-Note: i.e., again, rk, sk, skk are not yet defined. Then B does the
following:
1. Set Qm := Qm ∪ {m}.
2. Run the Sign2 algorithm (Fig. 4) to obtain a and c. Note that B can

internally query Hnon and Hsig as needed.

3. Set Zk := RkS
a
k · PKk

cλk , i.e., Zk = Xi′(X
′
i′)

aXcλk
0 X̂cλkk

1 · · · X̂cλkk
t

t for
some i′ ∈ [qs]. B then queries Odl on Zk with α = 0 and

(βi)
2qs+t+1
i=1 = (cλk, cλkk, . . . , cλkk

t, 0, . . . , 0, 1, a, 0, . . . , 0)

(where the 1 is in position t+ 2i′), and receives zk.
4. Set stk,eid,2 := zk and return zk to A.

Corruptions: When A corrupts party k, B sets cor := cor ∪ {k} and hon :=
hon\{k}. Then B queries Odl on PKk with α = 0 and (cf. Eq. (22))

(βi)
2qs+t+1
i=1 = (1, k, . . . , kt, 0, . . . , 0)

and receives skk. Then B does the following:
1. If no entry Qst[k, ⋆, 1] exists, then B returns skk to A. (This corresponds

to the case where A has not previously queried party k to Sign1.)
2. Otherwise

(a) For each entry Qst[k, eid, 1] ̸= ⊥ with Qst[k, eid, 2] = ⊥, (This cor-
responds to round-1 messages that were never used in round 2.)
algorithm B queries Odl on Rk (which is equal to Xi′ for some
i′ ∈ [qs]) with α = 0 and (βi)

2qs+t+1
i=1 = (0, . . . , 0, 1, 0, . . . , 0), where 1

is in position t+ 2i′; it receives rk in response. B similarly queries
Odl on Sk (with α = 0 and (βi)

2qs+t+1
i=1 = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is in position t + 1 + 2i′), and receives sk. Then B sets
Qst[k, eid, 1] = (Rk, rk, Sk, sk, skk).

(b) For each entry Qst[k, eid, 2] ̸= ⊥, (This corresponds to Round 1 queries
that made it to Round 2.) algorithm B queries Odl on Sk (which
is equal to X ′

i′+1 for some i′ ∈ [qs]) with α = 0 and (βi)
2qs+t+1
i=1 =

(0, . . . , 0, 1, 0, . . . , 0), where 1 is in position t+ 1 + 2i′; it receives sk
in response. Note that B must have already made an Odl query to
obtain zk, so it can compute rk = zk − ska − cλkskk. Then B sets
Qst[k, eid, 1] = (Rk, rk, Sk, sk, skk).

Finally, B returns skk and all state Qst[k, ·, ·] for party k to A.
Output: When A terminates with output (m∗, σ∗ = (R∗, z∗)), then B aborts

if A does not succeed. B finds A’s corresponding query to Hsig to obtain
c∗ := Hsig(R

∗,PK,m∗). When A made this query, it must have provided a
representation

R∗ = gδ · PKβ ·
n∏

k=1

PKβk

k

qs∏
i=1

R
γi,1

i,1 S
γ′
i,1

i,1 · · ·R
γi,n

i,n S
γ′
i,n

i,n , (7)



based on all group elements it had seen so far of the form, where (Ri,k, Si,k)
denotes the output of the ith query Sign(k). (Note that the above includes
some group elements that A may not have known at the time it made the
Hsig query in question, in which case the corresponding γi,k, γ

′
i,k will be 0.)

Let hon (resp., cor) be the set of honest (resp., corrupted) signers at the end
of A’s execution For i ∈ [qs] and k ∈ hon, if A made the corresponding Sign2
query (i.e. Qst[k, i, 2] ̸= ⊥), then let (k, eid,S,m,PM1) be that query. Note
that, because B simulated Sign2, it knows (ai,k, zi,k, ci,k, λi,k) such that

gzi,k = Ri,kS
ai,k

i,k PK
ci,k·λi,k

k , (8)

where zi,k = Qst[k, i, 2], ai,k = Hnon(PK,S,m,PM1), ci,k = Hsig(R̃,PK,m)

with R̃ := CompR(PK,S,m,PM1), and λi,k = λS
k . (For FROST1, ai,k =

Hnon(k,PK,S,m,PM1).) Call (i, k) bad if (γi,k, γ
′
i,k) ̸= (0, 0) and either

Qst[k, i, 2] = ⊥ or γ′
i,k ≠ γi,kai,k, and let BadRS be the event that some

(i, k) ∈ [qs]× hon is bad. 6 (Intuitively, if (i, k) is bad then B cannot compute

a representation of R
γi,k

i,k S
γ′
i,k

i,k with respect to g and PKk.) We show below
that when BadRS occurs B can succeed in the AOMDL experiment.

If BadRS does not occur, then for every (i, k) either R
γi,k

i,k S
γ′
i,k

i,k = 1 or,
using Equation (8),

R
γi,k

i,k S
γ′
i,k

i,k = R
γi,k

i,k S
γi,kai,k

i,k = gzi,k =
(
gzi,kPK

−ci,kλi,k

k

)γi,k

. (9)

Since (R∗, z∗) is a valid signature,

gz
∗
PK−c∗ = gδPKβ

n∏
k=1

PKβk

k

qs∏
i=1

R
γi,1

i,1 S
γ′
i,1

i,1 · · ·R
γi,n

i,n S
γ′
i,n

i,n . (10)

Thus, B can replace R
γi,k

i,k S
γ′
i,k

i,k with
(
gzi,kPK

−ci,kλi,k

k

)γi,k

in Equation (10)

for all i ∈ [qs] and k ∈ hon with (γi,k, γ
′
i,k) ̸= (0, 0) to obtain

gz
∗
PK−c∗ = gδPKβ

n∏
k=1

PKβk

k

qs∏
i=1

R
γi,1

i,1 S
γ′
i,1

i,1 · · ·R
γi,n

i,n S
γ′
i,n

i,n

= gδPKβ
∏

k∈hon

PKβk

k

∏
j∈cor

PK
βj

j

qs∏
i=1

( ∏
k∈hon

R
γi,k

i,k S
γi,kai,k

i,k

∏
j∈cor

R
γi,j

i,j S
γ′
i,j

i,j

)
= gδPKβ

∏
k∈hon

PKβk

k

∏
j∈cor

PK
βj

j

qs∏
i=1

6 Note that BadRS is referred to as a bad event because it represents a failure case for
the reduction to the LDVR problem, as we will see later.



