
Constant-Round Asynchronous MPC with Optimal Resilience
and Linear Communication

Junru Li
Tsinghua University

jr-li24@mails.tsinghua.edu.cn

Yifan Song
Tsinghua University

and Shanghai Qi Zhi Institute
yfsong@mail.tsinghua.edu.cn

Abstract

In this work, we consider secure multiparty computation (MPC) in the asynchronous network setting.
MPC allows n parties to compute a public function on their private inputs against an adversary corrupting
at most t of them. We consider both communication complexity and round complexity of asynchronous
MPC (AMPC) with the optimal resilience n = 3t+ 1.

Without fully homomorphic encryptions, the best-known result in this setting is achieved by Coretti,
Garay, Hirt, and Zikas (ASIACRYPT 2016), which requires O(|C|n3κ) bits of communication assuming
one-way functions, where κ is the security parameter. On the other hand, the best-known non-constant-
round AMPC by Goyal, Liu, and Song (CRYPTO 2024) can achieve O(|C|n) communication even in the
information-theoretic setting. In this work, we give the first construction of a constant-round AMPC with
O(|C|nκ) bits of communication that achieves malicious security with abort assuming random oracles.
We provide new techniques for adapting the MPC-in-the-head framework in the asynchronous network
to compute a constant-size garbled circuit.

1

Contents
1 Introduction 3

1.1 Our Contribution . 3
1.2 Related Works . 4

2 Technical Overview 5
2.1 Main Approaches on Constant-Round MPC . 5
2.2 Review of Constant-Size Multiparty Garbled Circuit . 6
2.3 Difficulties Caused by the Asynchrony . 7
2.4 Sharing and Committing via AVID . 8
2.5 MPC-in-the-Head: from Synchronous to Asynchronous . 9

3 Preliminaries 10
3.1 Asynchronous Subprotocols . 11
3.2 Linear Secret Sharing Schemes . 11

4 The Non-Constant-Round protocol 12

5 The Main Protocol 13
5.1 Parameter Choices for Virtual Servers . 13
5.2 The Inner Protocol for Multiparty Garbling . 14
5.3 Main Protocol Description . 17

A Security Model 31

B Formal Functionalities for Asynchronous Subprotocols 32

C Agree on a Common Set 33

D Definition and Instantiation of the LSSSs 35

E Subprotocols for Π0 37

F Chernoff Bound 38

G Subprotocols for the Inner Protocol 38

H The process of Evaluating the Circuit from the Garbled Circuits 39

I Security Proof of the Main Protocol 40

J Cost Analysis of the Main Protocol 62
J.1 Analysis of Communication Complexity . 62
J.2 Analysis of Round Complexity . 65

2

1 Introduction
Secure multiparty computation (MPC) [Yao82, GMW87, BGW88, CCD88, RB89] allows a set of n parties
P1, . . . , Pn to jointly evaluate a public circuit C on their private inputs against an adversary corrupting at
most t parties. The security of MPC protocols guarantees that the information of honest parties’ inputs will
not be leaked to the adversary beyond what he can learn from corrupted parties’ inputs and outputs.

Asynchronous Network Setting. There are two main network setups considered in the literature of
MPC: the synchronous network setting and the asynchronous network setting. So far, most MPC protocols
consider the synchronous setting, where there exists a synchronized global clock and an upper bound on the
time delay of each message. This allows the parties to run the protocol in rounds, where each message is
guaranteed to be delivered to the receiver at the end of each round. This property simplifies the construction
of MPC protocols. However, in the real world, such a global clock and upper bound on network latency do
not exist. In the asynchronous setting, each message can be arbitrarily delayed and is only guaranteed to
be delivered to the receiver eventually. To model the worst case, the adversary is allowed to schedule the
delivery of the messages. As a result, when a message is not delivered, an honest receiver cannot distinguish
between a corrupted sender not sending a message and an honest sender whose message is delayed by the
adversary in the asynchronous setting, which makes the construction of AMPC much more challenging. In
particular, it is known that malicious security is possible in the synchronous setting against t < n/2 corrupted
parties [RB89, Bea90] while in the asynchronous setting, the best possible resilience is t < n/3 [BKR94].

Communication and Round Complexity of AMPC. The efficiency of MPC protocols can be mea-
sured from various aspects, and the two most common criteria are the communication complexity and the
round complexity. The study of the round complexity of AMPC is initialized by Coretti et al. in [CGHZ16].
In particular, they model asynchronous secure channels and asynchronous Byzantine agreements (ABA) as
ideal functionalities (denoted by FABA, see Figure 13) in the universal composability (UC) framework [Can01].
Intuitively, the number of rounds is defined as the maximum number of times a party alternates between
sending messages to the functionalities and receiving messages from the functionalities. Coretti et al. also
give the first constant-round AMPC protocol in [CGHZ16], which is still the most efficient constant-round
AMPC without assuming fully homomorphic encryptions (FHE). They follow the BMR framework [BMR90]
to do multiparty garbling of the circuit C via a general non-constant-round AMPC [BKR94] and let all
the parties evaluate the garbled circuit. However, the resulting communication complexity of their protocol
is at least O(|C|n3κ) even if we apply the best general AMPC protocol in this setting [BJK+25]. In con-
trast, the best non-constant-round AMPC protocols have achieved linear communication of O(|C|n)1 field
elements [GLS24, JLS24, BJK+25] in computing an arithmetic circuit (over a large field). This leads us to
the following question:

“Can we construct a constant-round AMPC protocol with optimal resilience that achieves communication
complexity of O(|C|nκ)?”

1.1 Our Contribution
In this work, we answer this question affirmatively and achieve the following result. Our construction achieves
malicious security with abort in the FACS-hybrid model, where FACS with parameter (M,m) allows the parties
to agree on a subset of m values over M possible values, which is essential for AMPC protocols. We refer the
readers to Section C for the definition of FACS. Our protocol only requires 3 sequential invocations of FACS,
where each FACS can be realized in constant rounds [CGHZ16] assuming (concurrent) ABA and expected
constant time [CFG+23] (we discuss the asynchronous round complexity in more detail in Section 1.2). The
first 2 invocations of FACS have parameters (n, n− t) and the last one has parameter (N = O(n+ κ), N/4),
and the instantiations of them only requires communication of O(poly(n, κ)) bits (see C for more details).

1We omit the terms that are sublinear in |C| for the communication of related works introduced in this section.

3

Among them, the first one is used for instantiating the functionality FSetup (see Figure 3) for the setup of
our protocol. The other two are used for realizing our main protocol in the {FSetup,FACS}-hybrid model.

In particular, we first give our theorem for SIMD (Single Instruction Multiple Data) circuits with can
compute the same circuit multiple times with different inputs.

Theorem 1. Assuming random oracles, in the FACS-hybrid model, there exists a computationally secure
constant-round asynchronous MPC protocol for SIMD circuits (that contain Ω(n + κ)2 copies of the same
circuit) that achieves malicious security with abort against t = (n−1)/3 corrupted parties with communication
of O(|C|nκ+ poly(n, κ)) plus 3 invocations of FACS with parameters (n, n− t), (n, n− t), and (N = O(n+
κ), N/4), where |C| is the total circuit size, and κ is the secure parameter.

Combining with the techniques of network routing [GPS21, GPS22, GLOS25], our protocol can be up-
graded to handle general circuits.

Theorem 2. Assuming random oracles, in the FACS-hybrid model, there exists a computationally secure
constant-round asynchronous MPC protocol that achieves malicious security with abort against t = (n−1)/3
corrupted parties with communication of O(|C|nκ + D(n + κ)2nκ + poly(n, κ)) plus 3 invocations of FACS

with parameters (n, n− t), (n, n− t), and (N = O(n+κ), N/4), where |C| is the circuit size, D is the circuit
depth, and κ is the secure parameter.

Compared to the constant-round AMPC protocol in [CGHZ16], our protocol improves the communication
complexity by a factor of O(n2) at the cost of giving up the guaranteed output delivery and assuming random
oracles. It is worth noticing that the corruption threshold t = (n − 1)/3 is still optimal even for malicious
security with abort: When n = 3t, we may separate the 2t honest parties into two sets, each of size t.
Then the t corrupted parties can use different inputs to interact with two different sets of t honest parties
separately. When the corrupted parties follow the protocol in these two different executions and the network
delay between any pair of honest parties in different sets is sufficiently large, the two sets of honest parties
must terminate the execution and get their output before receiving any message from honest parties in the
other set. This clearly breaks the security since the two sets of honest parties would end up with different
outputs.

To achieve our result, we adapt the recent constant-round MPC [GLOS25] in the synchronous setting
that achieves O(|C|κ) in both communication and garbled circuit size to the asynchronous setting. The
main technical difficulty is to adapt the MPC-in-the-head framework used in [GLOS25] to the asynchronous
network. We refer the readers to Section 2 for an overview of our techniques.

1.2 Related Works
Constant-Round Synchronous MPCs. In the synchronous setting, the study of constant-round MPC
protocols among n parties is initialized by Beaver, Micali, and Rogaway [BMR90]. They present the BMR
framework of multiparty garbling, which is the most widely used technique to construct constant-round MPCs
without fully homomorphic encryption [Gen09]. A rich line of works follow the BMR framework to improve
the efficiency [DI05, LPSY15, BLO16, BLO17, HSS17, HOSS18a, HOSS18b, YWZ20, BCO+21, BGH+23,
GLM+25, GLOS25]. In particular, in the setting of honest majority, the best known result [GLOS25] achieves
O(|C|κ) communication only assuming random oracles.

General AMPCs. AMPC protocol with optimal resilience n = 3t+1 is first constructed in the information-
theoretic (IT) setting [BKR94]. Then, a line of works [PCR09, CP23, JLS24, GLS24] improves the protocol
in the IT setting to achieve O(|C|n) elements of communication. However, the additive overhead of the proto-
col [GLS24] is O(n14) elements, which is far from practice. Another line of works [HNP05, HNP08, CHL21]
construct computational AMPC protocols with linear homomorphic encryption schemes. The achieved
communication complexity in [CHL21] is O(|C|n2) elements. The work [CP15] achieves communication
of O(|C|n) elements using a stronger assumption of somewhat homomorphic encryptions. Recently, a
work [BJK+25] achieves a communication cost of O(|C|n) elements only assuming random oracles.

4

On Asynchronous Round Complexity. All the asynchronous protocols mentioned in the last paragraph
follow the gate-by-gate paradigm to evaluate the circuit, so their round complexities are all linear to the depth
of the circuit. For general MPC protocols in the asynchronous setting, strict constant-round protocols do not
exist if we only assume point-to-point secure asynchronous channels, as the impossibility results from [FL82,
DS83] show that ABA protocols can’t terminate in a strict constant number of rounds. However, solutions for
ABA [CR93, CKS05] and concurrent ABAs (without causally related inputs and outputs) [CFG+23] with an
expected constant number of rounds exist. For this reason, the previous work [CGHZ16] defines the round
complexity of AMPCs assuming the ideal functionality of ABA. However, as mentioned in [CFG+23], if
several ABAs are run concurrently, and their inputs and outputs are related, these ABAs may not terminate
in an expected constant time using a single instantiation of expected constant-time ABA. Therefore, we
consider constant-round AMPC assuming the functionality of ACS, which is essential for an AMPC protocol,
and it can be instantiated in expected constant time [CFG+23]. Constant-round AMPC constructed in
the FACS-hybrid model implies an expected constant-time AMPC protocol if all the invocations of FACS

are sequential. For a more detailed discussion of asynchronous round complexity, we refer the readers
to [CGHZ16, CFG+23].

2 Technical Overview
In this section, we give a high-level overview of the main techniques used in this paper. Recall that our goal
is to construct an asynchronous MPC protocol with optimal resilience t = (n−1)/3 against a fully-malicious
adversary in the random oracle (RO) model, and we allow the parties to abort the protocol if malicious
behaviors of the adversary are detected.

2.1 Main Approaches on Constant-Round MPC
We first review previous approaches and then present the main difficulties in constructing constant-round
asynchronous MPC (AMPC) protocols with linear communication.

The main technique to construct a constant-round MPC in the synchronous setting is the garbled circuit
introduced by Yao [Yao86]. In Yao’s garbled circuit, each wire w of a circuit is associated with a tuple
(λw, kw,0, kw,1) randomly picked by the garbler, where λw is the wire mask for the wire value vw, and kw,0

(resp. kw,1) is the key corresponds to masked value vw ⊕ λw = 0 (resp. vw ⊕ λw = 1) of this wire. For
each gate g with input wires a, b and output wire o in the circuit, the garbler encrypts the output wire label
ko,vo⊕λo

∥(vo⊕λo) using input wire keys (ka,va⊕λa
, kb,vb⊕λb

) corresponding to each pair of the masked values
of a, b for vo = g(va, vb). In this way, with input labels ka,va⊕λa∥(va ⊕ λa), kb,vb⊕λb

∥(vb ⊕ λb), the evaluator
can decrypt the output label ko,vo⊕λo . During the evaluation of the garbled circuit, the evaluator receives
the input labels ki,vi⊕λi

∥(vi⊕λi) for each input wire i and decrypts the wire label of each wire gate by gate.
In the multiparty setting, the main approach to achieve constant-round MPC is to let the parties express

the computation of the garbler as a constant-depth circuit and jointly compute the garbled circuit under
a general MPC protocol [BMR90], which is referred to as multiparty garbling. However, doing it naively
requires all parties to securely evaluate cryptographic primitives such as PRG using an MPC protocol. To
make black-box use of cryptographic primitives, each party chooses his own keys for encryptions, and the
labels of each wire contain the keys chosen by everyone [DI05]. In this way, the resulting garbled circuit
size is linear in the number of parties. To achieve linear communication in the number of parties n, a direct
approach is to use a packed sharing to compute the garbler’s computation and reconstruct the garbled circuit
to a single evaluator. The single evaluator will compute the output of the garbled circuit for every party. At
the end of the protocol, each party receives the output labels from the evaluator. Each party can check the
results by verifying whether the labels are consistent with the chosen keys.

However, in the asynchronous setting, the above approach doesn’t work. If the single evaluator is cor-
rupted, he may never send the output. Note that in the synchronous setting, parties can just abort if they do
not receive the results from the evaluator within a fixed amount of time. In the asynchronous setting, since
parties cannot distinguish a corrupted evaluator not sending the output from an honest evaluator whose

5

message is delayed due to the network latency, they have to wait, and we lose the liveness. To solve this
problem, a natural idea is to let everyone play as the evaluator, which leads to a multiplicative overhead
of n on the communication. Thus, in order to achieve linear communication, we need the parties to jointly
compute a garbled circuit whose size is independent of the number of parties.

2.2 Review of Constant-Size Multiparty Garbled Circuit
In the synchronous setting, the only known constant-size multiparty garbled circuit that can be computed
in the RO model is given by [GLOS25], which achieves security with abort in the honest majority setting of
n = 2t+1. A natural idea is to adapt the construction in [GLOS25] in the asynchronous setting. We first give
a review of their approach. Unlike [BMR90, DI05], [GLOS25] compiles a non-constant-round MPC protocol
with specific properties into a constant-round variant. Their compiler enables the evaluator to obtain not
only the garbled circuits of the local computations in the original protocol but also the input wire labels for
the transcripts. For simplicity, we describe their compiler applied to the well-known DN protocol [DN07].

Achieving Constant-Round. The compiler contains two stages. The first stage compiles the DN protocol
with a low corruption threshold of t = (n − 1)/3 to achieve constant round complexity. The second stage
uses the party virtualization technique [Bra87] to boost the corruption threshold to t = (n− 1)/2.

We first introduce the first stage. In the DN protocol, parties first run a constant-round preprocessing
phase to prepare random double-sharing pairs of the form ([r]t, [r]2t), (where [·]t denotes the degree-t Shamir
sharing2) and a constant-round input phase to share each input value x by [x]t. Then, parties evaluate
the circuit in a gate-by-gate fashion. Due to the linearity of the Shamir secret sharing scheme, linear gates
can be computed locally. For multiplication gates with input sharings [x]t, [y]t, the parties locally compute
[z]2t = [x]t · [y]t+[r]2t. Then, the parties jointly reconstruct z and compute [x ·y]t = z− [r]t. In this way, the
evaluation phase only contains reconstructions of degree-2t sharings, and each party’s local computation only
relies on the secrets of these sharings and the input/preprocessing data. Letting each party garble his local
computation to do the round collapsing, the evaluator only needs the wire labels for preprocessing/input
data and the secrets of these degree-2t sharings to simulate the execution of DN protocol.

Now we explain how the evaluator knows the label of the secret of each degree-2t sharings reconstructed
in the protocol. The main idea is to let the receiver of each degree-2t sharing choose the labels kw,0, kw,1 of
each wire w whose value is the secret of the sharing. The receiver shares [kw,0]3t and [kw,1 − kw,0]t at the
beginning. With [z]t in hand, the parties can locally compute

[kw,z]3t = [kw,0]3t + [z]2t · [kw,1 − kw,0]t. (1)

Crucially, when garbling the local circuits that produce [z]2t in the original MPC protocol, parties also garble
the associated label computation circuits. This enables the evaluator to simultaneously reconstruct both the
secret z and its corresponding wire label kw,z. Then, the evaluator can compute the whole process of the
DN protocol. We call the resulting protocol the outer protocol.

Following the above approach, the garbled circuit size is the sum of the garbled circuits of all the parties’
local computations. The size of garbled circuits of local computations only depends on the computation
complexity of the non-constant-round protocol and the output size. The output labels consist exclusively
of the shared labels [kw,0]3t, [kw,1]3t for each wire w whose value is the secret z of a degree-2t sharing [z]2t
reconstructed in the evaluation phase. Consequently, these shared labels contribute only a constant factor
overhead relative to the DN protocol’s communication cost. Given that the DN protocol requires O(|C|n2)
computation and communication complexity3, the resulting garbled circuit size is O(|C|n2λ).

Applying the ramp secret sharing scheme of [CC06] and the network routing technique [GPS21, GPS22],
the authors of [GLOS25] construct a non-constant-round MPC which has similar properties to the DN

2For simplicity, we assume that the secrets and shares of the Shamir sharings are binary.
3Readers may notice that the original DN protocol only has O(|C|n) computation and communication complexity, rather

than O(|C|n2). This difference is because in the above, each reconstruction of [z]2t is done by sending the whole sharing to
every party, which is required by the compiler in [GLOS25], whereas in the original DN protocol, each reconstruction is done
by letting a single party reconstruct the secret and then distribute the result back.

6

protocol, achieving constant AND operations and constant communication complexity at the cost of a lower
corruption threshold of t = n/4. By employing FreeXOR techniques [KS08], local XOR operations can be
handled without affecting the garbled circuit size. Then, in this setting, a constant-size multiparty garbled
circuit is constructed.

Boosting the Corruption Threshold. Now we explain the ideas of the second stage of [GLOS25] that
boosts the corruption threshold via the party virtualization technique [Bra87]. At the beginning of the
protocol, the parties agree on a random set of c parties Pi,1, . . . , Pi,c (where c is a constant) to emulate every
single party Vi in the above outer protocol. The data of Vi is additively shared among Pi,1, . . . , Pi,c. While
garbling Vi’s local circuit, the computation is done via a dishonest majority inner MPC protocol running
among Pi,1, . . . , Pi,c (using the multiparty garbling introduced in Section 2.1). When the number of virtual
parties is N = O(n+κ), the authors proved by Chernoff bound that the number of groups formed completely
by corrupted parties is at most N/4 with overwhelming probability. This means that the adversary only has
access to the data of N/4 virtual parties in the execution of the outer protocol, which guarantees privacy. If
we only consider the semi-honest security, the instantiation of the inner protocol only requires the preparation
of random OTs, which could be prepared via OT extension [IKNP03, KOS15] from a small number of base
OTs. The base OTs can be prepared by running a general honest majority MPC by all the parties in constant
rounds. Since each inner protocol runs among only a constant set of parties, it won’t lead to a non-constant
multiplication overhead on the communication.

To achieve malicious security, the authors apply the MPC-in-the-head technique [IKOS07, IPS08]. The
parties commit their inputs before they participate in the inner protocol. After the inner protocols terminate,
each party will choose a public set of virtual parties. The members of each virtual party in this set will open
their input set for the virtual party and then send all the transcripts for the computation of this virtual
party. In this way, it can be guaranteed that at least 3N/4 virtual parties are computed honestly and
are not checked by the corrupted parties, or the malicious behavior of the adversary will be detected with
overwhelming probability. In this way, malicious security is achieved.

2.3 Difficulties Caused by the Asynchrony
Now we analyze the difficulties in computing the above constant-size garbled circuit in the asynchronous
setting.

Difficulty 1: Generating the Sharings and Commitments. To adapt the idea of [GLOS25] to the
asynchronous setting, we need to first handle how the parties share their inputs. In the synchronous setting,
every party can wait for all the input sharings. If a share isn’t received within the time bound, a party can
abort the protocol. While in the asynchronous setting, a corrupted party may send his input sharings to only
a part of the parties, and the rest of the parties may wait forever for the shares. A usual solution to this issue
is the technique of asynchronous complete secret sharing (ACSS) [BKR94, PCR09, CP23, JLS24, GLS24],
which can ensure that a party distributes a valid sharing to all the parties. However, this technique only
works on distributing Shamir sharings, but the sharings used to achieve constant-size garbled circuits are
those of [CC06].

Another issue is that the receiver of each degree-2t sharing needs to share the wire labels for the secret.
However, corrupted receivers may never distribute these labels, and honest parties cannot distinguish such
failures from network delays in the asynchronous setting. Since these labels serve as inputs to the inner
protocol for garbling virtual parties’ local computations, missing shares prevent progress in the inner protocol.

Finally, the MPC-in-the-head framework poses additional challenges. The parties need to commit their
input set for the inner protocols of each virtual party before running them. These committed values should
be opened if the corresponding virtual party is checked. In the synchronous setting, the commitment opening
is straightforward. If the commitments are not opened or not correctly opened, the verifier can abort the
protocol. However, in the asynchronous setting, a corrupted party may never open his commitments, and an
honest verifier can’t distinguish him from an honest party with high latency. A corrupted party might never

7

open commitments for a virtual party’s inputs, particularly if it cheated during that party’s computation.
This prevents the verification process from terminating reliably, breaking the security guarantees of the
synchronous approach.

Difficulty 2: The Inner Protocol of Virtual Parties. We haven’t discussed how to garble each virtual
party’s local computation yet. A natural idea is to use a general AMPC to perform multiparty garbling,
as [CGHZ16] did in constructing the first constant-round AMPC.

However, the inner protocol of [GLOS25] requires a dishonest majority, whereas it is known that asyn-
chronous MPC exists only when the corruption threshold is bounded by t < n/3. Due to this reason, we
can’t simply apply a general AMPC to perform the garbling of virtual parties’ computations.

In addition, unlike [GLOS25], parties can’t expect to get the garbled circuits from all the parties in
the asynchronous setting, as the virtual parties completely emulated by corrupted parties may never send
their outputs. Again, because of the asynchrony, such malicious behavior can not be distinguished from the
network delay.

Next, we will show how we address the above difficulties.

2.4 Sharing and Committing via AVID
To deal with the first difficulty, we make use of the asynchronous verifiable information dispersal (AVID)
technique [CT05, ADD+22]. AVID enables a party to disperse a message (which does not preserve the
secrecy of the message) to all the parties, and the parties can help a party retrieve the message. Once the
dispersing phase terminates, the retrieving process guarantees termination and correctness.

In order to distribute a sharing, the parties first prepare pairwise symmetric keys, and then disperse
the encryption of each party’s share by the symmetric key between the two parties. In this way, the whole
sharing can be distributed to everyone with eventual delivery by the retrieving process of AVID. The only
issue is that the sharings may not be valid. This can be checked by letting each party additionally distribute
a random sharing and verify a random linear combination of all the sharings. Note that random coins and
symmetric keys can be prepared by a general AMPC protocol. Once all the instances of AVID for a party’s
message finish their dispersing phases, their validity can be checked by all the parties.

For the sharings of wire labels (which are generated by the receivers in [GLOS25]), we change the
generation process of them. Note that the only difference between such a sharing and a completely random
sharing is that the receiver knows the random secret. To avoid the case that corrupted receivers don’t
distribute such sharings, we let all the parties prepare random sharings jointly and then reconstruct the
secrets to the corresponding receivers.

Now the remaining problem is how to generate commitments. Similarly, this can also be done via AVID.
To let a party P commit a vector v:

1. All the parties first jointly prepare a random degree-t Shamir sharing and reconstruct the secret seed
seed to P . The degree-t sharing can be prepared via ACSS.

2. Then, P expands the seed with the random oracle and masks v with the result, say v ⊕ O(seed). P
then computes v ⊕O(seed) and disperses it via AVID.

3. When the committed value needs to be opened to some party P ′, all the parties reconstruct the seed
to P ′ and let P ′ retrieve the dispersed value.

In this way, the committed vector v can’t be changed once the AVID dispersing terminates, and the opening
of the commitment guarantees eventual termination.

Let’s now summarize the sharing and committing processes:

1. At the beginning, the parties prepare pairwise symmetric keys and the random sharing of seeds used
for commitments.

8

2. The parties generate sharings following the approach of [GLOS25], where the shares are encrypted by
pairwise symmetric keys and are dispersed via AVID. In particular, the random sharings for the chosen
output labels are jointly prepared by all the parties.

3. Each party Pi generates a commitment for all the sharings he generates for a member Pj,α of each
virtual party Vj . Specifically speaking, Pi expands a seed for Pj,α and uses it to mask the set ShPj,α

i of all
the shares he generated for Pj,α. Finally, the masked values are dispersed via AVID as a commitment.

4. The parties agree on a common set CoreSet of at least 2t+1 parties who finish the dispersal of all their
sharings and commitments. For all the sharings generated by them, the parties compute a random
linear combination of them to check their validity.

5. The members of virtual parties sample their local randomness and commit the sets of randomness and
shares they receive from each party in CoreSet. The set ISPi,j of a party Pi,j is the input set of Pi,j

to the computation of virtual party Vi. For each set ISPi,j , Pi,j generates a commitment of it and
disperses it via AVID as in Step 3.

2.5 MPC-in-the-Head: from Synchronous to Asynchronous
As we have pointed out, we can’t ensure that enough virtual parties can be computed securely by an AMPC.
To address the second difficulty, a natural idea is to adapt the synchronous MPC running among members
of each virtual party [GLOS25] with careful modifications.

Let’s first point out the properties of a synchronous protocol:

• In a synchronous MPC, parties are able to wait for all the messages in a round.

• After each round of communication, every party knows that all other parties have also finished this
round.

A key observation of ours is that, while running a synchronous protocol in asynchronous networks cannot
guarantee termination, we can preserve the two crucial synchronous properties. More concretely, for each
virtual party Vi, each member Pi,j should commit his input to the inner protocol. Only when Pi,j receives the
commitment (i.e. the dispersal message) of every Pi,α, α ̸= j, he begins to run the inner protocol. During each
round of the inner protocol, the parties not only send messages but also send their commitments via AVID.
Each party’s commitment shows that he has finished sending messages in the current round. Each party
waits for all the messages from other members, together with their commitments. A party will participate
in the next round of the inner protocol once he has received all the messages and commitments (i.e. the
dispersal messages) in the current round. At the end of the final round of the inner protocol, the members
commit their outputs via AVID. When a party receives the output commitments from all the members of a
virtual party, he marks the virtual party terminated.

Now, we describe how the N virtual parties are formed. When a virtual party is emulated by c members,
the expected number of virtual parties that are completely emulated by corrupted parties is only about
(1/3)c ·N . On the other hand, the expected number of virtual parties formed by all-honest parties is about
(2/3)c · N . For these virtual parties, we can expect their inner protocols to terminate. Thus, if we ensure
that most of the other virtual parties, namely those consisting of both honest and corrupted parties, either
perform correct computation or do not finish the computation, the parties are able to wait for (a bit less
than) (2/3)c ·N virtual parties’ results. Among them, only a fraction of (a bit more than) (1/3)c

(2/3)c = 2−c may
not be correctly computed. This ratio can be sufficiently small to reach the security requirement of the outer
protocol.

We observe that in the construction of [GLOS25], the evaluator does not require the garbled circuits
from all the virtual parties for the evaluation. Instead, it only needs a sufficient number of garbled circuits
to reconstruct the wire labels for each secret reconstructed in the underlying protocol (i.e. [kw,z]3t in
Equation 1). For simplicity, we still use the compiled DN protocol as an example. Note that the corruption

9

threshold for the underlying DN protocol is the number of completely corrupted virtual parties, which is
close to 3−cN . Consequently, only about 31−cN garbled circuits are required, while we can wait for at least
(2c−1) ·3−cN > 31−cN garbled circuits that are not generated completely by corrupted parties when c ≥ 3.
Therefore, it is sufficient for the parties to perform the evaluation with only (2/3)c ·N virtual parties’ results.

The final challenge is how to ensure that most of the virtual parties formed by both honest and corrupted
parties correctly run their inner protocols if they terminate. Like [GLOS25], we still follow the idea of
MPC-in-the-head [IKOS07, IPS08]. A small issue of applying the idea to the asynchronous setting is that
each party only waits for a small fraction of all the virtual parties to terminate their inner protocols, and
the parties may have different sets of terminated virtual parties. To ensure that enough terminated virtual
parties perform their computations correctly, O(N) virtual parties in each party’s set should be checked by
honest parties. However, we can’t let each party choose O(N) virtual parties to verify, or otherwise, the
corrupted parties may have access to too many virtual parties’ data.

To solve this issue, we let all the parties agree on a set of terminated parties. For each virtual party in the
set, the parties agree on a random coin that decides whether the virtual party is checked by all the parties.
Each virtual party is checked with a small constant probability. Since the termination of each virtual party
is dispersed to all the parties, once an honest party marks a virtual party terminated, it will be marked by
all the honest parties eventually. Thus, all the parties will receive the outputs from the same set of virtual
parties, and the verification is performed on a small common subset of O(N) virtual parties. This guarantees
correctness. On the other hand, corrupted parties still have access to only a small fraction of the virtual
parties’ data, which guarantees security. We refer the readers to Section 5 for the detailed construction.
Here we give an outline of the garbling and verification process:

1. The members of each virtual party run the inner protocol to garble the virtual party’s local computation
in the non-constant-round protocol. During each round of the inner protocol, each member commits the
set of all the messages sent in this round via AVID. After receiving all the messages and commitments in
the current round, parties can continue in the next round. Finally, the members generate commitments
for their outputs from the inner protocol.

2. The parties agree on a set Ter of virtual parties that terminate their inner protocols, guaranteed that
only a small fraction of the virtual parties in Ter are completely formed by corrupted parties. For each
virtual party in Ter, the parties agree on a coin to decide whether its computation is checked.

3. For each checked virtual party, its members open the commitments for the inputs to the inner pro-
tocol and the transcripts of the inner protocol to all the parties. The commitments are opened by
retrieving the commitments via AVID and reconstructing the seeds. The parties then check whether
the computation of the virtual party is correctly performed.

4. If the check passes, all the members of virtual parties of Ter open their output of the inner protocols,
i.e. the garbled circuits of the virtual parties’ local computation of the non-constant-round protocol.

Finally, all the parties obtain the garbled circuits generated by the virtual parties in Ter (if the verification
passes). Then, each party can evaluate the circuit as in [GLOS25] and obtain their outputs. We refer the
readers to Section 5 for more details.

3 Preliminaries
Let κ denote the secure parameter, and let Fq denote the finite field with q elements. We use u∗v to denote
the coordinate-wise multiplication of two vectors u,v of the same length, and we use u ⊗ v to denote the
tensor product of two vectors, defined by

u⊗ v = (ui · vj)i∈{1,...,k},j∈{1,...,ℓ} = (u1v1, . . . , u1vℓ, . . . , ukv1, . . . , ukvℓ)

for u = (u1, . . . , nk),v = (v1, . . . , vℓ).

