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Abstract—Recent stateful private information retrieval (PIR)
schemes have significantly improved amortized computation
and amortized communication while aiming to keep client
storage minimal. However, all the schemes in the literature still
suffer from a poor tradeoff between client storage and com-
putation. We present BALANCED-PIR, a stateful PIR scheme
that effectively balances computation and client storage. For
a database of a million entries, each of 8 bytes, our scheme
requires 0.2 MB of client storage, 0.2 ms of amortized compu-
tation, and 11.14 KB of amortized communication. Compared
with the state-of-the-art scheme using a similar storage setting,
our scheme is almost 9x better in amortized computation and
40x better in offline computation.

Verifiable private information retrieval has been gaining
more attention recently. However, all existing schemes require
linear amortized computation and huge client storage. We
present Verifiable BALANCED-PIR, a verifiable stateful PIR
scheme with sublinear amortized computation and small client
storage. In fact, our Verifiable BALANCED-PIR adds modest
computation, communication, and storage costs on top of
BALANCED-PIR. Compared with the state-of-the-art verifiable
scheme, the client storage of our scheme is 100x smaller,
the amortized computation is 15x less, and the amortized
communication is 2.5x better.

1. Introduction

Private information retrieval (PIR) [4] enables a client to
retrieve entries from a database hosted by a server without
the server knowing which entries are being retrieved. PIR
has a wide range of applications on the internet including
anonymous communication [5], [6], [7], e-commerce [8],
[9], biometric security [10], [11], secure advertising [12],
[13], [14], [15], privacy-preserving media streaming [16]
among many others.

PIR schemes in the standard stateless setting are subject
to a fundamental barrier that the server must operate on
every database entry. Fundamentally, if the PIR scheme does
not require the server to operate on any specific entry, then
the server can conclude that the specific entry is not retrieved
by the client, leaking information about the client’s query.
While recent schemes have made significant progress [17],
[18], [19], [20], [21], [22], the computational cost remains
high due to this barrier.

A more recent and encouraging attempt to overcome
this fundamental computational barrier is the paradigm of
stateful PIR schemes. At a high level, in a stateful PIR
scheme, the client and/or the server perform a (usually
costly) offline preprocessing phase, and the client stores the
preprocessed information (called hints) in its local storage.
The hints are then leveraged to speed up queries in the
online phase. Therefore, a stateful PIR scheme has three
key efficiency metrics, i) computation, ii) communication,
and iii) client storage.

There have been significant recent efforts in stateful PIR
schemes [23], [24], [25], [26], [27], [28], [1], [2], [29], [30]
that aim to improve the computation and communication
while keeping the client storage as small as possible. Despite
this wide body of work, most single-server stateful PIR
schemes suffer from inefficiencies in computation, commu-
nication, and/or client storage. The state-of-the-art practical
schemes in this setting [1], [27] have efficient computation
and communication but require a large amount of client
storage. For instance, to use the PIR scheme from the work
of Ren et al. [1] with a 32 MB database consisting of 220
entries, each of 32 bytes, the client needs to store 6.25 MB
of data, which is almost 20% the size of the database.

The recent scheme of Wang and Ren [2] achieves
optimal client storage, but requires heavy client computation
due to the use of an expensive cryptographic primitive
known as the small-domain PRP [31]. Therefore, the first
goal of this paper is to construct a single-server stateful PIR
scheme that has a good balance between client storage and
computation.

Another fundamental but understudied issue to the de-
ployment of PIR schemes is the integrity of retrieved
database entries. Most PIR schemes assume that the server
is semi-honest and follows the protocol faithfully. If the
server ends up being malicious, it can result in significant
security risks. A recent line of work known as Verifiable PIR
schemes [32], [3], [33] seeks to guarantee the integrity of
retrieved entries. At a high level, in these schemes, the server
commits to a database and publishes a database digest.
Thereafter, the client can verify the integrity of the retrieved
database entries against the committed database. When the
client detects malicious behaviors by the server, it can abort
without leaking any information about the query indices.
However, the state-of-the-art practical verifiable PIR scheme
[3] requires linear server computation and enormous client



TABLE 1: Approximate and relative client storage, amortized computation, and amortized communication
of various single-server stateful PIR schemes for small entry sizes.

Scheme Verifiable Client storage Amortized computation Amortized communication

SimplePIR [1] ✗ ∼ 400× ∼ 50× ∼ 10×
Ren et al. [1] ✗ ∼ 100× ∼ 1× 1×

Wang and Ren [2] ✗ 1× ∼ 400× ∼ 15×
BALANCED-PIR ✗ ∼ 10× 1× ∼ 10×

VeriSimplePIR [3] ✓ ∼ 1600× ∼ 100× ∼ 20×
Verifiable BALANCED-PIR ✓ ∼ 15× ∼ 10× ∼ 10×

storage. Therefore, our second goal is to construct a single-
server verifiable stateful PIR scheme that has sublinear
server computation and small client storage. This was raised
as an open problem in the work of de Castro and Lee [3].
Contribution 1: Practical single-server stateful PIR with
small client storage. The first contribution of this paper is a
new PIR scheme, called BALANCED-PIR, which achieves
a good balance between client storage and computation.
BALANCED-PIR uses an order of magnitude smaller stor-
age than the state-of-the-art practical scheme of Ren et al.
[1]. If we normalize the amount of client storage of the
two schemes, then the amortized computation of our scheme
is 7× to 8.9× better, and the amortized communication is
comparable or better for small entry sizes up to 32 bytes.
Additionally, the offline phase of our scheme is 36× to
39× faster, thereby significantly shortening the initial wait
time before the client can make queries. In comparison with
the scheme of Wang and Ren (WR) [2], BALANCED-PIR
has 390× better amortized computation, similar amortized
communication, but 8.5× to 10× larger client storage.
Contribution 2: Practical verifiable stateful PIR. We
present a verifiable version of BALANCED-PIR that guar-
antees integrity with small extra client storage and minimal
additional server computation on top of BALANCED-PIR.
This is the first Verifiable PIR scheme with sublinear amor-
tized computation. In comparison with the state-of-the-art
verifiable single-server PIR scheme of de Castro and Lee
[3], our scheme has 117× better client storage, 15× to 55×
faster computation, and 2.9× better communication for 8-
byte entries. The paradigm of Verifiable stateful PIR can
also be adapted to work with other stateful PIR schemes
such as [1], [27].

2. Model and Preliminaries

2.1. Private Information Retrieval (PIR)

Private information retrieval (PIR) is a protocol between
a client and a database wherein the client wants to retrieve
specific data entries from the database. The database DB
is an array consisting of N entries indexed from 1 to N .
A PIR protocol must satisfy the conditions of correctness
and privacy. At a high level, the conditions are defined as
follows. i) Correctness - Given a sequence of query indices,
the client must always be able to retrieve the database entries
corresponding to the query indices, ii) Privacy - Given the

client’s interaction with the database server, the server learns
nothing about the client’s query indices.

2.2. Stateful PIR

Stateful PIR, at a high level, involves two phases called
the offline phase and the online phase. During the offline
phase, the client interacts with the server and samples in-
formation about the database entries called hints. The client
stores the hints locally. During the online phase, the client
executes a sequence of queries to retrieve database entries
one after the other in the following manner. In each query,
given a query index, the client uses a hint to construct
a request and sends the request to the server. The server
sends back a response. Using the server’s response, the
client then computes an answer. The correctness and privacy
requirements of a stateful PIR scheme are captured using the
following definitions:

• Correctness: Given any sequence of queries, the an-
swer of each query matches the entry at the query index
of the database, except with negligible probability.

• Privacy: Privacy can be defined using the following
game between the client and the (semi-honest) server:
– The server selects two sets of query indices

[i0,1, i0,2, ..., i0,k] and [i1,1, i1,2, ..., i1,k], and sends
them to the client.

– The client samples a random bit b
$← {0, 1}, and

interacts with the server to execute PIR queries
for indices [ib,1, ib,2, ..., ib,k] according to the PIR
scheme.

– The server tries to determine b.
A PIR scheme is secure if the server guesses b correctly
with at most 1

2 + ϵ probability, where ϵ is negligible.
Adaptive privacy. A PIR scheme achieves privacy
against an adaptive adversary if, in the above security
game, the adversary can choose every pair of query
indices i0,k, i1,k after the client and the adversary com-
plete the previous k − 1 queries.

2.3. Verifiable Stateful PIR

A verifiable stateful PIR scheme is a stateful PIR scheme
with additional procedures to ensure the integrity of the
retrieved database entries. Specifically, the server commits
to a database and the retrieved database entries are verified
against that commitment.



To elaborate, the server computes and publishes a
database digest. In our scheme, the digest is simply a
collision-resistant hash of the database. During the offline
phase, the client verifies that the database is consistent with
the published database digest. Moreover, the client may
compute and store additional information about the database
entries to be used for verification online. During the online
phase, the client executes a sequence of queries, and for each
query, verifies if the answer matches the queried entry of
the committed database. In the event that the client detects
malicious behavior by the server, the client protests against
the server and can abort its execution. Note that the protest
must be done in a secure manner that leaks no information
about the query indices to the server.

A verifiable stateful private information retrieval scheme
must satisfy the following properties except with negligible
probability.

• Completeness: If the server is semi-honest, then the
answer of each query matches the queried entry of the
committed database, and the client verification passes.

