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Abstract. We construct t-non-malleable extractors—which allow an attacker to tamper with a source
t times—for high min-entropy sources samplable by poly-time hierarchy circuits and for tampering
classes corresponding to poly-time hierarchy functions from derandomization-type assumptions.
We then show an application of this new object to ruling out constructions of succinct, non-interactive,
arguments (SNARGs) secure against uniform adversaries from uniform falsifiable assumptions via a
class of black-box reductions that has not been previously considered in the literature. This class of
black-box reductions allows the reduction to arbitrarily set the coins, as well as the input, of the
uniform adversary it interacts with. The class of reductions we consider is restricted in allowing only
non-adaptive queries to the adversary.

1 Introduction

(Seedless) randomness extractors are deterministic functions that transform an adversarial, unpredictable
source into something statistically close to uniformly random bits. An n-bit source, X, is said to have min-
entropy k if for all x, Pr[X = x] ≤ 2−k. Regrettably, deterministic or seedless randomness extractors do not
exist for arbitrary n-bit sources, even those with min-entropy n−1. However, such randomness extractors do
exist for more structured source classes: sources formed by concatenating shorter, independent, unpredictable
sources [15]; sources samplable by small circuits [53]; etc.

(Seedless) non-malleable extractors, introduced by Cherangchi and Guruswami [14], are randomness
extractors with a very strong property that resembles limited independence. Namely, the output of the
randomness extractor should be statistically-close to uniform, even if one sees the extractor evaluated on
strings related to the source.

In particular, we say a deterministic function NMExt is a (relaxed, seedless) t-non-malleable extractor
for a class of sources, X , and a class of tampering functions, F , if for any source X ∈ X and any sequence
of t functions f1, . . . , ft ∈ F without fixed points3, the output

[(NMExt(X),NMExt(f1(X)), . . . ,NMExt(ft(X))

≈ (U ,NMExt(f1(X)), . . . ,NMExt(ft(X)).

Since their introduction, there has been a concerted effort in constructing explicit (seedless) non-malleable
extractors for various combinations of source classes and tampering classes. Central to this study has been
non-malleable two-source extractors: non-malleable extractors for the class of sources that are the concate-
nation of two independent high min-entropy sources, (X,Y ), and the class of tampering functions that may
independently tamper each half of the source independently, (X,Y ) 7→ (f(X), g(Y )) for any f, g.

Part of the reason for this focus is that non-malleable two-source extractors have found a variety of
powerful applications:
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3 The general notion of a (seedless) non-malleable extractor does not require the fixed point restriction, but is more
complicated to state. (Note that if fi(X) = X then the output of the extractor will be the same. This is resolved
in the usual manner, by defining a simulator that outputs unrelated strings and locations where the tampered
extractor outputs are the same as the source. The two notions are equivalent up to a small loss in parameters for
many natural source/tampering classes.



1. Generic-compilers for tamper and leakage resilient key-derivation when an attacker, perhaps due to
physical constraints, can only independently leak and tamper on each half of a key at rest.

2. Split-state non-malleable codes [14]: means of encoding information such that tampering independently
with the left and right halves of the codeword either does not change the encoded information or decodes
something completely unrelated.

3. Two-source extractors [33, 39], particularly in the low min-entropy regime. Perhaps most surprisingly,
non-malleable two-source extractors with low error have been central to recent breakthroughs in explicitly
constructing two-source extractors (and hence other downstream applications such as Ramsey graphs).

4. Non-malleable extractors [7] for other classes of sources and tampering functions.

This last application is perhaps most relevant to the kind of non-malleable extractor studied in this work:
non-malleable extractors for bounded polynomial-size post-selecting sources and tampering functions.

A size s post-selecting source, introduced by Ball et al. [8], is a generalization of size s samplable
sources [53] (sources samplable by a size s circuit with uniformly random input bits) and size s recog-
nizable sources [49] (sources uniform over the witness set of a size s circuit). A post-selecting source X is
associated with (at least one) size s circuit C with two outputs, an n-bit output x = C1(r) and a special flag
ϕ = C2(r), such that the source is sampled by the circuit on a random input conditioned on the flag being
set to 1:

X ≡ (C1(U)|C2(U) = 1).

Perhaps most importantly, these sources capture samplable sources after conditioning on efficiently com-
putable leakage on the source.4 Given this, such extractors naturally have applications in tamper and leakage-
resilient key-derivation against a large natural class of sources, leakage, and tampering (where all 3 correspond
polynomial time procedures).

The primary focus of this work is yet another surprising application of explicit non-malleable extractors:
the impossibility of certain kinds of uniform black-box reductions.

By uniform BB reductions we mean the following: The underlying primitive is assumed to be secure
against uniform adversaries and the constructed primitive is proven secure against uniform adversaries. The
reduction used in the proof of security is itself uniform. The reduction interacts with the uniform adversary
and uses it to break the underlying primitive.

In this work, we further consider “generalized black-box reductions,” where the reduction is allowed
to arbitrarily fix the random tape of the adversary. Previous impossibility results for uniform black-box
reductions did not allow the reduction to access the random tape of the adversary. The difficulty in our
setting lies in the fact that the uniform adversary (with a constant size description) has no other source of
randomness other than the arbitrarily set random tape provided by the reduction.

The Case of SNARGs. Succinct non-interactive arguments (SNARGs) are proof systems for languagues in
NP with proofs π whose lengths are much smaller than the witness w. Although SNARGs are widely used in
practice [47], Gentry and Wichs [22] showed that, under a natural assumption, it is impossible to prove the
adaptive soundness of a SNARG via a reduction from a falsifiable assumption [42] when the reduction treats
the adversary as a black-box. More precisely, they showed that either a black-box reduction that does not
access the coins of the adversary does not exist, or that the underlying falsifiable assumption can be broken
by a poly-size non-uniform adversary.

The Gentry-Wichs Meta-Reduction. We briefly recap the Gentry-Wichs impossibility proof. Assuming the
existence of a polynomial-time, black-box reduction R, they show the existence of an inefficient SNARG
adversary A that, given an input crs, breaks soundness by producing proofs πno that verify correctly for
statements xno /∈ L. By assumption, the reduction R with black-box access to A must break the falsifiable
assumption when interacting with this adversary. Next, they show the existence of an efficient simulator Sim
for A that fools any polynomial-time distinguisher. This implies that RSim must also break the falsifiable

4 It should be noted this class also captures samplable sources that are conditioned on leakage on the intermediate
values of the sampling process.
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assumption (otherwise one can distinguish between A and Sim). Finally, since RSim is an efficient algorithm
that breaks the falsifiable assumption, it implies that if a black-box reduction exists, the falsifiable assumption
can be broken by poly-time adversaries.

To obtain the SNARG adversary A that breaks soundness, Gentry and Wichs prove a “leakage lemma,”
stating that if distributions L and L̄ (over L and L̄ resp.) are indistinguishable, then for short leakage πyes,
there exists a distribution over leakage πno such that {(xyes, πyes) : xyes ← L} is indistinguishable from
{(xno, πno) : xno ← L̄}. Gentry-Wichs instantiate their leakage lemma as follows: L is a distribution on
yes-instances of L, L̄ is a distribution on no-instances, and π is the SNARG proof for x. The lemma then
yields, for every CRS crs, an augmented no-distribution (xno, πno) ← L̄∗crs that is indistinguishable from
the SNARG yes-distribution (xyes, πyes ← L∗crs. Thus, A(crs) is defined to output samples from L̄∗crs while
Sim(crs) outputs samples from L∗crs. Follow-up work of Jetchev and Pietrzak [30] gave a constructive proof
of the leakage lemma, bounding the size of the randomized circuit needed to generate the fake proof πno,
given the sample xno ∼ L̄.

The original Gentry/Wichs proof assumed that the reduction does not access the random coins of the
adversary and therefore, upon submitting a crs, only sees random draws from the L∗crs or L̄∗crs distribution.
They did not give a constructive L̄∗crs distribution, but just showed its existence. Further, their final simulator
(for the non-security parameter preserving case) is non-uniform, since it holds an internal table with draws
from the L̄∗crs distribution for all security parameters below some threshold. In follow-up work, Vadhan and
Zheng [54] used the uniform min-max theorem to remove these last two restrictions: They gave a uniform and
constructive L̄∗crs distribution and showed, using this, that the real adversary and the simulated adversary
could both be made uniform. However, they still assumed that the reduction does not access the random
coins of the adversary. In another work of Chung et al. [16], it was shown that one could remove the restriction
that the reduction does not access the coins of the adversary by considering a non-uniform, deterministic,
adversary that applies an internally hard-wired random oracle to the submitted crs to obtain the random
coins for sampling the distributions. Our goal, on the other hand, is to construct a uniform adversary and
a uniform simulator, in order to show that even if attempting to construct a SNARG that is secure against
uniform adversaries then either (1) no black-box reduction exists (even one that can arbitrarily set the
random coins of the adversary) or (2) the underlying assumption is insecure even against uniform poly-time
adversaries.

1.1 Our Results

Before we begin describing our results, we first make some brief remarks about our assumptions. All our
results follow from the existence of strong circuit lower bounds of the form “E = DTIME(2O(n)) requires
exponential-size X-circuits” for some X ∈ {nondeterministic, Σ2}. These types arose in the derandomization
literature. Impagliazzo andWigderson [28] famously showed that “E requires exponential size circuits” implies
BPP = P. Impagliazzo and Wigderson’s assumption effectively says that non-uniformity does not always
significantly speed up computation. Strengthenings of this assumption to exponential size nondeterministic
circuits (circuits that take witnesses in addition to their input) or Σi-circuits (circuits with gates that
compute a Σi-complete function) and related classes were first introduced in the context of derandomizing
nondeterminstic complexity classes (e.g. showing sufficient conditions for AM = NP), and have since seen
extensive use in the context of derandomization [9, 18, 21, 25, 27, 32, 41, 50–53].

Improved non-malleable extractors for efficient sources and tampering. Prior work by Ball, Dachman-Soled,
and Loss [7] constructed non-malleable extractors for sources samplable or recognizable by polynomial-
size circuits and tampered by polynomial-size circuits under a circuit lower bound assumption from the
derandomization community. We improve the state of the art for non-malleable extractors in the setting of
efficiently samplable sources and efficiently computable sources in 3 dimensions:

1. Many tamperings: our extractors are resilient to t-tamperings where t is slightly less than the min-entropy
of the source.5 Prior work only considered the special case of t = 1.

5 Min-entropy is always an upper-bound on the number of tamperings. Let E : {0, 1}n → {0, 1} be any function and
fix any strings c0, c1 such that E(c0) = 0 and E(c1) = 1. Consider X uniform on the first k bits and 0 elsewhere.
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2. Wider source class: our extractors work for post-selecting sources. This is a superset of the class of
samplable and recognizable sources considered by prior work.

3. Improved assumptions: our extractors are secure under the assumption that E = DTIME(2O(n)) is hard for
exponential-size nondeterministic circuits. Prior work assumed that E was hard for exponential-size Σ2-
circuits.6 Comparable to the polynomial hierarchy, it is consistent with current knowledge that functions
computable by exponential size nondeterministic circuits form a strict subset of those functions computed
by exponential size Σ2-circuits. This assumption matches the best assumptions currently known for such
extractors without any non-malleability property [8].

Theorem 1 (Informal). Let s(n) = poly(n). Assuming E = DTIME(2O(n)) requires exponential-size non-
deterministic circuits, there exists a constant c and an efficiently computable Õ(n)-non-malleable extractor
with error n−Ω(1), NMExts : {0, 1}n → {0, 1}m where m = Ω̃(n), for the class of size s(n) post-selecting
sources on n-bits with min-entropy k ≥ c · n and the class of size s(n)-tampering functions.

Moreover, this result relativizes: for any oracle O, if E is hard for exponential-size nondeterministic
O-oracle circuits, the above holds with respect to the class of sources samplable by post-selecting size s(n)
O-oracle circuits and size s(n) O-oracle tampering functions.

A downside of this result is n−Ω(1) statistical error. Unfortunately, as shown by Applebaum et al. [3], this
is inherent in any randomness extractor built from these assumptions in a black-box way. While this does
not suffice for many cryptographic applications, it is sufficient for the flagship application of this paper.

Application: New impossibility results for SNARGs. We consider reductions R that are “black-box” in the
adversary–i.e. the reduction accesses the adversary via oracle queries. Further, we consider non-adaptive
reductions in which all oracle queries are made simultaneously. Importantly, our oracle allows the reduction
R to select the coins of A arbitrarily. In particular, it does not need to sample them uniformly at random.

However, we do restrict the reduction in the following ways:

– There is a fixed constant c such that on input security parameter λ, R only queries A on security
parameters λ′ ≥ λ1/c.

– The number of queries that the reduction makes, t = poly(λ), is a fixed polynomial in the security
parameter

Following Pass [46], we consider both restrictions above to fall under the definition of “security-preserving”
reductions.

We therefore call the class of reductions that we consider security-preserving, non-adaptive query, gen-
eralized black-box reductions or SPNA-generalized black-box reductions.

We prove the following theorem:

Theorem 2 (Informal). Assume that an NP language L has a sub-exponentially hard subset-membership
problem and that E requires exponential-size Σ2-circuits. Let Π be a candidate SNARG for L. Then, for
any uniform, falsifiable assumption one of the following must hold:

– There is a uniform, poly-time adversary that breaks the falsifiable assumption.
– There is no SPNA-generalized black-box reduction showing the uniform soundness of Π based on the

falsifiable assumption.

We believe that our techniques extend to other cases where meta-reductions have been used to rule out
constructions of non-interactive primitives from falsifiable assumptions, such as the impossibility result of
Pass for perfect non-interactive zero knowledge (NIZK) [45]. A main remaining open question is whether our
results can be extended to rule out adaptive, generalized black-box reductions as well.

Consider the tampering functions fi : x 7→ cxi . Finally, notice that X (and hence E(X)) is fully determined by
E(f1(X)), . . . , E(fk(X)).

6 Ball et al.’s stated assumptions require hardness against either Σ3 or Σ4 circuits, depending on the source class.
But hardness against Σ2-circuits is a corollary of their technical lemmas and subsequent improvements in “vanilla”
randomness extractors for these source classes [8].
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1.2 Related Work

Non-malleable extractors. There is a long line of research on non-malleable extractors (NME) [17, 14] resilient
against various classes of tampering [34–38, 13, 7], with particular attention focused on the case of two-
source non-malleable extractors and split-state tampering [34, 37, 38]. There has also been significant work on
variants of NME—and the closely related primitive of non-malleable codes [19]—that extend the definitions
to various forms of many-time tampering [12, 20, 44, 2].