10

Security Model. In our work, we follow the security model in [CGHZ16, Coh16]. We use the UC frame-
work introduced by Canetti [Can01] to define the security of our protocols, based on the real and ideal world
paradigm [Can00]. Informally, we consider a protocol Π to be secure if its execution in the real world can
also be done in the ideal world. For more details about the security model, we refer the readers to Section
A.

Asynchronous Rounds. We follow the definition of asynchronous rounds under the assumption of the
ideal functionality FACS of the agree on a common set (ACS) protocol (see Figure 16 in Section C). The
number of rounds is defined to be the maximum number of times an honest party alternates between sending
a message to a secure channel and sending a request to fetch the output from a secure channel.

3.1 Asynchronous Subprotocols
In the remaining sections of this paper, we assume t = (n − 1)/3. We now introduce some asynchronous
subprotocols in this section.

Agree on a Common Set. The agreement on a common subset (ACS) primitive allows the parties to
agree on a set of inputs satisfying a certain property.

We give the ACS functionality FACS in Section C. Using the techniques from [BCG93, AJM+23, CFG+23],
FACS can be achieved in expected constant time. We refer the readers to Section C for more details.

Asynchronous Verifiable Information Dispersal. An asynchronous verifiable information dispersal
(AVID) protocol [CT05] enables a party to disperse a message among a group of parties during a dispersal
phase, where the message can be retrieved by any other party in a retrieving phase. We provide the
functionality FAVID of AVID in Section B (see Figure 14). We borrow the result from [ADD+22] for the
instantiation of the AVID functionality.

Theorem 3. ([ADD+22]) There exists a protocol ΠAVID that securely realizes FAVID with communication
of O(|M |+nκ) bits in the dispersal phase to disperse a message M and communication of O(|M |+nκ) bits
for a party to retrieve a dispersed message M . The dispersal phase requires 6 rounds of communication, and
the retrieval phase requires 1 round.

Random Coin. We will also need a subprotocol for preparing a random common coin. For the formal
functionality FCoin of generating a random coin, we refer the readers to Section B (Figure 15). The function-
ality can be realized by letting all the parties prepare a random sharing via ACSS [PCR09, CP23, JLS24] and
reconstructing the secret via the online error correction (OEC) process [Can96]. We conclude the following
theorem.

Theorem 4. There exists a constant-round protocol ΠCoin that securely realizes FCoin with communication
of O(poly(n, κ)) bits.

Remark 1. The instantiation of FCoin requires an invocation of FACS to agree on a set of parties’ inputs
that are correctly shared among all the parties. This ACS process can be run within the first FACS invocation
to instantiate FSetup (the ACSS processes can be run in parallel with the setup phase of our main protocol,
see Section 5 for more details). Thus, this doesn’t affect our final result.

3.2 Linear Secret Sharing Schemes
We introduce the Linear Secret Sharing Schemes (LSSS) we used in our construction. We follow the definition
of LSSS from [GLOS25]. We give the formal definition of LSSSs in Section D. Intuitively, a (n, t, k, ℓ)-linear
secret sharing scheme (LSSS) Σ over Fq is a secret sharing among n parties, with a sharing algorithm that
maps the secret to n shares and a reconstruction algorithm that maps all the shares to the secret. The secret

11

is in Fk
q and each share is in Fℓ

q. Each group of t shares in such a sharing is independent of the secret. An
LSSS satisfies linearity, which means the sharing and reconstructing algorithms are both linear.

For an LSSS Σ over Fq, a vector of m sharings ([s1], . . . , [sm]) in Σ can naturally be regarded as an LSSS
Σ×m over Fqm . Σ×m is called an m-fold interleaved secret sharing scheme of Σ [CCXY18].

The LSSSs we used are natural extensions of the LSSSs from [CC06, GLOS25]. Our non-constant-round
protocol is built upon (N,T, k, ℓ)-LSSSs Σ,Σ(2),Σ(3) over F2, denoted by [·], [·](2), [·](3) respectively. In the
rest of this paper, the notations Σ,Σ(2),Σ(3) are used to denote these specific schemes. It holds that the
tensor product of two Σ-sharings is a Σ(2)-sharing, i.e. [s(1)] ⊗ [s(2)] = [s(1) ∗ s(2)](2). Similarly, the tensor
product of a Σ(2)-sharing and a Σ-sharing is a Σ(3)-sharing. We take T = N/20, q = 220, k = N/20, and
ℓ = 20 in our protocol, the resulting Σ,Σ(2),Σ(3) are all (N,T, k, 20)-LSSSs over F2. In addition, the secret
of each Σ,Σ(2),Σ(3)-sharing can be reconstructed from any N/5 shares, and there exists efficient algorithms
to decide whether a set of shares is from a valid Σ/Σ(2)/Σ(3) sharing and reconstruct the secret (as observed
in [GLOS25]). We give more details about the LSSSs we used in Section D.

4 The Non-Constant-Round protocol
In this section, we give the non-constant-round protocol Π0, which is a special synchronous MPC protocol
that runs among n clients C1, . . . , Cn and N servers S1, . . . , SN . Our main AMPC construction is given
by letting the parties compute the garbled circuit compiled from Π0. Π0 is a natural extension of the non-
constant-round protocol of [GLOS25]. For simplicity, we give the construction of Π0 for single instruction
multiple data (SIMD) circuits that contain Θ((n + κ)2) copies of the same circuit. The protocol Π0 is
secure against a semi-honest adversary that corrupts up to t = (n − 1)/3 clients and T = N/20 servers.
The construction follows the gate-by-gate fashion based on the secret sharing scheme Σ and the associated
sharing Σ(2),Σ(3) introduced in Section 3.2 and Section D. We assume that the number of copies of a single
circuit contained in the SIMD circuit to compute is a multiple of k2 times, where k is the secret size of Σ.

The basic idea of the construction is to batch each k gates of the same type together, where the batched
gates are in the same position of different single-data circuits of the SIMD circuit. Gates of the same batch
are evaluated together. The clients first share their inputs using Σ-sharings for each batch of input gates.
During the evaluation, the goal of the servers is to use the Σ-sharings for batched input wires of each group
of gates to jointly compute the Σ-sharing for the batched output wires of them. After the whole circuit is
evaluated, the servers hold Σ-sharings for batches of output wires. They only need to send each sharings to
the client who needs the corresponding output and let him reconstruct his output.

Due to the linearity of Σ, batched addition gates can be evaluated locally. For batched multiplication
gates, the parties can locally compute a Σ(2)-sharing of the output wire values from Σ-sharings of input wire
values, and then the parties need a degree reduction process to convert it to a Σ-sharing.

Subprotocols. We follow the degree reduction process of [GLOS25]. We need the following subprotocols
to help us perform the degree reduction process:

• A protocol ΠRandShare that enables all the servers jointly prepare random Σ(2)-sharings.

• A protocol ΠTranspose that takes Σ(2)-sharings [x1]
(2), . . . , [xk]

(2) as input. Let xi = (xi,1, . . . , xi,k) and
x∗
i = (x1,i, . . . , xk,i), ΠTranspose outputs ([x∗

1], . . . , [x
∗
k]).

With the above subprotocols, we follow [GLOS25] to build the protocol ΠMulti that takes Σ-sharings [x1], . . . , [xk]
and [y1], . . . , [yk] as inputs. The outputs of ΠMulti are [z1], . . . , [zk] with [zj] = [xj ∗yj] for j = 1, . . . , k. The
protocol ΠMulti can evaluate k2 multiplication gates together with communication of O(N2) bits. We refer
the readers to Section E for more details.

Protocol Description. Now we present the protocol Π0 for SIMD circuits as follows.

12

Preprocessing Phase
Let C be the SIMD circuit to compute. Let GA be the number of multiplication gates of C.

1. The servers run ΠRandShare to prepare 2GANℓ/k2 random Σ(2)-sharings.

2. The servers do the following 2GA/k
2 times in parallel:

(a) Each server Sj generates a random Σ(2)-sharing [rj]
(2) and distributes it to all the servers.

(b) The servers group each Nℓ random Σ(2)-sharings obtained from ΠRandShare together as
[u1]

(2), . . . , [uNℓ]
(2).

Each group of sharings prepared in this step is associated with an instance of ΠTranspose.

3. For each batch of k output wires attached to a client Ci, Ci generates a random Σ(2)-sharing [r](2) and
distributes it to all the servers.

4. The servers agree on a public Σ-sharing [1] where 1 = (1, 1, . . . , 1).

Input Phase
For each batch of k input wires attached to client Ci, Ci generates a random Σ-sharing [x] of the input vector
x on the batch of wires.

Evaluation Phase
1. All parties evaluate the circuit gate by gate:

(a) Addition Gates: For each batch of k addition gates with input sharings [x], [y], all the servers locally
compute [x+ y] = [x] + [y].

(b) Multiplication Gates: For each k groups of multiplication gates with input sharings
([x1], [y1]), . . . , ([xk], [yk]), all the servers run ΠMulti with input sharings [x1], . . . , [xk] and [y1], . . . , [yk].

2. After evaluating all the layers of the circuit and collecting the input sharings for the output layer, for each
input sharing [y] for an output gate attached to each client Ci, the servers locally compute
[y + r](2) = [1]⊗ [y] + [r](2) with the corresponding [r](2) and send it to Ci. Then Ci reconstructs y + r
and computes y = y + r − r to get his output.

Protocol Π0

Figure 1: The protocol Π0.

Note that the evaluation phase of Π0 only contains local computations and reconstructions of Σ(2)-
sharings. This property is important when we compile it to our main protocol. The communication com-
plexity of Π0 is O(|C|+ poly(n,N, κ)), and the servers together need O(|C|) AND operations.

Using the techniques of network routing [GPS21, GPS22], the above protocol can be extended to com-
pute a general circuit. The communication complexity is O(|C| + DN2κ + poly(n,N, κ)), and the servers
together need O(|C|+DN2) AND operations. The evaluation phase still consists of local computations and
reconstructions of Σ(2)-sharings. We refer the readers to [GLOS25] for more details.

5 The Main Protocol
In the main protocol, we consider the case that there are n parties, and up to t of them are corrupted, with
n = 3t+ 1. We consider malicious security with abort in the asynchronous setting.

5.1 Parameter Choices for Virtual Servers
In the main protocol, n parties will act as the n clients in Π0, where each Pi will emulate the client Ci.
For the N servers, we use the party virtualization technique [Bra87]. We let 3 parties emulate a virtual
server Vj corresponding to the server Sj in Π0. For the remaining of this section, we consider Π0 to be
performed among P1, . . . , Pn (as clients C1, . . . , Cn) and V1, . . . , VN (as servers S1, . . . , SN). Between the
parties emulating the same virtual server, the parties run an inner dishonest-majority synchronous MPC
protocol Πin to garble the local computation of the server’s computation in Π0.

13

Taking N random groups of 3 parties to emulate the N virtual servers, the probability that a virtual server
is completely honest is larger than (2/3)3 = 8/27. We let Xi = 1 if all the parties emulating the i-th virtual
server are completely honest and Xi = 0 otherwise. Since these N groups of servers are chosen independently,
X1, . . . , XN are independent random variables. Let X = X1 + · · · +XN , we have µ = E(X) > 8N/27. By
Chernoff bound (see Section F for the lemma of Chernoff bound) it holds that:

P (X ≤ N/4) ≤ P (X ≤ (1− 5/32)µ) ≤ e−
25µ
2048 = e−Ω(N).

Taking the union bound of at most
(
n
t

)
< 2n possible choices of the set of corrupted parties, the probability

that less than N/4 virtual servers are honest is no more than e−Ω(N−n). Let N = n + Θ(κ) = Θ(n +
κ), with overwhelming probability, each party can wait for the outputs of Πin from N/4 virtual servers.
Similarly, the probability that a virtual server is completely corrupted is smaller than (1/3)3 = 1/27, and
with overwhelming probability, there will not be more than N/26 completely corrupted virtual servers.

From the above analysis, the parties can wait for a common set N/4 virtual servers to terminate their
computation (which can be determined by the ACS functionality). The resulting set Ter is determined via
an invocation of FACS. For each of these virtual servers, the parties agree on a random coin that outputs 1
with a probability of 1/320 and outputs 0 with a probability of 319/320. If the random coin outputs 1, the
dispersal inputs and transcripts of the corresponding virtual server’s inner protocol are retrieved by all the
parties. The parties then check whether the virtual server performs the computation correctly. By Chernoff
Bound, the probability that more than N/312 virtual servers are checked is negligible. Besides, if more
than N/264 virtual servers formed by both honest and corrupted parties don’t perform their computation
correctly, the probability that each of them is checked is 1/320, so the probability that none of them is
checked is at most

(1− 1/320)
N
264 = e−Ω(N),

which is negligible.
Another issue we haven’t discussed comes from the preprocessing for inner protocols. To let the members

of a virtual server perform multiplications securely under a dishonest majority, we need all the parties to
prepare random OTs (ROTs) before the inner protocol. For these values from ROTs, the adversary may
launch a selective failure attack as noted in [IPS08]. For example, say two parties (P1, P2) invoke an instance
of ROT where P1 is corrupted and P2 is honest. P1 receives r0, r1 ∈ {0, 1}κ and P2 receives b ∈ {0, 1}, rb from
the ROT. Then, if b = 0, P1 may commit r0, r

′
1 ̸= r1 as his output from the ROT, and the multiplication

performed with this instance of ROT can still be computed correctly. In this case, the parties would not be
able to detect the malicious behavior, and the adversary would learn that b = 0, which breaks the security of
the multiplication protocol. However, the adversary has at most 1/2 probability to carry out such an attack
on each ROT without being caught. If the adversary performs such an attack on over N/220 virtual servers
in Ter, the probability of catching the adversary when checking any of them is at least (1/2)·(1/320) = 1/640.
Thus, the total probability of not catching the attack during the verification is at most

(1− 1/640)
N
220 = e−Ω(N),

which is still negligible.
As analyzed above, with overwhelming probability, at most N/26 + N/312 + N/264 + N/220 = N/20

virtual parties in Ter are dishonest, i.e., their data is revealed to the adversary or they do not perform their
computation honestly. This matches the corruption threshold T = N/20 in Π0.

5.2 The Inner Protocol for Multiparty Garbling
Now we present the inner protocol Πin that garbles each virtual server’s local computation Π0. We present
the formal definition of ROT instances, and we give subprotocols for opening an additive sharing (ΠOpen) and
computing the multiplications of two additively shared values (ΠMult) in Section G. We follow the approach
of [LPSY15] to do the multiparty garbling, which supports freeXOR [KS08] in the random oracle model. For
simplicity, we assume that the message lengths of the random oracles are compatible with the equations in
the protocol, for example, the equation O(s)⊕M with M ∈ {0, 1}m implies O(s) ∈ {0, 1}m.

14

The protocol runs between 3 parties Pj,1, Pj,2, Pj,3, who agree on a circuit CircVj to be garbled and a circuit
C to be computed in the MPC protocol. The circuit CircVj is the circuit of local computation of Vj during
the evaluation phase of Π0, which consists of AND, XOR, and output gates.

Inputs: The parties’ inputs consist of the following:

1. 2GAN(ℓ+ 1)/k2 +WI/k +WO/k additive sharings. The secrets of these sharings are Vj ’s shares of the
sharings prepared in the preprocessing phase and the input phase of Π0, i.e.

– 2GA/k
2 groups of sharings [r1]

(2), . . . , [rN](2) which are generated in Step 3.(a) of Π0.
– 2GA/k

2 groups of sharings [u1]
(2), . . . , [uNℓ]

(2) which are grouped in Step 3.(b) in Π0.
– A sharing [r](2) for each batch of k output wires.
– WI/k input sharings generated in the input phase of Π0.

Here, GA,WI ,WO are the numbers of AND gates, input wires, and output wires of C respectively. In
addition, the parties input the sharing ⟨rj⟩ for each group.

2. For each wire of CircVj except output wires of XOR and output gates, each party Pj,i inputs a wire label
k
Pj,i

w,0 ∈ Fκ−1
2 and his share λ

Pj,i
w of the additive sharing ⟨λw⟩ of wire mask λw ∈ {0, 1}.

3. Each party inputs a global (κ− 1)-bit string ∆Pj,i as the sum (over F2) of his two wire labels of each wire.

4. For each output gate of CircVj (with index k), each party Pj,i input two 3ℓκ-bit strings Y
Pj,i

k,0 , Y
Pj,i

k,1 .

5. Each pair of parties input κ− 1 instances of ROTs.

6. For each reconstruction of Σ(2)-sharing in the evaluation phase of Π0 whose receiver is Vj , each party Pj,β

inputs 2κ k-bit strings r
(1)
0,β , . . . , r

(κ)
0,β and r

(1)
1,β , . . . , r

(κ)
1,β .

The protocol proceeds as follows:

1. OT Extension. Each pair of parties invokes the extension in [KOS15] to get 13 ·GVj

A + 6ℓW
Vj

O instances
of ROTs with message length κ− 1. Here G

Vj

A is the number of AND gates in CircVj and W
Vj

O is the
number of output wires in CircVj .

2. Handling XOR gates. For each XOR gate in CircVj with input wire a, b and output wire o, each party
Pj,i computes

k
Pj,i

o,0 ∥λPj,i
o = (k

Pj,i

a,0 ∥λPj,i
a)⊕ (k

Pj,i

b,0 ∥λPj,i

b).

This computation is performed gate by gate.

3. Computing 1-Labels. For each wire w in CircVj that is not an output wire of an output gate. Each
party Pj,i computes k

Pj,i

w,1 = k
Pj,i

w,0 ⊕∆Pj,i .

4. Handling AND Gates. For each AND gate g in CircVj with input wires a, b and output wire o, the
parties hold ⟨kPj,α

o,0 ⟩ where Pj,α’s share is k
Pj,α

o,0 and all other parties have all-0 shares. Similarly, they hold
⟨kPj,α

o,1 ⟩, and they also hold ⟨λa⟩, ⟨λb⟩, ⟨λo⟩. Then:

(a) Each pair of parties take 1 instances of ROT. Then the parties run ΠMult to compute ⟨λa · λb⟩. Then the
parties locally compute ⟨χ1⟩, ⟨χ2⟩, ⟨χ3⟩, ⟨χ4⟩, where

χ1 = ((0⊕ λa) ∧ (0⊕ λb))⊕ λo, χ2 = ((0⊕ λa) ∧ (1⊕ λb))⊕ λo,

χ3 = ((1⊕ λa) ∧ (0⊕ λb))⊕ λo, χ4 = ((1⊕ λa) ∧ (1⊕ λb))⊕ λo.

(b) Each pair of parties takes 12 instances of ROTs. Then the parties run ΠMult to compute
⟨χi · (k

Pj,α

o,1 − k
Pj,α

o,0)⟩ for i = 1, 2, 3, 4 and α = 1, 2, 3. Then the parties locally compute
⟨kPj,α

o,χi ⟩ = ⟨kPj,α

o,0 ⊕ χi · (k
Pj,α

o,1 − k
Pj,α

o,0)⟩ for i = 1, 2, 3, 4 and α = 1, 2, 3.

(c) Each party Pj,i calls the random oracle O with input k
Pj,i

a,i0
∥i0∥k

Pj,i

b,i1
∥i1∥i∥j∥α∥g for each

(i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, 2, 3 and then receives the output. The output can be
regarded as additively shared among Pj,1, Pj,2, Pj,3, where all the parties except Pj,i have all-0 shares.

Protocol Πin

15

(d) The parties locally compute ⟨APj,α

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, 2, 3, where

A
Pj,α

g,2i0+i1
=

(3⊕
i=1

(
O(k

Pj,i

a,i0
∥i0∥k

Pj,i

b,i1
∥i1∥i∥j∥α∥g)

))
⊕ (k

Pj,α
o,χ2i0+i1

∥χ2i0+i1),

Let A
Vj

g,1 = (A
Pj,1

g,1 , A
Pj,2

g,1 , A
Pj,3

g,1) and similar for A
Vj

g,2,A
Vj

g,3,A
Vj

g,4. The parties then get
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩.

5. Handling Output Gates. For each output gate with index k in CircVj with input wire w, the parties
hold ⟨Y Pj,α

k,0 ⟩ where Pj,α’s share is Y
Pj,α

k,0 and all other parties have all-0 shares. Similarly, they hold

⟨Y Pj,α

k,1 ⟩, and they also hold ⟨λw⟩. Then:

(a) Each pair of parties takes 6ℓ instances of ROTs. Then the parties run ΠMult to compute
⟨(i2 ⊕ λw) · (Y

Pj,α

k,1 − Y
Pj,α

k,0)⟩ for i2 = 0, 1 and α = 1, 2, 3. Then the parties locally compute

⟨Y Pj,α

k,i2⊕λw
⟩ = ⟨Y Pj,α

k,0 ⊕ (i2 ⊕ λw) · (Y
Pj,α

k,1 − Y
Pj,α

k,0)⟩ for i2 = 0, 1 and α = 1, 2, 3.

(b) Each party Pj,i calls the random oracle O with input k
Pj,α

w,i2
∥i2∥i∥j∥α∥w for each i2 = 0, 1 and α = 1, 2, 3

and then receives the output. The output can be regarded as additively shared among Pj,1, Pj,2, Pj,3,
where all the parties except Pj,i have all-0 shares.

(c) The parties locally compute ⟨ctPj,α

w,i2
⟩ for each i2 = 0, 1 and α = 1, 2, 3, where

ct
Pj,α

w,i2
=

(3⊕
i=1

(
O(k

Pj,i

w,i2
∥i2∥i∥j∥α∥w)

))
⊕ Y

Pj,α

k,i2⊕λw
,

Let ct
Vj

w,i2
= (ct

Pj,1

w,i2
, ct

Pj,2

w,i2
, ct

Pj,3

w,i2
) for each i2 = 0, 1. The parties then get ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩.

6. Masking Input Wire Values. For each input wire w of CircVi , if the wire value xw doesn’t come from a
reconstruction of a Σ(2)-sharing, the servers (holding ⟨xw⟩) compute ⟨xw ⊕ λw⟩ and then run
ΠOpen(⟨xw ⊕ λw⟩).

7. Outputting Output Masks. For each input wire w of an output gate in CircVj , the parties output their
shares of ⟨λw⟩.

8. Encrypting Input Labels. For each reconstruction of Σ(2)-sharing in the evaluation phase of Π0 whose
receiver is Vj , we assume it’s the i-th reconstruction, and the sharing to be reconstructed is [si]

(2). Suppose
the η-th bit of si is used as an input wire with index jη in CircVj :

(a) Each party Pj,β queries the random oracle O with inputs r0,η,β∥0∥i∥β∥η∥jη and r1,η,β∥1∥i∥β∥η∥jη,
where rb,η,β = (r

(1)
b,η,β , . . . , r

(κ)
b,η,β) for each b = 0, 1 with each r

(α)
b,β = (r

(α)
b,1,β , . . . , r

(α)
b,k,β). Then Pj,β receives

O(r0,η,β∥0∥i∥β∥η∥jη) and O(r1,η,β∥1∥i∥β∥η∥jη).
(b) Each party Pj,β locally computes

ct
(i,β)
jη,0 = O(r0,η,β∥0∥i∥β∥η∥jη)⊕

(
k
Pj,β

wjη ,λwjη
∥λwjη

)
and

ct
(i,β)
jη,1 = O(r1,η,β∥1∥i∥β∥η∥jη)⊕

(
k
Pj,β

wjη ,1⊕λwjη
∥(1⊕ λwjη

)
)
.

Then Pj,β outputs the ciphertexts ct
(i,β)
jη,0 , ct

(i,β)
jη,1 .

9. Outputting Input Labels. For each input wire w of CircVj , if the wire value xw doesn’t come from a
reconstruction of a Σ(2)-sharing in the evaluation phase of Π0:

(a) The parties Pj,1, Pj,2, Pj,3 output xw ⊕ λw.

(b) Each party Pj,i outputs k
Pj,i

w,xw⊕λw
.

10. Outputting Garbled Circuits. Each party Pj,β outputs his shares of ⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ for
each AND gate and ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩ for each output wire w.

Figure 2: The inner protocol.

16

5.3 Main Protocol Description
Now we are ready to introduce our construction of the main protocol Π, which runs the Setup Phase, the
Sharing Phase, the Local Computation Phase, the Garbling Phase, the Verification Phase, and the Evaluation
Phase in order.

Let N be the matrix

N =

1 1 · · · 1
1 b1 · · · b2t
...

...
. . .

...
1 bt1 · · · bt2t

 ,

where 1, b1, . . . , b2t are 2t+ 1 different elements in F2a for a = ⌊log n⌋+ 1.
When we say a party aborts the protocol, he also sends abort to all the parties. When a party receives

abort from any other party, he also aborts the protocol. Each message of the protocol is associated with a
message index mid.

Setup Phase. In the Setup phase, each pair of parties agrees on a pair-wise symmetric key. All the parties
determine the virtual servers and prepare seeds for commitments. Each pair of members of a virtual server
also prepares base ROTs. We give the functionality FSetup of the Setup phase below in Figure 3.

The trusted party interacts with all the parties P1, . . . , Pn and the adversary Sim. The parties agree on public
parameters α0, . . . , αn ∈ F2κ

1. Preparing Symmetric Keys. For each pair of parties (Pi, Pj), the trusted party samples a random κ-bit
string as the pair-wise key ki,j = kj,i between Pi and Pj . For each honest party Pi, the trusted party sends
ki,j = kj,i as a request-based delayed output to Pi. For each corrupted party Pi and honest party Pj , the
trusted party sends ki,j = kj,i to Sim. Similarly, for each group of three parties (Pi, Pj , Pα), the trusted
party samples a random κ-bit string as the pair-wise key ki,j,α among them. Sim then sends it to the three
parties (to Sim if among them there is a corrupted party) as request-based delayed outputs.

2. Determining the Virtual Servers. Let N = n+Θ(κ), the trusted party randomly samples a 3-party
set {Pj,1, Pj,2, Pj,3} for j = 1, . . . , N . Then, the trusted party sends all these sets to Sim and to honest
parties as request-based delayed outputs. The servers Pj,1, Pj,2, Pj,3 will run the inner protocol Πin to
emulate the virtual server Vj in Π0.

3. Preparing the Seeds for Commitments.

(a) For each party Pi, each j = 1, . . . , N , and α = 1, 2, 3:
The trusted party randomly samples a κ-bit string as seed

Pj,α

i (which is also regarded as an element in
F2κ). The trusted party then receives an element in F2κ as q

Pj,α

i (αu) for each corrupted party Pu from
Sim. The trusted party then samples a random degree-t polynomial qPj,α

i (·) based on the points
received from Sim and q

Pj,α

i (α0) = seed
Pj,α

i . The trusted party then sends q
Pj,α

i (αv) to each honest
party Pv as a request-based delayed output. If Pi is honest, the trusted party sends seed

Pj,α

i to Pi as a
request-based delayed output. Otherwise, the trusted party sends seed

Pj,α

i to Sim.
(b) For each i = 1, . . . , N and j = 1, 2, 3:

The trusted party randomly samples 3 κ-bit strings as seedPi,j , seedP
′
i,j , seed

Pi,j

0 (which are also
regarded as an elements in F2κ). The trusted party then receives 3 elements in F2κ as
qPi,j (αu), q

P ′
i,j (αu), q

Pi,j

0 (αu) for each corrupted party Pu from Sim. The trusted party then samples 3
random degree-t polynomials qPi,j (·), qP

′
i,j (·), qPi,j

0 (·) based on the points received from Sim and
qPi,j (α0) = seedPi,j , qP

′
i,j (α0) = seedP

′
i,j , q

Pi,j

0 (α0) = seed
Pi,j

0 . The trusted party then sends
qPi,j (αv), q

P ′
i,j (αv), q

Pi,j

0 (αv) to each honest party Pv as a request-based delayed output. If Pi,j is

Functionality FSetup

17

honest, the trusted party sends seedPi,j , seedP
′
i,j , seed

Pi,j

0 to Pi,j as a request-based delayed output.
Otherwise, the trusted party sends seedPi,j , seedP

′
i,j , seed

Pi,j

0 to Sim.

4. Prepare ROT instances. For each virtual server Vj , each pair of parties (Pj,α, Pj,β), Pj,β prepare κ− 1

instances of random OTs, i.e. the trusted party randomly samples r
(α,β)
0 , r

(α,β)
1 ∈ {0, 1}κ−1 and

b(α,β) ∈ {0, 1}. If Pj,α is honest, the trusted party sends r
(α,β)
0 , r

(α,β)
1 to Pj,α as a request-based delayed

output. Otherwise, the trusted party sends r
(α,β)
0 , r

(α,β)
1 to Sim. If Pj,β is honest, the trusted party sends

b(α,β), r
(α,β)

b(α,β) to Pj,β as a request-based delayed output. Otherwise, the trusted party sends b(α,β), r
(α,β)

b(α,β) to
Sim.

Figure 3: The functionality of the setup phase of Π.

As we can see, the circuit that computes FSetup is independent of the main circuit C to be computed.
Thus, we can use a general AMPC (whose round complexity does not depend on the number of parties,
like [CGHZ16]) to realize FSetup with communication of O(poly(n, κ)) bits.

Subprotocols to Prepare Virtual Servers’ Inputs. We now present subprotocols to prepare the virtual
servers’ inputs to the inner protocols. The presented protocols are run after invoking FSetup.

We first show how to compute inputs of 2GAN(ℓ+1)/k2 +WO/k additive sharings for shares of random
Σ(2)-sharings, i.e.

• 2GA/k
2 groups of sharings [r1]

(2), . . . , [rN](2).

• 2GA/k
2 groups of sharings [u1]

(2), . . . , [uNℓ]
(2).

• A sharing [r](2) for each batch of k output wires.

For each rj , Pj,1, Pj,2, Pj,3 additionally need to input ⟨rj⟩. Thus, we prepare 3 random Σ(2)-sharings
[rj,1]

(2), [rj,2]
(2), [rj,3]

(2) and reconstruct each secret rj,i to Pj,i. Then, we set [rj]
(2) = [rj,1]

(2) + [rj,2]
(2) +

[rj,3]
(2) and ⟨rj⟩ = (rj,1, rj,2, rj,3). For the random sharings prepared for output wires, we similarly split

each of them into 3 random sharings.
In this way, we need to prepare 2GAN(ℓ + 3)/k2 + 3WO/k random Σ(2)-sharings, where each share is

shared among 3 members of a virtual server. We prepare them by a share-and-compute process. In the first
phase, the parties generate random sharings by themselves. In the second phase, the members of virtual
servers to local computations for randomness extraction. In particular, to prepare each a(t + 1) random
Σ(2)-sharings (where a = ⌊log n⌋+ 1), the parties first run the following protocol Π(2)

RandShare-Share.

For each party Pi:

1. Pi generates a random Σ(2)-sharing [v′
i]
(2)
a and a random Σ(2)-sharing [oi]

(2)
a where oi is an all-zero vector.

For each share v
Vj

i (of [v′
i]
(2)
a) and o

Vj

i (of [oi]
(2)
a) for virtual server Vj , Pi generates

⟨vVj

i ⟩ = (v
Vj

i,1,v
Vj

i,2,v
Vj

i,3), ⟨o
Vj

i ⟩ = (o
Vj

i,1,o
Vj

i,2,o
Vj

i,3) among Pj,1, Pj,2, Pj,3.