• Soundness: If the answer of a query passes the verifica-
tion, then it matches the queried entry in the committed
database.

• Privacy: Identical to the privacy definition of (non-
verifiable) stateful PIR, except that the adversary is now
actively malicious and also sees the client’s protest (if
any) in addition to the requests.

2.4. Cryptographic primitives

A Pseudorandom function (PRF) is a function that maps
inputs in the domain to seemingly random outputs in the
range. In our schemes, we instantiate the PRF using AES.

A collision-resistant hash function maps a message of
arbitrary length to an output of fixed length. Finding two
messages that map to the same hash output is computation-
ally infeasible. We use AES-hash [34] in our verifiable
stateful PIR scheme due to its practical efficiency from
the hardware support for AES in modern processors. Our
implementations leverage the AES-NI instruction set in the
Intel processors.

A Pseudorandom Permutation (PRP) is a function that
maps inputs in the domain to seemingly random outputs
in the range with a one-to-one mapping between inputs
and outputs. A block cipher like AES is a PRP whose
domain and range are both 128-bit strings. In contrast, a
small-domain PRP has a “small” domain in the sense that a
polynomial-time adversary that seeks to distinguish the PRP
from a truly random permutation can examine all the input-
output pairs. Small-domain PRP turns out to be challeng-
ing and expensive to construct. The state-of-the-art small-
domain PRP construction by Morris and Rogaway [31] re-
quires O(logN+λ) PRF calls in expectation per evaluation,
where N is the domain size of the permutation and λ is a
statistical security parameter. For instance, given N = 220

and λ = 60, each small-domain PRP evaluation requires
around 600 AES calls in expectation.

3. BALANCED-PIR

3.1. High-level idea

To construct a single-server stateful PIR scheme, we
begin by devising two single-server stateful PIR schemes
PIR-PRIMARY and PIR-BACKUP with the following
characteristics. PIR-PRIMARY has efficient computation,
but the client has to store a large number of hints to achieve
a small probability of correctness failure. On the other hand,
PIR-BACKUP requires heavy computation but is guaranteed
to be correct even with much smaller client storage. We
then combine the two schemes to design what we call
BALANCED-PIR, with moderate client storage and efficient
computation.

The high-level idea behind the construction of
BALANCED-PIR is as follows. During the offline phase,
the client samples hints for both PIR-PRIMARY and
PIR-BACKUP. The number of PIR-PRIMARY hints
sampled by the client determines the likelihood that
PIR-PRIMARY fails to fulfill a query. The client will
provision fewer hints than what correctness requires. Then,
to guarantee the correctness of BALANCED-PIR, the client
uses PIR-BACKUP whenever PIR-PRIMARY fails. The
number of hints stored for PIR-PRIMARY is tuned to
ensure that the client uses PIR-PRIMARY in most cases
and falls back to PIR-BACKUP on rare occasions. Conse-
quently, the amortized computation of BALANCED-PIR is
close to that of PIR-PRIMARY.

We emphasize that for this plan to work, it is critical
that the server does not learn whether PIR-PRIMARY or
PIR-BACKUP is used for any query. Otherwise, the server
can gain insights on the hint distribution of PIR-PRIMARY,
and eventually break privacy. Therefore, the request distribu-
tions of PIR-PRIMARY and PIR-BACKUP must be iden-
tical. Additionally, the server protocol of the two schemes
must also be identical.

Concretely, PIR-BACKUP is instantiated using the re-
cent scheme of Wang and Ren [2]. We will design a
new PIR scheme to serve as our PIR-PRIMARY, and as
required, it has the same request distribution and server
protocol as PIR-BACKUP.

In both PIR-PRIMARY and PIR-BACKUP, the
database is logically segmented into

√
N partitions with

each partition consisting of
√
N entries. The ith parti-

tion consists of database entries with indices in the range
[i
√
N, (i+ 1)

√
N − 1].

3.2. PIR-BACKUP construction

We use the PIR scheme from the work of Wang and
Ren [2] (WR PIR) to instantiate PIR-BACKUP. We describe
the construction of WR PIR at a very high level and then
describe how this scheme is adapted for PIR-BACKUP.
Offline. During the offline phase, the client samples hints
according to a hint table. Specifically, the hint table consists
of
√
N rows and m = (β + 1)

√
N columns where β is a



configurable parameter. The ith row in the table consists
of the

√
N indices from partition i and β

√
N ⊥ symbols,

randomly permuted. A ⊥ indicates that the position in the
row is empty. To minimize client storage, instead of stor-
ing the hint table locally, the client stores the permutation
corresponding to each row. Specifically, the scheme uses
a computationally expensive cryptographic primitive called
small-domain PRP (section 2.4) and the client stores the
small-domain PRP key for each row.

The jth hint is the parity of the entries corresponding to
the indices in the jth column of the hint table. The client
uses the small-domain PRP keys to determine the indices in
each column of the hint table.
Online. During the online phase, given a query index,
the client first selects the column in the hint table that
contains the query index. Using the selected column, the
client creates a request consisting of all the indices in the
column. However, the query index in the request is switched
to a random index from the same partition. Then, the client
sends the request to the server and receives as the response
the database entries at the indices in the request. The client
computes the queried database entry using the response and
the hint (column parity). Lastly, each index in the column
is relocated to a pseudorandom cell in the same row that
contains ⊥. Additionally, we note that the client requires
O(
√
N) small-domain PRP executions in expectation, for

each query.
Efficiency. We emphasize again that the computational cost
of the scheme is high due to invocations of small-domain
PRP. Specifically, the client makes O(N) invocations of
small-domain PRP in the offline phase and O(

√
N) invoca-

tions of small-domain PRP per query in the online phase,
which significantly blow up the computational cost.
Adapting WR PIR for PIR-BACKUP. We make two minor
changes to WR PIR. Note that the WR scheme may contain
⊥ in the request, indicating that no index is selected from
specific partitions. Looking ahead, this is a property that can-
not be met by PIR-PRIMARY’s request. Specifically, a WR
PIR request may not select any index from some partitions,
whereas in PIR-PRIMARY a random index is selected from
each partition to the request. Therefore, in PIR-BACKUP,
we replace each ⊥ with a random dummy index from the
same partition. This change makes the request distribution
of PIR-BACKUP identical to that of PIR-PRIMARY, with
a small additional communication overhead.

Second, β is always set to 1 in [2], but we make
it a configurable parameter. β determines the number of
columns in the hint table. A larger β results in larger client
storage but allows the client to make more queries per
offline phase, thereby reducing the amortized cost of the
offline phase. Looking ahead, selecting β judiciously plays
a crucial role in ensuring efficient amortized computation of
BALANCED-PIR.
Summary. For the purpose of understanding our construc-
tion of BALANCED-PIR, a reader does not have to know all
the details of WR PIR. It is sufficient to know the following:
i) each request consists of one random index from every

Algorithm 1 The offline algorithm for PIR-PRIMARY

1: Input: α - Storage parameter
2: State: n - Next backup hint position, hints - Hints,

bHints - Backup hints

3: M ← α
√
N

4: sHints← []
5: for k ∈ [0, 2M − 1] do
6: hintk ← { id: k, parity: 0, eP: ⊥, ePI: ⊥ }
7: sHints.push(hintk)
8: end for
9: for j ∈ [0,

√
N − 1] do

10: Stream partition DB[j
√
N : (j + 1)

√
N − 1] from

the server
11: for k ∈ [0, 2M − 1] do
12: rj,k ← PRF(j ∥ k) mod

√
N

13: x← DB[rj,k + j
√
N ]

14: sHints[k].parity ← sHints[k].parity ⊕ x
15: end for
16: end for
17: hints← sHints[0,M − 1]
18: bHints← sHints[M, 2M − 1]
19: n← 0

Algorithm 2 selectHint procedure

1: Input: q - Query index, hints - Hints

2: s ← ⌊ q√
N
⌋

3: t ← q mod
√
N

4: for k ∈ [0,M − 1] do
5: if hints[k].eP = s and hints[k].ePI = t then
6: return (hints[k], k)
7: else if hints[k].eP ̸= s then
8: rs,hints[k].id ← PRF(s ∥ hints[k].id) mod

√
N

9: if rs,hints[k].id = t then
10: return (hints[k], k)
11: end if
12: end if
13: end for
14: return (⊥, ⊥)

partition, and ii) the server returns entries at request indices
as the response.

3.3. PIR-PRIMARY construction

We emphasize again that the request distribution and
server protocol need to be identical in PIR-PRIMARY and
PIR-BACKUP. Recall that in PIR-BACKUP, the request
consists of

√
N indices, one random index per partition,

and the server protocol simply returns all the entries at the
request indices.

We note that the state-of-art schemes of Zhou et al. [27]
and Ren et al. [1] could be adapted to have the above
request distribution and server protocol. However, most of



Algorithm 3 getRequestIndices procedure

1: Input: h - Selected hint, l - ID of next backup hint, s
- Partition of the query index

2: request ← []
3: for j ∈ [0,

√
N − 1] do

4: if j = s then
5: rj,l ← PRF(j ∥ l) mod

√
N

6: request.push(rj,l)
7: else if j ̸= h.eP then
8: rj,h.id ← PRF(j ∥ h.id) mod

√
N

9: request.push(rj,h.id)
10: else
11: request.push(h.ePI)
12: end if
13: end for
14: return request

the intricacies in those two works are specifically designed
to improve the server protocol, i.e., the server does not have
to send back all

√
N entries but can instead send back just

their XOR sum. Since we anyway need the server to send
back all

√
N entries, we design a new scheme that is simpler.