·
( ∏

k∈hon

gzi,kγi,kPK
−ci,kλi,kγi,k

k

∏
j∈cor

R
γi,j

i,j S
γ′
i,j

i,j

)
= gδ+

∑qs
i=1(

∑
k∈hon zi,kγi,k+

∑
j∈cor(γi,jri,j+γ′

i,jsi,j))

· PKβ
∏
j∈cor

PK
βj

j

∏
k∈hon

PK
βk−

∑
i∈[qs],γi,k ̸=0 ci,kλi,kγi,k

k . (11)

(Note that it is enough to require γi,k ̸= 0 since if γi,k = 0 then—because (i, k)
is good—we must have γ′

i,k = ai,kγi,k = 0.) Let v⃗k := (1, k, . . . , kt) ∈ Zt+1
p

for k ∈ [0..n] and define

v⃗∗ := (c∗ + β)v⃗0 +
∑
k∈cor

βk · v⃗k +
∑
k∈hon

βk −
∑

i∈[qs],γi,k ̸=0

ci,kλi,kγi,k

 · v⃗k .
(12)

Since we can write PK = X
v0,0
0 ·

∏
j∈[t] X̂

v0,j
j and PKk = X

vk,0

0 ·
∏

j∈[t] X̂
vk,j

j

for all k ∈ [n], Equation (11) implies

gγ
∗
= X

v∗
0

0 ·
∏
j∈[t]

X̂
v∗
j

j , (13)

where γ∗ := z∗ − δ −
∑qs

i=1(
∑

k∈hon zi,kγi,k −
∑

j∈cor(γi,jri,j + γ′
i,jsi,j)) is a

scalar known by B. Let Badv be the event that BadRS does not occur and
v⃗∗ ̸∈ span({v⃗k}k∈cor). We show below that if Badv occurs then B can succeed
in the AOMDL experiment.

Completing the description of B, we show next how B can succeed in the
AOMDL experiment when A succeeds and either BadRS or Badv occurs. Namely,
we show that B can compute the discrete logarithms of every group element it
was given at the outset of the experiment, while making t+ 2qs queries to Odl.

BadRS occurs. If BadRS occurs then there exist indices (̂i, k̂) ∈ [qs]× hon such

that (γî,k̂, γ
′
î,k̂

) ̸= (0, 0) and either Qst[k̂, î, 2] = ⊥ or γ′
î,k̂
̸= γî,k̂aî,k̂. Let i

′ ∈ [qs]

be such that (Rî,k̂, Sî,k̂) = (Xi′ , X
′
i′).

First of all, B can compute (x0, x̂1, . . . , x̂t) using {skk}k∈cor and an additional
t + 1 − |cor| queries to Odl. This accounts for a total of t + 1 queries (since B
already used |cor| queries to learn {skk}k∈cor).

Then, for each (Xi, X
′
i) that corresponds to nonce commitments of an cor-

rupted signer, B knows (xi, x
′
i) from its simulation of the Corrupt oracle which

involved two queries to Odl. For each (Xi, X
′
i) ̸= (Xi′ , X

′
i′) that corresponds to

nonce commitments of an honest signer, B can compute (xi, x
′
i) using either one

Odl query if it already made a Odl query for (Xi, X
′
i) as part of simulating a

second-round signing query, or using two Odl queries otherwise. (This is done
exactly as when B simulates the Corrupt oracle.) Therefore, B makes two Odl

queries for each (Xi, X
′
i) ̸= (Xi′ , X

′
i′).



Finally, we show that B needs only one Odl query to compute (xi′ , x
′
i′)

corresponding to (Xi′ , X
′
i′). Assume γî,k̂ ̸= 0. (The case of γ′

î,k̂
̸= 0 is analogous.)

If B has not yet made any Odl query involving (Xi′ , X
′
i′), then B queries Odl on

X ′
i′ to obtain x′

i′ , and then derives xi′ from Equation (10) since γî,k̂ ̸= 0 and
B knows the discrete logarithms of all group elements in that equation except
for Rî,k̂. Otherwise, B knows gzî,k̂−cî,k̂λî,k̂skk̂ = Xi′(X

′
i′)

aî,k̂ (cf. Equation (9)).

Since γ′
î,k̂
̸= γî,k̂aî,k̂, we see that B can derive (xi′ , x

′
i′) using Equation (10),

because B knows the discrete logarithms of all group elements in that equation
except for (Rî,k̂, Sî,k̂).

Badv occurs. In this case, B learns a linear relation among g,X0, X̂1, . . . , X̂t

(cf. Equation (13)) that is linearly independent of all of the Odl queries it made
to simulate Corrupt queries. B can thus compute (x0, x̂1, . . . , x̂t) by making an
additional t− |cor| queries to Odl. Then, as in the previous case, B can compute
(xi, x

′
i) corresponding to each (Xi, X

′
i) using a total of two queries to Odl for each

such pair.
Since B perfectly simulates Exptadp-TS-UFA,TS , we have

Advadp-TS-UFA,TS (κ, n, t, tc) ≤ Adv
(2qs + t + 1)-aomdl
B (κ) + Pr[Succ ∧ ¬(BadRS ∨ Badv)],

where Succ is the event that A succeeds. Lemma 1 completes the proof. ⊓⊔

Lemma 1. For A described as in Theorem 2, there is a PPT adversary C for
the (tc, t, n)-LDVR problem making at most q queries to its oracle and running
in time roughly the same as A such that

Adv
(tc, t, n)-ldvr
C (κ) ≥ Pr[Succ ∧ ¬(BadRS ∨ Badv)]− 2(nq)2

2κ
. (14)

Proof. We assume, without loss of generality, that A makes a query to Hsig on

its forgery (R̃∗,PK,m∗) and that it always queries Hnon(PK,S,m,PM1) (resp.
Hnon(k,PK,S,m,PM1) for FROST1) before querying OSign1(k,S,m,PM1) for
some k ∈ S. This adds qs + 1 additional random-oracle queries. Then, let
q = qh + qs + 1.

Construction of C. To start with, C samples (G, p, g)←$ GrpGen(κ) and sends
p back to the game (tc, t, n)-LDVR. Then, C runs A by simulating the game

Exptadp-TS-UFA,FROST (κ, n, t, tc) faithfully except that C initializes tables Flagnon,Qnon,Qsig

to empty and simulates queries to the random oracles Hnon and Hsig as follows.

Hnon : When A queries Hnon on T , for FROST1, C parses T = (k,PK,S,m,PM1),
and for FROST2 and FROST3, C parses T = (PK,S,m,PM1). (Here w.l.o.g.
we assume T can be parsed correctly and it is for PK, since otherwise the
query on a malformed T would not help the adversary to win the game.)
Then, C checks if Qnon[T ] = ⊥. If not, C returns Qnon[T ].
Otherwise, for FROST1, C does the following:



1. For all i ∈ S, C samples ai←$ Zp and stores Qnon[(i,PK,S,m,PM1)]
= ai. If Flagnon[ai] ̸= ⊥, C aborts, and we refer to this bad event as
BadNon. Otherwise, C sets Flagnon[ai] := 1.

2. Then, C computes R̃ := CompR(PK,S,m,PM1).

3. Finally, C returns ak.

For FROST2 and FROST3, C does the following:
1. C samples a←$ Zp and stores Qnon[T ] := a.
2. If Flagnon[a] ̸= ⊥, C aborts, and we refer to this bad event as BadNon.

