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ABSTRACT
Homomorphic encryption schemes based on the Ring-Learning-

with-Errors problem require accurate ciphertext noise analysis to

ensure correctness and security. However, ring multiplications dur-

ing homomorphic computations make the noise in the result ci-

phertexts difficult to characterize. Existing average-case noise anal-

yses derive a bound on the noise by either assuming it follows a

Gaussian distribution, or giving empirical formulae, with strong in-

dependence assumption and the Central Limit Theorem extensively

applied. In this work, we question the validity of these methods,

by showing that the noise exhibits a heavy-tailed distribution via

exact calculation of its variance and kurtosis, for both independent

and dependent noises. The heavy-tailedness suggests the failing

probability of bounds derived from these methods may not be neg-

ligible, and we experimentally demonstrate several cases where the

noise growth is underestimated.

1 INTRODUCTION
The Learning-with-Errors (LWE) problem [Reg05] and its ring-

based variant, Ring-LWE (RLWE) [LPR10], have become the promi-

nent foundation for constructing homomorphic encryption schemes.

These schemes enable computations on encrypted messages while

preserving data privacy. Among them, the most widely used RLWE-

based constructions include BGV [BGV12], BFV [Bra12, FV12], and

CKKS [CKKS17].

In these schemes, the data message is encrypted with the noise
inherited from the RLWE problem in the same mathematical space.

The message and the noise interact and tend to mix together as the

computation goes on. However, to ensure correctness and security,

the message must have its noise removed during decryption, i.e.,

the mathematical space should be large enough to ensure the noise

does not overflow. On the other hand, the size of the message

space should be kept minimal as it affects computational efficiency

and practical usability. Therefore, a precise understanding of the

noise behaviors is crucial for selecting appropriate parameters that

balance security/correctness and efficiency.

However, the polynomialmultiplication structure in RLWEmakes

the noise hard to characterize, even in the simple case where the

initial noise is a polynomial with coefficients as independent Gauss-

ian random variables. Traditional worst-case analyses like [BGV12,
HS20, MML

+
23, CS16] set a probabilistic bound on the initial noise

and track its evolution for each homomorphic operation. However,

this approach is often too conservative and leads to prohibitively

large parameters [CLP20].

In practice, average-case analyses are often preferred. Prior works
like [CCH

+
24, CNP23, MP24] introduce a heuristic assuming that

the product of independent Gaussian polynomials is still Gaussian

using the Central Limit Theorem (CLT), and further assuming the

independence of its coefficients so that this heuristic could be re-
peatedly applied as the computation goes on. These methods track

the variance of the noise and use its Gaussian shape to derive a

probabilistic bound on the noise.

The independence assumption is actually too strong and leads

to underestimation of the noise, rendering it problematic to use.

Ciphertexts in the same circuit are never independent because they

at least share the same key. For ease of discussion, we classify the

dependencies into two kinds: common dependencies and ciphertext
dependencies. Common dependencies come from key materials, like

the secret key, the noise in the public key, and the noise in the key-

switching key. Ciphertext dependencies occur when the encryption

randomness in the ciphertexts is correlated, such as when doing

self-product of the same ciphertext.

The contributions of these dependencies are not negligible. Re-

cent works like [BMCM23, BCM
+
24, BMMU25] focus on addressing

the common dependencies and try to correct the variance. However,

they do not handle the ciphertext dependencies. More crucially,

their approaches still follow in the footsteps of deriving bounds

using Gaussian distributions.

We show that the actual noise has a heavier tail than a
Gaussian distribution, for both independent and dependent
noises. We exactly calculate the variance and the kurtosis of the

noise for multiplications. The kurtosis grows significantly with

the multiplication depth, so CLT-based methods are not repeatedly

applicable. The mathematical root reason is that the ring dimension

𝑁 in RLWE is not large enough for the CLT to apply in deep multi-
plications. We also experimentally verify that using the Gaussian

distribution will lead to underestimation of the actual noise.

We emphasize that, with a heavy-tailed distribution, the variance

alone is not enough to derive a bound. This naturally shows that

the variance-based methods above do not give theoretical
guarantees on its failing probability.

Another line of average-case analyses [HPS19, KPZ21] derive em-

pirical formulae using independent random polynomials. However,

they lack justification for dependent polynomials. We experimen-

tally demonstrate that the empirical formulae give underes-
timation for dependent polynomials like the self-product of
the secret key. Such a structure is pervasive as it exists even in

the noise of the products of independent ciphertexts. Although in

OpenFHE [BAB
+
22] we do not observe decryption failure caused

by such underestimation, we point out it is because of various other

loose inequalities.
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2 BACKGROUND
By the modulo operation [·]𝑞 we reduce the value to the range

(−𝑞/2, 𝑞/2].

2.1 Ring, Embeddings, and Norms
Coefficient Embedding. Let𝑚 be a power-of-two number, 𝜑 (·)
be the totient function, and 𝑁 = 𝜑 (𝑚) =𝑚/2. The𝑚th cyclotomic

polynomial is Φ𝑚 (𝑋 ) = 𝑋𝑁 + 1. The rings we will use are R =

Z[𝑋 ]/Φ𝑚 (𝑋 ) and R𝑄 = Z𝑄 [𝑋 ]/Φ𝑚 (𝑋 ).
An element 𝑓 ∈ R could be written as 𝑓 (𝑋 ) = ∑𝑁−1

ℓ=0 𝑓 |ℓ𝑋 ℓ
, or

viewed as a vector (𝑓 |ℓ ) ∈ Z𝑁
where 𝑓 |ℓ is the ℓ-th coefficient. This

is called the coefficient embedding of 𝑓 .

For 𝑓 and 𝑔 in R, their sum is elementwise and their multiplica-

tion is negacyclic convolution

𝑓 · 𝑔|ℓ =
∑︁

𝑗+𝑘≡ℓ (mod 𝑁 )
𝜉 ( 𝑗 + 𝑘) 𝑓 | 𝑗 · 𝑔|𝑘

where 𝜉 (𝑎) = (−1) ⌊ 𝑎𝑁 ⌋ .
When dealing with probability we may also write 𝑓 ← R𝑁

and

treat it as a polynomial.

Canonical Embedding. Let 𝜎𝑖 : R → C by mapping 𝑋 to 𝜔𝑖
𝑚 ,

where 𝜔𝑚 = exp(2𝜋
√
−1/𝑚). Note that 𝜎𝑖 is a ring homomorphism.

As there are 𝑁 primitive roots of unity in C, let 𝜎 (·) = (𝜎𝑖 (·)), 𝑖 ∈
Z∗𝑚 that maps R to C𝑁

, 𝜎 is again a ring homomorphism, and in

C𝑁
, both addition and multiplication become elementwise. 𝜎 (𝑓 ) is

called the canonical embedding of 𝑓 .

Embedding Norms. For 𝑓 ∈ R, the infinity norm of its canon-

ical embedding is | |𝑓 | |can = | |𝜎 (𝑓 ) | | = max{|𝜎𝑖 (𝑓 ) |}. Since the

multiplication is elementwise, we have

| |𝑓 · 𝑔| |can ≤ ||𝑓 | |can · | |𝑔| |can

The infinity norm of the coefficient embedding is | |𝑓 | | =max{|𝑓 |𝑖 |},
and we have the following results from [DPSZ12]

| |𝑓 · 𝑔| | ≤ 𝑁 · | |𝑓 | | · | |𝑔| |
| |𝑓 | | ≤ | |𝑓 | |can

𝑁 here is often referred to as the worst-case expansion factor.

2.2 Probability
Let 𝜒𝑠 be the uniform ternary distribution, i.e., sampling uniformly

from {−1, 0, 1}; 𝜒𝑒 be the zero-mean discrete Gaussian distribution

with variance 𝜎2

𝑒 [ACC
+
19]; N(0, 𝜎2) be the zero-mean continu-

ous Gaussian distribution;U(−𝑎, 𝑎) be the zero-mean continuous
uniform distribution in [−𝑎, 𝑎].