We next describe our protocol in detail.
Offline. During the offline phase, the client samples M =
α
√
N hints where α is configurable parameter For each hint,

the client uses a PRF to sample one (pseudo-)random index
independently and uniformly from each partition. These
indices form the hint set. Let rj,k = PRF(j ∥ k) mod

√
N

be the index from the jth partition sampled for the kth hint.
Then, the client computes the parity of entries at indices in
the hint set as Pk =

⊕√
N−1

j=0 DB[rj,k+ j
√
N ]. Hint entries

are the database entries located at the indices in the hint set.
The kth hint consists of the hint id k, parity Pk, and an

extra index. The extra index allows the client to overwrite
one index in the hint set, and its purpose will be explained
later. The extra index is maintained as a combination of
extra partition, which is the partition containing the extra
index, and extra partition index, which is the position of the
extra index in the extra partition.

In addition to sampling M hints, the client also samples
M backup hints. Looking ahead, backup hints are used to
replenish a hint after each query. The client stores all the
hints and backup hints in its local storage. Details of the
offline phase can be found in algorithm 1.
Online. During the online phase, the client scans the hints
one after another, looking for a hint whose hint set contains
the query index q. The partition containing the query index
is s = ⌊ q√

N
⌋. Specifically, for hint k, the client checks

if either the extra index or rs,hints[k].id matches the query
index q. The first such hint is selected. The details of the
hint selection procedure are in algorithm 2.

Next, the selected hint is used to make a request to the
server. The request consists of all the indices in the hint set
except that the query index is replaced with the index from
the query partition in the hint set of a backup hint (called the

Algorithm 4 The online algorithm for PIR-PRIMARY

1: Input: q - Query index
2: State: n - Next backup hint position, hints - Hints,

bHints - Backup hints

Request
3: s ← ⌊ q√

N
⌋

4: t ← q mod
√
N

5: (h, x) ← selectHint(q,hints) ▷ Run algorithm 2
6: if h = ⊥ then
7: return ⊥
8: end if
9: request ← getRequestIndices(h,bHints[n].id, s) ▷

Run algorithm 3
10: Send request to the server

Response
11: Receive response consisting of database entries at re-

quest indices from the server

Answer
12: P = 0
13: for k ∈ [0,

√
N − 1] do

14: if k ̸= s then
15: P ← P ⊕ response[k]
16: end if
17: end for
18: DBq ← P ⊕ h.parity

Update
19: hints[x]← bHints[n]
20: hints[x].parity← hints[x].parity⊕ response[s]⊕DBq

21: hints[x].eP← s
22: hints[x].ePI← t
23: n← n+ 1
24: return DBq

switch index). We call the database entry at the switch index
as the switch entry. This switch is essential for privacy, as
always including the query index in the request is clearly
insecure.

Notice that the switch index was picked randomly and
independently from the other indices in the request. There-
fore, all the indices in the request are picked randomly and
independently from each other and the query index. Hence,
the server gains no information about the query index from
the request. Construction of the request is described in the
Request section of algorithm 4 abd illustrated in fig. 1

The client sends the request to the server and receives
a response consisting of the entries at the request indices.
The client computes the parity P of all the returned entries
except the switch entry. Since the hint parity hintP is the
parity of all the entries in the hint set, the client recovers the
queried entry DBq = P ⊕hintP . These steps are described
in the Reponse and Answer section of algorithm 4.

Now, the client replaces the used hint with the next



Figure 1: An illustration of how a PIR-PRIMARY request is
constructed for a database with N = 16. The colored cells in each
row depict the indices selected for the corresponding purpose.

Algorithm 5 The offline algorithm for BALANCED-PIR

1: Input: α, β - Storage parameters, γ - Frequency pa-
rameter

2: State: c - Cache, u - Query counter

3: if u ≡ 0 mod α
√
N then ▷ Offline of

PIR-PRIMARY
4: Run algorithm 1 with M = α

√
N

5: Clear c
6: end if
7: if u ≡ 0 mod γα

√
N then ▷ Offline of

PIR-BACKUP
8: Run the offline algorithm in section 3.2 with M =

(β + 1)
√
N

9: u← 0
10: end if

backup hint, which we call the replenished hint. The query
index must be a part of the hint set of the replenished hint
to ensure that the hint distribution remains identical before
and after the query, which is crucial for privacy. This is
accomplished by setting the extra index to be the query
index in the replenished hint. The extra index overwrites the
index selected by the PRF from the corresponding partition.
To facilitate the overwrite, the parity of the replenished hint
needs to be adjusted by adding the queried entry and remov-
ing the switch entry. Note that the switch index was a part
of the request and hence the switch entry is in the response.
Since the client knows both the queried entry and the switch
entry, it can adjust the parity without further interaction
with the server. Details regarding hint replenishment are
described in the Update section of algorithm 4.

3.4. Putting it together

We now have two PIR schemes: PIR-PRIMARY re-
quires large client storage to guarantee correctness but per-
forms less computation, and PIR-BACKUP uses less client
storage but requires more computation. Our construction

Algorithm 6 The online algorithm for BALANCED-PIR

1: Input: q - Query Index, α, β - Storage parameters, γ -
Frequency parameter

2: State: cache - Cache, u - Query counter

3: if q in cache.keys then
4: Make a dummy request
5: return cache[q]
6: end if
7: a← Run algorithm 4 with q ▷ Make PIR-PRIMARY

query
8: if a ̸= ⊥ then
9: cache[q]← a

10: return a
11: else ▷ Make PIR-BACKUP query as PIR-PRIMARY

failed
12: b ← Run the online algorithm in section 3.2 with q
13: cache[q]← b
14: return b
15: end if
16: u← u+ 1
17: if u ≡ 0 mod α

√
N then

18: Run offline algorithm of BALANCED-PIR in algo-
rithm 5

19: end if

of BALANCED-PIR combines the two PIR schemes in a
secure manner while simultaneously ensuring efficiency.

Recall that α and β are storage parameters of
PIR-PRIMARY and PIR-BACKUP, respectively. Addition-
ally, γ is an integer parameter that determines the fre-
quency of PIR-BACKUP offline phases: we will have one
PIR-BACKUP offline phase per γ PIR-PRIMARY offline
phases. Details on the selection of α, β and γ can be found
in section 3.6.

During every PIR-PRIMARY offline phase, the client
samples α

√
N hints for PIR-PRIMARY and during ev-

ery PIR-BACKUP offline phase, the client samples hints
according to a hint table with (β + 1)

√
N columns. More-

over, the offline phase of PIR-PRIMARY is executed every
α
√
N queries and the offline phase of PIR-BACKUP is

executed every γα
√
N queries. The offline algorithm of

BALANCED-PIR is in algorithm 5.

In the online phase, every time the client has to retrieve a
database entry, it attempts to find a hint for PIR-PRIMARY
and use PIR-PRIMARY to make its query. If the client fails
to find a suitable hint, it falls back to using PIR-BACKUP.
The online algorithm of BALANCED-PIR is in algorithm 6.

The client caches the retrieved entries, and if a query
is made for any of the cached entries, the client makes a
dummy request (a request consisting of one random index
from each partition) and returns the entry from the cache.
This ensures query indices are unique, which is important
in determining the client storage in our proof in section B.



3.5. Correctness and Privacy Analysis

Lemma 1. In expectation, at most 1 in eα queries of
BALANCED-PIR uses PIR-BACKUP.

Proof. In each query of BALANCED-PIR, the client first
tries to use PIR-PRIMARY by finding a suitable hint. Each
hint of PIR-PRIMARY consists of

√
N random indices.

Therefore, the probability that the query index is not selected
by a hint is 1− 1√

N
. Since the client has α

√
N hints

sampled, the probability that none of the hints select the
query index is (1− 1√

N
)α

√
N . This value can be upper

bounded in the following manner using a standard inequality

(1− 1√
N

)
α
√
N

<
1

eα

Since the client uses PIR-BACKUP when it fails to find
any PIR-PRIMARY hint, in expectation, the client uses
PIR-BACKUP at most once every eα queries.

Theorem 2 (Correctness). For any sequence of queries
between a client and a server using BALANCED-PIR, the
client always retrieves all the entries at the query indices,
except with negligible probability.

Proof. In each query of BALANCED-PIR, the client first
tries to use PIR-PRIMARY to execute the query. If the
client is unable to find a suitable hint, the client uses
PIR-BACKUP. PIR-BACKUP always succeeds as long as
its hints have not been depleted, as shown in the work of
Wang and Ren [2]. Therefore, to prove the correctness of
the scheme, it suffices to show that the client is always able
to find a PIR-BACKUP hint whenever it needs one.

Recall that α is the PIR-PRIMARY storage parame-
ter, β is the PIR-BACKUP storage parameter, and γ is
the PIR-BACKUP offline frequency parameter, that is, the
client executes the offline phase of PIR-BACKUP every
m = γα

√
N queries. We will upper bound the probability

that the client fails to find a PIR-BACKUP hint as a function
of α, β, and γ.

Let the random variable Xi be an indicator random
variable defined as follows.

