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Abstract

End-to-end encryption allows data to be outsourced and stored on an untrusted
server, such as in the cloud, without compromising data privacy. In the setting when
this data is shared between a group of users, members also all share access to the same
static key material used for data encryption. When the group membership changes,
access control is only enforced by the server: security breaches or compelled disclosure
would allow even a removed member to decrypt the current shared data.

We propose to move away from static keys and instead use a group key progression
(GKP) scheme, a novel primitive that enables a dynamic group of users to agree on a
persistent sequence of keys while keeping a compact local state. GKP ensures that group
members can only derive keys within a certain interval of the sequence, a notion that
we call interval access control (IAC), and also provide post-compromise security. Our
GKP construction, called Grappa, combines continuous group key agreement (CGKA,
by Alwen et al., 2020) with a new abstraction called interval scheme. The latter is a
symmetric-key primitive that can derive a sequence of keys from a compact state while
preserving IAC. We explore different interval scheme constructions and simulate their
storage and communication costs when used in group settings. The most efficient of
them is a generalization of dual key regression (Shafagh et al., 2020), which we formalize
and prove secure. Overall, our protocols offer a practical and robust solution to protect
persistent data shared by a group.
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1 Introduction
The need for stronger cryptographic guarantees for outsourced persistent data (such as encrypted
files in cloud storage) has been highlighted by recent attacks, which all identify sharing as one of
the main challenges [14, 3, 46, 47, 1]. In the related setting of end-to-end encrypted (E2EE) data
in transit, a long line of work developed continuous group key agreement (CGKA) [6] to tame the
challenge of providing a dynamic group of users with shared key material to use for data encryption.
In this paper, we explore how this can be done for persistent data. That is, how can a group of
users with access to shared data which is stored encrypted on a server (think a folder of E2EE files)
efficiently agree on key material such that they can (1) handle changes in the group constitution,
securing future and past data from former and future group members, while (2) retaining access to
all of their data, without having to resort to data re-encryption or keeping a linearly growing set of
keys. Along the way, we uncover insightful differences between data in transit and data at rest, and
show that persistent data necessitates tailored methods to ensure strong end-to-end security.

The state of persistent data. By default, most shared data is now stored in the cloud. This
includes encrypted data, such as backups of E2EE messaging groups, files and photos. Modern
cryptographic protocols ensure strong security for such data while in transit, for example, by
transferring files to the cloud over TLS or using MLS to exchange messages in a group chat.
However, few systems in practice uphold these guarantees when the data is stored persistently. In
fact, common security models for data in transit, which often aim for strong properties such as
forward security (FS) and post-compromise security (PCS), do not consider the confidentiality of
data after it reaches the receiver. For example, in cloud backup systems for messaging apps such as
WhatsApp [33], the entire message history is E2EE with a static key. This secures the data, but no
longer provides any post-compromise security.

A similar issue arises in E2EE cloud storage systems where groups of users share access to
a folder of encrypted files. In the threat model of end-to-end encryption, the cloud provider is
untrusted, as they may be vulnerable to data breaches or compelled access from authoritarian
governments. Hence, one cannot rely on the server to enforce access control. Nonetheless, many
current solutions encrypt all files under the same shared key,1 failing to provide any meaningful
cryptographic access control against former group members, nor any PCS guarantees.

Why, then, is there such a gap between the security of E2EE data in transit and at rest?

Forward security and post-compromise security for persistent data. A first observation
is that communication applications, including TLS 1.3 [60] and MLS [18], rely on ephemeral keys,
which can be discarded once the data has been received. But for persistent data, the data encryption
keys must be kept as long as the data is supposed to be accessible—which in practice means until it
is explicitly deleted. This invalidates many approaches to provide FS and PCS for data in transit.
In messaging, for example, FS is often achieved by symmetric ratcheting, relying on the fact that
as soon as a key has been used, it can be safely deleted. PCS is generally achieved by leveraging
public-key cryptography to introduce fresh shared randomness in the key derivation. Neither of
these approaches are applicable to securing a backup system, or files in a secure shared folder,
unless one is willing to store individual keys for every file or message. But this alternative is a
non-starter in practice: The storage overhead from the linear growth of the cryptographic state

1For instance, the cloud storage provider MEGA (https://mega.io/) encrypts the file keys for all files in a shared
folder with a static folder key. That folder key is shared with folder members using per-user channels. Access
revocation is a non-cryptographic operations that does not rotate this static folder key and instead relies on MEGA to
no longer serve former members the ciphertexts of newly uploaded files [56].
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of each party in the number of stored messages or files is prohibitive. Alternatives that aim to
preserve a sublinear cryptographic state have been studied, such as puncturing [13], addressing
FS, and updatable encryption [38, 52, 51, 27, 31]. Unfortunately, these paradigms have important
efficiency disadvantages and/or need to rely on weaker security models; we discuss these approaches
and their drawbacks more later.

Interval access control. In this work, we aim to present a deeper understanding of why FS and
PCS are fundamentally more challenging to achieve for data at rest. Our target setting is data
storage applications where a group of users share access to outsourced data. Our first contribution
is to identify cryptographically-enforced interval access control (IAC) as the natural and minimal
security notion for this shared persistent data. IAC captures that former group members cannot
access data created after their removal, and future members cannot decrypt data created before
they were granted access. The first goal of our paper is to formalize IAC and construct a practically
efficient protocol that achieves it.

To motivate the relevance of this notion, we observe that IAC is already present for data in
transit.2 When symmetric ratcheting evolves the key material after every received message to
achieve FS, this also means that a user who joins the group later will not be able to read previous
messages. In the other direction, messages exchanged after a user left the group are protected
because the group key material evolves.3 Therefore, users are naturally restricted to only have
access to messages while they are part of the group.

In contrast to data in transit, achieving IAC for persistent data is notably more challenging
because the set of users with access to E2EE data may not only be the current group members.
Users joining later may be granted access to some data that was in the collection before they joined,
such as the old message history. Moreover, once access is granted, data persistence prevents it from
automatically expiring; if the owner of a file or the sender of a message leaves the group, data should
remain accessible for the others. In other words, the lifetime of data at rest is decoupled from the
membership status of its originator.

Nonetheless, we argue that group membership changes are the natural point to enforce access
control. For example, the decision whether or not a messaging user gets access to the conversation
history is made when the user joins the group. Similarly, when a shared folder member is removed
from the folder, it might be desirable to revoke their ability to decrypt any file that is uploaded
after their removal. To achieve this, cryptographic access control for shared E2EE data must be
enforced when group changes occur.

A systematic analysis of threat models. Putting our focus on IAC for persistent data comes
with a significant shift in threat models compared to the ones for data in transit. IAC protects
the group and their data from compromises of individual users, ensuring that the adversary only
gains access to a fraction of the data shared by the group (the fraction that the compromised user
has access to), and nothing else. Protection against compromises is especially important in E2EE
systems, as they shift the security burden to endpoints: compromising an endpoint allows the
adversary to bypass all end-to-end guarantees. And studying security in the event of compromises
is arguably even more critical for data at rest than data in transit, as the likelihood of compromise
increases with the data lifetime.

2IAC is sometimes referred to as “secure membership” in messaging literature [16], but it is often not explicitly
discussed because it follows from other security guarantees for data in transit. However, this is not the case for data
at rest.

3Remarkably, this fact holds even for some protocols where post-compromise security is not an explicit goal, such
as Sender Keys [16] and Matrix [2]. It is also present in continuous group key agreement (CGKA) [6] used in MLS [18].
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Table 1: Systematization of data protection mechanisms for group applications in the case of various data actions
(columns) against different adversaries / types of user compromises (rows). We make two assumptions: 1) for data at
rest, every user is only granted access to data that was created or updated while they were a group member and 2) no
other relevant data event happens between the one mentioned in the column and the compromise. Scenarios marked
with blue are the focus and contribution of this paper, cells marked with red have no known protection mechanism,
and cells with UE are only possible in the weaker threat model of updatable encryption.

data event (col)
while user has
status (row)

DATA IN TRANSIT DATA AT REST

is sent (but was not
yet received) is received is created or updated is deleted

malicious former
member

group key rotation
(PCS =⇒ IAC) insecure group key rotation

(IAC) insecure UE

previously
compromised

member

pk ratcheting
+ key rotation

(PCS)
insecure

pk ratcheting
+ key rotation

(PCS)
insecure UE

compromised
active member trivially insecure trivially insecure UE

not-yet-
compromised

member
symmetric ratcheting (FS) insecure UE puncturing

(FS)

malicious future
member

symmetric ratcheting11

(FS =⇒ IAC)
symmetric ratcheting

(IAC)

In Table 1 we present a novel systematic analysis of the mechanisms that protect data at rest
and data in transit upon state compromise in a threat model where the adversary can observe all
ciphertexts produced by users. Columns contain the actions where transmitted data is sent/received
and persistent data is created/deleted. Rows list compromises of honest users happening before,
during, and after the data action, as well as fully malicious former/future members. A table cell
captures what mechanism (if any) protects the data that undergoes the action specified in the
column against an adversary that has the compromise status listed in the row at the time of the
action. For instance, the first cell specifies that group key rotation (e.g., in messaging) protects data
in transit that is sent by honest users from malicious former members, i.e., users already removed
from the group before sending the message. The “is received” column in the same row states that
no mechanism can guarantee that data in transit is secure from a member that was part of the
group when it was encrypted and sent but removed before the data is received, because we consider
a threat model where the adversary can observe all ciphertexts. We provide an extended discussion
of Table 1 in Appendix A.

Much of the previous comparison of data at rest and data in transit is reflected in Table 1. Data
in transit largely already enjoys IAC thanks to mechanisms like rotating group key material and
symmetric ratcheting, as discussed above. (We note, however, that access control is rarely discussed
in this setting since it follows “for free” from the mechanisms which are used to achieve FS and PCS.)
However, the same mechanisms have not been applied to data at rest before. Instead, research has
focused on puncturing to get FS for deleted files and on updatable encryption for PCS, albeit the
latter requires a weaker threat model than the one we consider in our table.12 We mark the scenarios
that cannot be protected in our threat model but in which updatable encryption can protect data in
a weaker threat model with UE . Most of these scenarios are also unachievable for data in transit,

11To reduce complexity, we omit that FS for out-of-order messages is achieved through a key-skipping mechanism
similar in flavour to puncturing (see e.g. [19]).

12In the threat model of updatable encryption, the adversary only learns the key material of a compromised user,
and not the ciphertexts. The server is trusted to not disclose ciphertexts until after the compromise, which allows
them to be updated.
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marked with red (but to the best of our knowledge there is no threat model relaxation similar to
UE for that setting). One notable exception is when persistent data is created or updated by a
member that will be compromised later (i.e., in row “not-yet compromised member”). Correctness
of a data at rest application mandates that the member still has access to the data at the moment of
compromise. Thus, the adversary trivially learns it, unlike for data in transit where the ephemerality
of the key material helps to protect the data. Our contributions, highlighted in blue, are to use
mechanisms from secure group messaging to achieve IAC and PCS, filling the gap of previously
unexplored protections for shared persistent data.

1.1 Our Contributions

We outline the main technical contributions of our work. In what follows, we define time in terms
of discrete epochs.

Interval Schemes. In Section 4, we introduce and formalize interval schemes, a novel symmetric-
key primitive that allows a set of parties to derive a sequence of consistent (epoch) keys from a
compact state. A state st enables the derivation of a sequence (ka, . . . , kb) of keys for an interval
[a, b]. States can be delegated: given a state st for [a, b], it is possible to export a state st′ for any
[c, d] such that a ≤ c ≤ d ≤ b. Correctness ensures that the keys are consistent across all parties.
For security, we formalize perfect IAC, which in the context of interval schemes can be expressed
intuitively as follows: if the adversary exposes states st1, . . . , stn for intervals I1, . . . , In respectively,
all epoch keys not in ⋃

i∈[n] In must be indistinguishable from random. However, we show that for
practical efficiency, it is useful to consider a relaxed version of IAC that permits a controlled leakage
in between exposed intervals.

Furthermore, we present an efficient instantiation of an interval scheme based on dual key
regression (DKR), which was introduced without a formalization in [63]. Our scheme extends
the original DKR construction to avoid limitations and achieve security against multiple interval
corruptions, which the original scheme did not. Our construction builds on one-way chains OWC,
which can be instantiated from a PRG. We use two such chains that run in opposing directions,
which we call forward and backward chain. Every chain element is associated to an epoch, and
each epoch key can be derived by evaluating the key combiner F on the two corresponding chain
elements. Intuitively, given one element on every chain, a user can derive the epoch keys for all
epochs between the forward and backward elements as these chains can be advanced easily in one
direction. However, epoch keys outside this interval cannot be derived because that would require
going in the hard direction on either the forward or backward chain (e.g., for hash chains, that
would require breaking the preimage resistance of hash function). Moreover, we show that the key
combiner F satisfies a notion we denote by double-PRF security, which fills a gap in PRF security
notions. We prove that it is implied by dual-PRF security, a result that may be of independent
interest for applications that need to combine multiple keys into one. Finally, we also compare the
efficiency and security of our DKR-based construction to other interval scheme instantiations, such
as using GGM trees.

Why compact state matters. One major advantage of interval schemes (and of GKP, discussed
below) is that it allows access control on interval granularity while only having small local states
and no server state. Compactness is essential for practical efficiency due to the scale of persistent
data applications in practice. In some cases, it is possible to wrap a (large) cryptographic state
under a single encryption key and outsource the encrypted state to the server, to be downloaded
and decrypted every time the user logs in. While this works for single-user cloud storage, it has

6



several drawbacks for group-based applications. First, the communication complexity for group
operations increases significantly, e.g. because a large cryptographic state needs to be sent to newly
joining users. Second, always retrieving a cryptographic state from the server increases the potential
attack surface for malicious servers.13 Third, outsourcing state is not possible if the user only has
read access to the server, as the user needs to modify its cryptographic state regularly to achieve
any advanced security properties. Therefore, decoupling the key material storage from the data
storage is a more flexible and practically efficient alternative. Moreover, compact storage may also
enable the use of hardware protections—such as a trusted chip that isolates the client state from
direct application access—which usually have little storage space.

Group key progression. In Section 5, we present a novel primitive called group key progression
(GKP). In a GKP scheme, a group of users can agree on a sequence of keys across multiple epochs
while maintaining persistent access to them. These keys are consistent across group members’ views
and can later be used to secure arbitrary data, such as files or backed-up messages. The GKP
syntax supports the standard operations for dynamic groups, i.e., adds, removals and key updates.
For intuition, GKP is the analog to CGKA for persistent data, where the main novelty lies in GKP’s
ability to re-derive past keys from a compact local storage. Moreover, GKP distinguishes between
two member roles: standard members and admins. Admins are users that have full access to all
keys and possess additional information that enables them to add or remove members.

For security, we introduce a model based on key indistinguishability games where the adversary
has full control over group operations and can corrupt users at any time. The model is parametrized
by a predicate and can accurately capture both IAC and PCS for the key sequence for different
constructions. We focus on capturing key privacy and do not consider authentication. Hence, we do
not allow the adversary to forge or inject messages. As we argue in later sections, authentication
can be achieved via signatures and a PKI following previous work for CGKA [7, 17]. We remark
that GKP is essentially a key agreement primitive and does not address the confidentiality of data,
but only the security for derived keys. These keys can later be used to protect persistent data in
different applications (see Section 7).

Grappa: group key progression for persistent access. In Section 6 we provide one practical
and efficient instantiation of GKP, that we call Grappa, which combines CGKA and an interval
scheme to efficiently generate a sequence of keys to secure persistent data. At a high level, Grappa
relies on a small subset of (possibly hundreds of) users—the group admins—to maintain an interval
scheme that is unique to every group. These group admins have a private communication channel
to synchronize on global interval scheme updates and manage the set of group members. They give
group members partial (interval) access to the key sequence. Besides, Grappa relies on CGKA to (1)
establish a post-compromise secure communication channel to distribute interval scheme states and
extensions, (2) ensure consistent group membership views, and (3) preserve the IAC security of the
underlying interval scheme across epochs.

Grappa is constructed with efficiency in mind, keeping the space complexity sublinear in the
total number of operations and avoiding expensive per-user operations when distributing new keys.
Moreover, the performance of Grappa is independent of the number of persistent data items that
are protected with Grappa keys because IAC only needs to be enforced on group membership
changes. In summary, Grappa shows that providing IAC for persistent data is feasible with compact

13Recent attacks [14, 3, 46] on the cloud storage provider MEGA were based on tampering with such outsourced
cryptographic state. They exploit the outsourced state’s lack of integrity to modify parts of the encrypted state and
observe the client behavior to recover key material. Recent work on key derivation [62] observed that it is surprisingly
challenging to authenticate outsourced cryptographic state, as the integrity verification often depends on values stored
in the state itself, which leads to a circular dependency.
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Table 2: Overview of the assumptions and guarantees of related work on the protection of persistent E2EE data. The
column names are in three categories: first, the application targeted by the cited paper(s) [app]. Second, the problem
setting: [mal] trusted ( ), partially trusted ( ) or fully malicious ( ) server(s); [one] relying on a non-colluding
subset of servers ( ) or only one server ( ); [internal] relying on a trusted third party ( ), a key distribution service
or PKI ( ), or implementing everything internally, without external party ( ); and [shared] considering shared access
to data of a dynamic group. Third, security notions: [FS ] forward security; [PCS ] post-compromise security; [IAC ]
interval access control; and [proof ] formal definitions and proofs. We mark that a property is not/partially/fully
present with / / , respectively.

info setting security
paper(s) app mal one internal shared FS PCS IAC proof

key regression
[39, 15]

FS & efficient key
distribution

Droplet [63] decentralized data
access control

SiRiUs [41] E2EE cloud
storage

Plutus [48],
SUNDR [53],

Mylar [59]
secure file sharing
(with enc. search)

DepSky [24] distributed E2EE
cloud storage

Sieve [65] access control
with ABE

Titanium [32] metadata-hiding
file sharing

BurnBox [64] self-revocable
encryption

Puncturable Key
Wrapping [13]

FS for symmetric
key hierarchies

CSS [12] provable E2EE
cloud storage

Grappa
(this paper)

keys for
persistent access

states, symmetric primitives for key derivation, and only using public-key cryptography for group
management.

2 Related Work
Table 2 gives an overview of related work, including which application they target, what assumptions
they make, and the formal guarantees they aim for and prove.
Key regression and updating. Fu, Kamara, and Kohno [39] introduce the term “key regression”
to let data publishers enforce cryptographic access control without trusting the content distribution
network (CDN). They achieve only one-sided IAC to protect future keys from removed users through
the use of a single one-way chain. However, their key rotations do not aim to restrict access to
previous keys. Concurrently, Backes, Cachin, and Oprea [15] defined a similar primitive for securely
updating keys on access revocation. In both constructions, the owner acts as server and distributes
key material to other users. Hence, in Table 2, we mark that these schemes require a fully trusted
server. Additionally, [15] proposes lazy re-encryption to protect existing files from removed users.
This falls in our definition of IAC for future files, as they are only re-encrypting on file updates.
Both [39] and [15] discuss applications involving groups, but the membership management is external
to the suggested primitives.

Droplet [63] extended key regression by adding a second one-way chain to construct “dual key
regression” for granting interval access. Moreover, they use a binary tree data structure to derive
data encryption keys (DEKs). Their system embeds an authorization service in a state machine on a
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blockchain which handles group membership operations. Authorized users either receive the binary
tree nodes to derive data encryption keys (DEK) for the data that they were granted access to, or
they get continuous “subscriber” access. For the latter, Droplet uses dual key regression to wrap
DEKs, giving users a forward chain element and then distributing new backward chain elements
encrypted with a distribution key via the blockchain. Their system tolerates honest-but-curious
servers and a minority of fully malicious blockchain nodes. Dual key regression enables them to get
IAC for a single user compromise, limiting the derivable keys to an interval. However, Droplet does
not achieve IAC when multiple users are compromised as chains are never rotated: compromising
multiple users allows an adversary to derive all intermediate keys between compromised intervals.
We address this shortcoming in our generalization of dual key regression. Dual key regression was
subsequently used in several further systems [29, 30].

Access control (AC) and encryption for persistent data. A line of work from the system
security community (SiRiUs [41], Plutus [48], SUNDR [53], DepSky [24], Mylar [59]) started in the
early 2000s to integrate client-side encryption with cloud storage systems to achieve end-to-end
security. These pioneering works established the feasibility of E2EE cloud storage but neither aim
for security in the presence of compromises nor formally prove their constructions. The scheme with
the most advanced security guarantees from this line of work is Sieve [65], where a user encrypts
their data with attribute-based encryption and defines an access policy, granting other parties access
by distributing keys with the right attributes to them. However, Sieve does not support group access
to files with the same permissions as the original owner. Sieve uses key homomorphism to revoke
keys by re-encrypting user data on the storage provider. This expensive re-encryption enables Sieve
to achieve IAC in a threat model where the server is trusted to honestly perform the re-encryption
and delete the old ciphertexts before a compromise, such that the adversary does not learn them.

Titanium [32] hides file sharing metadata with oblivious RAM (ORAM) [42]. They achieve
malicious security by performing N -party secure computation with at least one (out of N) trusted
server(s). These N servers together maintain an access matrix that explicitly allows users to
download files that were shared with them, achieving IAC. For storage, files are secret shared across
all servers. A major difference to other works discussed here is that Titanium does not use client-side
encryption. If all N servers were to collude, their system would not only fail to provide IAC but the
servers could directly decrypt any files without compromising users. Their system comes with a
proof in the universal composability framework.

BurnBox [64] implements self-revocable encryption to enable users to temporarily revoke their
access to data as protection against compelled access. Restoring access relies on a trusted restoration
cache to store a recovery token. The temporary revocation property is an interesting extension
for GKP discussed in Section 7. BurnBox partially achieves FS: for anticipated compromises, the
user can temporarily revoke their access before the compromise and recover file access afterwards,
without the adversary learning the files (as long as the adversary does not learn the recovery token).

