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Abstract. We show that discrete Gaussian sampling for a q-ary lattice
is equivalent to codeword sampling for a linear code over Zq with the Lee
weight profile. This insight allows us to derive the theta series of a q-ary
lattice from the Lee weight distribution of the associated code. We de-
sign a novel Gaussian sampler for q-ary lattices assuming an oracle that
computes the symmetrized weight enumerator of the associated code. We
apply this sampler to well-known lattices, such as the E8, Barnes-Wall,
and Leech lattice, highlighting both its advantages and limitations, which
depend on the underlying code properties. For certain root lattices, we
show that the sampler is indeed efficient, forgoing the need to assume
an oracle. In many cases, our sampler achieves a significant speed-up
compared to state-of-the-art sampling algorithms in cryptographic ap-
plications.

Keywords: Lattice Gaussian sampling · Lee weight · q-ary lattice ·
Schur product · Theta series.

1 Introduction

Lattice Gaussian sampling refers to the process of sampling vectors from a dis-
crete Gaussian distribution with a specified width s, defined over a lattice Λ.
This technique plays a fundamental role in lattice-based cryptography. Namely,
Gaussian sampling over lattices with the appropriate choice of width s enables
the solution of the closest vector problem (CVP) and the shortest vector prob-
lem (SVP) [2, 3] and it is also one of the main tools used in worst-to-average
case reductions for lattice problems [27]. Additionally, it is being used in the
construction of several lattice-based cryptographic protocols, such as signature
schemes, as it can be used to hide information about the lattice basis [16].

The width s of a Gaussian sampler over a lattice determines how wide the
distribution we sample from is. It is challenging for most lattices to sample over
discrete Gaussian distributions when s is not so large. In practical terms, the
security of the SVP or approximate SVP relies on the fact that it should be
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difficult for an adversary to obtain a lattice point within a radius s
√
n, where n

refers to the lattice dimension [31].
Micciancio and Regev [27] define the smoothing parameter of a lattice, which

is the minimum amount of Gaussian noise that, when added to a lattice, produces
a distribution close to uniform over Rn/Λ. Klein’s algorithm can be used to
sample from an arbitrary lattice for s sufficiently large, but s may be well above
the smoothing parameter [7]. Recently, Ducas and van Woerden [12] introduced
a hash-then-sign signature scheme based on the lattice isomorphism problem
(LIP), which can be implemented with any lattice that has an efficient Gaussian
sampler with small sampling widths. Tight sampling for lattices would enhance
the security of the LIP-based signature scheme, as it would be able to withstand
attacks down to small approximation factors [12].

Lattice-based cryptographic protocols typically require sampling at or above
the smoothing parameter. The smoothing parameter is defined in terms of the
theta series, a lattice geometric invariant. Roughly, the theta series of a lattice Λ
characterizes the number of points in Λ with a given (Euclidean) norm. Unfor-
tunately, for a general lattice, we may not know its theta series and, therefore,
do not have a tight estimation for the smoothing parameter. As a consequence,
when sampling from a general lattice, the width s may significantly exceed the
smoothing parameter when, ideally, it should be as close to the smoothing pa-
rameter as possible to achieve improved security.

Gaussian sampling over Z for a fixed width s is usually efficient since it can
use precomputed data [29,31], while for general lattices, the complexity increases.
Therefore, one can sample efficiently over the Zn lattice utilizing one-dimensional
samplers of Z [7, Sec. 5.1]. One-dimensional samplers of Z and its shifts are often
used as subroutines in samplers for other lattices as well.

Lattice-based cryptography typically uses q-ary lattices, which only involves
integer arithmetic modulo q. Λ is called a q-ary lattice if qZn ⊆ Λ ⊆ Zn. Such a
lattice can be expressed equivalently in the form qZn+C, where C is a linear code
in Zn

q . In lattice theory, techniques to obtain lattices via codes are denoted as
Constructions A, B, C, D, and E, where each letter refers to the linear codes that
are being employed (see [11, Ch. 5]). We will extensively work with Construction
A obtained from a single linear q-ary code C ⊆ Zn

q , Construction B from two
nested binary codes, and Construction D from several nested binary codes.

Ling et al. proposed a lattice Gaussian sampler using coset decomposition for
large enough s [22, 23]. In particular, [22] presented a sampler for Construction
A in which codewords are sampled uniformly at random and proved that the
resultant distribution is close to a lattice Gaussian if s exceeds the smoothing
parameter of qZ 3; it exemplified the method by considering the checkerboard
lattice Dn and Gosset lattice E8 and remarked that the method can be extended
to Construction D. Campello and Belfiore [8] proposed an efficient method for
sampling from the 2-ary Construction A and 4-ary Construction B lattices for
any width s. These constructions include the Dn, and the Barnes-Wall lattices

3 In fact, [22] addressed a general version of Construction A where the quotient Z/qZ
is replaced with Λ1/Λ2 for a pair of nested lattices Λ2 ⊆ Λ1.
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E8 and BW16 (they also considered sampling from A2 and the Leech lattice
using coset decomposition). Their method relies on the relationship between the
theta series of the lattice and the Hamming weight enumerator of the underlying
binary linear code. In [14], Espitau et al. gave a general framework for efficient
Gaussian sampling over lattices using extensions of lattices and new bounds on
the smoothing parameter from lattice filtrations, assuming s is large enough as
in [22]. The authors used their framework to build efficient samplers for the
An,Dn, and En lattices as base cases. Their method can also be used to sample
from the family of Barnes-Wall lattices BW2n .

1.1 Our Contribution

A smaller width s leads to tighter security arguments, so ideally we want to
sample as close as possible to the smoothing parameter of Λ. This paper pro-
poses a new unrestricted sampler for q-ary lattices. By using the code formula
of the q-ary lattice, we simplify the theta series calculation for some families of
q-ary lattices and express the theta series in terms of the Lee weight enumerator
of the underlying q-ary codes. We extend these former results to q-ary lattices
obtained via Construction A for q ≥ 2 and Construction D. Our method requires
computing the Lee weight enumerator of some code, and this computation does
not depend on the choice of sampling width s. As a consequence, we improve the
efficiency of the current state-of-the-art sampling for root lattices. For Construc-
tion D, we build upon [8, 14, 22] by leveraging lattice filtrations in such a way
that we can apply the samplers recursively. More specifically, our contributions
are three-fold:

1. On the reduction front, we present polynomial-time reductions between Gaus-
sian sampling on q-ary lattices and sampling codewords of a linear code with
respect to the Lee weight profile, thereby establishing equivalence of the two
problems. Recently, linear codes in the Lee metric have received attention
in code-based cryptography. It is known that (the decision version of) the
problem of finding codewords with a given Lee weight is NP-complete [38]. In
practice, this Lee weight is chosen to be on the Lee-metric GV bound [34].
Since finding codewords with a specified Lee weight profile is at least as
hard, this implies that Gaussian sampling for q-ary lattices is, in general, a
computationally hard problem.

2. On the algorithmic front, we use the aforementioned reduction to design a
new sampler in which one can sample with an arbitrary width s. For the
q-ary (q = 2 and q = 4, respectively) lattices obtained via Construction A
and B from binary codes, our sampler coincides with the method of coset
decomposition explored in [8]. Then, we expand the sampling via cosets
technique to another q-ary lattice family, Construction D, and show that it
depends on the Lee weight distribution of the underlying codes in different
levels of the filtration.

3. Our proposed sampler, when applied to root lattices and small dimensional
q-ary lattices, represents an improvement compared to [14,22] which restricts
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s according to the maximum smoothing parameter of the lattice filtration.
Comparison between our sampling procedure and the one presented in [14] is
performed for known families of lattices (selected results are given in Table
1). The complexity, limitations, and advantages in the cryptographic context
are also addressed.

Complexity Sampling Width s

Lattice Speed-up (UB) [14] This work LWP Table Size #Cosets

A2 18× ≈ ηϵ(A2) = ηϵ(A2) - 2
E8 22× ≈ ηϵ(E8) = ηϵ(E8) 14 bits 24

Dn 2× ≈ ηϵ(Dn) = ηϵ(Dn) - 2
Λ24 2× ≈ ηϵ(E8) = ηϵ(Λ24) 34 bits 212

BW16 11× > ηϵ(BW8) = ηϵ(BW16) 17 bits 211

Table 1: Comparison of complexity and sampling width. The upper bound on
speed-up is obtained by counting the number of calls to a Z sampler, ignoring
the overhead of codeword sampling. Note that upper bounds (UB) on speed-
up for BW16 and Λ24 are rather conservative since the sampling widths are
different. See Section 7 for details. The Lee weight profile (LWP) table stores
the information for the symmetric weight enumerator of the associated code. We
estimate its size in bits. Note that the LWP table size is computed for a single
coset t = 0, so we include the number of cosets for each lattice.

In summary, our Gaussian sampler can output a lattice vector for arbitrary
sampling width s for any q-ary lattice Λ, since any such lattice can be expressed
as Λ = qZn+C, where C is a linear code over Zn

q [28]. We note that our sampling
method is limited by the need to compute the Lee weight profiles of a potentially
very large code (or its cosets). For random codes, this may not be known or effi-
cient to compute. The Schur (or element-wise) product can be used to compute
Lee weight profiles offline.

In this paper, we start with a theoretical and general q-ary sampler and ap-
ply our technique to known families of lattices to illustrate the improvements.
Section 2 provides some preliminaries on codes and lattices; in Section 3, we
prove the equivalence of lattice and code sampling, and in Section 4 we derive
the theta series of a q-ary lattice from the symmetrized weight enumerator of
the associated code(s). In Section 5, we present our samplers for Constructions
A, B, and D lattices and employ the technique to remarkable lattices in Sec-
tion 6. Comparisons and improvements with respect to the state-of-the-art are
in Section 7.
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1.2 Technical Overview

Lee weight. Here we give an intuition why the somewhat mysterious Lee weight
comes into play, using the trivial example of Gaussian sampling from the integers
Z. Sampling an integer y ∈ Z may be realized in two steps: firstly, we sample
j = y mod q from Zq = {0, 1, . . . , q − 1} for q ∈ N; secondly, we sample an
integer from the coset qZ + j. Now we focus on the first step, assuming the
second step is efficient. The probability of sampling a coset qZ + j is given by
the theta function ΘqZ+j(z) for some z defined properly.

The Lee weight of j ∈ Zq is defined as wLee(j) = min{j, q − j}. It resembles
the Euclidean distance (which is relevant for lattices) more than the conven-
tional Hamming distance [19]. The Gaussian function is even symmetric so that
ΘqZ+j(z) = ΘqZ+q−j(z). This coincides with the fact that j and −j = q − j in
Zq have the same Lee weight. Therefore, we only need the knowledge of the Lee
weight, i.e., we sample from the coset qZ+ j with probability ΘqZ+wLee(j)(z).

Our Gaussian sampling method for q-ary lattices generalizes the above idea,
taking into account the underlying codes. For Construction D with multiple
levels, we run recursion on the second step.

In more detail, our method relies on the structure of a q-ary lattice qZn+ϕ(C),
where ϕ is the natural embedding4 from Zn

q to Zn. Our key observation is that
the theta series of a q-ary lattice can be obtained from the symmetrized weight
enumerator of the associated code C ⊆ Zn

q . We prove this by observing that the
coset qZn + ϕ(c), where c ∈ C, is isometric to a direct sum decomposition of
many copies of qZ± j for j ∈ Zq ↪→ Z (Lemma 1). Isometry preserves the lattice
geometry and, thus, the theta series.

Our Gaussian sampling method for q-ary lattices uses many of these qZ+ j
samplers, with sampling probability depending only on (a product of) theta
series of the form ΘqZ+wLee(j)(z) and the number nj(c) of coordinates in c with
Lee weight equal to j. These nj(c) define the Lee weight profile and are exactly
the exponents in the symmetrized weight enumerator of the code C. Therefore,
we can sample from qZn+ϕ(C) by selecting some coset representative ϕ(c) with
probability defined by its theta series, and this depends on the nj(c).