Xi =

{
1, Client uses PIR-BACKUP for query i

0, Client uses PIR-PRIMARY for query i
(1)

The random variable X =
∑m

i=1 Xi captures the number of
times PIR-BACKUP is executed during the m queries.

In section B, we show that the indicator random vari-
ables X1, X2, X3, . . . , Xm are negatively correlated. Hence,
we can apply the Chernoff bound on X as shown in the work
of Doerr [35]. Using lemma 1, we have that the mean
of the random variable X is µ = m

eα = γα
√
N

eα . We set
(1 + δ)µ = β

√
N for some δ > 0. The probability that the

client fails to find a PIR-BACKUP hint for any query is
bounded by the Multiplicative Chernoff bound on the upper
tail of X

Pr[X > β
√
N ] = Pr[X ≥ (1 + δ)µ] ≤ e

(
− δ2µ

2+δ

)
(2)

where µ = γα
√
N

eα and δ = β
√
N

µ − 1.

We will select α, β, and γ such that e
(
− δ2µ

2+δ

)
is negligi-

ble, so BALANCED-PIR satisfies correctness. A practical
set of parameters that satisfy the constraints is given in
section 3.6.

In order to prove the privacy of BALANCED-PIR,
we first define a variant of PIR-PRIMARY called
PIR-PRIMARY-w/DUMMY. In this variant, for each query,
if the client is unable to find a suitable hint in
PIR-PRIMARY, the client makes a dummy request to the
server. A dummy request consists of one random index
chosen from every partition. Additionally, the scheme uses
random functions instead of pseudorandom functions.

Lemma 3. PIR-PRIMARY-w/DUMMY satisfies the privacy
definition from section 2.2.

The privacy proof of PIR-PRIMARY-w/DUMMY fol-
lows an identical pattern to the privacy proof of Ren et
al. [1]. Hence, we will give a sketch of the proof here and
refer the reader to lemma 8 in the appendix for full details.
Proof sketch. For any PIR scheme to satisfy privacy
according to the definition of section 2.2, the set of requests
made by the client should not reveal any information about
the query indices.
First query. Let us consider the first query. The client
selects a hint whose hint set contains the query index along
with randomly sampled indices from other partitions. The
request consists of the indices in the hint set, except that
the query index is replaced with the switch index, which
is sampled independently and uniformly at random for the
backup hint. Therefore, the set of indices in the request are
sampled randomly from their partitions and are independent
of the query index. Hence, the first request reveals no
information about the query index.
Subsequent queries. To extend this argument to a sequence
of queries, we need to show that the hint distribution, con-
ditioned on the adversary’s view, remains the same before
and after each query. Then, our argument for the first query
can be applied to all subsequent queries.

At a high level, the distribution of the hints conditioned
on the adversary’s view remains unchanged due to the fact
that the used hint is replaced by another hint with the same
distribution. Specifically, both the used hint and the replen-
ished hint contain the queried index plus random indices
from other partitions. This is accomplished by replacing
each index revealed to the server in the used hint with a
random index from the same partition in the replenished
hint. Furthermore, all the other hints remain the same and
hence have the same distribution. Therefore, the privacy ar-
gument for the first query can be extended to the subsequent
queries.

Hence, PIR-PRIMARY-w/DUMMY is secure.

Theorem 4 (Privacy). BALANCED-PIR satisfies the pri-
vacy definition from section 2.2.

Proof. We show that BALANCED-PIR is secure using a
hybrid argument. Consider the following set of hybrids



describing the scheme executed by the client in the adaptive
security game defined in section 2.2.

• H0: The client uses the BALANCED-PIR protocol as
described in algorithm 6.

• H1: Same as H0 except that the client uses random
functions instead of pseudorandom functions.

• H2: The client uses PIR-PRIMARY-w/DUMMY.
• H3: The client simply sends a dummy request for each

query.

The adversary’s view in H0 and H1 are computationally
indistinguishable due to the security guarantee of pseudo-
random functions. The adversary’s view in H2 and H3 are
identical due to lemma 3.

The difference between H1 and H2 is that, on failing
to find a suitable hint for PIR-PRIMARY the client uses
PIR-BACKUP in H1 and makes a dummy request in H2.
Due to the privacy of PIR-BACKUP as shown in Wang
and Ren [2], the distribution of a PIR-BACKUP request is
identical to the distribution of a dummy request. Thus, the
adversary’s view is identical in H1 and H2.

Therefore, the adversary’s view in BALANCED-PIR
(H0) is computationally indistinguishable from the adver-
sary’s view in H3, which is independent of the query indices.
Thereby, BALANCED-PIR satisfies privacy.

3.6. Efficiency

We describe how the storage parameters α, β and fre-
quency parameter γ are chosen such that the amortized costs
for both online and offline phases are minimized.

Online efficiency. Let the online computational cost of
PIR-BACKUP be ν times worse than the online compu-
tational cost of PIR-PRIMARY. From lemma 1, we expect
1 in eα BALANCED-PIR queries to use PIR-BACKUP.
Hence, we choose α such that eα > ν to ensure that the
amortized online computational cost of BALANCED-PIR is
within a small factor of the online computational cost of
PIR-PRIMARY.

Offline efficiency. Let the offline computational cost of
PIR-BACKUP be σ times worse than the offline computa-
tional cost of PIR-PRIMARY. To ensure the amortized of-
fline cost of BALANCED-PIR is within a small factor of the
offline cost of PIR-PRIMARY, we set the PIR-BACKUP
frequency parameter γ to be greater than σ.

Correctness. The chosen values of α, β and γ must satisfy
the correctness constraint in the proof of theorem 2.

Practical setting. For database entry sizes up to 128 bytes,
we observe through experiments that PIR-BACKUP’s on-
line phase is roughly ν = 700 times slower than that of
PIR-PRIMARY, and that PIR-BACKUP’s offline phase is
about σ = 100 times slower than that of PIR-PRIMARY,
in a practical setting. Additionally, we set the correctness
failure probability at 2−40. Following the considerations
described above, we set α = 7, β = 2.32, and γ = 300.

4. Verifiable BALANCED-PIR

Recall that a verifiable stateful PIR scheme (defined in
section 2.3) has the following procedures: i) the server com-
mits to and publishes a database digest, ii) the client veri-
fies the committed database against the published database
digest, iii) during each query, the client verifies that the
answer matches the database entry at the query index of
the committed database, and iv) the client protests against
the server and aborts its execution if it detects malicious
behavior by the server.

4.1. High-level Ideas

We first augment PIR-PRIMARY and PIR-BACKUP to
be verifiable. Then, we combine Verifiable PIR-PRIMARY
and Verifiable PIR-BACKUP in a similar manner as in
BALANCED-PIR.

The database digest in our scheme is simply a hash of
all the entries. Due to the collision resistance of the hash,
the server cannot find two distinct databases that have the
same database digest. During the offline phase, the client
computes the database digest locally while streaming the
database. The client verifies that the computed database
digest matches the published database digest. Additionally,
for every hint the client samples, the client computes and
stores a hash of all the entries selected by that hint. We call
it the hint hash. During the online phase, for each query,
the client verifies the answer by recomputing the hash of
all the entries selected by a hint and checks if it matches
the stored hint hash.
Selective-failure attacks. One main challenge in designing
a verifiable PIR scheme is to achieve resilience against
selective-failure attacks [36] while allowing the client to
protest against the server and abort its execution soon af-
ter detecting malicious server behaviors. If not designed
properly, the timing of the client’s protest action may leak
information about the client query indices.

In both Verifiable PIR-PRIMARY and Verifiable
PIR-BACKUP, every request contains a set of database
indices, and the response contains the entries at the request
indices. In our schemes, the client checks all the entries in
the response. Most of these checks are carried out during
each online query. However part of the checks have to be
deferred to the subsequent offline phase due to the nature
of our PIR schemes. Therefore, if the client in our scheme
detects malicious behavior during an online query, it protests
against the server and aborts in the next offline phase; before
then, it should keep making dummy queries. This way, the
timing of the protest is fully predictable by the malicious
server and leaks no information about the query indices.

While the above high-level ideas are applicable to both
schemes, there are nuances that need to be taken care of,
which we address in the following subsections.

4.2. Verifiable PIR-PRIMARY

As described in the high-level idea, at the end of the
offline phase, the client has the hint hash of all hints.



Figure 2: An illustration of hint replenishment during a query in Verifiable PIR-PRIMARY. The queried entry is j2 and the switch entry
is k2. The replenished hint contains the same entries set as the backup hint, except that j2 replaces k2. The hint hash of the replenished
hint is updated using the queried entry j2 as depicted, and k2 is stored as the outgoing entry with the replenished hint.

Recall the online protocol of PIR-PRIMARY. In Verifiable
PIR-PRIMARY, we modify the hint replenishment proce-
dure and add a verification procedure for each query.

We first give the intuition behind our hint replenishment
strategy by describing the verification procedure for a spe-
cial case. Then, we give the intuition behind our verification
strategy.

When the extra index is not set in the hint, the client
can perform the verification in a straightforward manner, as
described in the general paradigm. That is, the client simply
recomputes a hash of all the hint entries and verifies if it
matches the stored hint hash. This verifies the integrity of
the entries at the hint set and hence ensures the integrity of
the answer.