Puncturable key wrapping (PKW) [13] achieves forward security for deleted files using punc-
turable PRFs. Puncturing updates the user’s locally stored key such that it can no longer decrypt
the ciphertexts for deleted files, achieving forward security even against malicious servers. However,
the required key updates of PKW are rather costly. Efficiently achieving FS is an open problem,
and out-of-scope for our constructions.

Backendal et al. [12] formalize E2EE cloud storage and introduce the provably secure protocol
CSS. While their model and protocol covers file sharing, which is also an application of GKP, they
only focus on fundamental confidentiality and integrity guarantees, and not on advanced security
properties like IAC or PCS.

Compact Key Storage. Dodis, Jost and Marcedone introduced compact key storage (CKS) [36]
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to create backups for secure group messaging. In subsequent work, Dodis and Jost showed how
to construct CKS in the standard model [35] with only minor functionality changes. CKS is an
addition to a secure messaging application, and focuses on backing up the secrets used to encrypt
messages with a compact local storage. Similar to IAC, the more advanced CKS construction allows
users to recover messages exchanged in an interval. Despite similar applications, CKS and GKP take
very different approaches. CKS is tailored to secure messaging and uses deterministic convergent
encryption to derive keys from the encrypted information, which requires that the latter has high
entropy. Moreover, CKS requires a server to store all CKS-encrypted secrets in addition to the
encrypted messages, requiring linear server storage. GKP, in comparison, derives indistinguishable
keys to encrypt arbitrary data without server-side storage of encrypted keys. The security guarantees
are also different. CKS conserves FS and PCS guarantees that are already present in the encrypted
data (e.g., messaging secrets). We argue that IAC—provided by the indistinguishable keys produced
by GKP and which extends to encrypted data—is a more natural security notion for persistent data
as FS changes its meaning when messages transition to data at rest: messages accessible to the
user at the time of compromise are leaked to the adversary even if they were exchanged before the
compromise (cf. Table 1). Hence, the FS achieved by CKS only protects messages in the backup
that were explicitly deleted before the compromise.

In summary, CKS is efficient for the specific case of message backups but achieves different
security guarantees and GKP is a primitive with more general applications. We provide an extended
comparison of CKS to our work in Appendix C, including a description of how GKP can be used
for messaging backups and why CKS cannot be used to instantiate DKR or GKP.

Updatable Encryption. The idea of updatable encryption (UE) was first introduced by Boneh
et al. [25] and has been extensively studied in the literature [38, 52, 51, 27, 31]. UE allows parties
to rotate encryption keys while pushing the re-encryption cost to the server. In short, parties can
do that by issuing a token, associated to an old key k and a new key k′. The server can use the
token to update a ciphertext that encrypts data under old key k to a new ciphertext encrypted
under key k′.

In the UE threat model, the adversary first learns only the key material of a compromised user
but not the corresponding ciphertexts. Hence, there is a time window in which ciphertexts can
be updated before the adversary gets access to them. This threat model makes the strong trust
assumption that the server never discloses old ciphertexts (intentionally or not). This essentially
requires secure deletion of old ciphertexts, which is notoriously challenging in practice due to
distributed and redundant architecture of storage servers. Our approach instead considers a setting
where the full ciphertext history is readily available to the adversary, in which case UE can no
longer achieve forward security.

3 Background and Building Blocks

3.1 Notation and Conventions

Functions and variables. We denote assigning value a to variable v with v ← a. Randomly
sampling an element e from a space S is denoted by e←$ S. For randomized algorithms F , we write
y←$ F (x) to denote running F on input x and implicit random coins and assigning the output to y.
Similarly, y ← F (x) for deterministic F . If F (·) returns (a, b, c), then we write (x, ·, z)← F (·) for
x← a and z ← c while ignoring b. We use dot notation to access variables in states. For example,
to store the CGKA user state γM and the current epoch e in the DKR user state stU , we write
stU .(γM , e)← (γM , e). The object field name does not necessarily need to match the name of the
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variable being stored, and raw values (such as integers) may also be stored in the state in this
way (e.g., stU .c← 0). We use pipes (|) to denote different options, e.g., defining a protocol with
signature f1|f2(a|b) denotes that the following code defines both f1(a) and f2(b) (but not f1(b) or
f2(a), as combinations are defined by the order of options). For sets S, T , we use S ∪←− T and
S −←− T as a shorthand for S ← S ∪ T respectively S ← S \ T . The symbol ε denotes empty objects
(e.g., a dictionary or tuple with no elements).

Game-based definitions. We follow the framework of [23]. Games are parameterized by a
primitive, and optionally a game bit b, and take an adversary as input. Game oracles are prefixed
by O. We write AO(·)(x) to denote running the (randomized) adversary A on input x with access
to all game oracles (c.f. Figure 4). Adversaries are implicitly stateful. All subroutines of a game
have access to variables defined as global. By G(A)⇒ y we denote the event that the execution of
game G with adversary A results in output y. We write Pr[G] as shorthand for Pr[G(A)⇒ 1]. Let
QO(A) denote the number of queries to oracle O by adversary A. The running time of an adversary
includes the time for the game procedures to respond to oracle queries. We use the convention
that boolean true corresponds to 1 and false to 0. In writing game or adversary pseudocode, it is
assumed that boolean variables are initialized to 0, integer variables to 0, and sets tothe empty
set ∅. The symbol ⊥ stands for “undefined” and is used to implicitly initialize variables and tables,
as well as to signal errors. Our algorithms return ⊥ if they fail or are called on invalid inputs.

List notation. Our pseudo-code uses the data type list with Python-inspired syntax. A list l can
be initialized with list() or by assigning the list elements a0, a1, . . ., ar with l ← [a0, a1, . . . , ar].
Similarly, we unwrap a list and assign variables to list elements with [a0, a1, . . . , ar] ← l. We
denote the number of elements in a list by |l|. The notation l[i:j] is a shorthand for the sublist
[ai mod |l|, a(i+1) mod |l|, . . . , aj mod |l|], for example l[2:4] = [a2, a3, a4] and l[−1:−3] = [ar, a1, a2, . . . , ar−2].
The notation l[i] denotes retrieving the element at index i mod |l|. For example, l[r] = l[−1] = ar.
In assignments, l[i] ← c replaces the element i mod |l| with c. Lists can be expanded with
l +←− [b1, b2, . . . , bk], which results in l = [a1, a2, . . . , ar, b1, b2, . . . , bk] for the previous example list
l. An exception with an additional shortcut are Integer lists [a, b] for a, b ∈ N with a ≤ b, which
denotes the ordered tuple (a, a + 1, . . . , b).

3.2 Building Blocks

Our constructions are built from several standard cryptographic primitives, including PRFs and
AEAD. For completeness, we recall their syntax and security in Appendix B. Here, we first introduce
one-way chains as a building block for our interval scheme construction, which we can instantiate
via either hash chains or via seekable sequential key generators (SSKG) [54, 55]. Next, we describe
the original dual key regression scheme that we later generalize to construct an interval scheme.
Finally, we recall continuous group key agreement (CGKA) used in Grappa.

3.2.1 One-Way Chains

One-way chains are a useful tool that is found at the core of a vast number of cryptographic protocols.
A one-way chain simply consists of a sequence of states sst1, sst2, . . . , sstn which are related by some
one-way function Evolve such that ssti+1 = Evolve(ssti). To derive any state ssti, it suffices to know
some state sstj for any j ≤ i. One possible construction of one-way chains is to use SSKGs that
were introduced by Marson and Poettering [54, 55]. We observe that the syntax and security notion
of SSKGs also applies (with minor changes) to other constructions such as hash chains. Hence,
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borrowing from [55, Defn. 2], we introduce the syntax for one-way chains with the some renaming
and the modification that we redefine Seek as the combination of Seek and SuperSeek ([55, Defn. 5]).

Definition 3.1 (One-way chains). A one-way chain OWCℓs = (Gen, Evolve, Seek, GetKey), parame-
terized by key length ℓs, is a tuple of four algorithms, of which Gen is randomized and the others
are deterministic:

• sst0←$ Gen(N): given the max chain length N , generates the initial state sst0.

• ssti+1 ← Evolve(ssti): given the state ssti, outputs the next state ssti+1.

• ssti+j ← Seek(ssti, j): given the state ssti and j ∈ N, fast forwards to ssti+j .

• Ki ← GetKey(ssti): given the state ssti, outputs key Ki ∈ {0, 1}ℓs .

For all k ∈ N, let Evolvek(ssti) denote the k-fold composition of Evolve, i.e., repeatedly applying
Evolve to the output of the prior call, starting at ssti. Then we say that OWC is correct if, for all
N ∈ N, all sst0←$ Gen(N), all i, j ∈ N, and ssti ← Evolvei(sst0), we have

0 ≤ i ≤ i + j < N =⇒ Evolvej(ssti) = Seek(ssti, j) .

The desirable security guarantee of one-way chains is key indistinguishability in the face of
state corruption, i.e., forward security. Again, we can borrow from SSKG and modify the security
game of [55, Definition 4] to support multiple users, arriving at the game shown in Figure 1. (We
note that the single-user notion—which can be obtained by restricting the adversary to a single
query to oracle ONew in our game—and multi-user notion are equivalent via a standard hybrid
argument [20].)

The game has two stages. In the first stage, adversary A can query oracle ONew to generate
the initial state of a new one-way chain and oracle OGetKey(n, i) to expose the i-th key of the n-th
chain. The first stage ends when A outputs a list of exposure indices sj and challenge indices i∗j ,
one for each chain, specifying that it wishes to learn state sj of the j-th SSKG chain, as well as
the i∗j -key of that chain. The game provides the states sj for all j and either the real key K∗j,1 or
a random key K∗j,0 based on a game bit b. The adversary wins if it outputs a correct guess of b
without having trivially exposed any of the challenge keys. To allow the adversary to corrupt the
initial state sstj

0, it can output −1 in place of a challenge index i∗j , indicating that it does not want
a challenge for chain j.

Definition 3.2 (OWC indistinguishability with forward security). Let OWC be a one-way chain
and consider the game Gind9fs9b

OWC in Figure 1. The advantage of an adversary A against the
indistinguishability with forward security of OWC is defined as

Advind9fs
OWC,N (A) = Pr[Gind9fs91

OWC,N (A)]− Pr[Gind9fs90
OWC,N (A)] .

A usual instantiation of one-way chains are hash chains with an additional output key. These
can be instantiated from a PRG G: {0, 1}S → {0, 1}S × {0, 1}ℓs . Applying this PRG to a previous
state returns the next state and a key as (ssti+1, ki) ← G(ssti). The key ki is then returned by
GetKey(ssti) and leaking it does not compromise the state. It is well known that such hash chains
provide forward security upon state corruption, and we refer to e.g. [5, Section 4.2] for a detailed
instantiation and a proof. For hash chains, Seek(ssti, j) can be implemented by simply calling
Evolvej(ssti). However, this operation takes linear time in j. SSKGs improve on this by adding a
“fast forward” mechanism which allows to jump from a state to a later one without evolving the
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Gind9fs9b
OWC,N (A):

1 global m, Xk

2 ((i∗1, s1), . . . , (i∗m, sm))←$AO(·)()
3 if ∃j : sj ≤ i∗j : return 0 � state would expose key

4 for j = 1 to m do:
5 sstj

s ← Seek(sstj
0, sj)

6 if i∗j = −1: K∗j,b ← ⊥ � no chall. for instance j

7 else:
8 K∗j,1 ← GetKey(Seek(sstj

0, i∗j ))
9 K∗j,0←$ {0, 1}ℓs

10 b′←$AO(·)((K∗1,b, sst1
s), . . . (K∗m,b, sstm

s ))
11 if ∃j : Xk[j, i∗j ] = 1: return 0 � key exposed

12 return b′

ONew():
13 m++
14 sstm

0 ←$ Gen(N)

OGetKey(n, i):
15 Xk[n, i]← 1
16 Kn

i ← GetKey(Seek(sstn
0 , i))

17 return Kn
i

Figure 1: Game defining multi-user indistinguishability with forward security of a seekable sequential key genera-
tor OWC.

Figure 2: Visualization of DKR with a forward chain with elements fi for all i ∈ [0,∞] and a backward chain with
elements bj for all j ∈ [0,N ]. Given fl and bN−r, the keys for epochs e ∈ [l, r] can be derived with the key combiner F
as ke ← F(fe , bN−e).

state one step at a time. In short, SSKG builds a binary tree from a stateful PRG and states consist
of a logarithmic number of internal tree nodes from which successor nodes, and eventually keys
associated to tree leaves, can be derived. This efficiency improvement, however, comes at the cost
of only supporting bounded-length chains (hence, the parameter N of Gen) and a state size that is
logarithmic in the chain length N .

3.2.2 Dual Key Regression

Dual key regression (DKR) was introduced by Shafagh et al. [63] to enforce access control for
encrypted data streams. The core idea of DKR, which we illustrate in Figure 2, is simple: a sequence
of keys is generated by combining the elements of two one-way chains (e.g., hash chains), running
in opposite directions. These are referred to as the forward and backward chain. In principle, the
forward chain can have unbounded length, whereas the backward chain has pre-determined length
N + 1 for some N ∈ N. Bounding the backward chain is necessary because the elements are used in
the opposite order than they are derived. Hence, once N + 1 elements have been used, the chain
has arrived at the backward seed b0, requiring a new chain. To derive the full sequence of keys,
it suffices to store the seeds of both chains. Similarly, access to any subinterval (kl, kl+1, . . . , kr)
of keys (for 0 ≤ l ≤ r ≤ N) can be compactly delegated by providing the l-th element fl from the
forward chain and the r-th element bN−r from the backward chain, counting from the back.

3.2.3 Continuous Group Key Agreement

A continuous group key agreement (CGKA) scheme [6] allows a set of parties G, henceforth
referred to as a group, to agree on a group key that evolves over time and supports changes in
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group membership. In CGKA schemes, communication is asynchronous, meaning that not all
communicating parties need to be online at the same time. Each party only has a local view of the
global protocol state.

CGKA is given by the algorithms described below, which are run locally by the different parties.
We follow the syntax from [7] except that we make the slight simplification that welcome messages
are not divided into a public and a private part. We remark that each participant has a local state
γ which is initialized, and associated to a user identifier uid, via γ←$ Init(uid). We assume that
the state γ of the group member with identifier uid stores the (possibly empty) set of all group
members in γ.G and the group key I in γ.I .

Definition 3.3 (Continuous group key agreement). A CGKA scheme is a tuple of algorithms
(Init, Create, Prop, Commit, Proc, Join), defined as follows:

• γ←$ Init(uid): on input a user identifier uid, initializes the state of the user, producing the
user’s initial state γ implicitly storing the uid in γ.uid.

• γ′←$ Create(γ): on input the caller’s state γ, creates a group with only γ.uid on it (i.e., setting
γ′.G = {uid}) and outputs an updated state γ′.

• (γ′,P)/⊥←$ Prop(γ, ptype, uid): on input the caller’s state γ, a proposal type ptype, and a
user identifier uid (specifying to which user the proposal refers to), outputs the updated state
γ′ and a proposal message P, or ⊥ on failure. Proposal types ptype include:

– Add to add user uid to the group.
– Rem to remove user uid from the group.
– Upd to update the local key material from user uid.

• (γ′,T,W , I)←$ Commit(γ,P): on input the caller’s state γ and a (possibly empty) vector of
proposal messages P, outputs the updated state γ′, a control message T for existing group
members, a welcome message W for new members (without Add proposal in P, we have
W = ε), and a new group key I .

• γ′/⊥←$ Proc(γ,T): on input a the caller’s state γ and a control message T, outputs the
updated state γ′ or ⊥ if fails.

• γ′/⊥←$ Join(γ,W ): on input the caller’s state γ and a welcome message W , the caller joins
the group and outputs the updated state γ′ or ⊥ if fails.

We note that all group members, including the creator of a commit message, need to call Proc
to apply the changes made by a control message T to their local view of the group. Time in CGKA
is usually modeled by epochs, which are uniquely associated to a group key. Whenever there is a
change in the group, a new group key is established and the group moves to the next epoch.

In most of the literature, as well as in the MLS standard [18], CGKA relies on a delivery service
(e.g., a central server) that is usually modeled as either a passive adversary with the ability to corrupt
parties arbitrarily [6, 9, 45, 50] or malicious with varying degrees of active capabilities [4, 8, 10, 17].
Additionally, CGKAs usually rely on a trusted authentication service which is implemented via a
PKI. In this work, we always refer to the original game-based security model from [6] adapted to
the syntax above, which models PCS and FS with respect to a passive adversary.
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4 Interval Schemes
We introduce interval schemes, a symmetric key primitive that enables generating a sequence of
pseudorandom epoch keys from a compact cryptographic state. States can be created on-demand
for bounded intervals of epochs, and can later be extended to cover larger intervals. The scheme
defines a global key sequence that uniquely defines the epoch keys. Thus, different states that cover
the same epoch e will derive the same epoch key ke .

We define the syntax of an interval scheme in Section 4.1, followed by our definition of correctness
in Section 4.2 and the security notion that we call interval access control in Section 4.3. Next, in
Section 4.4, we present a construction of an interval scheme inspired by dual key regression, which
in turn relies on double-PRFs and one-way chains. We describe and prove its security in Section 4.5,
Finally, in Section 4.6, we discuss and compare this DKR-based instantation with other interval
scheme constructions.

4.1 Interval Scheme Syntax

The main variables that are used in the scheme are: states st, auxiliary information aux, exten-
sions ext, and epoch keys k. The procedure Init initializes the state and produces an auxiliary
information value aux. The key sequence at this point is a single key k0, and so the algorithm
sets the epoch e to zero. The state st always contains the information required to derive the
epoch keys for a bounded interval of epochs [l, r]. Given a state for [l, r], one can export a state
for a sub-interval [l′, r′] ⊆ [l, r] via the algorithm Export. The auxiliary information aux contains
the cryptographic material required to advance epochs (via Progress) and generate future epoch
keys.14 This value can be rotated by setting a flag fl in Progress. The set of possible flags is
scheme-dependent. Extensions ext contain the information required to extend an interval [l, r]
to [l, r + s] covering s additional epochs. These extensions are created via CreateExt and processed
via ProcExt to merge the extension into a state st. Finally, algorithm GetKey(st, e) outputs the
epoch key of epoch e on input an interval state st covering e.
Definition 4.1 (Interval Scheme). An interval scheme INTN ,ℓ,F = (Init, Progress, Export, CreateExt,
ProcExt, GetKey) is a tuple of algorithms, parameterized by maximum chain length N , key length ℓ,
and set of admissible flags F .

• (st, aux)←$ Init(): initializes the state st and an auxiliary information aux, setting st.emax ← 0.

• (st′, aux′)/⊥←$ Progress(st, aux,fl): on input the state st, the auxiliary information aux, and
a progress flag fl ∈ F extends the interval covered by st by one epoch (advancing st.emax),
and returns the updated state st′ and the updated auxiliary information aux′.

• st′/⊥ ← Export(st, l, r): on input the state st and an epoch interval [l, r], returns a new
interval state st′ covering [l, r] (or ⊥ if st does not cover [l, r]).

• ext/⊥ ← CreateExt(st, l, r, s): on input the state st, an epoch interval [l, r], and the number
of additional epochs s, returns an extension ext to extend states covering the interval [l, r]
to [l, r + s] (or ⊥ if st does not cover [l, r + s]).

• st′/⊥ ← ProcExt(st, ext): on input a state st and extension ext, returns the extended interval
state st′.

• k/⊥ ← GetKey(st, e): on input a state st and an epoch e, returns epoch key k.
14This auxiliary information aux can be thought of as a secret value which—in distributed settings or group

applications—may only be available to privileged users.
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Interval-Agnostic Extensions. Some interval schemes have the useful property that their
extensions do not need to depend on the left boundary of the initial interval. This is, if two
intervals [l, r] and [l′, r] share the same right boundary, the extension of the interval [l, r] can be
used to extend the interval [l′, r] and vice versa. We capture this formally in Definition 4.2.

Definition 4.2 (Interval-Agnostic Extensions). An interval scheme INT has interval-agnostic
extensions if for all valid inputs st, l, l′, r, and s (i.e., for the epoch intervals [l, r] and [l′, r]) we
have that CreateExt(st, l, r, s) = CreateExt(st, l′, r, s). In this case, we drop l from the inputs for the
syntax of CreateExt.

4.2 Interval Scheme Correctness

Informally, when Progress is only run on a synchronized state—called the global state—then
correctness for an interval scheme guarantees that epoch keys can be derived for all epochs from
zero to st.emax , and that the keys are consistent w.r.t. the global key sequence, independent of the
state used to derive them. That is, once the scheme has progressed to (or past) an epoch e, the
associated epoch key ke must be the same (and not ⊥) when derived from any state that covers e.
Section 4.2 contains the formal correctness definition.

Formally, we define correctness of an interval scheme INT (Definition 4.1) via the game shown in
Figure 3. This game captures the correctness requirements by setting the win flag to 1 on violations.
This includes when a state covering the last epoch emax cannot be extended (Line 9), keys cannot
be derived for covered epochs (Line 16) or are inconsistent (Line 18), states cannot be exported
(Line 22) or extensions cannot be created (Line 28), or valid extensions are not merged (Line 35).
We say that INT is correct if for all adversaries A, including computationally unbounded ones,
Pr[Gcorr

INT(A)] = 0.

4.3 Interval Scheme Security: Interval Access Control

Our next goal is to formalize the IAC security of interval schemes. Intuitively, we want to capture
that only parties with access to a state covering epoch e can derive the epoch key ke . Formally,
we ask that epoch keys are indistinguishable from random for an adversary without access to
sufficient interval states. In other words, if an adversary has access to st1, . . . , stn for intervals
[l1, r1], . . . , [ln, rn], all keys not in ⋃n

i=1[li, ri] should be computationally indistinguishable from
random. We call this security notion perfect IAC. To capture a broader family of schemes, we
parametrize the game by a safety predicate Safe, which allows one to define the precise security of
an interval scheme, which may be weaker than perfect IAC. We formalize this security notion in
game Giac9b

INT,Safe in Figure 4.