The use of the Lee norm in [35] is relevant to lattices but in a different
context. It is interesting that the Lee norm is analogous to the ℓ1-norm while
Gaussian sampling and lattice problems are usually concerned with the ℓ2-norm.
These norms do not generally coincide, but we are able to overcome this discrep-
ancy because we use Lee weight profiles rather than Lee weight directly. Other
authors [18] have also made reductions between coding problems with respect
to Lee distance and lattice problems in a different context5.

Theta series. Some families of lattices have well-documented theta series in the
literature, such as the Constructions A and B lattices from binary codes. We
extend it to a general Construction A lattice qZn + C with q ≥ 2 and connect
4 Throughout this paper, even when we do not mention the mapping ϕ, it is always

implicit.
5 These reductions use lattice problems in their ℓ1-norm formulation.
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with the symmetrized weight enumerator of the respective code over Zq. Moving
forward, we consider a L-level Construction D lattice with code formula [15,21]6:

ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1, (1)

where C1, C2, . . . , CL are binary linear codes that are closed under Schur product
(more details follow below). In general, for L ≥ 3, the theta series of ΛD is
unknown. Nonetheless, by performing case analysis, we can obtain a general form
for the theta series of a 3-level Construction D lattice. Thus, the probability of
a coset of such a lattice depends on the Lee weight of a linear code over Z8

defined by 4C3 + 2C2 + C1. The same analysis shows that the probability of a
coset of an L-level Construction D lattice depends on the Lee weight of a code
over Z2L . This is a generalization of the fact that the coset of Construction A
and B lattices depend only on the Hamming weight of a code over F2 [8].

The Lee weight distribution of a code allows us to sample a coset represen-
tative of the lattice. In (1), we consider a filtration Λ1 ⊆ Λ2 ⊆ . . . ⊆ ΛL where
Λ1 = 2LZn + 2L−1CL = 2L−1(2Zn + CL) is a scaled Construction A lattice,
Λ2 = 2LZn + 2L−1CL +2L−2CL−1, and we proceed recursively such that in each
subsequent lattice we add the next (scaled) code until we get ΛL as the whole
lattice ΛD. Let c be a coset representative. In the end, the sampler outputs a
vector from D2LZn+c,s using one-dimensional samplers of Z and its shifts. Recur-
sive application of sampling via coset decomposition using Lee weight enables
exact sampling of a Construction D lattice for any width s > 0.

1.3 Open Questions

Lattice and code-based cryptography are closely related. Lately, techniques from
lattice-based cryptography were used to break FuLeeca [19], the first digital sig-
nature scheme based on the Lee metric. Meanwhile, the new connection discov-
ered in this work shows that code sampling in the Lee metric and lattice Gaussian
sampling are equally hard. To the best of our knowledge, no such relation has
been shown before. It is an interesting open question whether code sampling in
the Lee metric can be used to construct provably secure cryptosystems7.

Our sampling algorithms rely on knowledge of the Lee weight profile or sym-
metrized weight enumerator of a code or its coset, but existing methods to
compute these are computationally expensive. Enhancing their efficiency would
result in faster lattice Gaussian samplers. While we have made some progress in
this paper using the Schur product, further exploration is left for future work.

In [12], Ducas and van Woerden hypothesize that instantiating the LIP sig-
nature scheme with efficiently decodable lattices may lead to resistance against
attacks down to smaller approximation factors. The Barnes-Wall lattices are re-
markable, which makes it desirable to have a sampler for these lattices with a
6 Note that this is a subclass of Construction D since not all Construction D lattices

admit a code formula. See [11, p. 232] for the general definition.
7 In fact, as noted in [19], an open question remains on how to adapt the GPV frame-

work [16] to the Lee metric.
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small sampling width s. With our sampler, we can set s just above the smooth-
ing parameter, but in practice, sampling requires us to sample codewords with
respect to Lee weight (a hard problem in general). As a consequence, high-
dimensional Barnes-Wall lattices remain a challenge for tight sampling with our
method, and in this case, [14] provides wider and more efficient samplers. Opti-
mizations of our samplers for Barnes-Wall lattices and security gain analysis of
instantiating LIP with these remarkable lattices remain open questions.

2 Preliminaries

2.1 Notation

We denote by N, Z, and R the set of naturals, integers, and reals, respectively.
Also, [a : b] ≜ {a, a + 1, . . . , b} for a, b ∈ Z, a ≤ b. The ring of integers modulo
q for q ∈ N is Zq = {0, 1, . . . , q − 1}. Vectors are boldfaced, e.g., x and matrices
are represented by capital sans serif letters, e.g. X. The symbol + represents
the element-wise addition over R and ⋆ denotes the Schur product between two
elements in Fn

2 , i.e., x ⋆ y = (x1y1, . . . , xnyn), for x,y ∈ Fn
2 .

2.2 Linear Codes

The definitions and properties presented here are based on [11,24,37].
A (q-ary) linear code C of length n over a finite field Fq (q is a prime power)

is a linear subspace C ⊆ Fn
q . When q is not prime, we can also define linear codes

over rings simply as additive subgroups of Zn
q . Throughout this paper, q will be

a prime or a power of prime. We call a q-ary linear code C an (n, k)q code, where
n is the length and k is the dimension of the code.

We consider two different weights: Hamming and Lee. The Hamming weight
of a codeword c ∈ C, denoted by wH(c), is defined as the number of its nonzero
coordinates. We will initially restrict our attention to binary codes. The Ham-
ming weight enumerator of a code is a function that describes the weight profile
of a binary code C in terms of the Hamming weight.

Definition 1 (Hamming Weight Enumerator). Let C be a (n, k)2 code. The
Hamming weight enumerator of C is given by

WC(x, y) =
∑
c∈C

xn−wH(c)ywH(c) =

n∑
w=0

Awx
n−wyw

where Aw(C) = #{c ∈ C : wH(c) = w}, with w ∈ [0 : ℓ], is the number of
codewords in C that have Hamming weight w.

For codes over Zq, we define the Lee weight, which provides a more granular
description of the nonzero coordinates of a codeword.

Definition 2 (Lee Weight). The Lee weight of c ∈ Zq is wLee(c) = min{c, q−
c}. This can be naturally extended to a vector, i.e., given c = (c1, c2, . . . , cn) ∈
Zn
q , its Lee weight is wLee(c) =

∑n
j=1 wLee(cj).
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Definition 3 (Lee Weight Profile). Let C be a linear code over Zq of length
n. The Lee weight profile of c ∈ C is the tuple

[n0(c), n1(c), . . . , nℓ(c)], ℓ = ⌈q/2⌉

where nw(c) = #{i : wLee(ci) = w}, with w ∈ [0 : ℓ], i.e., it refers to the number
of coordinates of c that are ±w.

When q = 2, 3, Lee weight coincides exactly with Hamming weight. The
notion of Lee weight allows us to define additional weight enumerators.

Definition 4 (Symmetrized Weight Enumerator). The symmetrized weight
enumerator of a linear code C over Zq of length n is given by

sweC(x0, x1, . . . , xℓ) =
∑
c∈C

x
n0(c)
0 x

n1(c)
1 . . . x

nℓ−1(c)
ℓ−1 x

nℓ(c)
ℓ

where nw(c), with w ∈ [0 : ℓ] as in Definition 3, and ℓ = ⌈q/2⌉.
Consider α ∈ Fn

2 . Then ωα(c1, . . . , cr) as the number of occurrences of α as
a row in the matrix of column vectors c1, . . . , cr. For example, for the matrix
with column vectors given by c1 = (1, 0, 0), c2 = (1, 1, 0), and c3 = (1, 1, 1), we
have that ω1,1,1(c1, c2, c3) = 1 and ω1,0,0(c1, c2, c3) = 0.

Over multiple binary codes, we can define a generalized version of the joint
weight enumerator or originally, j-fold weight enumerator [13] as follows.

Definition 5 (Joint Weight Enumerator). Consider j binary linear codes
C1, . . . , Cj ⊆ Fn

2 . We define their joint weight enumerator to be

jweC1,...,Cj
(x) =

∑
c1∈C1

. . .
∑
cj∈Cj

∏
α∈Fj

2

x
ωα(c1,...,cj)
α =

∑
(c1,...,cj)

∈C1×...×Cj

∏
α∈Fj

2

x
ωα(c1,...,cj)
α ,

where x = (xα) is a 2j-tuple of variables with α = (α1, . . . , αj) ∈ Fj
2.

Notice that jweC1
(x0, x1) is the ordinary Hamming weight enumerator of

a binary code C1 and jweC1,C2
(x) = jweC1,C2

(x00, x01, x10, x11) is the biweight
enumerator of two binary codes C1 and C2 [24, pp. 147-148].

For codes C ⊆ Zn
4 constructed via C = 2C2 + C1, where C1, C2 ⊆ Fn

2 are lin-
ear codes, there is a natural relationship between the joint and the symmetrized
weight enumerators, namely jweC1,C2

(x00, x01, x10, x11) ≜ jweC1,C2
(x0, x2, x1, x1) =

sweC(x0, x1, x2). Indeed,

ω0,0(c1, c2) = n0(c), ω1,0(c1, c2) + ω1,1(c1, c2) = n1(c), ω0,1(c1, c2) = n2(c),

where we use the fact that the Lee weight of 1 and 3 in Z4 is the same (i.e.,
3 ≡ −1 mod 4), so we get

sweC(x0, x1, x2) =
∑
c∈C

x
n0(c)
0 x

n1(c)
1 x

n2(c)
2

=
∑

c1∈C1

∑
c2∈C2

x
ω0,0(c1,c2)
0 x

ω1,0(c1,c2)+ω1,1(c1,c2)
1 x

ω0,1(c1,c2)
2

= jweC1,C2
(x0, x2, x1, x1) = jweC1,C2

(x00, x01, x10, x11). (2)
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From now on we will denote ωα(c1, . . . , cj) = ωα1,...,αj
(c1, . . . , cj) simply by

ωα1,...,αj
, when the vectors c1, . . . , cj are clear from the context.

Next, we present the Reed-Muller codes, which are crucial to the construction
of Barnes-Wall lattices.

Definition 6 (Reed-Muller Code). A Reed-Muller code RM(r,m) of order r
and length 2m is a binary code defined as

RM(r,m) =

{
F2r

2 , m = r
{(u,u+ v) : u ∈ RM(r,m− 1),v ∈ RM(r − 1,m− 1)}, m > r.

The (u,u+v)-construction is called Plotkin construction. A Reed-Muller code
RM(r,m) has dimension k =

∑
j≤r

(
m
j

)
and cardinality 2k. Examples of Reed-

Muller codes are: the universe codes RM(m,m), the repetition codes RM(0,m),
and the parity-check codes RM(1,m).

2.3 Lattices

A real n-dimensional lattice Λ is a discrete additive subgroup of Rn [11]. The
dual lattice is Λ∗ = {x ∈ Rn : ∀y ∈ Λ, ⟨x,y⟩ ∈ Z}. The theta series of a lattice
is a series whose coefficients are the number of lattice points of a given Euclidean
norm. It is the lattice analog of the weight enumerator of a linear code.

Definition 7 (Theta Series). The theta series of an n-dimensional lattice Λ
is

ΘΛ(z) =
∑
x∈Λ

eπiz∥x∥
2

,

where Im(z) > 0.

In particular, when z is purely imaginary, i.e., z = iτ and τ > 0

ΘΛ(iτ) =
∑
x∈Λ

e−πτ∥x∥2

. (3)

The theta series ΘΛ+t(z) for a coset Λ+t where t ∈ Rn is defined analogously.
It is often relevant to express the theta series of a lattice in terms of the

Jacobi theta functions [11, pp. 102-105]:

ϑ3(ξ|z) =
∑
m∈Z

e2miξ+πizm2

, ϑ2(z) =
∑
m∈Z

eπiz(m+1/2)2 ,

ϑ3(z) = ϑ3(0|z) =
∑
m∈Z

eπizm
2

, ϑ4(z) =
∑
m∈Z

(−1)m
2

eπizm
2

,

where Im(z) > 0 and ξ ∈ C. Observe that ϑ3(z) coincides with the theta series
of the one-dimensional lattice Z and ϑ2(z) refers to the shift Z+ 1/2.
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The function ψk(z) = ΘZ+1/k(z) =
∑
m∈Z

eπiz(m+1/k)2 for k ∈ Z \ {0} is also

useful in our context. Note that

ΘZ+1/k(z) = ΘZ+(k−1)/k(z) (4)

because ΘZ+(k−1)/k(z) = ΘZ+1−1/k(z) = ΘZ−1/k(z) and we have the identity that
ψk(z) = ψ−k(z) [11, p. 105]. For a general shift t ∈ R and considering z = iτ to
be pure imaginary (3) with τ > 0, we have the one dimensional theta series [6,
Eq. (2.2.5)]

ΘZ+t(iτ) =
∑
m∈Z

e−πτ(m+t)2 = τ−
1/2

∞∑
k=−∞

e2πikt−
πk2/τ = τ−

1/2ϑ3(πt|iτ−1).