At the end of each query, the backup hint replaces
the used hint to become the replenished hint. The query
index is added to the hint set of the replenished hint as
the extra index, and the switch index is removed from the
hint set of the replenished hint. Naturally, the hint hash of
the replenished hint is updated using the entry at the extra
index. Also note that the (now removed) switch entry was
used to compute the hint hash of the replenished hint, so
it will be needed for verification. Thus, we store the switch
entry along with the replenished hint. These modifications
ensure that all hint entries of the replenished hint and the
switch entry can be verified correctly using the hint hash, if
and when the replenished hint is used.

We now describe the details of Verifiable
PIR-PRIMARY.

Offline. During the offline phase, the client verifies the
committed database as described in the general paradigm.
The client computes for every hint a hint hash as the hash
of all the hint entries. The offline algorithm of Verifiable
PIR-PRIMARY is described in algorithm 7. Key differences
from the offline phase of PIR-PRIMARY are highlighted
in yellow. Details regarding committed database verification
are omitted in algorithm 7 for ease of exposition.

Online. In the hint replenishment procedure after each
query, the client stores the switch entry alongside the replen-
ished hint. The switch entry becomes the outgoing entry of
the replenished hint. The hint hash of the replenished hint
is updated as the hash of the hint hash and the entry at extra
index (which is the queried entry). This process is depicted
in fig. 2.

The verification procedure is as follows. At the end of
each query, the client receives from the server all the hint
entries of the selected hint and, if the extra index is set, the
client has the outgoing entry stored locally. The client re-
computes the hash of these entries and verifies if it matches
with the hint hash. Details regarding the online phase of
Verifiable PIR-PRIMARY can be found in algorithm 8. Key
differences from the online phase of PIR-PRIMARY are
highlighted in yellow.
Resilience against selective-failure attacks. At the end of
an online phase, there may be replenished hints that have
not been used. The outgoing entries of these replenished
hints have not been verified. In the subsequent offline phase,
while the client streams the database, the client verifies the
integrity of these entries. Finally, if either the verification
during any of the queries fails or the verification in the
offline phase fails, the client protests against the server at
the end of the offline phase.

4.3. Verifiable PIR-BACKUP

Offline. During the offline phase, the client verifies the
committed database as described in the general paradigm. In
PIR-BACKUP the client samples a hint table, and for each
column in the table, the client stores the combined parity of
entries at indices in the column. Additionally, in Verifiable
PIR-BACKUP, the client also computes a hint hash as the
hash of entries at the indices in each column of the hint
table.
Online. Recall the high level overview of the online phase
of PIR-BACKUP presented in section 3.2. We first describe
how the hint hash of columns are updated after each query,
and then our verification procedure.

At the end of each query, as each index from the hint
column is moved to a pseudorandom column within its row,
the hint hash of the destination column is updated as the
hash of the current hint hash of the destination column and
the entry at the index being added to the column.

Verification of the answer during each query is carried
out as follows. After the client has retrieved all entries
at indices in the hint column, the client computes a hash
of these entries and verifies that it matches the hint hash.
Importantly, the client must first compute the order in which
indices are added to the hint column and then compute the
hash of entries at the indices in the determined order.



Algorithm 7 The offline algorithm for Verifiable
PIR-PRIMARY

1: Input: α - Hint storage factor
2: State: n - Next backup hint position, hints - Hints,

bHints - Backup Hints, vo - Online verification status,
vp - Offline verification status

3: M ← α
√
N

4: sHints← []
5: for k ∈ [0, 2M − 1] do
6: hintk ← { id: k, parity: 0, eP: ⊥, ePI: ⊥, oEntry:
⊥, hash: 0 }

7: sHints.push(hintk)
8: end for
9: for j ∈ [0,

√
N − 1] do

10: Stream partition DB[j
√
N : (j + 1)

√
N − 1] from

the server
11: vpj

← Verify oEntry from partition j in the hints
from the previous online phase

12: if vpj
= fail then

13: vp ← fail
14: end if
15: for k ∈ [0, 2M − 1] do
16: rj,k ← PRF(j ∥ k) mod

√
N

17: x← DB[rj,k + j
√
N ]

18: sHints[k].parity ← sHints[k].parity ⊕ x
19: sHints[k].hash ← Hash(sHints[k].hash, x)
20: end for
21: end for
22: if vp = fail or vo = fail then
23: return ⊥v

24: end if
25: hints← sHints[0,M − 1]
26: bHints← shints[M, 2M − 1]
27: n← 0

Resilience against selective-failure attacks. Recall that in
each PIR-BACKUP request, the cells marked as ⊥ in the
hint column and the query index are switched to random
indices from their respective partitions. The entries at the
random indices are not used in the computation of the hint
hash of the column and thereby cannot be verified during
each query. Therefore, the client defers the verification of
these entries to the subsequent offline phase.

Specifically, the client maintains a hash of all the random
entries in each row, called the row hash, where the random
indices are sampled using a PRF. During the subsequent
offline phase, the client verifies each row hash as it streams
the database. If either the verification during any query fails
or if the verification of any row hash fails, the client protests
against the server.

4.4. Putting it together

We combine Verifiable PIR-PRIMARY and Verifiable
PIR-BACKUP to construct Verifiable BALANCED-PIR

Algorithm 8 The online algorithm for Verifiable
PIR-PRIMARY

1: Input: q - Query index
2: State: n - Next backup hint position, hints - Hints,

bHints - Backup hints, vo - Online verification status

Request
3: if vo = fail then
4: Make a dummy request
5: return
6: end if
7: Execute steps in Request of algorithm 4

Reponse
8: Execute steps in Reponse of algorithm 4

Answer
9: Execute steps in Answer of algorithm 4

Verify
10: d← 0
11: for j ∈ [0,

√
N − 1] do

12: if h.eP ̸= ⊥ and j = h.eP then
13: d← Hash(d, h.oEntry)
14: else if j ̸= s then
15: d← Hash(d, response[j])
16: else
17: d← Hash(d,DBq)
18: end if
19: end for
20: if h.eP = s then
21: d← Hash(d,DBq)
22: else if h.eP ̸= ⊥ then
23: d← Hash(d, response[h.eP])
24: end if
25: if d ̸= h.hash then
26: vo ← fail
27: end if

Update
28: hints[x]← bHints[n]
29: hints[x].parity← hints[x].parity⊕ response[s]⊕DBq

30: hints[x].eP← s
31: hints[x].ePI← t
32: hints[x].oEntry← response[s]
33: hints[x].hash← Hash(hints[x].hash,DBq)
34: n← n+ 1
35: return DBq

in the same manner in which PIR-PRIMARY and
PIR-BACKUP are combined in BALANCED-PIR.

During every Verifiable PIR-PRIMARY offline phase,
the client executes the offline verification of both Verifiable
PIR-PRIMARY and Verifiable PIR-BACKUP. (But the of-
fline hint building of PIR-BACKUP still happens once per γ
PIR-PRIMARY offline phases.) If the verification fails, the



client protests and aborts. If the online verification of any
query fails, the client makes dummy requests (one random
index from each partition) until the next PIR-PRIMARY
offline phase is reached, and then protests and aborts.

4.5. Completeness, Soundness, and Privacy

Theorem 5 (Completeness). Verifiable BALANCED-PIR
satisfies completeness as defined in section 2.3.

Proof. The completeness of Verifiable PIR-PRIMARY is
straightforward from the construction of the scheme and the
correctness of PIR-PRIMARY. The completeness of Veri-
fiable PIR-BACKUP will also be straightforward provided
the client can compute the order in which indices get added
to the hint column of each query. We show this is indeed
the case in lemma 13 of the appendix to complete the proof
of completeness of Verifiable BALANCED-PIR.

The proof of lemma 13 is deferred to the appendix since
this requires understanding some of the inner workings of
the scheme of Wang and Ren [2], which we provide in
section C. We note that for all the other constructions and
proofs in this work, the scheme of Wang and Ren can be
treated as a black box.

Theorem 6 (Soundness). Verifiable BALANCED-PIR sat-
isfies soundness as defined in section 2.3.

Proof. In both Verifiable PIR-PRIMARY and Verifiable
PIR-BACKUP, the queried entry is a part of the input used
to compute the hint hash, so the soundness follows from the
collision resistance (section 2.4) of the hash function.

Theorem 7 (Privacy). Verifiable BALANCED-PIR is secure
under the privacy definition in section 2.3.

Proof. Verifiable BALANCED-PIR does not alter the re-
quest format and distribution of BALANCED-PIR, so the
requests in Verifiable BALANCED-PIR leaks no informa-
tion about the query indices following theorem 4.

We need to show that if the client protests, the timing
of the protest leaks no information about the query indices.

From the construction of Verifiable BALANCED-PIR,
the client checks if every response entry matches its corre-
sponding request index, partly during the offline phase and
partly during the online phase. Then, the client protests and
aborts in the offline phase. If any online check fails, the
client makes dummy requests (which follow the distribution
of requests as shown in theorem 4) and then aborts during
the offline phase. Therefore, the timing of the protest is pre-
dictable from the requests and responses and is independent
of the query indices.

Since neither the distribution of requests nor the timing
of protest leaks information about the query indices, Verifi-
able BALANCED-PIR is secure.

5. Evaluation

5.1. Implementation Details

Our BALANCED-PIR scheme and verifiable
BALANCED-PIR scheme have been implemented
using C++. The code is available at BALANCED-PIR.
The implementation of PIR-PRIMARY and Verifiable
PIR-PRIMARY is close to 500 lines of code and
the implementation of PIR-BACKUP and Verifiable
PIR-BACKUP is close to 800 lines of code.

