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Abstract

One-more problems like One-More Discrete Logarithm (OMDL) and One-More Diffie–
Hellman (OMDH) have found wide use in cryptography, due to their ability to naturally
model security definitions for interactive primitives like blind signatures and oblivious PRF.
Furthermore, a generalization of OMDH called Threshold OMDH (TOMDH) has proven useful
for building threshold versions of interactive protocols. However, due to their complexity it is
often unclear how hard such problems actually are, leading cryptographers to analyze them in
idealized models like the Generic Group Model (GGM) and Algebraic Group Model (AGM). In
this work we give a complete characterization of widely used group-based one-more problems in
the AGM, using the Q-DL hierarchy of assumptions defined in the work of Bauer, Fuchsbauer
and Loss [BFL20].

1. Regarding (T)OMDH, we show (T)OMDH is part of the Q-DL hierarchy in the AGM; in
particular, Q-OMDH is equivalent to Q-DL. Along the way we find and repair a flaw in
the original GGM hardness proof of TOMDH [JKKX17, Theorem 7], thereby giving the
first correct proof that TOMDH is hard in the GGM.

2. Regarding OMDL, we show the Q-OMDL problems constitute an infinite hierarchy of
problems in the AGM incomparable to the Q-DL hierarchy; that is, Q-OMDL is strictly
harder than Q′-OMDL if Q < Q′, and Q-OMDL is incomparable to Q′-DL (i.e., there are
no reductions either way) unless Q = Q′ = 0.
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1 Introduction
One-more type problems — first introduced by Bellare et al. [BNPS02] — require an adversary to
solve at least Q + 1 instances of a problem, given only Q accesses to a solver: prominent examples
include One-More RSA, One-More Discrete Logarithm (OMDL), and One-More (computational)
Diffie–Hellman (OMDH). Such problems have found wide use in cryptography due to naturally
modelling security requirements of interactive protocols; for example, in a secure blind signature
scheme, an adversary cannot produce Q + 1 valid signatures after Q interactions with the signer,
and in a secure Oblivious PRF (OPRF) scheme, an adversary cannot evaluate Q + 1 PRF values
after Q interactions with the sender who holds the PRF key.

The Threshold One-More Diffie–Hellman (TOMDH) assumption is a generalization of OMDH
in the threshold setting, with the secret exponent (t, n)-Shamir secret-shared and the adversary
may (statically) corrupt t′ shares of its choice. It has been used in several works to implement
efficient threshold versions of cryptographic primitives, such as threshold OPRF1 and distributed
Verifiable Random Function (distributed VRF). Certain special cases of the assumption were shown
to be equivalent to classical OMDH [JKKX17, Theorems 1 and 2], but due to the complexity of the
problem it is unclear how it relates in general.2

See Table 1 for an incomplete list of applications of one-more assumptions.

assumption application reference

OMDL
blind signatures [FPS20]
multisignatures [BN06,NRS21]

identification schemes [BP02,BNN04]

OMDH oblivious PRF [JKK14,JKKX16]
blind signatures [Bol03]

TOMDH
threshold oblivious PRF [JKKX17]

password-based threshold authentication [AMMM18]
distributed VRF [KMMM23]

threshold blind signatures [LNÖ25]

Table 1: Applications of one-more type assumptions

Proofs in the GGM and the AGM. Since one-more assumptions are interactive and more
complex than their “standard” counterparts, researchers often investigate them in the setting of an
idealized computational model. For assumptions in prime-order groups, the models of choice are
the generic and algebraic group models respectively. In the Generic Group Model (GGM) [Sho97],
group elements are not given to the adversary directly, but only via random handles. The adversary
is also given an oracle to multiply group elements, thus modelling the situation where the adversary
interacts with the group “generically”. The appeal of the GGM is that one can show unconditional
lower bounds on solving problems; indeed, it was introduced for the purpose of proving the lower
bound of Discrete Logarithm (DL). However, proofs in the GGM can be inordinately complex,
involving careful bookkeeping and probabilistic arguments, with several instances of published proofs

1The original work realizing threshold OPRF under TOMDH [JKKX17] was later found to be flawed, but can be
fixed by adding another round or making more group operations; the former still relies on TOMDH, whereas the
latter only relies on OMDH and DDH. See the end of [GJK+24, Section 1.1] for a discussion.

2The TOMDH assumption is so complex that even describing its definition clearly is a delicate task. In Sect. 3.2 we
provide an explanation of the intuition behind TOMDH, which we believe is more approachable than existing works.
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later found to be incorrect [HLY09,BFP21].
The Algebraic Group Model (AGM) [FKL18] lies between the GGM and the standard model,

and provides an attractive alternative to the GGM in the analyses of both security properties of
schemes and hardness of computational assumptions. In the AGM, the adversary is given group
elements directly, and the only requirement is to “explain” how any output Y is computed from
their inputs X1, . . . , Xn via outputting the algebraic coefficients λ1, . . . , λn such that

Y = Xλ1
1 · · ·X

λn
n .

Unlike the GGM, one cannot prove unconditional lower bounds in the AGM, and security proofs in
the AGM still assume hardness of a basic computational problem such as DL. However, one can give
a reduction in the AGM to a problem already known to be hard in the GGM, and hardness should
intuitively follow from the fact that a generic algorithm is also algebraic. This “lifting result” was
first argued in [FKL18, Lemma 2.2] but formalization proved to be a challenge due to definitional
ambiguities in the AGM [Zha22,ZZK22]; a complete and correct formalization was only provided in
the very recent work of [JM24]. Such hardness proofs in the AGM enjoy two benefits: first, they are
strictly stronger than the corresponding GGM proofs; second, the proofs become simpler and more
modular. Indeed, as pointed out in [JM24, Section 1], a standard GGM proof usually contains the
following steps:

1. Replace “honest” group elements with handles represented by polynomials of the secret
exponent x;

2. Show that the assumption reduces to a “bad event” that the adversary defines two different
polynomials which evaluate to the same value on input x;

3. Argue that the “bad event” occurs with negligible probability.
Steps 1 and 3 are somewhat “boilerplate” which can be filtered out in an AGM proof, and we can
then focus on the more essential step 2. In sum, hardness reductions in the AGM are interesting on
their own, but can also be viewed as a methodology that provides a cleaner and less error-prone
way to write hardness proofs in the GGM. (This advantage of AGM proofs is also briefly discussed
in [FKL18, Section 1.2].)

1.1 Our Contributions

To date, the most comprehensive study of group-based assumptions in the AGM is the work of
Bauer, Fuchsbauer and Loss [BFL20], which analyzes a wide class of so-called Uber assumptions.
Uber assumptions are defined as follows: fix a generator g of group G and polynomials R1, . . . , Rr, F
in variables Z1, . . . , Zn that are linearly independent; the adversary is given (gR1(z⃗), . . . gRr(z⃗))
(for z⃗ ← Fn

p ), and succeeds if it returns gF (z⃗). [BFL20] reduces this problem to Q-DL, where
Q = max deg(Ri)− 1. (The Q-DL problem is: given (g, gx, gx2

, . . . , gxQ+1) for x← Fp, compute x.3)
This covers a vast array of hardness assumptions, including Computational Diffie–Hellman, Square
Diffie–Hellman, Strong Diffie–Hellman [BB08], and LRSW [LRSW99], as special cases. Furthermore,
[BFL20, Section 9] proves that Q-DL and (Q+1)-DL are separate in the AGM, providing a complete
hierarchy for the relative hardness of all Uber assumptions.

However, [BFL20] only provides one result on one-more type assumptions: there is no reduction
3Our definition of Q-DL is what’s commonly called (Q + 1)-DL in the literature; in particular, the (regular) discrete

log problem is 0-DL. We make this change for the sake of consistency with Q-OMDL where the adversary is given
Q + 1 challenge group elements (in addition to the generator g).
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from Q-DL to Q′-OMDL in the AGM for any Q, Q′ ≥ 1, unless Q-DL is easy [BFL20, Section 10].
This is shown via the general paradigm of meta-reductions: given an efficient reduction R that
solves problem P1 given access to a solver of P2, we construct an efficient meta-reduction M that
uses R to unconditionally solve P1 by simulating R’s access to an adversary A for P2.

