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Abstract

A long line of work has investigated the design of scalable secure multiparty computation (MPC)
protocols with computational and communication complexity independent of the number of parties
(beyond any dependence on the circuit size). We present the first unconditionally-secure MPC protocols
for arithmetic circuits over large fields with total computationO(|C| log |F |), where |C| and |F | denote
the circuit and field size, respectively.

Prior work could either achieve similar complexity only in communication, or required highly struc-
tured circuits, or expensive circuit transformations. To obtain our results, we depart from the prior
approach of share packing in linear secret-sharing schemes; instead, we use an “unpacking” approach
via non-linear secret sharing.
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1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87, BGW88, CCD88] enables a group of mutually
distrusting parties to jointly compute an arbitrary function on their private inputs in a manner such that
the participants learn nothing beyond the output of the function. Over the years, MPC has emerged as a
general-purpose cryptographic tool for processing sensitive distributed data without introducing a single
point of failure.

Large-Scale MPC. Many emerging applications of MPC naturally involve a large number of parties. For
instance, in privacy-preserving machine learning, one can derive more robust conclusions when a large
number of participants contribute their inputs. High participation is also desirable for better security
assurance; indeed, in practice, the privacy threshold of an MPC protocol is less likely to be breached
in a large-scale setting. It is therefore desirable to build MPC protocols where the communication and
computational complexity has minimal (and ideally, no) dependence on the number of parties beyond any
dependence on the circuit size.

The work of [DN07] constructed unconditionally-secure MPC for general arithmetic circuits where
the per-party communication and computation is independent of the number of parties. Subsequently, a
long line of works has attempted to achieve total (as opposed to per-party) complexity independent of the
number of parties for circuits of sufficiently large width and size. For instance, [GPS21, GPS22] recently
constructed MPC protocols with total communication O(|C| log |F |), where |C| denotes the number of
gates in the circuit and |F | denotes the field size. MPC protocols with similar computational complexity
are only known for structured circuits (such as SIMD) [FY92, BGJK21]. For general circuits, one can use
circuit transformations [DIK10] to achieve the desired structured form; however, this incurs an overhead
of O(log |C|) in circuit size and depth, which is eventually reflected in the communication, computation,
and the round complexity.

Our Work. In this work, we study scalable MPC for general (unstructured) arithmetic circuits. In partic-
ular, we give a scalable MPC protocol (in both computation and communication) for any arithmetic circuit
over a large field. Technically, we employ a non-linear secret sharing recently introduced to the MPC lit-
erature [GJM+23], which is a significant departure from all prior scalable MPC protocols based on linear
secret sharing schemes.

1.1 Our Results

Main Result. We construct a scalable MPC protocol for arithmetic circuits over a prime field F where
log |F | grows quadratically in the number of parties. In particular, the overall communication and com-
putation of our protocol, measured at bit-level,2 is O(|C| · log |F |).3 Our protocol achieves unconditional
security in the honest-majority setting against any t < 1

2 − δ fraction of semi-honest corruptions for any
constant δ > 0. The sub-optimal corruption threshold in our result is necessary and in keeping in known
negative results for strict honest majority [DLN19]. The construction is presented in detail in Section 4.
Here we provide the informal theorem.

Theorem 1 (Informal). For any constant δ ∈ (0, 1/2), any prime field Fp such that log p = Ω
(
n2 log n

)
,

and any arithmetic circuit C over F , there is an unconditional secure MPC protocol realizing C among n

2Throughout this work, we measure communication and computation complexity at a bit level. Our protocol employs a non-
linear secret sharing scheme where each party performs computation over a different field. This is in contrast to linear secret
sharing where all parties work over the same field. Therefore, we inevitably have to measure complexities at the bit level.

3Throughout this work, when we state computational complexities, we ignore some loglog|F | terms. Note that, even an
insecure evaluation of the circuit takes more than O(|C| · log |F |) at a bit level. This is because multiplying two log |F |-bit
number takes quasilinear time. We refer the readers to item 1 in Section 3.3 for a detailed discussion on this.

3



parties against t = (1/2−δ) ·n semi-honest corruptions. This protocol is perfectly correct and poly(|C|/|F |)-
statistically secure. Moreover, the total communication and computation (measured at bit-level) of the protocol
is O(|C| · log |F |).4

Dishonest-Majority MPC. Next, we extend our protocol to the dishonest majority setting in the corre-
lated randomness model. Our correlated randomness setup includes secret shares of Beaver triples [Bea92]
computed using the secret-sharing scheme based on the Chinese Remainder Theorem (CRT) [Mig83, AB83,
GRS99]. Our protocol achieves unconditional security against any t < 1− δ fraction of semi-honest cor-
ruptions for any constant δ > 0. The construction is presented in Section 5. Here we provide the informal
theorem.

Theorem 2 (Informal). For any constant δ ∈ (0, 1/2), any prime field Fp such that log p = Ω
(
n2 log n

)
,

and any arithmetic circuit C over F , in the correlated randomness model, there is an unconditional secure
MPC protocol realizing C among n parties against t = (1 − δ) · n semi-honest corruptions. This protocol is
perfectly correct and poly(|C|/|F |)-statistically secure. Moreover, the total communication and computation
(measured at bit-level) of the protocol is O(|C| · log |F |).

MPC over Rings. Finally, we highlight that our protocols can be readily extended to work over rings. In
particular, as long as p is coprime with 2, 3, . . . , n− 1, all of our results directly extend to Zp without any
change. The problem of MPC over rings has been studied in many works (e.g., [CFIK03, ACD+19, ES21,
EXY22, DEN22]) recently. Our results provide an alternative approach to this problem.

1.2 Discussion: MPC over Large Fields

Applications. Typically, unconditionally-secure MPC protocols require field size⩾ n. Our results require
significantly larger fields. We believe that this requirement can be met in emerging applications of MPC
where MPC is used for privacy-preserving delegation of computation of resource-intensive cryptographic
algorithms. One such example is zero-knowledge succinct non-interactive arguments (zkSNARGs) where
the underlying field is naturally large — typically, logF is proportional to the security parameter. Recent
works [OB22, GGJ+23, CLMZ23] demonstrated that zkSNARG proof generation, a resource-expensive
process, can be performed using scalable MPC to enable fast proof generation in a privacy-preserving
manner.

Our protocol is well-suited to such applications. In particular, similar to prior work [OB22, GGJ+23,
CLMZ23], it can also support black-box use of cryptography. As an example, the distributed proof gener-
ation process in these works (in the context of group-based zkSNARGs) transforms a sharing JxK of x into
gx, where g is the generator of a cryptographic group G. This can be done by exploiting linearity (e.g., La-
grange interpolation in the exponent). Our protocol can also support such transformations: given sharing
JrK of a random mask r and gr in the clear, one can reconstruct y = x+ r and compute gx = gy/gr . More
crucially, these randomness terms can be generated in a batch manner using the randomness extraction
techniques we develop in this work.

Our protocol also achieves some key advantages over prior work. In order to achieve fast proof gen-
eration using scalable MPC, prior works inevitably rely on the highly repetitive structure of the proof
generation circuit. Although some parts of the proof generation enjoy such a structure, there are parts
that do not. This results in undesirable outcomes: for instance, the clients outsourcing the computation

4This informal theorem statement ignores polylogn terms on the computational complexity. We refer the readers to Theorem 3
for a formal statement.
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need to compute the extended witness5 themselves, which already involvesO(|C|) computation. Further-
more, some works [GGJ+23] also require a king server with large memory and computational resources
to handle non-repetitive computation. Our protocol eliminates such drawbacks.

Finally, we remark that, while our current result requires log p = Ω
(
n2 · log n

)
for technical reasons, it

is conceivable that this can be reduced to log p = Ω(n · log n) (we discuss this point at length in Section 2).
Thus, our approach could eventually lead to a scalable MPC protocol where the total work could be divided
among ≈ λ number of parties for such applications.

AnAlternative Approach. We discuss an alternative approach to scalable MPC for large fields.6 One can
compile an arithmetic circuit C over a field F into a boolean circuit C ′ of size≈ |C|·logF [vzGS91]. When
the field is sufficiently large, e.g., logF ⩾ n, the resulting boolean circuit will have a highly repetitive form
and one can employ existing works [BGJK21] to obtain a scalable MPC protocol.

Compared to Theorem 1, this approach is less preferable. Asymptotically, it introduces a large polylog n
overhead which affects the communication, computation and round complexity complexity of the final
protocol. This overhead is introduced in the compilation process and then one must use a sufficiently
large extension field to employ Shamir secret sharing-based MPC. This approach is also undesirable from
a concrete efficiency perspective due to the hidden constant and lower-order terms in the asymptotic
expression. Indeed, to avoid specifically such overheads, prior work has, for example, studied methods for
direct garbling of arithmetic circuits [AIK11, BLLL23] (without first translating them to boolean circuits
and using Yao’s garbling [Yao86]). See further discussion on the overhead of this transformation in [AIK11,
BLLL23].

For these and other reasons, this approach is also not well-suited for the application to outsourcing
cryptography discussed above.

1.3 Related Work

Classical honest-majority MPC protocols [BGW88, CCD88] incur per-gate communication and compu-
tation that grows at least quadratically in the number of parties. There are two primary techniques for
reducing this overhead: share packing [FY92], and king-based computation with batched randomness
generation [DN07]. Either of these techniques can be used individually to reduce the per-gate overhead to
O(n). However, the former technique is only directly applicable to SIMD computations, while the latter
technique works for general circuits (of size greater than the number of parties).

Starting from [DIK+08, DIK10], a sequence of works has explored the “marriage” of both of these tech-
niques to obtain more efficient protocols for circuits of sufficiently large width (in particular, larger than
the number of parties). Specifically, [DIK10] presented an unconditionally secure MPC protocol with a
total computation of O

(
|C| · log |C|+ d2 · n

)
field operations, where d denotes the circuit depth. For cir-

cuits with width much larger than the depth, the effective overhead is O(log |C|).7 The work of [GIP15]
obtained constant-factor improvements in the setting of malicious corruptions. Subsequently, [BGJK21]
constructed MPC with a total computation of O(|C|) field operations for highly repetitive circuits. Re-
cently, [GPS21, GPS22] constructed the first MPC protocols that incur only constant communication per-
gate for general circuits. The computational complexity of their protocols, however, still remains n · |C|
field operations.