When we say 𝑓 ← 𝜒 for a 𝑓 ∈ R, we mean 𝑓 |𝑖 are independent
and identically distributed (IID) random variables sampled from

𝜒 . Similarly we define 𝑓 ← N for 𝑓 ∈ R𝑁
. We may directly say a

polynomial is Gaussian or uniform, which means its coefficients

are IID from the corresponding distribution.

Failing Probability. For 𝑋 ∼ N(0, 𝜎2), a 𝐷𝜎 bound has failing

probability of

𝜖 = Pr[|𝑋 | > 𝐷𝜎] = erfc(𝐷/
√
2)

where erfc is the complementary error function.

We give a table on 𝐷 and 𝜖 in Table 1 in a similar style to

[BJSW25]. We note that previous works [KPZ21, CS16] commonly

Table 1: Deviation 𝐷 and failing probability 𝜖.

𝐷 3 6 9.16 10 13.11

log
2
(𝜖) −8 −28 −64 −75 −128

use 𝐷 = 6 but the failing probability is 2
−28

, while [HS20] uses

𝐷 = 10 with a failing probability of 2
−75

.

For a polynomial 𝑓 with 𝑁 coefficients, the 𝐷𝜎 bound on its

infinity norm | |𝑓 | | has a failing probability upper bound of 𝑁𝜖 by

the union bound
1
. For 𝑁 = 2

16
, the failing probability is only upper

bounded by 2
−12

.

Kurtosis. We recall the quantity kurtosis for a zero-mean ran-

dom variable 𝑋 as Kurt[𝑋 ] = E[𝑋 4]/(E[𝑋 2])2. Informally, the

kurtosis measures the tailedness [Wes14]. A continuous Gaussian

distribution has kurtosis 3. In this work we call a distribution with

kurtosis larger than 3 as a heavy-tailed distribution. The larger the

kurtosis, the more it deviates from the Gaussian distribution.

2.3 RLWE-Based Homomorphic Encryption
Schemes

This section first describes common features for the RLWE-based

homomorphic encryption schemes we use. We mainly focus on the

multiplication of ciphertexts in BGV and BFV.

Encryption and Decryption. The secret key has the form

sk = (1, 𝑠) where 𝑠 ∈ R𝑄 is sampled from 𝜒𝑠 .

Encryption ct = Encsk (𝑚) could be expressed as ct = (−𝑎𝑠, 𝑎) +
(𝑚+𝑒, 0) ∈ R2

𝑄
, where the noise 𝑒 is sampled from 𝜒𝑒 and the mask

𝑎 is sampled uniformly. Note that the message 𝑚 or the noise 𝑒

might be scaled by the scheme.

Homomorphic operations ensure the form𝑚+𝑣 to be maintained

inside a ciphertext, where 𝑣 is viewed as the noise. We refer to𝑚+𝑣
as the message-and-noise term.

Decryption𝑚 = Decsk (ct) could be divided into two steps, first

getting the message-and-noise term by taking an inner product

with the secret key ⟨ct, sk⟩ =𝑚 + 𝑣 ; then getting the message by a

rounding process Round specific to the scheme𝑚 = Round(𝑚 + 𝑣).
For public key encryption, the secret key could be transformed

into a public key pk = (𝑏, 𝑎) = (−𝑎𝑠 + 𝑒pk, 𝑎) ∈ R2

𝑄
, and the public

key encryption is constructed as

ct = (𝑏 · 𝑢, 𝑎 · 𝑢) + (𝑚 + 𝑒0, 𝑒1)
⟨ct, sk⟩ =𝑚 + (𝑒0 + 𝑢 · 𝑒pk + 𝑒1 · 𝑠)

𝑣 = 𝑒0 + 𝑢 · 𝑒pk + 𝑒1 · 𝑠
with 𝑢 ← 𝜒𝑠 and 𝑒𝑖 ← 𝜒𝑒 .

Ciphertext Multiplication. Ciphertext multiplication often

involves multiple steps. The core step is the tensor product

ct0 ⊗ ct1 = (𝑐 (0)
0

𝑐
(1)
0

, 𝑐
(0)
1

𝑐
(1)
0
+ 𝑐 (0)

0
𝑐
(1)
1

, 𝑐
(0)
1

𝑐
(1)
1
)

In this step, the message-and-noise term𝑚 + 𝑣 also gets multiplied

by other terms, so the noise experiences ring multiplication here.

Modulus Switching. A ciphertext in R𝑄𝐿
could be switched to

R𝑄𝐿−1 by a process calledmodulus switching, where𝑄𝐿 = 𝑞𝐿 ·𝑄𝐿−1.
This could be done by dividing the ciphertext by 𝑞𝐿 . However, its

1
Independence could make it tighter to 1 − (1 − 𝜖 )𝑁 , but it is still similar to 𝑁𝜖 .
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coefficients may not be divisible by 𝑞𝐿 directly so a rounding term

is introduced to make the coefficients divisible by 𝑞𝐿

𝛿 = ( [−𝑐0]𝑞𝐿 , [−𝑐1]𝑞𝐿 ) = (𝜏0, 𝜏1) · 𝑞𝐿 𝜏𝑖 ∈ [−1/2, 1/2]
𝛿 ≡ (−𝑐0,−𝑐1) ≡ −ct (mod 𝑞𝐿)

Then ct + 𝛿 could be divided by 𝑞𝐿 , and the resulting ciphertext

and its noise are

ms(ct) = ct + 𝛿
𝑞𝐿

=

⌊
ct

𝑞𝐿

⌉
+ (𝜏0, 𝜏1)

𝑣ms(ct) =

⌊
𝑣ct

𝑞𝐿

⌉
+ 𝜏0 + 𝜏1𝑠

Here if 𝑞𝐿 is large enough, the major term is 𝜏1𝑠 , a product of a

polynomial and the secret key. Often 𝜏1 is assumed to be uniform

and independent for different ciphertexts.

2.3.1 BGV. The message-and-noise term has the form𝑚 + 𝑡 · 𝑒
with a plaintext modulus 𝑡 separating the noise in the high bits

from the message in the low bits.

The public key is adapted to pk = (𝑏, 𝑎) = (−𝑎𝑠 + 𝑡 · 𝑒pk, 𝑎) ∈ R2

𝑄

where the error is put in the high bits. For a freshly public-key

encrypted ciphertext, its noise is

𝑣 = 𝑡 (𝑒0 + 𝑢 · 𝑒pk + 𝑒1 · 𝑠)

After the tensor product, the noise is

𝑚2 + 𝑣2 = (𝑚0 + 𝑣0) · (𝑚1 + 𝑣1)
𝑣2 = 𝑣0𝑣1 +𝑚0𝑣1 +𝑚1𝑣0 + (𝑚1𝑚0 −𝑚2)

𝑣0𝑣1 is the major term as | |𝑚𝑖 | | < 𝑡 and | |𝑣𝑖 | | > 𝑡 .

2.3.2 BFV. The message-and-noise term has the form

⌊
𝑄

𝑡
𝑚

⌉
+𝑒

by putting the message in the high bits [KPZ21].

To conduct a multiplication, we first need to convert ciphertexts

in R𝑄 to R = Z[𝑋 ]/Φ𝑚 (𝑋 ), whose message-and-noise term has

the form

⟨ct, sk⟩ =
⌊
𝑄

𝑡
𝑚

⌉
+ 𝑒 + ℎ𝑄

ℎ𝑄 = 𝑐0 + 𝑐1𝑠 −
⌊
𝑄

𝑡
𝑚

⌉
− 𝑒

We call ℎ the high term. In it 𝑐1𝑠 is the major term. As 𝑐𝑖 ∈
[−𝑄/2, 𝑄/2], we can approximate ℎ with 𝜇𝑠 where 𝜇 ∈ [−1/2, 1/2].
Prior works often assume 𝜇 is uniform and independent for different

ciphertexts.