In this paper, we focus on real lattices, but the lattice constructions can
be extended to lattices over complex numbers. Lattices constructed from linear
codes are of particular interest since the underlying code structure allows a
simpler characterization of some of the lattice properties, like the theta series.
These lattices are exactly the q-ary lattices [28].

Particularly, we consider lattices that can be expressed in terms of a code
formula due to the connection with partition chains (or lattice filtrations [15,33]).

Definition 8 (Partition Chain/Filtration). A partition chain

ΛL/ΛL−1/ . . . /Λ0

is a sequence of lattices such that each is a sublattice of the previous one, that
is, Λ0 ⊆ . . . ⊆ ΛL. This is also called a filtration of the lattice ΛL.

A partition chain induces a coset decomposition such that every element
of a lattice ΛL can be written as a sum of an element from Λ0 and a coset
representative from each partition [Λj/Λj−1], where j ∈ [1 : L] [15, p. 1127].
The partition chain Z/2Z/4Z/ . . . induces the binary decomposition of an integer,
so we can write any x ∈ Z as a sum x0 + 2x1 + 4x2 + . . .. A 2L-ary lattice is an
integer lattice that has 2ℓZn as a sublattice for some ℓ (clearly, this is true for
ℓ = L), and the smallest such ℓ is called the depth or level of the lattice. To be
mathematically precise, we define ϕ : Zn

q → Zn as the natural embedding which
simply maps a congruence class to its corresponding integer, for q ≥ 2.

Definition 9 (Construction A). Let q ≥ 2 and C ⊆ Zn
q be a linear code, then

ΛA(C) = qZn + ϕ(C)

defines a lattice, referred to as (q-ary) Construction A.

Definition 10 (Construction B). Let Pn be the (n, n− 1)2 parity-check code
and C ⊂ Fn

2 be doubly even code, i.e., the weight of every codeword in C is
divisible by 4. Notice that C ⊂ Pn. Thus, the Construction B lattice is such that

ΛB(C) = 4Zn + 2ϕ(Pn) + ϕ(C).
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Using partitions of binary lattices modulo 2 and 4, we can express Construc-
tion A and B lattices in terms of a code formula since the lattice cosets [Λj/Λj−1]
form binary linear codes for j ∈ [1 : L] where L = 1, 2 respectively [15, Lemma
3, pp. 1132-1133].

The code formula in Definition 10 can be extended to L binary linear codes [15],
which leads to the following definition of Construction D, provided that the un-
derlying linear codes satisfy some multiplicative conditions [21, Th. 1].

Definition 11 (Construction D). The code formula

2LZn + 2L−1ϕ(CL) + . . .+ 2ϕ(C2) + ϕ(C1)

defines a lattice ΛD if and only if every binary linear code Cj ⊆ Fn
2 is pairwise

closed under the Schur product, i.e. cj ⋆ c′j ≜ (cj,1cj′,1, . . . , cj,ncj′,n) ∈ Cj+1 for
all cj , c′j ∈ Cj, j ∈ [1 : L− 1]. Particularly, this implies that C1 ⊆ C2 ⊆ . . . ⊆ CL.

From now on, we drop the notation of ϕ for simplicity, but the map is implied.
Observe that both Constructions B and D can be seen as a particular case of
the q-ary Construction A if we consider C = 2Pn+C and q = 4 for Construction
B, and C = 2L−1CL + · · · + 2C2 + C1 and q = 2L for Construction D. In both
cases, the set of codes satisfy the Schur product condition, which implies that
the code C is linear over the respective Zq.

By the code formula, we can write any lattice vector x ∈ ΛD as x = 2Lz +
2L−1cL+. . .+2c2+c1 where z ∈ Zn and cj is a codeword of Cj , for all j ∈ [1 : L].
Therefore, we can express ΛD as a disjoint union of its coset representatives as
follows:

ΛD =
⋃

cL∈CL

. . .
⋃

c1∈C1

2LZn + 2L−1cL + . . .+ 2c2 + c1 =
⋃
c∈C

2LZn + c (5)

where C = 2L−1CL + · · ·+ 2C2 + C1 is a linear code over Z2L .
The Barnes-Wall lattices are a remarkable example of Construction D lat-

tices, known to have efficient bounded-distance decoding algorithms [26]. Since
some families of Reed-Muller codes are nested and closed under the Schur prod-
uct, the following code formulas define a lattice by Theorem 11. They correspond
to the real Barnes-Wall lattices of dimension n = 2m+1 [20]:

BWn = Λ(0,m) =


2m/2Z2m+1

+
∑

1≤r≤m
m−r odd

RM(r,m+ 1)2
r−1
2 , if m even

2(m+1)/2Z2m+1

+
∑

1≤r≤m
m−r even

RM(r,m+ 1)2
r−1
2 , if m odd.

2.4 Discrete Gaussian Distributions

The theta series is closely related to the discrete Gaussian distribution over a
lattice. The Gaussian function is given by ρs(x) = e−π∥x∥2/s2 for x ∈ Rn. Further,
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we can define the Gaussian function over a discrete set S as ρs(S) ≜
∑

x∈S ρs(x).
The discrete Gaussian distribution over a lattice coset Λ + t for t ∈ Rn is the
discrete distribution with support over the coset. The probability of choosing a
vector y ∈ Λ+ t according to this distribution is 8

DΛ+t,s(y) ≜
ρs(y)

ρs(Λ+ t)
=

ρs(y)

ΘΛ+t (i/s2)
, (6)

where ρs(Λ+ t) is a normalisation factor. We now recall some properties of the
lattice Gaussian distribution.

Proposition 1. [8, Prop. 1] For the lattice Gaussian distribution, it holds that

1. Dα(Λ+t),s(αy) = DΛ+t,s/α(y),
2. D(Λ1+t1)⊕(Λ2+t2)(y1,y2) = DΛ1+t1(y1)DΛ2+t2(y2).

The smoothing parameter is a lattice measure based on the Gaussian distri-
bution [27].

Definition 12 (Smoothing Parameter). For an n-dimensional lattice Λ, and
a positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.

In the sampling context, if a noisy vector is sampled from a Gaussian distribu-
tion with a width at least as large as the smoothing parameter and then reduced
modulo the fundamental parallelepiped of the lattice, the resulting distribution
will be nearly uniform.

3 Reductions

We show that the problem of lattice sampling for q-ary lattices can be reduced to
that of code sampling. Combined with a straightforward reduction in the other
direction, this implies the two problems are equivalent.

For clarity, let us fix the lattice ΛA = ΛA(C) = qZn + C with C ⊆ Zn
q a linear

code and q ≥ 2, and give definitions of the two problems. We also let the shift
t ∈ Zn

q without loss of generality.

Definition 13 (Gaussian Sampling for q-ary Lattices). Given some lattice
ΛA = qZn + C, a shift t ∈ Zn

q and sampling width s > 0, the Gaussian sampling
problem asks to sample a vector x ∈ ΛA + t from the distribution DΛA+t,s.

8 In literature, there is a slightly different definition DΛ,s,t(x) with a center t, where
x ∈ Λ. It is easy to see DΛ,s,t(x) = DΛ−t,s(x− t), namely, they are a shifted version
of each other. In this paper, we follow the definition (6) since it is used in the GPV
framework [16].
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Definition 14 (Sampling for q-ary Linear Codes). Given a linear code
C ⊆ Zn

q , a shift t ∈ Zn
q and a parameter s, the code sampling problem with

respect to the Lee weight profile asks to sample a vector ν ∈ C+t with probability
given by

LC+t,s(ν) ≜
ΘqZ(z)

n0(ν)ΘqZ+1(z)
n1(ν) . . . ΘqZ+ℓ(z)

nℓ(ν)∑
ν∈C+tΘqZ(z)n0(ν)ΘqZ+1(z)n1(ν) . . . ΘqZ+ℓ(z)nℓ(ν)

where z = i/s2, nj(ν) are the entries of the Lee weight profile of ν and ℓ = ⌈q/2⌉.
We denote the induced distribution as LC+t,s.

Define DΛA+t,s(S) ≜
∑

x∈S DΛA+t,s(x) over a discrete set S.

Lemma 1 (Key Lemma). Given a linear q-ary code C ⊆ Zn
q , a vector t ∈ Zn

q

and ν ∈ C + t, we have 9

DΛA+t,s(qZn + ν) = LC+t,s(ν).

Proof. Consider ν ∈ C+ t, then the j-th coordinate of qz+ν, where z ∈ Zn and
j ∈ [1 : n], is

qzj + νj =


qzj , if νj = 0
qzj + 1, if νj = 1
...
qzj + (q − 1), if νj = q − 1.

For each qzj+νj , we derive a corresponding theta series for the one-dimensional
lattice coset qZ+ νj . We have that

ΘqZ(z) = ϑ3(q
2z),

ΘqZ+j(z) = ΘqZ+q−j(z), j = 1, 2, . . . , q − 1

and the second equality follows from an analogous argument to the proof of (4).
For a fixed ν, we can write

ΘqZn+ν(z) =
∑
z∈Zn

eπiz∥qz+ν∥2

. (7)

We have that qZn + ν is isometric to the decomposition given by 10

qZn0(ν) ⊕
(
qZn1(ν) +

(
1n1(ν)

))
⊕ · · · ⊕

(
qZnℓ(ν) +

(
ℓnℓ(ν)

))
,

where ℓ = ⌈q/2⌉ and we interpret jnj(ν) to be a vector with nj(ν) entries of ±j.
It follows that
9 Formally, t ∈ Zn, but we can assume t ∈ Zn

q without loss of generality [31].
10 Direct sum decomposition does not preserve order, but this is not relevant for the

computation of the theta series.
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ΘqZn+ν(z) = ΘqZn0(ν)(z)ΘqZn1(ν)+(1n1(ν))(z)× · · · ×ΘqZnℓ(ν)+(ℓnℓ(ν))(z)

= ΘqZ(z)
n0(ν)ΘqZ+1(z)

n1(ν) × · · · ×ΘqZ+ℓ(z)
nℓ(ν) (8)

where the second equality follows by direct sum decomposition and using the
fact that ΘΛ1⊕Λ2

(z) = ΘΛ1
(z)ΘΛ2

(z).
The proof is completed by observing that for z = i/s2,

DΛA+t,s(qZn + ν) =
ΘqZn+ν(z)∑

ν∈C+tΘqZn+ν(z)
= LC+t,s(ν).

Theorem 1 (Equivalence of Lattice and Code Sampling). The Gaussian
sampling problem for a Construction A lattice ΛA + t with C ⊆ Zn

q a linear code
and q ≥ 2 is equivalent to the problem of sampling codewords over C + t with
respect to their Lee weight profiles.

Proof. We show the equivalence between lattice sampling (LS) and code sam-
pling (CS) by establishing two reductions with polynomial running time. We use
A → B to denote that problem A is reduced to problem B, i.e., an oracle for
solving problem B can also be used as a subroutine to solve problem A efficiently.

(CS → LS): This reduction is simple, we just sample x ∈ ΛA+t with probability
DΛA+t,s(x), then return a vector ν = x mod q. The probability of obtaining ν
is DΛA+t,s(qZn + ν), since this is the probability that a point drawn from the
discrete Gaussian in ΛA + t lies in the coset qZn + ν. As proven in Lemma 1,
DΛA+t,s(qZn+ν) ∝ ΘqZ(z)

n0(ν)ΘqZ+1(z)
n1(ν) . . . ΘqZ+ℓ(z)

nℓ(ν) where the nj(ν)
are the entries of the Lee weight profile of ν. This probability depends on the
Lee weight profile of ν only.

