
One-way multilinear functions of the second order
with linear shifts

Stanislav Semenov
stas.semenov@gmail.com

ORCID: 0000-0002-5891-8119

June 4, 2025

Abstract

We introduce and analyze a novel class of binary operations on finite-dimensional
vector spaces over a field K, defined by second-order multilinear expressions with
linear shifts. These operations generate polynomials whose degree increases linearly
with each iterated application, while the number of distinct monomials grows combi-
natorially. We demonstrate that, despite the non-associative and non-commutative
nature in general, these operations exhibit power associativity and internal commu-
tativity when iterated on a single vector. This allows for well-defined exponentiation
an. Crucially, the absence of a simple closed-form expression for an suggests a one-
way property : computing an from a and n is straightforward, but recovering n from
an (the Discrete Iteration Problem) appears computationally hard. We propose a
Diffie–Hellman-like key exchange protocol utilizing these properties over finite fields,
defining an Algebraic Diffie–Hellman Problem (ADHP). The proposed structures
are of interest for cryptographic primitives, algebraic dynamics, and computational
algebra.

Mathematics Subject Classification

17A30 (Algebras satisfying identities), 15A75 (Exterior algebra; multilinear algebra)

ACM Classification

I.1 Symbolic and Algebraic Manipulation, F.2 Analysis of Algorithms and Problem Com-
plexity, E.3 Data Encryption

Introduction

We introduce a class of binary operations ∗ : V × V → V on finite-dimensional vector
spaces V = Kn over a field K. These operations are defined componentwise through
second-order multilinear expressions, augmented with linear shifts. A prototype of such
an operation was first proposed in [3]. A distinctive aspect of these operations is how
algebraic complexity scales with iterated applications. Specifically, while the total poly-
nomial degree of an := a ∗ a ∗ · · · ∗ a increases linearly with n, the number of distinct

1

mailto:stas.semenov@gmail.com
https://orcid.org/0000-0002-5891-8119


monomials involved grows combinatorially, making the derivation of a general closed-form
expression highly non-trivial.

This inherent complexity leads to a central theme of this work: the system’s one-way
characteristics [2]. We observe that computing an for given a and n is computationally
efficient. However, the reverse problem—determining n from an (which we formally define
as the Discrete Iteration Problem)—appears to be computationally intractable, particu-
larly for general parameters and large n. This algebraic asymmetry is a cornerstone of
our investigation.

The study of such structures integrates concepts from non-associative algebra, sym-
bolic computation, and computational complexity. In this paper, we first precisely de-
fine these operations and provide explicit componentwise formulas to demonstrate their
second-order nature and the rapid escalation of complexity with iteration. We then rig-
orously examine the recursive behavior and fundamental algebraic properties, including
the crucial observations of power associativity and internal commutativity that emerge
for powers of a single element. Finally, we leverage these properties and the conjectured
hardness of the Discrete Iteration Problem to propose a Diffie–Hellman-like key exchange
protocol [1] operating over finite fields, thereby introducing the Algebraic Diffie–Hellman
Problem (ADHP). This framework holds significant potential for the development of new
cryptographic primitives, as well as advancing research in algebraic dynamics and com-
putational algebra.

1 Multilinear Operation on K3

Consider the operation ∗ : V × V → V , where V = K3, defined component-wise by the
following rule:

(ab)0 = a0 + b0 + a0b0 + Aa1b1 + Ca2b1 +Ba2b2,

(ab)1 = a1 + b1 + a1b0 + a0b1 +Da1b1 + Ea1b2,

(ab)2 = a2 + b2 + a2b0 + a0b2 +Da2b1 + Ea2b2,

where A,B,C,D,E ∈ K are fixed parameters.
The explicit form of the product vector a ∗ a := a2 is given by:

a2 =

(a0 + 1)2 + Aa21 +Ba22 + Ca1a2 − 1
a1(Da1 + Ea2 + 2(a0 + 1))
a2(Da1 + Ea2 + 2(a0 + 1))

 .