Regarding the GGM, the Q-DL, OMDL and (T)OMDH problems have been established to be
hard generically ([BFL20, Appendix A], [BFP21, Theorem 1, Corollary 1] and [JKKX17, Theorem 7],
respectively), but these results imply nothing about where OMDL and (T)OMDH stand in relation
to the Q-DL hierarchy in the AGM, leaving the relative hardness of one-more type assumptions in the
AGM understudied. Furthermore, in Sect. 5.2 we will show that the proof of [JKKX17, Theorem 7]
is incorrect in the static corruption case (i.e., the number of corrupted shares t′ > 0), so the hardness
of TOMDH in the GGM remains unsettled.

In this work, we present a comprehensive study of one-more type assumptions in the AGM.
Concretely, our contributions are as follows:

1. We first show in Sect. 4 that Q-OMDH is tightly equivalent to Q-DL in the AGM. In fact, we
show a stronger result that covers a much wider class of one-more assumptions, generalizing
Q-OMDH to what we call One-More Uber (OMU) assumptions: these are the same as Uber
assumptions except that the adversary can query an x-th power oracle Q times and needs to
compute the x-th power of Q + 1 challenge group elements.

2. As our main result, we show in Sect. 5 that TOMDH falls into the Q-DL hierarchy in the
AGM, giving a reduction from (Q(n− t)− 1)-DL to (t′, t, n, Q)-TOMDH in the AGM; on the
way we point out and repair the flaw in the GGM argument of [JKKX17, Theorem 7].

[BFL20] show that their reductions work in many additional settings (over groups with a billinear
pairing, replacing polynomials with rational functions, gap problems, letting the adversary choose the
polynomials adaptively, etc.). Since our reductions use the same template, these generalizations also
apply to our results: in particular, we cover the Gap TOMDH assumption as originally considered
in [JKKX17], and the Bilinear TOMDH assumption as considered in [KMMM23,LNÖ25].

We have mentioned that the “lifting result” of [JM24, Theorem 2] can “translate” an AGM proof
into a GGM hardness proof. It is easy to see that our reductions from Thms. 4.2, 4.3 and 5.1 satisfy
the syntactical requirements for [JM24, Theorem 2] to apply. Therefore we recover the hardness of
(T)OMDH in the GGM, and give the first correct proof of TOMDH hardness in the static corruption
case.

In addition, we also give two separation results, which close the gaps in the literature remaining
from [BFL20]:

3. We show in Sect. 6.1 that there is no reduction from Q-OMDL to (Q + 1)-OMDL in the AGM
unless Q-OMDL is easy.

4. We show in Sect. 6.2 that there is no reduction from Q-OMDL to 1-DL in the AGM for
Q ≥ 0, unless Q-OMDL is easy. Since Q′-DL is easier than 1-DL for Q′ ≥ 1, this separates
Q-OMDL and Q′-DL for all Q, Q′ ≥ 0 (unless Q = Q′ = 0). Both results are shown via the
same meta-reduction approach as in [BFL20].

Together, these results establish a complete characterization of the hardness of all widely used
group-based one-more problems in the literature in the AGM, summarized in Figure 1 below. At a
high level, we have two hierarchies, one for Q-OMDL and one for Q′-OMDH (which is equivalent to
Q′-DL); they are equivalent if Q = Q′ = 0, but are separate in all other cases. This matches the
intuition that Q-OMDL and Q′-OMDH are incomparable: in OMDH the answer is easier to find,
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but the oracle is also weaker.

...
...

...
2-OMDL 2-DL = 2-OMDH∧ ∧ ∧
1-OMDL 1-DL = 1-OMDH∧ ∧ ∧
0-OMDL = 0-DL = 0-OMDH

Figure 1: Hierarchies of Q-DL, Q-OMDL, and Q-OMDH in the AGM. TOMDH also falls into the
Q-DL hierarchy but is not directly equivalent to Q′-DL for some Q′.

Besides being theoretically interesting, these results have implications to the concrete security of
existing protocols. As one example, [JKKX17, Theorem 3] shows the security of a threshold OPRF
protocol under (t′, t, n, Q)-TOMDH, where

• Q is the maximum number of OPRF evaluations initiated by a user;

• n is the number of servers that hold secret shares of the OPRF key;

• t′ is the number of servers an adversary can corrupt; and

• t + 1 servers need to collaborate to evaluate the OPRF.

Although there are many non-generic attacks on group-based hardness assumptions [Adl79,Che06],
to our knowledge there are no non-algebraic attacks. (For a more detailed discussion on this, see
[FKL18, Section 1].) Therefore our AGM analysis indicates the above TOPRF protocol should be
as secure as the Q(n− t)-DL problem. The best attack on Q′-DL in a group of prime order p is due
to Cheon [Che06] with concrete complexity ≈ log p(

√
p/Q′ + Q′) provided (p− 1)/2 is also prime.

Since Q corresponds to evaluation messages sent by users, one should conservatively assume Q can
be very large, or even (adaptively) adversarially controlled. In this case the best attack occurs when
Q′ ≈ p1/3, with complexity ≈ log p · p1/3. As noted in [TCR+22, Theorem 2] this is the best level
of security one could expect, as it matches existing non-threshold OPRF protocols like 2HashDH
[JKK14].

1.2 Relation to Existing Work

Algebraic reductions vs. reductions in the AGM. Bresson, Monnerat and Vergnaud
[BMV08, Theorem 11] prove that there is no algebraic reduction from Q-OMDL to (Q + 1)-OMDL,
unless Q-OMDL is easy. While one might think their result renders our AGM separation for
OMDL (Thm. 6.1) superfluous, in fact our result is stronger: [BMV08, Theorem 11] only rules out
algebraic reductions that work for arbitrary adversaries, whereas our Thm. 6.1 rules out a larger
class of algebraic reductions, namely those that only work for algebraic adversaries. The work of the
latter class of reductions is potentially much easier, as they can additionally exploit the algebraic
representations output by the adversary.

Other existing works. The works of Schage [Sch24, Corollary 6] and Zhang et al. [ZZC+14]
give general separations for many one-more problems, including Q-OMDH/Q-OMDL for different
values of Q, without assuming the reduction is algebraic. These separations are complementary
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but incomparable to ours: (1) their proofs are far more technically complex than ours, sometimes
producing weaker results like meta-reductions running in expected polynomial-time, and (2) like
[BMV08, Theorem 11], they give no separation in the setting when a reduction is allowed to assume
its solver is also algebraic, and so cannot apply to the AGM.

Concerning the analysis of one-more problems in the AGM, Tyagi et al. [TCR+22, Theorem 2]
propose a novel one-more Diffie–Hellman-type assumption and shows that it reduces to Q-DL in the
AGM. However, their assumption is tailored to their specific use case, and their proof gives little
indication as to the hardness of more standard one-more type assumptions like (T)OMDH.

2 Technical Overview

2.1 Notation

Let G be a group of prime order p, with the security parameter λ = ⌈log p⌉, i.e., 2λ−1 < p < 2λ.
We assume that G and p are public parameters known to any algorithm, and omit them in the
descriptions of security games below. Let Fp be the finite field with p elements, and [n] = {1, 2, . . . , n}:
[n] may be a subset of Z or Fp, which one will be clear from context. If S is a finite set, let |S|
denote the size of S and x← S denote sampling an element x uniformly at random from S. Let
S≥a be the subset of S consisting of elements at least a.

Runtime calculation. While considering the runtime of an algorithm, we only count group
operations (so computing an exponentiation costs time up to 2λ). Our reductions will often make use
of finite field arithmetic as well (matrix multiplication, row reduction, factorization of polynomials)
but it suffices to observe that all of these operations can be done in PPT (e.g., [KU11]).