Definition 4.3 (Interval access control of INT). Let INT be an interval scheme and consider game
Giac9b

INT,Safe in Figure 4. The advantage of an adversary A against the interval access control of INT
with respect to predicate Safe is defined as

Adviac
INT,Safe(A) =

∣∣∣Pr[Giac91
INT,Safe(A)]− Pr[Giac90

INT,Safe(A)]
∣∣∣ .

Game Giac9b
INT,Safe has two stages. In both, the adversary has oracle access to the interval scheme

algorithms, allowing it to progress the global state with the desired flags, generate states, and export
states. The game keeps track of generated intervals and extensions in dictionaries ST resp. E. In
the first stage, the adversary outputs a challenge epoch e∗ and a list I of intervals that it wishes to
expose. Additionally, the adversary can obtain the auxiliary value aux corresponding to a given
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Gcorr
INT (A):

1 global aux, E, ST, K,
emax , ce , cst, win

2 (st, aux)←$ Init()
3 ST[++cst]← (st, 0, 0)
4 emax ← 0
5 AO(st, aux)
6 return win

OProgress(fl, ist):
7 (st, lst, rst)← ST[ist]
8 (st, aux)←$ Progress(st, aux, fl)
9 if rst = emax ∧ st = ⊥: win← 1

10 else: ST[ist]← (st, l, r + 1)
11 emax ← emax + 1
12 return st

OGetKey(ist, e):
13 (st, l, r)← ST[ist]
14 k ← GetKey(st, e)
15 if (l ≤ e ≤ r) ∧ (k = ⊥):
16 win← 1
17 if K[e] = ⊥: K[e]← k

18 else if k ̸= K[e]: win← 1
19 return k

OExport(l, r):
20 (st, lst, rst)← ST[ist]
21 if ([l, r] ⊆ [lst, rst]) ∧ (ext = ⊥):
22 win← 1
23 else: ST[++cst]← (st, l, r)
24 return st

OCreateExt(ist, lext, rext, s):
25 (st, lst, rst)← ST[cst]
26 ext← CreateExt(st, lext, rext, s)
27 if ([rext + 1, rext + s] ⊆ [lst, rst]) ∧ (ext = ⊥):
28 win← 1
29 else: E[++ce ]← (st, lext, rext, s)
30 return ext

OProcExt(ist, ie):
31 (st, lst, rst)← ST[ist]
32 (ext, lext, rext, s)← E[ie ]
33 st← ProcExt(st, ext)

� For interval-agnostic extensions, the first term simplifies to rst = rext

34 if ((lst, rst) = (lext, rext)) ∧ (st = ⊥):
35 win← 1
36 else: ST[++cst]← (st, lst, rst + s)
37 return st

Figure 3: Correctness game for an interval scheme INT.

epoch e by calling oracle OExposeAux, and expose the key of a given epoch e by calling oracle
OGetKey. Dictionaries Xk, Xst and Xaux track the keys, states, and auxiliary values known by
the adversary, respectively. In the second stage, the (stateful) adversary gets as input a challenge
key kb corresponding to epoch e∗ and a set Sint with the requested states and must output a bit
guess b′ for whether the kb was picked at random (b = 0) or output by the interval scheme (b = 1).
To avoid trivial wins, the security of epoch e∗ with respect to the compromised intervals and keys is
checked on Line 12 of Figure 4 by using two conditions:

• A trivial exposure condition ¬Xk[e∗]∧¬Xst[e∗], which returns 0 if the state or key of epoch e∗

has been exposed to the adversary through prior queries, tracked in Xk,Xst.

• The scheme-dependent safety predicate Safe(e∗), which may depend on the flags that are set
in the OProgress calls, as well as on the exposures of aux.

The game reflects perfect IAC when Safe(e∗) = true. To give an example, this security would
be achieved by a “trivial” scheme that samples independent random keys for every epoch, which
comes at the cost of state size linear in the number of epochs. We discuss further security/efficiency
trade-offs in Section 4.6.

Weakening IAC. The syntax of interval schemes does not specify the set of flags that are
admissible in OProgress, and the semantics of the fl parameter are left open. Such flags are meant
to enforce on-demand key rotation, and to allow schemes to have smaller states. The DKR-based
interval scheme that we introduce in Section 4.4 takes advantage of this.
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Giac9b
INT,Safe(A):

1 global gst, A, B, E, ST,
Xk, Xst, Xaux, emax , ce , cst

2 (gst,A[0])←$ Init()
3 B[0]← ||
4 (e∗, I)←$AO(·)()
5 for i ∈ I do:
6 (sti, l, r)← ST[i]; Sint ∪←− {sti}
7 for e = l to r do:
8 Xst[e]← 1
9 k1 ← GetKey(gst, e∗); k0←$ {0, 1}ℓ

10 if k1 = ⊥: k0 ← ⊥
11 b′←$AO(·)(kb,Sint)
12 return ¬Xk[e∗] ∧ ¬Xst[e∗] ∧ Safe(e∗) ∧ b′OGetKey(e):
13 Xk[e]← 1
14 return GetKey(gst, e)
OExposeAux(e):
15 Xaux[e]← 1
16 return A[e]

OProgress(fl):
17 aux← A[emax ]
18 (gst, aux′)←$ Progress(gst, aux, fl)
19 B[++emax ]← fl

20 if aux′ = ⊥: aux′ ← aux

21 A[emax ]← aux′

OExport(l, r):
22 st← Export(gst, l, r)
23 ST[++cst]← (st, l, r)

OCreateExt(l, r, s):
24 ext← CreateExt(gst, l, r, s)
25 E[++ce ]← (ext, l, r, s)

OProcExt(ist, ie):
26 (st, lst, rst)← ST[ist]
27 (ext, lext, rext, s)← E[ie ]
28 require [lst, rst] = [lext, rext]
29 st← ProcExt(st, ext)
30 ST[++cst]← (st, lst, rst + s)

Figure 4: Game defining interval access control of an interval scheme INT.

For further intuition on weak IAC and how to capture it in the safety predicate, consider an
example where the adversary has access to states for disjoint intervals [·, l] and [r, ·]. Assume that
the scheme design allows for the derivation of the keys between the two intervals unless a key
rotation has been enforced by calling Progress on the rotation flag ||. Then, the safety predicate
should be set to Safe(e∗) = true for l < e∗ < r if there has been at least one rotation flag set by
Progress in some epoch between the two intervals. Formally,

Safe(e∗) = ∀el, er : (el < e∗ < er) ∧ (Xst[el] = Xst[er] = 1),
∃efl : (el < efl ≤ er) ∧ (B[efl] = ||).

As an example of what the predicate reflects, if A has access to state st for [0, 2] and state st′

for [6, 7], then keys in the interval [3, 4, 5] are safe only if flag || was set in Progress in at least one
epoch efl ∈ [3, 4, 5, 6].15

4.4 Interval Scheme Construction Based on Dual Key Regression with One-Way
Chains and Double-PRFs

In this section, we construct an interval scheme based on DKR, generalizing the original DKR
scheme that we described in Section 3.2.2. Our generalization removes the upper limit on the key
sequence length by allowing both DKR chains to be replaced, e.g., when they run out of elements.
This additionally provides new security properties in the form of hard boundaries for delegatable
intervals. This can be used in the group setting to restrict the damage of leaked chain elements.
While the security of the original DKR scheme has not been formally analyzed in the literature,
we prove the IAC security of our DKR-based interval scheme. This includes the introduction of

15In Figure 7 we illustrate the same example for the specific case of our DKR-based interval scheme construction,
which is slightly more complex.
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Gdbl9prf9b
F (A):

1 b′←$AO(·)()
2 return b′

ONewX():
3 n← n + 1
4 xn←$ {0, 1}xl

ONewY():
5 m← m + 1
6 ym←$ {0, 1}yl

OFnX(i, y):
7 if Tx[i, y] = ⊥:
8 if b = 1: Tx[i, y]← F(xi, y)
9 else: Tx[i, y]←$ {0, 1}zl

10 Return Tx[i, y]

OFnY(x, i):
11 if Ty[x, i] = ⊥:
12 if b = 1: Ty[x, i]← F(x, yi)
13 else: Ty[x, i]←$ {0, 1}zl

14 Return Ty[x, i]

OFnXY(i, j):
15 if Txy[i, j] = ⊥:
16 if b = 1: Txy[i, j]← F(xi, yj)
17 else: Txy[i, j]←$ {0, 1}zl

18 Return Txy[i, j]

Figure 5: Game defining double-PRF security for F : {0, 1}xl × {0, 1}yl → {0, 1}zl.

the double-PRF building block in Section 4.4.1, which combines two DKR chain elements, one
from the forward chain and one from the backward chain, to derive an epoch key. We prove this
construction secure, starting with a formalization of double-PRF security. The one-way chains in
our interval scheme can be instantiated either via hash chains or via SSKG. Both constructions have
interval-agnostic extensions (see Definition 4.2), but they lead to different cost-storage complexity
trade-offs that we analyze in Section 4.6.

4.4.1 Double-PRFs.

A function family F : {0, 1}xl × {0, 1}yl → {0, 1}zl is a function with two arguments, usually called
key and message. For each function family F, the swapped function F̄ : {0, 1}yl × {0, 1}xl → {0, 1}zl

is defined as F̄(y, x) = F(x, y). That is, F̄ swaps the key for the message, and vice versa. We say
that F is a secure pseudorandom function (PRF) if, for any uniformly random x ∈ {0, 1}xl, F(x, ·) is
indistinguishable from a random function f : {0, 1}yl → {0, 1}zl for a computational adversary that
does not know x. Following [22], we call F a swap-PRF if F̄ is a secure PRF. The formal definitions
are in Appendix B.1.

If F is both a PRF and a swap-PRF, it is often called a dual-PRF [22]. In the following, we
need a slightly stronger security assumption, which demands that F is secure as both a PRF and
a swap-PRF simultaneously. That is, it must be indistinguishable from a random function when
keyed either by the first input or the second input, as well as when keyed through both inputs at
the same time. We call this new notion double-PRF security.

Formally, double-PRF security is defined through the game Gdbl9prf
F in Figure 5, where the

adversary has oracle access to both F (through oracle OFnX) and F̄ (through oracle OFnY). Security
is in the multi-user setting [20] and the adversary can generate keys via oracles ONewX (for new
elements in {0, 1}xl which act as keys for F) and ONewY (for elements in {0, 1}yl keying F̄). To
maintain consistency in the ideal world, the game stores values returned by oracles OFnX and OFnY
in tables Tx and Ty, respectively. The separation into two tables ensures that in the ideal world,
F(xi, ·) and F̄(yj , ·) are modeled as independent random functions, even if the adversary happens to
make queries OFnX(i, y) and OFnY(x, j) such that xi = x and yj = y. Finally, the adversary has
access to an oracle OFnXY which takes two key indices i, j as input. When the game bit b = 1, the
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oracle returns F(xi, yj) for xi and yj generated by oracle ONewX and ONewY, respectively. In the
ideal world (when b = 0), the oracle returns independent, uniformly random points in {0, 1}zl, with
consistency maintained through table Txy.

Definition 4.4 (Double-PRF security). Consider game Gdbl9prf
F in Figure 5. The double-PRF

advantage of an adversary A is given by

Advdbl9prf
F (A) = Pr[Gdbl9prf91

F̄ (A)]− Pr[Gdbl9prf90
F̄ (A)] .

The following lemma states that any dual-PRF is also a double-PRF. Concretely, this means
that we can instantiate a double-PRF with e.g. HMAC [21], which was recently shown to be a
dual-PRF [11]. The proof is in Appendix D.

Lemma 4.5 (prf ∧ swap9prf ⇐⇒ dbl9prf). A function family F: {0, 1}xl × {0, 1}yl → {0, 1}zl is a
double-PRF if and only if it is a PRF and a swap-PRF.

4.4.2 Construction D[OWC, F]

We are now ready to give our interval scheme construction. Let N ′ and ℓ be the maximum chain
length and output key length parameters, respectively. Let OWC be a one-way chain with key
length ℓs and let F: {0, 1}ℓs × {0, 1}ℓs → {0, 1}ℓ be a double-PRF. We construct a DKR-based
interval scheme D[OWC, F], from OWC and F as shown in Figure 6 and explained below.

D[OWC, F] data types. Our D[OWC, F] instantiation uses fs and bs to refer to the seed of a
forward or backward chain, respectively. As the D[OWC, F] construction maintains multiple such
chains, we refer to their seeds by indexing (e.g., fs0, fs1, . . .). The D[OWC, F] states keep two lists,
one for forward chains and one for backward chains that both store epoch-chain pairs, sorted by
epochs in ascending order. For forward chains, (efs, fs) denotes the chain with seed fs, starting at
epoch efs. This chain can derive keys for later epochs e ≥ efs until the next forward chain or the
maximum chain length efs + N ′. For backward chains, (ebs,bs) denotes the chain with seed bs at
epoch ebs. This chain can derive keys for earlier epochs e ≤ ebs until the previous backward chain
or epoch 0. Note that elements on the backwards chain are released in reverse order of derivation,
and the maximal chain length defines the number of future backward chain elements until a new
chain must be created (at the latest, in epoch ebs + 1). We refer to the backward and forward chains
that are used to derive keys for the maximum epoch emax as the current chains.

D[OWC, F] subroutines. The algorithms in Figure 6 use two helper functions GetFChains and
GetBChains. They take as input a list of forward resp. backward chains, as well as a left and right
epoch interval boundary l and r. They return the list of seeds necessary to derive all forward resp.
backward chain elements in the interval [l, r]. Helper GetFChains advances the forward chain seed
to the state of epoch l to prevent disclosing chain elements needed to derive keys for epochs e < l
(Line 53 in Figure 6). Similarly, GetBChains advances the backward chain seed to the state of epoch
r to prevent disclosing chain elements needed to derive keys for epochs e > r (Line 57 in Figure 6).
Note that both functions assume well-formed inputs (i.e., 0 ≤ l ≤ r ≤ emax), which is guaranteed by
the calling functions.

Using the above helper functions, the algorithms of D[OWC, F] work as follows.

Init(): Initializes the DKR state st. By calling Progress with a flag ||, the current maximum epoch
is set to emax = 0 and the lists for forward and backward seeds F ,B are populated with initial
chains and the auxiliary value aux is set to the backward chain seed.
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Progress(st, aux,fl ∈ {ε, 7→,← [, ||}): This algorithm increases the interval covered by state st by one,
advancing emax . Recall that epoch key ke for epoch e is only part of the global key sequence
after Progress advanced emax past epoch e. Before that, a call to Progress can move to different
chains before we use, for example, all elements on the backwards chain. Releasing a new
element of the backward chain requires access to the backward chain seed bs for some epoch
ebs > emax as these elements are released in reverse order. This seed bs is provided in the
auxiliary information aux unless the backward chain ran out of elements. If new chains are
required, either because one of the current chains reached its maximal length N ′ or because it
was explicitly requested with a flag fl, algorithm Progress calls OWC.Gen to initialize a new
one-way chain of length N ′. The supported flags for Progress are 7→ for a new forward chain,
←[ for a new backward chain, and || for both. If fl ∈ {← [, ||}, then the algorithm will also
return the new backward chain seed in aux.

Export(st, l, r): Uses the helper functions to retrieve the (possibly multiple) forward and backward
chains seeds for deriving all keys in the interval [l, r], and sets the interval boundaries st.l
and st.r of the exported state accordingly.16 The helper functions GetFChains and GetBChains
use the seek operation OWC.Seek to advance the first forward chain to epoch l and the last
backward chain to epoch r, which ensures that the chains in the exported state cannot derive
any keys outside of [l, r].

CreateExt(st, r, s): Creates an interval-agnostic extensions extension for epochs [r + 1, r + s] that
can extend interval [l, r] to [l, r + s] for any left boundary l. Extensions are almost identical
to interval states in our construction, except that the extension often does not include the
first forward chain seed. This makes extensions more compact and is possible because existing
chains of the extended interval already contain the necessary forward chain seed to derive
elements of the extension’s first forward chain unless epoch r + 1 is the start of a new forward
chain.

ProcExt(st, ext): To extend a state st with extension ext, algorithm ProcExt merges the lists of
forward and backward chains. If the extension contains a later element of the same backward
chain that is used to derive the last epoch key of the extended interval, then only the later
element is stored in the returned state st for compactness (Lines 37–40 of Figure 6).

GetKey(st, e): To retrieve the key ke for an epoch e, algorithm GetKey runs the helper functions
GetFChains and GetBChains to retrieve the relevant chains for epoch e from the state st.
From these chains, algorithm GetKey extracts the forward key fk and backward key bk using
OWC.GetKey. These keys are then combined with the double-PRF F (cf. Section 4.4.1) to
compute the returned epoch key ke = F(fk, bk).

16Note that all of our algorithms operate on a local “copy” of their arguments. When Export modifies st, this does
not change the calling user’s interval state but rather returns a new state that is a copy of the state passed in the
argument of Export with the modifications done in that function.
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Init(ε):
1 st.(emax ,F ,B)← (−1, list(), list())
2 (st, aux)←$ Progress(st, ε, ||) � set up chains

3 return (st, aux)

Progress(st, aux, fl):
� retrieve current forward/backward chain epoch

4 if |st.F| > 0: (efs, ·)← st.F [−1]
5 else: efs ← 0
6 if aux ̸= ε: (ebs, bs)← aux

7 else: ebs ← 0
8 aux← ε � suppress returning unchanged aux

9 st.emax ← st.emax + 1
� check if new chains are needed

10 if fl ∈ {7→, ||} ∨ st.emax ≥ efs + N ′:
11 � move to new forward chain

12 st.F +←− [(st.emax , OWC.Gen(N ′))]
13 if fl ∈ {← [, ||} ∨ st.emax > ebs:
14 � move to new backward chain

15 bs ← OWC.Gen(N ′)
16 ebs ← st.emax + N ′ − 1
17 aux← (bs, ebs)
18 st.B +←− [(ε, ε)] � to be filled in on Line 21

19 � extend current backward chain to +1 element

20 bs ← OWC.Seek(bs, ebs − st.emax)
21 st.B[−1]← (st.emax , bs)
22 return (st, aux)

Export(st, l, r):
23 pre: 0 ≤ l ≤ r ≤ st.emax

24 st.F ← GetFChains(st.F , l, r)
25 st.B ← GetBChains(st.B, l, r)
26 st.(l, r)← (l, r)
27 return st

CreateExt(st, r, s):
28 pre: 0 ≤ r + 1 ≤ r + s ≤ st.emax

29 ext← Export(st, r + 1, r + s)
30 � omit first forward chain unless extension starts with a new forward

chain seed.

31 if ∄(r + 1, ·) ∈ st.F :
32 ext.F ← ext.F [1:−1]
33 return ext

ProcExt(st, ext):
34 pre: st.r + 1 = ext.l

35 st.F +←− ext.F
36 � discard last backward chain if on new bs′ chain

37 (e, bs)← st.B[−1]
38 (e′, bs′)← ext.B[0]
39 if OWC.Seek(bs′, e′ − e) = bs:
40 st.B ← int.B[0:−2]
41 st.B +←− ext.B
42 st.r ← ext.r

43 return st

GetKey(st, e):
44 pre: e ∈ [st.l, st.r]

� Get forward chain elem to derive key for epoch e

45 [(·, fs)]← GetFChains(st.F , e, e)
46 fk ← OWC.GetKey(fs)

� Get backward chain elem to derive key for epoch e

47 [(·,bs)]← GetBChains(st.B, e, e)
48 bk ← OWC.GetKey(bs)
49 ke ← F(fk, bk) � key combiner, cf. Section 4.4.1

50 return ke

GetFChains(F , l, r):
� get the forward seeds necessary to derive keys for epochs in [l, r].

51 [(e0, fs0), (e1, fs1), . . . , (e|F|−1, fs|F|−1)]← F
52 let i, j ∈ [0, |F| − 1] s.t. ei ≤ l < ei+1 and ej ≤ r < ej+1 for e|F| = e|F|−1 + N ′

� Seeking avoids disclosing the forward chain state needed to derive keys for epochs l′ < l.

53 F [i]← (l, OWC.Seek(fsi, l − ei))
54 return F [i:j]
GetBChains(B, l, r):
55 [(e0,bs0), (e1, bs1), . . . , (e|B|−1, bs|B|−1)]← B
56 let i, j ∈ [0, |B| − 1] s.t. ei−1 < l ≤ ei and ej−1 < r ≤ ej for e−1 = −1

� Seeking avoids disclosing the backward chain state needed to derive keys for epochs e > r.

57 B[j]← (r, OWC.Seek(bsj , ej − r))
58 return B[i:j]

Figure 6: Instantiation of a dual key regression scheme D[OWC, F]N′,ℓ from a one-way chain OWC with a maximum
chain length N ′ and ℓ-bit keys, and a double-PRF F.
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Figure 7: Example of how a progress flag set when the interval is extended to epoch 4 affects the keys derivable
from states for intervals [0, 2] and [6, 7] containing (f0,b5) and (f6, b0), respectively. It depicts the impact of the
following flags, in left-to-right, top-to-bottom order: none, new forward chain ( 7→), new backward chain (← [), both
new chains (||). The chain elements necessary to derive the keys for intervals [0, 2] and [6, 7] are marked blue (the
interval state elements are darker, derived values a lighter shade of blue) and additionally leaked elements are marked
red. All keys that can be derived have a triangle and are listed below the chains.

4.5 Security of D[OWC, F].

Intuitively, the IAC security of our DKR-based interval scheme follows from the one-wayness of
the chains for a single interval: the state containing fl and bN−r gives access to the keys for epochs
e ∈ [l, r], as per Figure 2, but not, for instance, to the key kl−1 since element fl−1 is not derivable
from fl. However, this guarantee no longer holds against adversaries with access to multiple states.