Otherwise, C sets Flagnon[a] := 1.
3. C computes R̃ := CompR(PK,S,m,PM1).
4. Finally, C returns a.

Hsig : When A queries Hsig on (R̃,PK,m), if Qsig[(PK,m, R̃)] ̸= ⊥, C returns

Qsig[(PK,m, R̃)]. (Similar to Hnon, here we only consider queries for PK, since
otherwise the query would not help the adversary to win the game.) Otherwise,
C queries OH to obtain a challenge c on a vector α⃗, sets Qsig[(PK,m, R̃)] := c,
and returns c, where α⃗ is computed as follows.

1. C learns a representation of R̃ from A based on all group elements A had
seen so far:

R̃ = gδPKβ0

n∏
k=1

PKβk

k

qs∏
i=1

R
γi,1

i,1 S
γ′
i,1

i,1 · · ·R
γi,n

i,n S
γ′
i,n

i,n , (15)

where (Ri,k, Si,k) denotes the output of the i-th query to OSign(k).

2. C sets αk := βk for k ∈ [0..n].

3. For each i ∈ [qs] and k ∈ hon with γi,k ̸= 0, C updates αk if the following
two conditions hold:

(a) There exists a Hnon query T such that γ′
i,k = Qnon[T ] · γi,k. Since

BadNon does not occur (otherwise, the game aborts), such T is unique.
For FROST1, C parses T = (k,PK,S, m̂,PM1).

For FROST2 and FROST3, C parses T = (PK,S, m̂,PM1).

(b) (m, R̃) ̸= (m̂, ˆ̃R), where ˆ̃R := CompR(PK,S, m̂,PM1).

If the above conditions hold, C sets αk := αk − γi,kλi,SQsig[PK, m̂, ˆ̃R].

4. For each i ∈ [qs] and k ∈ hon with γi,k ̸= 0, C sets Flagnon[γ
′
i,k/γi,k] := 1.

Output. At the end of the game, after receiving (m∗, σ∗ = (R∗, z∗)) from A,
C aborts if A does not win the unforgeability game or (Badv ∨ BadRS) occurs.
Otherwise, C looks up A’s query to Hsig on (R∗,PK,m∗) and its corresponding
query to OH on the vector α⃗∗ such that Hsig(R

∗,PK,m∗) is set to OH(α⃗∗).
Suppose it is the i-th OH query, C returns (cor, i).



Analysis of C. We first show C wins the game LDVR if C does not abort. Since
A corrupts at most tc parties, we know |cor| ≤ t. Let c∗ := OH(α⃗∗) and w⃗∗ :=
c∗v⃗0 +

∑
k∈[n] αi,kv⃗k. Since (Badv∨BadRS) does not occur, v⃗∗ ∈ span({v⃗k}k∈cor).

We just need to show that w⃗∗ − v⃗∗ ∈ span({v⃗k}k∈cor).
When Amade the Hsig query (R∗,PK,m∗), it provided a presentation as shown

in Equation (7). Denote hon (resp. cor) as the set of honest (resp. corrupted)
parties after A returned, and denote hon′ (resp. cor′) as the set of honest (resp.
corrupted) parties when A made the Hsig query. From the execution of C,

w⃗∗ := (c∗ + β)v⃗0 +
∑

k∈hon′

βk −
∑

i∈[qs],γi,k ̸=0

bi,k

 · v⃗k , (16)

where bi,k := γi,kλi,SQsig[PK, m̂, ˆ̃R] denotes the decrement applied to αk in the
last line of Step 3 on behalf of (i, k) and bi,k := 0 if one of the in Step 3 does not
hold. By Equation (12),

w⃗∗ − v⃗∗ :=−
∑
k∈cor

βk · v⃗k −
∑

k∈hon′\hon

(
qs∑
i=1

bi,k

)
· v⃗k

+
∑
k∈hon

 ∑
i∈[qs],γi,k ̸=0

(ci,kλi,kγi,k − bi,k)

 · v⃗k .

(17)

Since hon′ \ hon ∈ cor, we have
∑

k∈cor βk · v⃗k +
∑

k∈hon′\hon (
∑qs

i=1 bi,k) · v⃗k ∈
span({v⃗k}k∈cor), and thus it is left to show bi,k = ci,kλi,kγi,k for all (i, k) ∈
[qs]× hon with γi,k ̸= 0.

For each (i, k) ∈ [qs]× hon with γi,k ̸= 0, since BadRS does not occur, there
exists a query (k, eid,S,m,PM1) to OSign2 such that ai,k = Hnon(PK,S,m,PM1)

(for FROST1, ai,k = Hnon(k,PK,S,m,PM1)), ci,k = Hsig(PK,m, R̃) with R̃ :=
CompR(PK,S,m,PM1), λi,k = λS

k , and γ′
i,k = ai,kγi,k. We now show that when

A made the Hsig query (PK,m∗, R̃∗), both conditions in Step 3 hold:

Condition (3a) holds. Let T = (PK,S,m,PM1) (resp. (k,PK,S,m,PM1)
for FROST1), and we have γ′

i,k = Hnon[T ]γi,k. Also, the query T to Hnon must

be made before A made the Hsig query (PK,m∗, R̃∗). Otherwise, BadNon
would occur since Flagnon[γ

′
i,k/γi,k(= Hnon(PK,S,m,PM1))] is set to 1 after

the Hsig query (see Step 4), which contradicts the fact that C does not abort.
Therefore, the first condition holds.

Condition (3b) holds. Since A wins the unforgeability game, we havem ≠ m∗,
which implies the second condition holds.

Therefore, from the description of Step 3, bi,k = Hsig(PK,m, R̃)λS
i γi,k = ci,kλi,kγi,k.

Since C simulates Exptadp-TS-UFA,FROST perfectly except for an abort if BadNon occurs,

Adv
(tc, t, n)-ldvr
C (κ) ≥ Pr[Succ ∧ ¬(BadRS ∨ Badv)]− Pr[BadNon] .



For each Hnon query, since the number of values marked by Flagnon is at most
2nq,7 the probability that the sampled a collides with one of the values is at
most 2nq/p. (For FROST1, the probability that one of the sampled ai collides
with one of the values is at most 2n2q/p). Therefore, Pr[BadNon] ≤ 2(nq)2/p,
which concludes the proof of the lemma. ⊓⊔

4.4 Hardness of LDVR

In this section, we provide some basic intuition about the hardness of the
LDVR problem. First note that {v⃗i}i∈CS can never be a basis of Zt+1

p (since
tc < t+ 1), and therefore it is not clear whether the problem is solvable. (Indeed,
we show below that for some settings of the parameters even an unbounded
adversary cannot solve it except with negligible probability.) In particular, note
that v⃗0 ̸∈ span ({v⃗i}i∈CS) for any CS ⊂ [n] of size tc, and so if we fix such
a CS in advance then for any query c := O(α⃗) made by A, the probability
that w⃗ = c · v⃗0 +

∑n
i=0 α[i] · v⃗i lies in span ({v⃗i}i∈CS) is at most 1/p. Note,

however, that A can choose CS after observing c, and there are
(
n
tc

)
possibilities

for CS. Nevertheless, this already shows that the (tc, t, n)-LDVR problem is
unconditionally hard (for an algorithm making polynomially many queries to its
oracle) if q

(
n
tc

)
· 2−κ is negligible. We show additional results about unconditional

hardness next, which extend this result to a general corruption threshold tc < t.