All of the above works that achieve per-gate communication sublinear in n rely on sub-optimal corrup-
tion thresholds. The work of [DLN19] proved the necessity of a small gap δ from a strict honest majority

5Let R be an NP relation with statement x and witness w. Suppose this relation is described by an arithmetic circuit C , i.e.,
(x,w) ∈ R if and only if C(x,w) = 1. The extended witness stands for all the intermediate values when one evaluates the
arithmetic circuit C(x,w).

6We thank an anonymous reviewer for pointing this out.
7For circuits with large depth d, [DIK10] propose an alternative solution with overhead O(log |C| log(d)).
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for MPC protocols with constant communication per-gate.
Our core techniques rely on non-linear secret sharing built using Chinese Remainder Theorems (CRT).

The use of CRT-based secret sharing to the realm of secret-sharing based MPC was recently introduced
in [GJM+23]. Their focus is to study efficient weighted MPC, namely, the trust assumption is skewed by
weights as in a majority of the weights are honest. They show that CRT-based secret sharing could be
more efficient than linear secret sharing schemes for realizing weighted MPC. In comparison, our focus
in this work is to study the scalability of MPC in the standard unweighted setting. We extend their core
techniques by bringing the batched randomness generation techniques [DN07] to the realm of CRT secret
sharing-based MPC.

There are other areas of secure computations, such as distributed RSA key generation [ICG08, HTX20]
arithmetic garbled circuits [AIK11, Hea24], and doubly efficient PIR [LMW22] where CRT-based techniques
were used. However, they did not consider CRT-based (non-linear) secret sharing.

Using computational assumptions such as fully homomorphic encryption [Gen09], one may get MPC
protocols [MW16, AJL+12] that achieve optimal communication and round complexity. In this paper we
focus on unconditional security.

2 Technical Overview

We now present an overview of the key techniques underlying our results. Let C be an arithmetic circuit
over some prime fieldFp0 . Let n be the number of parties and t be the number of (semi-honest) corruptions.
We start by describing our ideas for the honest majority setting and then present some extensions.

TheNecessity of DownloadRateO(1). All existing information-theoretic MPC protocols employ secret
sharing schemes to emulate the circuit evaluation in a gate-by-gate manner. That is, parties start by secret
sharing their inputs. Afterward, for every gate such that the input wires are already secret shared, parties
will collectively derive appropriate secret sharing of the output wire. Evidently, for every gate being
computed, the overall computation done by all parties will inevitably grow with the total share size of
the secret sharing scheme. Therefore, if one hopes to achieve |C| log p0 computational complexity, it is
necessary that the ratio between the secret size and the total share size, namely, the download rate, is
O(1).

Limitations of Linear Secret Sharing. Linear secret sharing, by definition, considers secret sharing
schemes, where both the secret and each individual secret share come from the same underlying field Fp0 .
Naturally, linear secret sharing schemes have a download rate ⩽ 1/n. Consequently, the total computation
done by all parties, even for evaluating, say, an addition gate, is still n times the necessary computation
required for evaluating addition insecurely (even though emulating addition gates does not require com-
munication at all). Since most existing information-theoretic MPC protocols are based on linear secret
sharing schemes, they are all affected by this bottleneck. In order to address this barrier, prior works em-
ploy a technique known as share packing [FY92]. That is, one uses a single instance of linear secret sharing
to share multiple secrets. Through this packing technique, performing operations on secret shares allows
parties to collectively evaluate multiple gates at the same time. Intuitively, this allows for an amortized
download rate O(1).

However, this technique of utilizing amortization comes at a cost. Since one must evaluate multiple
gates simultaneously, this technique is only compatible with circuits that come with specific repetitive
patterns, which a general circuit might not conform to. Prior works tried to address this issue through
different perspectives. For instance, [DIK10] considered compiling any circuit to a special form before
applying this technique, [BGJK21] considered a larger (than SIMD) family of repetitive circuits where this
technique is applicable, [GPS21, GPS22] used this technique to reduce the communication (but not the
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computation) for general circuits. None of these works succeeds in constructing an MPC protocol for
general circuits with O(|C| · logF ) overall computation.

Our Key Insight. In this work, we completely depart from this amortization approach based on share
packing — the only known technique for addressing the aforementioned barrier. Instead, we ask

Is there an MPC-friendly secret-sharing scheme with a non-amortized download rate O(1)?

If the answer is positive, the hope is that one can directly use this secret sharing scheme to emulate cir-
cuit evaluation in a straightforward manner to achieve O(|C| · logF ) complexity, which will allow us to
completely bypass the issues that come with packing.

“Unpacked” Secret Sharing. We positively answer the above question through a non-linear secret-
sharing scheme based on the Chinese remainder theorem [Mig83, AB83, GRS99]. While this type of secret
sharing scheme has been known for a long time, it was only recently introduced to the MPC literature
by [GJM+23].

Let us start by recalling the basics of CRT-based secret sharing. CRT-based secret sharing schemes are
parametrized by moduli p1, . . . , pn, which are required to be pairwise coprime (including p0). To share
a secret x ∈ Fp0 , one picks a random integer X such that X = x mod p0. The i-th secret share is
defined as xi = X mod pi. To reconstruct the secret from secret shares, one uses the Chinese remainder
theorem to reconstruct the integer X first and then derive x = X mod p0. When X is drawn from
suitable distributions (in particular, uniformly randomly from consecutive x, x+p0, x+2p0, . . . , x+L ·p0
integer representatives of x), one may prove the statistical security of CRT-based secret-sharing schemes
(refer to Lemma 3). Later, we will simply use JXK to represent one instance of CRT sharing of the secret
X mod p0.

Unlike linear secret sharing, one may observe that the CRT-based secret sharing scheme does not
require each individual secret share to be as long as the secret. In fact, it is possible that the length of the
secret is comparable to the total length of the secret shares, i.e.,

log p0 = Θ(log p1 + log p2 + · · ·+ log pn) = Θ(logPall),

where Pall = p1p2 · · · pn. Therefore, CRT-based secret sharing could have a non-amortized download rate
O(1). Conceptually, one may think of our approach as an unpacking technique. Namely, instead of packing
many small secrets into one sharing to achieve download rate O(1), our approach unpacks a single large
secret into smaller shares to directly achieveO(1). Before we proceed to discuss CRT Secret Sharing-based
MPC, we make two important observations.

1. Necessity of Large Field. Since logPall necessarily grows linearly with n, if one hopes to achieve
download rate O(1), it is inevitable that the field size log p0 linearly depends on the number of parties.
Ideally, the optimal result one could hope for is an MPC protocol with O(1) overhead for any field
whose size is linear in n. For technical reasons, which we shall explain shortly, we achieve an O(1)
overhead MPC protocol when log p0 grows quadratically in n.

2. Necessity of Ramp. Note that it is also inevitable that such a secret sharing scheme does not have a
sharp threshold as in any t parties can not learn any information and any t+1 parties can recover the se-
cret. The reason is the following: for any sharp threshold secret sharing scheme, irrespective of whether
it is linear or non-linear, it must hold that each share size is as long as the secret size [CDSGV91]. There-
fore, this means that the download rate of the secret sharing scheme must be ⩽ 1/n. Hence, for a down-
load rate O(1) secret sharing, one must need significantly more than t + 1 parties to reconstruct the
secret. Looking ahead, this means the MPC protocol based on these schemes can not be strictly honestly
majority n = 2t + 1, but will be in honest super-majority t < (1/2 − δ) · n regime for some constant
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δ. In fact, this is not only necessary for us, but for all MPC protocols that achieve O(|C| · log p0) total
communication as shown by [DLN19]. Our observation here is aligned with this known lower bound.

MPC from CRT Secret Sharing. Although CRT secret sharing is non-linear, it bears a lot of resem-
blances, as observed by [GJM+23], to MPC-friendly linear secret sharing scheme, e.g., Shamir’s secret
sharing scheme. In particular, it also satisfies “local homomoprhism”. Namely, under suitable constraints,
when parties locally add/multiply their shares, it becomes a secret sharing of the sum/product of the un-
derlying secrets. For Shamir’s secret sharing, addition comes for free; but after each multiplication, the
random polynomial encoding the secret goes from degree t to 2t. Hence, one needs a “degree-reduction”
protocol to restore the degree back to t. Similarly, for CRT secret sharing, one has to manage the size of
the integer X ∈ N representing the secret x ∈ Fp0 . Otherwise, if X becomes too large (in particular,
X ⩾ Pall), the CRT invocation on the secret shares {X mod pi}i∈[n] will not give X but some X ′ < Pall,
resulting in a correctness issue when X ′ ̸= X mod p0. Therefore, CRT secret sharing-based MPC pro-
tocols also need a similar “integer-reduction” protocol to restore the size of the secret integer. Just like
degree-reduction, this can be done by employing two secret sharing JRtK and JR2tK of the same secret
mask r. Parties reconstruct S +R2t in the clear and locally shift their share JRtK by (S +R2t) mod p0.