Basic linear algebra. Notationally, we use uppercase bolded letters to denote matrices: e.x.
A. We use arrows to denote vectors: e.x. v⃗. Given a matrix A, define ker(A) = {v⃗ | Av⃗ = 0⃗}
and im(A) = {w⃗ | ∃v⃗ : Av⃗ = w⃗}. Given a vector space V , let dim(V ) be its dimension. Standard
uppercase letters will usually denote group elements, formal variables and polynomials in said formal
variables. Lowercase letters and Greek letters will usually denote elements of Z or Fp. We adopt a
convenient notational convention whereby given an expression v in lowercase quantities ai, we let V
denote the polynomial given by replacing each occurrence of ai in v with a new formal variable Ai.

For vectors a⃗ = (a1, . . . , an), b⃗ = (b1, . . . , bn), let a⃗i = (ai
1, . . . , ai

n). Define the Hadamard product
of a⃗, b⃗ to be a⃗⊙ b⃗ = (a1 · b1, . . . , an · bn). Note that

1. a⃗⊙
(∑m

i=1 b⃗i

)
=
(∑m

i=1 a⃗⊙ b⃗i

)
.

2. a⃗⊙ (x⃗b) = x(⃗a⊙ b⃗) where x is a scalar.

3. If a⃗ has no zero entries and a⃗⊙ b⃗ = 0⃗, then b⃗ = 0⃗.

4. By Items 1 and 3, if a⃗ has no zero entries and ∑m
i=1 a⃗⊙ b⃗i = 0⃗, then ∑m

i=1 b⃗i = 0⃗.

2.2 Our Techniques

Our reductions will use techniques from [BFL20] and [Rot22], so we first give a high-level review of
these works.
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Review of [BFL20]. In [BFL20] the authors reduce the (R1, . . . , Rr, F )-Uber problem to Q-DL
in the AGM, where Q = max deg(Ri)− 1. The idea of the reduction is that if the Uber adversary
is algebraic, it returns an algebraic representation F (z⃗) = ∑r

j=1 αjRj(z⃗) to the challenger. By
the definition of the Uber problem, R1, . . . , Rr, F are linearly independent, so R′(Z⃗) = F (Z⃗) −∑r

j=1 αjRj(Z⃗) is a non-zero polynomial that evaluates to zero on the secret z⃗. Therefore the
adversary has implicitly found a polynomial that “encodes” the secret z⃗. The reduction then
embeds a randomized version of the Q-DL secret x into each of the coordinates of z⃗ by setting
zi = yix + wi for random yi, wi ← Fp, and solves for x by finding the roots of the polynomial
R′(y1X + w1, . . . , ynX + wn). Since Q = max deg(Ri) − 1, the reduction can simulate the Uber
challenges to the adversary by computing the elements gRj(z⃗) from the Q-DL challenge.

Review of [Rot22]. In [Rot22, Section 5.2], the author notes that although the reduction of
[BFL20] is tight (losing only an additive factor in advantage), it requires a Q-DL challenge dependent
on the maximum total degree of the polynomials Rj . [Rot22, Theorem 5.4] provides an alternative
reduction that reduces from (d′ − 1)-DL, where d′ is the maximum degree of the Rj in any single
variable. In this reduction the (d′ − 1)-DL secret x is only inserted into a single variable Zi chosen
randomly from Z1, . . . , Zn, and the other variables are set to known random elements of Fp. As
before, the reduction can simulate the Uber challenges to the adversary by computing the elements
gRj(z⃗) from the (d′ − 1)-DL challenge; however, the reduction loses a factor of n in advantage as
the price for reducing Q, since extracting the secret is no longer as simple as finding the roots of a
univariate polynomial.

Our techniques for (T)OMDH. We first note why the results of [BFL20, Rot22] do not
straightforwardly extend to one-more type assumptions.

The closest problem to the one-more setting is their flexible GeGenUber problem [BFL20,
Section 8] (for the sake of exposition we describe a simplified version of the problem). The security
game is parameterized by a fixed polynomial R. The game chooses z⃗ ← Fn

p , and the adversary has
access to an oracle O that, on input Pi ∈ Fp[Z1, . . . , Zn], returns gPi(z⃗). The adversary wins the
game if it returns gR(z⃗) and R ̸∈ Span({Pi}). Compare this to the Q-OMDH problem, where the
adversary is given challenge elements gzi , 1 ≤ i ≤ Q + 1, as well as up to Q queries to a z0-th power
oracle, and must return gz0zi for 1 ≤ i ≤ Q + 1. Although the problems appear similar, Q-OMDH is
not a special case of GeGenUber: in GeGenUber there is a single target gR(z⃗), whereas in Q-OMDH
there are Q + 1 targets, none of which is fixed, i.e., it is possible that any single target gz0zi was
the result of an oracle query. As such, there is no valid choice for R to make OMDH a special
case of GeGenUber. Indeed, to prevent the adversary from trivially succeeding, in GeGenUber one
adaptively restricts the allowed targets of oracle queries, whereas in Q-OMDH one only restricts the
number of oracle queries.

Our reduction will produce a collection of polynomials {Pj} with Pj(z⃗) = 0 such that at least
one of them is guaranteed to be nonzero. By the Schwartz–Zippel lemma the nonzero one can
be found efficiently, and the reduction can proceed as before. In general, the primary tasks of a
reduction from Q-DL will be to (a) simulate the security game to the challenger using the Q-DL
challenge, and (b) use properties of the security game to extract a nontrivial polynomial equation
over the Q-DL secret. As evidenced by [BFL20, Rot22] there is a tradeoff between (a) and (b):
inserting the secret into more variables increases the probability that the secret can be extracted,
but makes it more difficult to simulate the security game.

In the case of OMU (Sect. 4) we closely follow the strategy in [BFL20] and either insert the
challenge into all variables at once, or all but one, as the total degree of the polynomials Rj is close
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to the maximum degree in a single variable for OMU. However, the case of TOMDH (Sect. 5) is more
complex. Concerning (a), there is no a priori bound on the maximum total degree of polynomials
the adversary can produce (see Sect. 5 for details), so we must use the strategy of [Rot22] and choose
a single variable (either a challenge element or a Shamir secret share) to insert the Q-DL secret into;
even then the reduction may fail to always simulate the security game correctly, leading to a looser
reduction. Concerning (b), the proof of the hardness of TOMDH in the GGM [JKKX17, Theorem 7]
should implicitly contain the extraction of a nontrivial polynomial equation, corresponding to the
intuition that in TOMDH, the only thing the adversary can do with shares of the secret is combine
them via Lagrange interpolation. However, as noted previously their argument is incorrect in the
static corruption case. In Sect. 5.2 we isolate the missing technical piece of the proof, and prove it
in Sect. 5.4 using linear-algebraic properties of Vandermonde matrices.

Our techniques for OMDL separation. First note that we cannot trivially adapt the meta-
reduction in [BMV08, Theorem 11] — which shows separation between Q-OMDL and (Q + 1)-
OMDL assuming non-algebraic adversaries — to the AGM. The discrete-log oracle queries for their
simulated adversary depend on the view of the meta-reduction, which is problematic when analyzing
its advantage in the AGM (see [BFL20, Section 10] for further discussion).