After the tensor product, the result message has the scale of
𝑄2

𝑡2
,

and the noise becomes

𝑄

𝑡

(⌊
𝑄

𝑡
𝑚0𝑚1

⌉
+ 𝑣2 + ℎ2𝑄

)
=

(⌊
𝑄

𝑡
𝑚0

⌉
+ 𝑣0 + ℎ0𝑄

)
·
(⌊
𝑄

𝑡
𝑚1

⌉
+ 𝑣1 + ℎ1𝑄

)
𝑣2 = 𝑡 (𝑣0ℎ1 + 𝑣1ℎ0) +𝑚0𝑣1 +𝑚1𝑣0 +

𝑡

𝑄
𝑣0𝑣1 + · · ·

The major term in 𝑣2 is 𝑡 (𝑣0ℎ1 + 𝑣1ℎ0).

3 BRIEF REVIEW OF EXISTING NOISE
ANALYSES

We remark that, no matter worst-case or average-case analyses,

they only provide probabilistic bounds due to the unbounded nature

of the Gaussian distribution
2
. As far as we are aware, an exact cal-

culation of the failing probability in all analyses for RLWE remains

an open problem. On one hand, the looseness of certain bounds

reduces the failing probability by a large margin. On the other hand,

aggressive heuristics and dependencies among polynomials may

make the failing probability larger than conjectured.

3.1 Worst-Case
Worst-case noise analyses give a bound on the initial noise and

track its evolution for each homomorphic operation.

Coefficient Embedding. For key 𝑠 ← 𝜒𝑠 and error 𝑒 ← 𝜒𝑒 , the

bounds 𝐵key = 1 and 𝐵err = 𝐷𝜎𝑒 are used. The former is a tight

bound, whereas the latter is a probabilistic bound.

For the product of 𝑓 , 𝑔← R, the bound evolves as

| |𝑓 · 𝑔| | ≤ 𝑁 · | |𝑓 | | · | |𝑔| |

However, the expansion factor𝑁 is often too loose to use in practice.

Canonical Embedding. For a polynomial 𝑓 ← N(0, 𝜎2) in R𝑁
,

𝑓 (𝜔𝑖
𝑚) is distributed as a complex Gaussian with variance 𝑁𝜎2

. So

the canonical embedding 𝜎 (𝑓 ) can be probabilistically bounded by

| |𝑓 | |can ≤ 𝐷𝜎
√
𝑁

For other polynomials like 𝑠 ← 𝜒𝑠 , 𝑠 (𝜔𝑖
𝑚) is heuristically as-

sumed to be distributed as a complex Gaussian using the CLT

[GHS12, HS20], and similar bounds can be derived. Works like

[MML
+
23, CS16] extend this idea to terms like 𝑒𝑠 and 𝜏𝑠 .

For the product of 𝑓 , 𝑔← R, the bound evolves as

| |𝑓 · 𝑔| |can ≤ ||𝑓 | |can · | |𝑔| |can

Finally we can give a bound for the coefficient embedding by

| |𝑓 · 𝑔| | ≤ | |𝑓 · 𝑔| |can. This is often loose.

3.2 Average-Case: Variance-Based
This line of work tracks the variance of the noise by the following

heuristic:

Heuristic 1 (Gaussian). The noise in all ciphertexts can be well
approximated by Gaussian polynomials.

This heuristic is established by extensively applying CLT [CCH
+
24]

or experimentally verifying [BMCM23]. With it, a bound on the

noise could be derived as 𝐷𝜎 .

Independence. [CCH+24, CNP23, MP24] assumed the indepen-

dence of the coefficients of the noise.

Heuristic 2 (Independence [CCH
+
24]). For two independent

Gaussian polynomials 𝑓 , 𝑔 ∈ R𝑁 with coefficients from N(0, 𝜌2)
and N(0, 𝜌 ′2), respectively, their product ℎ = 𝑓 · 𝑔 could still be
approximated by a Gaussian polynomial with independent coefficients,
each with variance

𝜌2
ℎ
= 𝑁 · 𝜌2 · 𝜌 ′2

2
Except [HS20] which employs rejection sampling to ensure probability-1 bounds.
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However, this method often underestimates, as the independence

assumption is often too strong.

Classification of Dependencies. We classify the dependencies

into two kinds: common dependencies and ciphertext dependencies.
Common dependencies come from keymaterials used in the scheme,

such as the secret key 𝑠 , the noise in the public key 𝑒pk, and the noise

in the key-switching key. Ciphertext dependencies are resulted from

the encryption randomness used in the ciphertexts, such as 𝑒ct and

𝑢ct, and other terms like the modulus switching error 𝜏ct and the

high term ℎct in BFV.

Addressing Common Dependencies. To mitigate the prob-

lematic independence assumption, [BMCM23, BCM
+
24, BMMU25]

essentially track the common dependencies alongside the variance,
like the degree of 𝑠𝑘 , and give a correction factor based on such

degrees.

For a multiplication of two polynomials with variance 𝜌2 and

𝜌 ′2, and with the secret key degrees 𝑘 and 𝑘 ′, the result variance is

𝜌2
mul

= 𝑁 · 𝐹 (𝑘, 𝑘 ′) · 𝜌2 · 𝜌 ′2

where 𝐹 is the correction function. Notably, [BMCM23, BMMU25]

establish the correction function through experiments, and we will

comment on this approach later.

Their method only applies to independent ciphertexts, i.e., when

the ciphertext dependencies do not introduce other correction fac-

tors. [BMCM23] studied an example where the contribution of the

ciphertext dependencies could be ignored, but generally it is not

the case. Even if further development in this line may be able to

introduce all correction factors, they are still using the Gaussian

Heuristic to derive the bound.

3.3 Average-Case: Experiment-Based
[HPS19, KPZ21] experimentally determine the bound of the prod-

uct of discrete Gaussian and uniform ternary polynomials in the

coefficient embedding, and use 𝐶 ·
√
𝑁 where 𝐶 = 2 as the average-

case expansion factor. Namely, for random polynomials 𝑓 , 𝑔 ← R
that are either from 𝜒𝑠 or 𝜒𝑒 , they have

| |𝑓 · 𝑔| | ≤ 2

√
𝑁 · | |𝑓 | | · | |𝑔| |

They then use it for all other multiplications of random polynomials.

4 GAUSSIAN NOISE IS NOT GAUSSIAN AFTER
MULTIPLICATION

In this section we study the behavior of products of Gaussian ran-

dom polynomials for both independent and dependent cases. We

show that after a few multiplications, the distribution of the re-

sulting polynomial is no longer approximatable by the Gaussian

distribution as it has larger kurtosis. This contradicts the Gaussian

Heuristic.

For the ease of exposition, we directly use N(0, 1) for all Gauss-
ian random variables as the parameterized version could be easily

derived with proper scaling. We use the continuous Gaussian dis-

tribution instead of discrete Gaussian as it is easier to analyze.

4.1 Independent Gaussian
Theorem 4.1 (Product of Independent Gaussian Polynomi-

als). For 𝑘 independent polynomials 𝑓1, 𝑓2, · · · , 𝑓𝑘 ← N(0, 1) and

𝑓𝑖 ∈ R𝑁 , with an even 𝑁 , the ℓ-th coefficient 𝐹 |ℓ of their product
𝐹 =

∏𝑘
𝑖 𝑓𝑖 has the following properties

E [𝐹 |ℓ ] = 0

Var (𝐹 |ℓ ) = E
[
𝐹 |2ℓ

]
= 𝑁𝑘−1

Cov (𝐹 |ℓ , 𝐹 |ℓ′ ) = E [𝐹 |ℓ · 𝐹 |ℓ′ ] = 0 (ℓ ≠ ℓ ′)

E
[
𝐹 |4ℓ

]
= 3𝑁 2𝑘−2 + 3(2𝑘 − 2)𝑁 2𝑘−3

Kurt = 3 + 32
𝑘 − 2
𝑁

Proof. Here is the proof for the variance. Other parts are de-

ferred to the appendix.