At this point, it is helpful to summarize the online phase of the CRT-based MPC protocol, assuming
that parties are given access to sufficiently many masks JRtK and JR2tK and that all pi have approximately
the same length ℓ = log pi. Parties start by sharing their input x as JXK. These integers are of length
approximately t · ℓ to ensure that corrupted parties’ secret shares are uniformly random.8 For the addition
gate, the integer grows slowly. In particular, for |C| number of addition gates, the length of the integer
will grow by an additive term of log |C|. Therefore, no integer-reduction is needed for the addition gate.
For the multiplication gate, however, the integer grows fast. In particular, two (t · ℓ)-bit integers X and
Y will result in a (2 · t · ℓ)-bit integer X · Y .9 Therefore, after each multiplication gate,10 parties need to
consume one pair of masks JRtK , JR2tK to restore the integer back to (t · ℓ) bits. Therefore, with enough
random masks, parties can collectively emulate the circuit evaluation gate by gate. Assuming that the CRT
secret sharing has a download rate O(1), this already gives an MPC protocol with online communication
and computation O(|C| · log p0).11

Offline Batch RandomMasks Generation. To enable the online phase, parties must collectively sam-
ple sufficiently many (corresponding to the number of multiplication gates) masks JRtK and JR2tK in the
offline phase. Moreover, this has to be done efficiently, i.e., with O(|C| · log p0) total complexity. In par-
ticular, every pair of masks JRtK and JR2tK is consumed for one gate, and therefore, the cost of generating
them should be comparable to log p0. Note that, for security reasons, no random masks can be generated
solely by a particular party since all security is lost if this particular party is corrupted. One may con-
sider asking each party Pi to prepare a pair of

r
R

(i)
t

z
and

r
R

(i)
2t

z
and then use JRtK =

∑
i

r
R

(i)
t

z
and

JR2tK =
∑

i

r
R

(i)
2t

z
as the pair of masks. While this solution is secure, it is unacceptably costly; the total

communication and computation is comparable to n · log p0, incurring an overhead of n.12

Earlier works also run into a similar issue of how to generate random masks efficiently in the offline
phase. In particular, [DN07] introduced the celebrated Vandermonde randomness extraction technique

8This is not precise. They need to be exponentially larger than t · ℓ+ log p0 to ensure exponentially small statistical security.
But we ignore this for the ease of presentation.

9As a sanity check, X ·Y needs to be smaller than Pall of length n ·ℓ. Hence, it is required that n > 2t, similar to Shamir-based
protocols.

10This is also needed for scalar multiplication gate.
11Although [GJM+23] focuses on the weighted setting, their techniques are sufficient to derive this. Our innovation, thus far,

is the observation that the CRT techniques can be applied to the unweighted setting as well; and when the field is large, it will
achieve download rate O(1).

12This is exactly why [GJM+23] incurs an overhead of n.
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for linear secret-sharing schemes. This is done as follows. Every party Pi will prepare a pair of random
masks

r
S
(i)
t

z
and

r
S
(i)
2t

z
. Note that t of these pairs belong to the corrupted parties and are insecure to

use. However, one may still extract n− t secure pairs of masks by


r
R

(1)
t

z

...r
R

(n−t)
t

z

 = V ·



r
S
(1)
t

z

r
S
(2)
t

z

...r
S
(n)
t

z

 and


r
R

(1)
2t

z

...r
R

(n−t)
2t

z

 = V ·



r
S
(1)
2t

z

r
S
(2)
2t

z

...r
S
(n)
2t

z

 .

Here, V ∈ F (n−t)×n is some fixed matrix. Note that, as long as n − t = Θ(n), the amortized cost of
generating one pair of masks is indeed O(log p0). On the security side, the idea is that, for any set I ⊆
[n] of corrupted parties, the resulting pairs

{r
Rj

t

z
,
r
Rj

2t

z}n−t

j=1
are uniformly random to the adversary.

[DN07] showed that, over any finite field, as long asV is super-invertible, this is indeed secure, where super-
invertibility means that any (n− t)× (n− t) submatrix of V is full-rank. In particular, the Vandemonde
matrix (Equation 1) is super-invertible.
Technical Challenge: Randomness Extraction over Integers. Can we use similar ideas for our pur-
poses as well? Does the Vandermonde randomness extraction technique also work for CRT secret sharing?
We note that, there is a crucial difference between CRT secret sharing and linear secret sharing. For CRT
secret sharing, we have to work with distributions over Z. In particular, suppose Z1, Z2, . . . , Zn−t are the
outputs of n− t multiplication gates, which we aim to mask. We must be able to simulate

V ·



r
S
(1)
2t

z

r
S
(2)
2t

z

...r
S
(n)
2t

z

+

 JZ1K
...

JZn−tK



as a distribution over Zn−t without the knowledge of the secret values {Zi mod p0}i. Essntially, we need
to perform randomness extraction over integers.

Arguing statistical closeness between two distributions over integers is not common. To our best
knowledge, all of these arguments (for instance, the argument used to prove the statistical security of
CRT secret sharing) are variants of the so-called smudging lemma (refer to Lemma 2). It states that, if U
is uniformly distributed over {1, 2, . . . ,M}, the m + U and U are m/M statistically close. Here, we are
facing a drastically different question. The random masks that we generate, namely, each row of V · S⃗, are
not uniformly distributed over consecutive integers. In fact, they might be very structured. For instance, if
the first row of V consists of only even numbers, then the first mask we generate, i.e., the first coordinate
of V · S⃗ is only supported on even integers. This raises the following key technical question.

What matrix V over Z suffices for randomness extraction over integers?

Let us begin with some helpful observations.

• Super-invertibility over Zp0 is necessary. If one can simulate the masked integers over Z, one must
also be able to simulate the masked integers modulo p0, i.e., over Zp0 . Therefore, the masked integers
modulo p0 must be uniformly random. Otherwise, it is hopeless to simulate them without the knowledge
of the underlying secrets. Based on this, one can arrive at the conclusion that it is necessary that V
modulo p0 is super-invertible.
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• Is super-invertibility sufficient? Now that we know super-invertibility is necessary, a natural ques-
tion is whether it also sufficient? Upon closer inspection, one can conclude that super-invertibility over
Zp0 alone is not a sufficient condition. Given any super-invertible V , we may multiply the first row of
V by, say, 2 (over integers). The resulting matrix is still super-invertible over Zp0 , but now has an even
first row. Then, the random mask being generated cannot be used to mask any distributions that are
sensitive to the parity distinguisher, i.e., the distinguisher that outputs the parity of the integer. While
the distributions that we aim to mask are not necessarily sensitive to parity distinguisher, this serves as
an example to show that no matter what argument we use, it must be strong enough to eliminate all
such attacks.

• Natural attempt at strengthening super-invertibility. In the previous example, one may wonder
if the example of the entire first row being even is just a pathological case. A natural attempt to avoid
such pathological examples is to enforce that each row contains a “1” at a distinct entry. Then, for each
mask we generated

∑
j∈[n] vi,j · S

j
2t, one of the summand vi,j · Sj

2t satisfies vi,j = 1 and now we have
the distribution Sj

2t, which is uniformly random over consecutive integers. Is this sufficient to mask the
i-th row? If one looks at the marginal distribution of the i-th mask, the answer is yes; it is simulatable
due to the smudging lemma. However, it is unclear if the joint distribution is simulatable. This is because
the term Sj

2t does not solely contribute to the i-th mask; different multiples of Sj
2t contribute to different

rows as well. Therefore, it remains elusive if this correlation leaks anything.

Key Observation: High Dimensional Smudging Lemma. We now present our solution for this prob-
lem. Without loss of generality, let us assume that the first n − t parties are honest and remove the
contribution of the corrupted parties from the masks. This simplifies our question and gives us a square
matrix V ∈ Z(n−t)×(n−t). To address the integer randomness extraction problem, we derive the following
techniques for it. In particular, we note that, while a matrix V over Z is not necessarily invertible, it must
have an adjugate matrix adj(V ) such that

V · adj(V ) = adj(V ) · V = det(V ) · I,

where I is the identity matrix. We refer the reader to Section 3.1 for recalling the basic facts on the adjugate
matrix. By relying on that we derive the following key technical lemma, which we call high-dimensional
smudging lemma.

Lemma 1 (High-dimensional Smudging Lemma). Let V ∈ Z(n−t)×(n−t). Suppose S1, . . . , Sn−t are inde-
pendent distribution uniformly over consecutive integers {1, 2, . . . , L}. Let∆1, . . . ,∆n−t be fixed shifts that
are divisible by det(V ). We have

V ·


S1

S2
...

Sn−t

 ≈ V ·


S1

S2
...

Sn−t

+


∆1

∆2
...

∆n−t

 .

The closeness is upper-bounded by (n−t)·maxadj·max∆
L , wheremaxadj andmax∆ denotes themaximum absolute

values in the adjugate of V and the∆-vector.

Proof. Consider the following derivation:

V ·


S1

S2
...

Sn−t

 = V ·


S1

S2
...

Sn−t

−


∆1

∆2
...

∆n−t

+


∆1

∆2
...

∆n−t
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= V ·




S1

S2
...

Sn−t

− adj(V ) ·


∆1/ det(V )
∆2/ det(V )

...
∆n−t/ det(V )


+


∆1

∆2
...

∆n−t

 .

Now, the closeness is reduced to the closeness between
S1

S2
...

Sn−t

− adj(V ) ·


∆1/det(V )
∆2/det(V )

...
∆n−t/ det(V )

 and


S1

S2
...

Sn−t

 ,

for which one can apply standard smudging lemma directly. This closeness is determined by the upper
bounds on the shift and the size of the support of the distribution Si (plus a union bound on the number
of rows).

Note that this proof crucially relies on the fact that all shifts ∆i’s are divisible by det(V ). Otherwise,
S1 and 1/2 + S1, for instance, will not be close.

Remark 1. As a sanity check for this lemma, suppose the first row of V consists solely of even numbers, its
determinant will be an even number. This lemma states that the extracted masks can only mask even shifts,
which is aligned with our previous discussions.

This useful tool allows us to simulate the masked integers and argue their closeness. In particular, it
implies that we can simulate the view of the protocol as long as the distribution of the secret integer in
the simulated view and the real view are shifted by multiple of det(V ). Therefore, as a security invariant,
we shall consistently enforce that, for any CRT sharing of a wire, the distributions S1 and S2 of the secret
integer corresponding to different secrets s1 and s2 always satisfy S1 = S2+∆ for some ∆ that is divisible
by det(V ).

To enforce this invariant, for any secret s ∈ Zp0 , we will always reformat it as an integer S such that
S = s mod p0 and S = 0 mod det(V ). (Note that this is only possible if p0 and det(V ) are coprime,
which is aligned with our earlier discussion that V must be super-invertible over Fp0 .) Consequently, the
different integer representatives of different secrets are always separated by a multiple of det(V ). At this
point, the reader might wonder the following: the determinant det(V ) should depend on which subset of
parties are corrupted; how can the protocol specification depend on which subset of parties are corrupted?
A simple fix for this is to pick the least common multiple of det(V ) for all possible V ’s. For example, for
a Vandermonde matrix such as Equation 1, this can simply be

∏
1⩽i<j⩽n(j − i).