As can be seen in Figure 7, access to two (or more) non-overlapping states (f0,bN−2) and
(f6,bN−7) for N = 7 gives access not only to keys (k0, k1, k2) and (k6, k7), but also to keys (k3, k4, k5).
The reason is that each state leaks partial information about epochs outside of the interval; as long
as a chain continues uninterrupted, a single element suffices to derive all later elements in the chain.

To control this leakage and to avoid giving access beyond intended epochs, our construction
supports chain rotation. In our example, switching to a new chain at epoch 4 has the following
effect (illustrated in Figure 7):

1. New forward chain (progress flag fl = 7→): forward chain elements from epoch 4 and later
are not accessible with a state ending before epoch 4. In the example, epoch keys k4 and k5
remain secure.

2. New backward chain (fl =←[): backward chain elements before epoch 4 are not accessible with
a state starting at epoch 4 or later. In the example, epoch key k3 remains secure. Note that
this also generates a new aux.

3. New backward and forward chain (fl = ||): all k3, k4, k5 remain secure.

Additionally, note that the compromise of aux leaks the entire backward chain, potentially affecting
future keys until a new backward chain is created. We state the corresponding IAC safety predicate
in Figure 8 and formalize security as follows. The full proof is deferred to Appendix E.

The following theorem states that D[OWC, F] is a secure DKR scheme if OWC provides indistin-
guishability with forward security and F is a double-PRF.

Theorem 4.6 (IAC security of D[OWC, F]). Let OWC be a one-way chain and let F be a function
family and let D[OWC, F], parametrized by maximum chain length N ′ and output key length ℓ, be
defined in pseudocode of Figure 6. Let A be an adversary against the IAC security of D[OWC, F]
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Safe(e∗) = SafeFC(e∗) ∨ (SafeBC(e∗) ∧ SafeAux(e∗)) .
SafeFC(e∗) = ∀ex < e∗ : Xst[ex], ∃efl : (ex < efl ≤ e∗) ∧ (B[efl] ∈ {7→, ||}).
SafeBC(e∗) = ∀ex > e∗ : Xst[ex], ∃efl : (e∗ < efl ≤ ex) ∧ (B[efl] ∈ {←[, ||}).
SafeAux(e∗) = ∀ex : Xaux[ex],∃efl : (B[efl] ∈ {←[, ||}) ∧

(
(e∗ < efl ≤ ex) ∨ (ex < efl ≤ e∗)

)
.

Figure 8: Additional safety predicate Safe for the security of our D[OWC, F] scheme. The predicate SafeFC captures
forward chain safety at the challenge epoch e∗: there must be a forward chain replacement in between any exposed
epoch and e∗. Similarly, SafeBC captures backward chain safety: there must be a backward chain replacement in
between e∗ and the next exposed epoch. Finally, SafeAux captures backward chain safety upon full leakage, i.e., upon
leakage of the auxiliary value aux, which in D[OWC, F] is the backward chain seed. As the entire backward chain
leaks if aux is exposed, any exposure must occur either (a) before a backward chain replacement that occurs before
e∗, or (b) after a backward chain replacement that occurs after e∗.

with respect to Safe in Figure 8. Then we can construct adversaries BOWC, BF such that

Adviac,Safe
D[OWC,F](A) ≤ Advind9fs

OWC,N (BOWC) + Advdbl9prf
F (BF) .

Adversary BOWC makes at most 2 · QOGetKey(A) queries to oracle OGetKey and at most 2 + 2 ·
QOProgress(A) queries to oracle ONew. Adversary BF makes at most 1 query to each of its oracles.
The running times of both are roughly that of A.

On a high level, the proof consists of two main steps. The first is a reduction to the ind9fs
security of the one-way chain OWC, in which the forward and backward chain keys at the challenge
epoch are replaced by random. The reduction simulates the progression of the global state, and
when adversary A outputs its challenge epoch and interval exposure requests, the reduction requests
the states needed to simulate the exposed intervals. In particular, for all chains except the two which
cover the challenge epoch, the reduction exposes the seeds. Due to the safety predicate Safe(e∗),
either the forward or backward chain that covers the challenge epoch e∗ is guaranteed to not be
exposed at epoch e∗. This allows the reduction to request a challenge at epoch e∗ in the OWF
game, replacing the corresponding forward (fk) and/or backward chain key (bk) by random. The
second step is a reduction to the double-PRF security of the PRF F, which replaces F(fk,bk) by
random. We defer the full proof to Appendix E.

4.6 Interval Scheme Comparison and Efficiency

We compare our DKR-based construction of an interval scheme to other approaches and identify
three distinguishing properties of our construction: compact storage, low communication complexity,
and interval-agnostic extensions. These properties are crucial for scalability in the group setting, as
we discuss in Section 6.

Baseline: trivial interval scheme. The simple scheme trivial achieves IAC by sampling a fresh
key for every epoch. States simply contain the set of consecutive keys in an interval (hence, have
linear storage size), and aux is empty.

SSKG-based DKR. We can instantiate OWC in D[OWC, F] from an SSKG scheme S as described
in Section 3.2.1. We denote this construction by D[S, F].

Hash chain-based DKR. Similarly, if we instantiate OWC from a hash chain H as described in
Section 3.2.1, we obtain a construction D[H, F].

Interval Schemes from GGM Trees. A different approach to build an interval scheme is to
use a Goldreich-Goldwasser-Micali (GGM) tree [43, 44] of length N , which recursively applies a
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Figure 9: States on a GGM tree. The keys ke for epoch e ∈ [2, 6], highlighted in light gray, can be derived from the
state st = (s01, s10, k6). The state contains as the right/left co-path of the first node to the left/right of the interval,
respectively, up until the point where the two paths intersect (in this example, at the root). The starting nodes of the
path are marked with a dashed box and their path to the root is bold and red, the selected states on the co-path
have bold boxes .

length-doubling PRG G : {0, 1}ℓ → {0, 1}2ℓ for inputs of length ℓ to build a binary tree where the
child nodes are set to the first and last ℓ bits of the output from applying G to the parent node
state. The tree leaves then correspond to epoch keys. To construct an interval scheme, we can
set the auxiliary value aux as the root of the tree. Figure 9 shows an example of a global key
sequence of N = 8 keys derived from aux. For example, the ℓ-bit states s00 and s01 are derived
from s0 by applying the PRG: s00||s01 ← G(s0). Access to subintervals of the key sequence can be
granted through a set of internal tree nodes that allow for the derivation of all leaves between the
endpoints of the interval, and no leaves outside that. For instance, in Figure 9, the state st for keys
ke for e ∈ [2, 6] contains the minimal set of tree nodes (s01, s10, k6) that allows us to derive all keys.
Interval extensions must include the node or set of nodes that allow one to derive the next epoch
key.

We identify two possible constructions that we denote by GGM1 and GGM2, depending on how
they handle extensions. GGM1 simply provides the leaf corresponding to the next epoch. Such
extensions are interval-agnostic but result in an interval state size that is linear in the number of
covered epochs. GGM2 avoids this state growth by leveraging the tree structure to create extensions
while preserving IAC, which makes extensions dependent on the left endpoint of the interval. For
example, for the GGM tree in Figure 9, consider two states st = (s01, s10, k6) and st′ = (s0, s10, k6)
(i.e., which contain the tree nodes required to derive keys ke for e ∈ [2, 6] respectively e ∈ [0, 6]).
Now, if we want to extend st′ to k7 while preserving its compactness, we would simply send the
root aux. However, st cannot be sent aux as this also reveals k0 and k1, breaking IAC. Hence, the
extension for st must contain only s1.

Interestingly, both GGM-based constructions achieve perfect IAC inside a single tree (i.e., there
is no leakage beyond the interval bounds). However, to handle leakage of aux and support an
unbounded number of keys, this construction still needs to support rotating to new trees with a
different aux root, similar to chain rotations of DKR. Such rotations can be captured via a progress
flag fl = ||. The safety predicate for both constructions is the following:

Safe(e∗) = ∃el, er : (B[el] = B[er] = ||) ∧ (el ≤ e∗ < er)
∧ (∀e ∈ [el, er],Xaux[e] = 0).

Moreover, GGM1 allows for puncturing to achieve forward security for deleted epoch keys—as
first noted by [26, 28, 49]—although at the cost of degrading the state size to be linear in the
number of punctured keys. To the best of our knowledge, it is not known how to achieve FS with
logarithmic storage size, and hence this is also not supported in GGM2.

Practical efficiency. The optimal choice of a scheme may vary on the application, as concrete
costs depend on usage patterns. Table 3 summarizes the comparison including asymptotic metrics of
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Table 3: Comparison of the trivial, GGM, SSKG, and hash-based instantiations of interval schemes for ℓ-bit keys,
global key sequence length N , and u≪ N distinct intervals. We report the worst-case cost asymptotically but omit
the O(·) notation. The columns denote the size of the auxiliary value (|aux|), of a state (|st|), of the extensions to
expand all u intervals by one epoch (|ext|); the computation cost of forwarding to future states (Seek); whether IAC
requires no explicit blocks ( ), blocks for both aux and st compromise ( ), or only on aux compromise ( ); whether
it supports secure deletion with ( ) or without ( ) state size degradation; and whether it supports interval-agnostic
extensions ( ). We highlight the best values for each column.

|aux| |st| |ext| Seek IAC secure del. int. agnostic
trivial 0 ℓ ·N ℓ 1
GGM1 ℓ ℓ ·N ℓ log(N)
GGM2 ℓ ℓ · log(N) u · ℓ log(N)
D[S, F] ℓ ℓ · log(N) ℓ log(N)
D[H, F] ℓ ℓ ℓ N

the costs of each scheme for a single pair of chains respectively a single GGM tree. The hash-based
DKR D[H, F] is best suited for our group application Grappa due to its compact storage (independent
of the chain length N) and interval-agnostic extensions. We will see in Section 6.4 that this is crucial
to keep communication complexity low—which enables efficient and scalable protocols—as it avoids
costly pairwise channels in the group setting, and preserves the advantages of the well-established
CGKA design such as the delivery service.

Furthermore, we argue that although D[H, F] spends time linear in N to derive chain elements,
this is not a concern in practice as evaluating hash functions is a fast operation on modern hardware
and N is of moderate size.

5 Group Key Progression
Interval schemes enable the derivation of a sequence of keys that can later be shared and restricted
to intervals. While they may find other applications, our main motivation for introducing interval
schemes is the group setting. However, interval schemes are a symmetric key primitive that lacks the
support for the group operations that are expected for any group key agreement primitive. In this
section, we introduce group key progression (GKP), which is a standalone primitive that enables a
(dynamic) group of users to privately share a sequence of keys across time. GKP can be seen as the
analogue of CGKA [6] for the persistent setting. Importantly, GKP does not rely on external (e.g.,
server-side) storage, and only requires a server for message delivery (as CGKA does). To establish a
syntax and security model for GKP, we naturally take inspiration from CGKA.

5.1 Group Key Progression Syntax

In a GKP scheme, time is measured in epochs e, which are the time between two group actions,
i.e., changes to the group membership or key rotations. Every epoch has an associated key called
the epoch key. The GKP syntax supports the standard operations for dynamic groups, i.e., adds,
removals and key updates. GKP schemes distinguish between standard members and group admins.
Only admins are allowed to add or remove other users, and their cryptographic state may contain
additional key material compared to that of a standard member similar to prior work on group
messaging [17, 57].
Definition 5.1 (Group key progression). A GKP scheme GKP = (InitUser, Create, ExecCtrl, ProcCtrl,
JoinCtrl, GetEpochKey) is a tuple of algorithms that we define below. Associated to the scheme is a
space of users U = {uid1, . . . ,uidu}.
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• stU ←$ InitUser(uid); initializes the state of a new user with identifier uid ∈ U .

• st′U ←$ Create(stU ); on input the user state stU , creates a group owned by the calling user and
outputs an updated user state st′U .

• (st′U , τ, ω)←$ ExecCtrl(stU , cmd, arg); on input the calling user’s state stU , optional argument
set arg (e.g., the target user’s identifier uid), this algorithm executes a control command cmd
from the list below. This outputs a control message τ , a welcome message ω, and updates
the user state st′U . The welcome message is only used for command Add and will be set to ⊥
otherwise.
The following commands cmd are supported for group admins:

– Add: add user uid ∈ arg to the group with access from the current epoch.
– Rem: remove non-admin user uid ∈ arg from the group.
– AddAdm: grant existing user uid ∈ arg admin privileges for the group.
– RemAdm: revoke the admin privileges of user uid ∈ arg.
– UpdAdm: refresh the state stU of the calling admin.
– RotKeys: rotates the key material of the entire group.

The following command cmd is supported for non-admin members:

– UpdUser: performs an update to refresh the local state of the caller.

• st′U /⊥ ← ProcCtrl(stU , τ); on input a user state stU and a control message τ , the user processes
the control message, evolves to the next epoch (if needed), and returns its updated state st′U ,
or ⊥ if execution fails.

• st′U /⊥ ← JoinCtrl(stU , ω); on input a user state stU and a welcome message ω, the user
processes the welcome message to join the group. It returns the updated state st′U or ⊥ if
execution fails.

• Ke/⊥ ← GetEpochKey(stU , e); given the user state stU and an epoch e, derive the correspond-
ing epoch key Ke , or ⊥ if the user cannot derive this key.

Implicitly, the users in a GKP scheme rely on a service provider to send messages to other
parties. As usual in the messaging literature (e.g. [6, 50, 45, 16]), the service provider is assumed to
provide correct message delivery. A temporary unavailability of the service provider may degrade
correctness but not security. Similar to messaging protocols, GKP does not have any server-side
global state. Hence, we can rely on the delivery service to handle concurrent operations.

Correctness. In a correct GKP scheme, all parties processing a consistent sequence of control
messages (i.e. share consistent views of the state) must obtain the same epoch keys from GetEpochKey
for all epochs available to them. We omit the formal definition as it is similar to interval scheme
correctness (see Section 4.2).

5.2 Group Key Progression Security Model

Consistent with the security models established for group key agreement primitives [6, 58], the GKP
security model considers an adversarial service provider (often a central server in practice) that can
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schedule group operations and messages sent by parties, as well as corrupt users at any point in
time. Hence, the service provider can collude with corrupted parties to gain access to secret data.

Our model primarily captures key indistinguishability of the GKP epoch keys. We remark that
GKP security should not be interpreted as a file sharing security model, since 1) GKP is a key
agreement primitive, agnostic to the use that is later given to the keys, and 2) the GKP service
provider only handles message delivery and can be decoupled from a server storing ciphertexts.
For applications such as cloud storage and message backups, other security notions such as data
integrity and user authentication must be considered. This is out of scope of this work, as these
properties should be provided with additional security mechanisms robust against malicious servers,
as done for example in [12].
Security game. The security of a group key progression scheme GKP is defined via a key
indistinguishability game (see Definition 5.2) running between a challenger and an adversary A.
After an interaction with multiple oracles, A wins the game if it guesses a real-or-random bit b
correctly and if the so-called cleanness predicate C allows the sequence of oracle calls made by A.

Definition 5.2 (Key indistinguishability of GKP). Let GKP be a group key progression scheme.
We define key indistinguishability with respect to a cleanness predicate C for GKP via the game
Gkind9b

GKP,C in Figure 10. We define the advantage of an adversary A in Gkind9b
GKP,C as

Advkind
GKP,C(A) = Pr[Gkind91

GKP,C(A)]− Pr[Gkind90
GKP,C(A)] .

We say that GKP is (q, t, ε)9kindC secure if for all adversaries A running in time at most t and
making at most q oracle queries we have Advkind

GKP,C(A) ≤ ε.

Time and synchronization between parties in the security game is modeled by integer epochs,
which match the GKP epochs except for standard member updates, as these do not generate a new
epoch key. The game enforces that each generated control message is associated to a unique epoch.
We say that a user uid is at epoch e > 0 if it belongs to the group at epoch e, and the last control
message processed by uid corresponds to e. Additionally, we introduce a global epoch game variable
ep, which stores the epoch of the latest control message that was issued (not necessarily processed).
For each new control message, ep is incremented by 1. The number of member updates is kept in a
counter up.

Table 4 describes several dictionaries tracked by the challenger during the game. Note that,
except for the state dictionary ST and the key dictionary K , the content of all dictionaries is known
to the adversary.
Oracles. We informally describe the oracles that the adversary has access to in the game in
Figure 10.

OInit(uid): Initializes a user uid via ST[uid]← InitUser(uid).

ODeliver(uid, e): uid processes the control message T[e]. If the processing succeeds, sets the epoch
of user uid to E[uid]← e, except if uid is removed from the group; then it sets E[uid]← ⊥.

OJoin(uid, e): uid processes the join message W [e]. If the processing succeeds, sets E[uid]← e.

OExpose(uid): Leaks the state ST[uid] of the user uid to A.

OGetKey(e): Leaks the epoch key K[e] for epoch e to A.

OTest(e): The adversary gets a real-or-random key corresponding to epoch e, depending on whether
the game bit b is 0 or 1. This oracle can only be called once.
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Game Gkind9b
GKP,C (A):

1 global G,AD,E,T,W ,K, ep, up
2 (uid0 ∈ U)← AOInit(·)()
3 ST[uid0]← Create(ST[uid0])
4 G[0]← {uid0}; E[uid0]← 0
5 b′←$AO(·)()
6 if C return b′ else return ⊥
OInit(uid ∈ U):
7 ST[uid]← InitUser(uid)
ODeliver(uid ∈ U , e):
8 st← ProcCtrl(ST[uid],T[e])
9 if st = ⊥ : return

10 if K[e] = ⊥:
11 K[e]← GetEpochKey(st, e − up)
12 ST[uid]← st

13 if uid ∈ G[e]: E[uid]← e

14 else E[uid]← ⊥
OJoin(uid ∈ U , e):
15 st← JoinCtrl(ST[uid],W [e])
16 if st = ⊥ : return
17 ST[uid]← st; E[uid]← e

OExpose(uid ∈ U , e):
18 if e = E[uid] return ST[uid]
OGetKey(e):
19 return K[e]
OTest(e ≤ ep):

20 K0←$ {0, 1}ℓ; K1 ← K[e]
21 return Kb

OAdd(uid ∈ U , uid′ ∈ U):
22 pre: ep = E[uid] ∧ T[ep] = ⊥
23 (T[ep],W [ep],ST[uid])
← ExecCtrl(Add,ST[uid], uid′)

24 if T[ep] ̸= ⊥ :
25 ep++; G[ep] ∪←− {uid′}
ORemove(uid ∈ U , uid′ ∈ U):
26 pre: ep = E[uid] ∧ T[ep] = ⊥
27 (T[ep], ·,ST[uid])
← ExecCtrl(Rem,ST[uid], uid′)

28 if T[ep] ̸= ⊥ :
29 ep++; G[ep] −←− {uid′}
OAddAdm|ORemoveAdm(uid ∈ U ,uid′ ∈ U):
30 pre: ep = E[uid] ∧ T[ep] = ⊥
31 (T[ep], ·,ST[uid])←

ExecCtrl(AddAdm|RemAdm,ST[uid], uid′)
32 if T[ep] ̸= ⊥ :
33 ep++
34 AD[ep] ∪←− {uid′}|AD[ep] −←− {uid′}
OUpdate(uid ∈ U):
35 pre: ep = E[uid] ∧ T[ep] = ⊥
36 (T[ep], ·,ST[uid])←

ExecCtrl(UpdUser,ST[uid],⊥)
37 if T[ep] ̸= ⊥ : ep++; up++
OUpdateAdm|ORotKeys(uid ∈ U):
38 pre: ep = E[uid] ∧ T[ep] = ⊥
39 (T[ep], ·,ST[uid])←

ExecCtrl(UpdAdm|RotKeys,ST[uid],⊥)
40 if T[ep] ̸= ⊥ : ep++

Figure 10: Security game Gkind9b
GKP,C between a challenger and an adversary A, parametrized by cleanness predicate C.

Table 4: Summary of dictionaries tracked by the Gkind9b
GKP,C challenger.

G[·] maps epoch e to the set of group members at epoch e
AD[·] maps epoch e to the set of group admins at epoch e
ST[·] maps user uid to their current state (updated on oracle calls on uid)
T[·] maps epoch e to the unique control message of e
W [·] maps epoch e to the unique welcome message of e (if applicable)
E[·] maps user uid to their local epoch (by convention, ⊥ for non-members)
K[·] maps epoch e to its corresponding epoch key
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OAdd(uid,uid′), ORemove(uid, uid′) : User uid adds/removes uid′. If successful, the oracle stores
the control message in T[ep] (and the welcome message in W [ep] for OAdd), advances the
global epoch ep++ and updates the set of group members for the new epoch G[ep] by
adding/removing uid′.

OAddAdm(uid,uid′), ORemoveAdm(uid,uid′): uid grants/revokes admin privileges from uid′. If suc-
cessful, the oracle stores the control message in T[ep], advances the global epoch ep++ and
updates the set of group admins for the new epoch AD[ep] by adding/removing uid′.

OUpdate(uid): can be called for any user uid (incl. non-admins) and updates the state of the caller.
It advances the global epoch ep++ and the update counter up++.

ORotKeys(uid), OUpdateAdm(uid): uid rotates the group keys respectively refreshes its local admin
state. If successful, the oracle stores the control message in T[ep], and advances the global
epoch ep++.

Security notions and cleanness. The precise provable security of a GKP scheme is defined by
the cleanness predicate C, which determines the epoch keys that can be challenged by the adversary.
The challenger verifies C at the end of the game, relative to all queries made by the adversary,
and aborts the game if the predicate fails. C rules out trivial attacks, such as when A exposes a
member in some epoch e and then asks to test a key known by the member at exposure time. The
epoch-based modeling of the game allows C to capture interval access control by allowing A to test
epoch keys that were derived before a compromised member entered a group, and after they were
removed. Further, post-compromise security is captured by letting A test epoch keys known to
users that were exposed in previous epochs, but recovered (e.g, through group key rotation) before
the challenge epoch. However, forward security in the broader sense is not captured, as our GKP
syntax does not allow that users delete epoch keys on-demand. We discuss cleanness further in our
instantiation of GKP in Section 6.