2. For each j = 1, . . . , N , we assume Pj,α = Pjα for α = 1, 2, 3. Pi sends
v
Vj

i,1 ⊕O(ki,j1∥mid),v
Vj

i,2 ⊕O(ki,j2∥mid),v
Vj

i,3 ⊕O(ki,j3∥mid) to FAVID (the three messages v
Vj

i,1,v
Vj

i,2,v
Vj

i,3 are
encrypted by ki,j1 , ki,j2 , ki,j3 respectively). Here O is a random oracle with output length ℓ2. Similarly for
o
Vj

i,1 ⊕O(ki,j1∥mid),o
Vj

i,2 ⊕O(ki,j2∥mid),o
Vj

i,3 ⊕O(ki,j3∥mid), where v
Vj

i,β ⊕O(ki,jβ∥mid) and

o
Vj

i,β ⊕O(ki,jβ∥mid) are sent to the same instance of FAVID.

3. Upon receiving Dispersed from the instance of FAVID corresponding to key ki,j , the parties send
(Retrieve, Pj) to FAVID. For simplicity, we simply say Pi distributes [vi]

(2)
a = [v′

i]
(2)
a + [oi]

(2)
a to all the virtual

servers via AVID for the above process, and similar for the rest of the protocol.

Protocol Π(2)
RandShare-Share

Figure 4: The sharing process for preparing random Σ(2)-sharings.

18

The protocol Π
(2)
RandShare-Share is invoked in the sharing phase of the main protocol. At the end of the

sharing phase, the parties will agree on a common set CoreSet. All the messages of sharings generated by
parties in CoreSet are guaranteed to terminate their corresponding dispersal phase of AVID. After CoreSet

is determined, the parties will run the following protocol Π(2)
RandShare-Compute in the local computation phase.

1. After retrieving all the messages in the last step of Π(2)
RandShare-Share, the parties locally compute their shares

use the pair-wise keys to decrypt the messages. Each group of parties Pj,1, Pj,2, Pj,3 then hold additive
sharings ⟨vVj

i ⟩, ⟨oVj

i ⟩ generated by each party Pi ∈ CoreSet.

2. Let CoreSet = {Pi1 , . . . , Pi2t+1}. For each j = 1, . . . , N , the parties Pj,1, Pj,2, Pj,3 locally compute
⟨wVj

1 ⟩
⟨wVj

2 ⟩
...

⟨wVj

t+1⟩

 = N ·

⟨vVj

i1
⟩+ ⟨oVj

i1
⟩

⟨vVj

i2
⟩+ ⟨oVj

i2
⟩

...
⟨vVj

i2t+1
⟩+ ⟨oVj

i2t+1
⟩

 ,

where {wVj

i }Nj=1 form a Σ
(2)
×a-sharing [wi]

(2)
a for i = 1, . . . , t+ 1.

3. For each j = 1, . . . , N , the parties Pj,1, Pj,2, Pj,3 locally compute the additive sharing of Vj ’s shares of
[w

(1)
i](2), . . . , [w

(a)
i](2) from ⟨wVj

i ⟩ for each i = 1, . . . , t+ 1.

Protocol Π(2)
RandShare-Compute

Figure 5: The local computation process for preparing random Σ(2)-sharings.

For the input Σ-sharings, we can simply let each client generate and share them via AVID. For each wire
that is not an output wire for XOR/output gates or an input wire whose value is the secret of a Σ(2)-sharing
to be reconstructed in a virtual server’s local circuit, we can let the members generate it by themselves, and
similar for the global (κ− 1)-bit strings.

Now the remaining problem is how to let the parties prepare output wire labels together with the random
strings for reconstructions of Σ(2)-sharings, i.e., the strings Yk,0, Yk,1 in Πin and r

(α)
0,β , r

(α)
1,β for α = 1, . . . , κ.

Recall that we need each evaluator to locally compute the input labels for the secret from the output labels
for the shares of each Σ(2)-sharing.

For each reconstruction of Σ(2)-sharing in the evaluation of Π0 and each β = 1, 2, 3, the parties jointly
prepare κ random Σ(3)-sharings [r(1)0,β]

(3), . . . , [r
(κ)
0,β]

(3) and κ random Σ-sharings [r(1)1,β−r
(1)
0,β], . . . , [r

(κ)
1,β−r

(κ)
0,β].

If the receiver of the Σ(2)-sharing in Π0 is a virtual server Vj , the parties reconstruct the secrets of the prepared
Σ,Σ(3)-sharings to Pj,β . If the receiver is a client Cj , the parties reconstruct the secrets of the sharings for
all β = 1, 2, 3 to the client. For the wires outputting shares of a Σ(2)-sharing [s](2) to be reconstructed in
Π0, the output labels of [s](2) are set to be

[r
(α)
s,β]

(3) = [r
(α)
0,β]

(3) + [s](2) ⊗ [r
(α)
1,β].

Thus, for the a-th bit b of [s](2), the corresponding output wire label is set to be the aℓ + 1 to (a + 1)ℓ-th
bits of [r(α)0,β]

(3) plus b · [r(α)1,β − r
(α)
0,β] for each α = 1, . . . , κ and β = 1, 2, 3. In this way, when an evaluator gets

the output labels of [s](2), i.e. the sharings [r
(α)
s,β]

(3), he can reconstruct r(α)s,β for α = 1, . . . , κ and β = 1, 2, 3,
which are the input wire labels corresponding to s.

To make the above approach work, we require the parties to jointly prepare random Σ and Σ(3)-sharings.
We use Π

(1)
RandShare-Share,Π

(1)
RandShare-Compute and Π

(3)
RandShare-Share,Π

(3)
RandShare-Compute to denote the protocols to pre-

pare them. We only need to use Σ,Σ×a-sharings and Σ(3),Σ
(3)
×a-sharings to replace the Σ(2),Σ

(2)
×a-sharings in

Π
(2)
RandShare-Share,Π

(2)
RandShare-Compute. We omit the details. Assume that there are altogether rec reconstructions

of Σ(2)-sharings [s1](2), . . . , [srec](2) in the evaluation phase of Π0, 3κrec pairs of random Σ,Σ(3)-sharings are
required.

19

Remark 2. For parallel executions of Π(1)
RandShare-Share,Π

(2)
RandShare-Share,Π

(3)
RandShare-Share, all the shares sent from

a party Pi to a party Pj can be sent together via a single invocation of FAVID.

Sharing Phase. Now we are ready to present the sharing phase. The sharing phase is performed after
the setup phase terminates. In the Sharing Phase, the parties generate input sharings and random sharings
and use AVID to share them. Besides, parties prepare local randomness for the inner protocol. For all these
shares and randomness used in the inner protocol, the parties commit them.

Sharing Phase
Let the local circuit of each virtual server Vj in Π0 be CircVj . The parties do the following, where all the
messages masked with the same key (i.e., all messages of form m⊕O(k∥mid) with the same k) are sent to the
same instance of FAVID in this phase:

1. Preparing Random Σ(2)-Sharings. Let a = ⌊logn⌋+ 1. The parties run Π
(2)
RandShare-Share

2GAN(ℓ+ 3)/a(t+ 1)k2 + 3WO/a(t+ 1)k times, where GA is the number of AND gates in C and WO is
the number of output gates in C. Among them:

– 2GA/a(t+ 1)k2 invocations are used to prepare 2GA/k
2 groups of [rη,i]

(2) for η = 1, . . . , N and each
i = 1, 2, 3. During the executions of Π(2)

RandShare-Share to prepare [rη,i]
(2), for each Pj,β share v

Vj

α,β of the

additive sharing of Vj ’s share of [v′
α]

(2), Pα sends v
Vj

α,β ⊕O(kα,ηi,jβ∥mid) to FAVID (where we assume
Pη,i = Pηi and Pj,β = Pjβ). Then all the parties send (Retrieve, Pη,i) and (Retrieve, Pj,β) to FAVID upon
receiving Dispersed from it. Upon receiving v

Vj

α,β ⊕O(kα,ηi,jβ∥mid) and v
Vj

α,β ⊕O(kα,jβ∥mid), Pj,β

decrypts v
Vj

α,β from the two messages and checks whether they are the same. If not, Pj,β aborts the
protocol.

– 2GANℓ/a(t+ 1)k2 instances of Π(2)
RandShare-Share are used to prepare 2GAN/k2 groups of random sharings

[u1]
(2), . . . , [uNℓ]

(2).
– For each a(t+ 1) batches of k output wires attached to a client Ci (emulated by party Pi), an instances

of Π(2)
RandShare-Share is used to prepare the random sharings [r](2) attached to these batches of output wires.

During the executions of Π(2)
RandShare-Share to prepare [r](2) for output wires attached to Pi, for each share

v
Vj

α,β (for Pj,β) of Vj ’ share of [v′
α]

(2), Pα sends v
Vj

α,β ⊕O(kα,i,jβ∥mid) to FAVID (where Pj,β = Pjβ). All
the parties send (Retrieve, Pi) and (Retrieve, Pj,β) to FAVID upon receiving Dispersed from it. Upon
receiving v

Vj

α,β ⊕O(kα,i,jβ∥mid) and v
Vj

α,β ⊕O(kα,jβ∥mid), Pj,β decrypts v
Vj

α,β from the two messages and
checks whether they are the same. If not, Pj,β aborts the protocol.

2. Preprocessing for the Verification of Sharings. Let κ′ = N + κ. Each party Pi generates a random
Σ×κ′ -sharing [r

(i)
1]κ′ , a random Σ

(2)

×κ′ -sharing [r
(i)
2]

(2)

κ′ , and a random Σ
(3)

×κ′ -sharing [r
(i)
3]

(3)

κ′ . Each party Pi

generates a random Σ×κ′ -sharing [o
(i)
1]κ′ , a random Σ

(2)

×κ′ -sharing [o
(i)
2]

(2)

κ′ , and a random Σ
(3)

×κ′ -sharing
[o

(i)
3]

(3)

κ′ with all-zero secrets. Then Pi distributes them to the virtual servers via AVID.

3. Sharing Inputs. For each batch of k input wires attached to Pi in circuit C with input values
s1, . . . , sk ∈ F2, Pi randomly generates [s], where s = (s1, . . . , sk). Then Pi distributes the sharing to the
virtual servers via AVID.

4. Preparing for the Garbling of Local Circuits.

(a) Preparing for the Output Labels. Let a = ⌊logn⌋+ 1. The parties run Π
(1)
RandShare-Share and

Π
(3)
RandShare-Share 3κrec/a(t+ 1) times. Among them, each κ/a(t+ 1) pairs of invocations of Π(1)

RandShare-Share

and Π
(3)
RandShare-Share are used to prepare [r

(α)
0,β]

(3), [r
(α)
1,β − r

(α)
0,β] (α = 1, . . . , κ) for each β = 1, 2, 3 associated

with a reconstruction of Σ(2)-sharing in the evaluation phase of Π0. For the instances of FAVID in these
invocations:
– If the receiver of the Σ(2)-sharing is a client Ci (emulated by Pi), during the executions of

Π
(1)
RandShare-Share,Π

(3)
RandShare-Share attached to this reconstruction, for each share v

Vj

α,β (for Pj,β) of the

additive sharing of Vj ’s share of [v′
α] or [v′

α]
(3), Pα sends v

Vj

α,β ⊕O(kα,i,jα∥mid) to FAVID (where we

Protocol ΠShare

20

assume Pj,β = Pjβ). Then all the parties send (Retrieve, Pi) and (Retrieve, Pj,β) to FAVID upon
receiving Dispersed from it. Upon receiving v

Vj

α,β ⊕O(kα,i,jβ∥mid) and v
Vj

α,β ⊕O(kα,jβ∥mid), Pj,β

decrypts v
Vj

α,β from the two messages and checks whether they are the same. If not, Pj,β aborts the
protocol.

– If the receiver of the Σ(2)-sharing is a virtual server Vη, let Pη,i = Pηi . During the executions of
Π

(1)
RandShare-Share,Π

(3)
RandShare-Share attached to this reconstruction, for each share v

Vj

α,β of the additive

sharing of Vj ’s share of [v′
α] or [v′

α]
(3), Pα sends v

Vj

α,β ⊕O(kα,ηi,jα∥mid) to FAVID (where we assume
Pj,β = Pjβ). Then all the parties send (Retrieve, Pη,i) and (Retrieve, Pj,β) to FAVID upon receiving
Dispersed from it. Upon receiving v

Vj

α,β ⊕O(kα,ηi,jβ∥mid) and v
Vj

α,β ⊕O(kα,jβ∥mid), Pj,β decrypts

v
Vj

α,β from the two messages and checks whether they are the same. If not, Pj,β aborts the protocol.

(b) Generating Local Randomness. For each virtual server Vj with local circuit CircVj , the parties
Pj,1, Pj,2, Pj,3 do the following:
i. Each party Pj,i samples a random (κ− 1)-bit string as ∆Pj,i .
ii. For each wire w that is not an output wire of an XOR gate or an output gate, each party Pj,i

samples a random bit λ
Pj,i
w as his share of ⟨λw⟩ and a random (κ− 1)-bit string as k

Pj,i

w,0 .

5. Committing Sharings. Let the shares of the sharings generated by each party Pi for each Pj,α in this
phase form a set Sh

Pj,α

i . Then, Pi sends Sh
Pj,α

i ⊕O(seed
Pj,α

i ∥mid) to FAVID.

6. Determining the Core Set. The parties initialize an ACS functionality FACS with parameter
m = n− t,M = n. If Pi receives Dispersed from all the invocations of FAVID where the dealer is Pj in the
previous steps, Pi sends j to FACS. Finally, the parties obtain the set CoreSet of at least n− t parties from
FACS. For all the instances of FAVID whose dealer Pi is in CoreSet, the parties wait for the output Dispersed
from FAVID and then send (Retrieve, Pj) to FAVID for each message M encrypted by ki,j .

7. Committing Local Inputs. Let the set of all the shares whose encryptions are retrieved for Pj,i (i.e. the
masked shares are sent to FAVID, and (Retrieve, Pj,i) is sent to this instance of FAVID by all the parties)
generated by parties in CoreSet, all the ROT outputs from FSetup, and all the local randomness of a party
Pj,i be ISPj,i . Upon receiving all these the shares generated by parties in CoreSet from FAVID, Pj,i sends
ISPj,i ⊕O(seedPj,i∥mid) to FAVID.

Figure 6: The sharing phase of Π.

Local Computation Phase. In the local computation phase, the members emulating each virtual server
locally compute their input to Πin. Once a party Pj,i terminates the local computation phase, he obtains
all his inputs to Πin for the virtual server Vj . The local computation phase only contains the parties’ local
computations.

Local Computation Phase
For each virtual server Vj with local circuit CircVj in Π0, the parties Pj,1, Pj,2, Pj,3 do the following:

1. Computing Random Σ(2)-Sharings. For each execution of Π(2)
RandShare-Share in Step 1 of the Sharing

Phase, the parties run the corresponding protocol Π(2)
RandShare-Compute and obtain the following sharings:

– 2GA/k
2 groups of sharings [rη,1]

(2), [rη,2]
(2), [rη,3]

(2) for η = 1, . . . , N . After the retrieving process of all
the instances of FAVID terminates, each Pj,i can additionally compute rj,i, which is a linear combination
of {v′

α}nα=1 during the execution of Π(2)
RandShare-Share for preparing [rj,i]

(2), where each sharing [v′
α]

(2) is
retrieved by Pj,i from FAVID (same below). The parties then set

[rj]
(2) = [rj,1]

(2) + [rj,2]
(2) + [rj,3]

(2)

and ⟨rj⟩ = (rj,1, rj,2, rj,3).
– 2GA/k

2 groups of sharings [u1]
(2), . . . , [uNℓ]

(2).

Protocol ΠLocal

21

– A random sharing [r](2) for each batch of k output wires attached to a client, where the client gets the
secret after the retrieving process of the instances of AVID terminates.

2. Computing Output Labels.

(a) For each execution of Π(1)
RandShare-Share,Π

(3)
RandShare-Share in Step 4.(b) of the Sharing Phase, the parties run the

corresponding protocols Π
(1)
RandShare-Compute,Π

(3)
RandShare-Compute and obtain the sharings [r

(α)
0,β]

(3), [r
(α)
1,β − r

(α)
0,β]

for α = 1, . . . , κ and β = 1, 2, 3 associated with each reconstruction of Σ(2)-sharing in the evaluation
phase of Π0. After the retrieving process of the instances of AVID invoked in Step 4.(b) terminates,
secrets are obtained by Pi if the receiver of the sharing is Ci in Π0, and the secrets are obtained by Pj,β

for each β = 1, 2, 3 if Vj is the receiver.

(b) For each i = 1, . . . , rec, let the associated sharings for the i-th reconstruction be [r
(α)
0,β]

(3), [r
(α)
1,β − r

(α)
0,β]

for α = 1, . . . , κ and β = 1, 2, 3. For a = 1, . . . , ℓ2 and β = 1, 2, 3, the parties locally compute the
additive sharings

⟨Y Vj

(i−1)ℓ2+a,0,β
⟩ = ⟨([r(1)

0,β]
(3))

Vj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
0,β]

(3))
Vj

[aℓ+1,(a+1)ℓ]⟩

⟨Y Vj

(i−1)ℓ2+a,1,β
⟩ =⟨([r(1)

0,β]
(3))

Vj

[aℓ+1,(a+1)ℓ] + ([r
(1)
1,β − r

(1)
0,β])

Vj ,

. . . , ([r
(κ)
0,β]

(3))
Vj

[aℓ+1,(a+1)ℓ] + ([r
(κ)
1,β − r

(κ)
0,β])

Vj ⟩,

where ([s])Vj denotes Vj ’s share of [s] and ([s](3))
Vj

[c1,c2]
denotes the vector of the c1, c1 + 1, . . . , c2-th bits

of Vj ’s share of [s](3) (correspond to the i-th reconstruction).

(c) Each party Pj,β sets Y
Pj,β

k,b = (⟨Y Vj

k,b,1⟩
Pj,β , . . . , ⟨Y Vj

k,b,c⟩
Pj,β) for each k = 1, . . . , ℓ2rec and b = 0, 1, where

⟨s⟩Pj,β denotes Pj,β ’s share of ⟨s⟩.

Figure 7: The local computation phase of Π.

Garbling Phase. In the garbling phase, the parties run the inner protocol Πin of multiparty garbling for
each virtual server.

Garbling Phase
For each virtual server Vj , each member Pj,i emulating it waits until he receives Dispersed from all the
instances of FAVID generated in the last step of the sharing phase whose dealer is another party Pj,α, α ̸= i
emulating Vj and then participates in the inner protocol Πin.

During each round of Πin:

1. Sending Messages. Each party Pj,i computes and sends all the messages he needs to send in Πin to other
parties.

2. Committing Messages. Let the set of messages sent by Pj,i in this round be MSPj,i , Pj,i sends
MSPj,i ⊕O(seedPj,i∥mid) to FAVID.

3. Waiting for Termination. Each party Pj,i waits for all the Dispersed messages from FAVID which commit
MSPj,α , α ̸= i. After all these messages are received, Pj,i continues to participate in the next round of Πin.

After terminating the last round of Πin, each party Pj,i gets his output set OSPj,i . Then, Pj,i sends
OSPj,i ⊕O(seed

Pj,i

0 ∥mid) to FAVID.

Protocol ΠGarble

Figure 8: The garbling phase of Π.

Verification Phase. In the verification phase, the parties verify the validity of the sharings generated in
the sharing phase. Besides, the parties agree on a common set of virtual servers that terminate their inner
protocols. For each virtual server in this set, the parties agree on a common coin to decide whether this

22

virtual server is checked. For those checked virtual servers, the parties verify whether the committed inputs
and transcripts for the virtual servers’ computations are consistent.

Verification Phase
1. Verification of the Sharings. The virtual servers run the verification process below to verify all the

Σ,Σ(2),Σ(3)-sharings generated by parties in CoreSet in the Sharing Phase. We denote the Σ-sharings to be
checked by [x1], . . . , [xk1], the Σ(2)-sharings by [y1]

(2), . . . , [yk2]
(2), and the Σ(3)-sharings by

[z1]
(3), . . . , [zk3]

(3), where each virtual server Vj ’s share is shared by an additive sharing among
Pj,1, Pj,2, Pj,3. The parties view the sharings to be checked as Σ×κ′ ,Σ

(2)

×κ′ ,Σ
(3)

×κ′ -sharings. This step can be
run by each party Pi after he receives CoreSet.

(a) The parties invoke FCoin to get s ∈ F2κ
′ . If abort is received, they abort the protocol. Then the parties

expand s to a vector (s1, . . . , sk1 , s
(2)
1 , . . . , s

(2)
k2

, s
(3)
1 , . . . , s

(3)
k3

) ∈ Fk1+k2+k3

2κ
′ via random oracle.

(b) The parties Pα,1, Pα,2, Pα,3 of each virtual server Vα locally compute an additive sharing of Vα’s share of
[τ1]κ′ =

∑k1
j=1 sj · [xj]κ′ +

∑
Pi∈CoreSet[r

(i)]κ′ by computing

k1∑
j=1

sj · ⟨xVα
j ⟩+

∑
Pi∈CoreSet

⟨r(i,Vα)
1 ⟩,

where xVα
j , r

(i,Vα)
1 are Vα’s shares of [xj]κ′ , [r

(i)
1]κ′ respectively. Similarly, Pα,1, Pα,2, Pα,3 compute an

additive sharing of Vα’s share of [τ2](2)κ′ =
∑k2

j=1 s
(2)
j · [yj]

(2)

κ′ +
∑

Pi∈CoreSet[r
(i)
2]

(2)

κ′ by computing

k2∑
j=1

s
(2)
j · ⟨yVα

j ⟩+
∑

Pi∈CoreSet

⟨r(i,Vα)
2 ⟩

where yVα
j , r

(i,Vα)
2 are Vα’s shares of [yj]

(2)

κ′ , [r
(i)
2]

(2)

κ′ respectively, and compute an additive sharing of
Vα’s share of [τ3](3)κ′ =

∑k3
j=1 s

(3)
j · [zj]

(3)

κ′ +
∑

Pi∈CoreSet[r
(i)
3]

(3)

κ′ by computing

k3∑
j=1

s
(3)
j · ⟨zVα

j ⟩+
∑

Pi∈CoreSet

⟨r(i,Vα)
3 ⟩

where zVα
j , r

(i,Vα)
3 are Vα’s shares of [zj]

(3)

κ′ , [r
(i)
3]

(3)

κ′ respectively.
(c) For each α = 1, . . . , N and i = 1, 2, 3, let Pα,i’s shares of the additive sharings of Vα’s shares of

[τ1]κ′ , [τ2]
(2)

κ′ , [τ3]
(3)

κ′ form a set VSPα,i .

Then, the parties do the same verification on the Σ,Σ(2),Σ(3)-sharings with all-zero secrets to get additive
sharings of Vα’s shares of [τ ′

1]κ′ , [τ ′
2]

(2)

κ′ , [τ
′
3]

(3)

κ′ . Each Pα,i then adds his shares of them into VSPα,i and sends
VSPα,i ⊕O(seedP

′
α,i∥mid) to FAVID.

2. Verification of Local Computation.

(a) The parties initialize an ACS functionality FACS with parameters m = N/4,M = N . For each party Pi,
upon receiving the Dispersed messages for all the instances of FAVID whose dealer is Pj,α, α = 1, 2, 3
called in during the execution of Πin for Vj and Step 1 of the verification phase, Pi sends j to FACS.
Finally, the parties receive Ter from FACS.

(b) For each virtual server Vj ∈ Ter, the parties invoke FCoin to decide whether Vj is required to be checked.
The probability that each Vj ∈ Ter needs to be checked is 1/320.

(c) For each virtual server Vj ∈ Ter, all the parties send (Retrieve, Pi) to all the instances of FAVID that
commit VSPj,α , α = 1, 2, 3 for all i = 1, . . . , n. Then, the parties run the OEC process to let everyone
reconstruct seedP

′
j,α . When the parties retrieve VSPj,α ⊕O(seedP

′
j,α∥mid) and get seedV

′
j,α , they can

locally compute VSPj,α and get Vj ’s shares of [τ]×κ′ , [τ2]
(2)

×κ′ , [τ3]
(3)

×κ′ and [τ ′]×κ′ , [τ ′
2]

(2)

×κ′ , [τ
′
3]

(3)

×κ′ . Then

Protocol ΠVer

23

the parties check whether these shares are valid shares for Σ×κ′ ,Σ
(2)

×κ′ ,Σ
(3)

×κ′ -sharings and
Σ×κ′ ,Σ

(2)

×κ′ ,Σ
(3)

×κ′ -sharings of all-zero secrets.
(d) For each checked virtual server Vj , all the parties sends (Retrieve, Pi) to all the instances of FAVID that

commit the following:

– Sh
Pj,β
α for each α = 1, . . . , n and β = 1, 2, 3 committed in Step 5 of the Sharing Phase.

– ISPj,β for each β = 1, 2, 3 committed in Step 7 of the Sharing Phase.
– MSPj,β for each β = 1, 2, 3 committed in each round of the inner protocol.
– OSPj,β for each β = 1, 2, 3 committed at the end the inner protocol.

Then, the parties run the OEC process to let everyone reconstruct seed
Pj,β
α , seedPj,β , seed

Pj,β

0 for each
α = 1, . . . , n and β = 1, 2, 3. The parties then locally compute the committed values upon receiving the
encryption of them from FAVID.

(e) For each checked virtual party Vj , the parties do the following:
– The parties check whether Pj,1, Pj,2, Pj,3 perform the inner protocol Πin of Vj (from inputs computed

from ISPj,1 , ISPj,2 , ISPj,3) and Step 1 of the verification phase (from inputs computed from
Sh

Pj,1

i , Sh
Pj,2

i , Sh
Pj,3

i for Pi ∈ CoreSet) correctly, where the transcripts of Πin for Vj is obtained from
MSPj,β for each β = 1, 2, 3 committed in each round of the inner protocol.

– The parties check whether the additive sharings of Vj ’s shares committed by the generator (from
Sh

Pj,α

i for each generator Pi and α = 1, 2, 3) match the values committed by the members of Vj

(from ISPj,α).
– The parties check whether for each pair of servers (Pj,α, Pj,β), the committed ROT outputs from

FSetup is valid, i.e. r
(α,β)

b(α,β) committed by Pj,β is among r
(α,β)
0 , r

(α,β)
1 committed by Pj,α.

If the checks fail, the parties abort the protocol. If all the checks pass, the parties send (Retrieve, Pi) to
the instances of FAVID that commit OSPj,α for all i = 1, . . . , n, Vj ∈ Ter, and α = 1, 2, 3. Then the
parties run the OEC process to reconstruct seed

Pj,β

0 to all the parties for each Vj ∈ Ter and β = 1, 2, 3.

Figure 9: The verification phase of Π.

Evaluation Phase. In the evaluation phase, the parties evaluate each virtual server’s garbled circuit and
compute their outputs.

Evaluation Phase
1. Reconstructing the Garbled Circuit. After passing the checks in the verification phase, the parties

retrieve all the encrypted outputs of inner protocols for each Vj ∈ Ter. Upon finishing the reconstruction
process of seedPj,β

0 for β = 1, 2, 3, the parties obtain the outputs of Πin for all Vj ∈ Ter. Then, the parties
reconstruct A

Pj,β

g,1 , A
Pj,β

g,2 , A
Pj,β

g,3 , A
Pj,β

g,4 for each AND gate and ct
Pj,β

w,0 , ct
Pj,β

w,1 for each output wire w of CircVj .

2. Evaluating the Circuit. Each party Pi evaluates the circuit by computing k
Pj,β

w,xw⊕λw
for each

j = 1, . . . , N and β = 1, 2, 3. Finally, each party computes the output values and labels for the
Σ(2)-sharings to be reconstructed in the evaluation phase of Π0 one by one. More concretely, each party Pi

evaluates the circuit by running ΠEv, where the detailed description of ΠEv is presented in Section H. After
the evaluation, Pi gets [si]

(2) together with {r(α)
si,β

}κα=1 for β = 1, 2, 3 for each i = 1, . . . , rec.

3. Computing Outputs. For each [si]
(2) whose receiver is a client Cj (emulated by Pj), Pj checks whether

{r(α)
si,β

}κα=1 matches si and {(r(α)
0,β , r

(α)
1,β)}

κ
α=1 for each β = 1, 2, 3 computed in the local computation phase.

If not, Pj aborts the protocol. Otherwise, Pj computes his output locally from these secrets si.

Protocol ΠEval

Figure 10: The evaluation phase of Π.

Protocol Summary. The main protocol is presented in Figure 11.

24

1. All the parties invoke FSetup and wait for the outputs.

2. All the parties run ΠShare,ΠLocal,ΠGarble,ΠVer,ΠEval successively.

Protocol Π

Figure 11: The main protocol Π.

Theorem 5. The protocol Π securely realizes the functionality F in the {FACS,FSetup,FAVID,FCoin}-hybrid
model.

We give the proof of this theorem in Section I and give a detailed analysis of the communication and
round complexity of the protocol in Section J. The total communication complexity is O(|C|nκ+poly(n, κ)).
Then we conclude our main theorem.

Theorem 1. Assuming random oracles, in the FACS-hybrid model, there exists a computationally secure
constant-round asynchronous MPC protocol for SIMD circuits (that contain Ω(n + κ)2 copies of the same
circuit) that achieves malicious security with abort against t = (n−1)/3 corrupted parties with communication
of O(|C|nκ+ poly(n, κ)) plus 3 invocations of FACS with parameters (n, n− t), (n, n− t), and (N = O(n+
κ), N/4), where |C| is the total circuit size, and κ is the secure parameter.

Applying the protocol to the non-constant-round protocol for general circuits in [GLOS25], we have the
following result.

Theorem 2. Assuming random oracles, in the FACS-hybrid model, there exists a computationally secure
constant-round asynchronous MPC protocol that achieves malicious security with abort against t = (n−1)/3
corrupted parties with communication of O(|C|nκ + D(n + κ)2nκ + poly(n, κ)) plus 3 invocations of FACS

with parameters (n, n− t), (n, n− t), and (N = O(n+κ), N/4), where |C| is the circuit size, D is the circuit
depth, and κ is the secure parameter.

Acknowledgement. J. Li and Y. Song were supported in part by the National Basic Research Program
of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant
61033001, 61361136003.

Y. Song was also supported in part by the Shanghai Qi Zhi Institute Innovation Program SQZ202313.

References
[ADD+22] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin

Zhang. Brief announcement: Asynchronous verifiable information dispersal with near-optimal
communication. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium
on Principles of Distributed Computing, pages 418–420. ACM, 2022.

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. Distributed Comput.,
36(3):219–252, 2023.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, pages 52–61. ACM, 1993.

[BCO+21] Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini, Nigel P. Smart, and Eduardo
Soria-Vazquez. Large scale, actively secure computation from LPN and free-xor garbled cir-
cuits. In Anne Canteaut and Franccois-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 12698 of Lecture Notes in Computer Science, pages 33–63.
Springer, 2021.

25

[Bea90] Donald Beaver. Multiparty protocols tolerating half faulty processors. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 560–572, New York, NY, 1990.
Springer New York.

[BGH+23] Gabrielle Beck, Aarushi Goel, Aditya Hegde, Abhishek Jain, Zhengzhong Jin, and Gabriel
Kaptchuk. Scalable multiparty garbling. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2023, pages 2158–2172. ACM, 2023.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon, ed-
itor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 1–10.
ACM, 1988.

[BJK+25] Akhil Bandarupalli, Xiaoyu Ji, Aniket Kate, Chen-Da Liu-Zhang, and Yifan Song. Compu-
tationally efficient asynchronous MPC with linear communication and low additive overhead.
CRYPTO 2025, 2025.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In James H. Anderson, David Peleg, and Elizabeth Borowsky,
editors, Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 183–192. ACM, 1994.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty
computation for the internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 578–590. ACM, 2016.

[BLO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via
garbled circuits. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, volume 10625 of Lecture Notes in Computer Science, pages 471–498. Springer,
2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, pages 503–513. ACM, 1990.

[Bra87] Gabriel Bracha. An o(log n) expected rounds randomized byzantine generals protocol. J. ACM,
34(4):910–920, 1987.