To circumvent this issue, our meta-reduction M queries the discrete-log oracle at uniformly
random elements and uses linear algebra to extract the solution. M has a Q-OMDL challenge
(A−1, A0, . . . , AQ), which it feeds to a reduction R. R will then submit a (Q + 1)-OMDL challenge
(B−1, B0, . . . , BQ+1) to the adversary A, which M must simulate.4 Let Bei

−1 = Ai, B
dj

−1 = Bj , for
i = −1, . . . , Q and j = 0, . . . , Q + 1, so M needs to compute (d0, . . . , dQ+1). Our strategy uses that
d⃗ = (1, d0, . . . , dQ+1) is defined in terms of e⃗ = (e−1, . . . , eQ) via Ze⃗ = d⃗, where Z is a (Q+3)×(Q+2)
matrix given by the algebraic representations of Bi in terms of Ai. Since the first entry of d⃗ is
known, e⃗ must satisfy a known nontrivial linear equation specified by the first row of Z, so e⃗ (and
thus Ze⃗) has only Q + 1 degrees of freedom. This is what allows M to leverage its DL queries:
intuitively, M can now recover Ze⃗ by using DL to obtain Q + 1 additional linear equations over it
and solving them. M queries DL on Q + 1 random group elements, whose algebraic representations
(in terms of Bj) form a (Q + 1)× (Q + 2) matrix U. M adds (1, 0, . . . , 0) as U’s first row and first
column (since M wants to also use the known equation defined by the first row of Z), making U
a (Q + 2)× (Q + 3) matrix. The results of the DL queries are the entries of Ud⃗. M can now use
row reduction to find some solution v⃗ to the equation UZv⃗ = Ud⃗. Since Z could have low rank,
there is no guarantee that v⃗ = e⃗. However, since U was chosen randomly Zv⃗ = d⃗ holds with high
probability, so M can recover d⃗.

Our techniques for Q-DL separation. The idea of our meta-reduction M is to use linear-
algebraic techniques to adapt the meta-reduction in [BFL20, Theorem 9.1] (that separates Q-DL and
(Q + 1)-DL) to work with Q-OMDL. Suppose M receives a Q-OMDL challenge (A−1, A0, . . . , AQ)
and feeds it to R. Let Ai = Axi

−1 for i = 0, . . . , Q, so R needs to recover x⃗ = (x0, . . . , xQ). When
R invokes A on a 1-DL challenge (B−1, B0 = Bu

−1, B1 = Bu2
−1), the algebraic representations of Bi

in terms of Ai allow M to compute polynomials Pj such that Bj = A
Pj(x⃗)
−1 (for j = −1, 0, 1). Here

we start with the observation of [BFL20, Theorem 9.1] that S(x⃗) = 0 for S = P1P−1 − P 2
0 , since

u = P0(x⃗)/P−1(x⃗) = P1(x⃗)/P0(x⃗). If S is the zero polynomial,M can compute u directly; otherwise
M obtains a nontrivial polynomial equation over x⃗. In [BFL20, Theorem 9.1] the secret x⃗ has a

4Note that B−1 might be different from A−1, i.e., we do not assume that the group generator g is fixed and even
rule out reductions that might change the group generator while running the (Q + 1)-OMDL solver.
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single entry, so this suffices to compute x⃗. In our case we must obtain Q additional equations over
x⃗ to compute it; we do so by utilizing the Q queries to DL that R can make. Concretely, M has to
answer R’s discrete log oracle queries V1, . . . , VQ. Some queries M can answer without querying
its own DL oracle; for example, if V3 = V1V 2

2 A−1, M can answer directly since it already knows
dlogA−1(V1), dlogA−1(V2), dlogA−1(A−1). In this way M only makes DL queries corresponding to
linearly independent polynomials in X0, . . . , XQ, and can “save” some DL queries for the future.
When R invokes A on (B−1, B0, B1),M must recover u = dlogB−1(B0) = dlogB0(B1) as A’s output
to R. Suppose M has already made Q′ queries to DL (where Q′ ≤ Q). M computes S: if the
equation S(x⃗) = 0 is trivial (i.e., implied by the Q′ existing equations from the DL queries) we
show M can compute u directly as before. Otherwise M will make Q−Q′ additional queries to
DL on random group elements. By a linear-algebraic argument, S(x⃗) = 0 remains nontrivial in
the presence of the new equations with high probability; M now has Q + 1 equations over Q + 1
variables and can compute x⃗, from which u is easily computed.

3 Background

3.1 Polynomial Rings

We denote the ring of polynomials in variables X1, . . . , Xm over a field F by F[X1, . . . , Xm], and
the field of rational functions as F(X1, . . . , Xm). The degree of F ∈ F[X1, . . . , Xm], denoted deg(F ),
is the maximum total degree of all monomials in F ; if T ⊂ {X1, . . . , Xm} then degT (F ) is the
maximum total degree of F as a polynomial in the variables T . As an example, consider

F (X1, X2) = X3
1 X2 + X2

2 + X1.

We have deg(F ) = degX1,X2(F ) = 4 since X3
1 X2 has total degree 4, degX1(F ) = 3 since X3

1 X2 has
degree 3 in X1, and degX2(F ) = 2 since X2

2 has degree 2 in X2. Define

I = ⟨F1, . . . , Fn⟩ =
{

n∑
i=1

GiFi | Gi ∈ F[X1, . . . , Xm]
}

to be the ideal of F[X1, . . . , Xm] generated by F1, . . . , Fn. Denote by F[X1, . . . , Xm]/I the quotient
ring modulo I, whose elements are equivalence classes where F, G are equivalent if F −G ∈ I: in
this case we write F ≡ G (mod I). Define

V (I) = {x⃗ ∈ Fm | F (x⃗) = 0 ∀ F ∈ I}

to be the vanishing set of the ideal I. Note that for any x⃗ ∈ V (I) and F ∈ F[X1, . . . , Xm]/I, the
value F (x⃗) is well-defined: if F −G = H ∈ I then F (x⃗)−G(x⃗) = H(x⃗) = 0.

In this paper the polynomials F1, . . . , Fn will be of degree 1 and linearly independent, and
n < m. Recall that row reduction defines a set T (I) ⊂ {X1, . . . , Xm} of pivotal variables of size
n corresponding to the system {Fi = 0}, such that all pivotal variables can be eliminated via the
equations {Fi = 0}. Therefore for any R ∈ F[X1, . . . , Xm] there is a canonical polynomial [R] such
that R ≡ [R] (mod I) and [R] contains none of the variables in T (I). We have the properties

1. R(x⃗) = [R](x⃗) for any x⃗ ∈ V (I),

2. [R] = [R′] if and only if R ≡ R′ (mod I).
As a consequence, the degree of F ∈ F[X1, . . . , Xm]/I is well-defined: we simply define deg(F
(mod I)) = deg([F ]) (note that as regular polynomials, deg(F ) ≥ deg([F ])). We retain the standard
properties of the degree in this setting, such as
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1. deg(FG) = deg(F ) + deg(G),

2. deg(F + G) ≤ max(deg(F ), deg(G))
since [FG] = [F ][G] and [F + G] = [F ] + [G].

3.2 Computational Problems

The One-More Discrete Log (OMDL) problem. Given a group generator g ∈ Ḡ = G \ {1G},
let DL(·) be an oracle that on the first Q inputs X1, . . . , XQ ∈ G returns dlogg(Xi), and returns ⊥
on all subsequent inputs; in other words, DL(·) is a discrete logarithm oracle that can be queried at
most Q times. An adversary A’s advantage in the Q-OMDL problem is defined as

Pr
[

g ← Ḡ; A0, . . . , AQ ← G

(a0, . . . , aQ)← ADL(·)(g = A−1, A0, . . . , AQ) : gai = Ai for i = 0, . . . , Q

]
.

Note that the adversary A is given Q + 1 uniformly random group elements (in addition to the
generator g), and that the (regular) discrete log problem is 0-OMDL.

The Q-Discrete Log (Q-DL) problem. An adversary A’s advantage in the Q-DL problem is
defined as

Pr
[

x← Fp; g ← Ḡ

x∗ ← A(g, gx, gx2
, . . . , gxQ+1)

: x∗ = x

]
.

The One-More Diffie–Hellman (OMDH) problem. For any x ∈ Fp, let Power(·) be an oracle
that on the first Q inputs Y1, . . . , YQ ∈ G returns Y x

i , and returns ⊥ on all subsequent inputs; in
other words, Power(·) is an x-th power oracle that can be queried at most Q times. An adversary
A’s advantage in the Q-OMDH problem is defined as

Pr
[

x← Fp; g ← Ḡ; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·)(g, X = gx, A0, . . . , AQ) : Bi = Ax
i for i = 0, . . . , Q

]
.