2



Symbolic Expansion of a3

Using symbolic computation, we obtain the following expansion for the zeroth component
of a3 := a ∗ a ∗ a:

(a3)0 = (a0 + 1)3 + ADa31 +BEa32
+ 3a0(Aa

2
1 +Ba22) + 3Ca0a1a2

+ (AE + CD)a21a2 + (BD + CE)a1a
2
2

+ 3Aa21 + 3Ba22 + 3Ca1a2 − 1,

(a3)1 = a1(3(a0 + 1)2 + (A+D2)a21 + (B + E2)a22
+ 3(Da1 + Ea2)(a0 + 1) + (C + 2DE)a1a2,

(a3)2 = a2(3(a0 + 1)2 + (A+D2)a21 + (B + E2)a22
+ 3(Da1 + Ea2)(a0 + 1) + (C + 2DE)a1a2.

These expressions illustrate how cubic terms naturally emerge from the iterated ap-
plication of the operation. With each iteration, the total polynomial degree increases
linearly, while the number and diversity of monomials grow combinatorially. Each coeffi-
cient depends on the parameters A,B,C,D,E, reflecting complex interactions among the
components a0, a1, a2.

Functional Structure and Recursive Dependence

The explicit form of the product vector a2 admits a simplified functional representation.
Define two scalar functions:

g(a) := (a0 + 1)2 + Aa21 +Ba22 + Ca1a2 − 1, h(a) := Da1 + Ea2 + 2(a0 + 1).

Then the result of the self-product can be expressed compactly as:

a2 =

 g(a)
a1 · h(a)
a2 · h(a)

 .

This formulation reveals a nested compositional structure: computing a3 = a2 ∗ a
amounts to evaluating

a3 =

 g(a2)
a1 · h(a2)
a2 · h(a2)

 ,

where a2 itself is given in terms of g(a) and h(a). Expanding this, we obtain:

a3 =

 g
(
g(a), a1h(a), a2h(a)

)
a1 · h

(
g(a), a1h(a), a2h(a)

)
a2 · h

(
g(a), a1h(a), a2h(a)

)
 .

Each component of an depends recursively on all components of an−1, and thus, ul-
timately, on all components of the original vector a. This leads to an intricate cross-
branching functional structure, in which component-wise dependencies propagate nonlin-
early across levels. The recursive process combines polynomial evaluation with functional
composition, which results in increasing algebraic complexity at each iteration and makes
closed-form simplification progressively more difficult.

3



2 Multilinear Operation on K4 and Higher Dimen-

sions

Consider the operation ∗ : V × V → V , where V = K4, defined component-wise by the
following rule:

(ab)0 = a0 + b0 + a0b0 + Aa1b1 + Ea3b1 +Ba2b2 +Da1b2 + Fa3b2 + Ca3b3,

(ab)1 = a1 + b1 + a1b0 + a0b1 +Ga1b1 +Ha1b2 + Ia1b3,

(ab)2 = a2 + b2 + a2b0 + a0b2 +Ga2b1 +Ha2b2 + Ia2b3,

(ab)3 = a3 + b3 + a3b0 + a0b3 +Ga3b1 +Ha3b2 + Ia3b3,

where A,B,C,D,E, F,G,H, I ∈ K are fixed parameters.
The explicit form of the product vector a ∗ a := a2 is given by:

a2 =


(a0 + 1)2 + Aa21 +Ba22 + Ca23 +Da1a2 + Ea1a3 + Fa2a3 − 1

a1(Ga1 +Ha2 + Ia3 + 2(a0 + 1))
a2(Ga1 +Ha2 + Ia3 + 2(a0 + 1))
a3(Ga1 +Ha2 + Ia3 + 2(a0 + 1))

 .

It is worth noting that the fourth-degree construction presented here generalizes the
three-dimensional version by introducing additional cross terms involving the fourth co-
ordinate a3. This pattern naturally extends to higher dimensions: new coordinates can
be incorporated into the operation by systematically adding bilinear combinations of the
new components with existing ones, following the same principles demonstrated in the K3

and K4 cases. In this way, one can define analogous second-order multilinear operations
on Kn for arbitrary n, without fundamentally altering the structure.