Unconditional hardness. We prove unconditional hardness of the (tc, t, n)-
LDVR problem for various settings of tc, t, n. Specifically, we provide an upper
bound on the probability with which even an unbounded algorithm A can solve
the LDVR problem, as a function of tc, t, n and the number of oracle queries q
made by A. We also give numerical examples of our bound.

In the following, we define (n)k = n · (n− 1) · · · (n− k + 1) for k ≥ 1, with
(n)k = 1 if k ≤ 0.

Theorem 3 (Unconditional hardness of LDVR problem). Let tc ≤ t < n
be integers. Then, for any algorithm A making q = q(κ) queries to its oracle,

Adv
(tc, t, n)-ldvr
A (κ) ≤ q · (n)2tc−t

(tc)2tc−t
· 1

2κ
.

Discussion of the bound. Before proving Theorem 3, we make some observations.
First note that the inefficient attack from prior work [21] can be seen as an
algorithm solving the LDVR problem (as discussed in Section 4.1), and is thus
subject to our bound. For tc = t, that prior work shows an algorithm that
succeeds with probability 1

2 if
(
n
t

)
> 2κ. This implies that our upper bound is

tight when tc = t, since then 2tc − t = t and

(n)t
(t)t

=
(n)t
t!

=

(
n

t

)
.

7 At most n values can be marked for each Hnon query or Hsig query.



δ

(t, n) 0.55 0.60 0.70 0.80 0.90 1.00

(32, 128) 11.77 17.61 35.09 58.85 77.85 100.22

(64, 128) 11.71 23.06 48.54 69.82 95.66 124.17

(96, 128) 13.51 25.95 45.84 64.55 79.24 100.22

(64, 256) 17.79 35.45 76.57 112.48 157.12 203.57

(128, 256) 23.51 50.07 97.52 140.36 188.59 251.67

(192, 256) 27.10 49.67 92.02 129.66 161.01 203.57

(256, 1024) 77.46 154.33 301.98 458.68 619.17 825.63

(512, 1024) 102.08 197.18 384.26 570.84 761.94 1018.67

Table 1. Numerical values from Theorem 3. Selected values of the function
ft,n(tc = ⌊δ · t⌉) = log

(
(n)2tc−t

(tc)2tc−t

)
, where ⌊x⌉ denotes rounding x to the nearest integer.

For tc < t, the algorithm from prior work succeeds with probability lower than
our upper bound, and it remains open whether our bound is tight in that range.
Also, compared to the trivial upper bound q

(
n
tc

)
· 2−κ mentioned above, the

improved upper bound is strictly better since
(
n
tc

)
=

(n)tc
(tc)tc

<
(n)2tc−t

(tc)2tc−t
given

tc < t. Moreover, improvement is significant when tc is far from t. For example,

if tc = 2t/3, the trivial upper bound gives q
(n)2t/3

(2t/3)2t/3
· 2−κ, while the improved

bound gives q
(n)t/3

(2t/3)t/3
· 2−κ, which is better by a factor of

(n−t/3)t/3
(t/3)t/3

.

Observe also that for tc ≤ t/2, the above bound is q/2κ; when plugged into
Theorem 2, this implies (as implicitly confirmed by Theorem 1) that the LDVR
problem is not relevant in that case.

Remark 1 (Comparison with guessing argument). It is also interesting to compare
what we get by composing Theorems 2 and 3 with the folklore approach of lifting
static to adaptive security via guessing the corruption set. The least favorable
comparison is for the case of full corruption tc = t, where our approach results
in an additive term of q

(
n
t

)
/2κ with q corresponding to the number of random-

oracle queries made by the attacker. In contrast, employing the guessing strategy
results in a multiplicative term of

(
n
t

)
. Given current concrete bounds for the

static security of FROST (e.g., [8]), this means that if we can prove that the
advantage of a static adversary is at most ϵ, we can also show that the advantage
of an adaptive one is at most

(
n
t

)
ϵ. The best known ϵ is effectively the bound

of Theorem 2 without the LDVR advantage, and once one factors in concrete
security bounds for AOMDL (e.g., from the GGM analysis [8]), the final concrete
bound would be looser. The improvement is even more important for tc < t, since
our bound is smaller than

(
n
tc

)
/2κ.



Table 1 gives numerical values for ft,n(tc = δ · t) = log
(

(n)2tc−t

(tc)2tc−t

)
that provide

a quantitative understanding of the bound from Theorem 3. For example, we see
that if n = 128, t = tc = 96, and p > 2256, Theorem 3 gives

Adv
(tc, t, n)-ldvr
A (κ) ≤ q · 2100.22−256 =

q

2155.78
.

We now prove Theorem 3:

Proof. We assume A makes exactly q queries, and let p be the prime output by A.
For i ∈ [q], let Wini be the event that the vector w⃗i = ci · v⃗0 +

∑n
j=0 α⃗i[j] · v⃗j

implicitly defined by the ith query α⃗i returning ci belongs to Span({v⃗j}j∈S) for
some S ⊆ [n] with |S| = tc. Note that if the game outputs true then Wini must
occur for some i ∈ [q], and so a union bound implies

Adv
(tc, t, n)-ldvr
A (κ) ≤

q∑
i=1

Pr [Wini] . (18)

Fix some i ∈ [q], and write

w⃗i = (ci + α⃗i[0]) · v⃗0 + u⃗i ,

where u⃗i =
∑n

j=1 α⃗i[j] · v⃗j . We call a set S ⊆ [n] of size tc good if u⃗i ∈
Span({v⃗j}j∈S ∪ {v⃗0}). In particular, for every good set S, there exist coefficients
(βS

j )j∈S∪{0} such that u⃗i = βS
0 v⃗0 +

∑
j∈S βS

j · v⃗j .

Claim. Wini occurs if and only if ci + α⃗i[0] + βS
0 = 0 for some good set S.