[Can96] Ran Canetti. Studies in secure multiparty computation and applications. Scientific Council of
The Weizmann Institute of Science, 1996.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, pages 136–145.
IEEE Computer Society, 2001.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94, 2020.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In Cynthia Dwork, editor, Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, volume 4117 of Lecture Notes
in Computer Science, pages 521–536. Springer, 2006.

26

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, pages 11–19. ACM, 1988.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, volume 10993 of Lecture Notes in Computer Science, pages 395–426. Springer, 2018.

[CFG+23] Ran Cohen, Pouyan Forghani, Juan A. Garay, Rutvik Patel, and Vassilis Zikas. Concurrent
asynchronous byzantine agreement in expected-constant rounds, revisited. In Guy N. Rothblum
and Hoeteck Wee, editors, Theory of Cryptography - 21st International Conference, TCC 2023,
volume 14372 of Lecture Notes in Computer Science, pages 422–451. Springer, 2023.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, volume 10032 of Lecture Notes
in Computer Science, pages 998–1021, 2016.

[CHL21] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asyn-
chronous MPC with adaptive security. In Kobbi Nissim and Brent Waters, editors, Theory
of Cryptography - 19th International Conference, TCC 2021, volume 13043 of Lecture Notes in
Computer Science, pages 35–65. Springer, 2021.

[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Prac-
tical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219–246, 2005.

[Coh16] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC
2016 - 19th IACR International Conference on Practice and Theory in Public-Key Cryptography,
volume 9615 of Lecture Notes in Computer Science, pages 183–207. Springer, 2016.

[CP15] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear com-
munication complexity. In Sajal K. Das, Dilip Krishnaswamy, Santonu Karkar, Amos Korman,
Mohan J. Kumar, Marius Portmann, and Srikanth Sastry, editors, Proceedings of the 2015 Inter-
national Conference on Distributed Computing and Networking, ICDCN 2015, pages 5:1–5:10.
ACM, 2015.

[CP23] Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure
asynchronous MPC with optimal resilience. J. Cryptol., 36(2):13, 2023.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, pages 42–51. ACM, 1993.

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In Pierre
Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC 2005, volume
3724 of Lecture Notes in Computer Science, pages 503–504. Springer, 2005.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, volume 3621 of Lecture Notes in Computer
Science, pages 378–394. Springer, 2005.

27

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, volume 4622 of Lecture Notes in Computer Science, pages
572–590. Springer, 2007.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM
J. Comput., 12(4):656–666, 1983.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 14(4):183–186, 1982.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
pages 169–178. ACM, 2009.

[GLM+25] Vipul Goyal, Junru Li, Ankit Kumar Misra, Rafail Ostrovsky, Yifan Song, and Chenkai Weng.
Dishonest majority constant-round mpc with linear communication from ddh. In Kai-Min Chung
and Yu Sasaki, editors, Advances in Cryptology – ASIACRYPT 2024, pages 167–199, 2025.

[GLOS25] Vipul Goyal, Junru Li, Rafail Ostrovsky, and Yifan Song. Towards building scalable constant-
round MPC from minimal assumptions via round collapsing. CRYPTO 2025, 2025.

[GLS24] Vipul Goyal, Chen-Da Liu-Zhang, and Yifan Song. Towards achieving asynchronous MPC with
linear communication and optimal resilience. In Leonid Reyzin and Douglas Stebila, editors,
Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference,
volume 14927 of Lecture Notes in Computer Science, pages 170–206. Springer, 2024.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, pages 218–229. ACM, 1987.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-efficient
MPC via hall’s marriage theorem. In Tal Malkin and Chris Peikert, editors, Advances in Cryp-
tology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
volume 12826 of Lecture Notes in Computer Science, pages 275–304. Springer, 2021.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority MPC with packed secret sharing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, volume 13510 of Lecture Notes in Computer Science, pages 3–32. Springer, 2022.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience (extended abstract). In Ronald Cramer, editor, Ad-
vances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, volume 3494 of Lecture Notes in Computer Sci-
ence, pages 322–340. Springer, 2005.

[HNP08] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party compu-
tation with quadratic communication. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP 2008, volume 5126 of Lecture
Notes in Computer Science, pages 473–485. Springer, 2008.

[HOSS18a] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely efficient
large-scale MPC with active security (or, tinykeys for tinyot). In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, volume 11274 of Lecture Notes
in Computer Science, pages 86–117. Springer, 2018.

28

[HOSS18b] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Tinykeys: A new
approach to efficient multi-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, volume 10993 of Lecture Notes in Computer Science, pages 3–33. Springer, 2018.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, volume 10624 of Lecture Notes in Computer Science, pages
598–628. Springer, 2017.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 145–161, 2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pages 21–30. ACM, 2007.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, volume 5157 of Lecture Notes in Computer Science, pages
572–591. Springer, 2008.

[JLS24] Xiaoyu Ji, Junru Li, and Yifan Song. Linear-communication asynchronous complete secret
sharing with optimal resilience. In Leonid Reyzin and Douglas Stebila, editors, Advances in
Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference, volume 14927
of Lecture Notes in Computer Science, pages 418–453. Springer, 2024.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of
Cryptography Conference, TCC 2013, volume 7785 of Lecture Notes in Computer Science, pages
477–498. Springer, 2013.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with opti-
mal overhead. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, volume 9215 of Lecture Notes in Computer
Science, pages 724–741. Springer, 2015.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, volume 5126 of Lecture Notes in Computer Science,
pages 486–498. Springer, 2008.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew Rob-
shaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
volume 9216 of Lecture Notes in Computer Science, pages 319–338. Springer, 2015.

[PCR09] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous veri-
fiable secret sharing with optimal resilience. In Kaoru Kurosawa, editor, Information Theoretic
Security, 4th International Conference, ICITS 2009, volume 5973 of Lecture Notes in Computer
Science, pages 74–92. Springer, 2009.

[PS21] Antigoni Polychroniadou and Yifan Song. Constant-overhead unconditionally secure multiparty
computation over binary fields. In Anne Canteaut and Franccois-Xavier Standaert, editors,

29

Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 12697 of Lecture Notes in Com-
puter Science, pages 812–841. Springer, 2021.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 73–85. ACM, 1989.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167, 1986.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation
and authenticated garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
pages 1627–1646. ACM, 2020.

30

A Security Model
In this section, we give more details about the security model.

Real World. In the real world, there exists a set of n parties P1, . . . , Pn, an adversary A, and an environ-
ment Z. The environment provides inputs to the honest parties, receives their outputs, and communicates
with the adversary A. We consider A to be fully-malicious. The adversary can corrupt up to t parties and
completely control the behavior of the corrupted parties. The parties not controlled by A are called honest.

The parties and the adversary are modeled as interactive Turing machines (ITM), initialized with the
random coins and their possible inputs. The protocol proceeds by a sequence of activations, where at each
point only a single ITM is active. When a party is activated, it can perform local computation and output
or send messages to other parties. And if the adversary is activated, it can send messages on behalf of the
corrupted parties.

Parties have access to a network of point-to-point asynchronous and secure channels. Asynchronous
channels guarantee eventual delivery [CR93], meaning that messages sent are eventually delivered. To model
the worst-case scenario, the adversary is given the provision to decide the arrival time of each message
exchanged between the parties. The adversary cannot drop, change, or inject messages from honest parties.
Such channels have been modelized in UC using the eventual-delivery secure message-transmission ideal
functionality, for example in [KMTZ13, CGHZ16]. The protocol completes once Z outputs a single bit.

We denote by REALΠ,A,Z(κ, z, r̄) the random variable containing the output of Z with input z, se-
curity parameter κ, and interacting with the parties P1, . . . , Pn and the adversary A with random tapes
r̄ = (r1, . . . , rn, rA, rZ). We denote the random variable REALΠ,A,Z(κ, z, r̄) for uniformly random r̄ by
REALΠ,A,Z(κ, z).

Ideal World. In the ideal world, there exists n dummy parties, a simulator/ideal adversary Sim, an
environment Z and the trusted party/ideal functionality F . The environment gives inputs to the honest
parties, receives outputs, and also interacts with the ideal adversary. As before, the computation finishes
once Z outputs a single bit.

The ideal functionality F (Figure 12) models the desired behavior of the computation. Sim cannot see or
delay the communication between the honest parties and F . In order to model the fact that the adversary
can decide when each honest party learns the output, we follow [KMTZ13] and model time via activations.
We use a request-based delay output to model the output delivery from F to the honest parties, which is
used in [Coh16, CFG+23]. In this model, the functionality F doesn’t directly send the output to the honest
parties. Instead, honest parties need to send a “request” to the functionality to get the output. Moreover,
the adversary can instruct F to delay the output for each party by ignoring the corresponding requests. The
output can only be delayed for a polynomial number of times, which ensures that the output will eventually
be delivered if an honest party sends sufficiently many requests. We consider security with abort, where Sim
can decide whether an honest party will receive a correct output from the F or only receive an Abort signal.

The trusted party interacts with parties P1, . . . , Pn and the ideal adversary Sim. For each party Pn, the
trusted party initializes an input value x(i) = ⊥ and output value y(i) = ⊥.

Public Function: f : ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n.

1. Upon receiving an input v from Pi, if CoreSet has not been recorded yet or if Pi ∈ CoreSet, the trusted
party sets x(i) = v.

2. Upon receiving an input CoreSet from Sim, the trusted party verifies that CoreSet is a subset of
P = {P1, . . . , Pn} of size at least n− t, and the inputs of all the honest parties in Coreset have all been
received. If not, the trusted party ignores the message. If CoreSet has not been recorded yet, then the
trusted party records CoreSet and for every Pi /∈ CoreSet, the trusted party sets x(i) = 0.

3. If the CoreSet has been recorded and the value x(i) has been set to a value different from ⊥ for every

Functionality F

31

Pi ∈ CoreSet, then the trusted party computes (y(1), . . . , y(m)) = f(x(1), . . . , x(m)). For each corrupted
party Pi, the trusted party sends y(i) to Sim. For each honest party Pi, the trusted party sends y(i) as a
request-based delayed output to Pi.

– Upon receiving (abort, Pi) for some honest party Pi, if the output for Pi has not been delivered, the
trusted party changes the output of Pi by Abort. Otherwise, the trusted party ignores this request.

Figure 12: Functionality for asynchronous MPC.

We denote by IDEALF,Sim,Z(κ, z, r̄) the random variable containing the output of Z with input z, secu-
rity parameter κ, and interacting with the parties P1, . . . , Pn and the adversary S with random tapes r̄ =
(rSim, rZ). We denote the random variable IDEALF,Sim,Z(κ, z, r̄) for uniformly random r̄ by IDEALF,Sim,Z(κ, z).

Security. We say Π t-securely realizes F if for any adversary A there exists a probabilistic polynomial
time (PPT) simulator Sim in the ideal model such that for any adversary controlling up to t parties and any
environment Z, it holds that:

REALΠ,A,Z(κ, z) ≡ IDEALF,Sim,Z(κ, z),

which means the real-world execution and the ideal-world execution have the same output distribution.
We say Π t-securely realizes F with statistical security if for any adversary A there exists a PPT simulator

Sim in the ideal model such that for any adversary controlling up to t parties and any environment Z, it
holds that:

REALΠ,A,Z(κ, z) ≡ϵ IDEALF,Sim,Z(κ, z),

which means the output distributions of the real-world execution and the ideal-world execution are statisti-
cally close, i.e., the total variation distance between the two distributions is no more than ϵ = negl(κ).

We say Π t-securely realizes F with computational security if for any adversary A there exists a PPT
simulator Sim in the ideal model such that for any adversary controlling up to t parties and any environment
Z, it holds that:

REALΠ,A,Z(κ, z) ≡c IDEALF,Sim,Z(κ, z),

which means the output distributions of the real-world execution and the ideal-world execution are compu-
tationally indistinguishable.

The Hybrid Model. In a G-hybrid model, a protocol execution proceeds as in the real world except that
the parties have access to an ideal functionality G for some specific task. During the protocol execution, the
parties can communicate with G as in the ideal world. The UC framework guarantees that an ideal func-
tionality in a hybrid model can be replaced with a protocol that UC-securely realizes G. This is guaranteed
by the following composition theorem from [Can01, Can20].

Theorem 6. ([Can01, Can20]) Let Π be a protocol that UC-securely realizes a functionality F in the G-
hybrid model and let ρ be a protocol that UC-securely realizes G. Moreover, let Πρ denote the protocol that is
obtained from Π by replacing every ideal call to G with the protocol ρ. Then protocol Πρ UC-securely realizes
F in the model where the parties do not have access to the ideal functionality G.

B Formal Functionalities for Asynchronous Subprotocols
The Functionality FABA. The functionality FABA of asynchronous Byzantine agreements is given as
follows.

The trusted party interacts with parties P1, . . . , Pn and the ideal adversary Sim. Let I = H, where H is the
set of honest parties. For each party Pi, the trusted party initializes xi and yi to ⊥.

1. The trusted party receives a set P ′ of parties from Sim, with |P ′| ≤ t, if no party has received output, then
the trusted party sets I = H\P ′.

Functionality FABA

32

2. Upon receiving a message M from Pi:

(a) If any party or Sim has received an output y, then the trusted party ignores this message; otherwise, the
trusted party sets xi = M .

(b) If xi ̸= ⊥ for every Pi ∈ I, then the trusted party sets yj = y for every j ∈ {1, . . . , n}, where y = x if all
inputs xj = x for Pj ∈ I, for some x ̸= ⊥. Otherwise, the trusted party sets y = xj for Pj /∈ H with the
smallest index.

(c) The trusted party sends M to Sim.

3. When the output yi is set to be some value y, the functionality outputs y as a request-based delayed
output to Pi.

Figure 13: Functionality for asynchronous Byzantine agreement.

The Functionality FAVID. The functionality FAVID of Asynchronous Verifiable Information Dispersal is
given as follows.

The trusted party interacts with all the parties P1, . . . , Pn, a dealer D and the adversary Sim.

1. Upon receiving a message M from D, the trusted party sends a request-based delayed message Dispersed to
all parties and sends M to Sim.

2. Upon receiving (Retrieve, R) from t+ 1 parties, the trusted party sends M as the request-based delayed
output to R if he has sent Dispersed before.

Functionality FAVID

Figure 14: Functionality for asynchronous verifiable information dispersal.

The Functionality FCoin. The functionality FCoin of generating a random coin is given as follows.

The trusted party interacts with all the parties P1, . . . , Pn and the adversary Sim.

1. On receiving RandCoin from 2t+ 1 parties, the trusted party samples s ∈ F2κ .

2. The trusted party sends s to Sim and sends s to all the honest parties as a request-based delayed output.

Functionality FCoin

Figure 15: Functionality for preparing a random coin.

C Agree on a Common Set
The agreement on a common subset (ACS) primitive allows the parties to agree on a set of at least n−t parties
that satisfy a certain property (a so-called ACS property). We give the formal definitions from [BCG93]
here.

Definition 1. Let m,M ∈ N, and let U1 . . .Un ⊆ [M] be a collection of accumulative sets, so that party Pi

has Ui. We say that the collection is (m, t)-uniform if the following hold for every malicious corruption of
up to t parties:

• Every honest party Pi will eventually have |Ui| ≥ m.

• Every two honest parties Pi and Pj will eventually have Ui = Uj.

Definition 2. Let m,M ∈ N, and let π be a protocol where the input of each party Pi is an accumulative set
Ui. Protocol π is a t-resilient protocol for Agreement on a Common Set (ACS) for n parties (with parameter
(M,m) where m < M), if the following hold, for every malicious corruption of up to t parties:

33

• Termination: If the collection U1 . . .Un is (m, t)-uniform, then with probability 1, all the honest
parties eventually complete the protocol.

• Correctness: All the honest parties complete the protocol with a common output C ⊆ [M] so that
|C| ≥ m. Furthermore, every honest party has C ⊆ U∗

i , where U∗
i is the value of Ui upon the completion

of the protocol.

We also describe a functionality FACS with parameter (M,m) for ACS as follows.

The trusted party interacts with all the parties P1, . . . , Pn and the adversary Sim with parameter (M,m).

1. The trusted party initializes Si = ∅ ⊆ {1, . . . ,M} for each i = 1, . . . , n.

2. Upon receiving an index k ∈ {1, . . . ,M} from Pi, the trusted party adds index k to Si and then forwards k
to Sim. If | ∪n

i=1 Si| ≥ m, the trusted party sets S to be ∪n
i=1Si and outputs it to all parties as a

request-based delayed output.

3. Upon receiving S′ from Sim, if a request-based delayed output has been delivered to an honest party, the
trusted party ignores the message. Otherwise, the trusted party checks that |S′| ≥ m, and that for every
k ∈ S′, there is some honest party that has input k. If so, the trusted party stops sending the
request-based delayed outputs that were sent before, sets S = S′, and outputs it to all parties as a
request-based delayed output.

Functionality FACS

Figure 16: Functionality for agree on a common set.

As observed in [CFG+23], by using the “Gather” protocol described in [AJM+23] to do preprocessing
and then run M instances of ABA in parallel as in the ACS protocol of [BCG93], FACS can be realized in
a constant number of rounds in the FparABA-hybrid model (see Figure 17 for the functionality). Using the
expected constant-time instantiation of FparABA in [CFG+23], we get an expected constant-time instantiation
of FACS.

The trusted party is parameterized with a public integer M , and it interacts with parties P1, . . . , Pn and the
ideal adversary Sim. Let I1 = · · · = IM = H, where H is the set of honest parties. For each party Pi, the
trusted party initializes x

(1)
i , . . . , x

(M)
i and y

(1)
i , . . . , y

(M)
i to ⊥.

1. For each i = 1, . . . ,M , the trusted party receives a set P ′
i of parties from Sim, with |P ′

i| ≤ t, if no party has
received output, then the trusted party sets Ii = H\P ′

i.

2. Upon receiving a message (u, j) from Pi:

(a) If any party or Sim has received output y
(j)
α for some α ∈ {1, . . . , n}, then the trusted party ignores this

message; otherwise, the trusted party sets y
(j)
α = u for α = 1, . . . , n.

(b) If x(j)
α ̸= ⊥ for every Pα ∈ I, then the trusted party sets y

(j)
α = x if all inputs x

(j)
α = x for Pα ∈ I, for

some x ̸= ⊥. Otherwise, the trusted party sets y = x
(j)
α for Pα /∈ H with the smallest index.

(c) The trusted party sends u to Sim.

3. For each j = 1, . . . ,M , when the output y
(j)
α is set to be some value y(j), the functionality outputs (y(j), j)

as a request-based delayed output to Pi.

Functionality FparABA

Figure 17: Functionality for M parallel ABAs.

We give the theorem of the instantiation for FACS below.

Theorem 7. There exists an expected constant-time protocol ΠACS that securely realizes FACS with commu-
nication of O(poly(n,M, κ)) bits.

34

D Definition and Instantiation of the LSSSs
We borrow the definition of LSSS from [GLOS25].

Definition 3. (Projection Maps). Let x = (x1, . . . ,xn) ∈ (Fℓ
q)

n. Let A ⊂ {1, . . . , n} be a non-empty set.
The projection map πA : (Fℓ

q)
n → (Fℓ

q)
|A| is defined by πA(x) = (xi)i∈A.

Definition 4. (Linear Secret Sharing Schemes) Let Fq be a finite field, and let k, ℓ, and t < n be
positive integers. An (n, t, k, ℓ)-linear secret sharing scheme (LSSS) Σ over Fq consists of two deterministic
algorithms Σ.Sh(·, ·) : Fk

q × Fnℓ
q → (Fℓ

q)
n and Σ.Rec(·) : (Fℓ

q)
n → Fk

q . For every s ∈ Fk
q and r ∈ Fnℓ

q ,
Σ.Sh(s, r) is a linear function that outputs a vector of shares (c1, . . . , cn) ∈ (Fℓ

q)
n. For any c ∈ (Fℓ

q)
n which

can be outputted by Σ.Sh(s, r) for some r ∈ Fnℓ
q , we call c a Σ-sharing of s. We require the following three

properties.

• t-privacy: For all s, s′ ∈ Fk
q and A ⊂ {1, . . . , n} of size ≤ t,

{r $←− Fnℓ
q , c← Σ.Sh(s, r) : πA(c)} ≡ {r′

$←− Fnℓ
q , c′ ← Σ.Sh(s′, r′) : πA(c

′)}.

• Reconstruction: For every s ∈ Fk
q , it holds that for any Σ-sharing c of s, Σ.Rec(c) = s.

• Linearity: The two algorithms Σ.Sh(·, ·) : Fk
q×Fnℓ

q → (Fℓ
q)

n and Σ.Rec(·) : Fnℓ
q → Fk

q are both Fq-linear.

we let Σ.Shi(s, r) = π{i}(Σ.Sh(s, r)). The LSSS Σ is based on algebraic geometry. For basic knowledge
of algebraic geometry, we refer the readers to [CC06]. We briefly introduce the LSSS Σ here. Σ is based on
another LSSS Σ′. N parties first agree on a smooth projective absolutely irreducible curve C with genus g
defined over Fq and distinct Fq-rational points

Q,P−1, . . . , P−k, P1, . . . , PN ∈ C(Fq).

For a divisor D defined by D = (2g + T) · (Q), the sharing algorithm randomly selects f ∈ L(D) subject to

(f(P−1), . . . , f(P−k)) = s.

Then the Σ′ secret sharing is defined by

[s]′ = Σ′.Sh(s, r) = (f(P1), . . . , f(PN)) ∈ FN
q .

Now we borrow a lemma from [CC06].

Lemma 1. ([CC06]). Let E be a divisor on a smooth, projective, absolutely irreducible curve C that is
defined over Fq, and suppose that ℓ(E) > 0. Then each f ∈ L(E) is uniquely determined by evaluations of
f on any deg(E) + 1 Fq-rational points on C outside the support of E.

Followed from the above lemma, the secret s of [s] can be reconstructed from any deg(D) + 1 parties’
shares, which implies the reconstruction algorithm Σ′.Rec. In [CC06], the authors have shown that Σ′ is a
(N,T, k, 1)-LSSS over Fq.

Defining Σ. If q = 2ℓ (ℓ will be specified later), we can restrict the secret on Fk
2 where each entry of

the secret is stored in a subspace of Fq that is isomorphic to F2. Formally, there exists a bijective F2-
linear map Conv : Fℓ

2 → Fq, and both Conv,Conv−1 can be efficiently computed. In the following, for x =
(x1, . . . ,xn) ∈ (Fℓ

2)
N , we use Conv(x) to denote (Conv(x1), . . . ,Conv(xN)). And for y = (y1, . . . , yN) ∈ FN

q ,
we use Conv−1(y) to denote (Conv−1(y1), . . . ,Conv

−1(yN)). Σ is defined as follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ.Sh(s, r) = (Conv−1(Σ′.Sh1(s,Conv(r))), . . . ,Conv
−1(Σ′.ShN (s,Conv(r)))).

• For a Σ-sharing (c1, . . . , cN),

Σ.Rec(c1, . . . , cN) = Σ′.Rec(Conv(c1), . . . ,Conv(cN)).

35

Defining Σ(2). We follow [GLOS25] to define a Σ(2)-sharing. We first define an LSSS Σ(2)′ over Fq, denoted
by [·](2)′ . Σ(2)′ is the same as Σ except that the divisor D is replaced by 2D (i.e. f is selected from L(2D)).
For any x(1), x(2) ∈ Fq, let Conv2 : Fℓ2

2 → Fq be a F2-linear function that maps Conv−1(x(1))⊗ Conv−1(x(2))
to x(1) · x(2). Let Conv−1

2 be a randomized F2-linear function such that for all x ∈ Fq, Conv−1
2 (x) outputs a

random vector y ∈ Fℓ2

2 such that Conv2(y) = x. Σ(2) is defined follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ(2).Sh(s, r∥r1∥ . . . ∥rN)

=(Conv−1
2 (Σ(2)′ .Sh1(s,Conv(r)), r1), . . . ,Conv

−1
2 (Σ(2)′ .ShN (s,Conv(r)), rN)).

• For a Σ(2)-sharing (c1, . . . , cN),

Σ(2).Rec(c1, . . . , cN) = Σ(2)′ .Rec(Conv2(c1), . . . ,Conv2(cN)).

It can be easily verified that the tensor product of two Σ-sharings [s(1)] = (c
(1)
1 , . . . , c

(1)
N), [s(2)] = (c

(2)
1 , . . . , c

(2)
N)

is a Σ(2)-sharing [s(1)∗s(2)](2) = (c
(1)
1 ⊗c

(2)
1 , . . . , c

(1)
N ⊗c

(2)
N). We can simply write [s(1)]⊗[s(2)] = [s(1)∗s(2)](2).

Defining Σ(3). Similarly, we follow [GLOS25] to define Σ(3)-sharings. First, Σ(3)′ is defined over Fq by
replacing D by 3D in Σ′. For any x(1), x(2), x(3) ∈ Fq, let Conv3 : Fℓ3

2 → Fq be a F2-linear function that
maps Conv−1(x(1))⊗Conv−1(x(2))⊗Conv−1(x(3)) to x(1) · x(2) · x(3). Let Conv−1

3 be a randomized F2-linear
function such that for all x ∈ Fq, Conv−1

3 (x) outputs a random vector y ∈ Fℓ3

2 such that Conv3(y) = x. Σ(3)

is defined as follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ(3).Sh(s, r∥r1∥ . . . ∥rN)

=(Conv−1
3 (Σ(3)′ .Sh1(s,Conv(r)), r1), . . . ,Conv

−1
3 (Σ(3)′ .ShN (s,Conv(r)), rN)).

• For a Σ(3)-sharing (c1, . . . , cN),

Σ(3).Rec(c1, . . . , cN) = Σ(3)′ .Rec(Conv3(c1), . . . ,Conv3(cN)).

The tensor product of a Σ(2)-sharing and a Σ-sharing is a Σ(3)-sharing, namely [s(1)](2)⊗[s(2)] = [s(1)∗s(2)](3).
Following the result of [CC06], when we choose T = N/20, q = 220, k = N/20, and ℓ = 20, the

resulting Σ,Σ(2),Σ(3) are all (N,T, k, 20)-LSSSs over F2. In addition, the secret of a Σ(3)-sharing can be
reconstructed from any N/5 shares, i.e. for any set A ⊂ {1, . . . , N} such that |A| ≥ N/5, there exists an
algorithm Σ(3).RecA : (Fℓ

2)
|A| → Fk

2 such that for any s ∈ Fk
2 and r ∈ FNℓ

2 :

Σ(3).RecA(πA(Σ
(3).Sh(s, r))) = s.

This also implies that the secret of a Σ or Σ(2)-sharing can be reconstructed from N/5 shares (we can simply
multiply a Σ-sharing [1] on it to convert them to a Σ(3)-sharing with the same secret). In addition, for any
N/4 shares of a Σ(3)-sharing, if T of the shares were wrong, the other N/5 shares uniquely determine the
secret.

Remark 3. As noted in [GLOS25], for a (n, t, k, ℓ)-LSSS Σ, we have the following algorithms. There are
algorithms that can efficiently determine whether a set S of shares comes from a valid Σ-sharing and give
such a sharing (if it is valid). There are also algorithms that can efficiently sample a set of at most t1 shares
from another t2 share (t1 + t2 ≤ T) of a Σ-sharing without the secret. We refer the readers to [GLOS25] for
more details.

36

E Subprotocols for Π0

Preparing Random Σ(2)-Sharings. We need to prepare random Σ(2)-sharings in the preprocessing phase,
we follow the approach from [PS21]. Take a = ⌊logN⌋+1, and let Σ×a,Σ

(2)
×a be the a-fold interleaved secret

sharing of Σ,Σ(2) respectively. Let [·]a, [·](2)a denote sharings in Σ×a,Σ
(2)
×a. The servers run the following

protocol ΠRandShare.

1. Each server Si samples a random Σ
(2)
×a-sharing [si]

(2)
a and distributes it to all the servers.

2. Let t = n/4, V be the matrix

V =

1 1 · · · 1
1 b1 · · · bn−1

...
...

. . .
...

1 bn−t−1
1 · · · bn−t−1

n−1

 ,

where 1, b1, . . . , bn−1 are n different elements in F2a . The servers locally compute
[r1]

(2)
a

[r2]
(2)
a

...
[rn−t]

(2)
a

 = V ·

[s1]

(2)
a

[s2]
(2)
a

...
[sn]

(2)
a

 .

3. Each Σ
(2)
×a-sharing

[ri]
(2)
a = ([r

(1)
i](2), . . . , [r

(a)
i](2)).

Thus the parties obtain a · (n− t) random Σ(2)-sharings [r
(j)
i](2) for i = 1, . . . , n− t, j = 1, . . . , a.

Protocol ΠRandShare

Figure 18: Preparing random Σ(2)-sharings.

In this way, each random Σ(2)-sharing can be prepared with amortized cost O(N).

The Transpose Protocol. We first present the protocol ΠTranspose [GLOS25] which is used for de-
gree reduction. ΠTranspose takes sharings [x1]

(2), . . . , [xk]
(2) as input. Let xi = (xi,1, . . . , xi,k) and x∗

i =
(x1,i, . . . , xk,i), ΠTranspose outputs ([x∗

1], . . . , [x
∗
k]). The degree reduction process uses ΠTranspose as a building

block.
For each execution of ΠTranspose, the servers prepare mask sharings for the Σ(2)-sharings to be recon-

structed, and also generate randomness by generating Nℓ Σ(2)-sharings for column vectors. We let the Nℓ
random secrets in Fk

2 of the Σ(2) serve as the randomness (in FNℓ
2) of Σ.Sh for generating the k column

Σ-sharings.
Since the sharing algorithm Sh of a LSSS is linear on each field element of its input, Σ.Sh1, . . . ,Σ.ShN :

Fk+Nℓ
2 → Fℓ

2 are all F2-linear functions. Suppose that for each i = 1, . . . , N ,

Σ.Shi((s1, . . . , sk), (a1, . . . , aNℓ))

=

(k∑
j=1

c
(i)
1,jsj +

Nℓ∑
j=1

c
(i)
1,k+jaj , . . . ,

k∑
j=1

c
(i)
ℓ,jsj +

Nℓ∑
j=1

c
(i)
ℓ,k+jaj

)
.

Correspondingly, we define F2-linear functions F1, . . . , FN : (Fk
2)

k+Nℓ → (Fk
2)

ℓ by

Fi(v1, . . . ,vk+Nℓ) =

(k+Nℓ∑
j=1

c
(i)
1,jvj , . . . ,

k+Nℓ∑
j=1

c
(i)
ℓ,jvj

)

37

for each i = 1, . . . , N and give ΠTranspose as follows.

Input: Each server’s shares of input sharings [x1]
(2), . . . , [xk]

(2), a group of N random Σ(2)-sharings
[r1]

(2), . . . , [rN](2) where each rj is generated by Sj , and Nℓ Σ(2)-sharings [u1]
(2), . . . , [uNℓ]

(2). Let each
xi = (xi,1, . . . , xi,k) and set x∗

i = (x1,i, . . . , xk,i).

1. The servers locally compute [yi]
(2) = [Fi(x1, . . . ,xk,u1, . . . ,uNℓ) + ri]

(2) for i = 1, . . . , N .

2. For each i = 1, . . . , N , each server sends his share of [yi]
(2) to server Si for reconstruction.

3. Each server Sj reconstructs yj and computes the vector of his shares of ([x∗
1], . . . , [x

∗
k]) by yi − ri.

Protocol ΠTranspose

Figure 19: Protocol to turn row Σ(2)-sharings to column Σ-sharings.

Now, we show how to utilize ΠTranspose to compute groups of multiplication gates, do sharing transforma-
tions, and collect secrets from different positions.