We use the AES implementation from CryptoPP to
instantiate the PRF or collision-resistant hash function. Ad-
ditionally, PIR-BACKUP requires a small-domain PRP. We
implement the construction of Morris and Rogaway [31].

5.2. Experimental Setup

Baseline. We compare BALANCED-PIR with the following
single-server stateful PIR schemes:

• SimplePIR by Henzinger et al [37]: In this scheme,
the server computation is linear in the size of the
database. Unlike our schemes and the other schemes
in the baselines, the offline phase of SimplePIR is
executed only once. We use their Go implementation.1

• The scheme of Ren et al. [1]: The amortized communi-
cation and amortized computation of their scheme are
both O(

√
N), whereas the client storage is O(λ

√
N)

with λ set to 80 in practice. We use their C++ imple-
mentation. 2

For a fair comparison with BALANCED-PIR, we also
consider a different parametrization of their scheme
that uses smaller storage but blows up computation and
communication.

• The scheme by Wang and Ren (WR PIR) [2]: This
scheme has a client storage of O(

√
N) and the online

server computation of O(
√
N). However, the scheme

requires client evaluations of an expensive crypto-
graphic primitive called small-domain PRP, which
blows up the computational cost. Since no implemen-
tation of the scheme is available, we implement the
scheme in C++.

We compare Verifiable BALANCED-PIR with the fol-
lowing verifiable stateful PIR scheme:

• VeriSimplePIR by de Castro and Lee [3]: This scheme
builds on a verifiable PIR scheme of Colombo et al.
[32] by removing the honest-digest assumption (see
section 6). We use their C++ implementation.3

Execution environment. We run all our experiments with
a single thread on an AWS m5.8x large instance, which
operates on a 3.1 GHz Intel Xeon processor equipped with
128 GB RAM.

1. https://github.com/ahenzinger/simplepir
2. https://github.com/renling/S3PIR
3. https://github.com/leodec/VeriSimplePIR

https://anonymous.4open.science/r/BalancedPIR-E6FD


TABLE 2: Comparison of single-server stateful PIR schemes.

Database Client Storage Offline Online Amortized per query
Parameters (MB) Comm. (MB) Compute (s) Comm. (KB) Compute (ms) Comm. (KB) Compute (ms)

SimplePIR [37] 10.6 10.6 1.38 20 7.43 20 7.43
WR PIR [2] 220 8-byte entries 0.02 8 29.7 10 77.23 18 78.44
Ren et al. [1] 8 MB in total 2.5 8 3.93 2.14 0.13 2.34 0.22

Ren et al. [1] normalized 0.2 8 7.89 34 1 35.6 1.77
BALANCED-PIR 0.2 8 0.2 10 0.17 11.1 0.2

SimplePIR [37] 20.9 20.9 4.8 40 14 40 14
WR PIR [2] 220 32-byte entries 0.07 32 29.74 34 85.79 66 87
Ren et al. [1] 32 MB in total 6.25 32 4 2.19 0.14 2.99 0.25

Ren et al. [1] normalized 0.55 32 8.34 34.1 1.06 40.5 1.87
BALANCED-PIR 0.6 32 0.23 34 0.19 38.6 0.22

SimplePIR [37] 42.3 42.3 35.8 84 39 84 39
WR PIR [2] 224 8-byte entries 0.08 128 494 40 356 72 361
Ren et al. [1] 128 MB in total 10 128 64.4 8.52 0.51 9.32 0.90

Ren et al. [1] normalized 0.78 128 126 136 4.11 142 7.18
BALANCED-PIR 0.8 128 3.29 40 0.75 44.6 0.87

SimplePIR [37] 86.8 86.8 154 168 103 168 103
WR PIR [2] 224 32-byte entries 0.27 512 495 136 356 264 362
Ren et al. [1] 512 MB in total 25 512 65 8.56 0.62 11.76 1

Ren et al. [1] normalized 2.19 512 136 136 4.33 167 7.66
BALANCED-PIR 2.42 512 3.8 136 0.87 154 1

SimplePIR [37] 173 173.4 623 338 319 338 319
WR PIR [2] 228 8-byte entries 0.31 2048 8227 160 1640 288 1661
Ren et al. [1] 2048 MB in total 40 2048 989 34 2.4 37.2 3.9

Ren et al. [1] normalized 3.12 2048 2009 544 17.2 570 29.4
BALANCED-PIR 3.18 2048 53.58 160 3.3 178 3.77

SimplePIR [37] 353 353 2788 688 1123 688 1123
WR PIR [2] 228 32-byte entries 1.06 8192 8249 544 1644 1056 1665
Ren et al. [1] 8192 MB in total 100 8192 1146 34.1 2.7 46.9 4.5

Ren et al. [1] normalized 8.75 8192 2154 544 17.7 646 30.8
BALANCED-PIR 9.67 8192 67.15 544 3.85 617 4.43

TABLE 3: Comparison of verifiable single-server stateful PIR schemes.

Database Client Storage Offline Online Amortized per query
Parameters (MB) Comm. (MB) Compute (s) Comm. (KB) Compute (ms) Comm. (KB) Compute (ms)

VeriSimplePIR [3] 220 8-byte entries 32 71.5 51.6 32 22 32 22
Verifiable BALANCED-PIR 8 MB in total 0.27 8 5.16 10 0.61 11.3 1.45

VeriSimplePIR [3] 224 8-byte entries 128 290 796 128 136 128 136
Verifiable BALANCED-PIR 128 MB in total 1.09 128 86.5 40 2.57 45.3 6.09

VeriSimplePIR [3] 228 8-byte entries 512 1178 12553 512 1336 512 1336
Verifiable BALANCED-PIR 2048 MB in total 4.37 2048 1326 160 9.96 181 23.46

Experimental setup. We run BALANCED-PIR, Verifi-
able BALANCED-PIR, and all the baselines on databases
with 220, 224 and 228 entries. The experiments on
BALANCED-PIR and its baselines are run with both 8-
byte and 32-byte entries. The experiments on Verifiable
BALANCED-PIR and its baseline are run only on 8-byte
entries since the execution of VeriSimplePIR failed for 32-
byte entries (and we expect the comparison to be similar for
larger entry sizes.)

5.3. Evaluation Results

Single-server stateful PIR scheme. In table 2 we com-
pare various stateful single-server PIR schemes with
BALANCED-PIR. We present the communication and com-
putation costs of both the offline phase and the online phase.

We also compute and present the amortized communication
and computation costs of each scheme as the offline cost
divided by the number of maximum queries possible during
each online phase, plus the online cost.

For each metric, we highlight the scheme that performs
the best on the metric in green and the schemes that are two
or more orders worse than the best scheme on that metric in
red. Notice that BALANCED-PIR has no metric colored red.
We highlight only the first row as the same pattern applies
to all rows.

SimplePIR requires 35× to 50× larger client storage
than our BALANCED-PIR scheme. The offline phase of
SimplePIR is executed only once and hence does not con-
tribute to the amortized cost. But the amortized compu-
tation of their scheme is 37× to 63× worse than that
of BALANCED-PIR due to their linear computation. The



amortized communication cost of SimplePIR is comparable
to that of BALANCED-PIR. We note that the amortized
costs of SimplePIR do not include the offline cost since the
offline phase is executed only once. This allows for a fair
comparison with the other schemes.

Unlike SimplePIR, all the other PIR schemes presented
in table 2 require periodic executions of the offline phase.
The offline phase of BALANCED-PIR requires the least
amount of computation among all the schemes. Compared
to BALANCED-PIR, the offline computation of WR PIR is
120× to 148× more expensive; the offline computation of
Ren et al. is 16× to 23× more expensive if we normalize
the client storage (and is still 32× to 40× more expensive,
even with more client storage.)

The WR PIR scheme uses the least amount of client
storage. BALANCED-PIR needs 8.5× to 10× of the client
storage of the WR scheme. However, the amortized com-
putation of WR PIR is 375× to 492× more expensive than
BALANCED-PIR.

The original scheme of Ren et al. needs 10.5× to 12.5×
more client storage than BALANCED-PIR. Using the extra
storage, their scheme can achieve 4.5× to 12.5× advantage
in terms of amortized communication. If we normalize their
scheme to use a similar amount of client storage as our
BALANCED-PIR scheme, then our scheme will be 7× to
8.5× in amortized computation and 1.05× to 3.2× better
in amortized communication, when the entry size ranges
between 8 to 32 bytes.

We emphasize that as the entry size increases, the amor-
tized communication of BALANCED-PIR increases faster
than Ren et al. normalized. For example, if the entry size is
128 bytes (not shown in the table), then BALANCED-PIR
would be 2.5× worse in amortized communication while
amortized computation is still 7× better and the offline
computation is 30× better.
Verifiable single-server stateful PIR schemes. In compar-
ison with VeriSimplePIR, our Verifiable BALANCED-PIR
scheme is 117× better in client storage, 15× to 56× better
in amortized computation, and 2.9× better in amortized
communication. The client storage of VeriSimplePIR is
significantly larger because their scheme builds on the semi-
honest SimplePIR [37], which already requires large client
storage, and adds substantial additional client storage for
verification.