Note that the adversary A is given Q + 1 uniformly random group elements (in addition to g and
gx), and that the (regular) computational Diffie–Hellman problem is 0-OMDH.

Since different sources [BFP21, JKKX17] disagree on whether to provide X to the adversary
or not, we define the Q-OMDH2 problem to be the same as Q-OMDH, except that X = gx is not
given to the adversary.

The One-More Uber (OMU) problem. Let Q > 0 be an integer, R⃗ = (R0, . . . , Rt) with
Ri ∈ Fp[Z0, . . . , ZQ+1] and t ≥ Q. For any z⃗ = (z0, . . . , zQ+1) ∈ FQ+2

p , let Power(·) be an oracle
that on the first Q inputs Y1, . . . , YQ ∈ G returns Y z0

i , and returns ⊥ on all subsequent inputs. An
adversary A’s advantage in the (R⃗, Q)-OMU problem is defined as

Pr
[

z⃗ ← FQ+2
p ; g ← Ḡ; Ai := gRi(z⃗)

(B0, . . . , BQ)← APower(·)(g, A0, . . . , At)
: Bi = Az0

i for i = 0, . . . , Q

]
.

The adversary A has Q + 1 challenges A0, . . . , AQ (of which A needs to compute the z0-th power),
plus t−Q additional group elements AQ+1, . . . , At that might help A. As special cases, the Q-OMDH
problem is the (R⃗, Q)-OMU problem with R⃗ = (Z1, . . . , ZQ+1, Z0), and the Q-OMDH2 problem is
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the (R⃗, Q)-OMU problem with R⃗ = (Z1, . . . , ZQ+1) (x in the definition of OMDH and OMDH2
above corresponds to z0 here).

To ensure the problem cannot be trivially solved, throughout the rest of the paper we require
{1, R0, . . . , Rt, Z0R0, . . . , Z0RQ} to be linearly independent in Fp[Z0, . . . , ZQ+1].

The Threshold One-More Diffie–Hellman (TOMDH) problem. The TOMDH problem
concerns the setting where the exponent x is (t, n)-Shamir secret shared. It is considerably more
complicated than OMDH, so we begin with a concrete example. Say (t, n) = (1, 3), i.e., x has 3
shares x1, x2, x3, and knowing any 2 of them is sufficient for recovering x. The adversary A is given
access to 3 oracles Power1(·), Power2(·), Power3(·), which compute the x1-th, x2-th, x3-th powers
of the input, respectively. Suppose A is given sufficiently many challenge group elements, and is
allowed to query its oracles 3, 3, 4 times, respectively. How many x-th powers can A compute?

Let V = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, i.e., V is the set of binary vectors whose length is 3 and there
are 2 ones. Each vector in V represents a query strategy for A to compute an x-th power; for example,
(1, 1, 0) corresponds to querying Power1(A) and Power2(A), and using Lagrange interpolation to
compute Ax. A’s “query vector” (3, 3, 4) can be expressed as

(3, 3, 4) = (1, 1, 0) + 2× (1, 0, 1) + 2× (0, 1, 1);

using this strategy, A can compute the x-th powers of 1+2+2=5 challenge group elements. A
one-more assumption should say that this is the best A can do, i.e., A cannot feasibly compute the
x-th powers of 6 challenges.

In general, fix positive integers t, n, Q where t < n and define W (v⃗) = ∑n
i=1 vi for v⃗ = (v1, . . . , vn).

Let Vt+1 = {v⃗ ∈ {0, 1}n | W (v⃗) = t + 1}. For any n-dimensional vector q⃗, define Ct+1(q⃗) as the
maximum integer m for which there are vectors v⃗1, . . . , v⃗m ∈ Vt+1 such that v⃗1 + · · ·+ v⃗m ≤ q⃗; using
the example above, when (t, n) = (1, 3), C2(3, 3, 4) = 5.5

For any polynomial P (·) with degree t, let x = P (0), x1 = P (1), . . . , xn = P (n). Let Power(·, ·)
be an oracle that on input (i, Y ) returns Y xi , subject to the condition that Ct+1(q⃗) ≤ Q, where
q⃗ = (q1, . . . , qn) and qi is the number of (i, ⋆) queries made so far. An adversary A’s advantage in
the (t, n, Q)-TOMDH problem is defined as

Pr
[

P ← {P ∈ Fp[X] | deg(P) = t}; g ← Ḡ; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·,·)(g, A0, . . . , AQ) : Bi = Ax
i for i = 0, . . . , Q

]
.

Note that the Q-OMDH2 problem is the (0, 1, Q)-TOMDH problem.
Finally, we extend the TOMDH problem to allow shares to be (statically) corrupted; that is, the

adversaryA can decide a subset of all xi’s. Fix non-negative integer t′ ≤ t and F = {f1, . . . , ft′} ⊂ [n]:
A can decide the values P (fi). Now A only needs to make t− t′ + 1 queries to Power(·, ·) to compute
an x-th power via Lagrange interpolation, so we now require that Ct−t′+1(q⃗) ≤ Q (and can assume
without loss of generality that qi = 0 if A has set the i-th share). A’s advantage in the (t′, t, n, Q)-
TOMDH problem is defined as

Pr

 F ′ = {f ′
1, . . . , f ′

t′} ← A : F ′ ⊂ Fp;
P ← {P ∈ Fp[X] | deg(P) = t ∧ P(fi) = f ′

i}; g ← Ḡ; A0, . . . , AQ ← G

(B0, . . . , BQ)← APower(·,·)(g, A0, . . . , AQ)
: Bi = Ax

i for i = 0, . . . , Q

 .

[JKKX17] also lets the number of challenges N vary instead of being fixed at Q + 1. However
5[JKKX17] uses the same example and says C2(3, 3, 4) = 4, which is incorrect.
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by [JKKX17, Theorem 5] the problems are equivalent, so in this work we set N = Q + 1 without
loss of generality.

For all computational problems above, we say an adversary A (T, ϵ)-solves the problem if A’s
runtime is at most T , and its advantage in the game is at least ϵ.

3.3 Lemmas

We now state several technical lemmas that will be utilized in our proofs.

Lemma 3.1 ([BFL20, Lemma 2.1]). Let P ∈ Fp[X1 . . . Xm] be a non-zero polynomial of total degree
d. Define Q(X) ∈ (Fp[Y1, . . . , Ym, W1, . . . , Wm])[X] as Q(X) = P (Y1X + W1, . . . , YmX + Wm).
Then the coefficient of maximal degree of Q is a polynomial in Fp[Y1, . . . , Ym] of degree d.

Lemma 3.2 ([DL78]). Let P ∈ Fp[X1 . . . Xm] be a non-zero polynomial of total degree d. Let
r1, . . . , rm be independently and uniformly sampled from F×

p . Then

Pr[P (r1, . . . , rm) = 0] ≤ d

p− 1 .

Given F ∈ Fp[X1, . . . , Xm] with F ̸= 0, define a sequence of polynomials S(F ) = (H1, . . . , Hm)
as follows:

• H1 = F ,

• For each i ∈ {2, . . . , m}: if Hi−1 = 0 then Hi = 0. Otherwise, write Hi−1 as a polynomial in
Xi−1 with coefficients in Fp[Xi, . . . , Xm]. That is, write

Hi−1 =
d∑

j=0
Gj(Xi, . . . , Xm)Xj

i−1.

Let j∗ be the smallest index such that Gj∗ ̸= 0 and set Hi = Gj∗ . If no such index exists, set
Hi = 0. One can easily see Hi ∈ Fp[Xi, . . . , Xm].