Seedless extractors for samplable and recognizable sources. Trevisan and Vadhan [53] considered seedless
extractors for the class of distributions samplable by bounded polynomial sized circuits. Under the
assumption that E requires exponential size Σ4 circuits, they presented constructions of seedless extractors
for linear min-entropy, samplable sources over n bits, that output Ω(n) bits that are 1/poly-close to uniform.
Applebaum et al. [3] showed that the 1/poly error is somewhat inherent by ruling out black-box reductions
in this setting. They introduced a notion of relative-error extractors and showed that if the output of the
extractor is 1/poly-close to uniform with relative error, then every event occurs w.r.t. the output distribution
with probability at most (1 + 1/poly) times the probability it occurs w.r.t. the uniform distribution. In
particular, events that are negligible under the uniform distributions cannot become noticeable under the
distribution outputted by the extractor. Under the assumption that E requires exponential size Σ4 circuits,
they constructed relative-error seedless extractors whose outputs are 1/poly-close to uniform with relative
error for linear min-entropy, samplable sources. Under the assumption that E requires exponential size Σ3

circuits, they constructed relative-error seedless extractors whose outputs are 1/poly-close to uniform with
relative error for linear min-entropy, recognizable sources.

The meta reduction technique has been used in various works to rule out (among others) the construction
of non-interactive primitives—such as perfect non-interactive zero-knowledge (NIZK)—from all falsifiable
assumptions [45, 11]. To the best of our knowledge, all of these results construct an inefficient adversary that
samples responses from some distribution and they do not allow the reduction to access the random coins of
the adversary. As mentioned above, Chung et al. [16] extended the technique to remove this restriction, but
at the cost of hardwiring a random oracle into the inefficient adversary, and then considering the behavior
of the reduction relative to a draw from a distribution over non-uniform adversaries.

A recent line of work has managed to almost fully circumvent the Gentry-Wichs impossibility result
and obtain adaptive SNARGs (for NP and UP) from falsifiable assumptions[56–58, 40]. The reason these
results do not contradict the Gentry-Wichs impossibility is that their notion of adaptivity is slightly weaker.
Specifically, in the recent results, the circuit computing the NP-relation, and hence the length of the statement
itself, must be fixed in advance, before the crs is published. Then, the adversary breaking soundness can
choose a statement that depends on the crs, but whose length is upper-bounded by the circuit’s input length.
On the other hand, in the Gentry-Wichs impossibility result, it is crucial for the construction of the attacker
that the length of the crs is fixed first, then an NP-language that is at least 2|crs|-hard, and a corresponding
statement, is chosen.

In the case of security-parameter preserving reductions for SNARGs, Campanelli et al. [11] ruled out
even the weaker form of adaptive soundness described above (where the crs size can grow with the length
of the statement size). However, that result also does not rule out reductions that access the random coins
of the adversary. Thus, one implication of our result is extending their impossibility result even to the case
where the reduction accesses the random coins of the adversary but is non-adaptive.

2 Technical Overview

Before we begin explaining our results, we need to introduce a critical ingredient in both constructions:
seed-extending pseudorandom generators [31]. A seed-extending PRG, introduced by Kinne, Van Melkebeek,
and Shaltiel, for a class C is a PRG whose output contains the seed as a prefix, G(s) = (s, y) for some y,
and fools any C ∈ C. Observe that “cryptographic” seed-extending PRGs, by which we mean fixed polytime-
computable and PPT-secure seed-extending PRGs, are impossible: one can always distinguish by evaluating
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G. Thus, such PRGs are only possible in the “complexity-theoretic” or “derandomization” regime where G is
not computable in the adversarial class C. Kinne et al. [31] observed that the standard presentation of Nisan
and Wigderson’s generator [43] is indeed seed-extending and hence follows from standard derandomization
assumptions, such as those used in this work.

2.1 Our t-NMExt Construction

We begin by recapping the NMExt constructon of Ball et al. [7] for single-time tampering for the class
of bounded polynomial-size circuits. Our goal is to extend this construction to t-time tampering (and to
tampering circuits in higher complexity classes). The NMExt of [7] is simple: On input x, the non-malleable
extractor applies a deterministic extractor Ext for samplable sources to obtain σ, then applies a seed extending
PRG to σ to obtainG(σ) = (σ||y), and finally applies a two-source non-malleable extractor 2NMExt((σ||y), x)
to obtain the final output.

Our t-NMExt construction is nearly identical, except we replace the two-source non-malleable extractor
with a two-source t-non-malleable extractor. We first recall the security proof of Ball et al. and then point
out the key differences.

The security proof for the non-malleable extractor proceeds by a proof by contradiction: Assume
NMExt does not achieve non-malleability against tampering functions f ∈ F . Using the definition of re-
laxed non-malleability, this means that, for some f ∈ F , the statistical distance between the distributions
{(NMExt(X),NMExt(f(X))} and {(U,NMExt(f(X))} is at least 1/poly. Now, we use this fact to construct
a constant-round private-coin interactive proof for proving (roughly) that G(σ) = (σ||y), from which we
will derive a contradiction to the security of PRG G against non-deterministic distinguishers. This follows
by applying classical results to convert the IP to a nondeterministic circuit via (a) emulating with a public
coin protocol [26], (b) collapsing the rounds of result to an AM protocol [6], and (c) derandomizing the AM
protocol with non-uniformity [1]. So in short, it suffices to construct a constant-round IP.

In the IP protocol, both parties receive as input (σ, y), where y is either equal to G(σ) or is chosen
uniformly at random and independently of σ.

Arthur pre-samples x such that Ext(x) = σ. Then Arthur computes σ̃ = Ext(f(x)) and sends it to
Merlin. Merlin is supposed to compute (σ̃||ỹ) = G(σ̃) and send ỹ back to Arthur. Arthur then computes
z̃ = 2NMExt((σ̃, ỹ), x̃) and computes z to be either 2NMExt((σ, y), z) or to be uniform random. Arthur
sends (z, z̃) to Merlin and asks Merlin to guess whether z was chosen as the output of 2NMExt or uniformly
at random. If Merlin guesses correctly, Arthur guesses that (σ||y) = G(σ). Otherwise, Arthur guesses that y
is uniform random.

Completeness of the IP protocol follows immediately from the assumption that NMExt does not achieve
relaxed non-malleability, and hence the two distributions are distinguishable by Merlin.

To argue soundness, one can show that due to the security of the 2NMExt, regardless of the ỹ returned
by (a dishonest) Merlin, the output of the 2NMExt is statistically close to uniform. They argue this by
showing that the 2NMExt is actually also a strong 2NMExt–i.e. indistinguishability of the distributions
holds even given one of the inputs to the 2NMExt. In our case, Merlin knows the entire (σ, y) since it is part
of the input. However, the ỹ that is returned by Merlin is independent of x, conditioned on σ = Ext(x), and
σ̃ = Ext(f(x)). Thus, by making the length of x sufficiently longer than the sum of the lengths of σ and
σ̃, one can ensure that x still has sufficiently high min-entropy conditioned on σ, σ̃. Therefore, due to the
security guarantee of the 2NMExt, Merlin cannot distinguish the two distributions with high probability.

In the t-tampering setting, Arthur simply computes all t tampered seeds σ̃1, . . . , σ̃t and sends all of them
over to Merlin to expand. Note that any malicious Merlin can now be recast as a t-tampering strategy on
the left source. The rest of the proof proceeds similarly.

One missing piece from the proof sketch above is how Arthur can efficiently sample the source conditioned
on the output of extractor being correct (or even sample a post-selecting source at all, given that output
is only produced when the flag ϕ = 1). Previously, this was accomplished by equipping Arthur with an
NP-oracle and running classical uniform witness sampling algorithms. However, equipping Arthur with such
an oracle ultimately yields a Σ2-circuit breaking the PRG.
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Here, we instead observe that a careful inspection of Goldwasser and Sipser’s public coin emulation [26]
(see also parametric improvement and modern presentation by Goldreich and Leshkowitz [23]) reveals that
only a significant (multiplicative) gap between the completeness and soundness parameters is required to
convert an IP to an AM protocol. This is because this emulation simply proves an (approximate) bound on
the number of accepting coins that Arthur could have. Critically, this means that it is not necessary that
Arthur ever actually accept with non-negligible probability when designing an IP! Instead we can design
a non-functional IP with a completeness/soundness gap and simply compile the result to get a functional
public coin protocol.

Concretely, in our IP we have Arthur simply give up and reject whenever the sampling fails, which almost
always happens. However, because we are conditioning on the output of an extractor taking a certain value
(and recall that an extractor’s output is statistically close to uniform), we can (with a little work) get fine-
grained bounds on the exponentially-small probability of successfully sampling and, thus, ultimately control
the relative gap between completeness and soundness.

Prior work constructed non-malleable extractors for samplable sources assuming E is hard for exponential-
size Σ2-circuits and samplable source extractors. The upshot of this new analytical approach is that to
construct non-malleable extractors for post-selecting sources one need not invoke any additional assumption
beyond those known to yield extractors for post-selecting sources: E is hard for exponential-size nondeter-
minisitic circuits.

Finally, we note that both this proof and Ball et al.’s extractor result [8] relativize. So, by giving Arthur
access to an oracle O we can “lift” this technique to handle sources sampled via post-selecting O-oracle
circuits7 of polynomial size and O-oracle tampering circuits of polynomial size, at the expense of assuming
E is hard for exponential-size nondeterministic O-oracle circuits.

2.2 Application: Ruling Out Falsifiable Reductions to SNARGs

As a first attempt, we consider an adversary A that depends on the reduction R and which responds with ⊥ if
the query it is given, (crs, r), occurs too frequently with respect to the output distribution of R. (Specifically,
conditioned on (crs, r) not having the above property, the marginal distribution produced by the reduction
interacting with the external challenger will have high min-entropy). Since r is uniformly distributed in
the real security game, and since there is a relatively small number of such pairs (crs, r), A will refuse to
respond with only negligible probability in the real security game, and thus will still be a legitimate SNARG
adversary. On the other hand, if the individual query does not occur too frequently, A will apply a seedless,
deterministic extractor8 to the query (since conditioned on this event, the marginal distribution on the
query has sufficiently high min-entropy) to obtain v, and then a seed-extending PRG to v to obtain (v||w).
Finally, the adversary will use the w outputted by the PRG to sample (xno, πno) from the augmented “no”
distribution L̄∗crs discussed above, and will return (xno, πno). The goal, as in Gentry-Wichs, is to switch to
an efficient adversary, who computes w but then returns (xyes, πyes) sampled from the augmented “yes”
distribution L∗crs discussed above.

There are three problems with this initial approach:

– The biggest problem is that the adversary we design must be stateless, so it can only extract entropy
from an individual query (crs, r) in order to sample (xno, πno), as sketched above. On the other hand,
the reduction’s view includes the entire set of queries and responses, and the reduction may choose
queries that are correlated and inter-dependent. However, if the queries are correlated, the randomness
w extracted from the queries may also be correlated. It is therefore not clear how we can argue that the
reduction cannot distinguish the joint distribution of correlated draws from L̄∗crs from correlated draws
from L∗crs. For example, when using correlated randomness to sample, we cannot rule out a case where
the correlated draws from the augmented “yes” distribution, L∗crs, reveal the witness, whereas in the case
of the augmented “no” distribution, L̄∗crs, no witness exists.

7 These are circuits with O-gates in addition to the standard basis, {∧,∨,¬}.
8 See for example, [53, 8].
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– The second main problem is that in the meta-reduction proof strategy, we must ultimately switch to
the efficient adversary, Sim, without the reduction detecting it. However, an efficient Sim cannot check
whether a submitted query (crs, r) occurs frequently or not, since checking this requires (approximately)
counting the number of pre-images of a given output. This means that the simulator must be indistin-
guishable from the real adversary, while also behaving identically in the case that an indiviudal query
occurs frequently or not.

– The final problem arises in the proof of indistinguishability of the real adversary and Sim: When we
switch from the true output of the seed-extending PRG to a random output, we still need to be able to
sample from the augmented “no” distribution, L̄∗crs, in order to simulate the hybrid distribution. This
sampling process is computationally bounded, but not poly-time. This means that we require the seed-
extending PRG to be hard even against distinguishers who can sample from L̄∗crs. But since sampling
from L̄∗crs is inefficient, such a seed-extending PRG cannot be poly-time computable.

To solve the first problem, we use (t− 1)-non-malleable extractors against NP-tampering functions. The
main observation is that, since the reduction is non-adaptive, for any i ∈ [t], and j ̸= i, we can view the
j-th query (crsj , rj) as the output of an NP-tampering function applied to the i-th output (crsi, ri). More
precisely, given input (crsi, ri), the j-th tampering function uses its NP powers to pre-sample randomness U
for the reduction/challenger (see Theorem 5), and runs the reduction/challenger forwards on U to compute
the j-th query.

To solve the second problem, in the case where an individual query occurs frequently, the real adversary
will actually sample (xyes, πyes) from L∗crs, instead of outputting ⊥. Ultimately, we will switch from an
inefficient adversary that samples from L̄∗crs in the case of low frequency, to a poly-time simulator that
always samples from L∗crs. Thus, the simulator ultimately does not have to check whether a query occurs
frequently or not, since it will always apply a poly-time computable PRG (which is hard for the reduction
to compute, but still poly-time), and then use the randomness to sample from L∗crs.

To resolve the third problem, we modify the real adversary to use two different PRG’s: Ghard and Geasy.
Ghard is hard even for distinguishers who can sample from L̄∗crs, whereas Geasy is only hard for bounded poly-
time distinguishers (such as the reduction itself). Ghard will be applied in the case that an individual query
has low frequency, whereas Geasy will be applied in the case that an individual query has high frequency.
When we switch from the inefficient adversary who samples from L̄∗crs to the efficient adversary who samples
from L∗crs, we will also switch the PRG from Ghard to Geasy, using a careful sequence of hybrids. Thus,
the final simulator always does the following, regardless of the frequency of the individual query (crs, r)
(1) applies the (t − 1)-non-malleable extractor to obtain v; (2) applies the seed-extending PRG Geasy to
v to obtain (v||w); (3) uses the resulting random coins w to sample (xyes, πyes) from L∗crs and (4) outputs
(xyes, πyes) to the reduction. Note that the final simulator is now a uniform, polynomial time algorithm.