(LS → CS): We can decompose a Construction A lattice as a disjoint union of
cosets ΛA = ΛA(C) =

⋃
c∈C qZn + c. We sample from ΛA + t via coset decom-

position:

1. Sample a coset representative ν ∈ C + t with probability

LC+t,s(ν) = DΛA+t,s(qZn + ν).

2. Sample a vector x from DqZn+ν,s of the form x = qz+ ν, where z ∈ Zn.

This outputs a lattice vector x = qz+ν ∈ qZn+ν with probability DΛA+t,s(qZn+
ν) · DqZn+ν,s(z+ ν) = DΛA+t,s(z+ ν) = DΛA+t,s(x) as desired.

If we view any multilevel lattice construction (B or D) as a Construction A
lattice with q = 2L, then from Theorem 1 it follows that sampling a Construction
D lattice is also equivalent to sampling codewords with respect to their Lee
weight profiles. We omit the details.
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4 Theta Series of q-ary Lattices

The theta series is the key lattice measure underlying our sampling method. In
general, it is challenging to calculate the theta series of an arbitrary lattice Λ,
but a closed formula is known for some well-studied lattices, which can lead to
a better estimation of the smoothing parameter and improved samplers.

We now expand on the theta series of some families of q-ary lattices obtained
from linear codes. We start with showing that the theta series of a Construction A
lattice with q ≥ 2 can be written in terms of the symmetrized weight enumerator
of the associated linear code over Zq, based on [25].

Theorem 2 (Theta Series of a Construction A Lattice for q ≥ 2). The
theta series of a Construction A lattice ΛA ≜ ΛA(C) = qZn + C is given by

ΘΛA(z) = sweC(ΘZ(q
2z), ΘZ+1/q(q

2z), . . . , ΘZ+ℓ/q(q
2z)),

where ℓ = ⌈q/2⌉.

Proof. We can write

ΘΛA(z) =
∑
c∈C

∑
z∈Zn

eπiz∥qz+c∥2

=
∑
c∈C

ΘqZn+c(z). (9)

Using (8), we have

ΘΛA(z) =
∑
c∈C

ΘqZ(z)
n0(c)ΘqZ+1(z)

n1(c) · · ·ΘqZ+ℓ(z)
nℓ(c).

Notice that this is the symmetrized weight enumerator of the linear code
C ⊆ Zn

q evaluated at the corresponding shifts of theta series.

The two main challenges in calculating the theta series of any q-ary lattice
obtained via Construction A are i) characterizing the symmetrized weight enu-
merator of a q-ary code C involves going through all the codewords of C, and ii)
the theta series of shifts of qZ, i.e., ΘqZ+c(z) have some simplifications via the
well-known Jacobi-theta functions [11, pp. 102-105], but not always. We present
next some cases where this calculation is simplified due to these properties.

For the binary Construction A (q = 2), the symmetrized weight enumerator
is simply the Hamming weight enumerator of the binary linear code C. Moreover,
ΘZ(q

2z) = ϑ3(4z) and ΘZ+1/q(q
2z) = ϑ2(4z), and from [11, Th. 3, Ch. 7] and

without the scaling factor 1/
√
2, we get the theta series of ΛA(C).

Theorem 3 (Theta Series of Binary Construction A Lattice). Consider
an (n, k)2 code C, then the theta series of ΛA(C) is given by

ΘΛA(C)(z) =WC(ϑ3(4z), ϑ2(4z)).

Given that the parity-check code Pn defines the Construction B lattice, its
theta series can be written only in terms of the Hamming weight enumerator of
the doubly-even code C ⊆ Pn, according to [11, Th. 15, Ch. 7].
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Theorem 4 (Theta Series of a Construction B Lattice). Consider an
(n, k)2 doubly even code C. The theta series of ΛB(C) is

ΘΛB(C)(z) =
1
2WC(ϑ3(4z), ϑ2(4z)) +

1
2ϑ4(4z)

n.

Naturally, the same procedure can be applied to Construction D lattices. We
show that its theta series can also be written as symmetrized weight enumerator
of the linear code C ⊆ Zn

2L , provided that C = 2L−1CL + . . . + 2C2 + C1 and Cj
are binary linear codes closed under the Schur product, for j ∈ [1 : L]. If we
consider the j-th coordinate of a lattice vector 2Lz+ c where c ∈ C, we get

2Lzj + cj =


2Lzj , if (c1,j , ..., c2L,j) = (0, 0, . . . , 0)
2Lzj + 1, if (c1,j , ..., c2L,j) = (1, 0, . . . , 0)
...
2Lzj + (2L − 1), if (c1,j , ..., c2L,j) = (1, 1, . . . , 1).

Let α = (α1, α2, . . . , αL) ∈ FL
2 and recall that ωα(c1, . . . , cL) is the number

of occurrences of α as a row in the matrix of column vectors c1, . . . , cL. Also,
since nw(c) is the number of coordinates that have Lee weight w, it follows that

nw(c) = ωα1,...,αL
(c1, . . . , cL) + ωα̃1,...,α̃L

(c1, . . . , cL),

where i = 2L−1αL + . . . + 2α2 + α1 and 2L − i = 2L−1α̃L + . . . + 2α̃2 + α̃1.
Therefore, we have that for the Z2L-linear code C = 2L−1CL+ . . .+2C2+C1 with
each Cj a binary linear code, we can write the Lee weight profile of c ∈ C either
as [n0(c), n1(c), . . . , nℓ(c)] as in Definition 3 or equivalently, as

[ω0,...,0(c1, . . . , cL), ω1,0,...,0(c1, . . . , cL) + ω0,1,...,1(c1, . . . , cL), . . .

. . . , ω1,...,1(c1, . . . , cL)].

We can also rewrite (7) as a joint weight enumerator over L binary codes.

Theorem 5 (Theta Series of a Construction D Lattice). The theta series
of a Construction D lattice ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1 is given by

ΘΛD(z) = jweC1,...,CL
(ΘZ+tα/2L)

where α ∈ FL
2 and tα = 2L−1αL + . . .+ 2α2 + α1.

Proof. We have that

ΘΛD(z) =
∑
c∈C

Θ2LZn+c(z)

=
∑
c∈C

Θ2LZ(z)
n0(c) · · ·Θ2LZ+2L−1(z)

n2L−1(c)

=
∑

c1∈C1

. . .
∑

cL∈CL

Θ2LZ(z)
ω0,...,0(c1,...,cL) · · ·Θ2LZ+2L−1(z)

ω1,...,1(c1,...,cL)

=
∑

c1∈C1

. . .
∑

cL∈CL

∏
α∈FL

2

ΘZ+tα/2L(z)
ωα(c1,...,cL)

= jweC1,...,CL
(ΘZ+tα/2L).
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Theorem 5 can be also expressed in terms of the symmetrized weight enumer-
ator over the code C = 2L−1CL+ . . .+2C2+C1 ⊆ Zn

2L as proposed in Theorem 2.
The main difference between the code formula Construction D and Construction
A for q ≥ 2 is that we have an identity between the symmetrized weight enumer-
ator of a single linear code over Zn

2L and the joint weight enumerator of multiple
binary codes Cj , for j ∈ [1 : L]. This does not hold in general for Construction A
with q ≥ 2 because we cannot always decompose a q-ary code C ⊆ Zn

q into a sum
of binary codes. Such a particular property will further allow a simplification of
the Gaussian sampling.

For the particular case of Theorem 5 for L = 2, we recover the theta series
for a 2-level Construction D lattice [5, Th. 22]. For instance, the theta series of
1
2 (4Z

n + 2C2 + C1)11 is given by

Θ 1
2 (4Zn+2C2+C1)(z) =

∑
c1∈C1

∑
c2∈C2

ϑ3(4z)
ω0,0

(
ϑ2(z)

2

)ω1,0+ω1,1

ϑ2(4z)
ω0,1

= sweC(ϑ3(4z), ϑ2(z)/2, ϑ2(4z)),

(a)
= jweC1,C2

(ϑ3(4z), ϑ2(4z), ϑ2(z)/2, ϑ2(z)/2), (10)

for C = 1/2(C1 + 2C2). In (a) we have used the identity from (2). Notice that
Θ2Z+1/2(z) = ΘZ+1/4(4z) = ΘZ+3/4(4z) = ψ4(4z), and then we apply the identity
ψ4(z) = ϑ2(z/4)

2 [11, p. 105]. In particular, considering C1 = C and C2 = Pn,
where C is a doubly even code, we recover the theta series of Construction B
presented in Theorem 4.

Next, we use Theorem 5 to express the theta series of the Barnes-Wall lattice
BW128, which is a 3-level Construction D.

Example 1. Consider the Barnes-Wall lattice BW128 = 8Z128 + 4RM(5, 7) +
2RM(3, 7) + RM(1, 7) where RM(r, 7) is a Reed-Muller code of length 27 of
order r for r = 1, 3, 5 [17]. Hence, via coset decomposition,

BW128 =
⋃

c3∈C3

⋃
c2∈C2

⋃
c1∈C1

8Z128 + 4c3 + 2c2 + c1

and we define c ≜ 4c3+2c2+c1. The theta series for each of the one-dimensional
cosets is given by

Θ8Z(z) = ϑ3(64z), Θ8(Z+1/8)(z) = Θ8(Z+7/8)(z) = ψ8(64z),

Θ8(Z+1/4)(z) = Θ8(Z+3/4)(z) = ψ4(64z) = ϑ2(16z)/2,

Θ8(Z+3/8)(z) = Θ8(Z+5/8)(z) = (z/i)
−1/2

ϑ3 (3π/8|z) , Θ8(Z+1/2)(z) = ϑ2(64z).

11 The constant 1/2 is used simply to obtain a volume-one lattice.
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Hence, the theta series of a fixed coset of BW128 is

Θ8Z128+c(z) =
∑

z∈Z128

eπiz∥8z+c∥2

=ϑ3(64z)
ω0,0,0ϑ2(64z)

ω0,0,1 (ϑ2(16z)/2)
ω0,1,0+ω0,1,1 ×

× ψ8(64z)
ω1,0,0(c)+ω1,1,1ΘZ+ 3

8
(64z)ω1,1,0+ω1,0,1 . (11)

The overall theta series is obtained by summing over all codewords c ∈ C.

ΘBW128
(z) =

∑
c∈C

∑
z∈Z128

eπiz||8z+c||2

= sweC
(
ϑ3(64z), ϑ2(64z), ϑ2(16z)/2, ψ8(64z), ΘZ+3/8(64z)

)
,

where C = 4RM(5, 7) + 2RM(3, 7) + RM(1, 7). ♢

For Gaussian sampling over a q-ary lattice Λ, the theta series we are interested
in is ΘΛ+t(z), where t ∈ Zn

q . The results of this section then correspond to t = 0.
For t ̸= 0 and a binary Construction A, one can calculate the weight enumerator
of the coset C + t of a code C ⊆ Zn

2 with t ∈ Zn
2 according to Appendix A, and

then obtain the theta series of ΛA(C) + t via Theorem 3. For larger alphabets
q > 2, expressing the symmetrized weight enumerator of a coset C + t of a q-ary
code C is more challenging and might not have a closed form. In this case, we
assume an oracle for computing the symmetrized weight enumerator of a coset.

4.1 Smoothing Parameter

The smoothing parameter ηϵ(Λ) is computed by finding s such that ΘΛ∗(is2)−
1 = ϵ where ΘΛ∗(is2) =

∑
x∈Λ∗ e−πτ∥x∥2

with τ = s2 in (3). For a general
Construction A lattice, its dual is also a Construction A lattice up to a scaling
of 1/√q (more details in Appendix B). That is,

Λ∗
A = ΛA(C)∗ = (qZn + C)∗ = qZn + C⊥ = ΛA(C⊥),

where C⊥ = {c′ ∈ Zn
q : ⟨c, c′⟩ ≡ 0 mod q, for all c ∈ C}.