Proof. If ci + α⃗i[0] + βS
0 = 0 for some good set S, then w⃗i ∈ Span({v⃗j}j∈S)

(as the v⃗0 component cancels out) and thus Wini occurs. Conversely, if Wini
occurs then there exists S ⊆ [n] with |S| = tc such that w⃗i ∈ Span({v⃗j}j∈S).
We claim that S must be good. To see this, let S′ ⊇ S be smallest such that
u⃗i ∈ Span({v⃗j}j∈S′ ∪ {v⃗0}). If S′ ̸= S, then w⃗i cannot be in Span({v⃗j}j∈S), as
it would have at least one non-zero component aligned with v⃗j for j /∈ S ∪ {0}.
Further, if ci + α⃗i[0] + βS

0 ̸= 0, it would also have a component aligned with v⃗0,
and thus not be in Span({v⃗j}j∈S). ⊓⊔

Let Good be the collection of good sets. Because Good is completely determined
by α⃗i, and ci is uniform and independent of α⃗i, we have

Pr [Wini] = Pr
[
∃S ∈ Good : ci + α⃗i[0] + βS

0 = 0
]
≤ |Good|

p
. (19)

It remains to upper bound |Good|. To this end, fix distinct S, S′ ∈ Good. Then,
we can write w⃗i in two different ways, namely

(ci + α⃗i[0] + βS
0 )v⃗0 +

∑
j∈S

βS
j · v⃗j = w⃗i = (ci + α⃗i[0] + βS′

0 )v⃗0 +
∑
j∈S′

βS′

j · v⃗j



which implies in particular that

(βS
0 − βS′

0 )v⃗0 +
∑
j∈S

βS
j · v⃗j −

∑
j∈S′

βS′

j · v⃗j = 0⃗ .

Thus |S ∪ S′| ≥ t + 1, for otherwise we would have expressed 0⃗ as a non-zero
linear combination of the vectors {v⃗j}j∈S∪S′ ∪ {v⃗0}, contradicting their linear
independence. Therefore, if we define Good′ to be the set of subsets S ⊆ [n]
of size tc such that |S ∪ S′| ≥ t + 1 for any distinct S, S′ ∈ Good′, we have
|Good| ≤ |Good′|. It is thus enough to upper bound the latter.

If tc ≤ t/2, then Good′ includes at most one set, which proves the claimed
upper bound in that case. To obtain a bound for tc > t/2, we assign every set
S ∈ Good′ to its characteristic vector c⃗S ∈ {0, 1}n, which has weight exactly tc,
to build a code C = {c⃗S : S ∈ Good′} ⊆ {0, 1}n. We observe that for any two
S, S′ ∈ Good′, the Hamming distance of c⃗S and c⃗S′ is

∆(c⃗S , c⃗S′) = |S ⊕ S′| = |S|+ |S′| − 2|S ∩ S′|
= |S|+ |S′| − 2(|S|+ |S′| − |S ∪ S′|)
= 2|S ∪ S′| − |S| − |S′| ≥ 2(t+ 1− tc) ,

where S ⊕ S′ denotes symmetric difference of the two sets. By invoking the
Johnson bound (Lemma 2) with e = t + 1 − tc, we obtain the desired bound
for |Good′| = |C|, since w − e + 1 = tc − t − 1 + tc + 1 = 2tc − t. Combining
Equations (18) and (19), and using the fact that p ≥ 2κ, concludes the proof. ⊓⊔

For completeness, we provide a proof of the following in Appendix B.

Lemma 2 (Johnson Bound). For any integers e ≤ w ≤ n, let C ⊆ {0, 1}n be
a binary code such that every codeword c⃗ ∈ C has weight w, and any two distinct
c⃗, c⃗′ ∈ C have Hamming distance ∆(c⃗, c⃗′) ≥ 2e. Then,

|C| ≤
w−e∏
i=0

n− i

w − i
=

(n)w−e+1

(w)w−e+1
.

Computational hardness. We conjecture that the LDVR problem is compu-
tationally hard for any tc ≤ t < n. In Section 4.5 we show that one natural
algorithmic strategy for solving the problem results in a modular subset-sum
problem which is hard for current algorithms. Of course, further cryptanalysis of
the LDVR problem is needed.

4.5 Cryptanalysis of the LDVR Problem

In order to support a plausible conjecture that LDVR is hard for any choice
of tc ≤ t < n, we describe here a cryptanalytic attack strategy for the LDVR
problem which targets the maximum corruption case tc = t, under the assumption
that n ≥ t+ 2. Clearly, tc = t is the easiest case to attack, since an attack for a



lower tc woud also apply. One of the proposed attacks below runs in time Õ(2κ/2)
under reasonable conjectures, but it appears hard to improve upon this approach.

The attack template. Fix a prime 2κ < p < 2κ+1. The basic version of the attack
queries a single vector α = (0, 1, 0, . . . , 0) to O, which is then associated with a
single uniform challenge c ∈ Zp. We let w⃗ = c · v⃗0 + v⃗1 ∈ Zt+1

p , and we aim to
find a set CS ⊆ [2..n] of size |CS| = tc such that w⃗ ∈ Span({v⃗i}i∈CS).

We can now proceed as follows to find such a set CS. First off, we notice that
{v⃗i}i∈CS∪{0} is a basis of Zt+1

p for any CS with |CS| = tc, and thus we can find

coefficients (αCS
i )i∈CS∪{0} such that

v⃗1 =
∑

i∈CS∪{0}

αCS
i v⃗i .

We note that the adversary wins if it can find CS such that αCS
0 = −c = p− c.

To this end, the following claim gives an explicit formula for αCS
0 .

Claim. αCS
0 =

∏
j∈CS(1− j−1)

Proof. Let 2 ≤ j1 < j2 < · · · < jtc ≤ n be the elements of CS. Then, we want to
solve the system of equations

(αCS
0 , αCS

j1 , . . . , αCS
jtc

)


v⃗0
v⃗j1
...

v⃗jtc


︸ ︷︷ ︸
=:V⃗CS

= v⃗1 = (1, 1, . . . , 1) .

Now, let a⃗ ∈ Zt+1
p be a (row) vector such that its transpose a⃗⊤ is the first column

of the inverse V⃗ −1
CS of V⃗CS. It can be thought of as defining the coefficients of a

polynomial a(X) of degree t such that a(0) = v⃗0a⃗
⊤ = 1, and a(j) = v⃗j a⃗

⊤ = 0 for
all j ∈ CS. By Lagrange interpolation, this polynomial is uniquely defined as

a(X) = 1 ·
∏
j∈S

X − j

0− j
=
∏
j∈S

(1− j−1X) .

The claim follows by observing that αCS
0 = v⃗1a⃗

⊤ = a(1). ⊓⊔

Attacks. We only give some high-level ideas about attack strategies that follow
this template.

A first attack, given a random −c, attempts to find a subset CS ⊆ [2..n] with
size |CS| = t such that αCS

0 =
∏

j∈CS(1− j−1) = −c. This can be done by using
dynamic programming in time Θ(n · t · p), nothing that in general n · t is much
smaller than p.



It is not clear how to prove a formal lower bound on the success probability
of this attack. However, under the assumption that

(
n−1
t

)
> p, it is plausible to

conjecture that the set of potential values αCS
0 covers a constant fraction of Zp,

and thus the success probability is constant.
A better attack strategy exploits multiple targets. In particular, assume the

adversary queries α = (0, 1, 0, . . . , 0) a total of q =
√
p times to O (recall that

repeat queries are allowed); each query is then associated with a uniform challenge
ci ∈ Zp defining a vector w⃗i = ci · v⃗0 + v⃗1 ∈ Zt+1

p . Our goal now is to find CS

such that αCS
0 =

∏
j∈CS(1− j−1) ∈ {c1, . . . , cq}.