3 Preliminaries

3.1 Notation

For a distribution D, we denote by D(u) a draw from D using coins u.
We denote by Uk a uniform random variable over k bits. When the number of bits, k, is clear from context

or implicit, we use U for simplified notation.
For S ⊆ N , where S = {i1, . . . , iℓ : i1 < · · · < iℓ} and any n-ary string of values x1, . . . , xn, let xS denote

the string (xi1 , . . . , xiℓ). For random variables X,Y , we write ∆(X;Y ) ≤ ϵ or X ≈ϵ Y if the total variation
distance between their distributions is at most ϵ.

3.2 Complexity classes and assumptions

We take E to denote DTIME[2O(n)] the class of languages decidable by deterministic Turing machines in
2cn-time for some constant c. We take circuits to denote circuits over the standard basis {∨,∧,¬}. For any
language O, an O-oracle aided circuit is a circuit that has special gates that decide O, in addition to the
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standard-basis. For any circuit, we say it has size s if it contains at most s gates. We say it has depth d if
the longest path from any input to any output gate is of size d. A circuit family, {Cn}n∈N, is a collection
of circuits such that Cn takes inputs of length n. We take the SIZE[s(n)] to denote the function families
computable by a circuit family {Cn}n∈N such that Cn has size at most s(n), for large enough n. Similarly,
we take SIZEO[s(n)] to denote the function families computable by an O-oracle aided circuit family {Cn}n∈N
such that Cn has size at most s(n), for sufficiently large n.

3.3 Seedless t-non-malleable extractors

Definition 1 (Tampering functions). For any n > 0, let Hn denote the set of all functions h : {0, 1}n →
{0, 1}n. Any subset G ⊆ Hn is a family of tampering functions. For any class of boolean functions F = {f :
{0, 1}n → {0, 1}}, we take Fn to denote the class of n-output functions where each output is computed by
some function in F , i.e. Fn = {fi1,...,in : x 7→ fi1(x), . . . , fin(x) | fi1 , . . . , fin ∈ F}.

The particular classes of tampering functions we consider in this work:

– Tampering where each output is computable by an s(n)-size circuit, SIZE[s(n)].
– Tampering where each output is computable by an s(n)-size circuit with O-oracle gates, SIZEO[s(n)].
– Split-state tampering where two halves of an input are tampered independently and arbitrarily: {(τL, τR) :

x1, . . . , x2n 7→ τL(x1, . . . , xn), τR(xn+1, . . . , x2n)|τL, τR ∈ Hn}.

Definition 2 (Relaxed Seedless t-non-malleable extractor). Let X be a family of sources on {0, 1}n
and F be a class of tampering functions acting on {0, 1}n. Further assume that all f ∈ F does not have any
fixed points. A function NMExt : {0, 1}n → {0, 1}m is defined to be a relaxed (ϵ, t)-non-malleable extractor
with respect to X and F if the following hold: for any X ∈ X and any set {f1, . . . , ft}, such that for all
i ∈ [t], fi ∈ F , we have

∆
(
(NMExt(X),NMExt(f1(X)), . . . ,NMExt(ft(X)));

(Um,NMExt(f1(X)), . . . ,NMExt(ft(X))
)
≤ ϵ.

3.4 Seed-extending pseudorandom generators

Definition 3 ([31]). A function G : {0, 1}ℓ → {0, 1}n is said to be an ϵ-pseudorandom generator (PRG)
for a class C, if for all C ∈ C,

∆(C(G(Uℓ));C(Un)) ≤ ϵ

A PRG, G, is said to be seed-extending if the prefix of its output is its input, i.e. G(σ) = σ,G′(σ) for
some function G′ : {0, 1}ℓ → {0, 1}n−ℓ.

We are principally concerned with seed-extending PRGs against various types of circuits of a given size:
non-deterministic circuits, non-deterministic NP-circuits, etc. Throughout this paper, we take a PRG for a
class of circuits of size s to mean a 1/s-PRG for that class of circuits. Note that because we are interested in
both seed-extending PRGs, as well as PRGs for non-deterministic circuits, so-called “cryptographic” PRGs
which can be easily evaluated by the classes they are constructed to fool do not suffice: a distinguisher given
the seed, or nondeterminism, can easily determine if a string is in the PRG’s image. Thankfully, as observed
by Kinne et al. [31], Nisan and Wigderson’s seminal construction yields a seed extending PRG, provided one
starts with an appropriately hard function. We conclude with the formal theorem statement.

Theorem 3 ([31, 28, 32, 50, 51, 3]). If E requires exponential size circuits of type X ∈
{deterministic,nondeterministic,NP, Σi}, then for every constant c > 1 there exists a constant α > 1
such that for every sufficiently large n, and every r such that α log n ≤ ℓ ≤ n there is a seed-extending PRG,
G : {0, 1}ℓ → {0, 1}n, for size nc circuits of type X ∈ {deterministic,nondeterministic,NP, Σi}.
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3.5 Witness Sampling

We also require the following classical, relativizing results on approximate counting and sampling NP-
witnesses.

Theorem 4 (Approximate Counting with an NP-oracle [29]). For every i ≥ 0, every sufficiently large
s and every ϵ > 0, there is a Σi+1-circuit A of size poly(s/ϵ) that given a Σi-circuit C : {0, 1}n → {0, 1} of
size s outputs a value M̂ such that

M̂ ∈ (1± ϵ)|{x : C(x) = 1}|

Theorem 5 (Sampling Witnesses with an NP-oracle [10, 29]). For every i ≥ 0, every sufficiently
large s and every δ > 0, there is a randomized Σi+1-circuit A of size poly(s/ log(1/δ)) that given a Σi-
circuit C : {0, 1}n → {0, 1} of size s outputs a value in {0, 1}n ∪ ⊥ such that for every size s Σi-circuit,
Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) ̸= ⊥) is uniform over {x : C(x) = 1}.

3.6 SNARGs and Black-Box Reductions

Our work is concerned with provable security for SNARGs, defined below. Note that we require adaptive
soundness, i.e., soundness even against adversaries that are allowed to select their instance after seeing the
common reference string.

Definition 4 (Uniform Succinct Non-Interactive Arguments for NP). A SNARG system Π consists
of three polynomial-time algorithms Π = (G,P,V):

– (crs, priv) ← G(1λ): The generation algorithm takes as input the security parameter λ and outputs a
common reference string crs as well as private verification information priv.

– π ← P(crs, x, w): The prove algorithm takes in the crs, a statement x, and a witness w, and outputs a
proof π.

– b← V(priv, x, π): the verification algorithm takes as input priv, a statement x, and a proof π, and outputs
a bit b (1 denotes acceptance, 0 denotes rejection).

We say that Π is a succinct non-interactive argument (SNARG) for a language L in NP with corresponding
relation R if it satisfies the following three properties:

Completeness: For all (x,w) ∈ R,

Pr

[
V(priv, x, π) = 0

∣∣∣∣∣ (crs, priv)← G(1λ)
π ← P(crs, x, w)

]
= negl(λ) . (1)

Uniform Adaptive Soundness: For all uniform, PPT P̄,

Pr

[
V(priv, x, π) = 1 ∧ x /∈ L

∣∣∣∣∣ (crs, priv)← G(1λ)
(x, π)← P̄(crs)

]
= negl(λ) . (2)

Succinctness: All proofs π produced by P satisfy |π| = poly(λ)(|x|+ |w|)o(1).

We say that a PPT P̄ breaks a SNARG system Π = (G,P,V) if the probability that V outputs 1 in the
soundness experiment with P̄ exceeds 1/p(λ) for some polynomial p and infinitely many λ.

Definition 5 (Uniform Falsifiable Assumption). A uniform falsifiable assumption is a pair (M, c)
where M is an interactive uniform poly-time algorithm (“the challenger”) and c is a constant (“the guessing
probability”). The output of M is a single bit; we let the output 1 mean win.

Such an assumption (M, c) is said to be true if, for every uniform, PPT A,

Pr[⟨M, A⟩(1λ) = win] ≤ c+ negl(λ) , (3)

where the probability is taken over the coins of M and A.
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We say that a uniform, PPT A breaks the assumption (M, c) if the probability that it wins the security
experiment ⟨M, A⟩ exceeds c+ 1/p(λ) for some polynomial p and infinitely many λ.

Definition 6 (Non-Adaptive Black-Box Reduction for SNARGs). Let Π be a SNARG and (M, c)
a falsifiable assumption. A non-adaptive, black-box reduction (establishing the soundness of Π, based on the
assumption (M, c)) is an interactive PPT oracle algorithm R such that for every uniform adversary A that
breaks the SNARG system Π, RA breaks the assumption (M, c). Further, all of R’s quries to A must be
submitted simultaneously.

Note that the oracle in the above definition allows the reduction R to select the coins of A in any manner
at all. In particular, it need not sample them uniformly at random.

However we do restrict the reduction in the following ways:

– There is a fixed constant c such that on input security parameter λ, R only queries A on security
parameters λ′ ≥ λ1/c.

– The number of queries the reduction makes, t = poly(λ), is a fixed polynomial in the security parameter
(and in particular is independent of the length of the random tape of the adversary).

Following Pass [46], we consider both restrictions above to fall under the definition of “security-preserving”
reductions.

We call the class of non-adaptive, black-box reductions that can arbitrarily set the adversary’s ran-
dom tape, but have the above two restrictions security-preserving, non-adaptive query, generalized black-box
reductions or SPNA-generalized black-box reductions.

4 Main Application

In this section, we use our construction of (t− 1)-non-malleable extractors as a building block to obtain the
following result:

Theorem 6. Assume that an NP language L has a sub-exponentially hard subset-membership problem and
that E requires exponential-size Σ2-circuits. Let Π = (G,P,V) be a candidate SNARG for L, satisfying the
completeness and succinctness properties. Then, for any uniform, falsifiable assumption (M, c), one of the
following must hold:

– There is a uniform, poly-time adversary that breaks (M, c).
– There is no SPNA-generalized black-box reduction showing the uniform soundness of Π based on the

assumption (M, c).

Towards proving the theorem, we assume the existence of a SPNA-generalized black-box reduction R
making t := t(λ) queries on security parameter λ. See Figure 1 for a pictorial representation. We next
describe certain building-blocks that will be used to define our SNARG adversary A.

4.1 Hard Languages and Leakage Simulation Theorem

We assume existence of an NP-language L and distributions L+, L̄ where L+ is a distribution over statement,
witness pairs (x,w), where in x ∈ L, and L̄ is a distribution over no instances. The distribution over the
first output of L+ is denoted as L. We require that L and L̄ should be indistinguishable against non-uniform
adversaries of size poly(2λpi).

For a fixed crs, let L∗crs denote the joint distribution (x, π) of statements x ∼ L and corresponding proofs
π with respect to crs. We can efficiently sample from L∗crs by sampling (x,w) ∼ L+ and honestly computing
the proof π using w w.r.t crs. Assume the length of π is λπ.

We have the following theorem by Jetchev and Pietrzak [30]:
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Pictorial Representation of the Reductions Considered

WLOG assume for all i ̸= j, (crsi, ri) ̸= (crsj , rj).

⟨M, R⟩(U)
R A

· · ·
(crs1, r1)

(crst, rt)

· · ·
(x1, π1)

(xt, πt)

M is some poly-time algorithm corresponding to the challenger.

Fig. 1. A SPNA-generalized black-box reduction from a uniform, falsifiable assumption to uniform SNARGs.

Theorem 7 ([30]). For every crs, there exists a poly(2λπ )-size randomized circuit Ccrs such that for all
poly(λ)-sized distinguishers D∣∣∣∣ Pr

(x,π)∼L∗
crs

[D(x, π) = 1]− Pr
x∼L,ρ∼{0,1}p(λ)

[D(x,Ccrs(x; ρ)) = 1]

∣∣∣∣ ≤ 1

poly(λ)
.

We now define the distribution used by the SNARG adversary to sample false statements and proofs.
For every fixed crs, let L̄∗crs be the following distribution:

– Sample x ∼ L̄
– Sample π ∼ Ccrs(x;U), where U is a uniform random variable, and Ccrs is the lexicographically first

randomized circuit of size poly(2λπ ) guaranteed by Theorem 7.

Using the hardness of distinguishing L and L̄ we obtain the following corollary:

Corollary 1. For every crs and for all poly(λ)-sized distinguishers D,∣∣∣∣ Pr
(x,π)∼L∗

crs

[D(x, π) = 1]− Pr
(x,π)∼L̄∗

crs

[D(x, π) = 1]

∣∣∣∣ ≤ 1

poly(λ)
.

4.2 (t − 1)-Non-Malleable Extractor

We require a relaxed (t−1, 1/poly)-non-malleable extractor NMExt that is computable in uniform polynomial-
time for high-min-entropy sources Z sampled by bounded poly(λ)-size Σ2-circuits. NMExt must be secure
against the class F of tampering functions f consisting of bounded poly(λ)-size NP-circuits. We show in
Section 5.2 that such non-malleable extractors can be constructed under the assumption that E requires
exponential-size Σ2-circuits.

4.3 Seed-Extending PRG’s

We need two types of seed-extending PRG’s:

– Ghard takes as input a seed of length security parameter λ. Ghard can take even time exponential in λ to
compute, but it must be uniform. Ghard is secure against bounded poly(λ)-size Σ2-circuits and is also
secure against poly(2λπ )-size (regular) circuits.

– Geasy takes as input a seed of length security parameter λ. Geasy must be computable in uniform
polynomial-time. Geasy must be secure against bounded poly(λ)-size Σ2-circuits .

Theorem 3 implies that such seed-extending PRG’s can be constructed under the assumption that E
requires exponential-size Σ2-circuits.
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4.4 Distributions we consider

We next define several distributions and the tampering functions that will be used inf the definition of the
real adversary A, as well as in the Hybrid argument used in our proof, where we switch from the inefficient
adversary A to an efficient simulator.

Distribution over R’s queries: Let D be the following poly-samplable distribution:
On input u ∼ U :

1. Run ⟨M, R⟩(u) to obtain (crs1, r1), . . . , (crst, rt).
2. Output ( #  »crs, #»r ) := (crs1, r1), . . . , (crst, rt).

For i ∈ [t], we denote by D[i][1] the output crsi.
For i ∈ [t], let Di be the distribution over the i-th (crsi, ri) pair outputted by D. We further let Di[1] or
Di(u)[1] indicate the crs part of the output, whereas Di[2] or Di(u)[2] indicate the randomness part of the
output.