The theta series of the dual of ΛA(C) is then given by

ΘΛ∗
A
(z) = sweC⊥(ΘZ(q

2z), ΘZ+1/q(q
2z), . . . , ΘZ+ℓ/q(q

2z))

where ℓ = ⌈q/2⌉. We can obtain the symmetrized weight enumerator of C⊥

from the symmetrized weight enumerator of C using MacWilliams identities [24,
Th. 12] for q < 5. Now we set z = is2 and solve for s such that ΘΛ∗(is2)−1 = ϵ.
For q ≥ 5, we cannot apply the MacWilliams identities [1], but we can solve
for s using a formulation involving the primal lattice instead [23]. Typically in
cryptography, the modulus q is chosen such that q ≥ 5.

For the sake of comparison, Fig. 1 represents the smoothing parameters of
two lattices, E8 and the Leech Λ24. Sampling using a width s smaller than the
precise smoothing parameter may cause inconsistencies since most properties
of the Gaussian distribution require sampling above the smoothing parameter.
We observe that the approximations presented in [14] are usually fair for small
values of ϵ.
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(b) Λ24 lattice

Fig. 1: Smoothing parameters. The log scale refers to the natural logarithm.

5 Sampling Algorithms for q-ary Lattices

The reduction in Section 3 suggests an algorithm for lattice Gaussian sampling.
Let Λ =

⋃
c∈C Λ

′ + c be a disjoint union of cosets. To sample from Λ + t, we
now consider the decomposition with respect to the coset C + t. Sample first a
vector ν ∈ C + t with probability DΛ+t,s(Λ

′ + ν), then sample a lattice vector
x′ ∈ Λ′ with probability DΛ′+ν,s(x

′ + ν) to output a vector x = x′ + ν, with
target probability DΛ+t,s(Λ

′ + ν) · DΛ′+ν,s(x
′ + ν) = DΛ+t,s(x).

5.1 Sampling General Construction A with q ≥ 2

Algorithm 1 describes the coset decomposition sampling over a shift of a general
Construction A lattice with code formula qZn + C. When t = 0, the probability
of sampling a coset corresponding to a codeword c ∈ C depends on its Lee weight
profile (see Section 3). We can compute the Lee weight profiles of the code offline
using the Schur product, for example, according to Appendix C, and store this
information.

For t ̸= 0, we can use the symmetrized weight enumerator of the coset C+ t.
When q = 2, it is simply the Hamming weight enumerator of the coset of a code
(see Appendix A)12. When q < 5, we can use a similar approach as in the binary
case to compute the symmetrized weight enumerator of C + t, but for q ≥ 5 we
assume access to an oracle that performs this calculation offline, since we cannot
rely on the well-known relationship between a code and its dual [1].

In Algorithm 1, we let ν̃ be any codeword in C + t that has Lee weight
profile ℓ and DqZn+(C+t),s(qZn + ν̃) be the probability that we sample a lattice
vector in any coset whose representative has Lee weight profile ℓ. By Lemma
1, DqZn+(C+t),s(qZn + ν̃) is proportional to a term in the symmetrized weight
enumerator of C + t with exponents defined by the coordinates of ℓ. We select
12 When q = 2 and t = 0, we recover the Construction A sampler from [8].
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Algorithm 1: Sampling for General Construction A
Require: ΛA = qZn + C, C ⊆ Zn

q and sweC+t(·) for t ∈ Zn
q and sampling width s

Ensure: x← DΛA+t,s(x)
1: Select Lee weight profile ℓ with probability pℓ = Aℓ ·DqZn+(C+t),s(qZn+ ν̃)

where Aℓ is the respective coefficient of sweC+t(·)
2: Select a codeword ν ∈ C + t with Lee weight profile ℓ uniformly at random
3: for j ∈ [1 : n] do

xj ← q · SamplerZ+νj/q
(s/q)

end
4: return x = (x1, . . . , xn)

ℓ with probability DqZn+(C+t),s(qZn + ν̃) weighted by the number of codewords
Aℓ with Lee weight profile ℓ. We then select a single codeword ν associated to ℓ
uniformly over all such Aℓ codewords. We output a final lattice vector x = qz+ν
with z ∈ Zn, by sampling qZn + (C + t) using one dimensional Z-samplers. The
correctness of Algorithm 1 follows by applying the reduction in Theorem 1 with
the general method of coset decomposition sampling.

Example 2. Consider the Dn lattice, obtained via binary Construction A as Dn =
2Zn + Pn, where Pn is the parity-check code and a shift t = 0. There are

(
n
2m

)
vectors of weight 2m in Pn. The probability of selecting such coset is

p2m =

(
n

2m

)
ΘZ+1/2(4z)

2mΘZ(4z)
n−2m

ΘDn
(z)

as given in [8, Eq. 3]. Hence, to sample in Dn, we proceed as in Algorithm 2,
according to [8]. ♢

Sampling in Dn +t, where t ̸= 0 will be discussed next.

Algorithm 2: Sampling over Dn

Require: Dn = 2Zn + Pn and sampling width s
Ensure: x← DDn,s(x)
1: Select m ∈ {1, . . . , ⌊n/2⌋} with probability p2m
2: Select a subset J ⊂ {1, . . . , n} with size 2m
3: for j ∈ J do

xj ← 2 · SamplerZ+1/2(s/2)

end
4: for j ∈ {1, . . . , n} \ J do

xj ← 2 · SamplerZ(s/2)
end

5: return x = (x1, . . . , xn)
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5.2 Sampling Construction B Lattices

The Construction B lattice can be written as ΛB(C) = 2Dn +C. Thus, sampling
from ΛB requires base samplers of the Dn lattice [8, Alg. 7]. Campello and
Belfiore provide a sampler for ΛB(C) when t = 0, which we summarize below.

Note that any permutation of coordinates is an automorphism of Dn [11,
p. 118] and the addition by a lattice vector is an affine automorphism [11, p. 91],
so it follows that 2Dn +c ≃ 2Dn +(1w, 0n−w) as lattices since C is doubly even,
so the sum of the coordinates of c is even and therefore c ∈ Dn. It follows
that the theta series of a coset 2Dn +c depends only on the Hamming weight
w = wH(c). The theta series of 2(Dn +c/2) [8, Sec. VI] is

ΘDn +c/2(z) = ΘDw +( 1
2
w)(4z)ΘDn−w

(4z)

+Θ
Dw +

(
3
2

1
,
1
2

w−1
)(4z)ΘDn−w +(11,0n−w−1)(4z).

Let DΛB,s(2Dn(c) + (1w, 0n−w)) = Θ2Dn +(1w,0n−w)(z)/ΘΛB (z) be the proba-
bility that a lattice vector sampled from the distribution on ΛB lies in the
coset 2Dn +(1w, 0n−w). The sampling procedure works by sampling a Hamming
weight w with probability pw = AwDΛB,s(2Dn +(1w, 0n−w)), similar to the pro-
cedure for Construction A. The sampler selects a codeword c ∈ C uniformly
from the set of all codewords of Hamming weight w. Next, we decompose Dn =
(Dw ⊕Dn−w)

⋃
(Dw⊕Dn−w) where Dn = Dn +(11, 0n−1) by [8, Eq. (9)]. We then

sample from Dw ⊕Dn−w with probability peven,w ≜ D2Dn +c,s((2Dw +(1w)) ⊕
2Dn−w). Additionally, we sample from the complementary part with probability
1− peven,w. This allows us to sample from a shift of a Dn lattice.

We now apply this idea to sampling a shift of Dn +t where t ∈ Zn
2 . By

replacing c/2 with t, we get that the theta series Dn +t is

ΘDn +t(z) = ΘDw +1(4z)ΘDn−w(4z) +ΘDw +(21,1w−1)(4z)ΘDn−w +(11,0n−w−1)(4z)

where w = wH(t). Note that since t is not necessarily a codeword in C, we may
have that w is odd. We decompose Dn as before. After that, we sample from
Dw ⊕Dn−w with probability peven,w ≜ DDn +t,s((Dw +(1w))⊕Dn−w), and from
the complementary part of the decomposition with probability 1−peven,w. Notice
that if w is even, sampling Dn +t is equivalent to sampling Dn when t = 0.

5.3 Sampling Construction D Lattices for L ≥ 2

Decomposing a linear q-ary code using a code formula offers significant advan-
tages in the sampling process when t = 0, as was the case for Construction B,
and now we extend to a multilevel Construction D lattice. Consider a filtration
of sublattices of a Construction D lattice of the form

2LZn + 2L−1CL ⊆ 2LZn + 2L−1CL + 2L−2CL−2 ⊆ . . .

⊆ 2LZn + 2L−1CL + . . .+ 2C2 + C1 ≜ ΛD
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where we notice that the first lattice in the filtration is a shifted Construction
A lattice scaled by 2L−1 for L ≥ 1.

Our sampler begins at the first level of the filtration and samples cL ∈ CL
with respect to a scaled Construction A lattice. The sampler proceeds to sample
the next codeword by considering the next level of the filtration, and so on. After
we have sampled cj for j ∈ [1 : L], we sample a lattice point from the overall
lattice using base samplers of Zn or Dn.

To illustrate, we present a summary of the method for L = 2 in Algorithm 3.
Note that in line 7, ω0,0 is simply n−wH(c1+2c2) and one can use the Hamming
weight instead of calculating the Lee weight profile in this case.

Algorithm 3: Sampling for L = 2

Require: ΛD = 4Zn + 2C2 + C1, C1 ⊆ C2 closed under Schur product, WC2(·),
swe2C2+C1(·) and sampling width s

Ensure: x← DΛD,s(x)
1: Λ1 ← 4Zn + 2C2
2: Aw ← #{c2 ∈ C2 : wH(c2) = w}
3: Sw ← {c2 ∈ C2 : wH(c2) = w}
4: Sample a weight w with probability pw = Aw · DΛ1,s(4Zn + 2c̃2)
5: Sample c2 ← Sw uniformly at random
6: Λ2 ← 4Zn + 2C2 + C1 = ΛD

7: Aℓ ← #{c1 ∈ C1 : [ω0,0, wH(c1), ω0,1] = ℓ}
8: Sℓ ← {c1 ∈ C1 : [ω0,0, wH(c1), ω0,1] = ℓ}
9: Sample Lee weight profile ℓ with probability pℓ = Aℓ ·

DΛD,s(4Zn+2c2+c̃1)

DΛ1,s(4Zn+2c̃2)

10: Sample c1 ← Sℓ uniformly at random
11: c← 2c2 + c1
12: for j ∈ [1 : n] do

xj ← 4 · SamplerZ+cj/4
(s/4)

end
13: return x = (x1, . . . , xn)

Alternatively, we can directly use C = 2C2+C1 as a code over Z4 and sample
in a single step without defining conditional probabilities. In this case, we can
sample the 2-level lattice ΛD = 4Zn +2C2 + C1 by using Algorithm 1 with q = 4
and C = 2C2+C1. The correctness of Algorithm 3 is analogous to the correctness
of Algorithm 4, by restricting it to two levels. We next provide the description
and correctness proof for Algorithm 4.

For a 3-level Construction D lattice ΛD = 8Zn+4C3+2C2+C1, we repeat what
was done for L = 2 to sample with respect to the first two levels of the filtration.
Next, we sample with respect to the third and final filtration, which is the entire
lattice ΛD, under the condition that c3 and c2 were previously sampled in the
first two steps. The theta series of a coset in this lattice is, according to (11)
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Θ8Zn+4c3+2c2+c1
(z) = ϑ3(64z)

ω0,0,0ψ8(64z)
ω1,0,0+ω1,1,1

(
ϑ2(16z)

2

)ω0,1,0+ω0,1,1

ΘZ+ 3
8
(64z)ω1,1,0+ω1,0,1ϑ2(64z)

ω0,0,1

where c1 ∈ C1. The probability of a coset depends on the frequency values
ωα(c1, c2, c3), where α ∈ F3

2. Now, let Ak be the number of Lee weight profiles
k defined by these frequency values and let c̃1 ∈ C1 be any codeword having
weight profile k with respect to fixed c3, c2. Define the conditional probability
that we select a vector from a discrete Gaussian on 8Zn + 4C3 + 2C2 + C1 which
lies in a coset of the form 8Zn + 4c3 + 2c2 + c̃1 given that we have previously
sampled c3, c2. The probability that we have already sampled c3 and c2 is the
probability that step 1 outputs c3 and step 2 outputs c2. Overall, it follows that

pcond2
≜

D8Zn+4C3+2C2+C1,s(8Zn + 4c3 + 2c2 + c̃1)

D8Zn+4C3+2C2,s(8Zn + 4c3 + 2c̃2)
.