6. Related Work

Single-server stateful PIR schemes. Stateful private in-
formation retrieval in the single-server setting was first
presented in the work of Patel et al. [38]. The scheme
still requires O(N) online computation, same as stateless
schemes. SimplePIR and FrodoPIR [39], [37] are two other
stateful PIR schemes that use O(N) online computation.
They have the advantage that the offline phase is executed
only once.

The PIR scheme by Corrigan-Gibbs et al. [25] was
the first single-server stateful PIR scheme with amortized

sublinear communication and computation. Several schemes
[26], [40] use an advanced cryptographic primitive called
privately puncturable PRFs to improve amortized communi-
cation. However, there are no known practical instantiations
of privately puncturable PRFs, and these schemes are only
of theoretical interest.

The works of Zhou et al. [27] and Ren et al. [1] are
state-of-the-art practical schemes. They achieved O(

√
N)

amortized communication and O(
√
N) amortized computa-

tion. Both schemes require O(λ
√
N) client storage where

λ is a security parameter for correctness and is typically set
to be 80.

A recent PIR scheme presented by Wang and Ren [2]
requires O(

√
N) client storage and O(

√
N) online server

computation, significantly reducing the amount of client
storage required and meeting a lower bound by Yeo [41].
However, the amortized computation of the scheme is im-
practical since the client needs to evaluate

√
N small-

domain PRPs during each query.
Ghoshal et al. [30] further improves communication

to O(N
1
4 ) per query. However, the improvement in com-

munication comes at the cost of significant blowups to
client storage and offline computation, especially for smaller
entry sizes. Fisch et al. [29] gives a method to achieve
sublinear offline bandwidth, but a powerful server (e.g.,
hundreds of thousands of GPUs) is required for the end-
to-end preprocessing time to be faster than prior work.
Verifiable single-server stateful PIR schemes. Colombo et
al. [32] is the first to propose and achieve what we consider
the natural definition of verifiability in PIR schemes: the
server commits to a database beforehand, and the retrieved
entry matches the queried entry in the committed database.
(Earlier works on verifiable PIR [42], [43], [44] consider
different or weaker notions of verifiability.) Colombo et al.
[32] gave two schemes in the single-server setting. The more
practical one is based on SimplePIR [37]. One drawback of
their work is that they make an honest-digest assumption,
i.e., the commitment (digest) of the database is assumed to
be computed faithfully.

De Castro and Lee [3] gave a verifiable version of
SimplePIR without relying on the honest-digest assump-
tion. This is the state-of-the-art verifiable single-server
PIR scheme and our baseline. We note that Verifiable
BALANCED-PIR performs better on all metrics than both
versions of Verifiable SimplePIR above, as well as the
original (unverifiable) SimplePIR.

The other single-server construction in Colombo et al.
[32] is based on the Decisional Diffie–Hellman (DDH)
assumption. This scheme involves prohibitive computation:
it takes the client one hour to retrieve a single bit from a
1 GB database. Dietz and Tessaro [33] remove the honest-
digest assumption from the DDH-based scheme, but still
require large server computation.

7. Conclusion

We have presented BALANCED-PIR, a single-server
stateful PIR scheme with moderate client storage and



efficient amortized computation. Unlike prior works,
BALANCED-PIR has effectively balanced computation and
client storage. BALANCED-PIR inherits some of the draw-
backs of earlier works, such as periodic executions of the
offline phase and O(

√
N) request size. We also presented

Verifiable BALANCED-PIR, which is the first verifiable
stateful PIR scheme with sublinear amortized computation
and small client storage.
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Appendix A.
Privacy of PIR-PRIMARY-w/DUMMY

Lemma 8. PIR-PRIMARY-w/DUMMY satisfies the privacy
definition from section 2.2 (full proof).

The privacy proof of PIR-PRIMARY-w/DUMMY fol-
lows an identical pattern to the privacy proof of Ren et
al. [1].
Proof. For any PIR scheme to satisfy privacy according to
the definition of section 2.2, the set of requests made by
the client should not reveal any information about the query
indices.
First query. See the proof for lemma 3.
Subsequent queries. To extend the above argument to a se-
quence of queries, we need to show that the hint distribution

remains the same before and after each query, even when
conditioned on the view of the adversary.

Let the random variable Hi
j,k represent the index se-

lected by the j-th hint from the k-th partition before the
i-th query. Then,

Hi =


Hi

0,0 Hi
0,1 . . . Hi

0,
√
N−1

Hi
1,0 Hi

1,1 . . . Hi
1,
√
N−1

...
...

. . .
...

Hi
M−1,0 Hi

M−1,1 . . . Hi
M−1,

√
N−1


specifies the distribution of the set of hints before the i-th
query. We define Y as the distribution of each hint and Y
as the number of possibilities of each hint.

Similarly, we define the random variable H̃i which is the
hint distribution conditioned on the view of the adversary
up to and not including query i.

We will show that the hint distribution conditioned on
the view of the adversary remains the same by using induc-
tion.

Base case: Since the indices in the hint set of each
hint are picked independently and uniformly from their
partitions, each row in H1 is i.i.d. and follows Y . Therefore,
Pr[H1 = h] = 1

Y M . Moreover, since the view of the
adversary is empty, Pr[H1 = h] = Pr[H̃1 = h] = 1

Y M .
Case i: H̃i and H1 are distributed identically.
Case i + 1: During query i, the client attempts to find

a suitable hint that contains the query index. If the client
doesn’t find any suitable hint, the client makes a dummy
request, and hence, it is straightforward to see that H̃i+1 is
distributed identically to H̃i.

Now we consider the case where the client finds a
suitable hint. Let hint t be selected for the query and let
the query index be in partition s. Then, all the indices in
the hint set of hint t are sent to the server except the query
index. Instead, the index from partition s of the next backup
hint is sent to the server. Let the view of the request for the
i-th query be denoted by the random variable R. We denote
the set of all possible requests as S.

The probability that the random variable H̃i+1 takes a
value h is as follows:

Pr[H̃i+1 = h] = Σr∈S Pr[H̃i+1 = h | R = r] · Pr[R = r]

= Σr∈S
Pr[H̃i+1 = h,R = r]

Pr[R = r]
· Pr[R = r]

= Σr∈S Pr[H̃i+1 = h,R = r]

For the event H̃i+1 = h,R = r to occur, we need the
following: i) all rows other than row t of h must match
H̃i, ii) indices from row t of h, other than the index from
partition s, must match the corresponding indices in the next
backup hint, iii) index from partition s of row t in h must
match the query index, iv) row t of H̃i must match r except
the index in partition s and v) index in partition s of r
must match the index in partition s of the next backup hint.
Additionally, the size of the set S is also Y . Therefore, using



the fact that H̃i is identically distributed to H1, the above
expression becomes:

Pr[H̃i+1 = h] =

Y · ( 1

Y M−1
· 1
√
N

√
N−1

· 1√
N
· 1
√
N

√
N−1

· 1√
N

)

Using the fact that Y = 1
√
N

√
N

, we have that:

Pr[H̃i+1 = h] =
1

Y M

which is the same as Pr[H1 = h].
Since the hint distribution conditioned on the view of

the adversary remains the same, the security analysis for the
first query can be extended to subsequent queries. Hence,
PIR-PRIMARY-w/DUMMY is secure.

Appendix B.
Correctness of BALANCED-PIR

Recall the details on the correctness of BALANCED-PIR
in theorem 2. The proof requires that the random variables
X1, X2, . . . , Xm are negatively correlated. In this section,
we prove that this is indeed the case.

Specifically, we can show that X1, X2, X3, . . . ,Xm are
1-negatively correlated if for all S ⊆ [1,m], the following
holds:

Pr[∀i ∈ S : Xi = 1] ≤ Πi∈S Pr[Xi = 1] (3)

Balls and bins view. The indices in a partition and the
set of hints can be thought of as an instance of balls and bins
[46]. Specifically, the indices in the partition correspond to
bins. Each hint contributes one ball to the bin corresponding
to the index selected by the hint from the partition. (Each
partition corresponds to a separate instance of balls and bins
and each hint contributes one ball to each balls-and-bins
instance.)

The locations of balls keep changing as hints get replen-
ished. Let BBi denote the balls and bins view corresponding
to the ith partition. During i-th query, if a hint containing
the query index qi is found, that hint is used and replenished
with another hint. The replenished hint selects qi from the
query partition and random indices from other partitions.
In the balls-and-bins view, the hint stays in the same bin
in BBi but randomly relocates in all other instances of the
balls and bins.

In the following two lemmas, consider a set of the
random variables X1, X2, X3, . . . , Xl as defined in eq. (1)
corresponding to a set of l queries with query indices
q1, q2, q3, . . . , ql.

Lemma 9. If the query indices q1, q2, q3, . . . , ql are from
different partitions, then X1, X2, X3, . . . , Xl are mutually
independent.

Proof. Let us consider j-th query in the balls and bins view.
If bin qj in BBj is empty, PIR-PRIMARY is not used for

this query and all the instances of balls and bins remain
unchanged. On the other hand, if the bin qj contains a ball,
then the balls corresponding to the hint in all other instances
of the balls and bins problem are relocated to a random bin.
Therefore, the distribution of balls after query j conditioned
on the outcome of query j is the same as the distribution
of the balls right before query j.

Therefore, translating back to the hints view, the exis-
tence of a usable hint for query j does not influence whether
any hints are available for further queries.