Dependence between log p0 and n. We are now ready to explain the quadratic dependence between
log p0 andn. Note that, for correctness, the random masksS(i) generated need to be smaller than p1p2 · · · pn.
On the other hand, our high dimensional smudging lemma require them to be random over a support sig-
nificantly larger than maxadj. Similarly, our reformat of the secret also increases the secret size from p0
to p0 · det(V ). For a Vandermonde super-invertible matrix, both det(V ) and maxadj are of the order nn2

(refer to Section 3.1). Consequently, it implies that we must have nn2
⩽ p1p2 · · · pn.

In other words, the cumulative length of the secret shares must be Ω
(
n2 log n

)
in order to utilize our

high dimensional smudging lemma. We require a CRT sharing with download rate O(1); this implies
log p0 must be Ω

(
n2 log n

)
too.

It is worth noting that this is a consequence of our proof technique. We are not aware of any explicit

11



attacks. To illustrate this point, consider the question of determining the closeness between

V ·


S1

S2
...

Sn−t

 and V ·


S1

S2
...

Sn−t

+


1
0
...
0

 ,

where V is any Vandermonde matrix. While our techniques cannot prove that they are close, it remains
unclear if they are close or far apart.

Our proof techniques also motivate studying the following research question. Does there exist super-
invertible matrix V such that det(V ) and maxadj are small? In particular, exp(O(n)) small? If one con-
structs such a matrix, then it can be modularly plugged into our protocol to obtain MPC protocols for any
field F such that log |F | is linear in n.
Extensions. Our protocol can be readily extended to achieve several useful results of independent interest.
We discuss them next.

1. Ring Computation. So far, we focused on the setting where the arithmetics is over a prime field
Zp0 . However, our protocol is (almost) oblivious to whether p0 is a prime number or not. The only
case where it matters is the super-invertibility of V over Zp0 . For our choice of the Vandermonde
matrix (Equation 1), this property holds as long as p0 is coprime with {2, 3, . . . , n − 1}. Therefore,
our protocol readily extends to all p0 that are coprime with {2, 3, . . . , n − 1}. In fact, our main
technical sections only assume that Zp0 is a ring.

2. Dishonest Majority. A recent work [GPS22] shows that the packed secret-sharing techniques can
be extended to the dishonest majority setting as well. We observe that similar ideas can also be ap-
plied to our techniques. In particular, given suitable correlated setups,13 namely, Beaver triples [Bea92],
one may instantiate the standard framework of secret sharing-based dishonest majority protocol
with our CRT secret sharing scheme to obtain a dishonest majority MPC protocol withO(|C| · log p0)
total communication and computation.
Interestingly, we still need an integer-reduction step after each multiplication gate, even given Beaver
triples. This is because scalar multiplication is not free for CRT secret sharing-based MPC protocols.

3 Preliminaries

All logarithms in this work are of base 2. Throughout the paper, the statistical security parameter is denoted
by κ. For any n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. For any set S, s← S means that s is drawn
uniformly randomly from the set S. For two discrete distributions D1 and D2 over the same support U ,
their statistical distance is defined as SD (D1,D2) = 1

2 ·
∑

u∈U |Pr[D1 = u]− Pr[D2 = u]|. We also use
D1 ≈ε D2 to denote that SD (D1,D2) ⩽ ε. For any distribution D over a ring R and an element α ∈ R,
we use α+D to denote the distribution of α+ d, where d is drawn according to D.

This work considers the integer ring Z and the ring Zp. Looking ahead, for our MPC protocol among
n parties, every party Pi works in a different ring Zpi for all i ∈ [n]. To avoid ambiguity, we adopt the
following notations. The standard +, −, and · is reserved for arithmetic operations over the integer ring
Z. The arithmetic operations over the ring Zpi is denoted by ⊕i, ⊖i, and ⊙i instead.

Often, we need to switch between ring element α ∈ Zp and integers. When we treat a ring element
α as an integer, we use the canonical representation of α as the representative integer. That is, we enforce
α ∈ {0, 1, . . . , p− 1}.

13This is necessary for information-theoretic dishonest majority protocols.
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Finally, the following smudging lemma shall be useful. This lemma is usually stated for the special case
∆ = 1. Here, we state a slightly generalized version.

Lemma 2 (Smudging Lemma [AJL+12]). Let M be a positive integer. Let D denote a distribution over Z,
which is uniform over {a, a+∆, a+2 ·∆, . . . , a+M ·∆} for some a,∆ ∈ Z. For anym ∈ Z, it holds that

SD (D,D +m ·∆) ⩽
|m|
M

,

where |m| denotes the absolute value ofm.

3.1 Linear Algebra Basics and Some Upper Bounds on the Determinant

For any square matrix M over a commutative ring R, we use det(M) to denote its determinant. In this
work, we will only be concerned with the integer ring Z.

Let I denote the identity matrix. While a matrix M over a ring may not necessarily be invertible, it
always has an adjugate matrix, denoted by adj(M), which satisfies

adj(M) ·M = M · adj(M) = det(M) · I.

In particular, the (i, j)-th entry of the adjugate matrix adj(M) is defined as (−1)(i+j) ·det (M−j,−i), where
M−j,−i stands for the matrix M without the j-th row and i-th column.

We would use the following simple upper bounds for the determinant and the entries of the adjugate
matrix of an m×m Vandermonde matrix with 1 ⩽ x1 < x2 < · · · < xm ⩽ n:

V =


1 1 · · · 1
x1 x2 · · · xm
...

... . . . ...
(x1)

m−1 (x2)
m−1 · · · (xm)m−1

 , (1)

It has a determinant
∏

1⩽i<j⩽m(xj −xi), which can be upper-bounded by nm2 . Each entry in its adjugate
adj(V ) is (−1)(i+j) · det (V−j,−i), which can be upper-bounded by

(m− 1)! ·
(
nm−1

)m−1
⩽ nm2

.

This is derived by writing down the determinant by definition and noticing that there are (m− 1)! terms,
each of which is a product of m− 1 entries upper-bounded by nm−1.14

Looking ahead, these upper bounds will be useful for our security proof (e.g., Lemma 1).

3.2 Chinese Remainder Theorem-based Secret Sharing

We start with formally defining a ramp threshold secret-sharing scheme which shares secrets from a ring
R to a set of sharings in possibly different rings R1,R2, . . ..

Definition 1 ((n, T, t)-Threshold Secret-sharing Scheme). Let t, T ∈ N denote the privacy threshold and
reconstruction threshold, respectively, such that T ⩾ t. S secret-sharing scheme amongn (⩾ T ) parties consists
of two algorithms (Share,Reconst) with the following syntax:

14The determinant of the minors of the Vandermonde matrix (i.e., V−j,−i) is well-understood. There are explicit formulas for
it and, thus, it is possible to derive tighter upper bounds. However, a coarse upper bound, such as the one stated above, suffices
for our purpose.
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• Sharen,T,t(s) is a randomized algorithm that takes a ring element s ∈ R as input and outputs n shares
(s1, . . . , sn) ∈ R1 × · · · × Rn.

• Reconstn,T,t({si}i∈I) is a deterministic algorithm that takes a set of shares {si}i∈I such that |I| ⩾ T
and reconstruct the secret s.

It should satisfy the perfect correctness and statistical security as follows.

• (Perfect) Correctness. For any secret s ∈ R and any set I ⊆ [n] of size |I| ⩾ T we have that:

Pr

[
s′ = s :

(s1, s2, . . . , sn)← Sharen,T,t(s)

s′ = Reconstn,T,t
(
{si}i∈I

) ]
= 1.

• ε-(Statistical) Security. For any set I ′ ⊂ [n] such that I ′ < t and any two secrets s, s′ ∈ F, it holds
that the following two distributions are ε-statistically close.{

(s1, s2, . . . , sn)← Sharen,T,t(s)

Output {si}i∈I′

}
≈

{
(s′1, s

′
2, . . . , s

′
n)← Sharen,T,t(s

′)

Output
{
s′i
}
i∈I′

}
.

In this work, we will use the Chinese Remainder Theorem (CRT) based (non-linear) ramp threshold se-
cret sharing scheme [Mig83, AB83, GRS99, GJM+23]. We briefly describe the scheme below for parameters
(n, t, T ) closely following [GJM+23].

Let p0, p1, . . . , pn be pairwise coprime. CRT-based secret sharing scheme takes secrets from the ring
Zp0 and produces sharings fromZ1×· · ·×Zn. DefinePmin := min|I|⩾T

(∏
i∈I pi

)
andPmax := max|I′|<t

(∏
i∈I′ pi

)
(Note that Pmax < Pmin). Choose another parameter L, which will depend on n, t, T . Then the procedures
Share,Reconst work as follows:

• Sharen,T,t(s):

– Choose uniform random u← {0, . . . , L− 1}
– Define S := s+ u · p0.
– Output (s1, . . . , sn) where si = S mod pi

• Reconstn,T,t({si}i∈I):

– Use CRT reconstruction to compute the unique integer S mod PI where PI =
∏

i∈I pi.
– Output s := S mod p0

The following was proven in [GRS99, GJM+23]. We refer the readers to [GJM+23] for formal proofs. It is
also proved in an inline fashion within our security proofs (e.g., Claim 1) for our special case when n = T .

Lemma 3. The above (n, T, t)-secret sharing scheme is correct as long as (L + 1) · p0 < Pmin and ε-secure
for ε ⩽ Pmax/L.

Notation. In our MPC protocol, we use the CRT-based secret sharing scheme with n = T ; henceforth,
Pmin =

∏
i∈[n] pi. We use notations Sharen,t and Reconstn,t and call it a (t, n)-sharing. We will use

two different L parameters, namely Lt and L2t, in our protocol. For better intuition, we write JXtK ←
Sharen,t(x) to denote the secret sharing of x (as opposed to JxtK). This choice makes explicit the inte-
ger re-randomization Xt of the secret x. As usual, we write JXtKi for the i-th share of a (t, n)-sharing;
consequently, JXtKi = Xt mod pi.
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3.3 Computational Complexity of Certain Computations

When considering the computational complexity of our MPC protocol, it is helpful to discuss the complex-
ity of performing several operations, which are commonplace in our protocol. We emphasize that these
complexities are measured at bit level in order to compare operations over different rings fairly.