We can then use the following simple strategy of picking random sets

CS1,CS2, . . . ,CSq, and if α
CSj

0 ∈ {c1, . . . , cq} for some j ∈ [1..q], we have suc-

ceeeded. This strategy can be implemented in time Õ(
√
p), where we are hiding

small polylogarithmic terms in p. We note that the probability that each CSi
satisfies α

CSj

0 ∈ {c1, . . . , cq} is approximately q/p, and the expected number of
j’s for which this is true is q2/p = 1.

Of course, to formally validate this attack, we would have to prove that the

α
CSj

0 ’s are sufficiently independent, but we take this simple attack as strong
validation that an attack taking time 2κ/2 exists.
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A Proof of Adaptive Security for t/2 Corruptions

We now prove Theorem 1. Our reduction makes use of rewinding. We give the
general forking algorithm by Bellare and Neven [?] in Figure 6, and general
forking lemma next.

Lemma 3 (General Forking Lemma [?]). Let q ∈ N and H be a finite,
non-empty set. Let IG be a randomized algorithm that generates an input X. Let C
be a randomized algorithm that takes as input X and h1, . . . , hq ∈ H and random
coins ρ and outputs an index I ∈ [0..q] and side output out. Let accept(C) be the
probability that C outputs an index I ̸= 0 in the following experiment:

accept(C) := Pr[X ←$ IG; h1, . . . , hq←$ H; (I, out) := C
(
X, (h1, . . . , hq); ρ

)
: I ̸= 0]

Let the forking algorithm ForkC(X) associated to C be the randomized algorithm
that takes as input X and proceeds as in Figure 6. Let

accept(ForkC) := Pr[X ←$ IG; output←$ ForkC(X) : output ̸= ⊥]

Then, accept(ForkC) is bounded by

accept(ForkC) ≥ accept(C) ·
(
accept(C)

q
− 1

|H|

)
. (20)

or, alternatively,

accept(C) ≤ q

|H|
+

√
q · accept(ForkC) (21)

We now prove Theorem 1.

Proof. Let A be a PPT adversary attempting to break the adaptive unforgeability
of FROST (Fig. 3) that makes up to qh queries to Hnon and Hsig, and qs queries
to OSign1 . A is allowed to make t/2 adaptive corruptions.

We assume, without loss of generality, that A makes a query to Hsig on

its forgery (PK,m∗, R̃∗) and that it always queries Hnon(PK,S,m,PM1) (resp.
Hnon(k,PK,S,m,PM1) for FROST1) before querying OSign1(k,S,m,PM1) for

https://doi.org/10.1007/978-3-031-30589-4_22


Algorithm ForkC(X)

Pick random coins ρ for C.
h1, . . . , hq←$ H

(I, out) := C
(
X, (h1, . . . , hq); ρ

)
return ⊥ if I = 0

h′
I , . . . , h

′
q←$ H

(I ′, out′) := C
(
X, (h1, . . . , hI−1, h

′
I , . . . , h

′
q); ρ

)
return ⊥ if I ̸= I ′ ∨ hI = h′

I

return output := (I, out, out′)

Fig. 6. The forking algorithm ForkC(X) associated to an algorithm C and input X.

some k ∈ S. This adds qs + 1 additional random-oracle queries. Then, let
q = qh + qs + 1.

We define an algorithm C that simulates the adaptive unforgeability game.
C is given an oracle Odl, which it can query on a group element, and receive its
discrete logarithm. C can query this oracle up to 2qs + t times.

Setup. C accepts as input an instanceX, which is a tuple consisting of the group de-
scription (G, p, g) and a set of 2qs+t+ 1 AOMDL challenges (X0, X̂1, . . . , X̂t, X1, X

′
1,

. . . , Xqs , X
′
qs). In addition, C accepts as input a set of q = qh + qs + 1 values

{h1, . . . , hq}, as in Figure 6, which it will use to program its random-oracle
responses.

Next, C checks for collisions hi = hj for i, j ∈ [q], i ̸= j. If so, C aborts. We
refer to this bad event as ROCollision.

Otherwise, C initializes the following values:

1. tables Qnon := ∅, Qsig := ∅, to store random-oracle queries to Hnon,Hsig and
corresponding simulated responses;

2. table Qm := ∅, to store the set of messages queried by A to OSign2 ;
3. table Qst := ∅ of participants’ states for all signing sessions initiated by A;
4. table Qused := ∅ to track information associated with each AOMDL pair

(Xi, X
′
i) used in an OSign2 query;

5. counter ctr := 0, to iterate through pairs in the AOMDL challenges;
6. counter ctrRO := 0, to iterate through random-oracle queries;
7. counter ctrk := 0, to count the number of first-round signing queries for each

party k.

C then picks random coins ρ and runs A(par; ρ) once on the public parameters
par = (G, p, g) and randomness ρ.

Simulating KeyGen. To simulate key generation where C is the trusted dealer,
C uses the AOMDL challenges (X0, X̂1, . . . , X̂t) to define a polynomial f(Z) =



x0 + x̂1Z + · · ·+ x̂tZ
t “in the exponent” (see Section 2) by deriving each party’s

public key as:

PKi = X0X̂
i
1 · · · X̂it

t (22)

for all i ∈ [n], where implicitly ski = f(i). The threshold public key is PK := X0

with corresponding secret key sk = x0 = f(0). C then runsA((G, g, p),PK, {PKi}i∈[n])
with access to the signing and random oracles simulated as follows.

Simulating Random Oracles. When A queries Hnon or Hsig, C simulates the
response by lazy sampling, as follows.

Hnon : When A queries Hnon on T , for FROST1, C parses T = (k,PK,S,m,PM1),
and for FROST2 and FROST3, C parses T = (PK,S,m,PM1). (Here w.l.o.g. we
assume T can be parsed correctly and it is for PK, since otherwise the query on
a malformed T would not help the adversary to win the game.) Then, C checks if
Qnon[T ] = ⊥. If not, C returns Qnon[T ]. Otherwise, C increments ctrRO := ctrRO+1,
and, for FROST1, C does the following:

1. For all i ∈ S, C samples ai := h(n+1)ctrRO−i and stores Qnon[(PK,S,m,
{(ℓ, Rℓ, Sℓ)}ℓ∈S , i)] = ai.

2. Then, C derives the aggregate R̃ from T (i.e., R̃ :=
∏

i∈S RiS
ai
i ) and queries

Hsig on (PK,m, R̃).
3. Finally, C returns ak.