Let Iℓ = {(𝛼1, 𝛼2, · · · , 𝛼𝑘 ) |𝛼 𝑗 ∈ [𝑁 ],
∑

𝑗 𝛼 𝑗 ≡ ℓ (mod 𝑁 )} be
the index set for ℓ . It could be viewed as an assigning problem with

𝑘 − 1 degrees of freedom, so |Iℓ | = 𝑁𝑘−1
.

For 𝛼 = (𝛼 𝑗 ) ∈ Iℓ , we use the notation 𝜉 (𝛼) = 𝜉 (∑𝛼 𝑗 ), and let

𝑌𝛼 =
∏

𝑗 𝑓𝑗 |𝛼 𝑗
then we can express the product as

𝐹 |ℓ =
∑︁
𝛼∈Iℓ

𝜉 (𝛼)𝑌𝛼

𝐹 |2ℓ =
∑︁

𝛼,𝛽∈Iℓ

𝜉 (𝛼)𝜉 (𝛽)𝑌𝛼𝑌𝛽

Notice that 𝑌𝛼𝑌𝛽 could be written in this form

𝑌𝛼𝑌𝛽 =
∏
𝑗

𝑓𝑗 |𝛼 𝑗
· 𝑓𝑗 |𝛽 𝑗

E[𝑌𝛼𝑌𝛽 ] =
∏
𝑗

E
[
𝑓𝑗 |𝛼 𝑗

· 𝑓𝑗 |𝛽 𝑗
]

as the 𝑓𝑗 are independent. The only way it has non-zero value is

when ∀𝑗, 𝛼 𝑗 = 𝛽 𝑗 , so 𝛼 = 𝛽 . The sign is always 𝜉 (𝛼)2 = 1. As there

are in total 𝑁𝑘−1
possible 𝛼 , the variance is 𝑁𝑘−1

. □

Remark 1. When 𝑘 = 2, for a general even 𝑁 , the above distribu-
tion is a Variance-Gamma distribution as it is a summation of products
of two Gaussian variables ([Gau14], Corollary 2.5). Especially, the
𝑘 = 2, 𝑁 = 2 case is exactly the Laplace distribution.

This theorem partially aligns with the Gaussian Heuristic when

𝑘 = 2 as the extra term in the kurtosis
2

𝑁
for typical 𝑁 = 2

16

is small. However, after several multiplications, say 𝑘 = 17, the

kurtosis will be larger than 6 and the distribution will become no

longer Gaussian.

Note that when 𝑁 goes to infinity, the kurtosis will be 3 for any

𝑘 , aligning with the CLT. But in practice, 𝑁 is not so large and the

multiplication depth 𝑘 will dominate its growth. This suggests that

the CLT should not be applied for deep multiplications in RLWE

settings.

We have also experimentally verified that Gaussian distribution

could not be used to bound the noise in Figure 1a. Initially, the

observed maximal noise is close to the Gaussian bound with 𝐷 = 6.

However, after deep multiplications, it exceeds the Gaussian bound.

4.2 Dependent Gaussian
The heavy-tail situation will become worse when we are facing

dependent polynomials. First we introduce a lemma that converts

the high-order moment calculation of Gaussian random variables

to a combinatorial counting problem.

4



0 5 10 15 20 25 30

#Mult

0

2

4

6

8

lo
g
2
(v
)
−

lo
g
2
(σ

)

StdErr

Gaussian Bound

Max Noise (100 Tests)

Max Noise (1k Tests)

Max Noise (10k Tests)

Max Noise (100k Tests)

Max Noise (300k Tests)

(a) Independent Gaussian Polynomials.
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Figure 1: The maximal noise observed in experiments compared with the standard error 𝜎 and Gaussian bound 6𝜎 . The input
polynomial 𝑒 is sampled from 𝜒𝑒 for each test with 𝑁 = 2

16. The left figure demonstrates the maximal noise of 𝑣 = 𝑒1𝑒2 · · · 𝑒𝑘 ,
while the right figure demonstrates the maximal noise of 𝑣 = 𝑒𝑘 . The 𝑥-axis is the number of multiplications, ranging from 1 to
32, and the 𝑦-axis is the logarithm of the maximal noise observed, minus the logarithm of the standard error. We draw the
maximal noise for 100, 1k, 10k, 100k, and 300k tests to demonstrate the heavy-tailedness of the distribution as the maximal
noise grows significantly with the number of tests. Some data points with fewer tests are higher than those with more tests,
because data for different numbers of tests are individually collected.

Lemma 4.2 (Isserlis [Iss18]). Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be (possibly de-
pendent) Gaussian random variables with mean 0, then the expecta-
tion of their product is

E [𝑋1𝑋2 · · ·𝑋𝑛] =
∑︁

𝑝∈𝑃𝑃 (𝑛)

∏
(𝑖, 𝑗 ) ∈𝑝

E
[
𝑋𝑖𝑋 𝑗

]
where 𝑃𝑃 (𝑛) is the set of partitions of [𝑛] = {1, 2, . . . , 𝑛} into disjoint
pairs. Note that |𝑃𝑃 (𝑛) | = (𝑛 − 1)!! when 𝑛 is even. An example for
𝑛 = 4 is

E[𝑋1𝑋2𝑋3𝑋4]
=E[𝑋1𝑋2]E[𝑋3𝑋4] + E[𝑋1𝑋3]E[𝑋2𝑋4] + E[𝑋1𝑋4]E[𝑋2𝑋3]

Theorem 4.3 (Power of Gaussian Polynomials). For a polyno-
mial 𝑓 ← N(0, 1) and 𝑓 ∈ R𝑁 , with an even 𝑁 , the ℓ-th coefficient
of 𝐹 = 𝑓 𝑘 has the following properties

E[𝐹 |ℓ ] = 0

Var(𝐹 |ℓ ) = E[𝐹 |2ℓ ] = 𝑘!𝑁𝑘−1

Cov(𝐹 |ℓ , 𝐹 |ℓ′ ) = E[𝐹 |ℓ · 𝐹 |ℓ′ ] = 0 (ℓ ≠ ℓ ′)

E[𝐹 |4ℓ ] = 3(𝑘!)2𝑁 2𝑘−2 + 3((2𝑘)! − 2(𝑘!)2)𝑁 2𝑘−3

Kurt = 3 + 3
(
2𝑘
𝑘

)
− 2

𝑁

Proof. Here is the proof for the variance that shows the essense

of our proof technique. Other parts are deferred to the appendix.

Let 1 be the indicator function. Following the notation in Theo-

rem 4.1.

𝐹 |2ℓ =
∑︁

𝛼,𝛽∈Iℓ

𝜉 (𝛼)𝜉 (𝛽)𝑌𝛼𝑌𝛽

E[𝑌𝛼𝑌𝛽 ] =
∑︁

𝑝∈𝑃𝑃 (𝛼,𝛽 )

∏
(𝑖, 𝑗 ) ∈𝑝

E[𝑓 |𝑖 · 𝑓 | 𝑗 ] =
∑︁

𝑝∈𝑃𝑃 (𝛼,𝛽 )
1∀(𝑖, 𝑗 ) ∈𝑝,𝑖=𝑗 (𝑝)

where 𝑃𝑃 (𝛼, 𝛽) is the set of partitions of {𝛼1, · · · , 𝛼𝑘 , 𝛽1, · · · , 𝛽𝑘 }
into disjoint pairs. Let 𝑃𝑃 (2𝑘) be the set of partitions of [2𝑘] =
{1, 2, · · · , 𝑘, 𝑘 + 1, · · · , 2𝑘} into disjoint pairs, 𝑃𝑃 (𝛼, 𝛽) is an instan-

tiation of 𝑃𝑃 (2𝑘) by substituting 𝑖 with 𝛼𝑖 and 𝑘 + 𝑗 with 𝛽 𝑗 .