We sample c1 in two steps: first, we choose a Lee weight profile k with
probability pk = Ak · pcond2 , then we sample a codeword c1 uniformly from all
codewords in C1 that have Lee weight profile k with respect to c3, c2. This selects
a codeword c1 ∈ C1 with probability pk/Ak.

The final step is to sample a vector from D8Zn+4c3+2c2+c1,s by recursively
applying one-dimensional samplers of Z and its shifts. The sampler outputs a
lattice vector of total probability

DΛ1,s(8Zn + 4c3) ·
DΛ2,s(8Zn+4c3+2c2)

DΛ1,s(8Zn+4c3)
· DΛD,s(8Zn+c)

DΛ2,s(8Zn+4c3+2c2)
·

D8Zn+4c3+2c2+c1,s(8z+ c) = DΛD,s(8Zn + c)D8Zn+c,s(8z+ c)

= DΛD,s(8z+ c),

where Λ1 ⊆ Λ2 ⊆ ΛD = 8Zn + 4C3 + 2C2 + C1 is the lattice filtration that we
consider and c = 4c3 + 2c2 + c1. This yields a sampling method that does not
restrict the sampling width s since it samples exactly from the true distribution
of the lattice. We can extend this sampling technique to higher levels, as in
Algorithm 4. The computation of Lee weight profiles can be performed offline,
and the frequency of each Lee weight profile is contained in the symmetrized
weight enumerator. This information is used in the online phase of sampling to
define the relevant probabilities. We also sample codewords corresponding to a
chosen Lee weight profile in the online phase.

5.4 Algorithm Complexity

For a general L-level Construction D lattice, we sample by recursively selecting
codewords to obtain a coset representative c = 2LcL + . . . + 2c2 + c1, then
we sample a final lattice vector via one-dimensional samplers over the integers.
Sampling these codewords depends on Lee weight profiles. In general, we may
not have this information. Considering the Schur product of codewords might
be an alternative; see Appendix C.
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Algorithm 4: Sampling for L ≥ 3

Require: ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1, Cj closed under Schur product
for j ∈ [1 : L], WCL(·), symmetrized weight enumerators of linear com-
binations of CL, . . . , C1, sampling width s

Ensure: x← DΛD,s(x)
1: Sample cL and cL−1 as in Algorithm 3
2: Λ3 ← 2LZn + 2L−1CL + 2L−2CL−1 + 2L−3CL−2

3: Ak ← #{cL−2 ∈ CL−2 : [ω0,0,0, ω1,0,0 + ω1,1,1, ω0,1,0 + ω0,1,1,
ω1,1,0 + ω1,0,1, ω0,0,1] = k}

4: Sk ← {cL−2 ∈ CL−2 : [ω0,0,0, ω1,0,0 + ω1,1,1, ω0,1,0 + ω0,1,1,
ω1,1,0 + ω1,0,1, ω0,0,1] = k}

5: Sample a Lee weight profile k with probability

pk = Ak ·
DΛ3,s(2

LZn+2L−1cL+2L−2cL−1+2L−3c̃L−2)

DΛ2,s(2
LZn+2L−1cL+2L−2c̃L−1)

6: Sample cL−2 ← Sk uniformly at random
7: Repeat lines 4-8 for Λ4 ⊆ . . . ⊆ ΛL−1 ⊆ ΛL = ΛD

8: c← 2LcL + . . .+ 2c2 + c1
9: for j ∈ [1 : n] do

xj ← 2L · SamplerZ+cj/2L
(s/2L)

end
10: return x = (x1, . . . , xn)

In terms of complexity, Algorithm 4 first samples cL with respect to its
Hamming weight. We can compute the Hamming weight enumerator of CL offline.
To sample a codeword of a given weight, we can use a lookup table of the
codewords sorted by weight. The online lookup time is O(log |CL|) = O(kL)
where kL is the dimension of CL, but the storage complexity of the table is
at least the size of the code, which is exponential in kL. Clearly, this is not
polynomial, but we present cases where we can avoid using such lookup tables
and still sample with respect to Hamming weight efficiently in Section 6.

Algorithm 4 proceeds to recursively sample from cosets of CL−1, . . . , C1 with
respect to Lee weight profiles. We can compute Lee weight profiles offline using,
for example, the Schur product over CL−1, . . . , C1. We need to compute the Lee
weight profiles of CL with CL−1 in the second step, then repeat with CL, CL−1 and
CL−2 in the third step, and so on. However, notice that we can recover the Lee
weight profiles in each step by simply performing the computation over all of the
codes CL, . . . , C1. That is, instead of first computing the Lee weight profiles for
CL, CL−1 then CL, CL−1, CL−2 and so on, we can compute the Lee weight profiles
for CL, . . . , C1 once, then to get the LWP of CL, CL−1, for example, we can look
at the subset of LWP when cL−2 = . . . = c1 = 0. This gives us the Lee weight
profile of some codeword 2L−1cL + 2L−2cL−1 + 0 + . . . + 0. The complexity of
this larger computation is O(n · |CL| · . . . · |C1|) = O(n2kL+...+k1) where kj is the
dimension of Cj , j ∈ [1 : L]. This is much larger than O(kL2

kL), so the overall
offline complexity is given by O(n2kL+...+k1).
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The online complexity is harder to estimate since, in general, it is not efficient
to sample codes of a given Hamming weight or of a given Lee weight profile. For
a binary code, a very loose upper bound is (n+1)(2+⌊log2 n⌋+k), where k is the
code dimension and n is the code length. Observe that for the Leech lattice, for
example, we need only 38 bits, while the upper bound gives 450 bits, considering
t = 0. For some small and root lattices, we can do much better (see Table 1).

We point out that computing Lee weight profiles do not depend on the sam-
pling width s, so the choice of s does not impact the offline complexity of the
sampler. On the other hand, we can simplify the overall sampling procedure if
we allow s to be sufficiently above smoothing. For sufficiently large values of s,
we can sample by choosing codewords uniformly at random, since the sampled
lattice vectors now appear uniformly distributed over Rn/Λ. This comes at a
loss of increasing the sampling width.

Limitations. As a consequence, the sampling algorithm for Construction D with
arbitrary q and level L is not usually efficient. This is expected since the major
challenge of our sampling method relies on sampling codewords with respect to
Lee weight profiles, which is a hard problem. Even for the simplest case when
L = 1, we may not be able to sample a codeword of specific Hamming weight
efficiently. However, given that the codewords can be sampled efficiently, the
sampling method is consequently efficient and in particular, we can make the
sampling width s close to the smoothing parameter of the associated lattice.
Therefore, speed-ups on our proposed sampling method depends on efficient
sampling with respect to the Lee weight profiles of a code over Zq. Sampling
codewords can be done efficiently for codes of reasonably small dimensions by
enumeration or codes with some special structure [8, p. 167]. For example, the
(n, n − 1)2 code consists of all n-tuples with an even number of non-zero coor-
dinates. Due to its special structure, we can sample such a code by randomly
sampling a subset of coordinates of even size. It is unclear how to optimize the
computation of Lee weight profiles using the properties of the Schur product for
certain structured codes. We provide some details for this in Appendix C.2.

6 Sampling Remarkable Lattices

We apply our sampler to some remarkable lattices. Recall that our method only
considers lattices that can be expressed via a code formula as in (1).

6.1 Sampling Root Lattices

The Dn lattice is constructed from the (n, n− 1)2 even weight code C1. We can
sample Dn using Algorithm 2.

We can efficiently sample the exceptional root lattices E7 and E8. The Barnes-
Wall lattice in dimension 8 will cover the case of E8. We can build E7 from
Construction A using the (7, 4)2 Hamming code.
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Alternatively, we can use the fact that En ≜ D+
n from [11,14] when n is even.

All cosets of Dn +(1/2, . . . , 1/2) have equal theta series by [8, Prop. 3]. Denote the
probability that a lattice point in D+

n lies in the Dn part of the decomposition
as DD+

n ,s(Dn) = ΘDn (z)/Θ
D

+
n
(z). With probability DD+

n ,s(Dn), sample from Dn.
Otherwise, sample from Dn +(1/2, . . . , 1/2). This is done by sampling c ∈ Pn

uniformly at random since all cosets of Dn +(1/2, . . . , 1/2) have equal theta series.
To sample from E8 +t, we have that E8 +t = D+

8 +t. With probability
DE8 +t,s(D8 +t) = ΘD8 +t(z)/ΘE8 +t(z), we use the sampler for D8 +t as in Sec-
tion 5.2. Otherwise we modify the sampler from Section 5.2 to sample from
D8 +(1/2, . . . , 1/2) + t. Since the associated code is the even weight code and
q = 2, the symmetrized weight enumerator corresponds to the Hamming weight
enumerator, which is easy to obtain in this case. There is no need to store this in-
formation in a table; to sample a codeword of some even weight w, we randomly
select w-out-of-n coordinates to be nonzero.

6.2 Sampling Leech Lattice

We propose an alternative way to [8, Sec. VII] of sampling the Leech lattice Λ24.
We can write a scaled version of the Leech lattice as

Λ24 = (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4O24 + 8Z24), (12)

where G24 is the (24, 12)2 Golay code, P24 is the (24, 23)2 parity-check code and
O24 is a coset of P24 containing all codewords in F24

2 with odd weights, i.e.,
O24 = {x ∈ F24

2 :
∑24

j=1 xj ≡ 1 mod 2} = (1, 0, . . . , 0) + P24 ≜ (1, 023) + P24. We
adopt the notation (xn1

1 , xn2
2 ) to represent a vector where the first n1 coordinates

are x1 followed by n2 coordinates x2.
We can rewrite Λ24 as

Λ24 = (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4O24 + 8Z24)

= (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4P24 + (4, 023) + 8Z24)

= (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4(2Z24 + P24 + (1, 023)))

= 2ΛB(G24) ∪ (1+ 2G24 + 4D24),

where Dn = Dn +(1, 0n−1). By the decomposition given by Dn = (Dw ⊕Dn−w)∪
(Dw ⊕Dn−w) in [8], we have that

Dn = Dn +(1, 0n−1)

= (Dw +(1, 0w−1)⊕Dn−w) ∪ (Dw + (1, 0w−1)⊕Dn−w)

= (Dw ⊕Dn−w) ∪ (Dw +(2, 0w−1)⊕Dn−w)

∼= (Dw ⊕Dn−w) ∪ (Dw ⊕Dn−w),



On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 27

since (2, 0w−1) ∈ Dw. Consider a coset of the form 4D24+2c+1. By [8, Eq. (10)],
we have that

ΘD24+c/2+(1/424)(16z) = ΘDw +(3/2,1/2w−1)+(1/4w)(16z)ΘDn−w +(1/4n−w)(16z)

+ΘDw +(1/2w)+(1/4w)(16z)ΘDn−w +(1,0n−w−1)+(1/4n−w)(16z)

= ΘDw +(7/4,3/4w−1)(16z)ΘDn−w +(1/4n−w)(16z)

+ΘDw +(3/4w)(16z)ΘDn−w +(5/4,1/4n−w−1)(16z),

so the theta series depends on the Hamming weight w of c ∈ G24. The Hamming
weight distribution of the Golay code is well known, which can be read off of
the Hamming weight enumerator WG24(x, y) = x24 + 759x8y16 + 2576x12y12 +
759x16y8 + y24 [36]. We can store this information in 38 bits (Table 1) by con-
sidering the symmetries of the Golay code.

6.3 Sampling Barnes-Wall Lattices

Dimensions 4 and 8. The Barnes-Wall lattices BW4 and BW8 are simply Con-
struction A lattices from RM(1, 2) and RM(1, 3), respectively. Reed-Muller codes
of order 1 have codewords with weight either 0, n/2 or n. When w = 0, n we have
either 0 or 1. When w = n/2, there are 2m+1−2 codewords of weight w. These are
all of the codewords in RM(1,m) except the all-ones or all-zeros codeword. We
can sample from this weight class using rejection sampling with (2m+1−2)/2m+1

iterations. As m increases, this goes to 1. For BW8 ≜ E8, storing the weight
enumerator of the code takes 14 bits (Table 1). To briefly explain, given that the
weight enumerator of the (8, 4)2 Hamming code is WH8(x, y) = x8+14x4y4+y8,
the table looks like {(0,1),(4,14),(8,1)}, where the first coordinate corresponds
to the Hamming weight (since the code is binary) and the second is the number
of codewords with that weight.