Batched Multiplication Gates. For each k batches of k multiplication gates (altogether k2 multiplication
gates evaluated together), we use the following protocol ΠMulti to evaluate them. The communication cost
of ΠMulti is O(N2).

Input: The servers input their shares of Σ-sharings [x1], . . . , [xk] and [y1], . . . , [yk]. Let
z1 = x1 ∗ y1, . . . , zk = xk ∗ yk.

1. The servers locally computes their shares of [zj]
(2) = [xj]⊗ [yj] for each j = 1, . . . , k.

2. The servers run ΠTranspose with input sharings [z1]
(2), . . . , [zk]

(2) and get output sharings [z∗
1], . . . , [z

∗
k].

3. The servers locally computes [z∗
j]

(2) = [1]⊗ [z∗
j] for each j = 1, . . . , k, where [1] is a public Σ-sharing of an

all-1 vector.

4. The servers run ΠTranspose with input sharings [z∗
1]

(2), . . . , [z∗
k]

(2) and get output sharings [z1], . . . , [zk].

Protocol ΠMulti

Figure 20: Protocol to compute batched multiplication gates.

F Chernoff Bound
Let E(X) denote the expectation of a random variable X, below is a well-known lemma in the probability
theory.

Lemma 2. (Chernoff Bound). Suppose X1, . . . , Xm are independent random variables taking values in
{0, 1}, and let X = X1 + · · ·+Xm be their sum, and E(X) = µ. Then for any δ > 0 it holds that:

P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ .

Also for any 0 < δ < 1 it holds that:

P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

G Subprotocols for the Inner Protocol
When an additive sharing ⟨x⟩ is distributed among 3 parties, they can run the following protocol ΠOpen to
open the secret.

38

The protocol runs between 3 parties P1, P2, P3. To open the secret x of ⟨x⟩:

1. Each party Pi sends his share of ⟨x⟩ to each other party.

2. Each party reconstructs x with all the parties’ shares of ⟨x⟩.

Protocol ΠOpen(⟨x⟩)}

Figure 21: Protocol for opening the secret of an additive sharing.

To compute a multiplication for a virtual server, the 3 servers that emulate the virtual server run the
following protocol ΠMult.

The protocol runs between 3 parties P1, P2, P3. To compute ⟨z⟩ = ⟨x · y⟩ (x ∈ Fκ−1
2 , y ∈ F2) with each pair of

parties (Pi, Pj) holding the result from an invocation of FROT, i.e. Pi holds a pair of random strings r
(i,j)
0 , r

(i,j)
1

and Pj holds b(i,j), r
(i,j)

b(i,j)
:

1. Let each party Pi’s shares of ⟨x⟩, ⟨y⟩ be x(i), y(i) respectively. For each pair of parties (Pi, Pj):

(a) Pi sends r
(i,j)
1 ⊕ r

(i,j)
0 ⊕ x(i) to Pj . Pj sends y(j) ⊕ b(i,j) to Pi.

(b) Pi locally computes z
(i,j)
i = r

(i,j)

y(j)⊕b(i,j)
. Pj locally computes z

(i,j)
j = (r

(i,j)
1 ⊕ r

(i,j)
0 ⊕ x(i)) · y(j) ⊕ r

(i,j)

b(i,j)
.

Then we have
z
(i,j)
i ⊕ z

(i,j)
j = x(i) · y(j).

2. Each party Pi computes
z(i) = x(i) · y(i) ⊕

∑
j ̸=i

(z
(i,j)
i ⊕ z

(j,i)
i)

as his share of ⟨z⟩.

Protocol ΠMult(⟨x⟩, ⟨y⟩, {(r(i,j)0 , r
(i,j)
1)Pi , (b

(i,j), r
(i,j)

b(i,j)
)Pj}i ̸=j∈{1,2,3}})

Figure 22: Protocol for multiplication.

H The process of Evaluating the Circuit from the Garbled Circuits
The evaluation process ΠEv of each party Pi is given as follows.

1. For each Vj ∈ Ter, Pi separates the circuit CircVj to Circ
Vj

1 , . . . , Circ
Vj
rec, each Circ

Vj

i outputs Vj ’s share of
the i-th reconstruction of Σ(2)-sharings in the evaluation phase of Π0, i.e. Vj ’s share of [si]

(2).

2. For each Vj ∈ Ter, since no input to Circ
Vj

1 comes from reconstruction, Pi already gets the input labels
k
Pj,1

w,xw⊕λw
, k

Pj,2

w,xw⊕λw
, k

Pj,3

w,xw⊕λw
and xw ⊕ λw. Then for each gate g (excluding input gates) in Circ

Vj

1 :

– If g is an XOR gate with input wires a, b and output wire o, Pi computes k
Pj,β

o,xo⊕λo
= k

Pj,β

a,xa⊕λa
⊕ k

Pj,β

b,xb⊕λb

for each β = 1, 2, 3 and xo ⊕ λo = (xa ⊕ λa)⊕ (xb ⊕ λb).
– If g is an AND gate with input wires a, b and output wire o, Pi computes

k
Pj,β

o,xo⊕λo
∥(xo ⊕ λo)

=A
Pj,β

g,2(xa⊕λa)+xb⊕λb

⊕
(3⊕

i=1

(
O(k

Pj,i

a,xa⊕λa
∥(xa ⊕ λa)∥k

Pj,i

b,xb⊕λb
∥(xb ⊕ λb)∥i∥j∥β∥g)

))
for each β = 1, 2, 3.

Protocol ΠEv

39

– If g is an output gate (indexed k) with output wire w, Pi computes

Y
Pj,β

k,xw
= ct

Pj,β

w,xw⊕λw
⊕

(3⊕
i=1

O(k
Pj,i

w,xw⊕λw
∥(xw ⊕ λw)∥i∥j∥β∥w)

)
for each β = 1, 2, 3.

3. After evaluating all the gate of CircVj

1 for every Vj ∈ Ter, Pi obtains the sharings [s1]
(2) and {Y Pj,β

a,s
Vj
1,a

}ℓ
2

a=1

for each β = 1, 2, 3, where s
Vj

1,a is the a-th bit of Vj ’s share of [s1]
(2). Then Pi checks whether the sharings

[s1]
(2) and {[r(α)

s1,β
](3)}κα=1 for each β = 1, 2, 3 are all valid. If not, Pi aborts the protocol. Otherwise, Pi

reconstructs s1 and {r(α)
s1,β

}κα=1 for each β = 1, 2, 3.

4. For each i = 1, . . . , rec, if the receiver of [si]
(2) is a virtual server Vj ∈ Ter and the η-th bit s1,η of s1 is used

as an input wire with index jη in circuit CircVj , with s1 and {r(α)
s1,β

}κα=1, Pi decrypts

k
Pj,β

wjη ,s1,η⊕λwjη
∥(s1,η ⊕ λwjη

) from the ciphertexts ct
(i,β)
jη,s1,η

for each β = 1, 2, 3 by

k
Pj,β

wjη ,s1,η⊕λwjη
∥(s1,η ⊕ λwjη

) = ct
(1,β)
jη,s1,η

⊕O
(
rs1,η,η,β∥s1,η∥1∥β∥η∥jη

)
.

5. For each Vj ∈ Ter, now Pi has the input labels k
Pj,1

w,xw⊕λw
, k

Pj,2

w,xw⊕λw
, k

Pj,3

w,xw⊕λw
and xw ⊕ λw for each input

wire w of CircVj

2 . Thus, Pi can evaluate Circ
V1
2 , . . . , CircVN

2 in the same way as Steps 2-4. Repeating the
above steps, Pi eventually obtains all the Σ(2)-sharings [si]

(2) whose receiver Ri is a client together with
{r(α)

si,β
}κα=1 for each β = 1, 2, 3 if the protocol is not aborted. Then, Pi reconstructs the secrets of these

sharings.

Figure 23: The code of evaluating the circuit for each party Pi.

I Security Proof of the Main Protocol
Proof. We prove the security of Π by constructing an ideal adversary Sim. Sim needs to interact with the
environment Z and with the ideal functionalities. Sim constructs virtual real-world honest parties and runs
the real-world adversary A. For simplicity, we just let Sim communicate with A on behalf of honest parties
and the ideal functionality of sub-protocols in our proof. In order to simulate the communication with Z,
every message that Sim receives from Z is sent to A, and likewise, every message sent from A to Z is
forwarded by Sim. Each time an honest party needs to send a message to another honest party, Sim will tell
A that a message has been delivered such that A can tell Sim the arrival time of this message to help Sim
instruct the functionalities to delay the outputs in the ideal world. For each request-based delayed output
that needs to be sent to an honest party, we let Sim delay the output in default until we say Sim allows the
functionality to send the output. We will show that the output in the ideal world is identically distributed
to that in the real world using hybrid arguments.

Let the set of corrupted parties be C and the set of honest parties be H. The ideal adversary Sim runs
SimSetup,SimShare,SimLocal,SimGarble,SimVer,SimEval provided below.

Setup Phase
Sim faithfully emulates FSetup to interact with the adversary. More concretely:

1. Preparing Symmetric Keys. For each corrupted party Pi and honest party Pj , Sim samples a random
κ-bit string as ki,j = kj,i and sends it to A.

2. Determining the Virtual Servers. Sim randomly samples a 3-party set {Pj,1, Pj,2, Pj,3} for each
j = 1, . . . , N and sends them to A. If for more than N/26 of j ∈ {1, . . . , N}, Pj,1, Pj,2, Pj,3 are all
corrupted, Sim aborts the simulation.

Simulator SimSetup

40

3. Preparing the Seeds for Commitments. Sim receives q
Pj,α

i (αu) for each corrupted party Pu,
i = 1, . . . , n, j = 1, . . . , N , and α = 1, 2, 3 from A. Then, for each corrupted party Pi, Sim sends seed

Pj,α

i to
A. Sim also receives qPi,j (αu), q

P ′
i,j (αu), q

Pi,j

0 (αu) for each corrupted party Pu, i = 1, . . . , N , and j = 1, 2, 3

from A. Then, for each corrupted party Pi,j , Sim sends seedPi,j , seedP
′
i,j , seed

Pi,j

0 to A.

4. Preparing ROT Instances. For each honest virtual server Vj , for each each pair of parties (Pj,α, Pj,β)
where Pj,α is honest but Pj,β is corrutped, Sim randomly samples a bit as b(α,β) and a random (κ− 1)-bit
string as r

(α,β)

b(1,β) and emulates FSetup to send (b(α,β), r
(α,β)

b(α,β)) to A. Similarly, for each pair of parties
(Pj,α, Pj,β) where Pj,α is corrupted but Pj,β is honest, Sim randomly samples (κ− 1)-bit strings
r
(α,β)
0 , r

(α,β)
1 and emulates FSetup to send (r

(α,β)
0 , r

(α,β)
1) to A. for each pair of corrupted servers (Pj,α, Pj,β),

Sim randomly samples (κ− 1)-bit strings r
(α,β)
0 , r

(α,β)
1 and the bit b(α,β), then Sim emulates FSetup to send

(r
(α,β)
0 , r

(α,β)
1), (b(α,β), r

(α,β)

b(α,β)) to A.

Additionally, Sim initializes CompCheck = CorrCheck = OTCheck = 0. We say a virtual server Vj is honest if
there exists an honest party among Pj,1, Pj,2, Pj,3. Otherwise, we say the virtual server is corrupted. For each
honest virtual server Vj , Sim sets Corrj = Compj = Checkj = ROTj = 0.

Figure 24: The simulator for the setup phase of Π.

Sharing Phase
1. Preparing Random Σ(2)-Sharings. For each execution of Π(2)

RandShare-Share in this step, for each party Pi,
Sim does the following:

(a) If Pi is honest, Sim samples each v
Vj

i,α for corrupted party Pj,α = Pjα randomly and follows the protocol
to compute v

Vj

i,α ⊕O(ki,jα∥mid) and emulates FAVID to send it to A. For each honest party Pj,α = Pjα ,
Sim emulates FAVID to send a random message in Fℓ

2 as v
Vj

i,α ⊕O(ki,jα∥mid) to A for each corrupted
party Pj,α = Pjα (Sim still emulates O faithfully, same below unless stated otherwise). If Pi is
corrupted, Sim emulates FAVID to receive v

Vj

i,α ⊕O(ki,jα∥mid) for each j = 1, . . . , N and α = 1, 2, 3.
Similarly for o

Vj

i,α ⊕O(ki,jα∥mid).
(b) For each instance of FAVID emulated in the last step that is used to send a share from Pi to Pj,α, when

the (Retrieve, Pj,α) message sent from a honest parties are allowed to be delivered to FAVID and Sim
receives (Retrieve, Pj,α) from b corrupted parties where a+ b ≥ t+ 1, Sim emulates FAVID to send
v
Vj

i,α ⊕O(ki,jα∥mid) to Pj,α if Pj,α is corrupted. Similarly for o
Vj

i,α ⊕O(ki,jα∥mid).

For each sharing [v′
α]

(2) generated by Pα in an execution of Π(2)
RandShare-Share that we need to let a party Pi

hold the secret vα = v′
α, Sim emulates FAVID to send a random message in Fℓ

2 as v
Vj

α,β ⊕O(kα,i,jα∥mid) to A
for each α = 1, 2, 3 and β = 1, . . . , N if Pα is honest. If Pα is corrupted, Sim receives v

Vj

α,β ⊕O(kα,i,jα∥mid)
for each α = 1, 2, 3 and β = 1, . . . , N from A. For each honest party Pj,β = Pjβ , Sim follows the protocol to
check whether his shares obtained from the two messages v

Vj

α,β ⊕O(kα,i,jβ∥mid) and v
Vj

α,β ⊕O(kα,jβ∥mid)
are the same. If not, Sim aborts the protocol on behalf of the honest party Pj,β after the two messages
from FAVID are delivered to Pj,β . After the simulation terminates, Sim outputs what A outputs.

2. Preprocessing for the Verification of Sharings. For the distribute process of the sharings
[r

(i)
1]κ′ , [r

(i)
2]

(2)

κ′ , [r
(i)
3]

(3)

κ′ and [o
(i)
1]κ′ , [o

(i)
2]

(2)

κ′ , [o
(i)
3]

(3)

κ′ for each party Pi, Sim emulates FAVID as in Step 1 to
interact with A.

3. Sharing Inputs. For each batch of input wires attached to Pi, Sim emulates FAVID as in Step 1 to
simulate the distributing process of the input sharing.

4. Preparing for the Garbling of Local Circuits. For each execution of Π(3)
RandShare-Share in this step, for

each party Pi, Sim emulate FAVID to interact with A as in Step 1 to simulate the process of distributing
shares.

5. Committing Sharings. For each honest party Pi, Sim emulates FAVID to send a random message (of the

Simulator SimShare

41

same length) as Sh
Pj,α

i ⊕O(seed
Pj,α

i ∥mid) to A for each j = 1, . . . , N and α = 1, 2, 3. For each corrupted
party Pi, Sim receives Sh

Pj,α

i ⊕O(seed
Pj,α

i ∥mid) for each j = 1, . . . , N and α = 1, 2, 3 from A. Sim then
computes Sh

Pj,α

i with Sh
Pj,α

i ⊕O(seed
Pj,α

i ∥mid) and seed
Pj,α

i .

6. Determining the Core Set. For each honest party Pi, Sim considers that Pi likes another party Pj if all
the retrieving process of Pi’s shares generating by Pj terminates and the Dispersed message of Pj ’s
commitment of Pi’s shares has been delivered to Pi. Sim honestly emulates the honest parties to
participate in ΠQ

ACS and gets CoreSet.

7. Committing Local Inputs. For each honest party Pj,i, Sim emulates FAVID to send a random message
(of the same length) as ISPj,i ⊕O(seedPj,i∥mid) to A. For each corrupted party Pj,i, Sim receives
ISPj,i ⊕O(seedPj,i∥mid) from A. Then:

(a) For each Σ,Σ(2),Σ(3)-sharing generated in this phase by the parties in CoreSet, Sim receives all the
shares of corrupted members (of the additive sharings of virtual parties’ shares) from the sets (ISPj,i of
corrupted Pj,i) they committed. Since ISPj,i ⊕O(seedPj,i∥mid) and seedPj,i are known by Sim, Sim can
compute ISPj,i .

(b) For each sharing generated by an honest party Pi, for each honest virtual server Vj , let the generated
share of Vj be s (computed from v

Vj

i,α ⊕O(ki,jα∥mid) and ki,jα for α = 1, 2, 3), and then Sim checks
whether the committed input of each corrupted party Pj,α’s shares of ⟨s⟩ (computed from
ISPj,α ⊕O(seedPj,α∥mid) and seedPj,α) matches what Sim sends to him. If not, Sim sets Corrj = 1.

(c) For each sharing generated by an corrupted party Pi, for each honest virtual server Vj , let the generated
share of Vj be s (computed from v

Vj

i,α ⊕O(ki,jα∥mid) and ki,jα for α = 1, 2, 3). Sim checks whether the
committed value for each honest party Pj,α’s shares of ⟨s⟩ (computed from Sh

Pj,α

i ⊕O(seed
Pj,α

i ∥mid)

and seed
Pj,α

i) matches what Sim receives from A. If not, Sim sets Corrj = 1. In addition, Sim checks
whether the committed shares from Sh

Pj,α

i and ISPj,α matches for each corrupted Pi and Pj,α. If not,
Sim sets Corrj = 1.

(d) For the results of FROT, Sim checks whether for each honest virtual server Vj , the corrupted parties Pj,i

all committed their outputs correctly. For each honest virtual server Vj that fails in the check, Sim sets
ROTj = 1.

(e) For each corrupted party Pj,i, Sim retrieves ∆Pj,i and λ
Pj,i
w , k

Pj,i

w,0 for each wire w that is not an output
wire of an XOR gate of CircVj from ISPj,i .

Figure 25: The simulator for the sharing phase of Π.

Local Computation Phase
For each corrupted party Pj,i, Sim follows the protocol to do all the local computation of Pj,i with their
committed inputs.

Simulator SimLocal

Figure 26: The simulator for the local computing phase of Π.

Garbling Phase
For each virtual server Vj emulated by both honest and corrupted parties, Sim emulates each honest member
Pj,i and the random oracle O to communicate with corrupted members during the execution of Πin for Vj . For
each honest member Pj,i, Sim first waits until the Dispersed messages from all the instances of FAVID generated
in the last step of the sharing phase whose dealer is another party Pj,α, α ̸= i are all delivered to Pj,i. Then,
Sim begins to emulate Pj,i in Πin. For each round of Πin, Sim emulates FAVID to send a random message (of the
same length) as MSPj,α ⊕O(seedPj,α∥mid) to A Then, Sim waits to receive MSPj,α ⊕O(seedPj,α∥mid) from
each corrupted member Pj,α. If MSPj,α ⊕O(seedPj,α∥mid) for all α ̸= i ∈ {1, 2, 3} are delivered to an honest
party Pj,i, Sim begins the simulation of Pj,i in the next round.
The execution of Πin is simulated as follows:

Simulator SimGarble

42

1. OT Extension. Sim run the simulator of [KOS15] to interact with A.

2. Handling XOR gates. For each XOR gate in CircVj with input wires a, b and output wire o, Sim follows
the protocol to compute

k
Pj,i

o,0 ∥λPj,i
o = (k

Pj,i

a,0 ∥λPj,i
a)⊕ (k

Pj,i

b,0 ∥λPj,i

b)

gate by gate for each i such that Pj,i is corrupted.

3. Computing 1-Labels. For each wire w in CircVj that is not an output wire of an output gate. Sim

follows the protocol to compute k
Pj,i

w,1 = k
Pj,i

w,0 ⊕∆Pj,i for each i such that Pj,i is corrupted.

4. Handling AND Gates. For each AND gate g in CircVj with input wire a, b and output wire o:

(a) For each execution of ΠMult in this step, for each honest member Pj,α corrupted member Pj,β , Sim
samples a random κ-bit string as r

(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α), samples a random bit as y(α) ⊕ b(β,α), and sends

them to Pj,β on behalf of Pj,α. Then Sim receives r
(β,α)
1 ⊕ r

(β,α)
0 ⊕ x(β) and y(β) ⊕ b(α,β) from Pj,β and

checks whether they are correctly computed with their committed inputs. If not, Sim sets Compj = 1.
(b) Sim honestly emulates the random oracle O and computes each corrupted member Pj,i’s shares of

⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ based on their committed inputs, the randomly sampled messages sent
from honest members of Vj , and the outputs of O.

5. Handling Output Gates. For each output gate with index k in CircVj with input wire w:

(a) For each execution of ΠMult in this step, for each honest member Pj,α and each corrupted member Pj,β ,
Sim samples a random (κ− 1)-bit string as r

(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α), samples a random bit as y(α) ⊕ b(β,α),

and sends them to Pj,β on behalf of Pj,α. Then Sim receives r
(β,α)
1 ⊕ r

(β,α)
0 ⊕ x(β) and y(β) ⊕ b(α,β) from

Pj,β and checks whether they are correctly computed with their committed inputs. If not, Sim sets
Compj = 1.

(b) Sim honestly emulates the random oracle O and computes each corrupted member Pj,i’s shares of
⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩ based on their committed inputs, the randomly sampled messages sent from honest
members of Vj , and the outputs of O.

6. Masking Input Wire Values. For each input wire w of CircVj :

(a) Sim samples a random bit as each honest member Pj,α’s share of ⟨xw ⊕ λw⟩ and sends it to each
corrupted member Pj,β on behalf of Pj,α.

(b) Sim receives each corrupted member Pj,β ’s share of ⟨xw ⊕ λw⟩ and checks whether it matches the input
he committed. If not, Sim sets Compj = 1. Otherwise, Sim reconstructs xw ⊕ λw.

7. Ouputting Output Masks. For each input wire w of an output gate in CircVj , Sim computes corrupted
members’ shares of ⟨λw⟩ based on their committed inputs, the randomly sampled messages sent from
honest members of Vj , and the outputs of O.

8. Encrypting Input Labels. For each reconstruction of Σ(2)-sharing in the evaluation phase of Π0 whose
receiver is Vj , we assume its the i-th reconstruction, and the sharing to be reconstructed is [si]

(2). Suppose
the η-th bit of si is used as an input wire with index jη in CircVj . For each of them and each honest
member Pj,α of Vj , Sim computes

ct
(i,α)
jη,si,η

= O(rsi,η,η,α∥si,η∥i∥α∥η∥jη)⊕
(
k
Pj,α

wjη ,vwjη
⊕λwjη

∥(vwjη
⊕ λwjη

)
)
.

Then, Sim2 samples a random κ-bit string as ct
(i,α)
jη,1⊕si,η

.

9. Outputting Garbled Circuits. Sim computes the corrupted members’ shares of
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ for each AND gate and ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩ for each output wire w based on their
committed inputs, the randomly sampled messages sent from honest members of Vj , and the outputs of O.

10. After the execution of Πin all the messages including the Dispersed messages of FAVID sent in the last round
are delivered to each honest member Pj,i, Sim emulates FAVID to send a random message (of the same
length) as OSPj,i ⊕O(seed

Pj,i

0 ∥mid) to A. Besides, Sim receives OSPj,β ⊕O(seed
Pj,β

0 ∥mid) from each
corrupted member Pj,β and decrypts OSPj,β with seed

Pj,β

0 .

43

For each corrupted virtual server Vj , Sim honestly emulates the random oracle O to send outputs to corrupted
members of Vj .

Figure 27: The simulator for the garbling phase of Π.

Verification Phase
1. Verification of the Sharings.

(a) Sim emulates FCoin to receive RandCoin from the corrupted parties. When there are a honest parties that
the RandCoin from them have been allowed to be delivered to FCoin and b corrupted parties that have
sent RandCoin to FCoin such that a+ b ≥ t+ 1, Sim follows the protocol to sample s ∈ F2κ

′ randomly.
(b) Sim emulates FCoin to send s to A. If abort is received from A, Sim emulates FCoin to send abort to A

and aborts the protocol. After the simulation terminates, Sim outputs what A outputs. Let the
pseudorandom coefficients for the Σ(2)-sharings expanded from s be
(s1, . . . , sk1 , s

(2)
1 , . . . , s

(2)
k2

, s
(3)
1 , . . . , s

(3)
k3

) ∈ Fk1+k2+k3

2κ
′ .

(c) Let the set of the indices of Σ-sharings, random Σ(2)-sharings, and random Σ(3)-sharings (to be checked
in this step) generated by corrupted parties be C1, C2, and C3 respectively. Correspondingly, let the
index set of sharings generated by honest parties be H1, H2, and H3. For these sharings generated by
each corrupted party Pi, Sim computes the share s of each honest virtual server Vj based on each honest
member Pj,α’s share of ⟨s⟩ (computed from v

Vj

i,α ⊕O(ki,jα∥mid)and ki,jα) and each corrupted member
Pj,β ’s share of ⟨s⟩ (computed from Sh

Pj,α

i ⊕O(seed
Pj,α

i ∥mid) and seed
Pj,α

i). Then, Sim computes
Pj,1, Pj,2, Pj,3’s shares of ∑

i∈C1

si · ⟨x
Vj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

1 ⟩,

∑
i∈C2

s
(2)
i · ⟨yVj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

2 ⟩,

and ∑
i∈C3

s
(3)
i · ⟨zVj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

3 ⟩.

(d) For each corrupted virtual server Vj , Sim follows the protocol to compute Pj,1, Pj,2, Pj,3’s shares of∑
i∈H1

si · ⟨x
Vj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

1 ⟩,

∑
i∈H2

s
(2)
i · ⟨yVj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

2 ⟩,

and ∑
i∈H3

s
(3)
i · ⟨zVj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

3 ⟩.

Also, for each honest virtual server Vj , Sim follows the protocol to compute each corrupted member
Pj,α’s shares of them. Then, Sim randomly samples the secret of the sharing for each honest virtual
server Vj based on the fact that all the virtual servers’ secrets form a Σκ′ -sharing, a Σ

(2)

κ′ -sharing, and a
Σ

(3)

κ′ -sharing.
(e) For each honest virtual server Vj , Sim computes Pj,1, Pj,2, Pj,3’s shares of

k1∑
i=1

si · ⟨x
Vj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)⟩ =
∑
i∈C1

si · ⟨x
Vj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

1 ⟩

+
∑
i∈H1

si · ⟨x
Vj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

1 ⟩,

Simulator SimVer

44

k2∑
i=1

s
(2)
i · ⟨yVj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)

2 ⟩ =
∑
i∈C2

s
(2)
i · ⟨yVj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

2 ⟩

+
∑
i∈H2

s
(2)
i · ⟨yVj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

2 ⟩,

and

k3∑
i=1

s
(3)
i · ⟨zVj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)

3 ⟩ =
∑
i∈C3

s
(3)
i · ⟨zVj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)

3 ⟩

+
∑
i∈H3

s
(3)
i · ⟨zVj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)

3 ⟩.

Sim then performs a similar computation on the sharings of all-zero secrets as in Step 1.(a)-(e). Then, Sim
follows the protocol to compute VSPj,i ⊕O(seedP

′
j,i∥mid) and sends it to A on behalf of FAVID for each

honest member Pj,i of Vj . Sim then emulates FAVID to receive VSPj,α ⊕O(seedP
′
j,α∥mid) from each

corrupted member Pj,α of Vj . Sim computes VSPj,α for each corrupted member Pj,α of each honest virtual
server Vj from VSPj,α ⊕O(seedP

′
j,α∥mid) and seedP

′
j,α and checks whether the set is correctly computed

from Sh
Pj,α

i for Pi ∈ CoreSet. If not, Sim sets Compj = 1.

2. Verification of Local Computation.

(a) For each j = 1, . . . , N , upon the Dispersed messages for all the instances of FAVID whose dealer is
Pj,α, α = 1, 2, 3 called in during the execution of Πin for Vj and Step 1 of the verification phase are
delivered to an honest party Pi, Sim regarded that Pi has sent 1 to F (j)

ABA. Sim emulates F (j)
ABA to receive

inputs of corrupted parties from A and faithfully emulates FABA to send outputs to A. If for N/4
j ∈ {1, . . . , N}, the output of FABA is 1 and has been delivered to an honest party Pi, Sim regard that Pi

has sent 1 to F (α)
ABA for each F (α)

ABA that has not received input from Pi.

(b) Upon the emulation of all F (j)
ABA, j = 1, . . . , N terminates, Sim follows the protocol to obtain the set Ter.

(c) For each Vj ∈ Ter, Sim faithfully emulates FCoin to sample and send the output coin to A. If abort is
received from A, Sim emulates FCoin to send abort to A and aborts the protocol. Then, Sim obtains the
set of checked parties in Ter. For each checked honest virtual server Vj , Sim sets Checkj = 1. If there are
more than N/312 virtual servers Vj with Checkj = 1, Sim aborts the simulation.

(d) If for over N/528 Vj ∈ Ver it holds that Compj = 1, Sim sets CompCheck = 1. If for over N/528 Vj ∈ Ver
it holds that Corrj = 1, Sim sets CorrCheck = 1. If for over N/220 Vj ∈ Ver it holds that ROTj = 1, Sim
sets OTCheck = 1.

(e) For each honest member Pj,α of each honest virtual server Vj ∈ Ter with Checkj = 1:
i. Sim randomly samples Pj,α’s shares of all the sharings generated by an honest party in the sharing

phase based on corrupted parties’ shares except the additive sharings for Vj ’s shares of
[r

(i′)
1]κ′ , [r

(i′)
2]

(2)

κ′ , [r
(i′)
3]

(2)

κ′ generated by the last honest party Pi′ , i
′ ∈ H ∩ CoreSet. For Pj,α’s shares

for the remaining 3 sharings, Sim computes them based on his shares of∑
i∈H1

si · ⟨x
Vj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

1 ⟩,
∑

i∈H2
s
(2)
i · ⟨yVj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

2 ⟩,
∑

i∈H3
s
(3)
i ·

⟨zVj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

3 ⟩ and
∑

i∈H1
si · ⟨x

Vj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)

1 ⟩,
∑

i∈H2
s
(2)
i · ⟨yVj

i ⟩+∑
i∈H∩CoreSet\{i′}⟨r

(i,Vj)

2 ⟩,
∑

i∈H3
s
(3)
i · ⟨zVj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)

3 ⟩. Similarly for the sharings

[o
(i′)
1]κ′ , [o

(i′)
2]

(2)

κ′ , [o
(i′)
3]

(2)

κ′ .
ii. Sim randomly samples a (κ− 1)-bit string as ∆Pj,α .
iii. For each w that is not an output wire of an XOR gate or output gate in CircVj nor an input wire of

CircVj , Sim randomly samples λ
Pj,α
w , k

Pj,α

w,0 .

iv. For each input wire w of CircVj , Sim computes Pj,α’s share λ
Pj,α
w of ⟨λw⟩ based on his shares of

⟨xw ⊕ λw⟩ (which has been generated in the garbling phase) and ⟨xw⟩ (which has been generated in
Step 2.(d).i.).

45

v. For each XOR gate in CircVj with input wires a, b and output wire o, Sim computes

k
Pj,α

o,0 ∥λPj,α
o = (k

Pj,α

a,0 ∥λPj,α
a)⊕ (k

Pj,α

b,0 ∥λPj,α

b).

This computation is performed gate by gate.
vi. For each wire w in CircVj that is not an output wire of an output gate, Sim computes

k
Pj,α

w,1 = k
Pj,α

w,0 ⊕∆Pj,α .
vii. For each execution of ΠMult in the garbling phase, for each corrupted member Pj,β of Vj , Sim already

has r
(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α), (b(α,β), r

(α,β)

b(α,β)), y
(α) ⊕ r

(β,α)

b(β,α) , and x(α), y(α). With these values, Sim
computes Pj,α’s output of each ROT instance.

viii. For each AND gate in CircVj with input wire a, b and output wire o, Sim computes honest members’
shares of ⟨APj,i

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and i = 1, 2, 3 by following the

computation process in the Πin.

ix. For each output gate in CircVj with input wire w, Sim computes honest members’ shares of ⟨ctPj,i

w,i2
⟩

for each i2 = 0, 1 and i = 1, 2, 3 by following Πin. Sim knows all the elements in ISPj,α , Sh
Pj,α

i for each
honest party Pi after completing the above steps.