For a partition 𝑝 ∈ 𝑃𝑃 (𝛼, 𝛽), it may contain pairs like (𝛼𝑖 , 𝛽 𝑗 ),
(𝛼𝑖 , 𝛼 𝑗 ), or (𝛽𝑖 , 𝛽 𝑗 ). The indicator function 1∀(𝑖, 𝑗 ) ∈𝑝,𝑖=𝑗 (𝑝) has non-
zero value if given 𝛼 and 𝛽 and the partition 𝑝 , all pairs in it satisfy

the equality.

With change of summation order among 𝛼, 𝛽 , and 𝑝 , we can ex-

press the variance as

E[𝐹 |2ℓ ] =
∑︁

𝑝∈𝑃𝑃 (2𝑘 )

∑︁
𝛼,𝛽∈Iℓ

𝜉 (𝛼)𝜉 (𝛽)1∀(𝑖, 𝑗 ) ∈𝑝,𝑖=𝑗 (𝑝)

Now we assert that we only need to consider those 𝑝 that only

contain (𝛼𝑖 , 𝛽 𝑗 ) pairs. The reason is that for any 𝑝 containing

(𝛼𝑖 , 𝛼 𝑗 ), for the indicator to be non-zero, we have 𝛼𝑖 = 𝛼 𝑗 , then

we can find another 𝛼 ′ with only these two points changed to

𝛼 ′𝑖 = 𝛼 ′𝑗 = 𝛼𝑖 + 𝑁
2
(mod 𝑁 ) and other points fixed. Here note 𝑁

is even. Then this will inflict a sign change 𝜉 (𝛼 ′) ≠ 𝜉 (𝛼) as the
summation of 𝛼 ′ is exactly one 𝑁 off that of 𝛼 and they will cancel

out. The same applies for (𝛽𝑖 , 𝛽 𝑗 ).
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Given a partition 𝑝 that only contains pairs of form (𝛼𝑖 , 𝛽 𝑗 ), for
the indicator function to be non-zero, we have 𝛼𝑖 = 𝛽 𝑗 for all pairs,

so an 𝛼 uniquely determines a 𝛽 and 𝜉 (𝛼) = 𝜉 (𝛽). As there are 𝑘!
possible 𝑝 , the final variance is 𝑘!𝑁𝑘−1

. □

For 𝑁 = 2
16
, 𝑘 = 10 will make the kurtosis larger than 6, making

it no longer approximatable by a Gaussian.

We have also experimentally verified that Gaussian distribution

could not be used to bound the noise in Figure 1b. Compared with

Figure 1a, the maximal noise exceeds the Gaussian bound much

earlier due to the faster growing kurtosis. We also note that for

deepermultiplications, a few tests seem to suggest that the Gaussian

bound could be used, but after more tests the maximal noise grows

beyond the Gaussian bound. This is caused by the heavy-tailedness

of the distribution. We believe that with more testing the peak of

the maximal noise lines in Figure 1b move towards the upper right.

Already, the current peak of 8 suggests a𝐷 = 2
8 = 64 deviation, and

if it conforms to Gaussian distribution, it means a failing probability

erfc(64/
√
2) ≈ 2

−2961
, which should not happen in practice.

4.3 Variance of Noise
A noise expression is a summation of products of independent Gauss-
ian polynomials

𝑣 =
∑︁
𝑖

∏
𝑗

𝑓
𝑘𝑖,𝑗
𝑖, 𝑗

where 𝑘𝑖, 𝑗 is the degree of the polynomial 𝑓𝑖, 𝑗 . Within one 𝑖 , all 𝑓𝑖, 𝑗
are different, but between 𝑖 and 𝑖′ it may happen that 𝑓𝑖, 𝑗 = 𝑓𝑖′, 𝑗 ′ .

We define the degree of the 𝑖-th term as 𝑘𝑖 =
∑

𝑗 𝑘𝑖, 𝑗 , and the

degree of the noise as 𝑘 =max𝑖 𝑘𝑖 .

For mixed product of polynomials, we can use similar argument

and get the following result.

Proposition 4.4 (Product of Powers). For 𝑢 independent poly-
nomials 𝑓1, 𝑓2, · · · , 𝑓𝑢 ← N(0, 1) and 𝑓𝑖 ∈ R𝑁 , with an even 𝑁 , given
a tuple (𝑘1, 𝑘2, · · · , 𝑘𝑢 ) such that 𝑘𝑖 > 0 and

∑𝑢
𝑖 𝑘𝑖 = 𝑘 , the ℓ-th

coefficient of 𝐹 =
∏

𝑓
𝑘𝑖
𝑖

has the following properties

E[𝐹 |2ℓ ] = 𝑁𝑘−1
∏
𝑖

𝑘𝑖 !

Kurt = 3 + 3
∏

𝑖

(
2𝑘𝑖
𝑘𝑖

)
− 2

𝑁

Then for deriving the variance of the noise expression, as there

are summations, we need to examine the covariance of the 𝑖-th and

𝑖′-th terms. It turns out that their covariance is 0.

Proposition 4.5 (No Covariance). Let 𝐹 and 𝐹 ′ be the 𝑖-th and
𝑖′-th terms in the noise expression above, then the covariance of the

ℓ-th coefficient of 𝐹 =
∏

𝑗 𝑓
𝑘𝑖,𝑗
𝑖, 𝑗

and 𝐹 ′ =
∏

𝑗 𝑓
𝑘𝑖′, 𝑗
𝑖′, 𝑗 is

Cov(𝐹 |ℓ , 𝐹 ′ |ℓ ) = E[𝐹 |ℓ · 𝐹 ′ |ℓ ] = 0

Proof. Following the proof in Theorem 4.3. If a partition of 𝛼, 𝛽

exists, there will always be a pairing inside 𝛼 (or 𝛽), as otherwise

𝐹 is identical with 𝐹 ′, so we can find another 𝛼 ′ (or 𝛽 ′) to cancel

out. □

Finally we can derive the variance of the noise expression.

Theorem 4.6 (Variance of Noise). The variance of the ℓ-th
coefficient of the noise expression 𝑣 is

Var(𝑣 |ℓ ) =
∑︁
𝑗

𝑁𝑘 𝑗 −1
∏
𝑖

𝑘𝑖, 𝑗 !

We remark that the exact derivation of the kurtosis for a general

noise expression remains open as it is a more complicated combina-

torial expression. But the two extreme cases in the previous sections

already demonstrate its heavy-tailedness. Also, Figure 3 experimen-

tally shows the heavy-tailedness of real-world noise expressions

when having large degrees.