In particular, if we remove the fourth row and eliminate all monomials involving
the index 3, we recover exactly the three-dimensional version defined earlier. Despite
the conceptual simplicity of this extension, we refrain from presenting the general n-
dimensional case in this work, as the resulting expressions quickly become unwieldy. Our
focus remains on the 3D and 4D instances, which are sufficient to illustrate the core
combinatorial and algebraic phenomena.

3 Analysis of the Algebraic Structure

The binary operation ∗ defined on V = K3 (or more generally on Kn) does not form an
algebraic structure with global associativity or commutativity. This can be seen symboli-
cally from the definition: the presence of asymmetric bilinear terms such as a2b1 (without
corresponding a1b2) breaks symmetry. Therefore, in general,

a ∗ b ̸= b ∗ a, and (a ∗ b) ∗ c ̸= a ∗ (b ∗ c).

The operation also lacks a neutral element for general addition-like cancellation. In
particular, there is no element 0 ∈ V such that

a ∗ 0 = 0 ∗ a = 0

for all a ∈ V . However, the zero vector e = (0, 0, 0) ∈ V plays the role of a multiplicative
identity :

e ∗ e = e, a ∗ e = e ∗ a = a.

4



The structure defined by (V, ∗) is a non-associative, non-commutative, unital magma
with a distinguished identity element. Its algebraic behavior under iteration (powers) is
well-defined for fixed inputs, but the general algebraic axioms (e.g., semigroup, monoid)
do not hold without further restrictions.

Local Commutativity and Power Associativity

Despite the lack of global commutativity and associativity in the operation ∗, it exhibits
certain well-structured behaviors when applied repeatedly to the same vector. In partic-
ular, symbolic computations show that when the operation is iterated on a fixed input
a ∈ V , the resulting powers an := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n times

behave in a commutative and power-

associative manner.

Definition 3.1 (Internal commutativity). A binary operation ∗ on a set V is said to be
internally commutative at an element a ∈ V if for all positive integers m,n, the identity

am ∗ an = an ∗ am

holds. This property applies to powers of a single element rather than to arbitrary pairs
of vectors.

Definition 3.2 (Power associativity). A binary operation ∗ on a set V is said to be power
associative if for every element a ∈ V , the expression an := a ∗ a ∗ · · · ∗ a (with n factors)
is well-defined for all n ∈ N (i.e., for n ≥ 1), regardless of the placement of parentheses.
That is, any parenthesization of the product yields the same result.

Symbolic computations indicate that our operation is power associative and internally
commutative. For instance, the following expressions are symbolically equal:

(a ∗ a) ∗ (a ∗ a) = (a ∗ a ∗ a) ∗ a = a4; and ((a ∗ a ∗ a) ∗ a) ∗ a = a5.

This property ensures that exponentiation via repeated application of the operation is
well-defined and unambiguous.

Proposition 3.3 (Power identity). Assume that ∗ is power associative and internally
commutative. Then for any a ∈ V and for all positive integers m,n, we have

am ∗ an = am+n.

Proof sketch. We proceed by induction on m. The base case m = 1 holds trivially by
definition of an+1:

a ∗ an = an+1.

Assume that the identity holds for m, i.e., am ∗ an = am+n. Then for m+ 1,

am+1 ∗ an = (am ∗ a) ∗ an.

By power associativity, we may regroup as

am ∗ (a ∗ an) = am ∗ an+1.

Applying the inductive hypothesis for m and n+ 1 factors, we get

am ∗ an+1 = am+(n+1) = am+n+1,

which completes the inductive step.

5



4 Hypothesis on the Absence of a Closed Form for

an

Conjecture 4.1 (No closed-form expression). There is no general closed-form expression
for the components of an := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n times

in terms of a fixed polynomial formula with

finitely many terms whose structure does not depend on n.