A limitation of our model is that the adversary can only deliver messages that are generated
honestly by the users. We chose to focus on capturing the core confidentiality properties of GKP to
reduce complexity, as was done for CGKA modeling [6, 50]. Secure GKP schemes can be extended
easily to achieve security against active adversaries. Concretely, authenticated GKP can be built
from GKP using digital signatures and a PKI (see [7, 17] for analogous transformations for CGKA).
We discuss security against active adversaries further in Section 7.

6 Grappa: Group Key Progression for Persistent Access

We introduce our instantiation of group key progression, called Grappa, which relies on an interval
scheme INT and a CGKA scheme (see Section 4 and Section 3.2.3). We leverage recent advances
from the messaging community to support group management features, establish a secure channel for
group members, and enjoy an efficient service provider. To benefit from the fast fanout mechanism of
the CGKA delivery service, we need to avoid sending user-specific messages over expensive pairwise
channels. In particular, this implies that INT must have interval-agnostic extensions such that
the same message can be sent to all group members. Finally, we need a private channel between
group admins to allow them to synchronize on global state updates. Taking inspiration from the
dual-CGKA protocol from [17], we instantiate such a channel via a separate (admin-exclusive)
CGKA protocol.
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Table 5: Summary of variables used throughout Grappa description.

stU .uid User’s unique identifier
stU .γA User’s admin CGKA state
stU .γM User’s member CGKA state
stU .IA User’s admin CGKA group key
stU .IM User’s member CGKA group key
stU .e User’s current epoch
stU .st User’s interval state
stU .aux User’s interval auxiliary value
ω GKP welcome message
τ GKP control message
ext Interval extension
st Interval state
fl Progress flag, fl ∈ {ε,← [, 7→}

T CGKA control message
TM Control message for all members
TA Control message only for admins
W CGKA welcome message
P CGKA proposal message
cmd CGKA or GKP command
IA Admin CGKA group key
IM Member CGKA group key
CA Ciphertext for admins, encrypted

under IA
CM Ciphertext for members, under IM
Cω Ciphertext for joiners, under IM

6.1 Grappa Construction

Below, we describe the algorithms of Grappa following the group key progression syntax: Grappa =
(InitUser, Create, ExecCtrl, ProcCtrl, JoinCtrl, GetEpochKey). We provide the full specification in Fig-
ures 11 and 12 below, aided by a description in Table 5 of the variables involved in the pseudocode.
Next, we describe the algorithms at a high level.

Group creation. A user uid can create a group with Create where they are admin. This operation
creates two CGKA groups with only the calling user uid in them. It stores the CGKA member and
admin states in γM and γA, respectively. Additionally, it initializes an interval state st.

Command execution. Group administrators can execute GKP commands cmd via ExecCtrl and
output a control message τ and, only for command Add, a welcome message ω. For all commands
cmd, the procedure is as follows, where steps 2–5 are only for admin commands (i.e., not UpdUser).

1. Generate a CGKA proposal message P on the appropriate command, followed by a commit
message Commit and a fresh CGKA group key stU .IM on the member CGKA.

2. For changes to the admin state (i.e., for cmd ∈ {AddAdm, RemAdm, UpdAdm, RotKeys}), addition-
ally generate a CGKA proposal, commit message, and fresh group key on the admin CGKA.
For additional security, refresh the member CGKA with an update (CGKA command Upd)
even if that group composition does not change. This ensures that both CGKAs remain in-sync
with respect to PCS updates, and is done by default in the helper algorithm RunBothCGKA.

3. Run INT.Progress to evolve the interval scheme, where the flag fl is selected according to cmd
as described below. Also, derive an interval extension ext and, if necessary, export a new
interval state st for added users/admins. This is done in the helper algorithm RunINT.

4. Encrypt the extension ext that parties require to keep their state in-sync, under the fresh
member CGKA key stU .IM . Encryption is done using a symmetric AEAD encryption scheme
AEAD, see e.g. Line 4 in Figure 12.

5. When a fresh backwards chain was picked (due to an explicit flag fl or exhausted chain), then
encrypt the new auxiliary information aux for other admins, i.e., using AEAD on the admin
key stU .IA as in Line 56 in Figure 11.

6. Output a control message τ as a bundle of all ciphertexts and CGKA control messages.
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InitUser(uid):
1 γM ←$ CGKA.Init(uid); γA←$ CGKA.Init(uid)
2 stU .(uid, γM , γA)← (uid, γM , γA)
3 return stU

Create(stU ):
� Create user and admin CGKA groups

4 γM ←$ CGKA.Create(stU .γM )
5 γA←$ CGKA.Create(stU .γA)
6 st← INT.Init()
7 stU .(γM , γA, e, st)← (γM , γA, 0, st)
8 return stU

JoinCtrl(stU , ω = (W ,Cω)):
9 stU .γM ← CGKA.Proc(stU .γM ,W )

10 stU .st← AEAD.Dec(stU .γM .I ,Cω)
11 return stU

ProcCtrl(stU , τ):
12 pre: τ.e = stU .e + 1
13 (cmd,TA,TM ,W ,CA,CM , e)← τ

14 stU .γM ← CGKA.Proc(stU .γM ,TM )
15 if cmd = UpdUser: return stU

16 else: ++stU .e

17 if stU .uid ̸∈ stU .γM .G: � if removed

18 return InitUser(stU .uid) � erase state

19 if cmd = (AddAdm, stU .uid):
20 � new admin receives full state and aux

21 (Cst,CA)← CA

22 stU ← ProcCtrlMember(stU , τ,Cst)
23 if stU .uid ∈ stU .γA.G:
24 stU ← ProcCtrlAdmin(stU , τ,CA)
25 return stU

GetEpochKey(stU , e):
26 return INT.GetKey(stU .st, e)

ProcCtrlAdmin(stU , τ,CA):
27 (cmd,TA, ·, ·, ·,CM , ·)← τ

28 stU .γA ← CGKA.Proc(stU .γA,TA)
29 � if admin rights revoked

30 if stU .uid ̸∈ stU .γA.G :
31 stU .γA ← CGKA.Init(stU .uid)
32 ext← AEAD.Dec(stU .γM .I ,CM )
33 � process extension as normal member

34 stU .st← INT.ProcExt(stU .st, ext)
35 return stU

36 stU .aux← AEAD.Dec(stU .γA.I ,CA)
37 return stU

ProcCtrlMember(stU , τ,Cst):
38 (cmd, ·, ·,W , ·,CM , ·)← τ

39 if cmd = (AddAdm, stU .uid):
40 � new admin: join group and receive admin state

41 stU .γA ← CGKA.Join(stU .γA,W )
42 stU .st← AEAD.Dec(stU .γA.I ,Cst)
43 else: � process interval extensions

44 ext← AEAD.Dec(stU .γM .I ,CM )
45 stU .st← INT.ProcExt(stU .st, ext)
46 return stU

RunCGKA(γ, cmd, uid):
47 (γ,P)←$ CGKA.Prop(γ, cmd, uid)
48 (γ,T,W , I)←$ CGKA.Commit(γ,P)
49 return (γ,T,W , I)

RunBothCGKA(stU , cmd, uid):
50 (stU .γA,TA,W , stU .IA)← RunCGKA(stU .γA, cmd, uid)
51 (stU .γM ,TM ,⊥, stU .IM )← RunCGKA(stU .γM , Upd,⊥)
52 return (stU ,TA,TM ,W )

RunINT(stU , fl):
53 stU .e ← stU .e + 1
54 (stU .st, aux)←$ INT.Progress(stU .st, stU .aux,fl)
55 if aux ̸= ε:
56 stU .aux← aux; CA ← AEAD.Enc(stU .IA, aux, ‘INTAux’)
57 else: CA ← ε

58 ext←$ INT.CreateExt(stU .st, st.emax − 1, 1)
59 CM ← AEAD.Enc(stU .IM , ext, ‘INTExt’)
60 return (stU ,CA,CM )

Figure 11: GKP instantiation Grappa with helper functions in the bottom two boxes of the figure. The ExecCtrl
algorithm is in Figure 12.

32



ExecCtrl(stU , Add, uid):
1 (stU .γM ,TM ,W , stU .IM )← RunCGKA(stU .γM , Add, uid)
2 (stU ,CA,CM )← RunINT(stU , ε)
3 st′ ← INT.Export(stU .st, stU .emax , stU .emax)
4 Cω ← AEAD.Enc(stU .IM , st′, ‘INTUserState’)
5 return (stU , τ = (Add, ε,TM , ε,CA,CM , stU .e), ω = (W ,Cω))

ExecCtrl(stU , Rem,uid):
6 (stU .γM ,TM , ·, stU .IM )← RunCGKA(stU .γM , Rem, uid)
7 (stU ,CA,CM )← RunINT(stU , 7→)
8 return (stU , τ = (Rem, ε,TM , ε,CA,CM , stU .e),⊥)

ExecCtrl(stU , AddAdm,uid):
9 (stU ,TA,TM ,W )← RunBothCGKA(stU , AddAdm,uid)

10 (stU ,CA
′,CM )← RunINT(stU , ε)

� Encrypt admin state for new admin (in addition to aux already encrypted in CA
′ for all existing admins).

11 CA ← (AEAD.Enc(IA, stU .st, ‘INTAdminState’),CA
′)

12 return (stU , τ = ((AddAdm, uid),TA,TM ,W ,CA,CM , stU .e),⊥)

ExecCtrl(stU , RemAdm,uid):
13 (stU ,TA,TM , ·)← RunBothCGKA(stU , Rem, uid)
14 (stU ,CA,CM )← RunINT(stU ,← [)
15 return (stU , τ = (RemAdm,TA,TM , ε,CA,CM , stU .e),⊥)

ExecCtrl(stU , UpdAdm,uid):
16 (stU ,TA,TM , ·)← RunBothCGKA(stU , Upd,⊥)
17 (stU ,CA,CM )← RunINT(stU , ε)
18 return (stU , τ = (AddAdm,TA,TM , ε,CA,CM , stU .e),⊥)
ExecCtrl(stU , RotKeys, uid):
19 (stU ,TA,TM , ·)← RunBothCGKA(stU , Upd,⊥)
20 (stU ,CA,CM )← RunINT(stU ,← [)
21 return (stU , τ = (RotKeys,TA,TM , ε,CA,CM , stU .e),⊥)
ExecCtrl(stU , UpdUser, uid):
22 (stU .γM ,TM , stU .IM )← RunCGKA(stU .γM , Upd,⊥)
23 return (stU , τ = (UpdUser, ε,TM , ε, ε, ε, stU .e),⊥)

Figure 12: Remaining ExecCtrl commands for the GKP instantiation Grappa.
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The commands cmd set in ExecCtrl have the following effect:

Add: User uid is added to the member CGKA group, producing CGKA welcome message W . No
progress flag is set, but members still use a new forward chain element because the epoch
is advanced. The admin exports an interval state st′ for the current epoch and sends it
to user uid encrypted under the member CGKA key stU .IM as part of the GKP welcome
message ω (together with CGKA welcome message W ).

Rem: User uid is removed from the member CGKA and the interval is progressed with flag 7→,
creating a new forward chain so uid cannot derive future keys.

AddAdm: User uid is added to the admin CGKA group and progresses the interval with the empty
flag as all admins get access to the global all keys.

RemAdm: Admin uid is removed from the admin CGKA and progress runs with flag ←[ to create a
new backward chain (stored in aux and sent to other admins), as the revoked admin knows
the previous backward chain seed.

UpdAdm: Update both member and admin CGKAs by proposing and committing an Upd CGKA
command, and progress the interval with the empty flag.

RotKeys: Update both member and admin CGKAs and progress the interval with flag ←[ to create
a new backward chain.

UpdUser: Refresh the local CGKA state by proposing and committing an update Upd in the member
CGKA. This is the only operation that does not progress the interval and can be called by
any member (including non-admins).

Command processing. The protocol ProcCtrl processes a GKP control message τ . For all
commands, this message contains a member CGKA control message that is processed first. Command
UpdUser terminates here (Line 15 of Figure 11), all others increment the GKP epoch. If the executed
command was Rem, Grappa erases that user’s local state when it calls ProcCtrl (Line 18). For all
other commands except AddAdm, members move to the next epoch key by processing the interval
extension, which is encrypted with the member CGKA key. For AddAdm, the new admin instead
joins the admin CGKA by processing the CGKA welcome message and then uses the admin CGKA
key to decrypt the global interval state (Line 20 of Figure 11). Admins additionally need to process
control messages for the admin CGKA and decrypt new auxiliary information from other admins
(which, if necessary, contains a new backwards chain seed encrypted with the admin CGKA key).
The only exception is if the user’s admin rights were revoked with RemAdm, in which case they will
not learn the new seed and need to extend the interval by processing the extension as all non-admins.
Current admin membership is checked using the user’s state itself (see Line 23).

Joining the group. A joining user receives a GKP welcome message ω, which is processed in the
JoinCtrl algorithm. This contains a CGKA welcome message W that the user processes to obtain
the member CGKA key. This key allows the user to decrypt their interval state.

Obtaining epoch keys. GKP epoch keys are obtained directly from the underlying interval
scheme whose epochs are synchronized with GKP epochs. This is done in algorithm GetEpochKey.
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6.2 Grappa Security

The following theorem shows that Grappa is secure with respect to the security notion for GKP
schemes in Section 5.2. The exact security of the construction is parametrized by the predicate C,
that we present in Appendix F due to space constraints. The predicate may generically depend
on the cleanness predicate CCGKA of CGKA. For the proof, we adopt the optimally-secure safety
predicate CCGKA from [6], achieved by their RTreeKEM construction. We also take the safety
predicate from our interval scheme D[OWC, F] in Figure 8, and therefore state security with respect
to this construction. Note, however, that security holds for any of the interval-agnostic interval
schemes discussed in Section 4.6 with minor tweaks on the predicate C. We provide a proof outline
at the end of this section and the full proof in Appendix F.

Theorem 6.1 (Key indistinguishability of Grappa). Let CGKA be a CGKA scheme with group
key length ℓa, let AEAD be an AEAD scheme with key length ℓa and let INT be our D[OWC, F]
scheme. Let Grappa be the group key progression scheme defined from CGKA, AEAD and INT as
per Figures 11 and 12. Let A be a non-adaptive adversary against GKP key indistinguishability
(Definition 5.2) with respect to cleanness predicate C that makes Q oracle queries. Then we can
construct adversaries BCGKA, BINT, BAEAD such that

Advkind
Grappa,C(A) ≤ 2Q ·Advkind

CGKA,CCGKA(BCGKA)

+ Adviac
INT(BINT) + 2 ·Advind$9cpa

AEAD (BAEAD) .

Adversary BCGKA makes at most 3Q queries, BAEAD makes at most Q queries, and BINT makes at
most Q queries to the oracles of their respective challengers. The running times of all adversaries
are approximately that of A.

In Grappa, the IAC security of the interval scheme constrains the access of users to an interval
of keys. To remain secure against multiple user compromises, Grappa has to carefully set the
appropriate flags to create new chains on Rem, RemAdm, and RotKeys commands. Both CGKAs allow
members and admins to share interval state extensions via a channel that provides FS and PCS.
Note that Grappa also achieves PCS for keys, but only due to the combination of INT and CGKA:
regular updates to a user’s CGKA state ensure that A does not learn the interval extension required
to compute future epoch keys. Recovering from an admin compromise additionally requires running
RotKeys (e.g., to move to a new backward chain unknown to A). The number of group admins in
Grappa has security implications. Having a large pool of admins increases the attack surface, as
an admin compromise reveals more cryptographic material than a standard member compromise.
However, a small and frequently unavailable group of admins may degrade security as they are
needed to progress the interval scheme, gain PCS for members, and execute membership commands.

Theorem 6.1 proof outline. In the first step of the proof, we define the cleanness predicate
C = C(e∗) with respect to the challenge epoch e∗, which corresponds to the epoch key that was
tested by the adversary via OTest. The predicate C allows the adversary to test epoch keys from
any epoch for which none of the exposed users was a group member, capturing IAC. It also captures
PCS by allowing the corruptions of parties uid that occur before they heal via ORotKeys(uid) (or,
in some cases, also via OUpdate(uid)).

The proof then proceeds via a series of game hops, where Game 0 is the original GKP key
indistinguishability game. First, we consider the exposures of group administrators, and define an
epoch eAD as the earliest epoch for which all admins have healed (after being exposed in the past).
Note that C(e) = false if e∗ < eAD. Then, we define Game 1 as Game 0 except that all CGKA
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admin keys corresponding to epochs e ≥ eAD are replaced by random keys. This step follows via
a reduction to key indistinguishability of the admin CGKA, which can be carried out as all the
participants (GKP admins) have healed at eAD.

Second, we define Game 2 as Game 1 except that all ciphertexts encrypted under admin CGKA-
derived keys after eAD are replaced by random. The step easily follows by AEAD security as all the
admin CGKA keys were already random.

Third, we consider the exposures of any user and capture a so-called safety window such that
(1) e∗ is in the safety window, and (2) the cleanness predicate is true for all GKP epochs in the
safety window. We define Game 3 as Game 2 except that we replace all member CGKA keys in the
safety window by random. The reduction follows as in Game 1, by showing first that the CGKA
cleanness predicate is valid for all the corresponding CGKA epochs.

Fourth, we define Game 4 as Game 3 except that we replace ciphertexts encrypted with member
CGKA keys for epochs in the safety window by random, as we did in Game 2.

Finally, we consider the effect of user exposures in the safety predicate Safe of D[OWC, F]. We
describe a so-called flag window, which is contained in the safety window, which considers the effects
of progress flags (i.e., the creation of new chains) with respect to user exposures. We also show that,
unless e∗ is in a non-empty flag window, then C(e∗) = false. We define Game 5 as Game 4 except
that all epoch keys of D[OWC, F] in the flag window (except for those queried via OGetKey) are
replaced by random. The reduction to IAC security of D[OWC, F] follows by a standard simulation
strategy, where GKP keys exposed via OGetKey are obtained via the respective IAC oracle OGetKey.
The proof concludes as the epoch key corresponding to e∗ is random, hence the advantage of the
adversary in Game 5 is zero. The full proof is in Appendix F.

6.3 Grappa Example Showing Interaction with Interval Scheme D[OWC, F]
Figure 13 provides an example that visualizes how Grappa, when instantiated with the DKR-based
interval scheme from one-way chains D[OWC, F], generates a group key progression leveraging the
interval scheme. In this example, a user U is a group member from epoch ei to ej , and hence
knows the chain elements necessary to derive all forward and backward chain elements for that
interval. This includes multiple chains as Grappa replaced both forward and backward chains when
admin A left the group in epoch e∗. From the chain elements, user U can derive the epoch keys
ke for e ∈ [i, j]. However, user U cannot compute keys for x /∈ [i, j]: for epoch keys before ei, the
forward chain elements are unknown, and, similarly, after epoch ej the backward chain elements are
missing. In fact, Grappa provides even stronger security by rotating the forward chain when user U
is removed from the group, which prevents an adversary who knows a later backward seed from
deriving intermediate values.

6.4 Efficiency of Grappa

This section compares the storage and communication cost of Grappa when instantiated with all
interval schemes (for ℓ = 128-bit keys) introduced in Section 4 that have interval-agnostic extensions:
trivial, GGM1, D[S, F], and D[H, F].

The concrete storage and communication costs depend on the sequence of GKP operations.
Hence, we implement and publish17 a simulator for Grappa that supports the above interval schemes
and tracks the state and message sizes (but not the CGKA overhead which is independent from the
interval scheme). In Table 6, we report the results of a system starting with 500 users and 5 admins,
averaged over 100 runs of sampling 105 operations at random from a distribution of operations

17The simulator is published here: https://github.com/Miro-H/GrappaSimulator.
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Figure 13: Visualizing IAC for user U in GKP instantiation Grappa and the interaction with the forward and backward
one-way chains of the internal building block D[OWC, F]. User U , joining in epoch ei and leaving the group in epoch
ej has only access to keys ki, ki+1, . . . , kj . While part of the group, user U may learn multiple chains, e.g., when
admin A is removed in epoch e∗ and both chains are rotated.

Table 6: Simulated storage costs for Grappa using different interval schemes, averaged over 100 simulations each
sampling 105 operations with the following probabilities: 1% Add, 1% Rem, 48.9895% UpdUser, 0.01% AddAdm, 0.01%
RemAdm, 48.9895% UpdAdm, and 0.001% RotKeys. The simulation starts with 500 users, 5 admins, and uses a maximum
chain length N ′ = 104 producing ℓ = 128-bit keys. The communication complexity is the sum of all exchanged
admin/user messages. We highlight the best cells per column.

state size avg message size com. complexity
admin user admin user admin user

trivial 816 KB 272 KB 40.5 B 16.0 B 7.85 MB 406 MB
GGM1 38.4 KB 269 KB 233 B 16.0 B 203 KB 406 MB
D[S, F] 5.34 KB 6.67 KB 821 B 119 B 26.3 KB 3.07 GB
D[H, F] 4.2 KB 5.5 KB 610 B 16.3 B 20.8 KB 414 MB

(detailed in the caption of Table 6) that we consider realistic for envisioned applications. In our
distribution, UpdUser and UpdAdm are by far the most common operations as their regular execution
provides PCS. Adding/removing members is one order of magnitude more common than changing
the set of admins. Finally, using RotKeys to manually rotate all admin key material without
changing the group composition is a rare operation. To gain better intuition for our distribution
consider the following example. If 105 Grappa operations are executed in a year, then we have
roughly 5.6 executions each for UpdUser and UpdAdm per hour, every week there are 19.6 users
added and removed, and over the entire year 10 admins are added and removed, and we have 1
RotKeys operation. We encourage practitioners to adapt the operation probabilities to their use
case and run our simulator to evaluate the best configuration.