Dimension 16. The Barnes-Wall lattice BW16 is a Construction B lattice given
by the code formula 4Z16 + 2RM(3, 4) + RM(1, 4), since RM(1, 4) is a doubly
even code. Therefore, we can apply the sampler proposed in Section 5.2 and need
only to sample a codeword of fixed weight w from RM(1, 4). To do this, we apply
rejection sampling with = 1.067 iterations. Since this lattice is Construction B,
we only need to store the Hamming weight information of the code RM(1, 4) by
Theorem 4. This requires 17 bits of storage (Table 1).

Dimension 32. The Barnes-Wall lattice BW32 has the code formula 4Z32 +
2RM(3, 5) + RM(1, 5) where RM(3, 5) is not the parity-check code. Therefore,
we are in the case of Section 5.3, which requires us to sample a codeword c2 ∈
RM(3, 5) first by Hamming weight and c1 ∈ RM(1, 5) by computing Lee weight
profiles. For sampling c2 by Hamming weight, we can enumerate the codewords of
weight w using design theory, which is detailed in Appendix D. We can compute
Lee weight profiles for the second step offline or even move this step online since
the size of RM(1, 5) is only twice the dimension of the lattice. The storage for
the Lee weight profile requires around 418 bits.
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Dimensions ≥ 64. As the dimensions of the Barnes-Wall lattices grow, so do
the dimensions of the Reed-Muller codes used to construct them. The online
complexity will increase in response since we need to sample with respect to a
chosen Lee weight profile over large codes.

Similarly to Barnes-Wall lattices, we briefly mention a family of Construction
D lattices not addressed in the work of [14], denoted as Bn with n = 2m, which
are built from a tower of BCH codes. When the dimensions of the associated
BCH codes are reasonably small, our sampler can be applied efficiently. These
lattices are considered good packings in the sense that they are dense and have
efficient decoding algorithms [4, 30].

7 Improvements to State-of-the-Art Sampling

We discuss the improvements of our sampling method in some families of lattices,
focusing on efficiency and restrictions on the sampling width. A summary is
presented in Table 1 and supporting Sage [36] code can be found here https:
//github.com/mlie22/q-ary-sampling.

Given that the samplers in [14] mostly rely on Z samplers and do not require
much additional computation whereas we require sampling codewords, we esti-
mate a lower bound for the running time of our sampling algorithms by counting
the number of calls to a Z sampler, which is used in a black-box manner. We as-
sume the weight enumerators of all cosets of a linear code are known and ignore
the costs of sampling codewords (which is cheap for small lattices), so this will
give a reasonable estimate of the speed-up. Instead of explicitly stating these
costs, we give some explanation on how one might sample codewords efficiently
in several cases.

Root lattices. In [14], the authors provide base samplers for the root lattices Dn

(n ≥ 1) and En (n = 6, 7, 8). We can sample these lattices with the method
proposed in Section 5.2 using n one-dimensional samplers of Z or Z + 1/2. This
is compared to the sampler in [14], which performs n one-dimensional samplers
of Z twice on average. The width of the sampler in [14] is approximately the
smoothing parameter s ≈ ηϵ(Dn), whereas the sampler proposed in Section 5.2
allows us to choose s = ηϵ(Dn) exactly. In terms of the number of calls to a Z
sampler, our sampler is approximately twice as fast as [14]. This is supported by
simulations performed in [36] for n = 8, 16, 24.

We can sample from E7 as a Construction A lattice with the (7, 4)2 Hamming
code. The codewords of weight 3 form a 1-(7,3,3) design, so every codeword of
weight 3 uniquely decodes to a block in the design (see Appendix D). We can
sample a codeword of weight 3 by sampling a block in the design via a choosing
procedure as in [8, Sec. VII], then decoding. To sample a codeword of weight 4,
we add the all-ones vector to a codeword of weight 3 due to the code’s symmetry.
Overall, we require 7 one-dimensional samplers of shifts of Z whereas [14] requires

https://github.com/mlie22/q-ary-sampling
https://github.com/mlie22/q-ary-sampling
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repeating the E8 base sampler four times on average, which results in 64 one-
dimensional Z samplers, so our sampler is roughly 9 times faster. Our simulation
compares by sampling 100,000 samples 8.64 times faster.

Regarding the E8 (or BW8) lattice, an improved gadget framework was pro-
posed in [14, Sec. 10]. It was shown a gain of 9 bits in security and 113 bytes of
the signature size for Eagle-1024 while maintaining tight sampling. We can re-
place their E8 sampler with our sampler, which is more efficient and still samples
at the smoothing parameter, preserving the security gains.

Recall that E8 is a Construction A lattice given by the code formula 2Z8 +
RM(1, 3). Using the Construction A sampler, we first sample a weight w ∈
{0, 4, 8}, and then we sample a codeword with the corresponding weight. If w =
0.8, we obtain either an all-zero or an all-one codeword. Otherwise, all remaining
codewords have weight 4. We apply rejection sampling to obtain a codeword
of weight 4 with 1.143 iterations on average. The sampler then applies 8 one-
dimensional samplers of Z and Z + 1/2. Without the small cost of sampling
codewords via rejection sampling, the complexity of our E8 sampler is dominated
by sampling over the integers 8 times. In contrast, the sampling method from [14]
requires sampling a shift of D8 with rejection sampling repeated 11 times to
optimize the sampling width, which itself uses 8 samplers over Z twice on average.
As a result, we expect our algorithm to be around 22 times faster. In fact, our
simulations showed that our algorithm obtains 100,000 samples ≈ 25 times faster
than [14].

Barnes-Wall lattices up to dimension 64. For the Barnes-Wall lattices of dimen-
sion 4,8, and 16, our sampler coincides with the Construction A and B samplers.
In the state-of-the-art sampling of [14], the authors apply their idea of domain
extension to sample a Barnes-Wall lattice BWn using BWn/2 twice. They can
sample a distribution of statistical distance at most 6ϵ to DBWn,s given that they
have a discrete Gaussian sampler of BWn/2 with s > ηϵ(BWn/2) [14, Cor. 1].

Compared to the state-of-the-art sampling in [14], we can improve the sam-
pling for BW4 and BW8 using Construction A sampling. To sample BW16 in [14],
we sample BW8 which requires, on average, 16 one-dimensional Z samplers due
to rejection sampling and gets repeated 11 times on average to optimize the
sampling width s ≈ ηϵ(E8). Compared with our sampler for BW16, we sample
a shift of D16 since this is a Construction B lattice, which translates to 16 one-
dimensional samplers of shifts of Z. In fact, we find that for general BWn, if
we can sample with respect to Lee weight profiles efficiently, we estimate our
sampler to be 11 times faster than in [14]. For our simulation with BW16, we
obtain 100,000 samples 9.41 times faster than [14], which is reasonably close to
our expectation.

Leech lattice. The running time of sampling the Leech lattice for Espitau et.
al [14] is dominated by the complexity of a E8 sampler by their choice of filtration
2E8 ⊂ Tθ ⊂ T where Tθ ∼= T ∼= E8 [14, Sec. 8.2.3]. This requires 3 calls to an E8

sampler and samples at a width that is approximately the smoothing parameter
of E8 [14, Alg. 12], which is above ηϵ(Λ24).
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Recall Λ24 = ΛB(G24)∪ (1+2G24+4D24). We sample from the Construction
B part, as detailed in [8, p. 169], or from the 1 + 2G24 + 4D24 part using the
Hamming weight of codewords in G24 following the procedure in [8, Sec. 6]. This
samples twice as fast with s = ηϵ(Λ24) since we require 24 samplers of a shift of
Dn, which in turn requires 24 one-dimensional samplers of shifts of Z [8, Alg. 7].
In comparison, the E8 sampler in [14] requires, on average, 16 one-dimensional
Z samplers, which get called upon three times to sample the Leech lattice.

Hexagonal lattice. Even if A2 is not a Construction A lattice, we include it for
completeness since we use a technique based on coset decomposition [8, Sec. V].

Espitau et al. [14] propose an efficient sampler for the A2 root lattice, which
the authors apply to sample in Rm = Z[ζm] where m = 2ℓ3k for Mitaka. Using
the fact that Rm

∼=
⊕m/6

i=1 R3, they sample in Rm by independently sampling A2
m/6 times [14, Sec. 9]. The width of the proposed A2 sampler is at the smoothing
parameter ηϵ(A2) for sufficiently small ϵ [14, p. 40] and, on average, requires 9
repetitions of the E8 sampler to acquire four samples in A2.

Following [8, Sec. V], we have the coset decomposition A2 =
⋃

t∈T Λ
′ +

t where Λ′ = Z ⊕
√
3Z and T = {(0, 0), (1/2,

√
3/2)}. Sample t = (0, 0) with

probability DA2,s(Z⊕
√
3Z), then sample x ∈ Z⊕

√
3Z from DZ⊕

√
3Z,s(x) using

two (scaled) one-dimensional samplers of Z. Otherwise, sample t = (1/2,
√
3/2)

with remaining probability DA2,s(Z⊕
√
3Z+ t) and a lattice vector x+ t with

probability DZ⊕
√
3Z+t,s(x + t). We can sample x + t with two (scaled) one-

dimensional samplers of Z+ 1/2. This outputs four samples in A2 approximately
18 times faster. This comes from the fact that to obtain four samples of A2, the
coset decomposition sampler requires 8 samplers over a shift of Z whereas the
sampler in [14] repeats an E8 sampler 9 times on average which itself requires 2
repetitions of 8 samplers over Z. In terms of the number of samplings over the
integers, we expect our sampler to be 18 times faster. We compared our algorithm
with the running time of the E8 sampler in [14], repeated the expected 9 times,
which is the main work behind their A2 sampler. Our simulation showed that it
performed better than estimated and was ≈ 32 times faster over 100,000 samples.
We do not use any table to store information about weight enumerators in this
case, since no such table exists.
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A Weight Distribution of the Coset of a Code

We start with a binary code. Consider a (n, k)2 code C. Then, it is possible to
describe the weight distribution (resp. the weight enumerator) of a coset C + t,
where t ∈ Fn

2 . In particular, we generalize [10, Lemma 1], originally presented
for BCH codes, to any binary linear code C.

Consider the weight enumerator of the coset C + t, i.e.,

WC+t(x, y) =
∑

ν∈C+t

xn−wH(ν)ywH(ν) =

n∑
j=0

Ajx
n−jyj

where Aj(C + t) = #{ν ∈ C + t : wH(ν) = j}, with 0 ≤ j ≤ n, is the number
of codewords in C + t that have Hamming weight wH. Also, C⊥ = {y ∈ Fn

2 :
⟨x,y⟩ ≡ 0 mod 2, ∀x ∈ C} refers to the dual code of C.

Lemma 2. Consider a (n, k)2 code C, t ∈ Fn
2 and set Ct = C ∪ (C + t). Then

WC+t(x, y) =
1

2n−k

(
2WC⊥

t
(x+ y, x− y)−WC⊥(x+ y, x− y)

)
.

Proof. If t ∈ C, then WC+t(x, y) = WC(x, y) = 1
2n−kWC⊥(x + y, x − y), which

coincides with the MacWilliams identity [24, Th. 1, p. 127].
Otherwise, if t /∈ C, Ct is a binary linear code with 2k+1 codewords. Then,

applying the MacWilliams identity to Ct, we get

WCt(x, y) =
1

2n−(k+1)
WC⊥

t
(x+ y, x− y),

but WCt(x, y) =WC(x, y) +WC+t(x, y). Thus,

WC+t(x, y) =
1

2n−(k+1)
WC⊥

t
(x+ y, x− y)− 1

2n−k
WC⊥(x+ y, x− y)

=
1

2n−k

(
2WC⊥

t
(x+ y, x− y)−WC⊥(x+ y, x− y)

)
.