Set of “infrequent” queries made by R. Let S be the set{
r : ∀i ∈ [t], Pr

Di[2]
[r] ≤ 2log

2(λ)

2|r|

}
.

Probability a query is “infrequent.” For i ∈ [t], let pi be the probability Prri∼Di[2][ri ∈ S].

Distributions over R’s queries, conditioned on the query being “infrequent.”

– For i ∈ [t], let Zi be the distribution (crsi, ri) ∼ Di | (ri ∈ S).
– For i ∈ [t], let Ci be the distribution ( #  »crs, #»r ) = ((crs1, r1), . . . , (crst, rt)) ∼ D|ri ∈ S.

Distribution over i-th Reduction query, conditioned on all queried crs’s. For i ∈ [t], let Zi(
#  »crs) be the

distribution Di(u), where u is chosen uniformly at random from the set {u : Di(u)[2] ∈ S ∧ D1(u)[1] =
crs1 ∧ · · · ∧ Dt(u)[1] = crst)}.

Note that

– If pi ≥ 1
2log2(λ)

then with all but negligible probability over choice of #  »crs ∼ Ci, the min entropy of Zi(
#  »crs)

is at least |r| − t|crs| − 3 log2(λ). This is a sufficiently high fraction for extraction w.r.t. |crs|+ |r| when
|r| ≫ t|crs|.

– At most t·2|r|
2log2(λ)

number of random tapes do not fall into the set S. Therefore

Pr
r∼U

[r /∈ S] ≤ negl(λ).

The second bullet will imply that our real adversary A is a valid SNARG adversary even though it does
not break the soundness of the SNARG (it will return a proof of a true statement) when r /∈ S.

Complexity of sampling. As written above, sampling from Zi(
#  »crs) requires access to a #P oracle, since

checking membership of r ∈ S requires computing the exact number of pre-images u such that Di(u)[2] = r.
We chose to define S in this way for conceptual simplicity. In the following, we describe an alternate definition
of S that allows for more efficient sampling.

Existence of a relative error approximator that can be deterministically computed using a uniform NP
circuit follows from an assumption we already require (that E requires exponential-size non-deterministic
circuits) [48]. On input r, the relative error approximator outputs a value ρ(r) such that for all r,

(1− ϵ) · Pr
r∼Di[2]

[r] ≤ ρ(r) ≤ Pr
r∼Di[2]

[r].
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We therefore re-define the set S := {r : ρ(r) ≤ (1−ϵ) · 2
log2(λ)

2|r|
}. Note that if r ∈ S then Prr∼Di[2][r] ≤ 2log

2(λ)

2|r|
.

This means that the min-entropy conditioned on being in S remains the same as in our previous definition

of S. On the other hand, if r /∈ S, then Prr∼Di[2][r] ≥ (1− ϵ) 2
log2(λ)

2|r|
. This implies that the fraction of random

tapes that do not fall into the set S will still be negligibly small and so A is still a valid SNARG adversary.
Further, using this alternate definition of S, the distribution Zi(

#   »crs) itself can be sampled by Σ2-circuits.

4.5 Tampering functions

For i, j ∈ [t], fixed #  »crs, and fixed random coins ρ, let f i
j, # »crs,ρ be the tampering function that uses ρ to sample

a pre-image u uniformly at random from the set: {u : Di(u)[2] = ri ∧D1(u)[1] = crs1 ∧ · · · ∧Dt(u)[1] = crst}.
Then f i

j, # »crs,ρ outputs Dj(u). Such a tampering function can be implemented using a polynomial-size NP
circuit. See Theorem 5 for more details.

Note that our tampering functions have no fixed points since the reduction never outputs the same query
twice (in such a case the reduction could simply respond to its own query by copying the previous output).

Since Zi(
#  »crs) has high min-entropy with all but negligible probability over choice of #  »crs ∼ Ci, by relaxed

(t − 1)-non-malleability, we have that for i ∈ [t], and for every ρ, with all but negligible probability over
#  »crs ∼ Ci: (

NMExt(Zi(
#  »crs)), [NMExt(f i

j, # »crs,ρ(Zi(
#  »crs)))]j∈[t]\{i}

)
s
≈

(
U, [NMExt(f i

j, # »crs,ρ(Zi(
#  »crs)))]j∈[t]\{i}

)
. (4)

4.6 The real adversary A

We now define the real, inefficient, uniform SNARG adversary A:

The real adversary A. On input (crs, r):

1. Using brute-force search, find the lexicographically first circuit Ccrs of size poly(2λπ ) guaranteed by
Theorem 7.

2. Compute v = NMExt(crs, r).
3. If (crs, r) ∈ S

(a) Compute (v, w) = Ghard(v). Note that Ghard takes superpolynomial time to compute. Let w =
w1||w2.

(b) Set x = L̄(w1)
(c) Set π = Ccrs(x;w

2).
(d) Output (x, π)

4. If (crs, r) /∈ S
(a) Compute (v, w) = Geasy(v). Note that Geasy takes polynomial time to compute.
(b) Compute (x, π) = L∗crs(w) in polynomial time.
(c) Output (x, π).

We consider the augmented view of ⟨M, R⟩ that includes the entire random string u that the challenger
M and reduction R use during their interaction (this allows full reconstruction of the joint view of R and
the challenger corresponding to the falsifiable assumption.). In particular, the views of both R and M can
be fully recovered given the augmented view.

ViewReal
aug = (u, (x1, π1), (x2, π2)) .

4.7 The uniform PPT Simulator

The simulator Sim. On input (crs, r):

1. Compute v = NMExt(crs, r).
2. Compute (v, w) = Geasy(v). Note that Geasy takes polynomial time to compute.
3. Compute (x, π) = L∗crs(w) in polynomial time.
4. Output (x, π).
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4.8 Hybrid argument for t parallel queries

We will now argue–via a sequence of hybrids–that the real, inefficient, adversary A can be simulated by
the uniform, PPT simulator Sim given in the previous section. Specifically, the real experiment generates a
distribution over augmented views that is identical to the distribution in Hybrid H1,0, whereas the simulator
generates a distribution over augmented views that is identical to the distribution in Hybrid Ht,5. We will
argue that each pair of consecutive hybrids is either perfectly, statistically, or computationally indistinguish-
able with distinguishing probability 1/poly for some poly. Since it can be checked in polynomial time that
the augmented view of the real experiment consists of a “break” of the underlying falsifiable assumption, it
must therefore also be the case that the efficiently generated simulated distribution consists of a “break” of
the underlying falsifiable assumption with 1/poly probability.

For i ∈ [1, . . . , t], we define the following sequence of hybrids: H1,0, H1,1, . . . ,H1,5, H2,0, H2,1, . . . ,Ht,5.

Hybrid Hi,0. In this Hybrid, we switch the order of sampling. Specifically, letting pi be the probability that
the i-th query is not a “frequent query,” with probability pi, we first sample the t values of the crs, we then
sample the t outputs of NMExt and the derived coins of the adversary, we then pre-sample the randomness
u of the reduction and challenger and re-compute the entire augmented view, where the responses of the
adversary for the first i − 1 queries are chosen from the “yes” distribution, whereas the responses for the
last t − i + 1 queries are chosen from the “no” distribution. With probability 1 − pi, we do not change the
distribution of this Hybird, and we sample the view by running experiment Hi−1,5, conditioned on the i-th
query being a “frequent query.” The formal description of the hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1], and fix ρ uniformly
at random. For j ∈ [t]\{i}, fix crsj = Dj(u)[1] and vj = NMExt(fcrsj (Di(u))). Note that the distribution
over #  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical
to the distribution Zi(

#  »crs).
2. For j ≥ i, fix the circuits Ccrsj , each of size poly(2λπ ).

3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1
j,hard||w2

j,hard. Set xj,no = L̄(w1
j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).

5. Sample vi = NMExt(Zi(
#  »crs)), conditioned on vj = NMExt(f i

j, # »crs,ρ)(Zi(
#  »crs))) for j ∈ [t] \ {i}.

6. Compute vi||wi = Ghard(vi). Let wi = w1
i ||w2

i .

7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.

9. For j < i, set (xj , πj) = (xj,yes, πj,yes).

10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).

11. Set xi = L̄(w1
i )

12. Set πi = Ccrsi(xi;w
2
i ).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.
We denote the augmented view in this hybrid as

ViewHi,0
aug = (u, (x1, π1), . . . , (xt, π2)) .

Note that hybrid H1,0 is identical to the real experiment the only difference is the order of sampling.
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Hybrid Hi,1. In this Hybrid, we replace the sampled output of the non-malleable extractor on the i-th
query (vi) with a uniform random value. To allow for the switch, we rely on the statistical properties of the
(t− 1)-non-malleable extractor against the distribution Zi(

#  »crs) (which we have argued has min-entropy and
is samplable by bounded poly(λ)-size Σ2-circuits in Section 4.4, and the tampering functions f i

j, # »crs,ρ, which
we have argued can be computed by poly(λ)-size Σ2-circuits in Section 4.5. The formal description of the
hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))). Note that the distribution over
#  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical to the
distribution Zi(

#  »crs).
2. Fix the circuits Ccrs1 , . . . , Ccrst , each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).
5. Sample vi uniformly at random.
6. Compute vi||wi = Ghard(vi). Let wi = w1

i ||w2
i .

7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
9. For j < i, set (xj , πj) = (xj,yes, πj,yes).
10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
11. Set xi = L̄(w1

i )
12. Set πi = Ccrsi(xi;w

2
i ).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.

Claim.
ViewHi,0

aug

s
≈ ViewHi,1

aug

Proof. If pi is negligible, then Hi,0 and Hi,1 are both statistically close to the distribution Hi−1,5, conditioned
on (crsi, ri) /∈ S (and hence to each other). On the other hand, if pi ≥ 1

2log2(λ)
, then the distribution Zi(

#  »crs)

has high min-entropy and can be sampled by bounded poly(λ)-size Σ2-circuits (as shown in Section 4.4), and
the tampering functions f i

j, # »crs,ρ can also be computed by poly(λ)-size Σ2-circuits (as shown in Section 4.5).

Therefore, due to the relaxed (t − 1)-non-malleability of NMExt (Def 2), ViewHi,0
aug and ViewHi,1

aug are 1/poly-
statistically close.

Hybrid Hi,2. In this Hybrid, we replace the output of the “hard” PRG Ghard(vi) with a random string
wi. Note that this PRG is sufficiently hard that we can compute the remainder of the hybrid distribution
(which includes pre-sampling the coins u of the reduction and challenger and computing the fake proof
πi = Ccrsi(xi;w

2
i )) without breaking the security of the PRG (See Section 4.3). Thus, indistinguishability of

the hybrids will follow from the security of the PRG. The formal description of the hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))). Note that the distribution over
#  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical to the
distribution Zi(

#  »crs).
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2. Fix the circuits Ccrs1 , . . . , Ccrst , each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).
5. Sample vi uniformly at random.
6. Sample wi uniformly at random. Let wi = w1

i ||w2
i .

7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
9. For j < i, set (xj , πj) = (xj,yes, πj,yes).
10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
11. Set xi = L̄(w1

i )
12. Set πi = Ccrsi(xi;w

2
i ).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.

Claim.

ViewHi,1
aug

c
≈ ViewHi,2

aug

Proof. Consider the following distribution over circuits:

Non-uniform advice.

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))).

2. Fix the circuits Ccrsj , j ≥ i, each of size poly(2λπ ).
3. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).

4. For j > i, vj ||wj,hard = Ghard(vj). Let wj,hard = w1
j,hard||w2

j,hard. Set xj,no = L̄(w1
j,hard), πj,no =

Ccrs2(xj,no;w
2
j,hard).

Given an input vi||wi, where wi = w1
i ||w2

i the circuit does as follows:

1. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

2. Using u, (crs1, r1), . . . , (crst, rt) can be efficiently computed.
3. For j < i, set (xj , πj) = (xj,yes, πj,yes).
4. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
5. Set xi = L̄(w1

i )
6. Set πi = Ccrsi(xi;w

2
i ).

Assume (vi||wi) is either random or the output of a PRG Ghard(vi) that is computed in time 2poly(λ)

and is secure against Σ2-circuits of polynomial size p1(λ) (needed to pre-sample u, and check whether
(crsj , rj) ∈ S), and (regular) circuits of size poly(2λπ ) (needed to compute the circuit Ccrsi(xi;w

2
i ).

If (vi||wi) is the output of Ghard, then we exactly obtain the Hybrid 1 distribution, whereas if (vi||wi)
is random, we exactly obtain the Hybrid 2 distribution. By the security of the PRG Ghard against this
complexity class, Hybrid 1 and Hybrid 2 are indistinguishable.
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Hybrid Hi,3 In this Hybrid, we replace the “no” instance xi = L(w1
i ), πi = Ccrsi(xi;w

2
i ) with a “yes” instance

(xi, πi) = L∗crsi(wi). Since the value of wi is independent of all other random variables in the experiment,
we can performs all the inefficient parts of the experiment in a pre-processing stage. In the online stage,
all that must be done is plugging in (xi, πi) as the i-th response of the oracle and using the pre-sampled
random coins u (given as non-uniform advice) to complete the experiment. The formal description of the
hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))). Note that the distribution over
#  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical to the
distribution Zi(

#  »crs).
2. Fix the circuits Ccrs1 , . . . , Ccrst , each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).
5. Sample vi uniformly at random.
6. Sample wi uniformly at random.
7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
9. For j < i, set (xj , πj) = (xj,yes, πj,yes).
10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
11. Set (xi, πi) = L∗crsi(wi).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.

Claim.
ViewHi,2

aug

c
≈ ViewHi,3

aug

Proof. Since wi is independent of all other random variables in the experiment, we will use the non-uniform
advice to pre-sample a view missing only (xi, πi), which are both computed from wi = w1

i ||w2
i .

Specifically, we sample
(
u, [(xj , πj)]j∈[t]\{i}

)
and note that ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be com-

puted in polynomial time given u. These are hardwired into the circuit as non-uniform advice.
The circuit then receives (xi, πi), where either (xi, πi) ∼ D∗yes,crsi or (xi, πi) ∼ D∗no,crsi . The circuit returns

the view (u, (x1, π1), . . . , (xt, πt)) to the adversary and outputs whatever the adversary does.
Note that if (xi, πi) ∼ D∗no,crsi then the view of the adversary is identical to Hybrid Hi,3, whereas if

(xi, πi) ∼ D∗yes,crsi the view of the adversary is identical to Hybrid Hi,4. Thus, a distinguishing adversary
implies a contradiction to Corollary 1.