(f) For each checked virtual server Vj :
i. Sim emulates FAVID (that commits VSVj,α , α = 1, 2, 3) to receive (Retrieve, Pi) for each party Pi. For

each honest party, Sim regards (Retrieve, Pi) to FAVID upon the random coins generated by FCoin are
delivered. For corrupted party Pi, if t+ 1 parties’ messages (Retrieve, Pi) have been delivered to
FAVID, Sim emulates FAVID to send VSVj,α ⊕O(seedP

′
j,α), α = 1, 2, 3 to Pi.

ii. Sim randomly samples qP
′
j,i based on {qP

′
j,i(αu)}u∈C and follows the protocol to emulate honest

parties to participate in the OEC process for reconstructing the seed seedP
′
j,i for each i = 1, 2, 3.

iii. Sim follows the protocol to check whether [τ]×κ′ , [τ2]
(2)

×κ′ , [τ3]
(3)

×κ′ (where corrupted parties’ shares are
obtained from VSPj,i for corrupted Pj,i) are valid shares for Σ×κ′ ,Σ

(2)

×κ′ ,Σ
(3)

×κ′ -sharings and whether
[τ ′]×κ′ , [τ ′

2]
(2)

×κ′ , [τ
′
3]

(3)

×κ′ are valid shares for Σ×κ′ ,Σ
(2)

×κ′ ,Σ
(3)

×κ′ -sharings with all-zero secrets. If not, Sim
aborts the protocol on behalf of each honest party Pi. After completing the simulation, Sim outputs
what A outputs.

iv. Sim randomly samples seed
Pj,β
α , seedPj,β , seed

Pj,β

0 for each honest party Pα and honest party Pj,β .
Then, Sim samples q

Pj,β
α (αu), q

Pj,β (αu), q
Pj,β

0 (αu) for honest parties Pu based on
seed

Pj,β
α , seedPj,β , seed

Pj,β

0 and q
Pj,β
α (αv), q

Pj,β (αv), q
Pj,β

0 (αv) for corrupted parties Pv. While
emulating the random oracle O, Sim uses Sh

Pj,β
α ⊕O(seed

Pj,β
α ∥mid) and Sh

Pj,β
α to compute the

corresponding output O(seed
Pj,β
α ∥mid), uses ISPj,β ⊕O(seedPj,β∥mid) and ISPj,β to compute the

corresponding output O(seedPj,β∥mid), uses MSPj,β ⊕O(seedPj,β∥mid) and MSPj,β to compute the
corresponding output O(seedPj,β∥mid), and uses OSPj,β ⊕O(seed

Pj,β

0 ∥mid) and OSPj,β to compute
the corresponding output O(seed

Pj,β

0 ∥mid). If some of these queries to the random oracle have been
queried by A, Sim aborts the simulation.

v. Sim follows the protocol to emulate honest parties to participate in the OEC process of
reconstructing the seeds seed

Pj,β
α , seedPj,β , seed

Pj,β

0 for each α = 1, . . . , n and β = 1, 2, 3.
vi. Sim follows the protocol to emulate each honest party Pi to check whether the local computation of

Vj is performed correctly and whether the committed outputs from FROT are valid. If not, Sim
aborts the protocol on behalf of Pi. After completing the simulation, Sim outputs what A outputs.

(g) If OTCheck = 1, Sim aborts the simulation.
(h) If CompCheck = 1, Sim aborts the simulation.
(i) If CorrCheck = 1, Sim aborts the simulation.
(j) Sim chooses a subset Hvir ⊂ Ter of |Ter ∪ Corr| −N/20 ≥ N/5 honest virtual servers (here Corr is the set

of corrupted virtual servers), where each Vj ∈ Hvir satisfies Corrj = Compj = Checkj = ROTj = 0. Then,
Sim checks whether the shares of the virtual servers in Hvir of the Σ,Σ(2),Σ(3)-sharings generated by
corrupted parties in CoreSet that are checked in Step 1 of the verification phase (computed from
Sh

Pj,α

i , j = 1, . . . , N, α = 1, 2, 3 for each corrupted generator Pi) are valid, If not, Sim aborts the

46

simulation. Otherwise, Sim chooses a valid sharing as each sharing generated by the corrupted party
that matches the shares for Vj ∈ Hvir and then reconstructs the secret.

(k) For each honest virtual server Vj ∈ Ter\Hvir with Checkj = 0:
i. Sim randomly samples Pj,α’s shares of all the sharings generated by an honest party in the sharing

phase based on corrupted parties’ shares except the additive sharings for Vj ’s shares of
[r

(i′)
1]κ′ , [r

(i′)
2]

(2)

κ′ , [r
(i′)
3]

(2)

κ′ generated by the last honest party Pi′ , i
′ ∈ H ∩ CoreSet. For Pj,α’s shares

for the remaining 3 sharings, Sim computes them based on his shares of∑
i∈H1

si · ⟨x
Vj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

1 ⟩,
∑

i∈H2
s
(2)
i · ⟨yVj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

2 ⟩,
∑

i∈H3
s
(3)
i ·

⟨zVj

i ⟩+
∑

i∈H∩CoreSet⟨r
(i,Vj)

3 ⟩ and
∑

i∈H1
si · ⟨x

Vj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)

1 ⟩,
∑

i∈H2
s
(2)
i · ⟨yVj

i ⟩+∑
i∈H∩CoreSet\{i′}⟨r

(i,Vj)

2 ⟩,
∑

i∈H3
s
(3)
i · ⟨zVj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)

3 ⟩. Similarly for the sharings

[o
(i′)
1]κ′ , [o

(i′)
2]

(2)

κ′ , [o
(i′)
3]

(2)

κ′ .
ii. Sim randomly samples a (κ− 1)-bit string as ∆Pj,α .
iii. For each w that is not an output wire of an XOR gate or output gate in CircVj nor an input wire of

CircVj , Sim randomly samples λ
Pj,α
w , k

Pj,α

w,0 .

iv. For each input wire w of CircVj , Sim computes Pj,α’s share λ
Pj,α
w of ⟨λw⟩ based on his shares of

⟨xw ⊕ λw⟩ (which has been generated in the garbling phase) and ⟨xw⟩ (which has been generated in
Step 2.(k).i.).

v. For each XOR gate in CircVj with input wires a, b and output wire o, Sim computes

k
Pj,α

o,0 ∥λPj,α
o = (k

Pj,α

a,0 ∥λPj,α
a)⊕ (k

Pj,α

b,0 ∥λPj,α

b).

This computation is performed gate by gate.
vi. For each wire w in CircVj that is not an output wire of an output gate, Sim computes

k
Pj,α

w,1 = k
Pj,α

w,0 ⊕∆Pj,α .
vii. For each execution of ΠMult in the garbling phase, for each corrupted member Pj,β of Vj , Sim already

has r
(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α), (b(α,β), r

(α,β)

b(α,β)), y
(α) ⊕ r

(β,α)

b(β,α) , and x(α), y(α). With these values, Sim
computes Pj,α’s output of each ROT instance.

viii. For each AND gate in CircVj with input wire a, b and output wire o, Sim computes honest members’
shares of ⟨APj,i

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and i = 1, 2, 3 by following the

computation process in the Πin.

(l) Sim randomly samples seed
Pj,α

0 for each honest member Pj,α of each unchecked virtual server Vj ∈ Ter.
Then, Sim samples q

Pj,β

0 (αu) for honest parties Pu based on seed
Pj,β

0 and q
Pj,β

0 (αv) for corrupted parties
Pv.

(m) Sim emulates FAVID that commits each OSPj,α , Pj ∈ Ter, α = 1, 2, 3 to receive (Retrieve, Pi) for all
i = 1, . . . , n from corrupted parties. Sim regards that an honest party has sent (Retrieve, Pi) when the
check of the honest party passes. When t+ 1 parties have sent (Retrieve, Pi) to FAVID for a corrupted
party Pi, Sim emulates FAVID to send OSPj,α ⊕ seed

Pj,α

0 to Pi. Then, Sim honestly emulates honest
parties to run the OEC process of reconstructing seed

Pj,α

0 to each party. Sim then uses
OSPj,α ⊕O(seed

Pj,α

0 ∥mid) and OSPj,α to compute the corresponding output O(seed
Pj,α

0 ∥mid) for each
honest member Pj,α of Vj . If some of these queries to O have been queried by the adversary before the
OEC process of the seeds, Sim aborts the simulation.

3. Sim sends CoreSet to F . Then, Sim reconstructs the secrets of input sharings generated by each corrupted
party Pi ∈ CoreSet. Sim then retrieves Pi’s input from these secrets and sends it to F .

Figure 28: The simulator for the verification phase of Π.

Evaluation Phase
1. Reconstructing the Garbled Circuit. For each i = 1, . . . , rec, Sim computes the shares of [si]

(2) for
virtual servers of CVir = Corr ∪ Ter\Hvir by following Π0 (where input sharings are from parties in CoreSet,

Simulator SimEval

47

the preprocessing datas are also prepared in previous steps). Then, Sim randomly samples the shares of
[si]

(2) for virtual servers of Hvir based on the shares for virtual servers of Cvir. Then, Sim does the following:

(a) If the receiver Ri of [si] is an honest client, Sim samples a random k-bit string as r
(α)
si,β

for each
β = 1, 2, 3 and α = 1, . . . , κ. Then, for α = 1, . . . , κ, Sim randomly samples the shares for virtual servers
in HVir of [r(α)

si,1
](3), . . . , [r

(α)
si,c]

(3) based on the shares for the virtual servers in Cvir of
[r

(α)
si,β

](3) = [r
(α)
0,β]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β] and the secret r

(α)
si,β

for each β = 1, 2, 3.
(b) If the receiver Ri of the i-th reconstruction is a virtual server in Hvir, Sim samples a random κ-bit string

as rsi,η,η,1 = (r
(1)
si,η,η,1, . . . , r

(κ)
si,η,η,1) for each η = 1, . . . , k, where si,η is the η-th bit of si. Then, for

α = 1, . . . , κ, let r
(α)
si,1

= (r
(α)
si,1,1,1

, r
(α)
si,2,2,1

, . . . , r
(α)
si,k,k,1

), Sim randomly samples the shares for virtual

servers in HVir of [r(α)
si,1

](3) based on the shares of the virtual servers in Cvir of
[r

(α)
si,1

](3) = [r
(α)
0,1]

(3) + [si]
(2) ⊗ [r

(α)
1,1 − r

(α)
0,1] and the secret r

(α)
si,1

.

(c) For each virtual server Vj ∈ Hvir and each a = 1, . . . , ℓ2, let s
Vj

i,a be the a-th bit of Vj ’s share of [si]. Sim

computes Y
Pj,β

(i−1)ℓ2+a,s
Vj
i,a

for each β = 1, 2, 3 with the shares for virtual servers in Hvir of [r(α)
si,1

](3) whose

secret is held by the honest parties (emulating clients and honest members of virtual servers in Hvir) and
each pair of [r(α)

0,β]
(3), [r

(α)
1,β − r

(α)
0,β] whose secrets is held by other parties, where the computational

process of each Y
Pj,β

(i−1)ℓ2+a,s
Vj
i,a

is the same as in the protocol with each [r
(α)
si,β

](3) (whose secret is held by

an honest party) being regarded as [r
(α)
0,β]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β].

For each virtual server Vj ∈ Hvir:

(a) For each wire w in CircVj that is not an input wire of the circuit and is not an output wire of an XOR
gate or an output gate, Sim samples a random bit as vw ⊕ λw and a random (κ− 1)-bit string k

Pj,α

w,vw⊕λw

for each honest member Pj,α of Vj . For each input wire of CircVj , Sim samples a random (κ− 1)-bit
string k

Pj,α

w,vw⊕λw
.

(b) For each XOR gate in CircVj with input wires a, b and output wire o, Sim computes
k
Pj,α

o,vo⊕λo
= k

Pj,α

a,va⊕λa
⊕ k

Pj,α

b,vb⊕λb
and vo ⊕ λo = (va ⊕ λa)⊕ (vb ⊕ λb) gate by gate from the first layer.

(c) For each AND gate g in CircVj with input wire a, b and output wire o, Sim computes the ciphertext
encrypted by {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1 by:

(3⊕
i=1

(
O(k

Pj,i

a,va⊕λa
∥(va ⊕ λa)∥k

Pj,i

b,vb⊕λb
∥(vb ⊕ λb)∥i∥j∥β∥g)

))
⊕k

Pj,β

o,vo⊕λo
∥(vo ⊕ λo).

Then Sim samples 3 random κ-bit strings as the other 3 ciphertexts for this gate g and each β = 1, 2, 3.
(d) For each input wire w of an output gate in CircVj , the output gate outputs a bit of Vj ’s share of a

Σ(2)-sharing that needs reconstruction in Π0 which has already be computed. Sim sets the output wire
value vw to be the corresponding bit. Then, Sim computes λw = (vw ⊕ λw)⊕ vw.

(e) For each output gate in CircVj indexed k = 1, . . . , ℓ2rec with input wire w, Sim computes

ct
Pj,β

w,vw⊕λw
=

(3⊕
i=1

O(k
Pj,i

w,vw⊕λw
∥(vw ⊕ λw)∥i∥j∥β∥w)

)
⊕ Y

Pj,β

k,λw
.

Then Sim samples a random cℓκ-bit string as the other ciphertext for this wire w and each β = 1, 2, 3.

Now, Sim has already got the garbled circuits (including input labels, output masks, and the ciphertexts
for AND gates and output gates) of all Vj ∈ Ter, i.e. OSPj,α , Pj ∈ Ter, α = 1, 2, 3. Then, while emulating
the random oracle O, Sim uses OSPj,α ⊕O(seed

Pj,α

0 ∥mid) and OSPj,α to compute the corresponding output
O(seed

Pj,α

0 ∥mid).

48

2. Evaluating the Circuit. Sim follows the protocol to emulate honest parties to evaluate the circuit and
compute the output.

3. Sim outputs what A outputs.

Figure 29: The simulator for the evaluation phase of Π.

We construct the following hybrids:
Hyb0: In this hybrid, Sim gets honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, while determining the virtual servers, Sim aborts the simulation if over N/26

virtual servers are corrupted. By Chernoff bound, if the virtual servers are truly randomly determined, the
probability that over N/26 virtual servers are corrupted is negligible. Thus, the distributions of Hyb1 and
Hyb0 are statistically close.

Hyb2: In this hybrid, whenever an honest party (either a client or a server) generates a random
Σ,Σ(2),Σ(3)-sharing (including the interleaved secret sharings of them) for the virtual servers, Sim first
generates the corrupted virtual servers’ shares, and then randomly samples the honest virtual servers’ shares
based on corrupted virtual servers’ shares and the secret. Since for all these sharings, the set of corrupted
virtual servers’ shares is independent of the secret, we only change the order of generating the honest and
corrupted virtual servers’ shares of the sharings. This doesn’t change the output distribution. Thus, Hyb2

and Hyb1 have the same output distribution.
Hyb3: In this hybrid, whenever an honest party generates an additive sharing for the parties who act

as a virtual server, Sim first generates the corrupted parties’ shares, and then randomly samples the honest
parties’ shares based on corrupted parties’ shares and the secret. Since for all these sharings, the set of
corrupted parties’ shares is independent of the secret, we only change the order of generating the honest and
corrupted parties’ shares of the sharings. This doesn’t change the output distribution. Thus, Hyb3 and
Hyb2 have the same output distribution.

Hyb4: In this hybrid, Sim additionally sets CompCheck = CorrCheck = OTCheck = 0 at the end of the
setup phase. Then, for each honest virtual server Vj , Sim sets Corrj = Compj = ROTj = Checkj = 0. This
doesn’t affect the output distribution. Thus, Hyb4 and Hyb3 have the same output distribution.

Hyb5: In this hybrid, during the sharing phase, whenever Sim generates a share v
Vj

i,α for an honest
Pj,α = Pjα via AVID on behalf of an honest party Pi, Sim first samples v

Vj

i,α ⊕ O(ki,jα∥mid) randomly and
then computes O(ki,jα∥mid) = v

Vj

i,α ⊕O(ki,jα∥mid)⊕ v
Vj

i,α. Since v
Vj

i,α is uniformly random when ki,jα∥mid is
not queried by A for all these mid. Similar for v

Vj

i,α ⊕O(ki,jα∥mid). We only change the order of generating
v
Vj

i,α and v
Vj

i,α⊕O(ki,jα∥mid) without changing their distributions if ki,jα∥mid is not queried by A. Therefore,
the distribution only changes when some ki,jα∥mid is queried by A. Since ki,jα is sampled randomly in F2κ

and it’s not used in sending any message to A in this hybrid, the probability that A queries some ki,jα∥mid
during the execution is poly(κ)/2κ, which is negligible. Thus, the distributions of Hyb5 and Hyb4 are
computationally indistinguishable.

Hyb6: In this hybrid, during the sharing phase, after ISPj,i⊕O(seedPj,i∥mid) is received from a corrupted
party Pj,i, Sim computes ISPj,i from ISPj,i ⊕O(seedPj,i∥mid) and seedPj,i . Then, Sim additionally performs
the following checks:

1. For each sharing generated by an honest party Pi, for each honest virtual server Vj , let the generated
share of Vj be s (computed from v

Vj

i,α ⊕ O(ki,jα∥mid) and ki,jα for α = 1, 2, 3), and then Sim checks
whether the committed input of each corrupted party Pj,α’s shares of ⟨s⟩ (computed from ISPj,α ⊕
O(seedPj,α∥mid) and seedPj,α) matches what Sim sends to him. If not, Sim sets Corrj = 1.

2. For each sharing generated by an corrupted party Pi, for each honest virtual server Vj , let the generated
share of Vj be s (computed from v

Vj

i,α ⊕O(ki,jα∥mid) for α = 1, 2, 3), and then Sim checks whether the
committed share of each honest party Pj,α’s shares of ⟨s⟩ (computed from Sh

Pj,α

i ⊕ O(seedPj,α

i ∥mid)

and seed
Pj,α

i) matches what Sim receives from A. If not, Sim sets Corrj = 1. In addition, Sim checks

49

whether the committed shares from Sh
Pj,α

i and ISPj,α matches for each corrupted Pi and Pj,α. If not,
Sim sets Corrj = 1.

3. For the results of FROT, Sim checks whether for each honest virtual server Vj , the corrupted parties
Pj,i all committed their outputs correctly. For each honest virtual server Vj that fails in the check, Sim
sets ROTj = 1.

This doesn’t affect the output distribution. Thus, Hyb6 and Hyb5 have the same output distribution.
Hyb7: In this hybrid, during the garbling phase, for each honest virtual server Vj , for each execution of

ΠMult, Sim doesn’t follow the protocol to compute r(α,β)1 ⊕r(α,β)0 ⊕x(α) and y(α)⊕b(β,α) for each honest member
Pj,α and corrupted member Pj,β . Instead, Sim randomly samples a (κ− 1)-bit string as r(α,β)1 ⊕ r

(α,β)
0 ⊕x(α)

and a random bit as y(α) ⊕ b(β,α). Then, Sim computes r
(α,β)
1 ⊕ r

(α,β)
0 based on r

(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α) and

x(α) and then determines (r
(α,β)
0 , r

(α,β)
1) based on (b(α,β), r

(α,β)

b(α,β)). Similarly, Sim computes b(β,α) based on
y(α)⊕b(β,α) and y(α) to determine r(β,α)

b(β,α) . Since (r(α,β)0 , r
(αβ)
1) are sampled randomly based on (b(α,β), r

(α,β)

b(α,β)),
r
(α,β)
1 ⊕ r

(α,β)
0 ⊕x(α) is a random (κ− 1)-bit string. Since b(β,α) is a random bit, so is y(α)⊕ b(β,α). Thus, we

only change the order of generating r
(α,β)
1 ⊕ r

(α,β)
0 ⊕ x(α) and (r

(α,β)
0 , r

(α,β)
1), y(α) ⊕ b(β,α) and b(β,α) without

changing their distributions. Thus, Hyb7 and Hyb6 have the same output distribution.
Hyb8: In this hybrid, during the garbling phase, for each execution of ΠMult executed by members

emulating an honest virtual server Vj . Sim additionally checks whether r(β,α)1 ⊕ r
(β,α)
0 ⊕x(β) and y(β)⊕ b(α,β)

from Pj,β for each honest member Pj,α and corrupted member Pj,β are correctly computed with corrupted
members’ committed inputs. If not, Sim sets Compj = 1. This doesn’t affect the output distribution. Thus,
Hyb8 and Hyb7 have the same output distribution.

Hyb9: In this hybrid, during the garbling phase, for each honest virtual server Vj and each input wire
w of CircVj , Sim doesn’t follow the protocol to compute each honest member Pj,α’s share of ⟨xw ⊕ λw⟩.
Instead, Sim samples a random bit as Pj,α’s share of ⟨xw ⊕λw⟩ and computes his share of ⟨λw⟩ based on his
shares of ⟨xw ⊕λw⟩ and ⟨xw⟩. After receiving the corrupted members’ shares of ⟨xw ⊕λw⟩, Sim additionally
checks whether they match the inputs they committed. If not, Sim sets Compj = 1. Since Pj,α’s share
of ⟨λw⟩ is sampled randomly, his share of ⟨xw ⊕ λw⟩ is also uniformly random. Thus, we only change the
order of generating them without changing their distributions. Besides, setting Compj = 1 doesn’t affect the
output distribution. Thus, Hyb9 and Hyb8 have the same output distribution.

Hyb10: In this hybrid, during the verification phase, for each honest virtual server Vj , Sim doesn’t follow
the protocol to compute each honest member Pj,α’s shares of ⟨

∑k1

i=1 si ·x
Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
1 ⟩, ⟨

∑k2

i=1 s
(2)
i ·

y
Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
2 ⟩, and ⟨

∑k3

i=1 s
(3)
i ·z

Vj

i +
∑n

i=1 r
(i,Vj)
3 ⟩. Similarly for the sharings of all-zero secrets to be

checked. For the last honest party Pi′ ∈ H∩CoreSet, Sim doesn’t compute each honest member Pj,α’s shares
of ⟨r(i

′,Vj)
1 ⟩, ⟨r(i

′,Vj)
2 ⟩, and ⟨r(i

′,Vj)
3 ⟩. Sim computes

∑
i∈C1

si ·⟨x
Vj

i ⟩+
∑

Pi∈C∩CoreSet⟨r
(i,Vj)
1 ⟩,

∑
i∈C2

s
(2)
i ·⟨y

Vj

i ⟩+∑
Pi∈C∩CoreSet⟨r

(i,Vj)
2 ⟩,

∑
i∈C3

s
(3)
i ·⟨z

Vj

j ⟩+
∑

i∈C∩CoreSet⟨r
(i,Vj)
3 ⟩ and

∑
i∈H1

si·⟨x
Vj

i ⟩+
∑

Pi∈H∩CoreSet\{i′}⟨r
(i,Vj)
1 ⟩,∑

i∈H2
s
(2)
i · ⟨y

Vj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet\{i′}⟨r
(i,Vj)
3 ⟩ first (corrupted

parties’ shares are computed with the shares they receive in the sharing phase). Then, for
∑

i∈H1
si ·

⟨xVj

i ⟩+
∑

i∈H⟨r
(i,Vj)
1 ⟩,

∑
i∈H2

s
(2)
i · ⟨y

Vj

i ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
3 ⟩,

Sim randomly samples the secrets for each honest virtual server Vj based on the fact that all the virtual
servers’ secrets of the three sharings form a Σκ′ -sharing, a Σ

(2)
κ′ -sharing, and a Σ

(3)
κ′ -sharing. Then, Sim

samples the honest members Pj,α’s shares of
∑

i∈H1
si · ⟨xVα

i ⟩ +
∑

Pi∈HCoreSet⟨r
(i,Vj)
1 ⟩,

∑
i∈H2

s
(2)
i · ⟨y

Vj

i ⟩ +∑
Pi∈HCoreSet⟨r

(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
3 ⟩ based on the secret and corrupted member’s

shares (which are computed with their committed shares in ShPj,β for each corrupted member Pj,β). For the
last honest party Pi′ in CoreSet, Sim computes the shares for each honest member Pj,α of Vj of ⟨r(i

′,Vj)
1 ⟩,

⟨r(i
′,Vj)

2 ⟩, and ⟨r(i
′,Vj)

3 ⟩ based on his shares of
∑

i∈H1
si · ⟨x

Vj

i ⟩ +
∑

i∈H∩CoreSet⟨r
(i,Vj)
1 ⟩,

∑
i∈H2

s
(2)
i · ⟨y

Vj

i ⟩ +∑
Pi∈H∩CoreSet⟨r

(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i ·⟨z

Vj

j ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
3 ⟩ and

∑
i∈H1

si·⟨x
Vj

i ⟩+
∑

Pi∈H∩CoreSet\{i′}⟨r
(i,Vj)
1 ⟩,

50

∑
i∈H2

s
(2)
i ·⟨y

Vj

i ⟩+
∑

i∈H∩CoreSet\{i′}⟨r
(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i ·⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet\{i′}⟨r
(i,Vj)
3 ⟩. Finally, Sim com-

putes each honest member Pj,α’s share of ⟨
∑k1

i=1 si·x
Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
1 ⟩, ⟨

∑k2

i=1 s
(2)
i ·y

Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
2 ⟩,

and ⟨
∑k3

i=1 s
(3)
i · z

Vj

i +
∑n

i=1 r
(i,Vj)
3 ⟩ by

k1∑
i=1

si · ⟨x
Vj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)⟩ =
∑
i∈C1

si · ⟨x
Vj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)
1 ⟩

+
∑
i∈H1

si · ⟨x
Vj

i ⟩+
∑

i∈H∩CoreSet

⟨r(i,Vj)
1 ⟩,

k2∑
i=1

s
(2)
i · ⟨y

Vj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)
2 ⟩ =

∑
i∈C2

s
(2)
i · ⟨y

Vj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)
2 ⟩

+
∑
i∈H2

s
(2)
i · ⟨x

Vj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)
2 ⟩,

and

k3∑
i=1

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈CoreSet

⟨r(i,Vj)
3 ⟩ =

∑
i∈C3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈C∩CoreSet

⟨r(i,Vj)
3 ⟩

+
∑
i∈H3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet

⟨r(i,Vj)
3 ⟩.

Since the sharings [r
(i′)
1]κ′ , [r

(i′)
2]

(2)
κ′ , [r

(i′)
3]

(3)
κ′ are randomly generated based on the corrupted virtual

servers’ shares, we can regard that Sim emulates Pi′ to generate the secrets for each corrupted virtual server
Vj first and then generate the shares for each honest virtual server Vj . Thus, the secrets of

∑
i∈H1

si · ⟨x
Vj

i ⟩+∑
Pi∈H∩CoreSet⟨r

(i,Vj)
1 ⟩ (resp. ⟨

∑k2

i=1 s
(2)
i ·y

Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
2 ⟩ and ⟨

∑k3

i=1 s
(3)
i ·z

Vj

i +
∑

Pi∈CoreSet r
(i,Vj)
3 ⟩),

which is computed by adding honest virtual server Vj ’s share of [r
(i′)
1]κ′ (resp. [r

(i′)
2]

(2)
κ′ and [r

(i′)
3]

(3)
κ′) is

also random when those secrets for corrupted virtual servers are fixed. Thus, we only change the or-
der of generating each honest member Pj,α’s shares of ⟨r(i

′,Vj)
1 ⟩, ⟨r(i

′,Vj)
2 ⟩, ⟨r(i

′,Vj)
3 ⟩ and

∑
i∈H1

si · ⟨x
Vj

i ⟩ +∑
Pi∈H∩CoreSet⟨r

(i,Vj)
1 ⟩,

∑
i∈H2

s
(2)
i · ⟨y

Vj

i ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
2 ⟩,

∑
i∈H3

s
(3)
i · ⟨z

Vj

i ⟩+
∑

Pi∈H∩CoreSet⟨r
(i,Vj)
3 ⟩

for each honest virtual server Vj without changing their distributions. Similarly, for the sharings of all-zero
secrets to be checked. Thus, Hyb10 and Hyb9 have the same output distribution.

Hyb11: In this hybrid, during the verification phase, after Sim receives VSPj,α ⊕ O(seedP
′
j,α∥mid) from

each corrupted party Pj,α of Vj , Sim additionally sets Compj = 1 if Vj is an honest virtual server but the
corrupted servers’ shares of

∑k1

i=1 si · ⟨x
Vj

i ⟩+
∑

Pi∈CoreSet⟨r
(i,Vj)
1 ⟩,

∑k2

i=1 s
(2)
i · ⟨y

Vj

i ⟩+
∑

Pi∈CoreSet⟨r
(i,Vj)
2 ⟩, or∑k3

i=1 s
(3)
i ·⟨z

Vj

i ⟩+
∑n

i=1⟨r
(i,Vj)
3 ⟩ are not correctly computed from the committed shares of ShPj,α

i , Pi ∈ CoreSet.
This doesn’t affect the output distribution. Similarly, for the sharings of all-zero secrets to be checked. Thus,
Hyb11 and Hyb10 have the same output distribution.

Hyb12: In this hybrid, during the verification phase, after the set Ter is determined, Sim additionally
sets Checkj = 1 if Vj ∈ Ter is an honest virtual party and it is checked. f there are more than N/312
virtual servers Vj with Checkj = 1, Sim aborts the simulation. This only affects the output distribution
when there are more than N/312 checked honest virtual servers. Note that there are at most N virtual
servers in Ter, and each of them is checked with probability 1/320. The determination process of whether
each virtual server is checked is independent. Thus, by the Chernoff bound, the probability that more than
N/312 honest virtual parties are checked is no more than

e−
(8/312)2·N/320

2+(8/312) = e−Ω(N),

51

which is negligible. Thus, the distributions of Hyb12 and Hyb11 are statistically close.
Hyb13: In this hybrid, during the verification phase, after the set Ter is determined, if for over N/528

Vj ∈ Ver it holds that Compj = 1, Sim additionally sets CompCheck = 1. If for over N/528 Vj ∈ Ver it holds
that Corrj = 1, Sim additionally sets CorrCheck = 1. If for over N/220 Vj ∈ Ver it holds that ROTj = 1, Sim
additionally sets OTCheck = 1. This doesn’t affect the output distribution. Thus, Hyb13 and Hyb12 have
the same output distribution.