Therefore, the relationship between the theta function of a binary Construc-
tion A lattice and the weight enumerator of the code (see Theorem 3) together
with Lemma 2 allows us to calculate

∑
ν∈C+tΘ2Zn+ν(z) and proceed with our

sampling technique.
For larger alphabets, q > 2, although a similar identity to the one presented in

Lemma 2 holds for the Hamming weight enumerator of a code over Zq, provided
that also the MacWilliams identity is satisfied [24, Ch. 6, §6], the symmetrized
weight enumerator requires more efforts. Moreover, it is known that for q ≥ 5,
there is no version of the MacWilliams identity for the Lee weight enumerator [1].
It means that expressing the symmetrized weight enumerator of a coset C + t of
a q-ary code C is more challenging and might not have a formulation in terms of
its dual.
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B Dual of a Construction A Lattice

The generator matrix of the scaled q-ary Construction A lattice is

B =
1
√
q

(
I A
0 qI

)
,

where G = [I A] is a generator matrix of the q-ary linear code C. This is a square
matrix, so B−T is the basis of the dual lattice. We will now demonstrate that it
generates qZn + C⊥. Indeed,

B−T =
1
√
q

(
qI 0

−AT I

)
.

Permuting rows does not change the lattice generated by this basis, hence

B∗ =
1
√
q

(
−AT I
0 qI

)
,

which is the same format as B. We have that H = [−AT I] is the parity check
matrix of G, so it is a generator for C⊥. It follows that B∗ is a basis for the q-ary
lattice qZn + C⊥ as desired.

C Improving the Complexity via Schur Product

C.1 Calculating Lee Weight Profiles

We show that the Schur product allows us to obtain a solvable system of equa-
tions that gives the exact Lee weight profile. Furthermore, we show that the
positions of the nonzero elements in a codeword completely determine the fre-
quency of each Lee weight profile. For instance, we consider a 3-level construction
with code formula 8Zn + 4C3 + 2C2 + C1.

The second stage of the sampling process involves calculating the Lee weight
profile [ω0,0(c2, c3), wH(c2), ω0,1(c2, c3)] for each codeword c2 ∈ C2, once c3 ∈ C3
has been fixed. We proceed in the following way:

1. Compute the component-wise or Schur product of c2 ⋆ c3 for all c2 ∈ C2. As
we perform each iteration for all c2, take note of wH(c2) = ω1,0(c2, c3) +
ω1,1(c2, c3).

2. Compute the binary Hamming weight of each product c2 ⋆ c3, which corre-
sponds to ω1,1(c2, c3).

3. Since c3 is fixed, we know its binary Hamming weight wH(c3). It follows that
wH(c3) = ω0,1(c2, c3) + ω1,1(c2, c3). We solve for ω0,1.

4. From wH(c2), we can solve for ω1,0. It remains to compute ω0,0 = n−ω1,0−
ω1,1 − ω0,1. Record the Lee weight profile t ≜ [ω0,0, wH(c2), ω0,1].

5. Count the number of recurring tuples. For a given tuple t, denote the number
of codewords associated with it by At.
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Performing the Schur product for all c2 ∈ C2 takes O(n|C2|) operations, which
is intractable for codes with high dimension. Algorithm 4 samples c1 with respect
to 8Zn+4c3+2c2+C1. The probability of a coset of this lattice depends on the
Lee weight tuple of a codeword defined by 4c3 + 2c2 + c1 over Z8. We similarly
calculate such a tuple as before. In steps 1 and 2, we fix c3 and c2. Therefore, we
know the binary Hamming weights wH(c3), wH(c2) and d1,1(c2, c3). We compute
c1 ⋆ c2 ⋆ c3 for all c1 ∈ C1. The Hamming weight of this product corresponds
to ω1,1,1(c1, c2, c3). We have ω1,1(c2, c3) = ω0,1,1(c1, c2, c3) + ω1,1,1(c1, c2, c3)
and solve for ω0,1,1. We can also compute c1 ⋆ c2 and c1 ⋆ c3 for all c1 ∈ C1
to obtain ω1,1(c1, c2) = ω1,1,0(c1, c2, c3) + ω1,1,1(c1, c2, c3) and ω1,1(c1, c3) =
ω1,0,1(c1, c2, c3) + ω1,1,1(c1, c2, c3). We can therefore solve for ω0,1,1 and ω1,0,1.
Finally, from

wH(c3) = ω1,1,1 + ω0,1,1 + ω1,0,1 + ω0,0,1

wH(c2) = ω1,1,1 + ω0,1,1 + ω1,1,0 + ω0,1,0

wH(c1) = ω1,1,1 + ω1,0,1 + ω1,1,0 + ω1,0,0

we solve for ω1,0,0, ω0,1,0, ω0,0,1 and ω0,0,0. However, it is redundant to perform
the Schur product three times. We can perform all of the necessary multiplica-
tions by performing the technique twice. This is because the element-wise prod-
uct ⋆ is commutative and associative [32], so we only need to compute c1 ⋆ c2
and c1 ⋆ c3 for all c1 ∈ C1. It follows that c1 ⋆ c2 ⋆ c1 ⋆ c3 = c1 ⋆ c2 ⋆ c3 for all
c1 ∈ C1. Therefore, the complexity of this operation is 2 ·O(n|C1|) = O(n|C1|).

Overall, computing the Lee weight profiles for a 3-level construction has
complexity O(n|C2|) + O(n|C1|) = O(n|C2|) where the equality comes from the
fact that C1 ⊆ C2. Equivalently, we can say the complexity is O(n2k2) where k2 is
the dimension of C2. It is straightforward to extend this technique for higher-level
constructions.

C.2 Schur Product of Reed-Muller Codes

Given that the Reed-Muller codes are well-behaved under the Schur product,
we state some properties that may be useful to optimize this operation in future
work. First, we recall the definition Schur product of sets and of linear codes.

Definition 15. [32, Def. 1.2, 1.3] Let F be a field. If S,S ′ ⊆ Fn are two subsets,
we define

S⋆̇S ′ = {c ⋆ c′ : (c, c′) ∈ S × S ′}

where ⋆ is the element-wise product. If C, C′ ⊆ Fn are two linear subspaces, i.e.,
two linear codes of the same length n, we define

C ⋆ C′ = ⟨C⋆̇C′⟩

as the linear span of C⋆̇C′, which we call the Schur product of two codes.
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The operation ⋆ is commutative, associative and distributive. The Schur
product of Reed-Muller codes is particularly special since RM(r,m)⋆RM(r′,m) =
RM(r+r′,m) as long as r+r′ ≤ m [32]. It follows that RM(r,m) = RM(1,m)⋆

r

where we perform the Schur product r times.
Consider when the sampler of a Barnes-Wall lattice needs to sample a coset

representative with respect to a scalar version of the sublattice 4Zn+2RM(r,m)+
RM(r′,m). Following our procedure, we will have already sampled a codeword
c ∈ RM(r,m). The probability of selecting a coset in the sublattice 4Zn + 2c+
RM(r′,m) depends on frequency tuples of the form [ω0,0(c, c

′), wH(c
′), ω0,1(c, c

′)]
where c′ is any codeword in RM(r′,m). As shown in the previous section, we
can use the element-wise product to compute ω1,1(c, c

′) and with the knowledge
of wH(c) and wH(c

′) we can compute the number of each tuple. To avoid having
to perform the Schur product c⋆c′ for each c′ ∈ RM(r′,m), we use the fact that
RM(r′,m) = RM(1,m)⋆

r′

. Since for a single codeword c ∈ C, {c} is not linear,
we consider it as a singleton set for formality and use the ⋆̇ operation.

c⋆̇RM(r′,m) = c⋆̇⟨RM(1,m)⋆̇ . . . ⋆̇RM(1,m)︸ ︷︷ ︸
r′ times

⟩

= ⟨c⋆̇RM(1,m)⋆̇ . . . ⋆̇RM(1,m)⟩
= ⟨(c⋆̇RM(1,m)) ⋆̇ . . . ⋆̇RM(1,m)⟩,

where we have considered the linearity and associativity of the Schur product.
If we get lucky, we may recover a large portion of the code using the Schur

product, so we may be able to minimize the number of linear combinations of
codewords that we need to take to recover the entire code. Unfortunately, it is
not clear when that is the case. In general, taking the linear span increases the
complexity significantly.

Example 3. To demonstrate the method for a small example, consider c⋆̇RM(2, 2).
For a general codeword c = (c1, c2, c3, c4), we compute

(c1, c2, c3, c4)⋆̇RM(1, 2) ={(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4)}.

For each element x in this set, we compute x⋆̇RM(1, 2). We obtain the set

{(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4),

(c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4)}.

Note that this is nearly equal to the Schur product with the entire code given
by

(c1, c2, c3, c4)⋆̇RM(2, 2) ={(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4),

(c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4),

(c1, c2, c3, 0), (c1, c2, 0, c4), (c1, 0, c3, c4), (0, c2, c3, c4)}.
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We only need to do 4 linear combinations to recover the rest of the set. From this
example, it is clear that the positions of the nonzero coordinates of c completely
determine the number of c ⋆ c′ associated with a fixed value of ω1,1(c

′, c) for
c′ ∈ RM(2, 2). In particular, if c = (1, 0, 0, 0) then the number of codeword
products with ω1,1(c

′, c) = 1 is equal to 8, which is the number of codewords in
c⋆̇RM(2, 2) in which the c1 position appears. ♢

It is not clear how we can further optimize the Schur product, particularly
for special codes like the Reed-Muller codes, to make the sampling procedure
more efficient. It may be of interest that Reed-Muller codes are also Plotkin
construction codes, which yield additional symmetries [9]. We leave this as an
open question.

D Enumerating Codewords from RM(3, 5)

We provide the details for enumerating codewords of a given Hamming weight
w for the Reed-Muller code RM(3, 5) using design theory.

Definition 16 (t-design [24, p. 58]). Let X be a set of v elements. A t-design
is a collection of distinct k-subsets (blocks) of X with the property that any t-
subset of X is contained in exactly λ blocks. We denote this as a t − (v, k, λ)
design.

A t-design is specified by its incidence matrix A = (ai,j) where ai,j = 1 if an
element pj is contained in the block Bi and 0 otherwise. When t = 1, we call the
design a Steiner system. For every block in a Steiner system, we can associate a
row of the incidence matrix, which we can interpret as a codeword. This forms
a constant weight code or a code that consists of codewords of the same weight
w. Consequently, a single block in a Steiner system can be uniquely decoded to
a codeword of some weight w. Furthermore, the following result gives conditions
for when a linear code produces a t-design for more general t.

Theorem 6 (Assmus-Mattson Theorem). Let C be a (n, k)2 linear code with
minimum Hamming weight d and C⊥ be the dual code with minimum weight d⊥.
Let t < d. If C has at most d⊥−t non zero weights less than or equal to n−t, then
for each weight w with d ≤ w ≤ n − t, then B = {supp(c) : c ∈ C, wH(c) = w}
are blocks forming a t-design. That is, the set of codewords of weight w forms a
t-design. Furthermore, the dual code also forms t-designs.

The dual of RM(r,m) is RM(m − r − 1,m). Thus, RM(3, 5)⊥ = RM(2, 5)
which has minimum distance 8. Applying Assmus-Mattson, we get that for a
weight w such that 4 ≤ w ≤ 29, the support design in RM(3, 5) is a 3-design. The
codewords of minimum weight form a Steiner system, so every vector of weight
3 in F32

2 uniquely decodes to a codeword of weight 4, so to sample a codeword
of minimum weight from RM(3, 5) we can perform a 3-out-of-32 choosing proce-
dure and use state-of-the-art decoding for Reed-Muller codes. Unfortunately, for
the 3-designs which are not Steiner systems, we cannot uniquely decode blocks
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to codewords. However, we can notice that the blocks of the design still cor-
respond to the supports of the codewords of weight w > 4 in RM(3, 5), so we
can precompute the blocks of each design for each weight w ≤ 16. To sample
a codeword of weight w ≤ 16, we can uniformly sample from the blocks of the
corresponding design. We can sample codewords of weight w > 16 by adding the
all-ones vector 1 to a codeword of weight 32− w.
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