In Table 6, the admin state of trivial is larger than user states because, by definition, they
include the information to derive all epoch keys and not only a subset. The other schemes can take
advantage of compactness, from which admins tend to profit most (e.g., in GGM1, admins only store
the tree roots). User messages are only a single 128-bit key, tree leaf, or hash-chain element for
trivial, GGM1, and D[H, F], respectively. The exception is SSKG, where chain states consist of paths
in a tree that depend on the start of the chain. The total communication complexity of users is
larger than the one of admins because there are much more users than admins in our simulation.

In summary, we conclude that our Grappa scheme with D[H, F] has the most compact states
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because they do not grow with the number of epochs passed since a user joined the group, but
instead only grow linearly with the comparatively small number of calls to Rem, RemAdm, and RotKeys
(or when the chain is exhausted). Although the message size is slightly larger on average, D[H, F]
has less overall communication between admins due to two factors: 1) DKR-based schemes can
often avoid sending admin messages unless aux changed and 2) Grappa states are more compact
and thus transferring full states to new users or admins is less costly.

7 Discussion

We introduced group key progression, a primitive that allows a dynamic group of users with
administrators and members to derive keys for persistent data. These keys satisfy interval access
control, meaning that a user cannot derive keys from before it was granted access and after it
was removed. In addition to provable security, our constructions target practical efficiency. The
remainder of this section outlines applications of Grappa (and more generally GKP), directions for
future research, and a series of possible extensions to GKP and Grappa.

7.1 Applications

Figure 14 visualizes a generic application that uses Grappa to establish a progression of common
keys in a group. These keys can then be input to a key schedule K to derive or encrypt keys used
to secure persistent data. For example, Grappa could be used to build a shared folder, where one or
more folder owners are GKP admins that may add and remove other users. Every user can derive
epoch keys—in the cloud storage context often called key encryption keys (KEKs)—to encrypt
uniformly random and freshly sampled file keys, which in turn are used to encrypt files. KEKs
enable further application-level functionality such as file sharing (see [12]) or data key rotation.
Upon user compromise, IAC ensures that files uploaded before or after a user was granted access
remain secure, and hence limit the impact of a compromise even if the adversary gets ciphertext
access. Moreover, PCS allows Grappa to lock out passive adversaries by regularly refreshing key
material.

Other applications include backups for end-to-end encrypted (E2EE) messages, where a group of
users can use Grappa to encrypt exchanged messages (see Appendix C). Our security notions make
explicit how this transition from data in transit to persistent data at rest changes the provided
guarantees, including FS and PCS. Furthermore, Grappa could be used to store E2EE recordings of
video calls. Epoch keys together with appropriate slicing of video recordings could ensure that key
material is rotated as participants join and leave a meeting while still granting everyone access to
the recording of the part they attended.

7.2 Future Work

As discussed in previous sections, the GKP security model does not capture adversaries that can
inject messages in the network. Hence, security mechanisms against active attacks or malicious
insiders, such as signing control messages, cannot be captured in our model. Our model can be
extended to support active adversaries by adding another argument to ODeliver and OJoin such
that A can deliver arbitrary messages, instead of only those in T and W .

Beyond authentication security, which is relatively straightforward by using signatures and a
PKI, the ultimate goal would be to build an efficient GKP that is fully secure against both malicious
servers and insiders. Unfortunately, this is challenging for the group key agreement component of
GKP, as current CGKAs with full active security [8, 34] are impractically expensive. However, we
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Figure 14: Example application built on top of Grappa, where the derivable keys ei are input to a key schedule K to
derive keys to protect persistent data.

remark that a trusted delivery service for GKP does not prevent a system from achieving malicious
security for stored data (e.g., for confidentiality and integrity as in [12]) because it could have a
separate storage server with weaker trust assumptions. While it is challenging to prevent active
attacks, in practice we might be satisfied with detecting such attacks. A promising direction is to
analyze whether active attack detection mechanisms for two-party messaging [19] can be extended
to groups. Another open question is to prove the adaptive security of Grappa, as our proofs only
show selective security.

Alternative constructions for GKP are another interesting direction because, for example, CGKA
may be considered a too heavy primitive for small group settings. GKP can be built from an
interval scheme and a different group communication protocol such as pairwise channels or Sender
Keys, offering varying PCS guarantees. In the case of pairwise channels, interval schemes with
interval-dependent extensions such as GGM trees could also be used seamlessly.

7.3 GKP Extensions

Finally, several possible extensions of interval schemes and GKP include granting users history
access to epoch keys before they joined, temporary access revocation, and efficiency improvements
for batching command execution and resetting the growing state size.

Granting history access. Our GKP operation Add grants newly added users access from the
current epoch e. Our primitive could be extended to allow the inviting user to specify an epoch
e′ ≤ e as an additional argument to Add to denote from when the added user can derive keys. In
the current scheme, Line 4 of Figure 12 uses the current CGKA group key stU .IM of epoch e to
encrypt the key material for the new user. In our threat model, this encryption would leak the keys
for epochs [e′, e − 1] to other group members who may not be allowed to access keys before epoch
e − 1 but know stU .IM . Consequently, implementing history access would require access to secure
user-to-user channels to distribute the key material for epochs [e′, e] exclusively to the invited user.
In practice, one could leverage the PKI infrastructure that is already used by CGKA for identity
keys. However, this opens up the CGKA abstraction and so we leave its formal analysis for future
work. A more direct alternative is to use pairwise channels on top of interval schemes as discussed
above.

Additional GKP and INT commands. Other commands that could be considered to add
advanced functionality to GKP and interval schemes are the following:
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• TmpRevokeAccess, RestoreAccess: Inspired by BurnBox [64], we could support that users
can temporarily revoke their own access to the group (TmpRevokeAccess) and later restore it
(RestoreAccess). This could be implemented e.g. with secret sharing.

• INT.CreateExtLeft(st, l, r, s): This algorithm is the analog to INT.CreateExt for creating interval
scheme extensions, but for past instead of future epochs: it extends the access of an interval
state covering epochs [l, r] to [l − s, r], i.e., to all keys up to epoch l − s. Similar to granting
history access, this command requires secure pairwise channels.

• INT.Merge(st1, st2): We could add an algorithm to merge two interval states st1 and st2
to cover the union of their intervals. This could be allowed only for overlapping states to
increase efficiency of applications where the same user may receive multiple interval states.
Alternatively, we could allow an interval state to cover multiple intervals, but this would come
at the cost of complicating our syntax, construction, and security notion.

Efficiency improvements. Currently all control commands and operations below are performed
for individual users. Similar to CGKA, we could allow administrators to badge multiple commands
together. While this makes their processing faster, one needs to consider that the security benefit of
operations is deferred until after the batched execution, and, hence, does not apply to commands
running in the same batch.

Efficiency can be improved by enabling a “key sequence reset” operation in interval schemes,
which replaces the entire key sequence with a new sequence that ignores all previously set progress
flags. This would require the application to re-encrypt ciphertexts protected with GKP keys (e.g.,
in a shared folder for E2EE data where GKP keys encrypt file keys, these file keys would need to
be re-encrypted by admins). Every active interval (e.g., a user in Grappa) would then receive the
new interval state that is necessary to derive all keys of their access period. This would allow an
application to reset the state growth. However, this operation trades off security, as the key sequence
loses all intermediate progress flags and thus might leaks keys when multiple users are compromised
for interval schemes with relaxed IAC guarantees (cf. our DKR-based instantiation from Section 4.4).
Nonetheless, GKP states from before the reset still provide the same IAC guarantees for their GKP
keys and the corresponding old application ciphertexts as before the reset, i.e., their compromise
does not leak additional keys. Depending on the application using the interval scheme, such an
extension and performance-security trade-off may be beneficial.

Automatic access expiration. Finally, GKP can be instantiated with a time-based key schedule,
which progresses the global interval at regular time steps (say, every 10 minutes) as well as on group
membership changes. Thus, an application using GKP could automatically expire a user’s access at
some date (or after a certain number of epochs). This could be taken even further such that the
user’s data is also deleted after their access expired. Automatic, time-based self-destruction of data
has been studied in the past, see e.g. [40], but these constructions are not easily compatible with
our setting. Hence, it is an open question how to achieve self-destructing data for GKP.
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A Extended Explanation of the Data Protection Mechanisms Table
This section offers an extended explanation of Table 1. The table offers a systematization of data
protection mechanisms for group applications, comparing data in transit to data at rest.

The columns specify data actions. For data in transit, the actions describe the event where data
is sent or is received by a member of the group. In other words, data transfer is not instantaneous
but rather split into the action of sending data, and the action of receiving data (after some time,
during which a compromise could happen). This split is useful for two reasons: (1) it captures data
in transit, which is after sending but before receiving and (2) it allows us to model explicitly that
key material can be discarded or rotated as soon as the message was received.18 For data at rest, we
consider the data actions where new data is created or updated, which implies that it is accessible to
anyone currently in the group, or when existing data is deleted.

The rows of Table 1 specify the following five cases, which cover all possible time-points of
compromise relative to the data actions.

• Malicious former member : an adversary-controlled user (who was either malicious from the
start or compromised) was removed before the data action takes place.

• Previously compromised member : a group member that is part of the group during the data
action and who recovered from a previous compromise (e.g., through key rotation) before the
action.

• Compromised active member : the adversary is part of the group during the data action.

• Not-yet-compromised member : a group member that is part of the group during the data
action and that will be compromised at some later point.

• Malicious future member : an adversary-controlled user will be added to the group after the
data action (this can either be a user that is malicious from the start or an honest user added
after the action and who is later compromised).

In order to uniquely identify scenarios and avoid redundancy, we make two assumptions.
First, we assume there is only one compromise. The table easily generalizes to a system with

multiple compromises, where the union of all cells defines the set of necessary protection mechanisms.
This also implies that if any of the compromises results in no available protection mechanism, then
the data has to be considered compromised. Intuitively, this captures that the adversary only needs
one successful attack avenue.

Second, we assume that no action relevant for data security happens between the compromise
and the data action that are specified by the row and column respectively. For instance, the cell
at the intersection of the column for the data action where data at rest is deleted and the row for
a previously compromised member lists the protection mechanism for data that is removed while
one of the current group members recovered from a compromise before the action. As we assume
no other security relevant action happens between the “recovery from compromise” and the data
deletion, this data is disclosed to the adversary because it was uploaded while or before the member
was compromised. Otherwise, if the data would be created after the recovery (and before it is
deleted), we would be in the scenario for the row previously compromised member and the column
is created or updated, which is already captured by a different cell of the table.

Three examples of scenarios that were not explored by prior work on data at rest are the
following:

18This is the analogy for data in transit to deletion of persistent data.
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1. Column is created or updated and row malicious former member shows that persistent data
that is created after the adversary was removed can be kept inaccessible to the adversary by
rotating the group key material at or after the removal, before the new data is encrypted.

2. Column is created or updated and row previously compromised member shows that it is possible
to achieve PCS for data that is created after a member recovered from a previous compromise
by both ratcheting asymmetric key material and rotating symmetric keys.

3. Row malicious future member shows that one can protect any data from adversaries joining
the group in the future by ratcheting the key material (e.g., in a hash chain) after it was used
to encrypt the data.

B Standard Building Blocks

B.1 PRFs

A function family F : {0, 1}xl × {0, 1}yl → {0, 1}zl is a function with two arguments, usually called
key and message. For each function family F, the swapped function F̄ : {0, 1}yl × {0, 1}xl → {0, 1}zl

is defined as F̄(y, x) = F(x, y). That is, F̄ swaps the key for the message, and vice versa. We say
that F is a secure pseudorandom function (PRF) if, for any uniformly random x ∈ {0, 1}xl, F(x, ·) is
indistinguishable from a random function f : {0, 1}yl → {0, 1}zl for a computational adversary that
does not know x. Following [22], we call F a swap-PRF if F̄ is a secure PRF.

Definition B.1 (PRF and swap-PRF security). Let F be a function family. We define the advantage
of an adversary A against the PRF security of F as

Advprf
F (A) = Pr[Gprf91

F (A)]− Pr[Gprf90
F (A)] .

where game Gprf9b
F is defined in Figure 15. Following [22], we similarly define the advantage against

the swapped PRF security of F as

Advswap9prf
F (A) = Pr[Gprf91

F̄ (A)]− Pr[Gprf90
F̄ (A)] .

Notice that the definitions are identical, except that for swapped PRF security the game is
parameterized by the swapped function F̄. That is, swapped PRF security is equivalent to PRF
security of the swapped function. Both games are given in the multi key setting [20], meaning that
the adversary has access to a “ONew” oracle for generating new keys. The first input to the function
oracle OFn is an index which determines which out of these generated keys to use.

B.2 AEAD

We recall the syntax and security of an AEAD scheme from Rogaway [61], with the syntax modified
to use implicit random nonces and security lifted to the multi-user setting [20].

Definition B.2 (Authenticated encryption with associated data). An AEAD scheme AEAD =
(Enc, Dec) is a pair of algorithms. Associated to the scheme is a key length ℓa and a ciphertext
space C.

• Via C ←$ Enc(K ,M ,AD), the randomized algorithm encryption algorithm on input key
K ∈ {0, 1}ℓa , message M ∈ {0, 1}∗, and associated data AD ∈ {0, 1}∗, outputs a ciphertext
C ∈ C.
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Game Gind$9cpa9b
AEAD (A):

1 global m

2 b′←$AO(·)()
3 return b′

ONew():
4 m← m + 1
5 km←$ {0, 1}ℓa

OEnc(i,M ,AD):
6 C1←$ Enc(ki,M ,AD)
7 C0←$ {0, 1}|C1|

8 return Cb

Gprf9b
F̄ (A):

1 b′←$AO(·)()
2 return b′

ONew():
3 m← m + 1
4 xm←$ {0, 1}xl

OFn(i, y):
5 If T[i, y] = ⊥ then:
6 Return T[i, y]

Figure 15: Game formalizing ind$9cpa security of an authenticated encryption scheme with associated data AEAD
and PRF security for a function family F : {0, 1}xl × {0, 1}yl → {0, 1}zl.

• Via M/⊥ ← Dec(K ,C ,AD), the deterministic decryption algorithm on input a key K ∈
{0, 1}ℓa , ciphertext C ∈ C, and associated data AD ∈ {0, 1}∗, outputs a message M or the
error symbol ⊥ if decryption fails.

Definition B.3 (ind$9cpa). Let AEAD be an AEAD scheme and consider the game Gind$9cpa9b
AEAD in

Figure 15. The advantage of an adversary A against the indistinguishability from random under
chosen-ciphertext attack of AEAD is defined as

Advind$9cpa
AEAD (A) = Pr[Gind$9cpa91

AEAD (A)]− Pr[Gind$9cpa90
AEAD (A)] .

C Extended Comparison to Compact Key Storage

Dodis, Jost, and Marcedone (DJM) [36] propose two compact key storage (CKS) constructions—a
line scheme and an interval scheme—to efficiently store a sequence of encryption secrets from a
secure messaging application while preserving their forward security and post-compromise security.
The encrypted messages can be taken directly from the messaging application and stored persistently
on the backup server. The remaining problem and focus of CKS is to store the secrets used for
encrypting messages with a compact (i.e., small) per-client storage, and a global, server-stored
state that has linear size in the number of secrets. An explicit design goal of CKS is deduplication:
instead of letting each group member individually back up secrets, CKS aims to have a single backup
for all users in a group. This joint backup saves global storage space, while still preserving the
access permissions from the secure messaging application. Access to the backed up secrets can be
delegated to others by any user that has access to them.

CKS technical overview. Let mi,mi+1, . . . ,mj be the sequence of messages received by group
members, encrypted with the corresponding secrets si, si+1, . . . , sj. The line scheme uses convergent
encryption [37] to deterministically derive an encryption key Kj from the j-th messaging secret sj
and the previous encryption key Kj−1, and then uses Kj to encrypt sj and Kj−1 producing ciphertext
cj. This ciphertext is uploaded to the server. Once given access to a key Kj, a user can fetch and
decrypt the corresponding ciphertext cj to learn secret sj to decrypt message mj. The user further
learns Kj−1 and can recover mj−1 similarly as above, ultimately recovering all previous messages.
(Note that the line scheme hence only supports all-or-nothing access to the full history of messages
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and secrets.) Decrypting a specific message or checking that delegated keys are consistent with
locally stored ones takes linear time.

The interval scheme uses a binary tree with the messaging secrets in the leaves. Similar to the
line scheme, convergent encryption is used to derive parent nodes, where the ciphertext associated
with a node is the encryption of the keys necessary to decrypt the ciphertexts of the two child
nodes. Hence intervals of secrets can be communicated by sharing the keys for the minimal set of
parent nodes necessary to derive all keys in the interval. This reduces the running time to only
be logarithmic in the number of secrets but comes at the cost of increasing the communication
complexity from being constant to logarithmic. Moreover, access can be confined to intervals instead
of always granting access to all previous messages.

Threat model. CKS considers a malicious server and malicious insiders for their adversarial
modeling. The security of their constructions, however, depends on the security of the secure
messaging scheme for which they back up the messages. If CKS is instantiated with a secure
messaging protocol that is not fully secure against active adversaries, such as MLS [18], the security
of CKS is also weakened. In fact, the construction of practical group messaging schemes with fully
active security is an open problem.

In contrast, in our work we consider a standalone security game that does not rely on the security
of an external protocol, but only capture passive adversaries. As we discuss in Section 5.2, one
reason for this choice is that building authenticated GKP from standard GKP is straightforward.
Nevertheless, as long as Grappa is instantiated using CGKA, it cannot achieve fully active security
efficiently either.

Setup assumptions and costs. Our constructions achieve IAC to protect past keys from new
members through explicit key rotation, but not FS. This ensures that DKR-based interval scheme
D[H, F] has compact local storage. In order to achieve FS, we would need to pick fresh keys in every
epoch, which comes at linear storage cost. CKS achieves to keep their local storage compact by
requiring a global server state that grows linearly with the number of backed up keys. Our solution
does not mandate any global server state and can therefore be used in applications without a central
server, as long as a delivery service can be instantiated in a decentralized manner.

The interval scheme of CKS is limited to a predefined constant number of epochs, while our
primitives support key rotations that enable an infinite number of epochs. CKS supports receiving
secrets out-of-order, storing them locally before embedding them in the compact storage. GKP
forces group admins to have processed the most recent updates before they are able to release new
keys. Implicitly, this also applies to CGKA-based secure messaging applications that produce the
secrets for CKS. Our generalized syntax for interval schemes only allows expanding intervals with
consecutive (in-order) updates, though one could consider an extension to locally cache future key
interval updates until intermediate values are received.

GKP for secure messaging backups. GKP can be used instead of CKS to encrypt and
outsource the storage of messaging secrets. As in CKS, we consider the exchange of messages
m1,m2, . . . between all parties of a chat group. The messages are encrypted with the secrets
s1, s2, . . . resulting in ciphertexts c̃1, c̃2, . . . that are outsourced to a cloud storage provider. The
GKP scheme is synchronized with all changes in the secure messaging application: when participants
are added/removed or keys are rotated, the same operation is executed for GKP. To encrypt message
mi, the application requests epoch key ki from GKP and compute c̃i ← Enc(ki, si).
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As CKS is tailored to this application, it is unsurprising that GKP is less efficient as it does not
leverage the existing FS and PCS properties of the encrypted secrets. However, it is possible to use
the GKP scheme to maintain the FS and PCS of secrets by rotating chains regularly, or to use our
relaxations to achieve more efficient solutions that provide IAC for the encrypted messages.

In contrast to using GKP for secure message backups, CKS cannot be used to instantiate interval
schemes or GKP, nor achieve IAC for general persistent data, for the following reasons. GKP is
expected to produce indistinguishable keys, without making any assumptions about the amount
of entropy in the data to be encrypted. Due to their goal of deduplication, CKS use convergent
encryption to deterministically derive keys from messaging secrets and previous keys. Clearly, this
makes the derived keys dependent on the encrypted secrets. Consequently, they do not achieve key
indistinguishability, and need to further assume that the encrypted data has high entropy. This is
the case for messaging secrets, but not generally true for files of an E2EE shared folder and other
persistent data. Hence, we conclude that CKS can only preserve properties of the encrypted data,
but since they do not generate independent keys they cannot provide additional IAC guarantees
to existing persistent data without any inherent guarantees. Additionally, when using CKS as an
interval scheme the linear server storage of encrypted secrets would need to be stored locally, which
undoes all benefits from a compact client-storage and has no better storage complexity than storing
all keys (scheme trivial from Section 4.6) Moreover, the CKS syntax lacks the group membership
operations required for GKP.

Later, Dodis and Jost improved on CKS in follow-up work [35], where they replaced convergent
encryption with a new primitive called “trapdoor KDF”. Their main contribution is to prove this
version of CKS secure in the standard model, but the keys are still derived from the encrypted data
(the messaging secrets) and the previous trapdoor KDF state, and they still require linear server
storage for ciphertexts. Hence, the above discussion of limitations for using their construction for
the GKP use case still applies.

D Double-PRF Security: Proof of Lemma 4.5

We now provide the proof of Lemma 4.5. Recall that the Lemma states that a function family
F : {0, 1}xl × {0, 1}yl → {0, 1}zl is a double-PRF if and only if it is a PRF and a swap-PRF.

Proof of Lemma 4.5. We first note that if F is a double-PRF, then it is trivially a PRF. This is
evident from the double-PRF game in Figure 5, since an adversary can simply ignore oracles ONewY
and OFnY and only make queries to oracles ONewX and OFnX, in which case the dual PRF game
behaves exactly as the PRF game. By symmetry the same holds for the swapped PRF security of F.
This shows the backwards implication.

For the forward direction, we claim that for any adversary A against the double-PRF security
of F, there exists adversaries B1, B2 and B3 such that

Advdbl9prf
F (A) ≤ Advprf

F (B1) + Advswap9prf
F (B2)

+ QOFnX(A) · QONewY(A)
2zl

+ Advswap9prf
F (B3). (1)

W.l.o.g. we restrict our attention to adversaries which do not repeat queries to oracles OFnX,
OFnY and OFnXY, to simplify notation. The proof proceeds by a series of game hops. We let game
G0 and G3 be identical to Gdbl9prf91

F and Gdbl9prf90
F , respectively.