Using the above fact repeatedly, we have that

Pr[X1, X2, . . . , Xl] = Pr[X1] · Pr[X2, X3 . . . , Xl]

= Pr[X1] · Pr[X2] Pr[X3 . . . , Xl] = . . . = Πl
i=1 Pr[Xi]

Hence, X1, X2, X3, . . . , Xl are mutually independent.

Lemma 10. If the query indices q1, q2, q3, . . . , ql are from
the same partition, then X1, X2, X3, . . . , Xl are negatively
correlated.

Proof. Without loss of generality, let us assume that all
the indices are from the first partition. Additionally, let the
number of PIR-PRIMARY hints sampled be M

For all i ∈ [1, l], j ∈ [1,M ], k ∈ [0,
√
N − 1], let us

define the set of random variables Bi
j,k as follows

Bi
j,k =

{
1, Hint j selects index k right before query i
0, Hint j does not select index k right before query i

(4)
We also define the following set of random variables for

all j ∈ [1,M ], k ∈ [0,
√
N − 1].

Y i
k = Σj=m

j=1 Bi
j,k (5)

Specifically, Y i
k indicates the number of hints that select

index k before query i.
We first want to prove that Y 1

q1 , Y
2
q2 , . . . , Y

l
ql

are neg-
atively correlated. We call the set of random variables
B1

i,q1
, B2

i,q2
, . . . , Bl

i,ql
as the contribution of the i-th hint to

Y 1
q1 , Y

2
q2 , . . . , Y

l
ql

respectively. We first prove that the contri-
bution of each hint is negatively correlated. Then, it follows
that Y 1

q1 , Y
2
q2 , . . . , Y

l
ql

are negatively correlated as each of
these random variables is a sum of contributions from all
the hints, where the contribution of hints are independent of
one another.

Let us look at the contribution of the first hint to each
of Y 1

q1 , Y
2
q2 , . . . , Y

l
ql

. We first assume that the hint remains
unchanged through the l queries and then consider the
general case where the hint could be replenished at multiple
points

Assuming that the first hint remains unchanged during
the l queries, we have that:

B2
1,q2 = B1

1,q2 , B
3
1,q1 = B1

1,q3 , . . . , B
l
1,ql

= B1
1,ql

(6)

This is because the index selected by the hint from the
partition remains the same. The zero-one lemma from the



work of Dubhashi and Ranjan [46], states that a set of
indicator random variables that have a sum of at most
1 are negatively correlated. Therefore, using the zero-one
lemma, the random variables B1

1,q1 ,B
1
1,q2

, . . . , B1
1,ql

are
negatively correlated. Hence, using eq. (6), the contribution
of the first hint to Y 1

q1 , Y
2
q2 , . . . , Y

l
ql

, which are the random
variables B1

1,q1 ,B
2
1,q2

, . . . , Bl
1,ql

respectively, are negatively
correlated.

However, the first hint could be replenished at mul-
tiple points while other queries are executed in between
any two queries we consider. For instance, if there is a
replenishment after query i, the succeeding random variables
after i, Bi+1

1,qi+1
, . . . , Bl

1,ql
are independent of the preceding

variables B1
1,q1 , ..., B

i−1
1,qi−1

, Bi
1,qi . This is because the index

selected by the hint after query i from the partition is
independent of the index selected by the hint before query
i. Extending this logic to multiple replenishments and using
the discussion in the previous paragraph, the random vari-
ables in the contribution of the first hint between any two re-
plenishments are negatively correlated and are independent
of all the other random variables in the contribution. There-
fore, the set of random variables B1

1,q1 , B
1
1,q2 , . . . , B

1
1,ql

are
negatively correlated.

The above argument for the first hint can be ex-
tended to the contribution of other hints to Y 1

q1 , Y
2
q2 , . . . , Y

l
ql

.
Since hints are sampled independently of each other,
Y 1
q1 , Y

2
q2 , . . . , Y

l
ql

, which are each a sum of negatively corre-
lated contributions from the hints, are negatively correlated.

Notice that

Xi =

{
1, Y i

qi = 0

0, Y i
qi ̸= 0

(7)

For a set of negatively correlated random variables
A1, A2, . . . , An and any set of real values a1, a2, . . . , an, the
marginal probability bounds shown in the work of Dubhashi
and Ranjan [46] states that:

Pr[Ai ≤ ai, i ∈ [1, n]] ≤ Πi∈[1,n] Pr[Ai ≤ ai] (8)

Using the above result, ∀S ⊆ [1, l], we have that

Pr[∀i ∈ S : Yi
qi
≤ 0] ≤ Πi∈S Pr[Yi

qi
≤ 0] (9)

Therefore ∀S ⊆ [1, l], we have that,

Pr[∀i ∈ S : Xi = 1] ≤ Πi∈S Pr[Xi = 1] (10)

The above expression is precisely the condition for 1-
negative correlation as defined here eq. (3).

Lemma 11. Consider the set of the random variables
X1, X2, X3, . . . , Xm, as defined in eq. (1), corresponding
to a set of m queries with query indices q1, q2, q3, . . . , qm.
Then, X1, X2, X3, . . . , Xm are negatively correlated.

Proof. For all S ⊆ [1,m]. We need to prove that

Pr[∀i ∈ S : Xi = 1] ≤ Πi∈S Pr[Xi = 1] (11)

Let Pi be a set containing the indices in the ith partition.
Using lemma 9, we can write the LHS as

Pr[∀i ∈ S : Xi = 1] = Π
√
N

i=1 Pr[∀j ∈ S, qj ∈ Pi : Xj = 1]
(12)

Using lemma 10, we have that for any i,

Π
√
N

i=1 Pr[∀j ∈ S, qj ∈ Pi : Xj = 1] ≤ Π∀j∈S,qj∈Pi
Pr[Xj = 1]

(13)
Combining eq. (12) and eq. (13), we have that

Pr[∀i ∈ S : Xi = 1] ≤ Πi∈S Pr[Xi = 1] (14)

Hence, the indicator random variables
X1, X2, X3, . . . , Xm are 1-negatively correlated.

Appendix C.
Overview of the Work of Wang and Ren [2]

Consider the high-level overview of WR PIR presented
in section 3.2. The client tracks the contents of the
hint table using the small-domain PRP keys and a data
structure called the Relocation Data Structure. Using the
Relocation Data Structure, the client uses an algorithm
called Locate to determine the column containing a specific
index and an algorithm called Access to determine the in-
dices in a specific column of the hint table, and an algorithm
called

We provide a high-level overview of the
Relocation Data Structure and the algorithms Access
and Locate below.
Relocation Data Structure. We first provide the intuition
behind the construction of the data structure, followed by a
description of the data structure.

Consider a specific row of the hint table whose per-
mutation is called P (stored as a small-domain PRP key
as defined in section 2.4). Each row in the hint table is
equivalent to a graph G with nodes and edges defined as
follows. The i-th node in the graph corresponds to the i-
th cell in the row (or the i-th column in the row). Every
node in G has an associated value. Specifically, the initial
value associated with the i-th node is P−1(i). If the c-th
column is used for the t-th query, the indices in the column
are relocated to the column containing the t-th ⊥. Edges are
added to G to denote the relocation. Specifically, if the c-th
column is used for the t-th query, an edge is added between
node c and the node P (

√
N+t) (column containing the t-th

⊥). Notice that the state of the row in the hint table can be
determined if the client tracks the edges of the graph G.

Thereby, the edges of graph G are stored in an array
called Hist. Specifically, if the c-th column is used for the
t-th query, the t-th entry in Hist is set to be c. Moreover,
the inverse of this array is stored in a map called Hist−1.

Additionally, the array Hist and the map Hist−1 are
identical across all rows of the hint table and thereby need
to be stored by the client only once.
Locate. Given an index i, the Locate algorithm determines
the current column in which index i is located. In the graph



view of the row containing index i, initially, node P (i) has
the value i. As edges are added to a chain containing this
node, the value i gets relocated to the end node in the
chain. Therefore, the Locate algorithm starts the traversal
at node P (i) and traverses along out-edges until a node
without any out-edge is reached. The out-edges at each node
can be determined by using the Hist−1 data structure and
permutation P . Finally, the column number corresponding
to the final node is the column containing index i.
Access. Given a column c, the Access algorithm determines
the value in column c of the row. In the graph view, this
is the initial value at the start node of the chain whose end
node is c. The Access algorithm starts at node c and traverses
the graph G along in-edges. Upon reaching a node n with
no in-edge, the algorithm outputs P−1(n), i.e., the initial
value at node n. The in-edges can be determined by using
Hist data structure.

Lemma 12. The query number at which an index i is
relocated to column c of the hint table can be determined
by the client.

Proof. Consider the graph view G of the row containing
index i. At the end of the offline phase, the index i is
associated with node P−1(i), and node c contains index
i in the current state of the hint table. The node P−1(i) has
no in-edge (Fact 3.7, [2]) and the set of edges connecting
node c to node P−1(i) forms a chain S (Corollary 3.10,
[2]). Index i relocates to the end node of the chain as and
when edges are added. Thereby, the query number at which
the final edge is added to S determines when i is relocated
to column c.

Appendix D.
Completeness of Verifiable PIR-BACKUP

Lemma 13. In Verifiable PIR-BACKUP, the client can
determine the order in which indices are added to the hint
column.

Proof. From lemma 12, the client can determine the query
number at which each index is added to the hint column.
Therefore, the client can determine the correct order in
which indices are added to the hint column.
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