Hybrid Hi,4 In this Hybrid, we switch back from wi being chosen uniformly at random, to wi being
computed using a PRG. However, this time we use (vi||wi) = Geasy instead of Ghard. Note that at this
stage, the only inefficient parts of the hybrid experiment are the pre-sampling of u conditioned on fixing
certain random variables in the experiment. Since we chose Geasy to be a poly-time computable PRG that
is secure against NP-circuits of polynomial size, this pre-sampling step can be done without breaking the
security of Geasy (see Section 4.3). Thus, indistinguishability of the hybrids will follow from the security of
the PRG. The formal description of the hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:
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1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))). Note that the distribution over
#  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical to the
distribution Zi(

#  »crs).
2. Fix the circuits Ccrs1 , . . . , Ccrst , each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).
5. Sample vi uniformly at random.
6. Set (vi||wi) = Geasy(vi).
7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
9. For j < i, set (xj , πj) = (xj,yes, πj,yes).
10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
11. Set (xi, πi) = L∗crsi(wi).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.

Claim.
ViewHi,3

aug

c
≈ ViewHi,4

aug

Proof. Consider the following distribution over circuits:

Non-uniform advice.

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))).

2. Fix the circuits Ccrsj , j ≥ i, each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).

Given an input vi||wi, the circuit does as follows:

1. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

2. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
3. For j < i, set (xj , πj) = (xj,yes, πj,yes).
4. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
5. Set (xi, πi) = L∗crsi(wi).

Assume (vi||wi) is either random or the output of a PRG Geasy(vi) that is computed in polynomial
time and is secure against NP-circuits of polynomial size p1(λ) (needed to pre-sample u, and check whether
(crsj , rj) ∈ S).

If (vi||wi) is the output of Geasy, then we exactly obtain the Hybrid Hi,4 distribution, whereas if (vi||wi)
is random, we exactly obtain the Hybrid Hi,3 distribution. By the security of the PRG Geasy against this
complexity class, Hybrid Hi,3 and Hybrid Hi,4 are indistinguishable.
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Hybrid Hi,5 In this Hybrid, we go back to sampling vi = NMExt(Zi(
#  »crs) from the correct distribution,

instead of choosing it uniformly at random. Again, indistinguishability follows from the statistical properties
of the (t− 1)-non-malleable extractor. The formal description of the hybrid follows:

Let pi := Prri∼Di[2][ri ∈ S]. With probability pi do the following:

1. Sample u uniformly at random from the set {u : Di(u)[2] ∈ S}. Fix crsi = Di(u)[1] and fix ρ at random.
For j ∈ [t] \ {i}, fix crsj = Dj(u)[1] and vj = NMExt(f i

j, # »crs,ρ(Di(u))). Note that the distribution over
#  »crs := (crs1, . . . , crst) is identical to a draw from C1. Further, Di(u) conditioned on #  »crs is identical to the
distribution Zi(

#  »crs).
2. Fix the circuits Ccrs1 , . . . , Ccrst , each of size poly(2λπ ).
3. For j > i, compute vj ||wj,hard = Ghard(vj). Let wj,hard = w1

j,hard||w2
j,hard. Set xj,no = L̄(w1

j,hard), πj,no =

Ccrsj (xj,no;w
2
j,hard).

4. For j ∈ [t] \ {i}, compute vj ||wj,easy = Geasy(vj), Set (xj,yes, πj,yes) = L∗crsj (wj,easy).
5. Sample vi = NMExt(Zi(

#  »crs)), conditioned on vj = NMExt(fj(Zi(
#  »crs))), j ∈ [t] \ {i}.

6. Set (vi||wi) = Geasy(vi).
7. Pre-sample u uniformly at random from the set

{u : Di(u)[2] ∈ S ∧ D1(u)[1] = crs1 · · · ∧ Dt(u)[1] = crst ∧
for j ∈ [t] \ {i}, NMExt(f i

j, # »crs,ρ(Di(u))) = vj ∧ NMExt(Di(u)) = vi}.

8. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crst, rt) can be efficiently computed.
9. For j < i, set (xj , πj) = (xj,yes, πj,yes).
10. For j > i, if (crsj , rj) ∈ S set (xj , πj) = (xj,no, πj,no) and if (crsj , rj) /∈ S set (xj , πj) = (xj,yes, πj,yes).
11. Set (xi, πi) = L∗crsi(wi).

With probability 1− pi, run experiment Hi−1,5, conditioned on (crsi, ri) /∈ S.

Claim.
ViewHi,4

aug

s
≈ ViewHi,5

aug

Proof. If pi is negligible, then Hi,4 and Hi,5 are both statistically close to the distribution Hi−1,5, conditioned
on (crsi, ri) /∈ S (and hence to each other). On the other hand, if pi ≥ 1

2log2(λ)
, then the distribution Zi(

#  »crs)

has high min-entropy and can be sampled by bounded poly(λ)-size Σ2-circuits (as shown in Section 4.4), and
the tampering functions f i

j, # »crs,ρ can also be computed by poly(λ)-size NP-circuits (as shown in Section 4.5).

Therefore, due to the relaxed (t − 1)-non-malleability of NMExt (Def 2), ViewHi,4
aug and ViewHi,5

aug are 1/poly-
statistically close.

We claim that Hybrid Hi,5 is identical to the following hybrid, we simply re-arrange the order of sampling.
Specifically, in this Hybrid, we first sample the coins of the reduction and challenger, run the experiment
forward. Given all the queries, ( #  »crs, #»r ), we run the non-malleable extractor to obtain v1, . . . , vt. For j ≤ i,
we run (vj , wj) = Geasy(vj) and sample (xj , πj) = L∗crsj (wj) from the “yes” distribution. For j > i, if the

query (crsj , rj) is not “frequent”, we run (vj , wj) = Ghard(vj) and sample xj = L(w1
j ), πj = Ccrsj (xj ;w

2
j )

from the “no” distribution. Otherwise, if the query (crsj , rj) is “frequent”, we run (vj , wj) = Geasy(vj) and
sample (xj , πj) = L∗crsj (wj) from the “yes” distribution.

Hybrid Hi,5

1. Sample u uniformly at random and fix u.
2. Using u, ( #  »crs, #»r ) = (crs1, r1), . . . , (crs2, r2) can be efficiently computed.
3. For j > i, fix the circuits Ccrsj of size poly(2λπ ).
4. For j ∈ [t], set vj = NMExt(crsj , rj).
5. For j ≤ i, set vj ||wj = Geasy(vj) and set (xj , πj) = L∗crsj (wj).
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6. For j > i, if (crsj , rj) ∈ S
(a) Compute (vj , wj) = Ghard(vj). Let wj = w1

j ||w2
j .

(b) Set xj = L̄(w1
j )

(c) Set πj = Ccrsj (xj ;w
2
j ).

7. For j > i, if (crsj , rj) /∈ S
(a) Compute (vj , wj) = Geasy(vj). Note that Geasy takes polynomial time to compute.
(b) Set (xj , πj) = L∗crsj (w2).

Note that the distribution produced by H−1,5 is identical to the one produced by the interaction of R
with the real adversary A. Looking at the definition of the distribution in Hybrid Hi,0, we further claim that
for i ∈ {−1, . . . , t− 1}, Hi,5 is identical to Hi+1,0, with only the order of sampling changed.

Finally, we note that Ht,5 is a polynomial-time algorithm that produces a distribution over views identical
to the one produced by the interaction of R with Sim.

This concludes the proof of Theorem 6.

5 t-Non-Malleable Extractors

5.1 Preliminaries for NMExt Construction

We define functions that will be useful in defining t-non-malleable extractors:

Copy(x, y) =

{
x if x ̸= same

y if x = same.

For t ∈ N, we further define

Copyt(x1, . . . , xt, y) := Copy(x1, y)|| · · · ||Copy(xt, y).

Definition 7 (Strong Seeded Extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-
strong extractor if for every source X over {0, 1}n with min entropy at least k and uniform Y over {0, 1}d,
(Y,Ext(X,Y )) ≈ϵ (Y,Um), where Um is uniformly distributed over {0, 1}m. Moreover, we require Ext to be
computable in polynomial time.

Definition 8 (Strong Two-Source Extractors). A function 2Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a (k, ϵ)-extractor if for every pair of sources X,Y over {0, 1}n with combined min entropy at least k,
(Y, 2Ext(X,Y )) ≈ϵ (Y,Um), and (X, 2Ext(X,Y )) ≈ϵ (X,Um) where Um is uniformly distributed over {0, 1}m.
Moreover, we require Ext to be computable in polynomial time.

Definition 9 (Seedless t-non-malleable extractors). Let G be a class of tampering functions {0, 1}n →
{0, 1}n and X be a class of distributions over {0, 1}n. A function NMExt : {0, 1}n → {0, 1}m is called an
ϵ-seedless t-non-malleable extractor for source X with respect to tampering class G if for every distribution
X ∈ X and every set of tampering function {g1, . . . , gt}, such that for i ∈ [t], gi ∈ G, there exists a random
variable D(g1,...,gt) on {0, 1}m ∪ {same} that is independent of X, such that

∆
(
(NMExt(X),NMExt(g1(X)), . . . ,NMExt(gt(X)));

(Um,Copyt(D(g1,...,gt),Um))
)
≤ ϵ.

We refer to the parameter ϵ as the “error” of the seedless t-non-malleable extractor.
Specifically, we say NMExt is an two-source (ϵ, t)-non-malleable extractor for (n, k)-sources if it is a t-

non-malleable extractor for pairs of independent (n, k)-sources with respect to split-state tampering, i.e. if for
every pair of independent (n, k)-sources X,Y and split-state tampering functions (τ1L, τ

1
R), . . . , (τ

t
L, τ

t
R), there
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exists a random variable D(τ1
L,τ1

R),...,(τt
L,τt

R) supported on ({0, 1}m ∪ {same})t that is independent of X,Y ,
such that

∆((NMExt(X,Y ),NMExt(τ1L(X), τ1R(Y )), . . . ,NMExt(τ tL(X), τ tR(Y )));

(Um,Copyt(D(τ1
L,τ1

R),...,(τt
L,τt

R),Um))) ≤ ϵ.

Definition 10 (Relaxed Seedless t-non-malleable extractor). Let X be a family of sources on {0, 1}n
and F be a class of tampering functions acting on {0, 1}n. Further assume that all f ∈ F does not have any
fixed points. A function NMExt : {0, 1}n → {0, 1}m is defined to be a relaxed (ϵ, t)-non-malleable extractor
with respect to X and F if the following hold: for any X ∈ X and any set {f1, . . . , ft}, such that for all
i ∈ [t], fi ∈ F , we have

∆
(
(NMExt(X),NMExt(f1(X)), . . . ,NMExt(ft(X)));

(Um,NMExt(f1(X)), . . . ,NMExt(ft(X))
)
≤ ϵ.

Moreover, if F is the class of split-state functions, we say NMExt is a relaxed two-source (ϵ, t)-non-
malleable extractor for independent sources X,Y if for every set of t pairs of split-state tampering functions
(τ1L, τ

1
R), . . . , (τ

t
L, τ

t
R), where for each pair at least one of the functions has no fixed points,

∆
(
(NMExt(X,Y ),NMExt(τ1L(X), τ1R(Y )), . . . ,NMExt(τ tL(X), τ tR(Y )));

(Um,NMExt(τ1L(X), τ1R(Y )), . . . ,NMExt(τ tL(X), τ tR(Y ))
)
≤ ϵ.

Theorem 8 ([12]). There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ , there exists an

efficient, two-source (ϵ, t)-non-malleable extractor for (n, n− nγ)-sources with error ϵ = 2−n
Ω(1)

and output
length m = nΩ(1).

Theorem 9. Suppose that NMExt : {0, 1}n×{0, 1}n → {0, 1}m is a two-source (ε, t)-non-malleable extractor
with error ε for (n, k)-sources. Then for any k′ ≥ k, NMExt is a strong, two-source, (ε′, t)-non-malleable
extractor for (n, k′)-sources with error ε′ = 2(t+1)m(ε+ 2k+1−k′

).

Proof. Let XL, XR be independent (n, k′) sources and for i ∈ [t], let Xi
L = τ iL(XL), X

i
R = τ iR(XR), where

for each i, f i
L, f

i
R. are deterministic functions such that at least one of them has no fixed point. Now for any

(z, z1, . . . , zt) ∈ ({0, 1}m)t+1, define the set of bad xL’s for
#»z = (z, z1, . . . , zt) to be

B #»z =
{
xL :

∣∣Pr[NMExt(xL, XR) = z,∀j ∈ [t], NMExt(τ jL(xL), X
j
R) = zj ]

− 2−m Pr[∀j ∈ [t], NMExt(τ jL(xL), X
j
R) = zj ]

∣∣ > ϵ.
}

We have the following Claim:

Claim 5.1. For any #»z = (z, z1, . . . , zt), we have |B #»z | < 2k+1.

The claim holds since otherwise we can create an (n, k)-source (by placing uniform weight on B #»z ) which
contradicts the original assumption on NMExt.

Now let B =
⋃

#»z B #»z we have that |B| ≤ 2(t+1)m2k+1. Thus, we now have that
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∣∣(NMExt(XL, XR),NMExt(X1
L, X

1
R), . . . ,NMExt(Xt

L, X
t
R), XL)

− (Um,NMExt(X1
L, X

1
R), . . . ,NMExt(Xt

L, X
t
R), XL)

∣∣
=

∑
xL∈{0,1}n

Pr[XL = xL]
∣∣(NMExt(xL, XR),NMExt(f1

L(xL), X
1
R), . . . ,NMExt(f t

L(xL), X
t
R))

− (Um,NMExt(f1
L(xL), X

1
R), . . . ,NMExt(f t

L(xL), X
t
R)))

∣∣
≤ Pr[XL ∈ B] · 1 + Pr[XL /∈ B]2(t+1)mϵ

≤ 2(t+1)m2k+12−k + 2(t+1)mϵ

= 2(t+1)m(ϵ+ 2k+1−k′
)

Samplable, Recognizable, and Post-selecting Distributions

Definition 11 (Samplable distribution [53, 3].). We say that a distribution X on n bits is samplable by
a class C of functions C : {0, 1}r → {0, 1}n if there exists a function C in the class such that X is distributed
as C(Ur).