Next, we define game G1 and G2 in Figure 16. Game G2 is identical to G0, except that oracles
OFnX and OFnXY return random strings in {0, 1}zl instead of PRF evaluations. Additionally, a
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Game G1 , G2:

1 b′←$AO(·)()
2 return b′

ONewX():
3 n← n + 1
4 xn←$ {0, 1}xl

ONewY():
5 m← m + 1
6 ym←$ {0, 1}yl

7 S ∪←− {ym}

OFnX(i, y):

8 Tx[i, y]←$ {0, 1}zl

9 If ∃j ≤ m : y = yj and Txy[i, j] ̸= ⊥: � First condition true

if y ∈ S

10 bad← 1; Tx[i, y]← Txy[i, j]
11 Q ∪←− {y}
12 Return Tx[i, y]

OFnY(x, i):
13 Ty[x, i]← F(x, yi)
14 Return Ty[x, i]

OFnXY(i, j):

15 Txy[i, j]←$ {0, 1}zl

16 If yj ∈ Q and Tx[i, yj ] ̸= ⊥ then:
17 bad← 1; Txy[i, j]← Tx[i, yj ]
18 Return Txy[i, j]

Figure 16: Games G1 and G2 for the proof of Lemma 4.5.

Game G′2:

1 AO(·)()
2 Return Q∩ S ≠ ∅

ONewX():
3 n← n + 1
4 xn←$ {0, 1}xl

ONewY():
5 m← m + 1
6 ym←$ {0, 1}yl

7 S ∪←− {ym}

OFnX(i, y):

8 Tx[i, y]←$ {0, 1}zl

9 Q ∪←− {y}
10 Return Tx[i, y]

OFnY(x, i):
11 Ty[x, i]← F(x, yi)
12 Return Ty[x, i]

OFnXY(i, j):

13 Txy[i, j]←$ {0, 1}zl

14 Return Txy[i, j]

Figure 17: Game G′2 for the proof of Lemma 4.5.

boolean flag bad is set to 1 if adversary A makes queries OFnX(i, y) and OFnXY(i, j) such that
y = yj for a yj generated by oracle ONewY. That is, bad is set to 1 if A “guesses” a key yj for
the swapped function and uses yj as the input in a query to the PRF oracle OFnX. Game G1 is
identical to G2, except that if bad is set to 1, the current query is responded to with a value which is
consistent with the prior query which used the same key. That is, instead of returning independent,
uniformly random points in {0, 1}zl, queries OFnX(i, y) and OFnXY(i, j) for which y = yj give the
same response. Additionally, we define game G′2 in Figure 17. G′2 is identical to game G2, except
that it does not return the bit guess of the adversary, but instead returns 1 if a query OFnX(i, y) is
made such that y is one of the keys generated by oracle ONewY.

We proceed to prove Equation (1), as follows. By definition, Advdbl9prf
F (A) = |Pr [G0]− Pr [G3]|.

Hence, through standard equation rewriting, Advdbl9prf
F (A) ≤ |Pr [G0]− Pr [G1]|+|Pr [G1]− Pr [G2]|+

|Pr [G2]− Pr [G3]| . Games G1 and G2 are identical-until-bad, so we have |Pr [G1]− Pr [G2]| ≤
Pr [G2 sets bad] by the fundamental lemma of game playing [23]. We now construct adversaries B1,
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B2 and B3 such that

|Pr [G0]− Pr [G1]| ≤ Advprf
F (B1) (2)

Pr [G2 sets bad] ≤ Advswap9prf
F (B2) + QOFnX(A) · QONewY(A)

2zl
(3)

|Pr [G2]− Pr [G3]| ≤ Advswap9prf
F (B3). (4)

Together, this proves (1).
Adversary B1 runs A, acting as the challenger in game G0, except that it relays queries to oracles

ONewX to oracle ONew and queries to oracles OFnX and OFnXY to oracle OFn in the PRF game. For
the latter, it replaces the j in a query OFnXY(i, j) by yj which it samples itself when simulating
oracle ONewY. When adversary A halts and returns b∗, B1 also halts and returns b∗. This way B1
simulates game G0 when the hidden bit b in the PRF game played by B is 1 and G1 when b = 0.
Additionally, Pr

[
Gprf91

F (B1)
]

= Pr [G0] and Pr
[
Gprf90

F (B1)
]

= Pr [G1], giving Equation (2).
We proceed to show Equation (3). First, we claim that Pr [G2 sets bad] ≤ Pr [G′2(A)]. To see this,

note that the event “G2 sets bad” implies that Q∩S ≠ ∅ at the end of game G2, where set Q contains
the y-values queried to oracle OFnX and set S contains the y-values generated by queries to oracle
ONewY. Since games G2 and G′2 are identical except for the return statement (in particular, setsQ and
S are defined identically in both games), and Pr [G′2(A)] = Pr [Q∩ S ̸= ∅ at the end of game G′2] by
definition, this shows the claimed inequality. Next, we construct adversary B2 against the swap9prf
security of F such that

Pr
[
Gprf91

F̄ (B2)
]
≥ Pr

[
G′2(A)

]
and (5)

Pr
[
Gprf90

F̄ (B2)
]
≤ QOFnX(A) · QONewY(A)

2zl
, (6)

which together implies Equation (3).
Adversary B2, shown in Figure 18, works as follows. It runs A, acting as the challenger in game

G′2, except that it forwards queries to oracle ONewY to its ONew and responds to queries to oracle
OFnY by forwarding them (with the inputs swapped, due to the definition of swap9prf as the prf
security of F̄) to oracle OFn. Additionally, adversary B2 keeps a counter m which counts the number
of ONewY queries made by A, and sets Qx and Qy which store the x- and y-values used in queries
by adversary A to oracles OFnY and OFnX, respectively. When adversary A halts, adversary B2
uses the y-values in Qy to check the consistency of its OFn-oracle with the function F. To do this, it
chooses an arbitrary x ∈ {0, 1}xl \Qx. Then, for each key index i in [m], B2 queries oracle OFn(i, x)
and assigns the output to zi. Adversary B2 returns 1 if for any i ∈ [m] and any y ∈ Qy, zi = F(x, y).

This way, when adversary B2 is playing game Gprf91
F̄ , it perfectly simulates game G′2 for adversary

A. Additionally, Pr
[
Gprf91

F̄ (B2)
]
≥ Pr [G′2(A)], since if A has queried oracle OFnX on a y∗ ∈ {0, 1}yl

such that y∗ ∈ S (meaning that A has effectively “guessed” one of the y-values generated by
oracle ONewY and that y∗ ∈ Q ∩ S ̸= ∅), then there exists an i ∈ [m] s.t. y∗ = yi and for this
i, zi = OFn(i, x) = F(x, yi). Hence, when B2 loops through Qy it will return 1 when it reaches
y∗. If instead adversary B2 is playing game Gprf90

F̄ , then B2 will return 1 with probability at most
QOFnX(A) · QONewY(A)/2zl. To see this, we note m = QONewY(A) and that |Qy| ≤ QOFnX(A). We
have that for each zi defined as above and all y ∈ Qy, Pr [zi = F(x, y)] = 1/2zl since x has not been
queried to oracle OFn, meaning that each zi is a new independent random variable in {0, 1}zl. Let
F(x,Qy) := {F(x, y) st. y ∈ Qy}. Then for each i ∈ [m], Pr [zi ∈ F(x,Qy)] ≤ QOFnX(A)/2zl by the
union bound. Hence Pr

[
Gprf90

F̄ (B2)
]

= Pr [∃i ∈ [m] st. zi ∈ F(x,Qy)] ≤ QONewY(A) · QOFnX(A)/2zl,
again by the union bound. This proves the claimed bounds in Equations (5) and (6).
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BO(·)
2 ():

1 b←$AO
∗(·)()

2 x←$ {0, 1}xl \ Qx � sample arbitrary fresh x ∈ {0, 1}xl

3 for i = 1 to m do:
4 zi ← OFn(i, x)
5 For y ∈ Qy do:
6 If zi = F(x, y): return 1
7 Return 0

ONewX∗():
15 n← n + 1
16 xn←$ {0, 1}xl

ONewY∗():
17 m← m + 1
18 ONew()

OFnX∗(i, y):

19 Tx[i, y]←$ {0, 1}zl

20 Qy
∪←− {y}

21 Return Tx[i, y]

OFnY∗(x, i):
22 Qx

∪←− {x}
23 Return OFn(i, x)

OFnXY∗(i, j):

24 Txy[i, j]←$ {0, 1}zl

25 Return Txy[i, j]

Figure 18: Adversary B2 for the proof of Lemma 4.5.

Finally, we construct adversary B3 against the swap9prf security of F to prove Equation (4).
Adversary B3 functions analogously to adversary B1; it runs A, acting as the challenger in game G2,
but relays ONewY- and OFnY-queries to oracles ONew and OFn, respectively. When adversary A halts
and returns b∗, B3 also halts and outputs b∗. This way B3 simulates game G2 for A when it plays
game Gprf91

F̄ , and game G3 when it plays game Gprf90
F̄ . Hence, we have Pr

[
Gprf91

F̄ (B3)
]

= Pr [G2]
and Pr

[
Gprf90

F̄ (B3)
]

= Pr [G3]. This concludes the proof.

E Key Indistinguishability of D[OWC, F]: Proof of Theorem 4.6

In the following, OWC and F are a one-way chain and a function family, respectively, and D[OWC, F]
is the DKR-based interval scheme defined in Figure 6. Adversary A is an adversary against the key
indistinguishability of D[OWC, F], as per the theorem statement.

Proof of Theorem 4.6. The proof proceeds through a sequence of games G0–G3, shown in Figure 19.
The games only differ from game Giac

D[OWC,F] and each other in the main procedure, so for simplicity,
we only display these. Throughout, the oracles remain the same as in game Giac

D[OWC,F], shown in
Figure 4, except for OExposeAux which is changed in G1.

We begin with game G0, which is identical to Giac91
INT,Safe (the “real” game), except that we expand

the procedure GetKey to show the details of the instantiation D[OWC, F] (Figure 6). Naturally, this
does not logically change the game. Therefore, we have that

Pr[Giac91
INT,Safe(A)] = Pr[G0(A)] . (7)

Early safety checks and modification of OExposeAux in stage 2. Recall that the winning
condition checks that the challenge epoch e∗, requested by adversary A in the first stage of the game,
is not compromised by the simultaneously requested exposed intervals, or keys that the adversary
obtained via oracle OGetKey. Additionally, the Safe(e∗) predicate checks that there are sufficient
blocks surrounding epoch e∗ such that at least one of the forward and backward chain is safe, taking

54



G0:
26 (gst, aux)←$ Init()
27 B[0]← ||
28 (e∗, I)←$AO(·)()
29 for i ∈ I do:
30 (sti, l, r)← ST[i]; Sint ∪←− {sti}
31 for e = l to r do: Xst[e]← 1
32 gst.F ← GetFChains(gst.F , 0, gst.emax)
33 gst.B ← GetBChains(st.B, 0, st.emax)
34 [(·, fs)]← GetFChains(st.F , e∗, e∗)
35 [(·, bs, ·)]← GetBChains(st.B, e∗, e∗)
36 fk ← OWC.GetKey(fs)
37 bk ← OWC.GetKey(bs)
38 ke∗ ← F(fk, bk)

� Stage 2:

39 b′←$AO(·)(kb,Sint)
40 return ¬Xk[e∗] ∧ b′ ∧ Safe(e∗)
OExposeAux(e):
41 Xaux[e]← 1
42 return A[e]

G1, G2, G3:
43 (gst, aux)←$ Init()
44 B[0]← ||
45 (e∗, I)←$AO(·)()
46 for i ∈ I do:
47 (sti, l, r)← ST[i]; Sint ∪←− {sti}
48 for e = l to r do: Xst[e]← 1
49 if ¬(SafeFC(e∗) ∨ SafeBCAux(e∗))

∨Xst[e∗]: return 0 � G1 −G3

50 gst.F ← GetFChains(gst.F , 0, gst.emax)
51 gst.B ← GetBChains(st.B, 0, st.emax)
52 [(·, fs)]← GetFChains(st.F , e∗, e∗)
53 [(·, bs, ·)]← GetBChains(st.B, e∗, e∗)
54 fk ← OWC.GetKey(fs)
55 bk ← OWC.GetKey(bs)
56 if SafeFC(e∗): fk←$ {0, 1}ℓs � G2, G3

57 if SafeBCAux(e∗): bk←$ {0, 1}ℓs � G2, G3

58 ke∗ ← F(fk, bk) � G1, G2

59 ke∗ ←$ {0, 1}ℓ � G3
� Stage 2:

60 b′←$AO(·)(kb,Sint)
61 return ¬Xk[e∗] ∧ b′

OExposeAux(e) (stage 1):
62 Xaux[e]← 1
63 return A[e]
OExposeAux(e) (stage 2):
64 if ∀el ≤ e : (B[el] ∈ {7→, ||})

∧ (∃e′ ∈ [el, e
∗],Xst[e′] ̸= 0):

abort � G1 −G3

65 return A[e]

Safe(e∗) = SafeFC(e∗) ∨ (SafeBC(e∗) ∧ SafeAux(e∗)) .
SafeFC(e∗) = ∀ex < e∗ : Xst[ex], ∃efl : (ex < efl ≤ e∗) ∧ (B[efl] ∈ {7→, ||}).
SafeBC(e∗) = ∀ex > e∗ : Xst[ex], ∃efl : (e∗ < efl ≤ ex) ∧ (B[efl] ∈ {← [, ||}).
SafeAux(e∗) = ∀ex : Xaux[ex], ∃efl : (B[efl] ∈ {← [, ||})

∧
(

(e∗ < efl ≤ ex) ∨ (ex < efl ≤ e∗)
)
.

SafeBCAux(e∗) = SafeBC(e∗) ∧ SafeAux(e∗)

Figure 19: Main procedures of games G0–G3 for the proof of Theorem 4.6. Commented lines are only present in the
indicated game.
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into account auxiliary states obtained via OExposeAux (which in D[OWC, F] translates to backward
chain exposure). At the bottom of Figure 19, we split Safe into three logical parts.

Observe that at the end of the first stage, all the queries which determine whether the state of
the challenge epoch is safe (except for the stage-2 OExposeAux and OGetKey queries) have already
been made. In particular, all exposed intervals I are fixed (hence also Xst), as are all relevant chain
rotations. (Chain rotations requested by the adversary in the second stage can only happen in new
epochs, and hence do not help protect the challenge epoch from the states which are exposed in the
first stage.).

In game G1, we perform the safety predicate checks early (line 49 of Figure 19), leaving only
the check that the key itself has not been exposed and the SafeAux check in line 61 of Figure 19
together with the trivial exposure condition ¬Xst[e∗].

Given the above observation, G0 and G1 are identical except for one detail: the queries made to
OExposeAux in the second stage of the game may modify SafeAux after it is checked. To address
this issue, we also modify the OExposeAux oracle only in the second stage of the game, such that
it aborts the game (returning 0) if the exposure query leads to a violation of SafeAux, instead of
waiting for the adversary to finish the game. The oracle also no longer writes on Xaux. With these
changes, both the Xaux and the Xst are fixed at the end of the first stage of the game, meaning
that we can safely check SafeAux at the end of stage 1 without changing the winning probability of
the adversary.

To see that the games are still fully equivalent, note that any second stage query to OExposeAux
that ends up in a violation of SafeAux in G0 will cause the game to abort in G1, and viceversa.
Therefore, we have

Pr[G0(A)] = Pr[G1(A)] . (8)

Indistinguishability with forward security of OWC. Game G2 is identical to G1, except that
it additionally includes lines 56 and 57, which overwrite the keys generated by the forward and/or
backward chain at the challenge epoch e∗ by uniformly random strings, if the corresponding chain
is “safe”, i.e., the state at epoch e∗ has not been exposed to A. Note that, by the early check on
line 49, at least one of the two chains is guaranteed to be safe, unless adversary A violated the
safety predicate Safe. In the following, we assume w.l.o.g. that A executes such that Safe(e∗) is true.
(If it does not, it has advantage 0, so the claimed bound below is trivially true.)

We construct an adversary BOWC against the key indistinguishability with forward security
of OWC such that

Pr[G1(A)]− Pr[G2(A)] ≤ Advind9fs
OWC,N (BOWC) . (9)

Adversary BOWC acts as the challenger in game G1, with the following differences. First, whenever the
game runs OWC.Gen(N ′) (during initialization and in response to queries to oracle OProgress from
adversary A), adversary BOWC calls oracle ONew to generate a new OWC instance in game Gind9fs

OWC,N

and stores the index of the new instance in st.F or st.B (instead of the OWC seed, which is unknown
to adversary BOWC). This implies that the states and extensions generated via oracles OExport,
OCreateExt and OProcExt and stored in dictionaries st.F , st.B, ext.F and ext.B also contain
indices in place of chain seeds. We will refer to these indices as “chain indices”.

Second, when adversaryA queries oracleOGetKey(e), adversary BOWC does not compute OWC.GetKey
to generate fk and bk. (Cf. lines 46 and 48 in Figure 6.) Instead, BOWC issues two queries to its own
OGetKey oracle; one for the forward chain and one for the backward chain, under the chain indices
retrieved from st.F and st.B for the requested epoch e. Note that the epoch of the OGetKey-calls
by BOWC do not directly correspond to the DKR epoch e, but are computed relative to the starting
epoch of the current chain. For example, if adversary A requests a key for epoch 15, and the forward
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GetFChainOWCEpoch(F , e∗):
66 [(e0,n0), (e1, n1), . . . , (e|F|−1, n|F|−1)]← F
67 let i ∈ [0, |F| − 1] s.t. ei ≤ e∗ < ei+1 for e|F| = e|F|−1 + N ′

68 return (e∗ − ei, ni)
GetBChainOWCEpoch(B, e∗):
69 [(e0,n0), (e1, n1), . . . , (e|B|−1,n|B|−1)]← B
70 let i ∈ [0, |B| − 1] s.t. ei−1 < e∗ ≤ ei for e−1 = −1
71 return (ei − e∗, ni)

Figure 20: Retrieve the OWC epoch index for the OWC chain on which the challenge epoch e∗, relative to the start of
that chain.

chain used for this epoch starts at epoch 10 and has chain index 3 (i.e., it was generated via the
third call to oracle ONew), then BOWC will query OGetKey(3, 5).

Next, when adversary A halts and outputs the challenge epoch e∗ and requested list I of
intervals (states) to expose, adversary BOWC does as follows. First, it recovers the relative challenge
epochs and chain indices for the forward and backward chains by calling the helper functions
(e∗f , nf )← GetFChainOWCEpoch(st.F , e∗) and (e∗b, nb)← GetBChainOWCEpoch(st.B, e∗) defined in
Figure 20, respectively. Then, it checks if SafeFC(e∗) and SafeBCAux(e∗) (see bottom of Figure 19)
are true for the challenge epoch e∗. If the SafeFC(e∗) is true (that is, the forward chain state at
epoch e∗ is not exposed by one of the intervals requested by A), then BOWC sets xnf

← (e∗f , e∗f + 1).
Otherwise, it lets xnf

← (−1, 0). Similarly for the backward chain, it sets xnb
← (e∗b, e∗b + 1)

if the backward chain is safe at epoch e∗ (note that the seeds of the backward chain cannot be
exposed via OExposeAux as this violates the SafeBCAux(e∗) predicate), otherwise lets xnb

← (−1, 0).
For all other n ∈ [1, m], where m is the total number of OWC instances generated by adversary
BOWC’s calls to oracle ONew, it lets xn ← (−1, 0). Adversary BOWC then halts and returns
(x1, . . . , xnf

, . . . , xnb
, . . . , xm).19 That is, for every OWC instance which does not correspond to the

challenge forward or backward chain, as well as for the challenge chains if they are unsafe, BOWC
does not request a challenge in the OWC game (indicated by a −1 as the challenge epoch) and
instead asks to expose the seed (the OWC state with index 0). In return, it receives the seeds of all
chains not covering the challenge epoch, as well as either

1. (K∗nf
, sstnf

e∗
f

+1) and (K∗nb
, sstnb

e∗
b

+1), if both chains are safe,

2. (K∗nf
, sstnf

e∗
f

+1) and sstnb
0 , if only the forward chain is safe, or

3. sstnf
0 and (K∗nb

, sstnb
e∗
b

+1), if only the backward chain is safe.

Adversary BOWC uses the exposed seeds to compute the requested intervals for A, as well as
the backward and forward challenge key (K∗nb

and K∗nf
) in case 2 and 3 above, respectively. It

then proceeds as the challenger in game G1, computes the challenge key as ke∗ ← F(K∗nf
,K∗nb

) and
runs the second stage of adversary A on input ke∗ and the exposed states, again simulating queries
to oracle OGetKey, OExposeAux (leaking the corresponding backward chain seeds) and the other
oracles as above. When A halts and returns a bit guess b′, BOWC also halts and returns b′. This
way, adversary BOWC simulates game G1 for A when it plays game Gind9fs91

OWC,N and game G2 when
it plays game Gind9fs90

OWC,N . Note that by construction, adversary BOWC will not violate the trivial
attack prevention mechanisms in the OWC game. (All of its challenge and expose requests are
of the form (−1, 0) or (e, e + 1) for e ∈ N.) Hence, we have Pr[Gind9fs91

OWC,N (BOWC)] = Pr[G1(A)] and
19The order depends on the values of nf and nb; xnb might appear before xnf .
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Pr[Gind9fs90
OWC,N (BOWC)] = Pr[G2(A)]. Together with the definition of ind9fs (see definition 3.1), this

gives the bound in equation (9).
Adversary BOWC makes at most 2 · QOGetKey(A) queries to oracle OGetKey and at most 2 + 2 ·

QOProgress(A) queries to oracle ONew.