1. Ring Multiplication. As mentioned, in our protocol, each party performs ring arithmetics over Zp

for some p. Elements in Zp are of bit-length log p. Therefore, it is clear that addition/subtraction can
be performed inO(log p) time. Moreover, we note here that multiplication can also be performed in
time quasilinear in the bit length [SS71, Für07, HVDHL16, HVDH21], e.g.,O(log p · loglog p · logloglog p).15

We refer the readers to [HVDH21] for more discussions on the relevant works. Throughout the pa-
per, when we state the computational complexities, we ignore the lower-order loglog p terms.

2. CRT Sharing/Reconstruction. Throughout the protocol, parties need to do CRT share and recon-
struct repetitively. Sharing requires parties to sample a random integer X and compute JXKi = X
mod pi for every i. Reconstruction requires parties to take as input JXK1 , . . . , JXKn and reconstruct
X . Since X is of bit-length roughly log p1 + log p2 + · · · + log pn, computing X mod pi for all
i ∈ [n] seems to require (log p1 + log p2 + · · ·+ log pn) · n bit computation. Here, we note that it is
well-known that this can be done in (log p1+log p2+ · · ·+log pn) · log n time through divide-and-
conquer techniques (a.k.a., remainder tree techniques). Similar ideas apply to the reconstruction as
well.16 We refer the readers to, for instance, the note [Ber04] for relevant literature and discussion.

3. Vandermonde Matrix Multiplication. Finally, in our protocol, parties need to compute a special
type of matrix multiplication r⃗ = V ·s⃗, where r⃗ and s⃗ are vectors and V is a Vandermonde matrix (See
Equation 1). Here, one may apply the standard FFT techniques to compute this matrix multiplication
over any ring Zp in O

(
n log2 n

)
ring arithmetics.17 In particular, we emphasize that, since different

parties are performing this matrix multiplication over different rings, the i-th party takesO(n log n)·
log pi bit-operations to perform this matrix multiplication.

In the rest of the paper, we ignore the loglog p factor in ring operations. We sometimes use the Õ ()
notation, which hides the log2 n factor for CRT operations and Vandermonde matrix multiplications.
Remark 2 (Comparison with prior works). We emphasize that the lower-order terms log log p0 and log2 n
for Ring arithmetics and Vandermonde matrix multiplication also exist for all prior works. Moreover, for prior
works, generating Shamir’s secret sharing also incurs a log n factor for the use of FFT similar to our CRT
sharing. Our work focuses on the computational complexities of our MPC protocol and, hence, we explicitly
argue these complexities.

3.4 Secure Multiparty Computation

This section includes the standard definition of secure multiparty computation in the semi-honest and
statistical security setting (see, e.g., [AL17]).

15The original FFT-based techniques from [SS71] already gives a practically efficient algorithm with asymptotic complexity
O(log p · loglog p · logloglog p). Asymptotically, the state-of-the-art is given by the recent work [HVDH21] with complexity
O(log p · loglog p). This is conjectured to be optimal.

16For instance, to compute X mod pi for i = 1, 2, 3, 4. One starts by computing X mod p1p2p3p4. Utilizing this, one
computes X mod p1p2 and X mod p3p4. Utilizing X mod p1p2, one may further compute X mod p1 and X mod p2,
and so on. Clearly, the reverse procedure also gives a quasilinear time for reconstruction.

17We note that, given any input s⃗, computing V ⊺ · s⃗ corresponds to batch polynomial evaluations, which is well-known that it
can be computed over any ring Zp inO

(
n log2 n

)
ring arithmetics [BM74]. The task that we need to perform is slightly different,

i.e., V ·s⃗ instead of V ⊺ ·s⃗. For this, we note that there is a beautiful theorem, which states: for any matrix A, the time complexity of
performing A · x⃗ with input x⃗ is near-identical (except for an additive difference linear in n) to the time complexity of performing
A⊺ · x⃗. We refer the readers to [Rud23, Theorem 4.3.1] for a statement and proof.
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Definition 2. Let C : X1×X2×· · ·×Xn → Y be some function, which is modeled as an arithmetic circuit.
We say that a protocol π ε-securely realizedC with corruption threshold t if the following holds. For any input
x⃗ and any subset I ⊂ [n] such that |I| ⩽ t, there exists an efficient simulator S such that

SD
((
S
(
I, x⃗I , C(x⃗)

)
, C(x⃗)

)
,
(
viewπ

I (x⃗),Output
π(x⃗)

))
⩽ ε.

In particular, when the marginal distributions C(x⃗) and Outputπ(x⃗) are identical, this protocol is perfectly
correct.

4 Scalable Honest Majority MPC

This section presents our honest majority scalable MPC protocol. We consider the semi-honest and information-
theoretic security setting. First, we provide the parameters used in the protocol:
Parameters. This protocol is parameterized by (1) the moduli p1, p2, . . . , pn of each party and (2) two
secret sharing parameters Lt and L2t to be used for the secret-sharing schemes (Sharen,t,Reconstn,t) and
(Sharen,2t,Reconstn,2t) respectively. Looking ahead, the correctness and security, as well as the commu-
nication and computation complexity, will depend on these parameters. Now, we present a small gadget
used in the main protocol. This small gadget ensures that the different representative integers x̄ we select
for different secret elements x are always distanced by a multiple of

∏
1⩽i<j⩽n(j− i), which is crucial for

our security proof.

ReFormat(x)→ x̄.
This (deterministic) algorithm takes an integer x ∈ Zp0 as input and uses CRT to output the unique
integer x̄ satisfying all of the below:

• 0 ⩽ x̄ < p0 ·
∏

1⩽i<j⩽n(j − i).

• x̄ = x mod p0

• x̄ = 0 mod
∏

1⩽i<j⩽n(j − i)

4.1 Protocol Description and the MainTheorem

The full description of the protocol is presented in Figure 1 and Figure 2. In particular, Figure 1 presents
the offline phase of the protocol, where parties generate a batch of random masks that will be used in
the online phase. This part of the protocol only depends on the size of the circuit; in particular, they are
independent of the input of each party. Figure 2 presents the online phase of the protocol, where parties
emulate the circuit evaluation gate by gate as similarly done in all prior works. In particular, after each
multiplication gate, parties will utilize the random masks generated in the offline phase to perform an
“integer reduction” on the random integer involved in the CRT secret sharing.18

Next, we state the main theorem for our protocol. Section 4.2 interprets our main theorem through
different settings. The proof of the main theorem is presented in Section 4.3.

Theorem 3 (Main Theorem). For any n, t ∈ N such that t < n/2 consider parameters p0, p1, . . . , pn,
Lt, L2t ∈ N for which 2, 3, . . . , n, p0, p1, . . . , pn are pairwise coprime.19 Let Pall =

∏
i∈[n] pi and Pmax =

maxI⊂[n],|I|⩽t

(∏
i∈I pi

)
. Then, for any arithmetic circuit C over Zp0 , the protocol in Figure 1 and 2 realizes

C among n parties allowing at most t passive corruptions with the following guarantees:
18This is similar to the “degree reduction” on the random polynomials involved in Shamir’s secret sharing.
19For example, p0, p1, . . . , pn can be distinct prime numbers > n. In this particular case, Zp0 is a finite field.
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• Correctness. It is perfectly correct as long as

logPall − 3 > max


2 log |C|+ 2n log n+ 2 logLt + 2 log p0,

2 log |C|+ 2n2 log n+ 2 log p0,

n log n+ log p0 + logL2t

 .

• Security. It is ε-statistically secure where

ε = O

(
|C|3 · p20 · n3n2 · Pmax · Lt

L2t
+
|C| · p0 · n2n2 · Pmax

Lt

)
.

• Efficiency. For a non-king party Pi (with associated modulo pi), the communication and computation
complexity are

O
(
logPall ·

|C|
n− t

+ |C| · log pi
)

and O
((

logPall ·
|C|
n− t

+ |C| · log pi
)
· log2 n

)
.

For a king party, there is an additional communication and computation complexity of

O(logPall · |C|) and O(logPall · |C| · log n).20

The overall communication and computation complexity for all parties are

O(logPall · |C|) and O
(
logPall · |C| · log2 n

)
.

Additionally, similar to prior works (e.g., [BGW88, DN07]), the round complexity of this protocol is linear in
the depth of the circuit.

4.2 Implication of the MainTheorem

Theorem 3 is a general theorem for all possible choices of parameters. Next, we interpret this theorem
through different instantiations.

Large Field Regime. First, when the field size is sufficiently large, in particular log p0 = Ω
(
n2 log n

)
, our

protocol achieves total communication and computation O(|C| · logF ) (except for a log2 n factor on the
computational complexity). To see this, let us define

ℓ := c ·
(
log p0
n− 2t

)
for some constant c. Set each pi to be a distinct prime number of length ℓ. Furthermore, let

logLt = t · ℓ+ log p0

logL2t = 2 · (t · ℓ) + 3 · log p0
Intuitively, by setting the parameter in this way, we ensure that

logPall = Θ(log p0),

i.e., our secret sharing is “rate-1”. By our main theorem, one may verify that as long as (1) one picks c
appropriately and (2) the ring size p0 is superpolynomial in the circuit size |C|, then we have the following
corollary.

20If parties take turns to be the king party, then this complexity can be distributed among the n parties. In particular, it can be
evenly distributed if parties act as the king party equally often.
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Offline Phase. Each party Pi:
• Generates a pair of random masks by sampling s(i) ← {0, 1, . . . , p0 − 1}.

• Compute sharing
r
S

(i)
t

z
← Sharen,t(s

(i)) and
r
S

(i)
2t

z
← Sharen,2t(p0 − s(i)).

• Send
r
S

(i)
t

z

j
and

r
S

(i)
2t

z

j
to Pj for every j ∈ [n].