Definition 12 (Recognizable distribution [3].). We say that a distribution X on n bits is recognizable
by a class C of functions C : {0, 1}n → {0, 1} if there exists a function C in the class such that X is uniform
over {x : C(x) = 1}.

Definition 13 (Post-selecting distribution [8].). We say that a distribution X on n bits is samplable
by a class C of functions C : {0, 1}r → {0, 1}n × {0, 1} via post-selection if there exists a function C in the
class such that X is distributed as (C1(Ur)|C2(Ur) = 1) (where C1 is the function that outputs the first n-bits
of C and C2 is the function that outputs the last bit.

We note that any size s samplable or recognizable source can be sampled by a size s+O(1) post-selecting
source.

Seedless Extractors for Post-Selecting Sources Ball et al. [8], building on work by Trevisan and
Vadhan [53], construct extractors for post-selecting sources from derandomization-type assumptions.

Theorem 10 ([8]). If E requires exponential size nondeterministic circuits, then there exists a constant
α > 0 such that for every constant c > 1 and sufficiently large n, and there is a ((1 − α)n, n−c)-extractor
Ext : {0, 1}n → {0, 1}αn for SIZE[nc]-post-selecting sources. Moreover, Ext is computable in time poly(nc).

Moreover, because this result relativizes, one the following more generally holds with respect to any oracle
O: If E requires exponential size nondeterministic O-oracles circuits, then there exists a constant α > 0 such
that for every constant c > 1 and sufficiently large n, and there is a ((1−α)n, n−c)-extractor Ext : {0, 1}n →
{0, 1}αn for SIZEO[nc]-post-selecting sources. Moreover, Ext is computable in time poly(nc).

Interactive Proofs We require some facts about interactive proofs. We refer a curious reader unfamiliar
with this topic to the excellent presentation in Arora and Barak’s [4, Chapter 8].

Proposition 1 (Implicit in Lemma 3.8.1 in [55]). Let X0, X1 be random variables such that
∆(X0;X1) = ϵ. Consider the following game:

– Arthur samples a coin b← U and gives Merlin x← Xb.
– Merlin responds with b′. If b′ = b, Merlin wins. Otherwise, Merlin loses.

Merlin wins with probability 1+ϵ
2 by outputting b′ such that Pr[Xb′ = x] ≥ Pr[X1−b′ = x]. Moreover, this

strategy is optimal.
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Promise problems generalize the concept of languages that give a better handle on semantic complexity
classes. A promise problem, Π, consists of a set of Yes instances, ΠY , and a disjoint set of No instances,
ΠN . A machine is considered to decide Π if on input x promised to be in ΠY ∪ ΠN it accepts x if and
only if x ∈ ΠY . In other words, the machine should accept ΠY and reject ΠN , but can behave arbitrarily
elsewhere.

To reduce assumptions, we observe that the private coin to public coin transformation of Goldwasser
and Sipser [26], and a recent improvement by Goldreich and Leshkowitz [23], applies to not just simple
private coin protocols, but protocols where Arthur can sample from a recognizable source that may depend
on the input, provided the recognizable sources have bounded entropy. Put differently, as long as there is a
sufficiently large multiplicative gap between the minimum number of accepting coins for Yes instances and
the maximum number of accepting coins for No instances, then the promise problem admits a public coin
protocol. What is potentially somewhat surprising is that this holds even when the number of accepting coin
sequences is negligibly small relative to the total number potential coin sequences, and thus Arthur could
not hope to sample such coins on his own. Nonetheless, with the assistance of Merlin, Arthur can efficiently
sample such coins (without negatively impacting soundness).

Theorem 11 ([23], Theorem 2). There is a constant B such that the following holds.

If Π = (ΠY , ΠN ) is a promise problem such that Π admits an r-round interactive proof system where

minx∈ΠY
|{r : ⟨P (x), V (x; r)⟩ = “acc′′}|

maxP∗,x∈ΠN
|{{r : ⟨P ∗(x), V (x; r)⟩ = “acc′′}|

≥ Br,

then there exists an (r + 2)-round public-coin proof system for Π with soundness/completeness error 1/3.

From this theorem, we can deduce that any promise problem Π that admits a constant round interactive
proof as above, can be recognized by polynomial size nondeterministic circuits. This follows by applying
two additional classical transformations. First, gap amplification to transform an inverse polynomial gap to
an arbitrarily large one. Next, apply the transformation of [5, 6] who show that any constant round public
coin interactive proof can be transformed into an AM protocol. Finally, applying Adleman’s trick [1] to
the resulting AM protocol yields a non-uniform, non-deterministic circuit at most polynomially larger than
Arthur’s original complexity.

Theorem 12 ([26, 23, 5, 6, 1]). Let c be any constant.

If Π = (ΠY , ΠN ) is a promise problem such that Π admits an c-round interactive proof system where

minx∈ΠY
|{r : ⟨P (x), V (x; r)⟩ = “acc′′}|

maxP∗,x∈ΠN
|{{r : ⟨P ∗(x), V (x; r)⟩ = “acc′′}|

≥ Br,

then Π is recognized by a nondeterministic circuit of size nO(1).

Useful Propositions We also use the following simple combinatorial propositions.

Proposition 2. Let X be a random variable and f a function. Define Y = f(X). For any ϵ and any random
variable Y ′,

∆(X; (X|f(X) = Y ′)) = ∆(Y ;Y ′).
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Proof. Let X ′ ≡ (X|f(X) = Y ′).

∆(X;X ′) = ∆(XY ;X ′Y ′) =
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|Y = y]− Pr[Y ′ = y] Pr[X ′ = x|Y ′ = y]|

=
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|f(X) = y]− Pr[Y ′ = y] Pr[X ′ = x|f(X ′) = y]|

=
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|f(X) = y]− Pr[Y ′ = y] Pr[X ′ = x|f(X) = y]|

=
1

2

∑
x,y

|Pr[Y = y]− Pr[Y ′ = y]|Pr[X = x|f(X) = y]

=
1

2

∑
y

|Pr[Y = y]− Pr[Y ′ = y]|
∑
x

Pr[X = x|f(X) = y]

=
1

2

∑
y

|Pr[Y = y]− Pr[Y ′ = y]|

= ∆(Y ;Y ′)

Proposition 3. Let c > 1. Let (XY ), (XZ) be two joint random variables supported on any space ΣX ×Σ
such that ∆(X,Y ;X,Z) ≤ ϵ, then there exists an event S ⊆ ΣX such that

1. Pr[X ∈ S] ≥ 1− 1/c
2. ∀x ∈ S,∆(XY |X = x;XZ|X = x) ≤ cϵ, where (XY |X = x) denotes the random variable XY condi-

tioned on X = x and, similarly, (XZ|X = x) denotes the random variable XZ conditioned on X = x.

Proof. Let A the variable distributed according to the procedure where x ← X and then ∆(XY |X =
x;XZ|X = x) is output. By definition, E[A] ≤ ϵ.9 Thus, by Markov’s inequality we have

Pr[A ≥ cϵ] ≤ E[A]

cϵ
≤ 1

c

It follows that there exists a set S with the desired properties. In particular, S is the set of x such that
A conditioned on X = x is not greater than cϵ.

Proposition 4. Let β ∈ (0, 1) Let (XY ), (XZ) be two joint random variables supported on any space ΣX×Σ
such that ∆(X,Y ;X,Z) > ϵ, then exists an event S ⊆ ΣX such that

1. Pr[X ∈ S] ≥ ϵ− β
2. ∀x ∈ S,∆(XY |X = x;XZ|X = x) ≥ β, where (XY |X = x) denotes the random variable XY conditioned

on X = x and, similarly, (XZ|X = x) denotes the random variable XZ conditioned on X = x.

Proof. Let A the variable distributed according to the procedure where x ← X and then ∆(XY |X =
x;XZ|X = x) is output. Let A′ = 1−A. By definition, E[A′] < 1− ϵ. Thus, by Markov’s inequality we have,

Pr[A′ ≥ 1− β] <
1− ϵ

1− β
.

So, it follows that Pr[A ≤ β] < 1−ϵ
1−β . Thus

Pr[A > β] ≥ 1− 1− ϵ

1− β
=

ϵ− β

1− β
≥ ϵ− β.

It follows that there exists a set S with the desired properties. In particular, S is the set of x such that A
conditioned on X = x is greater than β.
9 E[A] =

∑
x∈ΣX

Pr[X = x]∆(XY |X = x;XZ|X = x) = ∆(XY ;XZ).
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5.2 Relaxed t-Non-Malleable Extractors for (Classical) Postselecting Sources

In this section, we begin to construct our seedless non-malleable extractors for samplable and recognizable
sources resistant to tampering by polynomial-size circuits. In particular, we first construct relaxed non-
malleable extractors for the special case that tampering functions contain no fixed points. In later sections,
we will so how to generically remove this restriction by generalizing a connection observed by Cheraghchi
and Guruswami [14] to the case of post-selecting circuits.

We follow the construction laid out by Ball et al. [7]:starting with a source x, (a) extract a short seed,
Extsamp(x) = σ, with an extractor for post-selecting sources (Extsamp, Theorem 10), (b) expand σ with
a seed-extending PRG G(σ) = (σ, y) for nondeterministic circuits (G, Theorem 3), (c) apply a (strong)
non-malleable two-source extractor to get the output z = 2NMExt((σ, y), x) (2NMExt, Theorem 8 and
Theorem 9). The only difference between our construction and the prior one is that the we replace the
strong non-malleable two-source extractor (c) with strong t-non-malleable two-source extractor.

Our analysis follows the same high-level template as that of Ball et al. [7] as well: reduce a non-malleability
attack to nondeterministic PRG distinguisher by constructing a constant round interactive proof “distin-
guisher” for the PRG using the non-malleability violation, and then “compile down” the IP into a (nonde-
terministic) circuit. However, while the initial IP is very similar to that of Ball et al., we provide a different
fine-grained analysis using a new insight into the surprising power of private-to-public coin emulations [26,
23] (see Theorem 12). Our initial distinguisher is not yield a sufficient large completeness/soundness gap to
immediately apply this theorem, however a simple amplification step suffices to yield the desired parameters.

Figure 5.1: Non-Malleable Extractor for Postselecting Sources

Let k(n), s(n), s′(n), γ be as in Lemma 1. Let Extsamp be an extractor with error γ(n) for n-bit s(n)-
postselecting (classical) sources, computable in time poly(s(n)). Let 2NMExt be a strong relaxed two-
source t-non-malleable extractor with error δ(n) for independent sources of length n where the left has
min-entropy at least n−ℓ(n) and the right has min-entropy at least k(n)−(t+1)ℓ(n)−3 log(s(n))−11,
computable in time poly(s). Let G be a seed-extending PRG for nondeterministic circuits of size s′(n).

NMExtsamp : x 7→ 2NMExt(G(Extsamp(x)), x)

Lemma 1. For any polynomial s(n) and function k(n) such that 0 ≤ k(n) ≤ n, there exists polynomial
s′(n) = Ω(s(n)) such that the following is true.

If

– G : {0, 1}ℓ(n) → {0, 1}n is a seed-extending PRG for nondeterministic NP-circuits of size s′(n) with seed
length ℓ(n).

– Extsamp : {0, 1}n → {0, 1}ℓ(n) is a γ-extractor for (n, k) sources samplable by s(n)-size circuits com-
putable in time poly(s(n)), where γ ≤ 1/6s(n).

– 2NMExt : {0, 1}2n → {0, 1}m is a strong relaxed two-source t-non-malleable extractor with error δ(n) <
1/1000(s(n))2 for two independent n-bit sources where the left source has min-entropy at least n− ℓ(n)
and the right has min-entropy at least k(n)− (t+ 1)ℓ(n)− 3 log(s(n))− 11). Moreover, 2NMExt should
be computable in time poly(s(n)).

then the construction, NMExt : {0, 1}n → {0, 1}m, in Figure 5.1 is a relaxed seedless non-malleable extractor
for n-bit sources with k(n)-min entropy samplable by size s(n) circuits with respect to SIZE[s(n)]-tampering
and error 1/s(n).

Proof. Let ϵ = 1/s(n).
Suppose for the sake of contradiction that there exists a s(n)-samplable (n, k)-source X and t tampering

functions, τ1, . . . , τt : x 7→ x̃ in SIZE[s(n)] with no fixed points, that breaks the non-malleability guarantee.
Now, our assumption on τ can be restated as

∆(2NMExt(G(Extsamp(X)), X), 2NMExt(G(Extsamp(τ(X))), τ(X));

Um, 2NMExt(G(Extsamp(τ(X))), τ(X)) ≥ ϵ.
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We will use this assumption to distinguish the seed-extending PRG, G, from the uniform distribution
via an interactive proof. In more detail, recall that the guarantee of G : {0, 1}ℓ → {0, 1}n says that for any
non-deterministic NP circuit, C, of size s′(n),

∆(C(G(Uℓ));C(Un)) < 1/s′(n).

We show that there exists a circuit C of size at most s′(n) that does not obey this inequality. We do this by
following the approach of [7, 3] and constructing a private coin, constant round interactive proof protocol (see
Figure 5.2) where Arthur is an NP-circuit of size at most poly(s(n)) for a promise problem, Π = (ΠY , ΠN )
where ΠY is dense under G and ΠN is dense under the uniform distribution. By demonstrating a sufficiently
large completeness/soundness gap we can apply Theorem 12, to yield a nondeterministic NP-circuit of size
s′(n) = poly(s(n)) that decides the same problem, and hence breaks the PRG.

Looking ahead, the malleability the two-source extractor when provided pseudorandom inputs (apropos
our assumption) will enable us to prove the protocol is complete, i.e. Arthur accepts pseudorandom inputs
with high probability. Soundness, i.e. Arthur rejects random inputs with high probability, will ultimately
follow from security of the 2-source non-malleable extractor.

To do this, Arthur will run the non-malleability experiment himself, using Merlin to evaluate the PRG.
In order to render the experiment consistent with the PRG seed in the PRG security game, s, Arthur
will attempt to sample X conditioned on the samplable-source extractor outputting s. If this fails, Arthur
simply fails (and rejects). Armed with a consistent seed, Arthur attempts to complete the real and ideal
tampering experiments. Because G is to expensive for him to compute, he asks Merlin to evaluate G on
the tampered seeds for him. Because the collective information sent to Merlin remains short (and hence has
limited dependence on Arthur’s secret X, any misbehaving Merlin can ultimately be cast as a split-state
tampering to bound soundness.