Hyb14: In this hybrid, for each virtual honest virtual server Vj with Checkj = 1, Sim doesn’t follow
the protocol to emulate O and compute each ShPj,β

α ⊕ O(seedPj,β
α ∥mid), ISPj,β ⊕ O(seedPj,β∥mid), MSPj,β ⊕

O(seedPj,β∥mid), and OSPj,β ⊕ O(seedPj,β

0 ∥mid) for each honest party Pα and honest member Pj,β of Vj .
Instead, Sim first samples ShPj,β

α ⊕ O(seedPj,β
α ∥mid), ISPj,β ⊕ O(seedPj,β∥mid), MSPj,β ⊕ O(seedPj,β∥mid),

and OSPj,β ⊕ O(seedPj,β

0 ∥mid) randomly and then uses ShPj,β
α ⊕ O(seedPj,β

α ∥mid) and ShPj,β
α to compute

the corresponding output O(seedPj,β
α ∥mid), uses ISPj,β ⊕ O(seedPj,β∥mid) and ISPj,β to compute the corre-

sponding output O(seedPj,β∥mid), uses MSPj,β ⊕ O(seedPj,β∥mid) and MSPj,β to compute the correspond-
ing output O(seedPj,β∥mid), and uses OSPj,β ⊕ O(seedPj,β

0 ∥mid) and OSPj,β to compute the corresponding
output O(seedPj,β

0 ∥mid). If some of these queries to O have been queried by the adversary (before the
OEC process of the seeds), Sim aborts the simulation. Note that if these queries have not been queried,
the outputs O(seedPj,β

α ∥mid), O(seedPj,β∥mid), and O(seedPj,β

0 ∥mid) are uniformly random, so are ShPj,β
α ⊕

O(seedPj,β
α ∥mid), ISPj,β ⊕O(seedPj,β∥mid), MSPj,β ⊕O(seedPj,β∥mid), and OSPj,β ⊕O(seedPj,β

0 ∥mid). Under
this condition, we only change the order of generating ShPj,β

α ⊕ O(seedPj,β
α ∥mid), ISPj,β ⊕ O(seedPj,β∥mid),

MSPj,β ⊕O(seedPj,β∥mid), OSPj,β ⊕O(seedPj,β

0 ∥mid) and O(seedPj,β
α ∥mid), O(seedPj,β∥mid), O(seedPj,β

0 ∥mid)
without changing their distributions. Thus, the output distribution only changes when some of the queries
have been queried by the adversary. However, the only messages sent to A that are computed with
these seeds are ShPj,β

α ⊕O(seedPj,β
α ∥mid), ISPj,β ⊕O(seedPj,β∥mid), MSPj,β ⊕O(seedPj,β∥mid), and OSPj,β ⊕

O(seedPj,β

0 ∥mid), which are uniformly random when the seeds are not queried. Thus, for each query from
A, the probability that this query matches the seeds and the message IDs is at most 1/2κ. Take the union
bound of all poly(κ) possible queries from the adversary, the probability that A has queried these values is
negligible. Thus, the distributions of Hyb14 and Hyb13 are computationally indistinguishable.

Note that the seeds seedPj,β
α , seedPj,β , and seed

Pj,β

0 for honest Pα, Pj,β are not used until the set of checked
virtual parties is determined, we delay the generation of them until Sim gets the set of checked virtual parties
in future hybrids.

Hyb15: In this hybrid, for each share v
Vj

i,α generated by an honest party Pi for an honest party Pj,α,
Sim doesn’t follow the protocol to compute v

Vj

i,α ⊕O(ki,jα∥mid) and emulate FAVID to send it to A. Instead,
Sim samples v

Vj

i,α ⊕ O(ki,jα∥mid) randomly. In addition, Sim doesn’t follow the protocol to compute each
ShPj,β

α ⊕O(seedPj,β
α ∥mid), ISPj,β ⊕O(seedPj,β∥mid), and MSPj,β ⊕O(seedPj,β∥mid) for honest parties Pα, Pj,β

such that the honest virtual server Vj is not checked. Sim also doesn’t follow the protocol to compute
OSPj,β ⊕ O(seedPj,β

0 ∥mid) for each pair of honest parties Pα, Pj,β such that the honest virtual server Vj is
not in Ter. Sim also samples random strings as them. The same as in Hyb14, these pair-wise keys and seeds
are only used as a part of the queries to the random oracle, and the distribution only changes when A has
queried them. For the same reason as in Hyb14, the probability that the output distribution changes is
negligible. Thus, the distributions of Hyb15 and Hyb14 are computationally indistinguishable.

Note that the pair-wise keys ki,jα for honest Pi, Pjα = Pj,α, the seeds seedPj,β
α , seedPj,β for honest Pα, Pj,β

such that the honest virtual server Vj is not checked, and the seed seed
Pj,β

0 for each honest party Pj,β such
that the honest virtual server Vj is not in Ter are not used in the whole simulation process, Sim doesn’t
generate them in future hybrids.

Hyb16: In this hybrid, during the verification phase, after doing the checks, if OTCheck = 1, Sim aborts
the simulation. This only changes the distribution when some corrupted members of Vj do not correctly
commit their outputs from FROT for over N/220 honest virtual parties Vj ∈ Ter after simulating the sharing
phase but the verification passes. The probable ways that there is a checked Vj ∈ Ter of ROTj = 1 that
passes the check are

52

1. For the execution of FROT between (Pj,α, Pj,β) where Pj,α is honest and Pj,β is corrupted, Pj,β sends
b(α,β), r

(α,β)

b(α,β) to FROT but he correctly commits (1⊕ b(α,β), r
(α,β)

1⊕b(α,β)) as his output from FROT.

2. For the execution of FROT between (Pj,β , Pj,α) where Pj,α is honest and Pj,β is corrupted, Pj,β sends
r
(α,β)
0 , r

(α,β)
1 to FROT but he correctly guesses b(α,β) and commits r

(α,β)

b(α,β) and another value which is
not equal to r

(α,β)

1⊕b(α,β) as his output from FROT.

For the first way, the adversary should commit r(α,β)
1⊕b(α,β) , which is computed from a randomly sampled (κ−1)-

bit string r
(α,β)
1 ⊕ r

(α,β)
0 ⊕x(α), the value r

(α,β)

b(α,β) , and the share x(α) of ⟨x⟩ for the corresponding execution of
ΠMulti. Note that r(α,β)1 ⊕ r

(α,β)
0 ⊕x(α) is sampled randomly after ISPj,β is determined. Thus, the probability

that the adversary correctly commits r
(α,β)

1⊕b(α,β) is 2−Ω(κ), which is negligible.
For the second way, the adversary should guess the random bit b(α,β) correctly. b(α,β) is computed from a

random sampled bit yα⊕b(α,β) and the share y(α) of ⟨y⟩ for the corresponding execution of ΠMulti. Note that
yα⊕b(α,β) is sampled randomly after ISPj,β is determined. Thus, the probability that the adversary correctly
commits b(α,β) is 1/2. Thus, for each virtual server Vj with ROTj = 1, if Checkj = 1, the honest party will
figure out the malicious behavior of the adversary with a probability of at least 1/2. The distribution only
changes when the set of over N/220 indices j with Vj ∈ Ter and ROTj = 1 satisfies that each virtual server
Vj with j in this set is not checked. The probability is(

1

320
· 1
2

) N
220

= e−Ω(N).

Recall that N = Θ(n+ κ), the probability is negligible.
Thus, the distributions of Hyb16 and Hyb15 are statistically close.
Hyb17: In this hybrid, during the verification phase, after doing the checks, if CompCheck = 1, Sim

aborts the simulation. This only changes the distribution when Compj = 1 for over N/528 honest virtual
servers Vj ∈ Ter but the verification passes with CompCheck = 0. Note that Compj = 1 only happens when
some messages sent by corrupted members of Vj do not match the committed inputs or shares. Thus, if Vj

is checked, the check won’t pass, so the distribution only changes when the set over N/528 indices j with
Vj ∈ Ter and Compj = 1 satisfies that each virtual server Vj with j in this set is not checked. The probability
is (

1

320

) N
528

= e−Ω(N).

Recall that N = Θ(n + κ), the probability is negligible. Thus, the distributions of Hyb17 and Hyb16 are
statistically close.

Hyb18: In this hybrid, during the verification phase, after doing the checks, if CorrCheck = 1, Sim aborts
the simulation. This only changes the distribution when Corrj = 1 for over N/528 honest virtual servers
Vj ∈ Ter but the verification passes with CorrCheck = 0. Note that the only possibility to cause Corrj = 1
after simulating the sharing phase is that the committed inputs of corrupted members of Vj do not match
the generated shares by honest parties or the committed inputs of corrupted members of Vj do not match
the committed shares generated by corrupted parties. For all these reasons, if Vj is checked, the honest
parties will abort the protocol. Thus, the output distribution only changes when the set of N/528 indices j
with Vj ∈ Ter and Corrj = 1 satisfies that each virtual server Vj with j in this set is not checked. For the
same reason as in Hyb17, the distributions of Hyb18 and Hyb17 are statistically close.

Hyb19: In this hybrid, during the verification phase, after doing the checks, Sim chooses a subset
Hvir ⊂ Ter of |Ter ∪ Corr| − N/20 honest virtual servers, where each Vj ∈ Hvir satisfies Corrj = Compj =
ROTj = Checkj = 0. Then, Sim checks whether the shares of the virtual servers in Hvir of are valid shares of
each Σ-sharing, Σ(2)-sharing, and each Σ(3)-sharing that is verified in the first step of the verification phase
and is generated by a corrupted party. If not, Sim aborts the simulation. Otherwise, Sim chooses a valid
sharing as the sharing shared by the corrupted party and reconstructs the secret.

53

Assume that the shares for virtual servers in Hvir of a Σ-sharing are not valid. Assume that the random
coefficient on this sharing in [τ]κ′ =

∑k1

i=1 si · [xi]κ′ +
∑

Pi∈CoreSet[r
(i)
1]κ′ is s ∈ F2κ′ . If s1, . . . , sk1

∈ F2κ′

are all truly random, we can sample s after the invalid sharing is fixed. If there exists s0 ̸= s′0 ∈ F2κ′ such
that s = s0 and s = s′0 both lead to a valid [τ]κ′ , then the invalid sharing (which has been embedded in
a Σ×κ′ -sharing) is (s0 − s′0)

−1 times a valid Σ×κ′ -sharing, which must be a valid Σ×κ′ -sharing, and this
leads to a contradiction. Thus, there is only one element s0 ∈ F2κ′ that can make [τ]κ′ pass the check.
The probability is 2−κ′

. Considering the union bound for no more than 2N possible choices of Hvir, the
probability is still no more than 2N−κ′

= 2−κ if s1, . . . , sk1
∈ F2κ′ are all truly random, which is negligible.

Since s1, . . . , sk1 are not truly random only when s has been queried by the adversary to the random oracle
before it is sampled by Sim. Since s is sampled randomly from F2κ , and Sim can only send poly(κ) queries,
the probability that s is among them is negligible.

Similarly, when the shares for virtual servers in Hvir of a Σ(2)-sharing, a Σ(3)-sharing, or a Σ/Σ(2)/Σ(3)-
sharing with an all-zero secret are not valid, the verification only passes with a negligible probability. There-
fore, the distribution only changes with a negligible probability. Thus, the distributions of Hyb19 and Hyb18

are computationally indistinguishable.
Hyb20: In this hybrid, for each virtual honest virtual server Vj ∈ ter with Checkj = 0, Sim doesn’t

follow the protocol to emulate O and compute OSPj,β ⊕ O(seedPj,β

0 ∥mid) for each honest party Pα and
honest member Pj,β of Vj . Instead, Sim first samples OSPj,β ⊕ O(seedPj,β

0 ∥mid) randomly and then uses
OSPj,β ⊕O(seedPj,β

0 ∥mid) and OSPj,β to compute the corresponding output O(seedPj,β

0 ∥mid). If some of these
queries to O have been queried by the adversary (before the OEC process of the seeds), Sim aborts the
simulation. For the same reason as in Hyb14, the distributions of Hyb20 and Hyb19 are computationally
indistinguishable.

Hyb21: In this hybrid, for each random Σ,Σ(2),Σ(3)-sharing (including the interleaved secret sharings
of them) generated by an honest party, Sim does not generate them at the beginning of the sharing phase.
Instead, for those honest virtual servers Vj ∈ Ter with Checkj = 1, Sim generates the shares for them after
the set of checked virtual servers is determined. For other honest virtual servers in Ter\Hvir, Sim generates
Vj ’s shares of these sharings based on the checked honest virtual servers’ shares and the corrupted virtual
servers’ shares. For other honest virtual servers, Sim generates their shares based on other virtual servers’
shares after the verification phase (at the beginning of the evaluation phase). Finally, Sim samples the shares
for honest members of the additive sharings of these virtual servers’ shares based on corrupted members’
shares and the secrets. Besides, Sim samples the local randomness of each honest member Pj,α in emulating
each Vj ∈ Hvir and each honest virtual server out of Ter after the verification phase instead of in the sharing
phase, and the computation of Pj,α is delayed to be performed in the evaluation phase instead of in the
garbling phase. Note that for all these sharings, the set of corrupted servers’ shares and the shares of honest
virtual servers of Ter\Hvir are independent of the secret, first sampling the shares for them and then sampling
the shares for other virtual servers won’t affect the output distribution. Besides, the shares and randomness
for each honest member Pj,α of Vj in Hvir or out of Ter are not used in the simulation before the evaluation
phase. Therefore, delaying the generation won’t affect the output distribution. Thus, Hyb21 and Hyb20

have the same output distribution.
Note that for each honest virtual server Vj /∈ Ter, the shares for each honest member Pj,α of the sharings

generated by each honest party Pi are not used in the simulation. We don’t generate them in future hybrids.
Hyb22: In this hybrid, for each wire w in each honest virtual server Vj ∈ HVir’s local circuit CircVj ,

Sim additionally follows the execution of Π0 to compute the value vw of w (where each reconstruction of
Σ(2)-sharing is done from the shares of virtual servers in HVir. From the property of Σ,Σ(2),Σ(3)-sharings
introduced in Section 3.2, the secrets are determined by these shares). This doesn’t affect the output
distribution. Thus, Hyb22 and Hyb21 have the same output distribution.

Hyb23: In this hybrid, for each virtual server Vj ∈ Hvir:

1. For i = 1, . . . , rec:

• If the receiver of [si] is an honest client, Sim doesn’t generate the shares for virtual servers in Hvir

of each the Σ(3)-sharings generated in the sharing phase that is used to prepare [r
(α)
0,β]

(3) (α =

54

1, . . . , κ, β = 1, 2, 3) first and then computes each share for each virtual server Vj ∈ Hvir of each
[r

(α)
si,β

](3) by himself. Instead, Sim randomly samples r(α)si,β
first and then samples the whole sharing

[r
(α)
si,β

](3) based on the shares for virtual servers of CVir of [r(α)si,β
](3) = [r

(α)
0,β]

(3)+[si]
(2)⊗ [r(α)1,β−r

(α)
0,β]

and the secret r
(α)
si,β

. Then, Sim computes the shares for virtual servers in Hvir of each [r
(α)
0,β]

(3)

based on their shares of [r(α)si,β
](3), [si]

(2), [r
(α)
1,β − r

(α)
0,β] for each β = 1, 2, 3.

• If the receiver of [si](2) is a virtual server in Hvir, Sim doesn’t generate the shares for virtual servers
in Hvir of each the Σ(3)-sharings generated in the sharing phase that is used to prepare [r

(α)
0,β]

(3)

(α = 1, . . . , α, β = 1, 2, 3) first and then computes each share for each virtual server Vj ∈ Hvir of
each [r

(α)
si,β

](3) for each honest member Pj,β of Vj by himself. Instead, Sim randomly samples r(α)si,β

first and then samples the whole sharing [r
(α)
si,β

](3) based on the shares for virtual servers of CVir of

[r
(α)
si,β

](3) = [r
(α)
0,β]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β] and the secret r

(α)
si,β

. Then, Sim computes the shares

for virtual servers in Hvir of each [r
(α)
0,β]

(3) based on their shares of [r(α)si,β
](3), [si]

(2), [r
(α)
1,β−r

(α)
0,β] for

each honest member Pj,β of Vj .

• If the receiver of [si]
(2) is a virtual server of Ter\HVir, Sim just follows the protocol to receive

honest parties’ shares from corrupted parties.

Then Sim follows the computation process of each Y
Pj,β

(i−1)ℓ2+a,s
Vj
i,a

in the protocol to compute each

Y
Pj,β

(i−1)ℓ2+a,s
Vj
i,a

with each [r
(α)
si,β

](3) generated by the honest clients and the first servers emulating virtual

servers in Hvir being regarded as [r
(α)
0,β]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β]. For the other label Y Pj,β

(i−1)ℓ2+a,1⊕s
Vj
i,a

,

Sim still follows the protocol to compute it.

2. For each honest member Pj,α of Vj each wire w in each CircVj that is not an input wire of the circuit
and is not an output wire of an XOR gate or an output gate, Sim samples a random bit as vw ⊕ λw

and a random (κ − 1)-bit string as k
Pj,α

w,vw⊕λw
. For each input wire of CircVj , Sim samples a random

(κ− 1)-bit string as k
Pj,α

w,vw⊕λw
. Then Sim computes λw = (vw ⊕ λw)⊕ vw for all these wires. After all

the ciphertexts are generated, Sim samples a random (κ−1)-bit string as ∆Pj,α . Then, for each wire w

in CircVj that is not an output wire of an output gate, Sim computes kPj,α

w,1⊕vw⊕λw
= k

Pj,α

w,vw⊕λw
⊕∆Pj,α .

3. Sim maintains a set Q1. For each AND gate g in CircVj with input wire a, b, when Sim emulates an
honest member Pj,α of Vj to compute his shares of the additive sharings of the ciphertexts of each
gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1, Sim checks whether the query to the random

oracle O has been queried before. If true, Sim aborts the simulation. Otherwise, Sim adds the query
to Q1.

4. Sim maintains a set Q2. For each input wire w of an output gate in CircVj , and for all i2 ∈ {0, 1} such
that i2 ̸= vw ⊕ λw, when an honest member Pj,α of Vj computes his shares of the additive sharings
of ctPj,β

w,i2
for each β = 1, 2, 3, Sim checks whether the query to the random oracle O has been queried

before. If true, Sim aborts the simulation. Otherwise, Sim adds the query to Q2.

5. For each AND gate g in CircVj with input wire a, b and output wire o, Sim doesn’t follow the pro-
tocol to compute each honest member Pj,α’s shares of the additive sharings of the ciphertexts except
A

Pj,β

g,2(va⊕λa)+(vb⊕λb)
for β = 1, 2, 3. Instead, Sim samples 3 random κ-bit strings as the ciphertexts and

samples honest members’ shares of the additive sharings of all the ciphertexts based on the secrets and
corrupted members’ shares. Sim computes the output of O to the queries that are used to generate
these ciphertexts based on the random strings and the wire labels of wire o.

55

6. For each output gate in CircVj indexed 1, . . . , ℓ2rec with input wire w, Sim doesn’t follow the protocol
to compute each honest member Pj,α’s shares of the additive sharings of the ciphertexts ct

Pj,β

w,1⊕vw⊕λw

for β = 1, 2, 3. Instead, Sim samples a random cℓκ-bit string as the ciphertexts and randomly samples
honest members’ shares of the additive sharings of all the ciphertexts based on the secrets and cor-
rupted members’ shares. Sim computes the output of O to the queries that are used to generate these
ciphertexts based on the random strings and the output labels.

7. For each input wire w of an output gate in CircVj , Sim doesn’t follow the protocol to compute each
honest member Pj,α’s share of ⟨λw⟩. Instead, Sim randomly samples honest members’ shares based on
λw and the corrupted members’ shares of ⟨λw⟩.

8. If Vj is the receiver of [si]
(2) in Π0 and the β-th bit of si is used as an input wire with index jη

in CircVj , Sim doesn’t follow the protocol to compute ct
(β,α)
jη,1⊕sβ,α

for each honest member Pj,α and

corrupted member Pj,β of Vj . Instead, Sim samples a random κ-bit string as ct
(β,α)
jη,1⊕sβ,α

.

To prove that the distributions of Hyb23 and Hyb22 are computationally indistinguishable, we additionally
construct the following hybrids between Hyb22 and Hyb23.

Hyb23.0: In this hybrid, for each virtual server Vj ∈ Hvir, Sim computes each honest member Pj,α’s
shares of the garbled circuit of CircVj by computing the garbled sub-circuits Circ

Vj

1 , . . . , Circ
Vj
rec in order.

This doesn’t affect the output distribution. Thus, Hyb23.0 and Hyb22 have the same distribution.
Hyb23.1.1: In this hybrid, Sim additionally computes the share for each virtual server Vj ∈ Hvir of [s1](2)

by using the input labels associated with the input of Vj to evaluate the garbled gates of CircVj

1 following
Steps 2.(b) and 2.(c) of the evaluation phase. Here the input of the local computation (performed via the
inner protocol) for Vj to the receiver is shared by an additive sharing among Pj,1, Pj,2, Pj,3, and all the
secrets of these sharings have been computed by Sim. We use these secrets as the input and preprocessing
data to compute the input labels. We denote the result of the computation be [s1](2). Note that the input
of CircVj

1 completely comes from the preprocessing and input phases of Π0, and the computation process of
Sj ’s share of [s1](2) in Π0 is identical to Circ

Vj

1 . To show that [s1](2) = [s1](2), we only need to show that the
secrets of the additive sharings of the inputs of Vj computed by Sim are the same as the outputs to Vj from
the preprocessing and input phases in Π0. Since Vj ∈ Hvir, the corrupted parties just follow the protocol to
distribute the sharings for the parties emulating Vj . From the correctness of the multiparty garbling process
of Πin, the result [s1](2) is the same as [s1]

(2) from the execution of Π0.
In addition, if the receiver of [s1](2) is an honest client, Sim doesn’t generate the shares for virtual servers

in Hvir of each the Σ(3)-sharings generated in the sharing phase that is used to prepare each [r
(α)
0,β]

(3) first

and then computes the shares for virtual servers in Hvir of each [r
(α)
s1,β

](3) by himself. Instead, Sim generates

[s1]
(2) first and then samples the whole sharing [r

(α)
s1,β

](3) based on the shares for virtual servers of Cvir of

[r
(α)
s1,β

](3) = [r
(α)
0,β]

(3) + [s1]
(2)⊗ [r

(α)
1,β − r

(α)
0,β] and the secret r(α)s1,β

for each β = 1, 2, 3. Then, Sim computes the

shares for virtual servers in Hvir of [r(α)0,β]
(3) based on their shares of [r(α)s1,β

](3), [s1]
(2), [r

(α)
1,β − r

(α)
0,β]. Similarly,

if the receiver of [s1](2) is a virtual server in Hvir, Sim doesn’t generate the shares for virtual servers in Hvir

of each the Σ(3)-sharings generated in the sharing phase that is used to prepare [r
(α)
0,β]

(3) for each honest

member Pj,β first and then computes the shares for virtual servers in Hvir of each [r
(α)
s1,β

](3) by himself.

Instead, Sim generates [s1]
(2) first and then samples the whole sharing [r

(α)
s1,β

](3) based on the shares for

virtual servers of Cvir of [r
(α)
s1,β

](3) = [r
(α)
0,β]

(3) + [s1]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β] and the secret r

(α)
s1,β

for each honest

member Pj,β of Vj . Then, Sim computes the shares for virtual servers in Hvir of [r
(α)
0,β]

(3) based on their

shares of [r
(α)
s1,β

](3), [s1]
(2), [r

(α)
1,β − r

(α)
0,β] for each honest member Pj,β of Vj . Then for each virtual server

Vj ∈ Hvir, Sim follows the computational process to compute each Y
Pj,β

a,s
Vj
1,a

in the protocol to compute each

Y
Pj,β

a,s
Vj
1,a

with each [r
(α)
s1,β

](3) whose secrets are held by the honest clients and the honest members emulating

56

virtual servers in Hvir being regarded as [r
(α)
0,β]

(3) + [s1]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β]. For the other label Y Pj,β

a,1⊕s
Vj
1,a

, Sim

still follows the protocol to compute it.
Since the shares for virtual servers in Hvir of each [r

(α)
0,β]

(3), [r
(α)
1,β−r

(α)
0,β] generated by the honest clients and

the honest members emulating virtual servers in Hvir are sampled randomly based on the shares for virtual
servers out of Hvir and the secrets, and the shares for virtual servers in Hvir of [r(α)1,β]

(3) can be computed

only based on their shares of shares of [r(α)0,β]
(3), [r

(α)
1,β − r

(α)
0,β], [s1]

(2) and the secret, the only restrictions on

the shares for virtual servers in Hvir of [r(α)s1,β
](3) are the shares for virtual servers in Hvir and the distribution

of r
(α)
s1,β

. Therefore, we only change the order of generating the shares for virtual servers in Hvir of each

[r
(α)
s1,β

](3) and [r
(α)
0,β]

(3) whose secrets are held by an honest party without changing their distributions. Thus,
Hyb23.1.1 and Hyb23.0 have the same distribution.

Hyb23.1.2: In this hybrid, for each virtual server Vj ∈ Hvir, Sim doesn’t follow the protocol to compute
each honest member Pj,α’s shares of the garbled circuit for Circ

Vj

1 . Instead, for each wire w in Circ
Vj

1

that is not an input wire of the circuit and is not an output wire of an XOR gate or an output gate, Sim
samples a random bit as vw ⊕ λw and a random (κ − 1)-bit string as k

Pj,α

w,vw⊕λw
. For each input wire of

CircVj , Sim samples a random (κ − 1)-bit string as k
Pj,α

w,vw⊕λw
. Then Sim computes λw = (vw ⊕ λw) ⊕ vw

for these wires. For each wire w in Circ
Vj

1 that is not an output wire of an output gate, Sim computes
k
Pj,α

w,1⊕vw⊕λw
= k

Pj,α

w,vw⊕λw
⊕∆Pj,α . Since λw is a uniformly sampled bit, vw ⊕ λw is also a uniformly random

bit. Therefore, we only change the order of generating vw⊕λw and λw without changing their distributions.
Similarly, if vw ⊕ λw = 1, we only change the order of generating kw,0 and kw,1 without changing their
distributions. If vw ⊕ λw = 0, we doesn’t change anything on kw,0 and kw,1. Thus, Hyb23.1.2 and Hyb23.1.1

have the same output distribution.
Hyb23.1.3: In this hybrid, Sim maintains a set Q1. For each virtual server Vj ∈ Hvir, for each AND

gate g in Circ
Vj

1 with input wire a, b, and for the ciphertexts of this gate except those computed with
{kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1, Sim checks whether each query of each honest server Pj,α to the random oracle O

has been queried before. If true, Sim aborts the simulation. Otherwise, Sim adds the query to Q1. Note
that all the queries to the random oracle by the honest servers are distinct, and the adversary’s queries to
the random oracle before the encryption are fixed when the wire labels and the value ∆Pj,α are generated.
Since each query made to the random oracle by Pj,α contains either of the (κ − 1)-bit strings k

Pj,α

a,1⊕va⊕λa

or k
Pj,α

b,1⊕vb⊕λb
with k

Pj,α

a,1⊕va⊕λa
− k

Pj,α

a,va⊕λa
= k

Pj,α

b,1⊕vb⊕λb
− k

Pj,α

b,vb⊕λb
= ∆Pj,α which is uniformly random, the

probability that each query made by the adversary is one of the queries made by the honest server is negligible.
Taking the union bound of all the poly(κ) queries made by the adversary, the probability that some query
has been queried (either by the honest server or by the adversary) is negligible. Thus, the distributions of
Hyb23.1.3 and Hyb23.1.2 are computationally indistinguishable.

Hyb23.1.4: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ
Vj

1 with input wire
a, b and output wire o, and for the ciphertexts of this gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1,

Sim samples random κ-bit strings as the ciphertexts and samples honest members’ shares of the additive
sharings of the ciphertexts based on the secret and corrupted members’ shares. While emulating O, for each
i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va⊕λa, vb⊕λb), Sim2 computes the output of O(kPj,α

a,i0
∥i0∥k

Pj,α

b,i1
∥i1∥1∥j∥i∥g)

for each honest member Pj,α of Vj and i = 1, 2, 3 based on the random strings and the wire labels of wire o.
Note that the only difference between Hyb23.1.4 and Hyb23.1.3 is the way we decide the output for queries
in Q1. Since the ciphertext is randomly sampled, the XOR of the ciphertext and the message m is also
uniformly random for any κ-bit string m. In particular, when Sim does not abort the simulation, queries in
Q1 have not been queried before. Thus, Hyb23.1.4 and Hyb23.1.3 have the same output distribution.

Hyb23.1.5: In this hybrid, for each virtual server Vj ∈ Hvir, Sim changes the order of sampling random
κ-bit strings as the ciphertexts of this gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1 and sampling

∆Pj,α for honest members Pj,α of Vj to decide the queries to O. Since these two steps are both local
computations, this doesn’t affect the output distribution. Thus, Hyb23.1.5 and Hyb23.1.4 have the same

57

output distribution.
Hyb20.1.6: In this hybrid, Sim maintains a set Q2. For each virtual server Vj ∈ Hvir, for each input

wire w of an output gate in Circ
Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, while computing each
honest member Pj,α’s share of ⟨ctPj,β

w,i2
⟩ for each β = 1, 2, 3, Sim checks whether the query made by Pj,α to

the random oracle O has been queried before. If true, Sim aborts the simulation. Otherwise, Sim adds the
query to Q2. Note that each query made to the random oracle contains a (κ − 1)-bit string k

Pj,α

w,1⊕vw⊕λw

with k
Pj,α

w,1⊕vw⊕λw
− k

Pj,α

w,vw⊕λw
= ∆Pj,α , for the same reason in Hyb23.1.3, the probability that some query

has been queried by the adversary is negligible. Thus, the distributions of Hyb23.1.6 and Hyb23.1.5 are
computationally indistinguishable.

Hyb23.1.7: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw, Sim samples a random cℓκ-bit string as the ciphertext
ct

Pj,β

w,i2
and computes honest members’ shares of the additive sharing of the ciphertext based on the secret

and corrupted members’ shares. While emulating O, Sim computes the output based on the random strings
and the output labels. Note that the only difference between Hyb23.1.7 and Hyb23.1.6 is the way we decide
the output for queries in Q2. Since ct

Pj,β

w,i2
is randomly sampled, ctPj,β

w,i2
⊕m is also uniformly random for any

cℓκ-bit string m. In particular, when Sim does not abort the simulation, queries in Q2 have not been queried
before. Thus, Hyb23.1.7 and Hyb23.1.6 have the same output distribution.

Hyb23.1.8: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj

1 , Sim doesn’t follow the protocol to compute honest members’ shares of ⟨λw⟩. Instead, Sim samples
them based on λw and the corrupted members’ shares of ⟨λw⟩. Since honest members’ shares of ⟨λw⟩ are
computed by his shares of those wires that are not an output wire of an XOR gate or an output gate, where
honest members’ shares of ⟨λw⟩ are generated based on λw and the corrupted members’ shares of ⟨λw⟩.
Therefore, for each input wire w of an output gate, we just change the order of generating for each input
wire w of an output gate and honest members’ shares of ⟨λw⟩. Thus, Hyb23.1.8 and Hyb23.1.7 have the same
output distribution.

Hyb23.1.9: In this hybrid, if the receiver of [s1](2) is a virtual server Vj ∈ Hvir and the β-th bit of s1 is
used as an input wire with index jβ in CircVj , when each honest member Pj,α of Vj computes ct

(1,α)
jβ ,1⊕s1,β

,
Sim checks whether the query to the random oracle O has been queried before. If true, Sim aborts the
simulation. Otherwise, Sim adds the query to Q1. Since r1⊕s1,β ,β,α is generated randomly in {0, 1}κ, the
probability that some query has been queried (either by the honest parties or by the adversary) is negligible.
Thus, the distributions of Hyb23.1.9 and Hyb23.1.8 are computationally indistinguishable.

Hyb23.1.10: In this hybrid, if the receiver of [s1](2) is a virtual server Vj ∈ Hvir and the β-th bit of s1
is used as an input wire with index jβ in CircVj , Sim doesn’t follow the protocol to compute ct

(1,α)
jβ ,1⊕s1,β

for

each honest member Pj,α of Vj . Instead, Sim samples a random κ-bit string as ct
(1,α)
jβ ,1⊕s1,β

. While emulating

O, Sim computes the output of O(r1⊕s1,β ,β∥s1,β∥1∥α∥β∥jβ) based on ct
(1,α)
jβ ,1⊕s1,β

and k
wjβ

,1⊕v
Pj,α
wjβ

⊕λwjβ

∥(1⊕

vwjβ
⊕ λwjβ

). Note that the only difference between Hyb23.1.10 and Hyb23.1.9 is the way we decide the

output for queries in Q1. Since ct
(1,α)
jβ ,1⊕s1,β

is randomly sampled, ct(1,α)jβ ,1⊕s1,β
⊕m is also uniformly random

for any κ-bit string m. In particular, when Sim does not abort the simulation, queries in Q1 have not been
queried before. Thus, Hyb23.1.10 and Hyb23.1.9 have the same output distribution.