Lemma 3.3 ([Rot22, Lemma 5.5]). Let F ∈ Fp[X1, . . . , Xm] with F ̸= 0 and S(F ) = (H1, . . . , Hm).
Then

1. Hi ̸= 0 for 1 ≤ i ≤ m,

2. For every α⃗ ∈ Fm
p such that F (α) = 0, there is some i∗ such that the univariate polynomial

Vi∗(Xi∗) = Hi∗(Xi∗ , αi∗+1, . . . , αm) is not the zero polynomial, and Vi∗(αi∗) = 0.

The following is a generalization of [BFL20, Lemma 9.2]:

Lemma 3.4. Let F ∈ Fp(X1, . . . , Xm) and let 0 ̸= P ∈ Fp[X1, . . . , Xm] have degree at most 1. If
F 2P is a polynomial and has degree at most 1, then F is constant.

(When m = 1, Lem. 3.4 follows from [BFL20, Lemma 9.2].) The proof of Lem. 3.4 proceeds
identically to the proof of [BFL20, Lemma 9.2], since Fp[X1, . . . , Xm] is a unique factorization
domain and the degree function for multivariable polynomials enjoys the same properties as for
univariate polynomials (e.g., deg(F + G) ≤ max(deg(F ), deg(G)).

Given w⃗ ∈ Ft
p, let (w⃗)i be the i-th coordinate of w⃗ and v⃗ · w⃗ = ∑t

i=1 viwi be the inner
product of vectors. Define H(w⃗) = {x⃗ ∈ Ft

p | x⃗ · w⃗ = 0} to be the hyperplane defined by w⃗ and
H(w⃗1, . . . , w⃗k) = ⋂k

i=1 H(w⃗i).
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Lemma 3.5. If w⃗1, . . . , w⃗k ∈ Ft
p are sampled according to some probability distribution and k ≤ t,

then

Pr[dim(H(w⃗1, . . . , w⃗k)) = t− k] = Pr[dim(w⃗1, . . . , w⃗k) = k] =

Pr[w⃗1 ̸= 0]
k−1∏
i=1

Pr[w⃗i+1 ̸∈ Span(w⃗1, . . . , w⃗i) | dim(w⃗1, . . . , w⃗i) = i].

Proof. The first equality follows from the rank-nullity theorem (and the fact that row rank equals
column rank). For the second, we proceed by induction. For k = 1 the equality is trivial.
Suppose the equality holds for k; we show it for k + 1. Since dim(w⃗1, . . . , w⃗k+1) = k + 1 implies
dim(w⃗1, . . . , w⃗k) = k we have

Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1]
= Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1 | dim(w⃗1, . . . , w⃗k) = k] Pr[dim(w⃗1, . . . , w⃗k) = k].

If dim(w⃗1, . . . , w⃗k) = k then dim(w⃗1, . . . , w⃗k+1) = k + 1 if and only if w⃗k+1 ̸∈ Span(w⃗1, . . . , w⃗k);
therefore

Pr[dim(w⃗1, . . . , w⃗k+1) = k + 1]
= Pr[w⃗k+1 ̸∈ Span(w⃗1, . . . , w⃗k) | dim(w⃗1, . . . , w⃗k) = k] Pr[dim(w⃗1, . . . , w⃗k) = k]

hypothesis======== Pr[w⃗1 ̸= 0]
k∏

i=1
Pr[w⃗i+1 ̸∈ Span(w⃗1, . . . , w⃗i) | dim(w⃗1, . . . , w⃗i) = i].

4 Reductions Between (R⃗, Q)-OMU and Q′-DL
In this section, we establish the following corollary:

Corollary 4.1. For any Q > 0, Q-OMDH is equivalent to Q-DL, and Q-OMDH2 is equivalent to
(Q− 1)-DL.

To do so, we give several reductions in both directions between (R⃗, Q)-OMU and Q′-DL. The
reductions to Q′-DL are simple and do not require the AGM, while the reductions from Q′-DL are
more involved and are tight (in contrast to the reductions in Sect. 5). Our results do not exactly
characterize the hardness of all OMU assumptions in general, but they suffice for OMDH and
OMDH2 (for details see the end of this section).

Theorem 4.2. For any Q > 0, there is a reduction from (R⃗, Q)-OMU to (Q−1)-DL; if Ri(Z⃗) = Zk
0

for some i and 1 ≤ k ≤ Q + 1, there is a reduction from (R⃗, Q)-OMU to Q-DL.
Concretely,

1. Suppose A (T, ϵ)-solves (Q−1)-DL. Then there is a reduction RA that (T +2(Q+1)λ, ϵ)-solves
(R⃗, Q)-OMU.

2. Suppose A (T, ϵ)-solves Q-DL. Then there is a reduction (R′)A that (T + 2(Q + 1)λ, ϵ)-solves
(R⃗, Q)-OMU, if Ri(Z⃗) = Zk

0 for some i and 1 ≤ k ≤ Q + 1.

Proof. For (1), given such an adversary A for (Q− 1)-DL, we define a reduction R that uses A to
solve (R⃗, Q)-OMU as follows:

Reduction R:
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1. On (R⃗, Q)-OMU challenge (g, A0, . . . , At), R queries X1 := Power(g), X2 := Power(X),
. . . , XQ := Power(XQ−1).

2. R runs A on (Q− 1)-DL challenge (g, X1, X2, . . . , XQ).

3. When A outputs x∗, R outputs (Ax∗
0 , . . . , Ax∗

Q ).

We have X1 = gz0 , X2 = Xz0
1 = gz2

0 , . . . , XQ = gzQ
0 , so R simulates the (Q− 1)-DL game to A

correctly. If A succeeds then x∗ = z0, so R also succeeds. Thus, R’s success probability is no less
than A’s. R’s runtime consists of running A and computing Q + 1 exponentiations, which is up to
T + 2(Q + 1)λ. (R can additionally be made algebraic by outputting x∗ as the algebraic coefficient
in step 3.)

For (2), if Ri(Z⃗) = Zk
0 for some k ≤ Q + 1, we can construct a reduction R′ to Q-DL that is

almost identical: R′ obtains gz0 , . . . , gzk−1
0 via k− 1 queries to Power on g, and then gzk+1

0 , . . . , gzQ+1
0

via Q− k + 1 queries to Power on Ai. R′ then invokes the Q-DL adversary as before and continues
in the same manner.

In the other direction, we have:

Theorem 4.3. For any Q > 0, let

d0 = max
−1≤j≤t

degZ0(Rj(Z⃗)),

d1 = max
−1≤j≤t

degZ1,...,ZQ+1(Rj(Z⃗)),

Q2 = max(Q + d0, d1)− 1.

Then there is a reduction from Q2-DL to (R⃗, Q)-OMU.
Concretely, suppose A is an algebraic adversary that (T, ϵ)-solves (R⃗, Q)-OMU.

1. Let d = maxi deg(Ri) and Q1 = Q+d−1. Then there is a reduction RA that
(
T + O(λ), ϵ− Q1+1

p−1

)
-

solves Q1-DL.

2. Let d′ = max(d0, d1). Then there is a reduction (R′)A that
(
T + O(λ), ϵ

2

(
1− d1

p−1

))
-solves

Q2-DL.6

(Observe that Q2 ≤ Q1, so item (2) improves the Q parameter).