• After receiving the shares of masks from all parties, each party Pi locally extracts (n− t) masks as:


r
R

(1)
t

z

i
...r

R
(n−t)
t

z

i

 =


1 1 1 · · · 1
1 2 3 · · · n
...

...
...

. . .
...

1 2n−t−1 3n−t−1 · · · nn−t−1
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S
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and 

r
R

(1)
2t

z

i
...r

R
(n−t)
2t

z

i

 =


1 1 1 · · · 1
1 2 3 · · · n
...

...
...

. . .
...

1 2n−t−1 3n−t−1 · · · nn−t−1
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2t

z

ir
S
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z
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...r

S
(n)
2t

z

i

 .

Note that the above computation done by Pi is under modulo pi. This step is repeated for ⌈|C|/(n − t)⌉ times to gen-
erate (double-sharings) of enough masks for the online phase, namely,

{r
R

(1)
t

z
,
r
R

(1)
2t

z}
,
{r

R
(2)
t

z
,
r
R

(2)
2t

z}
, . . . ,{r

R
(|C|)
t

z
,
r
R

(|C|)
2t

z}
.

Figure 1: Offline phase of our protocol parameterized by p1, . . . , pn, Lt, and L2t.

Corollary 4 (Large Field Regime). For any number of parties n, corruption threshold t = (1/2− δ) · n for
some constant δ and ring size p0 with log p0 = Ω

(
n2 log n

)
that is coprime with {2, 3, . . . , n}, our protocol

realizes any arithmetic circuit C over Zp0 with the following guarantees.

• The overall communication is O(|C| · log p0) bits.

• The overall computation is O
(
|C| · log p0 · log2 n

)
bit operation.

• This protocol is perfectly correct.

• This protocol is poly(|C|/p0)-secure, which is exponentially small for exponentially large fields.

Small Field Regime. When the field size is not large enough, in particular, log p0 = o
(
n2 log n

)
, the nn2

terms in the correctness and security terms become dominant and one no longer can pick p1, . . . , pn such
that logPall = Θ(log p0). Instead, one have to make sure that

logPall = Θ
(
n2 log n

)
.

Therefore, we can define

ℓ := c ·
(
n2 log n

n− 2t

)
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Online Phase. The online phase follows the general structure of the DN [DN07] protocol. That is,
parties start by sharing their input. Next, they emulate the circuit gate by gate, while maintaining
an invariant that parties collectively hold a (t, n)-sharing for all wires as the protocol proceeds. The
addition gates do not require communication, while the multiplication gates do. In particular, parties
consume one random mask

{r
R

(i)
t

z
,
r
R

(i)
2t

z}
per multiplication gate to reduce the size of the integer

being shared and maintain the invariant. Finally, once the computation reaches the final level, parties
learn the output of the protocol by broadcasting (and reconstructing) the secret shares of the output
wires.

• Input Sharing. Each party Pi, holding input x(i) ∈ Zp0 , compute x̄(i) ← ReFormat(x(i)) andr
X̄

(i)
t

z
← Sharen,t(x̄

(i)). It sends
r
X̄

(i)
t

z

j
to all party Pj .

• Circuit Emulation. Parties emulate the circuit evaluation gate by gate as follows.

– Addition x + y ∈ Zp0 . Let JXtK and JYtK denote the (t, n)-sharing of the input wires x and
y. Each party Pi simply sets JXtKi ⊕i JYtKi as its (t, n)-sharing of the output wire.

– Multiplication x·y ∈ Zp0 .
a Let JXK and JY K denote the secret sharing of the input wires x and

y. Let {JRtK , JR2tK} be the sharing of the next pair of random masks that is not consumed
yet. Then:
∗ Each party Pi sends to the king party

mi := (JXtKi ⊙i JYtKi)⊕i JR2tKi .

∗ After receiving {m1, . . . ,mn}, the king party reconstructs

m← Reconstn,2t({mi}i∈[n])

and then computes m̄← ReFormat(m). Then it sends m̄ to all non-king parties (Note that
m̄ is of length ⩾ log p0, which is large. To avoid n · log p0 communication, the king party
can simply send m̄ mod pi to the i-th party).

∗ Each party (king and non-king) sets own (t, n)-sharing as JRtK⊕i m̄.

• Output Reconstruction. Let JWtK denote the secret sharing of the output wire w. Each party
Pi broadcast its share wi := JW Ki. After receiving {w1, . . . , wn}, parties reconstruct w ←
Reconstn,t({wi}i∈[n]).
aFor multiplication with a (public) scalar, we also need to perform the “integer reduction” step as described next. This

is different from prior works due to the non-linearity nature of the CRT secret sharing. Since this is a special case of
multiplication of two privately held values, we skip the details of the same here.

Figure 2: Online phase of our protocol parameterized by p1, . . . , pn, Lt, and L2t.
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for appropriate constant c. Furthermore, one sets log pi = ℓ and

Lt = t · ℓ+ log p0

L2t = 2t · ℓ+ 3 log p0

By our main theorem, we can similarly obtain the following corollary.

Corollary 5 (Small Field Regime). For any number of parties n, corruption threshold t = (1/2− δ) · n for
some constant δ and ring size p0 with log p0 = o

(
n2 log n

)
that is coprime with {2, 3, . . . , n}, our protocol

realizes any arithmetic circuit C over Zp0 with the following guarantees.

• The overall communication is O
(
|C| · (n2 log n)

)
bits.

• The overall computation is O
(
|C| · (n2 log n) · log2 n

)
bit operation.

• This protocol is perfectly correct.

• This protocol is poly(|C|/nn2
)-secure, which is exponentially small in n.

Note that, when log p0 is close to n2 log n, the total communication and computation complexity is near-
optimal.

4.3 Proof of the MainTheorem

This section proves Theorem 3. The efficiency and correctness are easier to see, so we prove them first.
After that, we argue the statistical security of our protocol.

Efficiency. We measure the communication and computation at the bit level. For example, the commu-
nication of sending an element modulo pi is log pi; the computation complexity of computing modulo pi
arithmetics is also Õ (log pi). We refer readers to Section 3.3 for relevant discussion on the computation
complexity of multiplication, CRT invocation, and Vandermonde matrix multiplication.

In the offline phase, Pi samples and shares |C|/(n − t) pair of integers
r
S
(i)
t

z
and

r
S
(i)
2t

z
, which are

of length ⩽ log(Lt · p0) and ⩽ log(L2t · p0). The computation complexity of sampling and computing
the secret shares are Õ (logPall). The communication complexity of sending the secret shares is also
O(logPall).

After receiving the shares, each party locally computes the Vandermonde matrix multiplication, which
is of computational complexityO

(
n · log2 n · log pi

)
per batch of n− t random masks generated. Overall,

party Pi performs
O
(
|C| · log2 n · log pi

)
bit computation for all matrix multiplication during the offline phase.

In the online phase, the initial input sharing step and the final output reconstruction step incur a one-
time cost of communication/computation complexity O(logPall) per party. During the circuit emulation
step, for party Pi, each gate incurs a constant number of modulo-pi arithmetics, and hence, the overall
communication and computation complexity is O(|C| · log pi).

To sum up, the overall communication and computation complexity (ignoring log2 n factor) for a non-
king party Pi is

O
(
(log p1 + log p2 + · · ·+ log pn) ·

|C|
n− t

+ |C| · log pi
)
.

For the king party, additional communication and computation are required to reconstruct and broadcast
the secrets after each multiplication gate. This complexity is

O(|C| · (log p1 + log p2 + · · ·+ log pn)).
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Since t < n/2, which means n − t = Ω(n), the overall communication and complexity for all parties,
therefore, is

O(|C| · (log p1 + log p2 + · · ·+ log pn)).

Correctness. Observe that this protocol is perfectly correct as long as the integer associated with each
wire never exceeds p1p2 · · · pn. This includes the intermediate integers computed during the multiplication
step, i.e., the integer X · Y + R

(j)
2t . Therefore, to ensure perfect correctness, we just need to upper bound

the maximum possible integer being computed during the protocol.
Clearly, integers of the form X · Y +R

(j)
2t have the highest upper bound. Now, we upper bound each

term separately. First, one can clearly upper-bound R
(j)
2t as

n · nn−t−1 · (L2t · p0) ⩽ nn · L2t · p0.

For X and Y , they are integers representing some input wires. They will, at most, be the summation of
⩽ |C| wires.21 Each summand wire could be the output wire of a multiplication gate, which means the
integer associated with it is of the form R

(j)
t +m. One can upper-bound it as n · nn−t−1 · (Lt · p0) + p0 ·∏

1⩽i<j⩽n(j − i). Therefore,
X ⩽ |C| ·

(
nn · Lt · p0 + nn2 · p0

)
and

X · Y ⩽ |C|2 ·
(
nn · Lt · p0 + nn2 · p0

)2
.

In conclusion, this protocol is perfectly correct as long as22

logPall − 3 > max


2 log |C|+ 2n log n+ 2 logLt + 2 log p0;

2 log |C|+ 2n2 log n+ 2 log p0;
n log n+ log p0 + logL2t


Security. The description of the simulator is presented in Figure 3. We shall argue that the view simulated
by Figure 3 is statistically close to the real view. This is broken into three parts. First, we argue that the
distributions of the secret shares of the corrupted parties are statistically close. Second, we argue that the
communication that happened during the circuit emulation step is statistically close. Finally, we argue
that the communication that happened during the output reconstruction step is statistically close.

First, we argue that the secret shares of the input the corrupted parties see are indistinguishable be-
tween the real and simulated views.23 Note that, for any distribution D over Z, the distribution of {D
mod pi}i∈I is equivalent to the distribution ofD mod

∏
i∈I pi by the CRT bijective mapping. Therefore,

instead of arguing the distribution of the secret shares, we directly argue the distribution modulo
∏

i∈I pi.
This part of the proof is summarized as the following claim.

Claim 1. Assume that p0, p1, . . . , pn are coprime. For any integer x and L, the distribution of(
x+ p0 · U{0,1,...,L−1}

)
mod

∏
i∈I

pi

is
∏

i∈I pi
L -close to uniform, where U{0,1,...,L−1} is the uniform distribution over {0, 1, . . . , L− 1}.