We then conclude by using a standard private-coin technique [24], to distinguish between the real and
ideal relaxed non-malleable extractor experiments, again with Merlin’s assistance.
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Figure 5.2: Interactive Proof for distinguishing G from uniformly random bits

Let Extsamp be an extractor with error γ(n) for n-bit s(n)-postselecting sources, computable in time
s′(n) = poly(s(n)). Let 2NMExt be a strong two-source t-non-malleable extractor with error δ(n) for
independent sources of length n where the left has min-entropy at least n − ℓ(n) and the right has
min-entropy at least k − (t+ 1)ℓ(n)− 2 log(s(n))− 10, computable in time s′(n) = poly(s(n)). Let G
be a seed-extending PRG for ???? circuits of size O(s′(n)).
Recall that X is the s(n)-postselecting source, corresponding to a circuit C and τ1, . . . , τt the tam-
pering attack from our assumption.
Our protocol aims to accept strings from G(Uℓ) when Merlin plays according to below (completeness)
and reject strings from Un regardless of the strategy Merlin utilizes (soundness).

On input (σ, y),

Arthur Attempt to sample x← X by sampling r
u← U and evaluating C(r) = (x, ϕ) where ϕ is the

post-select bit. If Extsamp(x) ̸= σ or b = 0, output ⊥ and reject.
Otherwise, set x̃1 = τ1(x), . . . , x̃t = τt(x) and send Merlin σ̃1 = Extsamp(x̃1), . . . , σ̃t = Extsamp(x̃t).

Merlin If (σ, y) = G(σ), respond ỹ such that (σ̃1, ỹ1) = G(σ̃1), . . . , ((σ̃t, ỹt) = G(σ̃t). Otherwise,
respond using any fixed ỹ1, . . . , ỹt.

Arthur Sample a random coin b ← U and set z̃1 = 2NMExt((σ̃1, ỹ1), x̃1), . . . , z̃t =
2NMExt((σ̃t, ỹt), x̃t).
– If b = 0: Sample z ← Um and send z, z̃1, . . . , z̃t.
– Else if b = 1: Set z = 2NMExt((σ, y), x) and send z, z̃1, . . . , z̃t.

Merlin (Guess Arthur’s bit.) If

Pr
Um,X


Um = z,

2NMExt((σ̃1, ỹ1) = z̃1,
...

2NMExt((σ̃t, ỹt), τt(X)) = z̃t

∣∣∣∣∣∣∣∣∣
Extsamp(X) = σ,

Extsamp(τ1(X)) = σ̃1,
...

Extsamp(τt(X)) = σ̃t


is upper bound by

Pr
Um,X


2NMExt((σ, y), X) = z,
2NMExt((σ̃1, ỹ1) = z̃1,

...
2NMExt((σ̃t, ỹt), τt(X)) = z̃t

∣∣∣∣∣∣∣∣∣
Extsamp(X) = σ,

Extsamp(τ1(X)) = σ̃1,
...

Extsamp(τt(X)) = σ̃t


set b′ = 1. Otherwise, set b′ = 0. Respond b′.

Arthur Accept if b = b′, and reject otherwise.

To avoid redundant, lengthy notation, we introduce the following joint tampering, jointly tampered
sources, and various forms of joint extraction and pseudorandom expansion:

τ(X) := (τ1(X), . . . τ t) = X

Extsamp(X1, . . . , Xt) := (Extsamp(X1), . . . ,Extsamp(Xt))

NMExtsamp(X1, . . . , Xt) := (NMExtsamp(X1), . . . ,NMExtsamp(Xt))

2NMExt(L1, R1, . . . , Lt, Rt) := (2NMExt(L1, R1), . . . , 2NMExt(Lt, Rt))

G(σ1, . . . , σt) := (G(σ1), . . . , G(σt))
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Before we begin we will need to eliminate the set of “bad” seeds, these are values of σ ∈ Σ on which
Extsamp(X) deviates significantly from uniform:

Sα := {σ : Pr[Extsamp(X) = σ] /∈ (1± δ)2−ℓ} = S+
α ∪ S−α

S+
α := {σ : Pr[Extsamp(X) = σ] ≥ (1 + δ)2−ℓ}

S−α := {σ : Pr[Extsamp(X) = σ] ≤ (1− δ)2−ℓ}

We claim that for any α > 0, Pr[Σ ∈ Sδ] ≤ 2γ
α . To see this,

γ ≥ 1

2

∑
σ

|Pr[Extsamp(X) = σ]− 2−ℓ|

≥ 1

2

∑
σ∈S+

α

|(1 + α)2−ℓ − 2−ℓ|+ 1

2

∑
σ∈S−

α

|(1− α)2−ℓ − 2−ℓ|

=
1

2

∑
σ∈S

α · 2−ℓ

=
α

2

∑
σ∈S

2−ℓ =
α

2
Pr[Σ ∈ Sδ]

Define p to be the probability postselection succeeds with a uniformly random input.

p := Pr
r
[C(r) = (x, 1)]

Claim 5.2. (Completeness) For any β ∈ (0, 1), α > 0, there exists a set Πβ
Y such that

1. ΠY is noticeably dense in G: Pr
σ

u←{0,1}ℓ [G(σ) ∈ Πβ
Y ] ≥ ϵ− γ − 2γ/α− β.

2. Arthur accepts inputs in Πβ
Y with probability > (1−α)(1+β)p

2ℓ+1 when playing with (honest) Merlin (as
prescribed in Figure 5.2).

Proof. We begin by considering how the protocol behaves on random inputs distributed according to
(Σ,G(Σ)) where Σ is uniform (Σ ≡ Uℓ), conditioned on Arthur not outputting ⊥ (i.e. conditioned on
sampling x from X|Extsamp(X) = Σ in the first step).

In particular, by the guarantee of Extsamp, we have that Extsamp(X) ≈γ Uℓ ≡ Σ. It follows from Propo-
sition 2 that

(Σ,X|Extsamp(X) = Σ) ≈γ (Extsamp(X), X).

Now, we will additionally consider conditioning on Σ not being “bad” for Extsamp. Namely, we let Σ′

denote (Σ|Σ /∈ Sα). By Pr[Σ ∈ Sα] ≤ 2γ/α, have that Σ ≈2γ/α Σ′ and moreover,

(Σ′, X|Extsamp(X) = Σ′) ≈2γ/α+γ (Extsamp(X), X)

Now if take X ′ to denote (X|Extsamp(X) = Σ′) it follows from postprocessing that(
Extsamp(X), G(Extsamp(X)),Extsamp(τ(X)),NMExtsamp(X),NMExtsamp(τ(X))

)
≈γ

(
Σ′, G(Σ′),Extsamp(Σ

′),NMExtsamp(X
′),NMExtsamp(τ(X

′))
)

Thus (continuing to condition on Arthur not outputting ⊥), observe that if Arthur chooses b = 1, it
follows from the above that Arthur’s last message(

NMExtsamp(X
′),NMExtsamp(τ(X

′))
)
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is 2γ/α+ γ-close to (
NMExtsamp(X),NMExtsamp(τ(X))

)
.

On the other hand (still conditioning on not ⊥), if b = 0, Arthur’s last message(
Um,NMExtsamp(τ(X

′))
)

is 2γ/α+ γ-close to (
Um,NMExtsamp(τ(X))

)
.

By our assumption, these latter two joint distributions are ϵ-far from each other.
By Proposition 4 and triangle inequality, this implies there exists a set Πβ

Y such that for any (σ, y) ∈ Πβ
Y

the distributions of Merlin’s view in the case that b = 1 is β-far from his view when b = 0 (conditioned on

Arthur not outputting ⊥ in both cases), and moreover Pr[(Σ,G(Σ)) ∈ Πβ
Y ] ≥ ϵ− γ − 2γ/α− β.

So by Proposition 5.1, for any (σ,G(σ)) ∈ Πβ
Y , conditioned on Arthur not outputting ⊥ initially, Merlin

guesses correctly with probability ≥ 1+β
2 .

Finally, dealing with Arthur’s sampling, we see that Arthur fails to output ⊥, i.e samples X such that
Extsamp(X) = Σ′, with Pr[Extsamp(X) = Σ] ≥ (1− α)2−ℓ. Namely, for any σ /∈ Sα,

Pr[sampling succeeds] = Pr
(x,ϕ))←C(U)

[x = 1 ∧ Extsamp(x) = σ]

= Pr
x,ϕ

[Extsamp(x) = σ|ϕ = 1]Pr
ϕ
[ϕ = 1]

≥ 1− α

2m
· p

∀(s, y) ∈ Πβ
Y , Pr[Arthur accepts(s, y)] ≥ Pr[sampling succeeds]

1 + β

2

≥ (1− α)(1 + β)

2 · 2ℓ
p

Claim 5.3. For any c > 1 and ζ(n) ∈ (0, 1) such that k′(n) ≤ k(n)− 2ℓ(n)− log(1/ζ(n)) (where k′(n) is the
min-entropy requirement of the right source for 2NMExt), there exists a set Πc

N such that

1. Πc
N is large: Pr

(σ,y)
u←{0,1}n [(σ, y) ∈ Πc

N ] ≥ 1− 1/c

2. Arthur accepts inputs in Πc
N with probability ≤ p(1+α)(1+c(δ+ζ+2γ/α)

2ℓ+1 when playing with any (cheating)
Merlin (as prescribed in Figure 5.2).

Proof. As in Claim 5.2, we will analyze the view of Merlin (up to guessing) on a random input and deduce
that there exists a largeΠN which Arthur fails to accept with significant probability. The important difference
is that, here, Merlin can behave arbitrarily.

Observe that, that if we condition on success in Arthur’s initial sampling, Arthur accepts if and only
if Merlin guesses his bit, b, correctly (b′ = b). It follows by Proposition 5.1 that there is an optimal (for
any specific input, not just with respect to uniform inputs) Merlin strategy, M∗, that chooses messages to
maximize the distance between his view when Arthur chooses b = 0 versus his view when b = 1. By the
optimality of such a strategy, it suffices to consider just this M∗.

In wat follows, as in the proof of the previous claim, we will condition on Arthur’s sampling succeeding
(not outputting ⊥) until the very end.

So, suppose the protocol in Figure 5.2 is given uniformly random inputs (σ, y) ← Un. Fix an optimal
strategy, M∗. In particular, let G∗ : (σ, y, σ) 7→ y be the function that given the transcript thus far, outputs
Merlin’s first message.

Now, note that if we condition on σ, σ, then G∗(σ, y, σ) = y is independent of x, the string sampled by
Arthur initially. And similarly, after conditioning on σ and σ, x = τ(x) is independent of (σ, y). In other
words, we can sample (σ, y, x, σ, y, x) identically as follows:
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1. Sample σ uniformly at random and σ ← Extsamp(τ(Xσ)), where Xσ ≡ X|Extsamp(X) = σ. (This is
identically distributed to Figure 5.2.) Let Σ,Σ denote these random variables.

2. Sample y uniformly at random, and sample x from Xσ|Extsamp(τ(Xσ)) = σ. Note that conditioned on
σ and σ, x is independent of y. Let Y , Xσ,σ denote the random variables corresponding to how y and x
are sampled here, respectively.

3. Apply the tamperings, for i = 1, . . . , t:
– τσ,σL,i : (σ, y) 7→ σi, yi where y = G∗(σ, y, σ)

– τσ,σR,i : x 7→ xi = τi(x)
Thus, conditioned on σ and σ,

τσ,σL,R = (τσ,σL,1 , τ
σ,σ
R,1), . . . , (τ

σ,σ
L,t , τ

σ,σ
R,t )

is a split-state tampering. Moreover, because τ has no fixed points, neither does any τσ,σR,i .

Thus, for any (valid) fixed choice of σ, σ, Y,Xσ,σ are independent, and τσ,σL,R are t split-state tampering
functions with no fixed points. Clearly, Y is always uniformly distributed, so Y has min-entropy n−ℓ for any
fixed choice of σ. Intuitively, Xσ,σ should have not lost much min-entropy on average relative to X because
σ, σ are not too long. We next formalize this intuition.

For any ζ ∈ (0, 1), let Tζ,α denote the set of (σ, σ) that occur with probability at least ζ · 2−(t+1)ℓ and
σ /∈ Sα. Let T ′ζ ⊇ Tα,ζ denote the set of (σ, σ) that occur with probability at least ζ · 2−(t+1)ℓ Note that

Pr[(Σ,Σ) /∈ T ′ζ ] ≤ ζ, because

Pr[(Σ,Σ) /∈ T ′α,ζ ] ≤
∑
(σ,σ)

ζ · 2−(t+1)ℓ = 2(t+1)ℓζ2−(t+1)ℓ = ζ.

So, it follows that Pr[(Σ,Σ ∈ Tα,ζ ] > 1− ζ − 2γ/α.
Now, for any (σ, σ) ∈ Tα,ζ and any x ∈ {0, 1}n, we have

Pr[Xσ,σ = x] = Pr[X = x|(Σ,Σ) = (σ, σ)]

≤ Pr[X = x ∧ (Σ,Σ) = (σ, σ)]

Pr[(Σ,Σ) = (σ, σ)]

≤ Pr[X = x]

Pr[(Σ,Σ) = (σ, σ)]

≤ 2−k

ζ2−(t+1)ℓ

Thus, for any (σ, σ) ∈ Tα,ζ (which happens with probability at least 1− ζ), H∞(Xσ,σ) ≥ k − (t+ 1)ℓ−
log(1/ζ).

Thus, conditioned on any fixed values σ, σ ∈ Tα,ζ , Arthur not outputting ⊥ in initial sampling and
Arthur’s coin b = 0, Merlin’s view is simply

Dσ,σ
0 ≡ (σ, Y ),Um, 2NMExt(τσ,σL,R((σ, Y ), Xσ,σ)).

On the other hand, if Arthur’s coin is b = 1 (and other conditions also hold), Merlin’s view is

Dσ,σ
1 ≡ (σ, Y ), 2NMExt(σ, Y,Xσ,σ), 2NMExt(τσ,σL,R((σ, Y ), Xσ,σ)).