Hyb23.1.11: In this hybrid, for virtual server Vj ∈ Hvir, Sim changes the order of sampling a random κ-bit
string as the ciphertext ct(1,α)jβ ,1⊕s1,β

for each honest member Pj,α of Vj and sampling r1⊕s1,β ,β,α to decide the
queries to O. Since these two steps are both local computations, this doesn’t affect the output distribution.
Thus, Hyb23.1.11 and Hyb23.1.10 have the same output distribution.

Hyb23.1.12: In this hybrid, for each virtual server Vj ∈ Hvir, Sim changes the order of sampling random
cℓκ-bit strings as the ciphertexts ct

Pj,β

w,i2
for each β = 1, 2, 3 and each input wire w of an output gate in

Circ
Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw and sampling ∆Pj,α for each honest member Pj,α of Vj

to decide the queries to O. Since these two steps are both local computations, this doesn’t affect the output

58

distribution. Thus, Hyb23.1.12 and Hyb23.1.11 have the same output distribution.
Note that for each member Pj,α of each virtual server Vj ∈ Hvir, ∆Pj,α is not used before all the ciphertexts

of the gates in Circ
Vj

1 are generated. Sim delays the generating of ∆Pj,α after the garbling of CircVj

1 is
completed.

Similarly, for each γ = 2, . . . , rec we can define Hyb23.γ.1, . . . ,Hyb23.γ.12.
Hyb23.γ.1: In this hybrid, Sim additionally computes the share for each virtual server Vj ∈ Hvir of [sγ](2)

by using the input labels associated with the input of Vj to evaluate the garbled gates of CircVj
γ following

Steps 2.(b) and 2.(c) of the evaluation phase. Here the input of Vj is shared by an additive sharing among
Pj,1, Pj,2, Pj,3, and all the secrets of these sharings have been computed by Sim. We use these secrets as
the input and preprocessing data to compute the input labels. We denote the result of the computation
be [sγ](2). Note that the input of CircVj

γ completely comes from the preprocessing and input phase of Π0

and the reconstructions of [s1](2), . . . , [sγ−1](2), and since [si](2) = [si]
(2) for each i = 1, . . . , γ − 1 and the

computation process of Sj ’s share of [sγ](2) is the same in Π0 with Circ
Vj
γ , for the same reason in Hyb23.1.1,

the result [sγ](2) is the same as [sγ]
(2) from the execution of Π0.

In addition, if the receiver of [sγ](2) is an honest client, Sim doesn’t generate the shares for virtual servers
in Hvir of each the Σ(3)-sharings generated in the sharing phase that is used to prepare each [r

(α)
0,β]

(3) first

and then computes the shares for virtual servers in Hvir of each [r
(α)
sγ ,β

](3) by himself. Instead, Sim generates

[sγ]
(2) first and then samples the whole sharing [r

(α)
sγ ,β

](3) based on the shares for virtual servers of Cvir of

[r
(α)
sγ ,β

](3) = [r
(α)
0,β]

(3)+[sγ]
(2)⊗ [r

(α)
1,β −r

(α)
0,β] and the secret r(α)sγ ,β

for each β = 1, 2, 3. Then, Sim computes the

shares for virtual servers in Hvir of [r(α)0,β]
(3) based on their shares of [r(α)sγ ,β

](3), [sγ]
(2), [r

(α)
1,β − r

(α)
0,β]. Similarly,

if the receiver of [sγ](2) is a virtual server in Hvir, Sim doesn’t generate the shares for virtual servers in Hvir

of each the Σ(3)-sharings generated in the sharing phase that is used to prepare each [r
(α)
0,β]

(3) first and then

computes the shares for virtual servers in Hvir of each [r
(α)
sγ ,β

](3) for each honest member Pj,β by himself.

Instead, Sim generates [sγ]
(2) first and then samples the whole sharing [r

(α)
sγ ,1

](3) based on the shares for

virtual servers of Cvir of [r(α)sγ ,1
](3) = [r

(α)
0,1]

(3)+[sγ]
(2)⊗ [r

(α)
1,1 −r

(α)
0,1] and the secret r(α)sγ ,β

. Then, Sim computes

the shares for virtual servers in Hvir of [r(α)0,β]
(3) based on their shares of [r(α)sγ ,β

](3), [sγ]
(2), [r

(α)
1,β−r

(α)
0,β] for each

honest member Pj,α of Vj . Then for each virtual server Vj ∈ Hvir, Sim follows the computational process to
compute each Y

Pj,β

a,s
Vj
γ,a

in the protocol to compute each Y
Pj,β

a,s
Vj
γ,a

with each [r
(α)
sγ ,β

](3) generated by the honest

clients and the honest members of virtual servers in Hvir regarded as [r
(α)
0,β]

(3) + [sγ]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β]. For

the other label Y Pj,β

a,1⊕s
Vj
γ,a

, Sim still follows the protocol to compute it. For the same reason in Hyb23.1.1,

Hyb23.γ.1 and Hyb23.(γ−1).12 have the same distribution.
Hyb20.γ.2: In this hybrid, for each virtual server Vj ∈ Hvir, Sim doesn’t follow the protocol to compute

the honest members’ shares of the garbled circuit for Circ
Vj
γ . Instead, for each wire w in Circ

Vj
γ that is

not an input wire of the circuit and is not an output wire of an XOR gate or an output gate, Sim samples
a random bit as vw ⊕ λw and a random (κ − 1)-bit string as k

Pj,α

w,vw⊕λw
for each honest member Pj,α of Vj .

Then Sim computes λw = (vw ⊕ λw)⊕ vw for these wires. For each wire w in Circ
Vj
γ that is not an output

wire of an output gate, Sim computes k
Pj,α

w,1⊕vw⊕λw
= k

Pj,α

w,vw⊕λw
⊕∆Pj,α for each honest member Pj,α of Vj .

For the same reason in Hyb23.1.2, Hyb23.γ.2 and Hyb23.γ.1 have the same output distribution.
Hyb20.γ.3: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ

Vj
γ with input

wire a, b, and for the ciphertexts of this gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1, Sim checks

whether each query of each honest member Pj,α of Vj to the random oracle O has been queried before. If
true, Sim aborts the simulation. Otherwise, Sim adds the query to Q1. For the same reason in Hyb23.1.3,
the distributions of Hyb23.γ.3 and Hyb23.γ.2 are computationally indistinguishable.

Hyb20.γ.4: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ
Vj
γ with input wire

59

a, b and output wire o, and for the ciphertexts of this gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1,

Sim samples random κ-bit strings as the ciphertexts and computes honest members’ shares of the additive
sharings of the ciphertexts based on the secret and corrupted members’ shares. While emulating O, for each
i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va⊕λa, vb⊕λb), Sim computes the output of O(kPj,α

a,i0
∥i0∥k

Pj,α

b,i1
∥i1∥1∥j∥i∥g)

for each honest member Pj,α of Vj and i = 1, 2, 3 based on the random strings and the wire labels of wire o.
For the same reason in Hyb23.1.4, Hyb23.γ.4 and Hyb23.γ.3 have the same output distribution.

Hyb23.γ.5: In this hybrid, for each virtual server Vj ∈ Hvir, Sim changes the order of sampling random
κ-bit strings as the ciphertexts of this gate except those computed with {kPj,i

a,va⊕λa
, k

Pj,i

b,vb⊕λb
}3i=1 and sampling

∆Pj,α for each honest member Pj,α of Vj to decide the queries to O. For the same reason in Hyb23.1.5,
Hyb23.γ.5 and Hyb23.γ.4 have the same output distribution.

Hyb23.γ.6: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw, while computing honest members’ shares of ⟨ctPj,β

w,i2
⟩ for

each β = 1, 2, 3, Sim checks whether the query made by honest members of Vj to the random oracle O has
been queried before. If true, Sim aborts the simulation. Otherwise, Sim adds the query to Q2. For the same
reason in Hyb23.1.6, the distributions of Hyb23.γ.6 and Hyb23.γ.5 are computationally indistinguishable.

Hyb23.γ.7: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw, Sim samples a random cℓκ-bit string as the ciphertext

ct
Pj,β

w,i2
, β = 1, 2, 3 and computes honest members’ shares of the additive sharing of the ciphertext based on the

secret and corrupted members’ shares. While emulating O, Sim computes the output based on the random
strings and the output labels. For the same reason in Hyb23.1.7, Hyb23.γ.7 and Hyb23.γ.6 have the same
output distribution.

Hyb23.γ.8: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj
γ , Sim doesn’t follow the protocol to compute honest members’ shares of ⟨λw⟩. Instead, Sim samples

them based on λw and the corrupted members’ shares of ⟨λw⟩. For the same reason in Hyb23.1.8, Hyb23.γ.8

and Hyb23.γ.7 have the same output distribution.
Hyb23.γ.9: In this hybrid, if the receiver of [sγ](2) is a virtual server Vj ∈ Hvir and the β-th bit of sγ is

used as an input wire with index jβ in CircVj , when each honest party Pj,α computes ct(γ,α)jβ ,1⊕sγ,β
, Sim checks

whether the query to the random oracle O has been queried before. If true, Sim aborts the simulation.
Otherwise, Sim adds the query to Q1. For the same reason in Hyb23.1.9, the distributions of Hyb23.γ.9 and
Hyb23.γ.8 are computationally indistinguishable.

Hyb23.γ.10: In this hybrid, if the receiver of [sγ](2) is a virtual server Vj ∈ Hvir and the β-th bit of sγ
is used as an input wire with index jβ in CircVj , Sim doesn’t follow the protocol to compute ct

(γ,α)
jβ ,1⊕sγ,β

.

Instead, Sim samples a random κ-bit string as ct
(γ,α)
jβ ,1⊕sγ,β

. While emulating O, Sim computes the output

of O(r1⊕sγ,β ,β∥sγ,β∥γ∥α∥β∥jβ) based on ct
(γ,α)
jβ ,1⊕sγ,β

and k
wjβ

,1⊕v
Pj,α
wjβ

⊕λwjβ

∥(1⊕ vwjβ
⊕ λwjβ

). For the same

reason in Hyb23.1.10, Hyb23.γ.10 and Hyb23.γ.9 have the same output distribution.
Hyb23.γ.11: In this hybrid, for each virtual server Vj ∈ Hvir, Sim changes the order of sampling a random

κ-bit string as the ciphertext ct
(γ,α)
jβ ,1⊕sγ,β

and sampling r1⊕sγ,β ,β,α for each honest member Pj,α of Vj to
decide the queries to O. Since these two steps are both local computations, this doesn’t affect the output
distribution. Thus, Hyb23.γ.11 and Hyb23.γ.10 have the same output distribution.

Hyb23.γ.12: In this hybrid, for each virtual server Vj ∈ Hvir, Sim changes the order of sampling random
cℓκ-bit strings as the ciphertexts ct

Pj,β

w,i2
for each β = 1, 2, 3 and each input wire w of an output gate in

Circ
Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw and sampling ∆Pj,α for each honest member Pj,α of

to decide the queries to O. Since these two steps are both local computations, this doesn’t affect the output
distribution. Thus, Hyb23.γ.12 and Hyb23.γ.11 have the same output distribution.

Note that Hyb23.rec.12 is just Hyb23, we conclude that the distributions of Hyb23 and Hyb22 are
computationally indistinguishable.

Note that for each honest member Pj,α of each virtual server Vj ∈ HVir, ∆Pj,α is not used before all the

60

ciphertexts of the gates in Circ
Vj
γ are generated. Sim delays the generating of ∆Pj,α after the garbling of

Circ
Vj
γ is completed.

Also note that if the receiver of [si](2) is an honest client, r(α)1⊕si,β
for α = 1, . . . , κ and β = 1, 2, 3 are not

used until the whole garbled circuit of Vj is generated. Sim generates them after the whole garbled circuit is
generated in future hybrids to decide the set Q1.

Hyb24: In this hybrid, for each AND gate g in each virtual server Vj ∈ Hvir’s local circuit CircVj with
input wire a, b and output wire o, Sim doesn’t compute the output of O to the queries that are used to
generate these ciphertexts based on the random strings and the wire labels of wire o. Similarly, for each
output gate in CircVj with input wire w, Sim2 doesn’t compute the output of O to the queries that are
used to generate these ciphertexts based on the random strings and the output labels. Instead, Sim honestly
emulates the random oracles. In particular, Sim no longer checks whether the queries to the random oracles
to compute the ciphertexts for Vj have been queried before. We prove that the distributions of Hyb24 and
Hyb23 are computationally indistinguishable.

For the sake of contradiction, assume that there exists an adversary A1 such that Hyb24 and Hyb23 are
computationally distinguishable. Let Q1, Q2 be the set of queries to the random oracle respectively when
Sim2 is computing the ciphertexts for Vj that are randomly generated in the last hybrid. Now we argue that,
with non-negligible probability, at least one query in Q1 or Q2 has been queried. Suppose this is not the
case. Note that all queries in Q1 are distinct. Then, by assumption, with overwhelming probability, no query
in Q1 has been queried, and all queries in Q1 are distinct. Similar for Q2. In this case, the only difference
between Hyb23 and Hyb24 is that we do not explicitly compute the output to each query in Q1, Q2. Since
no query in Q1, Q2 has been queried, this makes no difference in the output distribution. Then it shows that
Hyb24 and Hyb23 are computationally indistinguishable, which leads to a contradiction.

Thus, with non-negligible probability, at least one query in Q1 or Q2 has been queried in Hyb24. However,
each query in Q1, Q2 either contains kw,1⊕vw⊕λw

for a wire w in CircVj for some Vj ∈ Hvir or contains
r1⊕si,η,η,1 for some honest virtual server receiver Ri ∈ Hvir. Suppose a query contains kPj,α

w,1⊕vw⊕λw
for a wire

w in an honest server Vj ’s circuit CircVj for an honest member Pj,α of Vj . Since ∆Pj,α is generated after
the garbled circuit is generated, and it is not used to compute any transcript sent to A, the queries are
independent of ∆Pj,α . Therefore, kPj,α

w,1⊕vw⊕λw
= k

Pj,α

w,vw⊕λw
⊕ ∆Pj,α only has 2−κ+1 · poly(κ) probability to

be queried by A, which is negligible. Similarly, if a query contains r1⊕si,η,η,1 for some honest virtual server
receiver Vj ∈ Hvir of [si](2), since r1⊕si,η,η,α is not used to compute any transcript sent to A before all the
ciphertexts are generated, it can be generated after the garbled circuit is generated, and thus the probability
that it is queried by A is also negligible. Thus, the distributions of Hyb24 and Hyb23 are computationally
indistinguishable.

Note that if the receiver of [si](2) is an honest client, we only need each r
(α)
si,β

and we don’t need r
(α)
0,β , r

(α)
1,β

for β = 1, 2, 3 for the simulation, and we also don’t need honest members’ shares of {[r(α)0,β]
(3), [r

(α)
1,β−r

(α)
0,β]}κα=1

for β = 1, 2, 3 in the simulation. Sim doesn’t generate them in future hybrids.
Hyb25: In this hybrid, for each virtual server Vj that is not in CVir or HVir and i = 1, . . . , rec, if Vj is the

receiver of [si](2) in Π0 and the β-th bit of si is used as an input wire with index jη in CircVj , Sim doesn’t
follow the protocol to compute ct

(β,α)
jη,1⊕sβ,α

for each honest member Pj,α and corrupted member Pj,β of Vj .

Instead, Sim samples a random κ-bit string as ct(β,α)jη,1⊕sβ,α
. Since the output of the inner protocol of Vj is not

used in the simulation, the above changes do not affect the output distribution. Thus, Hyb25 and Hyb24

have the same distribution.
Hyb26: In this hybrid, since all the transcripts between honest and corrupted parties generated by Sim

can be generated from the transcripts between honest parties (honest clients and honest servers in HVir) and
corrupted parties obtained in the execution of Π0 (only using input sharings of parties in CoreSet), where
the input and preprocessing data have been prepared in a secret-shared way among the members of each
virtual server. Sim runs the honest servers corresponding to virtual servers in HVir first to obtain all the
transcripts, and then Sim uses them to generate the output. In addition, honest parties don’t follow the
protocol Π to compute their output. Instead, they follow Π0 to get their output. Since the value si sent and
the preprocessing and input data of Π0 and Π are the same, the computation of honest parties’ outputs in

61

the two protocols is completely the same. Therefore, we only change the way of generating the output of
Sim without changing their distributions. Thus, Hyb26 and Hyb25 have the same distribution.

Hyb27: In this hybrid, Sim doesn’t run the honest servers (corresponding to virtual servers in HVir) in Π0

to get the transcripts between honest and corrupted parties in Π0 and use them to compute all the transcripts
between honest and corrupted parties in Π. Instead, Sim samples the shares of [si]

(2) for honest virtual
servers in HVir randomly based on the shares for virtual servers in CVir. Note that all the reconstructions in
Π0 come from executions of ΠTranspose (each Σ(2)-sharing to be reconstructed in Π0 is a sharing [yi]

(2) of an
execution of ΠTranspose), Sim uses them to compute the corresponding sharing [ri]

(2) based on the equation
[yi]

(2) = [Fi(x1, . . . ,xk,u1, . . . ,uNℓ) + ri]
(2) in ΠTranspose. Note that for each virtual server Vj , the sharing

[ri]
(2) is prepared by preparing random sharings [ri,1]

(2), [ri,2]
(2), [ri,3]

(2) and add them together. We only
need to show that the sharing [ri,α]

(2) for honest member Pj,α is random based on the shares for virtual
servers in CV ir, and then so is [ri](2). Note that Sim samples the sharing of [v′

i]
(2)
a , [o′

i]
(2) based on corrupted

servers’ shares for each execution of Π(2)
RandShare-Share. Let C′ be the set of indices of corrupted parties in CoreSet

and H′ be the set of indices of honest parties in CoreSet. Then let NC′ denote the sub-matrix of N containing
columns with indices in C′, and NH′ denote the sub-matrix containing columns with indices in H′. We have

[v1]
(2)
a

[v2]
(2)
a

...
[vt+1]

(2)
a

 = N ·

[v′

1]
(2)
a + [o1]

(2)
a

[v′
2]

(2)
a + [o2]

(2)
a

...
[v′

2t+1]
(2)
a + [o2t+1]

(2)
a

 = NC′ ·
(
[vj]

(2)
a

)
j∈C′ +NH′ ·

(
[v′

j]
(2)
a + [oj]

(2)
a

)
j∈H′ .

Recall that N T is a Vandermonde matrix of size (2t + 1) × (t + 1). Therefore N T
H′ is a Vandermonde

matrix of size (t + 1) × (t + 1), which is invertible. Thus, there is a bijective map from
(
[vj]

(2)
a

)
j∈H′ and(

[v′
i]
(2)
a + [o′

i]
(2)
a

)t+1

i=1
. Recall that

(
[oj]

(2)
a

)
j∈H′ are sampled randomly based on corrupted servers’ shares and

the secrets, so
(
[v′

i]
(2)
a +[o′

i]
(2)
a

)
j∈H′ are also completely random when corrupted servers’ shares are fixed, and

so are
(
[v′

i]
(2)
a + [o′

i]
(2)
a

)t+1

i=1
. Therefore, the sharing [yi]

(2) for each execution of ΠTranspose is also completely
random based on corrupted servers’ shares. Thus, we only change the order of generating the shares for
virtual servers in HVir of the sharing [yi]

(2) and [ri]
(2) for each execution of ΠTranspose without changing their

distributions. Thus, Hyb27 and Hyb26 have the same output distribution.
Hyb27: In this hybrid, honest parties get their outputs from F instead of following Π0 to compute them,

where the input of corrupted parties comes from the secret of each input sharing generated by corrupted
parties in CoreSet, where the secrets are reconstructed from the shares of virtual servers in HVir. The
correctness of Π0 can be easily verified, which implies that the outputs from the two hybrids are the same.
Thus, Hyb27 and Hyb26 have the same distribution.

Note that Hyb27 is the ideal-world scenario, Π computes F with computational security.

J Cost Analysis of the Main Protocol

J.1 Analysis of Communication Complexity
Setup Phase. Recall that the circuit size of computing FSetup is independent of C. Therefore, the com-
munication cost of the setup phase is O(poly(n, κ)) bits.

Sharing Phase. We analyze the communication cost of the sharing phase step by step as follows:

1. Preparing Random Σ(2)-Sharings. The subprotocol Π(2)
RandShare-Share is executed 2GAN(ℓ+3)/a(t+

1)k2 + 3WO/a(t+ 1)k times in parallel in this step. All the shares sent from a party Pi to a party Pj

can be sent together via a single invocation of FAVID. Thus, FAVID is called 3Nn times, the message
length of each invocation of FAVID is 2ℓ2a · 2GAN(ℓ + 3)/a(t + 1)k2 + 3WO/a(t + 1)k = O(|C|/Nn).

62

Thus, the cost of these executions of Π(2)
RandShare-Share is O(|C| + poly(n, κ)). In addition, each sharing

[v′
α]

(2) shared by Pα in each execution of Π(2)
RandShare-Share to prepare sharings of form [rj,i]

(2), the secret
should be reconstructed to Pj,i. This requires another 3Nn invocation of FAVID, each of message length
2ℓ2a · 2GA/a(t+1)k2 = O(|C|/Nn), resulting in extra communication cost of O(|C|+ poly(n, κ)) bits.
Similarly for the sharings prepared for output wires. Thus, the total communication cost of this step
is O(|C|+ poly(n, κ)) bits.

2. Preprocessing for the Verification of Sharings. In this step, the servers distributes 2n Σ×κ′ ,Σ
(2)
×κ′ ,Σ

(3)
×κ′ -

sharings of size O(Nκ′) via AVID. FAVID is invoked 3nN times, each of message length O(κ′). Thus,
the communication cost of this step is O(nNκ′) = O(poly(n, κ)) bits.

3. Sharing Inputs. For each group of k = O(N) input wires of C, a party needs to distribute a Σ-sharing
of O(N) bits via AVID in this step. The communication cost of this step is O(|C|+ poly(n, κ)) bits.

4. Preparing for the Garbling of Local Circuits. In this step, Π(1)
RandShare-Share and Π

(3)
RandShare-Share are

executed 3κrec/a(t+ 1) times in parallel respectively, where the secret of each prepared sharing needs
to be reconstructed to a party. Similar to Step 1, the total cost is O(recN + poly(n, κ)) bits. Note that
rec = O(|C|/N) in Π0, the total communication cost is O(|C|+ poly(n, κ)) bits.

5. Committing Sharings. In this step, the set of sharings Sh
Pj,α

i needs to be committed via AVID for
each i = 1, . . . , n, j = 1, . . . , N , and α = 1, 2, 3. FAVID needs to be invoked 3Nn times. The total data
that needs to be committed is at most the total cost of previous steps, i.e. O(|C|+ poly(n, κ)). Thus,
the total cost of this step is still O(|C|+ poly(n, κ)) bits.

6. Determining the Core Set. This step only contains an execution of ΠQ
ACS, which requires commu-

nication of O(poly(n, κ)) bits.

7. Committing Local Inputs. The data that needs to be committed are all the received sharings
(plus some of their secrets) in previous steps, the local randomness generated by each party, and the
outputs of base ROT instances. The received sharings are of size O(poly(n, κ)). The local randomness
contains a wire label for each input wire of each virtual server’s local circuit and each output wire of
each AND gate of the local circuit. Note that the total number of AND operations required in Π0 is
O(|C|), thus the total size of the labels is O(|C|κ). Other terms in the local randomness are of size
O(poly(n, κ)). FAVID needs to be invoked 3N times. Thus, the total communication cost of this step is
O(|C|κ+ poly(n, κ)) bits.

As we analyzed above, the total communication cost of the sharing phase is O(|C|κ+ poly(n, κ)) bits.

Local Computation Phase. This phase only contains local computation of the parties and requires no
communication.

Garbing Phase. We analyze the communication cost of the garbling phase step by step as follows. We
analyze the cost of Πin:

1. OT Extension. From the result from [KOS15], the OT extension from κ − 1 instances of ROTs (of
message length κ− 1) to 13 ·GVj

A +6ℓW
Vj

O instances of ROTs requires communication of O((13 ·GVj

A +

6ℓW
Vj

O) · (κ − 1)) = O(G
Vj

A +W
Vj

O). Recall that
∑N

j=1 G
Vj

A = O(|C|) and W
Vj

O = rec · ℓ2 = O(|C|/N),
the total communication of this step is O(|C|) bits for the executions of all the virtual servers’ inner
protocols.

2. Handling XOR gates. This step only contains local computation of the parties and requires no
communication.

63

3. Computing 1-Labels. This step only contains local computation of the parties and requires no
communication.

4. Handling AND Gates. In this step, communication only happens during the executions of ΠMult.
The communication cost of each execution of ΠMult is O(κ), and the servers need to run ΠMult O(G

Vj

A)
times for each virtual server Vj , resulting in a total communication of O(|C|κ) bits.

5. Handling Output Gates. In this step, communication only happens during the executions of ΠMult.
The communication cost of each execution of ΠMult is O(κ), and the servers need to run ΠMult O(W

Vj

O)
times for each virtual server Vj , resulting in a total communication of O(|C|κ) bits.

6. Masking Input Wire Values. In this step, the communication cost is O(1) times the size of inputs
to the inner protocols, i.e. the size of the committed inputs O(|C|+ poly(n, κ)) bits.

7. Ouputting Output Masks. This step only contains local computation of the parties and requires
no communication. The output size of this step is O(W

Vj

O) bits for each virtual server Vj , resulting in
a total output size of O(|C|) bits.

8. Outputting Input Labels. This step only contains local computation of the parties and requires no
communication. for each input wire of a virtual server’s local circuit whose value does not come from
reconstructions, the virtual servers output 2ck = O(N) ciphertexts of O(κ) bits. The total output size
is O(|C|κ+ poly(n, κ)) bits.

9. Outputting Garbled Circuits. This step only contains local computation of the parties and requires
no communication. For each AND gate and output wire of each virtual server’s local circuit, the parties
output ciphertexts of total size O(κ). The total output size is O(|C|κ+ poly(n, κ)) bits.

In addition, the messages of each round in Πin should be committed via AVID. Since Πin is constant-round,
the number of invocations of FAVID is O(N), the total message size of these instances of AVID is just the
communication cost of the inner protocols, i.e. O(|C|κ+ poly(n, κ)) bits. Moreover, the outputs of the inner
protocols should also be committed. This can be done with O(N) instances of FAVID of total message size of
O(|C|κ+ poly(n, κ)) bits. Thus, the total communication cost of the garbling phase is O(|C|κ+ poly(n, κ))
bits.

Verification Phase. We analyze the communication cost of the verification phase step by step as follows:

1. Verification of the Sharings. The communication cost of this step is independent of the circuit
size, i.e. poly(n, κ) bits.

2. Verification of Local Computation. The invocations of FABA are independent of the circuit size.
The communication of the retrieving process of each VSPj,i is also independent of the circuit size. The
cost of the retrieving process of each ShPj,β

α , ISPj,β , MSPj,β , and OSPj,β is O(n) times the size of the set
plus O(poly(n, κ)) bits caused by AVID. The total size of these sets is O(|C|κ + poly(n, κ)), resulting
in a total communication cost of O(|C|nκ+ poly(n, κ)). The communication cost of the OEC process
of seeds is independent of the circuit size. The final retrieving process of the output sets requires
communication of O(|C|nκ + poly(n, κ)) bits like the retrieving process of the output sets of checked
virtual servers. As analyzed above, the total communication cost in this step is O(|C|nκ+ poly(n, κ))
bits.

As we analyzed above, the total communication cost of the verification phase is O(|C|nκ+ poly(n, κ)) bits.

Evaluation Phase. This phase only contains local computation of the parties and requires no communi-
cation.

As analyzed above, the total communication cost of Π is O(|C|nκ+ poly(n, κ)) bits.

64

J.2 Analysis of Round Complexity
Setup Phase. The setup phase can be computed in constant rounds by a general AMPC (for example
using [CGHZ16]). We use RSetup to denote the number of rounds required to compute FSetup.

Sharing Phase. In the sharing phase, all the shares dispersed via AVID can be dispersed in parallel in 6
rounds, and the retrieving process of the shares requires 1 extra round. The dispersal and retrieving of each
commitment of ShPj,α

i can be done in parallel with the shares. Then, the parties invoke the ACS functionality
FACS. The parties then commit ISPj,i , the dispersal process of the commitments requires 6 rounds. Thus, the
total number of rounds required in the sharing phase is 13, where FACS is invoked one time with parameter
(n, n− t).

Local Computation Phase. This phase only contains local computation.

Garbling phase. In the garbling phase, the parties emulating each virtual server need to jointly compute
two layers of multiplications of additive sharings for each AND gate and one layer of multiplications for
each output gate. The servers also need to open λw ⊕ vw for each input wire w of the local circuit. The
multiplications for all the gates and the opening of input wire values can be performed in parallel. Each
multiplication only requires one round, and the opening of an additive sharing also requires one round, so the
inner protocol requires 2 rounds. In each round, the message sets are committed in 6 rounds. The dispersal
process can be done in parallel with sending the messages in the current round. After the final round, the
parties should commit the output sets, which requires another 6 rounds. Thus, the garbling phase requires
18 rounds in total.

Verification Phase. In the verification phase, the servers first need to agree on a random coin. This can
be done by preparing a degree-t Shamir sharing of the coin and then reconstructing the secret to all the
parties. The Shamir sharing can be prepared with ACSS in parallel with the setup phase. The reconstruction
can be done in parallel with the garbling phase. Then, each set VSPj,i needs to be committed. This requires
6 rounds, but it can be performed in parallel with the garbling phase. The verification of local computation
must be performed after the garbling phase terminates. To get the set Ter, the parties invoke FACS. Then the
reconstructions of coins to determine whether each virtual server in Ter needs to be checked require 1 extra
round. Then, the opening of the commitments and the reconstruction of the seeds require 1 extra round.
Finally, after the verification, the opening of output sets requires another round. Thus, the verification phase
needs 3 extra rounds plus an invocation of FACS with parameter (N,N/4).

Evaluation Phase. This phase only contains local computation.
As analyzed above, the main protocol Π requires 34+RSetup rounds plus two invocations of FACS, where

RSetup is a constant. One additional invocation of FACS is required for instantiating FSetup. In particular, the
AMPC protocol [CGHZ16] is also constant-round in the FACS-hybrid model, and it only requires 1 invocation
of FACS. Using the protocol [CGHZ16] to instantiate FSetup, we obtain a constant-round AMPC protocol in
the FACS model, where FACS is invoked 3 times sequentially.

65

	Introduction
	Our Contribution
	Related Works

	Technical Overview
	Main Approaches on Constant-Round MPC
	Review of Constant-Size Multiparty Garbled Circuit
	Difficulties Caused by the Asynchrony
	Sharing and Committing via AVID
	MPC-in-the-Head: from Synchronous to Asynchronous

	Preliminaries
	Asynchronous Subprotocols
	Linear Secret Sharing Schemes

	The Non-Constant-Round protocol
	The Main Protocol
	Parameter Choices for Virtual Servers
	The Inner Protocol for Multiparty Garbling
	Main Protocol Description

	Security Model
	Formal Functionalities for Asynchronous Subprotocols
	Agree on a Common Set
	Definition and Instantiation of the LSSSs
	Subprotocols for 0
	Chernoff Bound
	Subprotocols for the Inner Protocol
	The process of Evaluating the Circuit from the Garbled Circuits
	Security Proof of the Main Protocol
	Cost Analysis of the Main Protocol
	Analysis of Communication Complexity
	Analysis of Round Complexity