For FROST2 and FROST3, C does the following:

1. C sets a := h2ctrRO−1 and stores Qnon[T ] = a.
2. C derives the aggregate R̃ from T . (For FROST2, it means that C parses
PM1 = {(i, Ri, Si)}i∈S and computes R̃ :=

∏
ℓ∈S RℓS

a
ℓ . For FROST3, it

means that C parses PM1 = (R̂, Ŝ) and computes R̃ := R̂Ŝa.)
3. If Qsig[(PK,m, R̃)] = ⊥, C sets c := h2ctrRO and stores Qsig[(PK,m, R̃)] = c.
4. Finally, C returns a.

Hsig : When A queries Hsig on (PK,m,R), C checks if Qsig[(PK,m,R)] = ⊥.
(Similar to Hnon, here we only consider queries for PK, since otherwise the query
would not help the adversary to win the game.) If not, C samples c←$ Zp, stores
Qsig[(PK,m,R)] = c, and returns c. Otherwise, C increments ctrRO := ctrRO + 1,
sets c := h2ctrRO , (resp. h(n+1)ctrRO for FROST1) stores Qsig[(PK,m,R)] = c, and
returns c.

Simulating Signing Oracles. C handles A’s signing queries as follows.

Round 1 (OSign(k)): In the first round of signing, parties form nonce commit-
ments Ri, Si. When A queries OSign1 for participant identifier k, C first checks
that k ∈ hon. If so, then C does the following:

1. Sets eid := ctrk and increments ctrk := ctrk + 1.



2. Sets (Rk, Sk) := (Xctr, X
′
ctr) and increments ctr := ctr+ 1. C checks if there

exists T = (PK,S,m,PM1) (resp. T = (k,PK,S,m,PM1) for FROST1) in
Qnon[T ] such that (Xctr, X

′
ctr) = (Rk, Sk). If so, C aborts. We refer to this bad

event as NonceCollision.
3. Sets stk,eid,1 := (Rk,⊥, Sk,⊥,⊥). # L-Note: i.e., rk, sk, skk are not yet

defined.
4. Updates Qst[k, eid, 1] := stk,eid,1.
5. Finally, C returns (Rk, Sk) to A.

Round 2 (OSign2(k, eid,S,m,PM1)): In the second round of signing, each
party in the signing set S takes as input the first-round nonce commitments
PM1 and outputs is partial signature share zi.

When A queries OSign2 on (k, eid,S,m,PM1) for k ∈ hon, C first performs
the checks in OSign2 (Fig. 3) and Sign2 (Fig. 4). If they pass, then, in particular
stk,eid,1 = (Rk,⊥, Sk,⊥,⊥). # L-Note: i.e., again, rk, sk, skk are not yet defined.
C then does the following:

1. C updates Qm := Qm ∪ {m}.
2. C follows the Sign2 algorithm (Fig. 4) to obtain a and c. (For FROST1, a

here refers to ak.) Note that C can internally query Hnon and Hsig as needed.

3. C then sets Zk := RkS
a
k · PKk

cλk , i.e., Zk = Xi′(X
′
i′)

aXcλk
0 X̂cλkk

1 · · · X̂cλkk
t

t

for some i′ ∈ [qs]. C queries Odl on Zk with representation α = 0 and (as in
Fig. 1):

(βi)
2qs+t+1
i=1 = (cλk, cλkk, . . . , cλkk

t, 0, . . . , 0, 1, a, 0, . . . , 0),

where 1 is in position t+ 2i′, and receives zk.
4. C sets stk,eid,2 := zk.
5. C adds ((Rk, Sk), (i

′, zk, η, a, cλk), query) to Qused, where query = (k, eid,S,m,
PM1) and η is the index such that a = h2η−1.

6. Finally, C returns zk to A.

Simulating Corruption Queries OCorrupt(k): A may at any time corrupt an honest
party k by querying OCorrupt(k). Upon receiving a corruption query, C first
checks that k ∈ hon and that |cor| < t, returning ⊥ if not. Otherwise, C sets
cor := cor ∪ {k} and hon := hon \ {k}.
C then queries Odl on PKk with representation α = 0 and (recalling that

PKk = X0X̂
k
1 · · · X̂kt

t (Eq. (22)) :

(βi)
2qs+t
i=0 = (1, k, . . . , kt, 0, . . . , 0)

and receives skk. C then does the following:

1. If no entry Qst[k, eid, 1] exists for any eid that has occurred, then C returns
skk to A. # L-Note: This corresponds to the case where A has not queried
party k to OSign1 in any signing session.

2. Otherwise, C does the following.



(a) For each entry Qst[k, eid, 1] ̸= ⊥ where Qst[k, eid, 2] = ⊥, # L-Note: This
corresponds to Round 1 queries that never made it to Round 2. C queries
Odl on Rk, which is equal to Xi′ for some i′ ∈ [qs], with representation
α = 0 and (βi)

2qs+t
i=0 = (0, . . . , 0, 1, 0, . . . , 0), where 1 is in position t+ 2i′,

and receives rk. C similarly queries Odl on Sk (with representation α = 0
and (βi)

2qs+t
i=0 = (0, . . . , 0, 1, 0, . . . , 0), where 1 is in position t+ 2i′ + 1),

and receives sk. C then sets Qst[k, eid, 1] = (Rk, rk, Sk, sk, skk).
(b) For each entry where Qst[k, eid, 2] ̸= ⊥, # L-Note: This corresponds

to Round 1 queries that made it to Round 2. C queries Odl on Sk,
which is equal to X ′

i′+1 for some i′ ∈ [qs], with representation α = 0 and

(βi)
2qs+t
i=0 = (0, . . . , 0, 1, 0, . . . , 0), where 1 is in position t + i′ + 2, and

receives sk. C already made an Odl query to obtain zk, so it can compute
rk = zk − ska− cλkskk. (For FROST1, a here refers to ak.) C then sets
Qst[k, eid, 1] = (Rk, rk, Sk, sk, skk).

Finally, C returns skk and all state Qst[k, ·, ·] for party k to A.

Output. When A terminates with output (m∗, σ∗), C first checks that it is a
valid forgery, by checking that m∗ /∈ Qm and Verify(PK,m∗, σ∗) = 1. If either
check fails, C returns 0.

Otherwise, C looks up the index I for (PK,m∗, R∗, c∗) ∈ Qsig corresponding
to A’s forgery. It sets out := (σ∗, aux∗), where aux∗ are all variables received or
generated by C, and outputs (I, out).
C’s simulation is perfect when the values in the instance X are sampled

uniformly at random. C aborts with negligible probability in the following cases:

1. ROCollision: C aborts due to ROCollision with probability less than q2

p .

2. NonceCollision: C aborts due to NonceCollision with probability less than q2

2p .

Reduction B Against AOMDL. Finally, we construct our PPT reduction B against

the AOMDL assumption (Fig. 1). Specifically, we show how B uses ForkC as a
subroutine such that:

Advt+1-aomdl
B (κ) ≥ accept(ForkC(X))− 2Pr[ROCollision]− 2Pr[NonceCollision]

(23)

where X is the instance given by the AOMDL challenger.