Because 2NMExt is a strong relaxed two-source non-malleable extractor with error δ for independent
sources where the left has min entropy at least n−ℓ and the right has min entropy at least k−(t+1)ℓ+log(1/ζ),
we have that for any (worst-case) choice of σ, σ ∈ T ,

Dσ,σ̃
0 ≈δ Dσ,σ̃

1 .
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From the fact that Pr[(Σ,Σ) ∈ Tα,ζ ] ≥ 1 − ζ − 2γ/α, it follows that Merlin’s views are at most ζ + δ
distinguishable:

∆(DΣ,Σ
0 ;DΣ,Σ

1 ) =
∑
σ,σ

Pr[(Σ,Σ) = (σ, σ)]∆(Dσ,σ
0 ;Dσ,σ

1 )

=
∑

σ,σ/∈Tα,ζ

Pr[(Σ,Σ) = (σ, σ)]∆(Dσ,σ
0 ;Dσ,σ

1 ) +
∑

σ,σ∈Tα,ζ

Pr[(Σ,Σ) = (σ, σ)]∆(Dσ,σ
0 ;Dσ,σ

1 )

≤ ζ + 2γ/α+
∑

(σ,σ)∈Tζ

Pr[(Σ,Σ) = (σ, σ)]δ

≤ ζ + δ + 2γ/α

Thus, by Proposition 3 there exists a set Πc
N such that Pr

(σ,y)
u←{0,1}n [(σ, y) ∈ Πc

N ] ≥ 1− 1/c and for any

(σ, y) ∈ Πc
N , Merlin’s views are at most c(δ + ζ + 2γ/α) distinguishable.

It follows from Proposition 5.1 that for any strategy of Merlin and any input (σ, y) ∈ ΠN , Pr[b′ = b] ≤
1+c(δ+ζ+2γ/α)

2 .

Finally, we need to handle the probability that Arthur fails to output ⊥ (sampling succeeds) for any σ
such that ∃y, (σ, y) ∈ Πc

N . Recall that any σ /∈ Sα. Thus,

Pr[sampling succeeds] = Pr
(x,ϕ))←C(U)

[x = 1 ∧ Extsamp(x) = σ]

= Pr
x,ϕ

[Extsamp(x) = σ|ϕ = 1]Pr
ϕ
[ϕ = 1]

≤ 1 + α

2ℓ
· p

So finally, we can conclude:

∀(σ, y) ∈ Πc
N , Pr[Arthur accepts (σ, y)] ≤ Pr[sampling succeeds]

1 + c(δ + ζ + 2γ/α)

2

≤ p(1 + α)(1 + c(δ + ζ + 2γ/α)

2 · 2ℓ
.

We conclude from Claim 5.2 and Claim 5.3, that for any c > 1, α > 0 β ∈ (0, 1), and ζ ∈ (0, 1) there
is a two-round IP protocol where Arthur can be represented by NP-circuit of size poly(s(n)) that recognizes

Π = (Πβ
Y , Π

c
N ) with completeness/soundness gap

(1− α)(1 + β)

(1 + α)(1 + c(δ + ζ + 2γ/α))

Finally, we repeat the base proof system m times in parallel and have Arthur accept if all m iterations
accept. This results in the following completeness/soundness gap:(

(1− α)(1 + β)

(1 + α)(1 + c(δ + ζ + 2γ/α))

)m

If we take α = β/4
2−β/4 , then we have:

1− α

1 + α
= 1− β/4
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. We take 1/c = β = ϵ/6. We take δ, ζ, 2γ/α = β2

9 ≤
1
3 ·

β3

2β+β2 . These imply,

1 + β

1 + c(δ + ζ + 2γ/α)
≥ 1 + β

1 + 1/β · β3/2
β+β2/2

=
(1 + β)(β + β2/2)

β + β2

=
(1 + β)β(1 + β/2)

β(1 + β)
= 1 + β/2

So, if we set m > log(B2)/ log(1 + β/8):(
(1− α)(1 + β)

(1 + α)(1 + c(δ + ζ + 2γ/α))

)m

≥ ((1− β/4)(1 + β/2))
m

=
(
1 + β/4− β2/8

)m
> (1 + β/8)log(B

2)/ log(1+β/8) = B2

Thus by Theorem 12, this implies the existence of an s′(n)-size nondeterministic NP circuit, C, (where
s′(n) = poly(s(n)) ≥ s(n)) that decides the promise problem, Π. Because Π

ϵ/6
Y is (ϵ− γ − 2γ/α− β)-dense

under G (i.e. Prs[G(s) ∈ Π
ϵ/6
Y ] ≥ ϵ− γ− 2γ/α−β) and Π

6/ϵ
N is 1− 1/c-dense under the uniform distribution

(i.e. Prz[z /∈ Π
6/ϵ
N ] ≤ 1/c), the nondeterministic NP circuit C can distinguish with advantage at least (by our

assumption that γ ≤ ϵ/6)

|ϵ− γ − 2γ/α− β − 1/c| ≥ |ϵ− ϵ/18− ϵ/18− ϵ/6− ϵ/6| ≥ ϵ/2 ≥ 1/s′(n).

The first inequality follows from our setting that β = 1/c = ϵ/6 and 2ϵ/α < β/3 = ϵ/18 and the last follows
from the fact that 2/ϵ = 2s(n) ≤ s′(n). In conclusion, our initial assumption towards contradiction must be
false.

5.3 Removing the No-Fixed Points Assumption

Theorem 13. Define X [k, s(n)] be the family of k-min-entropy sources on {0, 1}n that are samplable by
the post-selection with circuits in SIZE[s(n)]. Assume NMExt : {0, 1}n → {0, 1}m is a relaxed, seedless ϵ-
non-malleable extractor with respect to sources in X [k, ss(n)] and tampering functions in SIZE[st(n)]. Then
NMExt is an ϵ′-seedless non-malleable extractor with respect to sources in X [k′, s′s(n)] and tampering func-
tions in SIZE[st(n)], where

– k′ := k + t log(1/ϵ) + 1
– s′s(n) := ss(n)− st(n)− c · t · n for some constant c.
– ϵ′ := 2ϵ.

Proof. Let f1, . . . , ft ∈ SIZEn[st(n)] and X ∈ X [k′, s′s(n)] ⊆ X [k, ss(n)].
We begin by partitioning X according to the fixed point patterns induced by f1, . . . , ft. For z ∈ {0, 1}t

define Sz = {x : fi(x) = x ⇐⇒ zi = 1}, αz := Pr[X ∈ Sz], and Xz = X|X ∈ Sz. Note that any Xz can be
sampled with post-selecting circuits of size ss + st + cnt for some constant c.

Note that X =
∑

z αzXz.
We now define a set of “good” values z, G := {z : αz ≥ ϵ/2t} and SG :=

⋃
z∈G Sz. Note that for z ∈ G,

H∞(Xz) ≥ k − t log(1/ϵ).
Note also that Pr[X /∈ SG] =

∑
z/∈SG

αz < 2t · ϵ/2t = ϵ.

Hence, for X ′ := (X|X ∈ SG), X
′ ≈ϵ X. We can write X ′ = 1

η

∑
z∈G αzXz for a normalization factor

η =
∑

z∈G αz.
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For any z ∈ G, let Df,z be the distribution for each i ∈ [t] outputs same if zi = 1 and NMExt(fi(Xz))
otherwise. Let Df be the distribution that samples z ∈ G with probability αz/η, and outputs a sample from
Df,z. Then,

∆(NMExt(X),NMExt(f1(X)), . . . ,NMExt(ft(X));Um,Copy(Df ,Um))

≤ ϵ+∆(NMExt(X ′),NMExt(f1(X
′)), . . . ,NMExt(ft(X

′));Um,Copy(Df ,Um))

≤ ϵ+
∑
z∈G

αz

η
∆(NMExt(Xz),NMExt(f1(Xz)), . . . ,NMExt(ft(Xz));Um,Copy(Df ,Um))

≤ ϵ+
∑
z∈G

αz

η
ϵ

≤ 2ϵ.

5.4 Combining the Results

Combining Lemma 1 and Theorem 13, together with the computational extractor for post-selecting sources
referenced in Theorem 10, and the strong relaxed two-source non-malleable extractor referenced in Theo-
rem 9, we obtain the following:

Theorem 14. If E requires exponential-size nondeterministic-circuits, then for any polynomial s(n) and
t < cn

log s(n) (for some constant c < 1 there exists a construction NMExt : {0, 1}n → {0, 1}m of a t-non-

malleable seedless extractor for n-bit sources with c′ · n min-entropy (for some constant c′ < 1) samplable
by size s(n) post-selecting circuits, that is resilient to SIZE[s(n)]-tampering with error 1/s(n). Further, the

number of extracted bits is m ∈ Ω(n log log(n)
log(n) ), and the extractor runs in time s′(n) ∈ poly(s(n)).
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5. László Babai. Trading group theory for randomness. In 17th ACM STOC, pages 421–429. ACM Press, May 1985.
6. László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of complexity

classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.
7. Marshall Ball, Dana Dachman-Soled, and Julian Loss. (Nondeterministic) hardness vs. non-malleability. In

Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 148–177.
Springer, Cham, August 2022.

8. Marshall Ball, Eli Goldin, Dana Dachman-Soled, and Saachi Mutreja. Extracting randomness from samplable
distributions, revisited. In 64th FOCS, pages 1505–1514. IEEE Computer Society Press, November 2023.

9. Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 299–315. Springer, Berlin, Heidelberg, August 2003.

10. Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses using an np-oracle. Inf.
Comput., 163(2):510–526, 2000.

11. Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities in succinct ar-
guments: Black-box extraction and more. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors,
AFRICACRYPT 23, volume 14064 of LNCS, pages 465–489. Springer, Cham, July 2023.

12. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with their many tampered
extensions. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 285–298. ACM Press, June
2016.

34



13. Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits, and affine
functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 1171–1184.
ACM Press, June 2017.

14. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-state tampering.
In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 440–464. Springer, Berlin, Heidelberg, February
2014.

15. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic communi-
cation complexity (extended abstract). In 26th FOCS, pages 429–442. IEEE Computer Society Press, October
1985.

16. Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the power of nonuniformity in proofs
of security. In Robert D. Kleinberg, editor, ITCS 2013, pages 389–400. ACM, January 2013.

17. Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography from weak secrets.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 601–610. ACM Press, May / June 2009.

18. Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT solvers. In 54th
FOCS, pages 736–745. IEEE Computer Society Press, October 2013.

19. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-Chih Yao,
editor, ICS 2010, pages 434–452. Tsinghua University Press, January 2010.

20. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-malleable codes.
In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 465–488. Springer, Berlin, Heidelberg, February
2014.

21. Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random matrices. Comput.
Complex., 6(2):101–132, 1997.

22. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

23. Oded Goldreich and Maya Leshkowitz. On emulating interactive proofs with public coins. In Oded Goldreich, ed-
itor, Computational Complexity and Property Testing - On the Interplay Between Randomness and Computation,
volume 12050 of Lecture Notes in Computer Science, pages 178–198. Springer, 2020.

24. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

25. Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice that is typically
good. In RANDOM, volume 2483 of Lecture Notes in Computer Science, pages 209–223. Springer, 2002.

26. Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems. In 18th ACM
STOC, pages 59–68. ACM Press, May 1986.

27. Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness tradeoffs for arthur-
merlin games. Comput. Complex., 12(3-4):85–130, 2003.

28. Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing the XOR
lemma. In 29th ACM STOC, pages 220–229. ACM Press, May 1997.

29. Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

30. Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 566–590. Springer, Berlin, Heidelberg, February 2014.

31. Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators, typically-correct derandom-
ization, and circuit lower bounds. Comput. Complex., 21(1):3–61, 2012.

32. Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the
polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

33. Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations.
In Chris Umans, editor, 58th FOCS, pages 283–294. IEEE Computer Society Press, October 2017.

34. Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 53rd FOCS, pages 688–697.
IEEE Computer Society Press, October 2012.

35. Xin Li. New independent source extractors with exponential improvement. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, 45th ACM STOC, pages 783–792. ACM Press, June 2013.

36. Xin Li. Three-source extractors for polylogarithmic min-entropy. In Venkatesan Guruswami, editor, 56th FOCS,
pages 863–882. IEEE Computer Society Press, October 2015.

37. Xin Li. Improved non-malleable extractors, non-malleable codes and independent source extractors. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 1144–1156. ACM Press, June 2017.

38. Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions. In 34th Computational
Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, pages 28:1–28:49, 2019.

35



39. Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 64th FOCS, pages
1271–1281. IEEE Computer Society Press, November 2023.

40. Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound zero-knowledge SNARKs for
UP. Cryptology ePrint Archive, Paper 2024/227, 2024. https://eprint.iacr.org/2024/227.

41. Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting sets. Comput.
Complex., 14(3):256–279, 2005.

42. Moni Naor. On cryptographic assumptions and challenges. In Annual International Cryptology Conference, pages
96–109. Springer, 2003.

43. Noam Nisan and Avi Wigderson. Hardness vs. randomness (extended abstract). In 29th FOCS, pages 2–11.
IEEE Computer Society Press, October 1988.

44. Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Continuously non-malleable codes
in the split-state model from minimal assumptions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 608–639. Springer, Cham, August 2018.

45. Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–354. Springer, Berlin, Heidelberg, March 2013.

46. Rafael Pass. Unprovable security of perfect nizk and non-interactive non-malleable commitments, 2017. https:
//www.cs.cornell.edu/~rafael/papers/limits2new.pdf, Last accessed on 2025-2-10.

47. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459–474. IEEE, 2014.

48. R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. In 20th Annual IEEE
Conference on Computational Complexity (CCC’05), pages 212–226, 2005.

49. Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of yao’s lemma. Comput. Complex.,
20(1):87–143, 2011.

50. Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudorandom gener-
ator. J. ACM, 52(2):172–216, 2005.

51. Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and sampling. Comput.
Complex., 15(4):298–341, 2006.

52. Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs for AM. SIAM
J. Comput., 39(3):1006–1037, 2009.

53. Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In 41st FOCS, pages
32–42. IEEE Computer Society Press, November 2000.

54. Salil P. Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications in cryptography. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 93–110. Springer,
Berlin, Heidelberg, August 2013.

55. Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Massachusetts Institute of Tech-
nology, 1999.

56. Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from indistinguishability obfusca-
tion. Cryptology ePrint Archive, Paper 2024/165, 2024. https://eprint.iacr.org/2024/165.

57. Brent Waters and David J. Wu. A pure indistinguishability obfuscation approach to adaptively-sound SNARGs
for NP. Cryptology ePrint Archive, Paper 2024/933, 2024. https://eprint.iacr.org/2024/933.

58. Brent Waters and Mark Zhandry. Adaptive security in SNARGs via iO and lossy functions. Cryptology ePrint
Archive, Paper 2024/254, 2024. https://eprint.iacr.org/2024/254.

36