This conjecture is supported by symbolic expansions computed for a2 and a3, which
reveal rapid growth in both the number and degree of distinct monomials. The number
of monomials in each component of an appears to grow combinatorially with n, while
the degree of the resulting polynomial increases linearly. More precisely, if a ∈ K3, then
each component of an is a multivariate polynomial in a0, a1, a2 of total degree n, but the
number of possible monomials of degree n in three variables is(

n+ 2

2

)
,

which grows quadratically in n. Aggregated over all degrees from 1 to n, the total number
of monomial terms is

n∑
k=1

(
k + 2

2

)
=

(
n+ 3

3

)
− 1,

indicating that the expression becomes increasingly complex with each iteration.
Furthermore, the coefficients of the monomials are not simple constants or binomial

patterns: they depend intricately on the parameters A,B,C,D,E and the combinatorics
of how the terms propagate through nested applications of the operation. The lack of
associativity or distributive structure (in the usual algebraic sense) further complicates
any attempt to compress or simplify the resulting expressions across arbitrary n.

While specific cases (e.g., small n, or special parameter values) may admit simplifica-
tion, it appears unlikely that a uniform closed-form expression for an exists for arbitrary
n. Therefore, recursive or symbolic expansion methods remain the most viable means for
studying the behavior of the sequence {an}n∈N.

5 Hypothesis on the Discrete Iteration Problem

In conventional algebraic systems, such as multiplicative groups over finite fields or elliptic
curves, the discrete logarithm problem (DLP) asks: given g and gn, find n. Analogously,
we introduce the problem of recovering the iteration count n from the power an of a fixed
vector a ∈ V under the operation ∗. We refer to this as the Discrete Iteration Problem
(DIP).

Definition 5.1 (Discrete Iteration Problem (DIP)). Given a vector a ∈ V and an output
v ∈ V such that v = an := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n times

, determine the exponent n ∈ N.

We hypothesize that this problem is computationally hard in general.

Conjecture 5.2 (Hardness of the Discrete Iteration Problem). Let ∗ : V ×V → V be the
second-order multilinear operation defined above, and let a ∈ V be a fixed vector. Then,
given a and an, it is computationally hard to recover n for general parameter values, input
vectors, and sufficiently large n.

6



This conjecture is strongly motivated by the apparent absence of a closed-form expres-
sion for an, as discussed in the previous section. The number of distinct monomials in each
component of an grows combinatorially, and the structure of the resulting polynomials
becomes increasingly intricate with each iteration.

Unlike in classical algebraic groups, where exponentiation follows a single, known al-
gebraic rule (e.g., repeated multiplication in a cyclic group), here each iteration involves
recursive composition of polynomial functions whose form and coefficients change dynam-
ically at every step. This makes direct algebraic inversion exceedingly difficult. Therefore,
recovering n from an would typically require evaluating successive powers a1, a2, . . . , ak

until a match is found—an approach with exponential complexity with respect to the bit
length of n in the worst case.

In this sense, the system exhibits a strong one-way character: it is easy to compute an

from a and n, but computationally hard to reverse the process. This places it in a similar
conceptual category to standard one-way functions used in cryptography, though further
dedicated analysis is required to establish formal security guarantees against various attack
models.

6 Finite Fields and Cryptographic Application

To enable practical computation and potential cryptographic deployment, we consider
restricting the base field K to a finite field or ring. Two natural choices are:

• The finite field Fp = Z/pZ, where p is a prime;

• An extension field Fq = Fp[x]/(f(x)), where f(x) is an irreducible polynomial over
Fp.

In both cases, arithmetic in Kn remains well-defined, and all expressions involving ad-
dition and multiplication of field elements carry over without modification. Importantly,
the core algebraic and combinatorial properties of the operation ∗ — such as second-order
multilinearity, power associativity, and internal commutativity — are preserved when K
is replaced by a finite field. The choice of p or f(x) should be guided by security consid-
erations (e.g., sufficiently large p to resist discrete logarithm attacks in Fp, or appropriate
degree and irreducibility of f(x) for Fq) and computational efficiency.