5 POWER OF SECRET KEY / UNIFORM NOISE
We also study the distribution for the self-product of the secret

key. For products of independent polynomials from the secret key

distribution, their variance follows the 𝑁𝑘−1
growth. However, for

dependent polynomials, the variance is more complicated, as we

demonstrate below

Example 5.1. For a 𝑓 ← 𝜒𝑠 and 𝑓 ∈ R = Z[𝑋 ]/(𝑋𝑁 + 1) where
𝑁 is even, as the variance of 𝜒𝑠 is 𝜎

2

𝑠 = 2/3, the ℓ-th coefficient of

𝑓 2 has the following property

Var[𝑓 2 |2ℓ ] =
{
2𝑁𝜎4

𝑠 ℓ is odd

(2𝑁 − 3)𝜎4

𝑠 ℓ is even

Proof. Let 1 be the indicator function, and Even be the set of

even numbers, we have

𝑓 2 |ℓ =
∑︁

𝑗+𝑘≡ℓ (mod 𝑁 )
𝜉 ( 𝑗 + 𝑘) 𝑓𝑗 𝑓𝑘

=
∑︁
𝑗<𝑘

2𝜉 ( 𝑗 + 𝑘) 𝑓𝑗 𝑓𝑘 + 1Even (ℓ)
(
𝑓 2ℓ
2

− 𝑓 2ℓ+𝑁
2

)
E[𝑓 2 |ℓ ] = 0

E[𝑓 2 |2ℓ ] =
∑︁

𝜉 ( 𝑗 + 𝑘)𝜉 ( 𝑗 ′ + 𝑘 ′)E[𝑓𝑗 𝑓𝑗 ′ 𝑓𝑘 𝑓𝑘′ ]

= 2

∑︁
𝑗<𝑘

(
2

1

)
E[𝑓 2𝑗 ]E[𝑓 2𝑘 ]

+ 1Even (ℓ)
(
E[𝑓 4ℓ

2

] + E[𝑓 4ℓ+𝑁
2

] − 2E[𝑓 2ℓ
2

]E[𝑓 2ℓ+𝑁
2

]
)

= 4

𝑁 − 2 · 1Even (ℓ)
2

𝜎4 + 1Even (ℓ) · 𝜎4

□

For higher-order powers like 𝑓 𝑘 , the variance of 𝑓 𝑘 |ℓ will bemore

complicated depending on 𝑁 and ℓ . We heuristically use 𝑘!𝑁𝑘−1

to approximate them as the cross terms (i.e., 𝑗 < 𝑘) dominate the

variance in the above proof, especially when 𝑁 is large.

Proposition 5.2 (Power of Uniform). For 𝑓 ∈ R𝑁 with coef-
ficients uniformly sampled fromU(−𝑞, 𝑞) with variance 𝜎2 = 𝑞2/3,
when 𝑁 is large, the variance of 𝑓 𝑘 could be approximated by

Var(𝑓 𝑘 |ℓ ) = 𝑘!𝑁𝑘−1𝜎2𝑘

We have also experimentally verified the distributions of the

product of independent keys and the self-product of the same key in

Figure 2. They show similar heavy-tailed behaviors as the products

of Gaussian polynomials in Figure 1.
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(a) Independent Key Polynomials.
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(b) Same Key Polynomial.

Figure 2: The maximal noise observed in experiments compared with the standard error 𝜎 and Gaussian bound 6𝜎 . The input
polynomial 𝑠 is sampled from 𝜒𝑠 for each test with 𝑁 = 2

16. The left figure demonstrates the maximal noise of 𝑣 = 𝑠1𝑠2 · · · 𝑠𝑘 ,
while the right figure demonstrates the maximal noise of 𝑣 = 𝑠𝑘 . Other description follows Figure 1.

6 CASE STUDIES
We give two case studies to emphasize how ciphertext dependencies
significantly contribute to the variance under multiplications.

In particular, we focus on the following terms for ciphertext

dependencies:

• The encryption randomness in each ciphertext ct like

𝑢ct ← 𝜒𝑠 , 𝑒ct ← 𝜒𝑒 .

• The high term ℎct = 𝜇ct𝑠 for ciphertext ct in the BFV

scheme, with 𝜇ct from uniform distribution in [−1/2, 1/2].
We heuristically assume that these terms are independent if they

are from different ct.
We emphasize that previous sections have already established

that the variance is not the only metric to consider when deriving

the noise bound.

For convenience, we only track the terms with the highest degree

because their variances have a factor 𝑁𝑘−1
and become dominant.

6.1 BGV Multiplication, Dependent vs.
Indepenent

The noise of a freshly encrypted ciphertext ct is expressed as

𝑣ct = 𝑡 (𝑢ct · 𝑒pk + 𝑒ct · 𝑠)

Case 1. The ratio between the variance of the noise of the 𝑘-th ten-
sor product of one ciphertext and that of the product of 𝑘 independent
ciphertexts is

Var

(
𝑣ct𝑘

)
Var

(
𝑣∏𝑘

𝑗=1
ct𝑗

) = 𝑘!

with the condition that there is no modulus switching, and relineariza-
tion is conducted but introduces negligible noise.

Proof.

𝑣ct𝑘 = 𝑡𝑘 (𝑢ct · 𝑒pk + 𝑒ct · 𝑠)𝑘

= 𝑡𝑘
∑︁
𝑖

(
𝑘

𝑖

)
(𝑢ct · 𝑒pk)𝑘−𝑖 (𝑒ct · 𝑠)𝑖

Var(𝑣ct𝑘 ) = 𝑡2𝑘𝑁 2𝑘−1
∑︁
𝑖

(
𝑘

𝑖

)
2

((𝑘 − 𝑖)!)2 (𝑖!)2 = 𝑡2𝑘𝑁𝑘−1𝑘!(𝑘 + 1)!

𝑣∏
𝑗 ct𝑗 = 𝑡𝑘

∏
𝑗

(𝑢ct𝑗 · 𝑒pk + 𝑒ct𝑗 · 𝑠)

In it we have

(𝑘
𝑖

)
terms that have the form 𝑒𝑖pk𝑠

𝑘−𝑖 ∏𝑢ct𝑒ct, then

its variance is

Var(𝑣∏
𝑗 ct𝑗 ) = 𝑡2𝑘𝑁 2𝑘−1

∑︁
𝑖

(
𝑘

𝑖

)
(𝑘 − 𝑖)!𝑖!

= 𝑡2𝑘𝑁 2𝑘−1 (𝑘 + 1)!
□

Our experiments in Figures 3a and 3b compare the variance

derived above with the real noise. The real noise aligns with the

predicted Gaussian bound initially, but then temporarily exceeds it,

and finally drops. This is caused by the heavy-tailedness, i.e., the

maximal noise significantly changes with more tests, and (its left

half) is in accordance with Figures 1 and 2. If they conform to a

Gaussian distribution, regardless of the correctness of the variance

calculation, the maximal noise observed should not differ by more

than 10 bits (meaning 𝐷 > 2
10
) across different numbers of tests.

6.2 BFV Multiplication, Dependent vs.
Independent

The noise of a freshly encrypted ciphertext ct is be expressed as

𝑣ct = 𝑢ct · 𝑒pk + 𝑒ct · 𝑠
7



A BFV ciphertext ct takes multiplications in R = Z[𝑋 ]/Φ𝑚 (𝑋 )
instead of in R𝑄 , so at this time we have

⟨ct, sk⟩ =
⌊
𝑄

𝑡
𝑚

⌉
+ 𝑣ct + ℎct𝑄

Case 2. The ratio between the variance of the noise of the 𝑘-th ten-
sor product of one ciphertext and that of the product of 𝑘 independent
ciphertexts is

Var

(
𝑣ct𝑘

)
Var

(
𝑣∏𝑘

𝑗=1
ct𝑗

) = 2(𝑘 − 1)!

with the condition that after each tensor product the relinearization
process is conducted but introduces negligible noise. Note that the
multiplications happen in a sequential manner instead of a binary
tree style.

Proof.

𝑣ct𝑘 = 𝑡𝑘−1 · 2(𝑢ct · 𝑒pk + 𝑒ct · 𝑠)𝜇𝑘−1ct 𝑠𝑘−1

𝑣∏
𝑗 ct𝑗 = 𝑡𝑘−1 ·

2∑︁
𝑖=1

(𝑢ct𝑖 · 𝑒pk + 𝑒ct𝑖 · 𝑠)𝑠𝑘−1
𝑘∏
𝑗≠𝑖

𝜇ct𝑗

□

The experiments in Figures 3c and 3d show similar behaviors to

the BGV case.