Double-PRF security of F. The last part of the proof consists of a reduction to the double-PRF
security of F. To this end, we construct game G3, shown in Figure 19. G3 is identical to G2, except
that in the final computation of the challenge key, the call to F is replaced by random sampling
from {0, 1}ℓ. This means that game G3 is equivalent to Giac90

INT,Safe, giving

Pr[Giac90
INT,Safe(A)] = Pr[G3(A)] . (10)

We construct an adversary BF such that

Pr[G2(A)]− Pr[G3(A)] ≤ Advdbl9prf
F (BF) . (11)

Adversary BF acts as the challenger in game G2, except that instead of sampling fk and/or bk itself
as on lines 56 and 57 of Figure 19, it calls oracle ONewX and ONewY, respectively. Furthermore,
instead of computing ke∗ ← F(fk, bk) as on line 58, adversary BF calls one of oracles OFnX(1,bk)
(if only SafeFC(e∗) is true), OFnY(fk, 1) (if only SafeBCAux(e∗) is true) or OFnXY(1, 1) (if both
chains are safe at the challenge epoch) and uses the response as ke∗ . When adversary A halts
and returns b′, BF also halts and returns b′. Adversary BF hence makes at most one query to each
of ONewX and ONewY, as well as at most one query to either OFnX, OFnY or OFnXY. Furthermore,
it perfectly simulates game G2 resp. G3 for A when bit b in Gdbl9prf9b

INT is 1 and 0, respectively. This
shows Equation (11).

Putting together Equations (7)–(11) gives the theorem statement.

F Proof of Security for Grappa

F.1 Cleanness predicate C
We define our cleanness predicate C = C(e∗) with respect to the challenge epoch e∗ corresponding
to the OTest query. The predicate models the security of Grappa when instantiated with the
D[OWC, F] interval scheme and with an optimally-secure CGKA such as RTreeKEM, following [6].
In a nutshell, the CGKA cleanness predicate CCGKA in [6] satisfies that CCGKA = true if, for every
corruption, it holds that either: (a) the challenge epoch e∗ occurs before the corruption (forward
security), or (b) e∗ is after a corruption, but the corrupted user updates or is removed before e∗

(post-compromise security).
In Figure 21, we introduce C divided in several parts for easier readability. Essentially, as

introduced below, the predicate closely reflects the steps that are taken in the security proof. The
predicate is also able to express the best possible security that Grappa can achieve if it is instantiated
with an interval scheme with perfect IAC. For this, one can simply replace the last line in Figure 21
by (return bL ∧ bR), and remove the predicates dedicated to derive f7→, f0 and f← [. Similarly,
it is not hard to modify the predicate to reflect the security of Grappa if the interval scheme is
instantiated differently, such as from GGM trees (see the discussion in Section 4.6).

In the cleanness predicate, IAC is strictly captured by allowing the adversary to test epoch keys
from any epoch for which none of the exposed users was a group member. To see this, observe that,
given a challenge epoch e∗, all flags bL, bR, f7→, f← [, f0 are set to true if all exposures correspond to
parties that left the group before e∗ or were added after e∗. PCS is also captured by considering
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C(e∗):
� Testing a leaked epoch key not allowed

1 if ∃qi = OGetKey(e∗) return false
� No exposures: all adversarial strategies allowed

2 if ̸ ∃qi = OExpose(·, ·) return true
� Exposures on challenge epoch e∗ not allowed

3 if ∃qi = OExpose(·, e∗) return false
� Admin Exposures: No admin is non-healed by e∗

4 for all qi = OExpose(uidi; ei) : uidi ∈ AD[ei]
5 if ̸ ∃e : ei < e ≤ e∗ and e corresponds to OUpdateAdm(uidi), ORotKeys(uidi) or ORemoveAdm(·, uidi),
6 return false

� Multi-window security: exposures both after and before e∗.

7 QL ← {qi = OExpose(uidi, ei) : ei < e∗} � exposures before e∗

8 QR ← {qj = OExpose(uidj , ej) : ej > e∗} � exposures after e∗

9 bL, bR, f 7→, f0, f← [ ← false
� Exposures before e∗:

10 if ∀qi ∈ QL, ∃e : ei < e ≤ e∗ triggered by either any query made on (uidi, ·) if uidi ∈ AD[e], an
ORemove(·,uidi) query, or an OUpdate(uidi) query:

11 bL ← true � CGKA healing

12 if ∀qi ∈ QL, ∃e′ : e ≤ e′ ≤ e∗ triggered by an ORemove(·, ·) query:
13 f7→ ← true � forward flag exists

� Exposures after e∗:

14 if ∀qj ∈ QR, ∃e : e∗ < e ≤ ej and uidj ̸∈ G[e]
15 bR ← true � CGKA healing

16 if ∀qj ∈ QL, ∃e′ : e ≤ e′ ≤ e∗ triggered by an ORotKeys(·, ·) or ORemoveAdm(·, ·) query:
17 f0 ← true � initial backward flag exists

18 if ∀qj ∈ QR, ∃e′ : e∗ < e′ < ej and uidj ̸∈ G[e′] and e′ is triggered by an ORotKeys(·, ·) or
ORemoveAdm(·, ·) query:

19 f← [ ← true � backward flag exists

20 return bL ∧ bR ∧ (f 7→ ∨ (f← [ ∧ f0))

Figure 21: Cleanness predicate C = C(e∗) for the security of the GKP instantiation Grappa, given queries q1, . . . , qQ

by the adversary.

that parties may heal after OUpdate and ORotKeys queries. The complexity of the predicate mostly
arises from considering the case in which the adversary exposes multiple users with access to different
epoch intervals. A lot of the complexity also stems from modelling admin corruptions; if these were
fully disallowed, the predicate would also be much simpler.

F.2 Proof of Theorem 6.1

Let q1, . . . , qQ be the queries made by A to the different game oracles, which are announced in
advance by the non-adaptive adversary. Let also q∗ be the unique challenge query, q∗ = OTest(e∗),
where e∗ is the challenge epoch. Let also emax be the global epoch after query qQ.

The proof proceeds via a series of game hops. We advance through the game hops as follows: if
necessary, we first introduce a characterization of epochs or keys; then we introduce the next game
hop, and finally we bound the difference in advantage in a lemma, that we prove.

To start, let G0(A) = Gkind91
Grappa,C(A) be the real (b = 1) key indistinguishability game for GKP

as in Figure 10. Given a sequence of adversarial queries, we define epoch eAD as follows:
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eAD: the smallest of all epochs e that satisfy:
∀ qi = OExpose(uidi; ei) such that uidi ∈ AD[ei] (i.e. uidi is admin),
∃e′ : ei < e′ ≤ e triggered by either:
- an OUpdateAdm(uidi) query,
- an ORotKeys(uidi) query, or
- an ORemoveAdm(·,uidi) query.

In other words eAD is the earliest epoch when the CGKA state of all admins that have ever been
exposed by A may have healed. Note that interval scheme states may not be included here. To see
why, observe that the CGKA cleanness predicate of the admin CGKA is CCGKA(e) = true for every
e ≥ eAD, but CCGKA(eAD) = false. Note that if no epoch satisfies the condition, then C = false
and hence the advantage of A is 0. Note also that we are referring to GKP epochs and not CGKA
epochs; for the admin CGKA, multiple GKP epochs may map to a single CGKA epochs if no admin
commands are executed.

Game 1. We define G1 as G0, except that all admin CGKA keys IA corresponding to epochs in
the interval [eAD, emax] are replaced by uniformly random keys.

Lemma F.1. There exists an adversary BCGKA against CGKA kind security that runs in time
similar to A and makes at most 3Q queries such that

AdvG0
Grappa,C(A) ≤ AdvG1

Grappa,C(A) + Q ·Advkind
CGKA(BCGKA).

Proof. Between both games, we additionally define a series of hybrid games HybeAD−1, . . . , Hybemax

such that at Hybi, all admin CGKA keys in the interval [eAD, i] are uniformly random keys. Note
that HybeAD−1 = G0 and Hybemax = G1.

To transition throughout the hybrids, let A interpolate between Hybj−1 and Hybj for some
j ∈ [eAD, emax]. Then, we construct an adversary BCGKA against CGKA security that proceeds as
below (we omit concrete query parameters for succinctness).

• BCGKA runs A, receives the sequence of queries q1, . . . , qQ and initializes the GKP game
dictionaries.

• For each oracle query made by A, BCGKA simulates locally the code corresponding to all
algorithms except for admin CGKA algorithms, for which it forwards the appropriate queries
to the CGKA challenger.

• To simulate OExpose(uid) queries, the BCGKA also queries the OExpose(uid) CGKA oracle,
and then forwards the CGKA state together with the rest of the simulated state.

• For the OTest and the OGetKey queries, BCGKA simulates the query internally and outputs
the real K.

• Every time BCGKA needs to encrypt a ciphertext under IA for some epoch e ̸∈ [eAD, j], it
queries the CGKA OGetKey(e) oracle and uses the real key.

• For IA keys of epochs [eAD, j − 1], it uses a (consistent) uniformly random key.

• For IA at epoch j, it queries the OTest oracle of the CGKA challenger and uses the key sent
by challenger.

• At the end of the game, BCGKA outputs whatever A outputs.
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Note that the cleanness predicate CCGKA = true, as (1) the CGKA challenge key (j-th epoch) is
never queried to OGetKey, and (2) all exposures occur such that all epochs e ≥ eAD are safe (except
for individual OGetKey queries). As BCGKA perfectly simulates the games for A, we have that

Pr[Hybj−1
Grappa,C(A)⇒ 1]− Pr[Hybj

Grappa,C(A)⇒ 1] ≤
Pr[Gkind91

CGKA,CCGKA(BCGKA)⇒ 1]− Pr[Gkind90
CGKA,CCGKA(BCGKA)⇒ 1] = Advkind

CGKA(BCGKA)

and the lemma follows by aggregating the bounds for all (at most Q) hybrids. Furthermore, BCGKA
makes at most three queries to its CGKA challenger per each query of A, and so it makes at most
3Q queries in total.

Game 2. We define G2 as G1, except that all ciphertexts CA corresponding to epochs in the
interval [eAD, emax] are replaced by random strings of the same length.

Lemma F.2. There exists an adversary BAEAD against ind$9cpa security of AEAD that runs in
time similar to A and makes at most Q queries such that

AdvG1
Grappa,C(A) ≤ AdvG2

Grappa,C(A) + Advind$9cpa
AEAD (BAEAD).

Proof. All the ciphertexts that have been replaced in the game were encrypted using uniformly
random keys, since these are exactly the IA keys from epochs [eAD, emax]. Hence, the lemma follows
by a standard reduction to ind$9cpa security of the AEAD scheme (Definition B.3). We omit the
details.

Characterization of safety window. Before moving on to the next hybrid, we characterize an
interval where we will replace member CGKA keys by random, that we denote by safety window
SW. Let q∗ be the challenge query and e∗ the challenge query as before. We define eL to be the
latest epoch before e∗ such that a OExpose(·) query is made; if no exposures before e∗ occur, then
we let eL ← −1.

We also define eR to be the earliest epoch after e∗ for which all users that were compromised
after the challenge were still not group members. In other words eR captures interval access security
for epochs in the past, and we define it formally below. Finally, we define a healing epoch ePCS < e∗

as follows. Clearly, if eL = −1 then ePCS = 0:

eR: Define ei for each uidi as the latest epoch such that:
qj = OExpose(uidi; ej) occurred for some ej ≥ e∗,
uidi ̸∈ G[ei] (i.e. uidi was not a group member at ei).
Then, eR ← mini ei. If no such qj exist, eR ← emax + 1.

ePCS: the smallest of all epochs e that satisfy:
∀ qi = OExpose(uidi; ei) such that uidi ∈ G[ei] and ei < e∗,
∃e′ : ei < e′ ≤ e triggered by either:
- any query made on (uidi, ·) if uidi ∈ AD[e′],
- an ORemove(·,uidi) query, or
- an OUpdate(uidi) query.

Claim F.3. If eR ≤ e∗ or if ePCS does not exist, then C = false. Moreover, for the member CGKA,
we have that all epochs e ∈ [ePCS, eR] satisfy that CCGKA(e) = true.
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Proof. The claim follows by inspection of Figure 21. If eR ≤ e∗, the bit bR in the description of C
remains false. Similarly, if ePCS does not exist, we have that bL also remains false.

For the second part, note that: (a) no corruptions occur in the interval [ePCS, eR], (b) the member
CGKA is healed at ePCS (and therefore also at eR) since the corrupted uidi has been removed
or updated its CGKA keys, and (c) by the optimal forward security, eR is still safe regardless of
corruptions that occur in posterior epochs.

Finally, we let SW = [ePCS, eR]. By noting that eL ̸= e∗ and eR ̸= e∗ (as otherwise C is trivially
false), we have that eL < ePCS ≤ e∗ < eR, and it follows that SW ̸= ∅.

Game 3. We define G3 as G2, except that all member CGKA keys IM corresponding to epochs in
the interval SW are replaced by uniformly random keys.

Lemma F.4. There exists an adversary BCGKA against CGKA kind security that runs in time
similar to A and makes at most 3Q queries such that

AdvG2
Grappa,C(A) ≤ AdvG3

Grappa,C(A) + Q ·Advkind
CGKA(BCGKA).

Proof. The proof follows a similar strategy as the proof of Lemma F.1. We define a sequence of
hybrid games HybePCS−1, . . . , HybeR such that at Hybi, all admin CGKA keys in the interval [ePCS, i]
are uniformly random keys. As before, note that HybePCS−1 = G3 and HybeR = G4.

To transition throughout the hybrids, we carry out a simulation strategy exactly as in the proof
of Lemma F.1, except that instead of simulating the admin CGKA, we simulate the member CGKA
operations depending on the adversary’s oracle calls. Due to the similarity of both proofs, we skip
further details.

Game 4. We define G4 as G3, except that all ciphertexts CA corresponding to epochs in SW are
replaced by random strings of the same length.

Lemma F.5. There exists an adversary BAEAD against ind$9cpa security of AEAD that runs in
time similar to A and makes at most Q queries such that

AdvG3
Grappa,C(A) ≤ AdvG4

Grappa,C(A) + Advind$9cpa
AEAD (BAEAD).

Proof. The proof is identical to the proof of Lemma F.2, so we omit the details.

Progress flags in the safety window. For the last step of the proof, we need to characterize
the epochs where a healing of the interval scheme may have occured. Indeed, in the safety window
SW there are no current exposures regarding CGKA material, but there may be past (or future)
exposures cause leakage at the interval scheme level. We will define a flag window FW that captures
the epochs where the interval scheme may have been compromised. We remark that if the interval
scheme had perfect IAC (i.e. Safe = true), then at this step we could set FW = SW. Unfortunately,
the non-trivial safety predicate of D[OWC, F] makes the following proof inevitably cumbersome.

We define epochs e← [, e0, e 7→ ∈ SW as follows20:
20For the rest of the proof, we will often refer to interval scheme epochs, which may differ from GKP epochs. The

cause of the mismatch is that the OUpdate oracle does not progress the interval scheme global state of Grappa. interval
scheme epochs eINT can be computed as eINT = eGKP − up[eGKP] where up[eGKP] is the value of the game variable up at
the time of eGKP. We omit refering to these explicitly in order to avoid increasing the (already notable) notational
complexity in the proof.
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e← [: earliest epoch e ∈ [e∗ + 1, eR] triggered by either:
- an ORemoveAdm(·, ·) query, or
- an ORotKeys(·) query.

e0: latest epoch e ∈ [ePCS, e∗] triggered by either:
- an ORemoveAdm(·, ·) query, or
- an ORotKeys(·) query.

e 7→: latest epoch e ∈ [ePCS, e∗] triggered by:
- an ORemove(·, ·) query.

Claim F.6. If C = true, then either e 7→ ̸= ⊥, or both e0, e←[ ̸= ⊥

Proof. By inspection of Figure 21, observe that if e7→ = ⊥ then f7→ is also false. This is apparent in
line 13 of C, where the condition is that ∃e′ : e ≤ e′ ≤ e∗ triggered by an ORemove query, and where
e ≥ ePCS is in the safety window SW by definition of the latter. Similarly, if e←[ = ⊥ then f←[ is
also false, and if e0 then f0 is false. The argument follows by looking at lines 19 and 17 of C. For
f0, the argument is identical to the one above. For f←[, we require the condition that uidj ̸∈ G[e′]
to be true, which is met as e′ ≤ eR. The claim follows as to make C = true we need either f7→ or
both f← [ and f0 to be true.

We also define EXP = {e : ∃qi = OGetKey(e)} as the set of all epochs whose key has been
exposed via the OGetKey(e) oracle. Finally, we define a flag window FW as follows:

FW =


[e7→, eR] if e0, e← [ = ⊥
[e0, e← [] if e7→ = ⊥
[max (e0, e7→), e← [] if e0, e← [, e 7→ ̸= ⊥

.

The intuition behind the definition of FW is as follows. Our goal is that either the backward or
the forward chain are safe in the flag window. For the backward chain to be safe, we need that there
is a backward chain rotation at e0 after ePCS. This will be sufficient as all admins recover from state
exposure at eAD ≤ ePCS. Additionally, we need that there is another rotation after e∗ but before eR,
i.e., at e← [, as it gets compromised at that point in time by definition of eR. For the forward chain
to be safe, we simply need that there is a forward chain rotation at e7→: after ePCS but before the
challenge epoch.

Claim F.7. The following are true about FW: (a) All epochs e ∈ FW \ EXP satisfy that
Safe(e) = true, (b) e∗ ∈ FW, and (c) there are no chain rotations at any e ∈ FW.

Proof. The first two claims follow from the definition of the safety predicate Safe for D[OWC, F] in
Figure 8. For (a), first note that EXP is equivalent to Xk at the interval scheme level. Second, note
that if e 7→ exists, then the SafeFC part of Safe is true. Third, if e←[ exists, then SafeBC is also true.
Furthermore, if e0 exists, then SafeAux is also true, as all the exposures that may leak aux values
(i.e., admin exposures) are healed before ePCS and do never occur after e∗ (by the definition of eAD).

For (b), note that by definition ePCS ≤ e 7→, e0 < e∗ < e←[ ≤ eR. Finally, for (c) note that the only
operations that may trigger a chain rotation are ORemoveAdm(·, ·), ORotKeys(·) and ORemove(·, ·)
queries, and the boundaries of FW are defined such that these queries do not occur inside the
window.

Game 5. We define G5 as G4, except that all interval scheme epoch keys k of the epochs e ∈ FW
are replaced by uniformly random keys. This includes the challenge epoch e∗.
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Lemma F.8. There exists an adversary BINT against kind security of the interval scheme D[OWC, F]
that runs in time similar to A and makes at most Q queries such that

AdvG4
Grappa,C(A) ≤ AdvG5

Grappa,C(A) + Adviac
INT(BINT).

Proof. We construct BINT from A as follows. First, BINT initializes A and obtains the sequence of
queries q1, . . . , qQ from A. Then, BINT interacts with the oracles in the interval scheme IAC security
game as a function of the queries of A. Namely, for i = 1, . . . , Q, BINT makes the following oracle
calls, matching the Grappa algorithms:

• If qi is the OTest query or an OInit query, ignore.

• If qi is different than OExpose and ODeliver, query OProgress with the appropriate flag,
and then OCreateExt(ep[qi], 1) where ep is the global epoch game variable.

• If qi is a OAdd query, call OExport(ep[qi] + 1, ep[qi] + 1)

• If qi is a OAddAdm query, call OExport(1, ep[qi] + 1).

• If qi is a ODeliver(uid, e) query, call OProcExt(ist, iext) where the indices correspond to the
state of uid on epoch e and the extension in T[e], respectively.

• If qi is a OGetKey(e) query, call the interval scheme oracle ke ← OGetKey(e).

• If qi is a OExpose(uid, e) query, ignore (for now) the query.

After this first round of queries to the interval scheme challenger, BINT defines an exposure set
EI← [0, emax] \ FW, and queries the OExport oracle accordingly to obtain two exposure interval
indices, denoted by i1 and i2, which span exactly the interval scheme epochs in EI.

Finally, BINT announces an interval scheme challenge epoch e∗21. and exposure intervals I =
{i1, i2}. Then, the BINT obtains access to interval states corresponding to all epochs e ∈ EI ∪ EXP
(note that all keys in EXP were already queried during the first round of queries), as well as
a challenge key k∗. Without loss of generality, we assume that the interval states contain the
information required to recreate a (partial) global state that allows BINT to replicate the creation of
interval states within EI, as well as their corresponding extensions.

Next, BINT simulates to A as follows:

• For all oracle queries that correspond to epochs e ̸∈ FW, BINT runs the Grappa protocol for
A identically as the challenger in G4, generating the interval scheme states and extensions
on-demand. Upon OExpose oracles such that AD[uid; e] = 1, i.e., corresponding to current
admins, BINT also queries the interval scheme oracle OExposeAux(e) to obtain the backward
chain seed and send it to A as part of the leaked admin state.

• For all oracle queries corresponding to epochs e ∈ FW, BINT also simulates as the challenger
in G4, except that all interval scheme internal states and extensions are replaced by random
strings. Recall that no OExpose queries are made in FW.

• For oracle queries OGetKey(e), reply with the real epoch key, given that e ∈ EXP.

• For the oracle query q∗ = OTest(e∗), BINT simply forwards k∗ to A in G4, and forwards a
uniformly random key k0←$ {0, 1}ℓ in G5.

21following the previous footnote, this is the interval scheme epoch corresponding to e∗ in the GKP game
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Finally, BINT outputs whatever A outputs. As all ciphertexts corresponding to epochs e ∈
FW ⊆ SW were already randomized in G4, the games are identical in the view of A except for the
OTest query. As we argued before, Safe(e∗) = true, BINT is a valid adversary against the interval
scheme, and the lemma follows.

Conclusion. In game G5, we have that AdvG5
Grappa,C(A) = 0, as the challenge key is replaced by a

uniformly random key. Hence, G5 is equivalent to the random (b = 0) GKP game Gkind90
Grappa,C. By

collecting the advantages from the lemmas, the theorem follows.
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