Key Exchange via Commutative Powers

The properties of internal commutativity and power associativity allow a two-party key
exchange protocol, similar in spirit to the classical Diffie–Hellman scheme, but operating
over a non-associative algebraic structure.

Protocol 1: Key Exchange
Let a ∈ V = Kn be a publicly agreed base vector. Each party selects a private

exponent:

• Alice chooses a secret m ∈ N, computes A = am, and sends it to Bob;

• Bob chooses a secret n ∈ N, computes B = an, and sends it to Alice.

7



Each party then computes the shared key:

K = (am)n = (an)m = am+n,

using internal commutativity and power associativity. An external observer, given a, am,
and an, would need to solve the discrete iteration recovery problem (DIP) to determine m
or n, which, as conjectured earlier, is computationally difficult in general. The hardness
of DIP is a crucial assumption for the security of this protocol.

Discussion

This construction thus leads to a natural algebraic Diffie–Hellman problem (ADHP) over
the non-associative system (V, ∗), defined as follows:

Definition 6.1 (Algebraic Diffie–Hellman Problem). Given a public base vector a ∈ V
and public values am and an, compute am+n without knowing either m or n.

The presumed hardness of ADHP stems from the lack of a closed-form expression for
an, and from the recursive, combinatorially explosive nature of the operation ∗. Unlike
the classical Diffie-Hellman protocol based on modular exponentiation, this protocol relies
on the iterated composition of polynomial functions, which introduces a different type of
algebraic complexity. While further cryptanalysis is required, these properties suggest a
one-way behavior that may be suitable for cryptographic protocols requiring key agree-
ment, pseudorandom generation, or iterative state evolution. Future work should investi-
gate the resistance of this protocol to known attacks and explore potential vulnerabilities
arising from the non-associative nature of the operation.

Code Availability

The Python implementation of the multilinear operations, including the M3 and M4 ex-
amples and the key exchange protocol, is available under an MIT License at the following
GitHub repository: https://github.com/stas-semenov/one-way-multilinear/.

Conclusion

In this work, we introduced and meticulously analyzed a novel class of binary operations
defined on finite-dimensional vector spaces over a field K. These operations, characterized
by second-order multilinear forms with linear shifts, exhibit a fast growth in complexity
under repeated application: the polynomial degree of an increases linearly, while the
number of distinct monomials expands combinatorially.

Despite their general non-associative and non-commutative nature, we demonstrated
that these operations possess crucial properties of power associativity and internal com-
mutativity when iterated on a single vector. These properties ensure that exponentiation
an is well-defined and unambiguous. A central finding is the conjectured absence of a
simple closed-form expression for an, which strongly suggests a one-way characteristic
for these functions: computation in the forward direction is efficient, but its inversion,
formalized as the Discrete Iteration Problem (DIP), appears to be computationally hard.

8

https://github.com/stas-semenov/one-way-multilinear/


Leveraging these unique algebraic properties and the presumed hardness of DIP, we
explored the practical implications of our construction within finite fields. We pro-
posed a Diffie–Hellman-like key exchange protocol and defined the underlying Algebraic
Diffie–Hellman Problem (ADHP), positioning these operations as promising candidates
for novel cryptographic primitives.

Future work will focus on a rigorous cryptanalysis of the proposed ADHP, including
an assessment of its resistance against known attacks and the exploration of potential
vulnerabilities specific to its non-associative structure. Further research directions include
investigating other cryptographic applications, such as digital signatures or pseudorandom
generation, and delving deeper into the algebraic dynamics of these systems, as well as
the impact of various parameters on their properties and computational complexity.

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[2] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, Cambridge, UK, 2001.

[3] Stanislav Semenov. Stratified algebra. arXiv preprint arXiv:2505.18863, 2025.

9


	Multilinear Operation on K³
	Multilinear Operation on K⁴ and Higher Dimensions
	Analysis of the Algebraic Structure
	Hypothesis on the Absence of a Closed Form for aⁿ
	Hypothesis on the Discrete Iteration Problem
	Finite Fields and Cryptographic Application