7 CRITIQUE OF EXISTING AVERAGE-CASE
ANALYSIS

7.1 Variance-Based
Theorems 4.1 and 4.3 show that the Gaussian Heuristic (and the

CLT) is not applicable for deep multiplications, as the tail is too

heavy to be approximated as a Gaussian distribution. In the experi-

ments we do observe underestimation caused by such approxima-

tion.

Nevertheless, they do suggest that the noise after a small number

of multiplications can still be well approximated by a Gaussian

distribution. This aligns with [CNP23] which considers themodulus

switching noise and the multiplication noise thereafter in BGV,

whose dominant terms are 𝜏𝑠 and 𝜏𝜏 ′𝑠2, respectively, and they are

low degree polynomials.

The case studies in Section 6 demonstrate that even for calculat-

ing the variance alone, it is insufficient to only track the common

dependencies alongside the variance. All the ciphertext dependen-

cies should also be tracked.

We comment on [BMCM23, BMMU25] about the discrepancy

between our𝑘!𝑁𝑘−1
variance growth and their experimental results.

The authors there experimentally estimate how the variance grows

for dependent polynomials like the secret key. Their initial growth

aligns with the 𝑘! growth. However, after around 𝑘 = 20 its growth

becomes constant. We argue that their approach of estimating

variance growth is incorrect, as the distribution of the self-product

of the secret key is heavy-tailed and it requires extremely long time

to converge to the correct theoretical variance.

7.2 Experiment-Based
[HPS19, KPZ21] use the experimental average-case expansion factor
of 𝐶
√
𝑁 with 𝐶 = 2. This formula aligns with the 𝑁𝑘−1

growth of

the variance for independent cases, and works well as in Figures 4a

and 4c. However, it could not handle the 𝑘!𝑁𝑘−1
growth of the

variance for dependent cases.

We observe underestimation using this expansion factor for

the self-product of the secret key 𝑠𝑘 in Figure 4d. Note that 𝑠𝑘

exists even for multiplications of independent ciphertexts in BFV,

as demonstrated in the proof of Case 2.

We do not observe underestimation for the self-product of the

Gaussian error 𝑒𝑘 in Figure 4b. We argue that this is caused by

the choice of constant and is highly sensitive to such choices. For

Gaussian polynomials, they set 𝐵err = 𝐷 for a typical 𝐷 = 6 and the

bound after 𝑘 multiplications is 𝐷𝑘 (𝐶
√
𝑁 )𝑘−1. Clearly, the choice

of𝐷 and𝐶 affects how the bound behaves over the variance growth

of 𝑘!𝑁𝑘−1
.

We explore their combined effect using actual ciphertext noises.

We observe underestimation if we directly apply Formula 10 of

[KPZ21] for the circuit of multiplying the same BFV ciphertext

in Figure 5b. OpenFHE however employs another conservative

formula meant for the worst-case binary-tree circuit of the same

depth for parameter generation, and it does not underestimate.

Independently, we find underestimation caused by the average-

case expansion factor when the noise is a product of a uniform

polynomial and the secret key, like the modulus switching rounding

error in BGV and the similar noise in EXTENDED encryption mode

in BFV in OpenFHE
3
.

We conclude that the average-case expansion factor is only ap-

plicable in limited cases, and it alone is not the correctness foun-

dation of the noise bound. In OpenFHE we do not observe de-

cryption failure caused by such underestimation, but we have to

point out that there are various loose inequalities (“cushion”) from

[HPS19, KPZ21] involved in the parameter generation process, and

they together form the correctness foundation of the practical im-

plementation.

8 DISCUSSION
We discuss several potential future directions implied by our work.

Section 6 shows that even for calculating the variance alone, all

the ciphertext dependencies should be tracked, which is not an easy

task to do in software libraries. The current dynamic noise esti-

mation approach employed in HElib [HS20] is already non-trivial,

which uses worst-case bounds and naturally handles dependencies.

Instead, recent advancements in homomorphic encryption compil-

ers (e.g., [Con23]) could take the task of analyzing the ciphertext

circuit and tracking the dependencies exactly if future average-case

analysis relies on such information.

While our work is able to exactly calculate the variance and

(some) kurtosis for the noise, we only demonstrate the heavy-

tailedness of it. For practical bounding purposes, we still need a

characterization of the quantile function. Extending past work like

[MP19] might be the solution.

3
Our code is in https://github.com/tsinghua-ideal/critique-code.
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Figure 3: The maximal noise observed in experiments compared with the standard error 𝜎 and Gaussian bound 6𝜎 . The
experiments, based on Case 1 and Case 2, are carried out in OpenFHE with ring dimension 𝑁 = 2

15, plaintext modulus 𝑡 = 65537,
and multiplicative depth 32, with each modulus of size 60. We set the security HEStd_NotSet as we are only experimenting with
the noise. For BGV, we use FIXEDMANUAL to prevent automatic modulus switching. We use HYBRID key switching to make the
key-switching noise after each multiplication negligible. The encryption technique is STANDARD. For BFV, the multiplication
technique defaults to HPSPOVERQLEVELED. We comment that for 𝑘 number of ciphertext multiplications, the degree of the noise
expression is 2𝑘 , so only the left halves of these figures correspond to Figures 1 and 2. Other description follows Figure 1.

An exact characterization of the quantile function and failing

probability could contribute to the Homomorphic Encryption Stan-

dard [ACC
+
19] and security guidelines [BCC

+
24], whereas in the

past only security parameters from the lattice world were consid-

ered for RLWE schemes. We point out that the failing probability

associated with the circuit should also be considered, which the

application-aware security model [ABMP24] also emphasizes.

Recent attacks like [GNSJ24, CCP
+
24, CSBB24] exploited the

dependencies in additions, while we show that the dependencies in

multiplications are also critical and will even cause the deformation

of the noise distribution. It may be possible to also exploit the

dependencies in multiplications to launch attacks, especially with

the new noise distributions.

In summary, we call for a more rigorous analysis of the noise

and security in RLWE-based homomorphic encryption schemes,

where the parameterization of failing probability should be made

explicit, not only for the initial noise, but also for the whole circuit.
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Figure 4: The maximal noise observed in experiments compared with the standard error 𝜎 , Gaussian bound 6𝜎 , bound from
[HPS19], and canonical embedding based bound, all with 𝐷 = 6 when treating Gaussian polynomials. Other description follows
Figure 1 and Figure 2.

A PROOF
A.1 Alternative view of the proof in

Theorem 4.3
In the proof of Theorem 4.3, the counting problem could be equiva-

lently viewed as an assigning problem with 2𝑘 indeterminate 𝛼𝑖 , 𝛽 𝑗
with the index set Iℓ condition transformed to the following con-

straints in the row direction:

𝛼1 + 𝛼2 + · · · + 𝛼𝑘 ≡ ℓ (mod 𝑁 )
𝛽1 + 𝛽2 + · · · + 𝛽𝑘 ≡ ℓ (mod 𝑁 )

A partition 𝑝 (𝛼, 𝛽) of 𝑘 disjoint pairings adds another 𝑘 con-

straints. The type of partitions we need to consider is partitions

with only (𝛼𝑖 , 𝛽 𝑗 ), so constraints are added on the column direction

by 𝛼𝑖 = 𝛽 𝑗 .

The row constraints reduce the degrees of freedom by 2, and the

column constraints reduce them by 𝑘 − 1 as the last constraint is
automatically satisfied, so the final degrees of freedom are 𝑘 − 1,
hence 𝑁𝑘−1

possible assignments for one 𝑝 . As there are 𝑘! possible

𝑝 , the total number of assignments is 𝑘!𝑁𝑘−1
.

As argued in the original proof, a partition 𝑝 (𝛼, 𝛽) with pairing

𝛼𝑖 = 𝛼 𝑗 (i.e., additional row constraint) will cancel out as one

assignment 𝛼 has a corresponding sign-flipped assignment 𝛼 ′ by
assigning 𝛼 ′𝑖 = 𝛼 ′𝑗 = 𝛼𝑖 + 𝑁

2
(mod 𝑁 ) and leaving other points

fixed. The same applies for 𝛽𝑖 = 𝛽 𝑗 .