Before proving Thm. 4.3 we will need some preliminary results. Suppose R has access to an
adversary A for (R⃗, Q)-OMU and that A is run on an (R⃗, Q)-OMU instance (g, gR0(z⃗), . . . , gRt(z⃗));
to ease notation, let z−1 = 1 and R−1 = 1. After A receives group elements gv1 , . . . , gvQ from the
Power oracle, to succeed A must return Bi = gz0Ri(z⃗) for 0 ≤ i ≤ Q with algebraic representations

z0Ri(z⃗) =
t∑

j=−1
bi,jRj(z⃗) +

Q∑
j=1

b′
i,jvj . (1)

Lemma 4.4. For any 1 ≤ j ≤ Q, vj is a linear combination of the terms zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ j

and −1 ≤ i ≤ t, with coefficients known to R.
6Here we assume that Q, t, d1, d2 are all constant and use the big-O notation for the runtime, as the concrete

runtime is difficult to calculate and complicated to express (it can be found in the proof). We stress that our theorem
statement still holds asymptotically even if Q, t, d1, d2 are polynomial in λ.
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Proof. Let A’s queries to the Power oracle be gv′
1 , . . . , gv′

Q , so vj = z0v′
j . The proof is by induction

on j. For j = 1, the only group elements A has seen when it makes the first Power query are gRi(z⃗),
so

v′
1 =

t∑
i=−1

αiRi(z⃗)⇒

v1 =
t∑

i=−1
αiz0Ri(z⃗)

for some αi ∈ Fp known to R, so the lemma holds.
Assume the lemma for 1, . . . , j; we show it for j + 1. When making the (j + 1)-th Power query,

A has seen gRi(z⃗) and gv1 , . . . , gvj , so

v′
j+1 =

t∑
i=−1

αiRi(z⃗) +
j∑

i=1
α′

ivi ⇒

vj+1 =
t∑

i=−1
αiz0Ri(z⃗) +

j∑
i=1

α′
iz0vi

for some αi, α′
i ∈ Fp known to R. Since v1, . . . , vj are linear combinations of zℓ

0Ri(z⃗) for ℓ ≤ j (with
coefficients known to R), vj+1 is a linear combination of zℓ

0Ri(z⃗) for ℓ ≤ j + 1 (also with coefficients
known to R).

We now consider the expressions in Equation (1) as polynomials in formal variables Z0, . . . , ZQ+1,
i.e., as elements of Fp[Z0, . . . , ZQ+1] (again to ease notation let Z−1 = 1). We use uppercase lettering
to denote a polynomial in these variables; for example, Vj ∈ Fp[Z0, . . . , ZQ+1] is the polynomial
given by replacing each occurrence of zi in vj with Zi.

Lemma 4.5. There is some 0 ≤ i ≤ Q such that

Si(Z⃗) def= −Z0Ri(Z⃗) +
t∑

j=−1
bi,jRj(Z⃗) +

Q∑
j=1

b′
i,jVj ̸= 0.

(Note that if A succeeds then Si(z⃗) = 0 for all i; in other words, there is an i such that Si(Z⃗) is a
non-zero polynomial, but it evaluates to 0 on z⃗.)

Proof. Suppose for the sake of contradiction

Z0Ri(Z⃗) =
t∑

j=−1
bi,jRj(Z⃗) +

Q∑
j=1

b′
i,jVj (2)

for 0 ≤ i ≤ Q. Let W = {1, R0(Z⃗), . . . , Rt(Z⃗), V1, . . . , VQ}. Since |W | = t + Q + 2, Span(W )
has dimension at most t + Q + 2 as an Fp-vector space. By Equation (2), Z0Ri(Z⃗) ∈ Span(W )
for 0 ≤ i ≤ Q, so W ′ = {1, R0(Z⃗), . . . , Rt(Z⃗), Z0R0(Z⃗), . . . , Z0RQ(Z⃗)} ⊂ Span(W ). But we have
assumed that the OMU instance is non-trivial, i.e., W ′ is a set of t + Q + 3 independent elements
and thus cannot be a subset of Span(W ). This forms a contradiction.
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Let i∗ be the smallest i satisfying the condition of Lem. 4.5, and let S = Si∗ . Write

S(Z⃗) =
dS∑

j=0
Pj(Z1, . . . , ZQ+1)Zj

0 (3)

where dS is the degree of Z0 in S. Since S(Z⃗) ̸= 0, let j∗ be the smallest index so Pj∗(Z1, . . . , ZQ+1) ̸=
0. Let V (Z0) = S(Z0, z1, . . . , zQ+1). We can now prove Thm. 4.3.

Proof of Thm. 4.3.

Proof of (1). Given such an adversary A for (R⃗, Q)-OMU, we define a reduction R that uses A
to solve Q1-DL as follows:

Reduction R:

1. On Q1-DL challenge (g, gx, gx2
, . . . , gxQ1+1), R samples yi ← F×

p , wi ← Fp for 0 ≤ i ≤ Q + 1.
Since Q1 + 1 = Q + d > d, R knows g, gx, . . . , gxd and thus can compute gR0(z⃗), . . . , gRt(z⃗),
where zi = yix + wi. R runs A on (g, gR0(z⃗), . . . , gRt(z⃗)).

2. When A queries Power, by Lem. 4.4 R can answer if it knows zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ Q and

−1 ≤ i ≤ t. Note that deg(zℓ
0Ri(z⃗)) ≤ Q + d, so R indeed can compute all of them using its

Q1-DL challenges.

3. When A outputs B0, . . . , BQ together with algebraic coefficients bi,j , b′
i,j (see Equation (1)),

R defines Si(Z⃗) using bi,j , b′
i,j (see Lem. 4.5), finds S(Z⃗) = Si∗(Z⃗), and rewrites S(Z⃗) as a

polynomial of X with Zi = yiX + wi:

S∗(X) = S(y0X + w0, y1X + w1, . . . , yQ+1X + wQ+1).

If S∗(X) = 0 then R outputs ⊥ and aborts. Otherwise, it factors S∗(X) and computes all
roots. If for some root x∗ we have gx∗ = gx then R returns x∗; otherwise R returns ⊥.

Analysis of R. The analysis follows the same template as in the proof of [BFL20, Theorem 3.5].
Note thatR simulates the (R⃗, Q)-OMU game toA correctly. IfA succeeds then S∗(x) = S(z⃗) = 0,

so x is a root of S∗. Therefore as long as S∗(X) ̸= 0, R returns x. It remains to upper-bound the
probability that S∗(X) = 0.

Interpreting S∗ as an element of (Fp[Y1, . . . , Ym, W1, . . . , Wm])[X], by Lem. 3.1 the maximal
coefficient of S∗ is an element S∗

max of Fp[Y1, . . . , Ym] with total degree equal to the maximal total
degree of S. Note that the behavior of A is independent of the values yix since they are masked by
random wi, i.e., A’s view only contains some functions of zi = yix + wi which is independent of
yix. Therefore the values bi,j , b′

i,j , vj are independent of y⃗, thus S, S∗, S∗
max are also independent of

y⃗. The probability that S∗ = 0 is then upper-bounded by the probability that S∗
max(y⃗) = 0 for a

random point y⃗. By Lem. 3.2 this latter probability is at most deg(S∗)
p−1 . Since deg(S∗) is at most the

total degree of Si∗ , which is at most Q1 + 1, S∗(X) = 0 with probability at most Q1+1
p−1 . Thus, R’s

success probability is at least ϵ− Q1+1
p−1 .

R’s runtime depends on the polynomials R⃗ (i.e., the concrete instance of the problem), but in the
worst case, computing each gRi(x) involves d+1 exponentiations and d multiplications, which take time
2(d+1)λ+d; therefore, step 1 takes time t[2(d+1)λ+d]. In step 2, answering each Power query involves
Q+d+1 exponentiations and Q+d multiplications, which take time 2(Q+d+1)λ+Q+d; adding the
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time of running A, step 2 takes time T +Q[2(Q+d+1)λ+Q+d]. Step 3 involves no group operations
and is thus considered “free”. Overall, R’s runtime is T + t[2(d+1)λ+d]+Q[2(Q+d+1)λ+Q+d] =
T + O(λ).

Proof of (2). Given such an adversary A for (R⃗, Q)-OMU, we define a reduction R′ that uses A
to solve Q2-DL as follows:

Reduction R′:

1. On Q2-DL challenge (g, gx, gx2
, . . . , gxQ2+1), R′ samples a bit b← {0, 1} and

• If b = 0: R′ samples wi ← Fp for 1 ≤ i ≤ Q + 1. Since Q2 + 1 ≥ Q + d0 > d0, R′ knows
g, gx, . . . , gxd0 and thus can compute gR0(z⃗), . . . , gRt(z⃗), where z0 = x and zi = wi.