Initialization. B is initialized by the AOMDL challenger with input the group de-
scription (G, p, g) and 2qs+t+ 1 AOMDL challenges (X0, X̂1, . . . , X̂t, X1, X

′
1, . . . ,

Xqs , X
′
qs). B has access to a discrete-logarithm oracle Odl, which it may query

up to 2qs + t times. B aims to output (x0, x̂1, . . . , x̂t, x1, x
′
1, . . . , xqsx

′
qs) such that

Xi = gxi for all i, with only 2qs + t queries to its DL oracle.
To simulate Odl queries by C, B initializes a table Qdl, which it uses to cache

Odl queries made by C and responses from Odl.

Execution. B then runs the general forking algorithm ForkC(X) as described in
Figure 6, on the simulator algorithm C and its instance X.



When C queries Odl, B queries its own oracle Odl. B caches the request and
response in Qdl, and then returns the response to C.

With non-negligible probability lower-bounded by Equation 20, ForkC(X) will
output the accepting answer (I, out, out′), such that:

hI = c∗, h′
I = c∗∗,

(σ∗, aux∗) := out, (σ∗∗, aux∗∗) := out′

(R∗, z∗) := σ∗, (R∗, z∗∗) := σ∗∗.

Extracting the Discrete Logarithm of X0. We show that B can extract the
discrete logarithm of X0 from A’s two valid forgeries. We assume without loss of
generality that A queries Hsig on (PK, R∗,m∗) on its forgery in execution.

With overwhelming probability, c∗ ̸= c∗∗, and B can solve for x0 = z∗−z∗∗

c∗−c∗∗ . If
B extracts x0, then we use this to extract a full AOMDL solution as follows.

Extracting an AOMDL Solution. B must now extract the remaining (x̂1,
. . ., x̂t, x1, x

′
1, . . . , xqs , x

′
qs). Assume without loss of generality that A makes

t/2 corruptions in each iteration. Recall that PKi = X0X̂
i
1 · · · X̂it

t . Since t Odl

queries have been made on PKi to obtain ski, together with x0, this gives t+ 1
points on the polynomial f(Z) = x0 + x̂1Z + · · ·+ x̂tZ

t defining key generation.
Thus, B can solve for x̂1, . . . , x̂t.

Now, for x1, x
′
1, . . . , xqs , x

′
qs corresponding to each Xi, the method for extract-

ing xi will be one of the following cases, depending on how A queried OSign1 and
OSign2 over the two iterations.

Case A. (Xi, X
′
i) belongs to an honest party at the end of the two iterations.

Case 1 ((Xi, X
′
i) has not appeared in an OSign2 query over the two iterations).

In this case, Xi and X ′
i have not yet been queried by B. Thus, B queries Odl

directly to obtain xi and x′
i. Two queries are made for each i in this case.

Case 2 ((Xi, X
′
i) has appeared in an OSign2 query in a single iteration). A single

query has been made by B to Odl containing (Xi, X
′
i). If it occurred in the

first iteration, then ((Rkj
, Skj

), (i, zkj
, ηj , aj , cjλkj

), queryj) ∈ Q̄used, where Q̄used

denotes Qused for the first iteration. (For FROST1, aj here refers to ak,j .) is such
that zkj

= rkj
+ ajskj

+ cjλkj
skkj

. (Note that B can compute f(kj) = skkj
.)

To obtain a second value, B queries X ′
i to Odl and thus learns x′

i. Then B sets
xi = zkj − ajx

′
i − cjλkj skkj . The case where the query occurred in the second

iteration is similar. In total, two queries are made for each i in this case.

Now consider when (Xi, X
′
i) appears in an OSign2 query in both iterations.

Let queryj be that query from the first iteration and queryj′ from the second.
Chenzhi: If the above does not use afterward, I suggest to just remove it. It
would also make it easier to include FROST1 and FROST3. such that (Xi, X

′
i) =



(Rkj
, Skj

) = (Rkj′ , Skj′ ). Let

((Rkj , Skj ), (i, zkj , ηj , aj , cjλkj ), queryj) ∈ Q̄used

((Rkj′ , Skj′ ), (i, zk′
j
, ηj′ , aj′ , cj′λkj′ ), queryj′) ∈ Qused

be the associated table entries for queryj and queryj′ . Recall that I is the index
such that c∗ = hI .

Case 3 (ηj = ηj′ < I). In this case, a single query has been made, to obtain zkj

in ((Rkj
, Skj

), (i, zkj
, ηj , aj , cjλkj

), queryj) ∈ Q̄used, such that zkj
= rkj

+ ajskj
+

cjλkj
skkj

. To obtain a second value, B queries X ′
i to Odl and thus learns x′

i. Then
B sets xi = zkj

− ajx
′
i − cjλkj

skkj
. In total, two queries are made for each i in

this case.

Case 4 (ηj ≠ ηj′ or ηj = ηj′ > I). In this case, aj ̸= aj′ and B has made two
queries to obtain zkj

and zkj′ . B computes:

x′
i =

zk′
j
− zkj + cjγkj skkj − cj′γkj′ skk′

j

aj′ − aj
xi = zkj

− ajx
′
i − cjλkj

skkj
(24)

Two queries are made for each i in this case.

Case B. (Xi, X
′
i) belongs to a corrupt party at the end of the two iterations.

In this case, B has already made the queries in each of the cases above.

Thus, B has extracted xi for all Xi using exactly 2qs + t queries and returns
(x0, x̂1, . . . , x̂t, x1, x

′
1, . . . , xqs , x

′
qs) and win the 2qs + t+ 1-aomdl game. Combin-

ing Equations 20 and 23 gives Equation 2.

B Proof of Lemma 2

Let A2(n, d, w) denote the maximum size of a code C ⊆ {0, 1}n where all code-
words have weight w, and each pair has distance at least d. Clearly A2(n, d, w) = 1
if d > 2w, since two codewords of weight w have distance at most 2w.

Assume d ≤ 2w and pick C such that |C| = A2(n, d, w). For i ∈ [n], we let
Ci ∈ {0, 1}n−1 be the code obtained by taking all c ∈ C such that c[i] = 1, and
then removing the ith coordinate. Note that the codewords in Ci all have weight
w − 1, and the distance remains at least d. Let Mi = |Ci|. Note that

n∑
i=1

Mi = w · |C| = w ·A2(n, d, w) ,

since every codewords in C is added to exactly w sets Ci. On the other hand,
Mi ≤ A2(n− 1, d, w − 1), and therefore

A2(n, d, w) ≤
n

w
A2(n− 1, d, w − 1) .



For the specific case where d = 2e, and w ≥ e, we can iterate this argument
exactly w − e+ 1 times to obtain

A2(n, 2e, w) ≤

(
w−e∏
i=0

n− i

w − i

)
A2(n− (w − e)− 1, 2e, e− 1) =

(
w−e∏
i=0

n− i

w − i

)
,

since A2(n− (w − e)− 1, 2e, e− 1) = 1.
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