21Multiplication will not increase the size of the integer since the “integer-reduction” step after each multiplication gate brings
a large integer back to be a smaller one.

22The “-3” ensures that each additive term in the upper bound is less than p1p2 · · · pn/8, which suffices.
23This is basically due to the statistical security of the CRT secret sharing. We include it below for completeness.
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The simulator takes as input the set I ⊆ [n] of corrupted parties, their input xI , and the output of the
protocol C(x⃗). It proceeds to simulate the view of the adversary as follows.

• Offline Phase. The simulator simulates the honest party as described by the protocol specification
since this step does not require any input from the honest party.

• Input Sharing. The simulator simulates the honest party with their inputs set as 0.
• Circuit Emulation. The simulator simulates the honest party as described by the protocol speci-

fication. This is well-defined since the simulator holds honest parties’ secret shares for all the input
wires of the circuits (from the input sharing phase).

• Output Reconstruction. For the output wirew, the simulator first invokes the CRT on the honest
parties’ secret shares to find the unique 0 ⩽ W <

∏
i∈[n]\I pi such that W mod pi equals to the

honest parties’ secret share for all i ∈ [n] \ I . This allows the simulator to recover the corrupted
parties’ secret shares as W mod pi for all i ∈ I . Now, the simulator checks if W mod p0 is
consistent with the output C(x⃗). If not, it performs the following additional steps.

– It invokes CRT to find the integer 0 ⩽ ∆ < p0 ·
(∏

i∈I pi
)
·
(∏

i<j(j − i)
)

such that

∆ = W − C(x⃗) mod p0 and ∆ = 0 mod
∏
i∈I

pi ·
∏
i<j

(j − i).

– It shifts every honest party’s secret share of the output wire by ∆ mod pi for all i ∈ [n] \ I .
It proceeds to broadcast the honest parties’ secret shares of the output wire.

Figure 3: The Simulator

Proof of Claim 1. Let L′ ⩽ L be the largest multiple of
∏

i∈I pi. Observe that

SD
(
U{0,1,...,L−1},U{0,1,...,L′−1}

)
⩽

L− L′

L
⩽

∏
i∈I pi

L
.

On the other hand, (
x+ p0 · U{0,1,...,L′−1}

)
mod

∏
i∈I

pi

is exactly uniformly random. This completes the proof.

This shows that the adversary’s secret shares of the input in the real and simulated views are statis-
tically close, where there is a simulation error of O

(
n ·

∏
i∈I pi
Lt

)
. Here, the factor n is due to the union

bound on the number of honest parties. This simulation error is dominated by the simulation error in the
third part. Hence, the theorem statement of Theorem 3 does not include this term.

In the rest of the analysis, we fix the secret shares of the corrupted parties. This includes both the
secret shares of the inputs and the preprocessed masks S(i)

t and S
(i)
2t .

Remark 3 (Conditional Distribution of CRT Sharing). Before we proceed, it is helpful to note that, condi-
tioned on the corrupted parties’ secret shares, CRT sharing distribution of the form x + p0 · U{0,1,...,L−1}
would become

x′ +

(
p0 ·

∏
i∈I

pi

)
· U{

0,1,...,
⌊

L∏
i∈I pi

⌋
−1

},
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where 0 ⩽ x′ < p0 ·
∏

i∈I pi is obtained by invoking CRT on modulo p0 and modulo
∏

i∈I pi. That is,
x′ = x mod p0 and x′ mod

∏
i∈I pi is consistent with the corrupted parties’ secret share. Intuitively, for

the randomness L contained in a CRT secret sharing, its lower-order randomness L mod
∏

i∈I pi is used
to guarantee that the corrupted parties’ secret shares are uniformly random. Its higher-order randomness

L∏
i∈I pi

is independent of this conditioning and will be used later for the indistinguishability for the rest of
the simulation.

Second, we proceed to prove the statistical closeness between the real and simulated views of the circuit
emulation step. In this step, only the multiplication and scalar multiplication require communication. By
our correctness guarantee, all the integer computation that happened during the protocol execution never
exceeds p1p2 · · · pn. Therefore, the view of the “integer-reduction” protocol is equivalent to the integer
computed. For example, for a multiplication gate between a wire x and y, the view is equivalent to the
integer X · Y +R

(j)
2t .

Instead of proving the distribution of every single such integer is statistically close between the real
view and simulated view, we shall prove (n− t) such integers in a batch. That is, we shall prove

R
(1)
2t

R
(2)
2t
...

R
(n−t)
2t

+


A(1)

A(2)

...
A(n−t)

 ≈


R
(1)
2t

R
(2)
2t
...

R
(n−t)
2t

+


B(1)

B(2)

...
B(n−t)

 . (2)

Here, A(1), . . . , A(n−t) denotes the distribution in the real view, while B(1), . . . , B(n−t) denotes the dis-
tribution in the simulated view. They are either of the form X ·Y or α ·X depending on whether the gate
is multiplication or scalar multiplication. Since the simulator does not use the correct input for the honest
parties, A(i) and B(i) may not be the same distribution. However, the masks R(i)

2t are honestly simulated,
and therefore, they are identically distributed in both worlds. This gives the claim (Equation 2) that we
need to prove. Openning up the definition of R(i)

2t gives


1 1 1 · · · 1
1 2 3 · · · n
...

...
... . . . ...

1 2n−t−1 3n−t−1 · · · nn−t−1

 ·

S
(1)
2t

S
(2)
2t
...

S
(n)
2t

+


A(1)

A(2)

...
A(n−t)



≈


1 1 1 · · · 1
1 2 3 · · · n
...

...
... . . . ...

1 2n−t−1 3n−t−1 · · · nn−t−1

 ·

S
(1)
2t

S
(2)
2t
...

S
(n)
2t

+


B(1)

B(2)

...
B(n−t)

 .

Since the adversary knows S(i)
2t entirely for all i ∈ I , it suffices to remove the contribution of these S

(i)
2t

from both sides of the equation. Let [n] \ I = {i1, i2, . . . , in−t}. This gives


1 1 1 · · · 1
i1 i2 i3 · · · in−t
...

...
... . . . ...

(i1)
n−t−1 (i2)

n−t−1 (i3)
n−t−1 · · · (in−t)

n−t−1

 ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

+


A(1)

A(2)

...
A(n−t)
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≈


1 1 1 · · · 1
i1 i2 i3 · · · in−t
...

...
... . . . ...

(i1)
n−t−1 (i2)

n−t−1 (i3)
n−t−1 · · · (in−t)

n−t−1

 ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

+


B(1)

B(2)

...
B(n−t)

 .

We shall write it succinctly as

V ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

+


A(1)

A(2)

...
A(n−t)

 ≈ V ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

+


B(1)

B(2)

...
B(n−t)

 .

To prove this, we first show a useful claim, which essentially is a restatement of our high-dimensional
smudging lemma (Lemma 1), albeit conditioned on the adversary’s shares.

Claim 2. Suppose (∆(1), . . . ,∆(n−t)) is a fixed vector satisfying that every entry is divisible by det(V ) ·∏
i∈I pi. It holds that

V ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

+


∆(1)

∆(2)

...
∆(n−t)

 ≈ε V ·


S
(i1)
2t

S
(i2)
2t
...

S
(in−t)
2t

 ,

where ε ⩽ max∆·n2n

L2t
. Here, we use max∆ to denote the maximum ∆(i).

Before we proceed to the proof, we remind the reader that these distributions are all conditioned on the
corrupted parties’ secret shares. Consequently, their distributions are in the form described by Remark 3.

Proof of Claim 2. Let adj(V ) be the adjugate matrix of V . Consider the following derivation.

V ·


S
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2t

S
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2t
...

S
(in−t)
2t

 = V ·
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...
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+
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...
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= V ·




S
(1)
2t

S
(2)
2t
...

S
(n−t)
2t

− adj(V ) ·


∆(1)/ det(V )

∆(2)/ det(V )
...

∆(n−t)/det(V )


+


∆(1)

∆(2)

...
∆(n−t)



≈ V ·


S
(1)
2t

S
(2)
2t
...

S
(n−t)
2t

+


∆(1)

∆(2)

...
∆(n−t)
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Evidently, the closeness we need to prove depends on the closeness of
S
(1)
2t

S
(2)
2t
...

S
(n−t)
2t

 ≈


S
(1)
2t

S
(2)
2t
...

S
(n−t)
2t

− adj(V ) ·


∆(1)/det(V )

∆(2)/det(V )
...

∆(n−t)/ det(V )

 .

First, note that we crucially require all ∆(i) to be divisible by det(V ). Otherwise, the RHS will only be
supported on non-whole numbers, while the LHS is only supported on whole numbers; thus, these two
distributions cannot be close. Next, ∆(i) needs to be divisible by

∏
i∈I pi because, conditioned on the

adversary’s view, S(i)
2t are uniformly distributed over consecutive integers, all of which fall into the same

class modulo
∏

i∈I pi. That is,

s
(i)
2t , s

(i)
2t +

∏
i∈I

pi, s
(i)
2t + 2 ·

∏
i∈I

pi, . . . , s
(i)
2t +

L2t∏
i∈I pi

·
∏
i∈I

pi

for some 0 ⩽ s
(i)
2t <

∏
i∈I pi. Therefore, by Smudging Lemma (Lemma 2), the closeness of these two

distributions is bounded by24∥∥∥∥∥∥∥∥∥adj(V ) ·


∆(1)/det(V )

∆(2)/det(V )
...

∆(n−t)/ det(V )


∥∥∥∥∥∥∥∥∥
∞

· 1

L2t
· n ⩽

max∆ · nn2

L2t
,

since every entry of adj(V ) is upper bounded byn(n−t)2 (refer to Section 3.1). This completes the proof.

Now, we remark that Claim 2 is stated for a deterministic shift vector (∆(1), . . . ,∆(n−t)). Clearly,
similar results hold when (∆(1), . . . ,∆(n−t)) is a distribution over a universe of shift vectors, all satisfying
the premise of Claim 2.