Generally, to calculate other quantities (i.e., expectation, covari-

ance, fourth moment) we can add more row and column constraints

and find all possible assignments.

10



0 5 10 15 20 25 30

#Mult

0

10

20

30

40

50

60

70

lo
g
2
(v
)
−

lo
g
2
(σ

)

StdErr

Gaussian Bound

KPZ21 Bound

OpenFHE Bound

Max Noise (60k Tests)

(a) Independent BFV Ciphertexts.

0 5 10 15 20 25 30

#Mult

−15

−10

−5

0

5

10

15

20

25

lo
g
2
(v
)
−

lo
g
2
(σ

)

StdErr

Gaussian Bound

KPZ21 Bound

OpenFHE Bound

Max Noise (60k Tests)

(b) Same BFV Ciphertext.

Figure 5: The maximal noise observed in experiments compared with the standard error 𝜎 , Gaussian bound 6𝜎 , bound from
Formula 10 of [KPZ21], and bound in OpenFHE, all with 𝐷 = 6 when treating Gaussian polynomials. Other description follows
Figure 3.

A.2 Proof of Theorem 4.1
Expectation

𝛼1 + 𝛼2 + · · · + 𝛼𝑘 ≡ ℓ (mod 𝑁 )

The only possible pairing is between 𝛼𝑖 and 𝛼 𝑗 . However, the 𝑖-th

column corresponds to 𝑓𝑖 and 𝑗-th column corresponds to 𝑓𝑗 and

they are independent, so the indicator function will be 0, which

means E[𝐹 |ℓ ] = 0.

Covariance

𝛼1 + 𝛼2 + · · · + 𝛼𝑘 ≡ ℓ (mod 𝑁 )
𝛽1 + 𝛽2 + · · · + 𝛽𝑘 ≡ ℓ ′ (mod 𝑁 )

The pairing (𝛼𝑖 , 𝛽 𝑗 ) is the only possible pairing that will not

cancel out. However, as ℓ ≠ ℓ ′, such pairing does not exist as it

would force ℓ = ℓ ′, so Cov(𝐹 |ℓ , 𝐹 |ℓ′ ) = 0.

Fourth Moment

𝛼1 + 𝛼2 + · · · + 𝛼𝑘 ≡ ℓ (mod 𝑁 )
𝛽1 + 𝛽2 + · · · + 𝛽𝑘 ≡ ℓ (mod 𝑁 )
𝛾1 + 𝛾2 + · · · + 𝛾𝑘 ≡ ℓ (mod 𝑁 )
𝛿1 + 𝛿2 + · · · + 𝛿𝑘 ≡ ℓ (mod 𝑁 )

As the 𝑖-th column corresponds to 𝑓𝑖 , we only have pairing inside

one column. For each column, we have 3 possible cases:

• Case 1: 𝛼𝑖 = 𝛽𝑖 and 𝛾𝑖 = 𝛿𝑖 .

• Case 2: 𝛼𝑖 = 𝛾𝑖 and 𝛽𝑖 = 𝛿𝑖 .

• Case 3: 𝛼𝑖 = 𝛿𝑖 and 𝛽𝑖 = 𝛾𝑖 .

Note that without column constraints, we have 4𝑘 − 4 degrees
of freedom, then each column constraint will reduce them by 2.

Proceeding from the first column to the last, notice that the last

column does not change the degrees of freedom, as either former

assignments automatically make the last column satisfying one of

the column constraints, or the row constraints are violated. So the

maximal number of freedom is 2𝑘 − 2.

The only time we achieve maximal degrees of freedom is when

all columns are all Case 1, or Case 2, or Case 3. For all columns

being Case 1, by checking the sign we have 𝜉 (𝛼)2𝜉 (𝛾)2 = 1, so there

is no canceling out. All three cases contribute 3𝑁 2𝑘−2
in total.

Then for some columns being Case 1 and some columns be-

ing Case 2, we notice that the degrees of freedom are 2𝑘 − 3 as

(𝑎, 𝑎, 𝑏, 𝑏) + (𝑐, 𝑑, 𝑐, 𝑑) ≡ (ℓ, ℓ, ℓ, ℓ) will automatically make 𝑐 ≡ 𝑑

and 𝑎 ≡ 𝑏, so crossing the boundary between Case 1 and Case 2

will lose one degree of freedom. There are 2
𝑘 − 2 possible ways to

pick columns being either Case 1 or Case 2 where both cases are

present. Then by symmetry, argument follows for Case 1+3 and

Case 2+3. Checking the sign, notice we can express 𝑏 = 𝑎 + 𝜂1𝑁
and 𝑑 = 𝑐 + 𝜂2𝑁 , then the row summation result would be (ℓ, ℓ +
𝜂1𝑁, ℓ +𝜂2𝑁, ℓ + (𝜂1 +𝜂2)𝑁 ), then by parity of 𝜂, the resulting sign

will always be 1. They contribute 3(2𝑘 − 2)𝑁 2𝑘−3
.

Then for some columns being Case 1, some Case 2 and some

Case 3, by (𝑎, 𝑎, 𝑏, 𝑏) + (𝑐, 𝑑, 𝑐, 𝑑) + (𝑒, 𝑓 , 𝑓 , 𝑒) ≡ (ℓ, ℓ, ℓ, ℓ), we get
2𝑎 ≡ 2𝑏, so 𝑏 = 𝑎 + 𝜂1 𝑁

2
. Here note 𝑁 is even. Similarly define 𝜂2

and 𝜂3, the row summation result would be(
ℓ, ℓ + (𝜂2 + 𝜂3)

𝑁

2

, ℓ + (𝜂1 + 𝜂3)
𝑁

2

, ℓ + (𝜂1 + 𝜂2)
𝑁

2

)
Wehave𝜂𝑖+𝜂 𝑗 must be even. So𝜂1, 𝜂2, 𝜂3 share the same parity. Now

if 𝜉 (𝛼)𝜉 (𝛽)𝜉 (𝛾)𝜉 (𝛿) is 1, we can assign 𝜂′𝑖 = 𝜂𝑖 + 1 (parity flipped at
the same time), then 𝜉 (𝛼)𝜉 (𝛽 ′ = 𝛽 +𝑁 )𝜉 (𝛾 ′ = 𝛾 +𝑁 )𝜉 (𝛿 ′ = 𝛿 +𝑁 )
will be −1, so they will cancel out.

A.3 Proof for Theorem 4.3
Expectation. Unlike the argument in SectionA.2, this time columns

are not independent. However, we can still use the 𝛼𝑖 = 𝛼 𝑗 and 𝛼
′
𝑖 =

𝛼 ′𝑗 = 𝛼𝑖 + 𝑁
2
(mod 𝑁 ) to flip the sign to cancel out, so E[𝐹 |ℓ ] = 0.

Covariance. The same argument as in Section A.2.
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Fourth Moment. Now we have pairing between columns like

𝛼𝑖 = 𝛽 𝑗 , 𝛾𝑢 = 𝛿𝑣 . We count such pairing as one “column”. The

argument for degrees of freedom is similar, but this time we get

𝑘!𝑘! ways to form columns for all columns being Case 1 (𝛼0 has

𝑘 choices and 𝛾0 has 𝑘 choices), and (2𝑘)! − 2(𝑘!)2 ways to form

columns for some columns being Case 1 and some Case 2 (𝛼0 has

2𝑘 choices among row 𝛽 and 𝛾 , so (2𝑘) (2𝑘 − 1) · · · (𝑘 + 1) choices
for 𝛼 row, then 𝛿0 has 𝑘 choices, so (2𝑘)! in total, minus the cases

all columns being Case 1 or Case 2).
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