Now, in order to use Claim 2, we need to show that the difference between the real distribution
(A(1), A(2), . . . , A(n−t)) and the simulated distribution (B(1), B(2), . . . , B(n−t)) satisfies the prerequisite
of Claim 2. In particular, we also need to upper-bound how far apart they are, i.e., max∆. For this, we have
the following claim.

Claim 3 (Security Invariant). For any wire w, the distribution of the CRT sharing integerW is the simulated
view is identically distributed by shifting the distribution of the CRT sharing integerW in the real view by∆,
where ∆ is divisible by  ∏

1⩽i<j⩽n

(j − i)

 ·(∏
i∈I

pi

)
and it holds that

∆ ⩽ |C| · p0 ·

 ∏
1⩽i<j⩽n

(j − i)

 ·(∏
i∈I

pi

)
.

24Here, ∥x⃗∥∞ denotes the ℓ∞ norm of a vector, which is the maximum entry. The factor n is due to the union bound on each
row.
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Proof of Claim 3. For both the input sharing and the “integer-reduction” protocol output, the distribution
of the secret integer is always a fixed distribution (i.e., independent of the wire value) shifted by an integer
m defined as (1) m mod p0 equals to the wire value and m = 0 mod

∏
1⩽i<j⩽n(j − i). Therefore, the

distribution of the real view and the simulated view will always be exactly shifted by some integer ∆,
which satisfies (1) ∆ mod p0 is the difference of the wire values in the two views and (2) it is a multiple
of
∏

1⩽i<j⩽n(j− i). If we further condition on the corrupted parties’ shares, it gives that ∆ is divisible by(∏
1⩽i<j⩽n(j − i)

)
·
(∏

i∈I pi
)

and is upper-bounded by p0 ·
(∏

1⩽i<j⩽n(j − i)
)
·
(∏

i∈I pi
)
. Now, for

any other wires in the circuit, which may be the summation of |C| wires (either input wire or output wire
of a multiplication gate), the upper bound would change to |C| · p0 ·

(∏
1⩽i<j⩽n(j − i)

)
·
(∏

i∈I pi
)
.

Going back to Equation 2, the shift between A(i) and B(i) will be, thus, upper bounded by25|C| · p0 ·
 ∏

1⩽i<j⩽n

(j − i)

 ·(∏
i∈I

pi

) · (|C| · (nn · Lt · p0 + nn2 · p0)
)
,

which can be simplified as:
C = |C|2 · p20 · n2n2 · Pmax · Lt.

Together with Claim 2, this imply that the closeness in Equation 2 is bounded by nn2 ·C. Now, Equation 2
is just for one batch (n− t) of gates. For the entire circuit, we would need to use a union bound of |C|.26

Therefore, the simulation error in the circuit emulation part is overall upper-bounded by nn2 · |C| · C.,
which is equal to:

|C|3 · p20 · n3n2 · Pmax · Lt

L2t
.

Finally, we argue that the output reconstruction step is statistically close between the real and simu-
lated view. We divide this into two cases.

• Case 1: If the output of the protocol only depends on the corrupted parties’ inputs, then the sharing
of the output wire is identical between the real and simulated view. In particular, it will be consistent
with the circuit output C(x⃗). Hence, there is no simulation error in this case.

• Case 2: If the output of the protocol depends on the honest parties’ inputs. Then, the CRT sharing
integer of the output wire will depend on the randomness from the honest party. In particular, the
distribution of this integer between the real and simulated view will be shifted by some ∆′ (Claim 3).
Now, once the simulator computes the shift ∆ to ensure the correct output mod p0. The closeness
between the real and simulated view will again follow from a variant of Claim 2, i.e., instead of
considering S

(i)
2t , we are concerned with S

(i)
t in this case. And, by a similar analysis, the closeness

here would be bounded by

max∆ · nn2

Lt
⩽
|C| · p0 · n2n2 · Pmax

Lt
.

This completes the security proof and, hence, the proof of Theorem 3.
25The worst-case is when this is a multiplication gate X · Y and the shift for X and Y individually are amplified by the

maximum possible value of X and Y , which is already derived in the correctness analysis.
26Note that the analysis of different batches of gates relies on the randomness coming from different batches of the random

masks. Therefore, they are independent of each other.

26



5 Scalable Dishonest Majority MPC

In this section, we briefly discuss how to extend our protocol in Section 4 to dishonest majority setting.
Similar to all prior works, a correlated setup is required to enable an information-theoretic online phase.
We assume there are ⩽ (1− δ) · n corruptions for some constant δ ∈ (0, 1/2).

An description of the protocol is included in Figure 4. We obtain the following theorem about our
dishonest majority protocol.

Theorem 6 (Dishonest Majority Protocol). Consider any number of parties n, corruption threshold t =
(1− δ) ·n for some constant δ and ring size p0 with log p0 = Ω

(
n2 log n

)
that is coprime with {2, 3, . . . , n}.

Assuming the trusted correlated setup, the protocol in Figure 4 realizes any arithmetic circuit C over Zp0 with
the following guarantees.

• The overall communication is O(|C| · log p0) bits.

• The overall computation is O
(
|C| · log p0 · log2 n

)
bit operation.

• This protocol is perfectly correct.

• This protocol is poly(|C|/p0)-secure, which is exponentially small for exponentially large fields.

Overview of the Protocol and Proof Sketch. Similar to prior works, the dishonest majority protocol
proceeds by first secret sharing the input and then emulating the circuit evaluation gate by gate. Unlike
the honest majority setting, where parties can multiply two secret shares to obtain a secret sharing of
the product of the secrets, this is infeasible in the dishonest majority setting. Instead, parties rely on the
Beaver’s triple to reduce the multiplication gate into a linear function. In particular, suppose parties need
to compute JXK · JY K and they hold sharings of the Beaver’s triple JAK , JBK , JCK, where c = ab. Parties
first reconstruct U = X +A and V = Y +B in the clear. Next, one uses the standard technique to write

x · y = −u · v + u · y + v · x+ c.

Therefore, parties may obtain the secret sharings of x · y by computing

(p0 − 1) · u · v + u · JY K + v · JXK + JCK .

Note that we replace (−1) with p0 − 1 to ensure that the integer associated with the secret is always
positive.

For prior works based on linear secret sharing scheme, this already gives a feasible solution. For CRT-
based secret sharing scheme, however, scalar multiplication is not “free”. It also makes the integer grow
bigger. Therefore, we still need to perform an “integer-reduction” protocol to reduce the integer back to
an acceptable size.

The integer growing for scalar multiplication is not as devastating as multiplying two secrets because
of the following reason. For the dishonest majority, each sharing JXK of a wire x will roughly have length
logX ≈ t

n · logPall >
1
2 · logPall. Therefore, if one multiplies JXK and JY K directly, it will be log(XY ) >

logPall, and correctness will not hold. Instead, when one performs scalar multiplication, the integer will
only grow by log p0 and becomes t

n · logPall + log p0. This is still lower than logPall as long as log p0 <
n−t
n · logPall. Based on this intuition, we are calling the masks generated {JRtK , JRt+log p0K} instead of
{JRtK , JR2tK}.
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Correlated Randomness Setup. We assume parties have holds |C|many CRT sharing of “Beaver’s
Triple”, i.e., JAK, JBK, JCK such that a, b← Zp0 , and c = a · b over Zp0 .

Offline Phase. This is identical to the offline phase of the honest majority protocol (Figure 1). Unlike
honest majority protocol, the pair of masks generated are JRtK and JRt+log p0K (instead of JR2tK). Note
that, these masks are needed to mask sharing after a scalar multiplication. (In particular, they are not
intended to mask the product of two sharing as in the honest majority protocol).

Online Phase. The online phase proceeds as follows.

• Input Sharing. Each party Pi, holding input x(i) ∈ Zp0 , compute x̄(i) ← ReFormat(x(i)) andr
X̄

(i)
t

z
← Sharen,t(x̄

(i)). It sends
r
X̄

(i)
t

z

j
to all party Pj .

• Circuit Emulation. Parties emulate the circuit evaluation gate by gate as follows.

– Addition x+ y ∈ Zp0 . Let JXtK and JYtK denote the (t, n)-sharing of the input wires x and
y. Each party Pi simply sets JXtKi ⊕i JYtKi as its (t, n)-sharing of the output wire.

– Multiplication x · y ∈ Zp0 . Let JXK and JY K denote the secret sharing of the input wires
x and y. Let JAK , JBK , JCK be the next Beaver’s triple that is not consumed yet. Let
{JRtK , JRt+log p0K} be the next pair of random masks that are not consumed yet.

∗ Each party sends to the king party

ui = JXKi ⊕i JAKi and vi = JY Ki ⊕i JBKi .

∗ After receiving {u1, u2, . . . , un} and {v1, v2, . . . , vn}, the king party reconstructs u and
v by CRT. The king party sends u and v to all non-king parties.

∗ Party locally computes the following modulo pi.

m = (p0 − 1) · u · v + u · JY K + v · JXK + JCK + JRt+log p0K .

They send their secret share of m to the king party, who will reconstruct m, reformat
it m̄ = ReFormat(m), and send it back to the parties.

∗ Parties set m̄⊕i JRtKi as its sharing for the output wire.

• Output Reconstruction. Let JWtK denote the secret sharing of the output wire w. Each
party Pi broadcast its share wi := JW Ki. After receiving {w1, . . . , wn}, parties reconstruct
w ← Reconstn,t({wi}i∈[n]).

Figure 4: Description of the dishonest majority protocol.
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Therefore, in order to obtain the desired efficiency, we shall set

logPall = Ω

(
n

n− t
· log p0

)
log pi = Ω

(
log p0
n− t

)
The download rate of the secret sharing scheme will be O(1) as long as t < (1 − δ) · n for a constant
δ. All the communication and computation done in the protocol will be linear in |C| · logPall, which is
O(|C| · log p0) as desired.

The protocol will need to set the parameter L in the CRT secret sharings of JAK , JBK , JCK and the
sharings of {JRtK , JRt+log p0K} appropriately. Since setting these parameters and the proof of the theorem
is entirely analogous to the honest majority setting, we omit the details here.
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