• If b = 1: R′ samples w0 ← Fp, wi ← Fp, yj ← F×
p for 1 ≤ i ≤ Q + 1. Since Q2 + 1 ≥ d1,

R′ knows g, gx, . . . , gxd1 and thus can compute gR0(z⃗), . . . , gRt(z⃗), where z0 = w0 and
zi = yix + wi.

R′ runs A on (g, gR0(z⃗), . . . , gRt(z⃗)).

2. When A queries Power, by Lem. 4.4 R′ can answer if it knows zℓ
0Ri(z⃗) for all 1 ≤ ℓ ≤ Q and

−1 ≤ i ≤ t. Note that degz0(zℓ
0Ri(z⃗)) ≤ Q + d0 (for b = 0) and degz1,...,zQ+1(zℓ

0Ri(z⃗)) ≤ d1
(for b = 1), so R′ indeed can compute all of them using its Q2-DL challenges.

3. When A outputs B0, . . . , BQ together with algebraic coefficients bi,j , b′
i,j (see Equation (1)),

R′ defines Si(Z⃗) using bi,j , b′
i,j (see Lem. 4.5) and finds S(Z⃗) = Si∗(Z⃗). Then:

• If b = 0: R′ computes V (Z0) using zi. If V (X) = 0 then R′ outputs ⊥ and aborts.
Otherwise, it factors V (X) and computes all roots.

• If b = 1: R′ computes P ∗(X) = Pj∗(y1X + w1, . . . , yQ+1X + wQ+1) using wi and yi. If
P ∗(X) = 0 then R′ outputs ⊥ and aborts. Otherwise, it factors P ∗(X) and computes all
roots.

Either way, if for some root x∗ we have gx∗ = gx then R′ returns x∗; otherwise R′ returns ⊥.

Analysis of R′. Note that R simulates the (R⃗, Q)-OMU game to A correctly. Suppose A succeeds.
Then:

• If b = 0 and V (Z0) is a non-zero polynomial: by Lem. 4.5 it has z0 = x as a root. Therefore,
R′ returns x.

• If b = 1 and V (Z0) = 0 as a polynomial: by Equation (3) we must have Pj∗(z1, . . . , zQ+1) = 0
and Pj∗(Z1, . . . , ZQ+1) ̸= 0. But when b = 1 R′ computes x in almost the same manner as R;
the only difference is that R uses polynomial S and R′ uses polynomial Pj∗ . Using the same
analysis, R′ returns x with probability at least 1− d1

p−1 .

Therefore,

Pr[R′ succeeds | A succeeds ∧ b = 0 ∧ E] = 1,

Pr[R′ succeeds | A succeeds ∧ b = 1 ∧ Ē] ≥ 1− d1
p− 1 ,
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which gives

Pr[R′ succeeds] ≥ Pr[R′ succeeds ∧ A succeeds]
= ϵ · Pr[R′ succeeds | A succeeds]

= ϵ

2
(
Pr[R′ succeeds | A succeeds ∧ b = 0] + Pr[R′ succeeds | A succeeds ∧ b = 1]

)
≥ ϵ

2

[
Pr[E] + Pr[Ē]

(
1− d1

p− 1

)]
≥ ϵ

2

(
1− d1

p− 1

)
.

The runtime analysis ofR′ is identical to that of R, except that d is replaced by d′ = max(d0, d1).

Applications to OMDH and OMDH2. We now apply our general results on OMU to OMDH
and OMDH2. We have:

• Applying item (1) of Thm. 4.2 to Q-OMDH2 and item (2) to Q-OMDH, we obtain that there
is a reduction from Q-OMDH2 to (Q− 1)-DL and Q-OMDH to Q-DL;

• Applying item (1) of Thm. 4.3 to Q-OMDH and item (2) to Q-OMDH2, we obtain that there
is a reduction from Q-DL to Q-OMDH and (Q− 1)-DL to Q-OMDH2.

From this Cor. 4.1 easily follows. This establishes a separation between Q-OMDH(2) for different
values of Q, as [BFL20, Section 9] has shown that Q-DL for different values of Q are separate
(assuming the reduction is algebraic). Furthermore, our result also separates Q-OMDH(2) for Q and
Q′-OMDL for any positive Q and Q′, as [BFL20, Section 10] has shown that Q-DL and Q′-OMDL
are separate (unless Q-DL is easy).

5 Reductions Between (t′, t, n, Q)-TOMDH and Q′-DL
Reduction from (t′, t, n, Q)-TOMDH to (Q−1)-DL. We first give a reduction from (t′, t, n, Q)-
TOMDH to (Q − 1)-DL that does not rely on the AGM (analogous to Thm. 4.2). This re-
duction is simple so we only provide a sketch. Suppose A is a (Q − 1)-DL solver. Reduction
R receives a (t′, t, n, Q)-TOMDH challenge (g, gr1 , . . . , grQ+1) with (statically) corruptible shares
F = {f1, . . . , ft′} ⊂ [n]. R chooses 0 as the share values, so P (fi) = 0 where P is the secret
polynomial in the TOMDH challenge. R chooses any U ⊂ [n] \ F with |U | = t− t′ + 1 (such a U
must exist since n ≥ t + 1). R will use the query vector q⃗ = (q1, . . . , qn), defined by qi = Q if i ∈ U
and qi = 0 otherwise; obviously Ct−t′+1(q⃗) = Q. R then uses the Power(·, ·) oracle to simulate a
(Q− 1)-DL challenge for A, as follows. Suppose R wants to compute ak for k = P (0). R knows that
aP (fi) = 1 for fi ∈ F , and can use Power(·, ·) to compute aP (u) for all u ∈ U . R can then compute
ak from these t + 1 values by Lagrange interpolation. By repeating this for a = g, gk, . . . , gkQ−1 ,
R computes (g, gk, . . . , gkQ). R invokes A on this challenge, and receives k∗ as output. R then
outputs {(gri)k∗}i∈[Q+1]. It is easily seen that R’s advantage is the same as A’s. (R can be made
algebraic if A is.)

The rest of this section is dedicated to giving a reduction in the other direction, namely there is
a reduction from (t′, t, n, Q)-TOMDH to (Q(n− t)− 1)-DL. The main theorem is:

Theorem 5.1. For any t′, t, n, Q > 0 with t′ ≤ t < n, there is a reduction from (Q(n− t)− 1)-DL
to (t′, t, n, Q)-TOMDH.
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Concretely, suppose A (T, ϵ)-solves (t′, t, n, Q)-TOMDH, and let t0 = t− t′ + 1. Then there is a
reduction RA that (T + O(λ), ϵ′)-solves (Q(n− t)− 1)-DL, where

ϵ′ = ϵ

(Q + t0 + 1)2

(
Q + t0(n−t′

t−t′
) + 1

)
.

The proof of Thm. 5.1 appears in Sect. 5.3, modulo a technical lemma that is subsequently
proven in Sect. 5.4.

5.1 Preliminary Results

Suppose R has access to an adversary A for (t′, t, n, Q)-TOMDH and that A is run on an
(t′, t, n, Q)-TOMDH instance (g, gr1 , . . . , grQ+1) (to ease notation set r0 = 1) with secret poly-
nomial P (X) = ∑t

i=0 aiX
i, vector of coefficients a⃗ = (a0, . . . , at), and statically corruptible shares

F = {f1, . . . , ft′} ⊂ [n], with values F ′ = {f ′
1, . . . , f ′

t′} ⊂ Fp supplied by A such that P (fi) = f ′
i .

Let q⃗ = (q1, . . . , qn) be the query vector of A: that is, A makes qj queries to Power(j, ·) with
Ct−t′+1(q⃗) ≤ Q and qj = 0 for j ∈ F . Let gvi be the result of the i-th query to Power(·, ·), and
denote the first argument to the query by ki (i.e., A evaluates the xki

= P (ki)-th power of the
second argument). To succeed A must return elements Bj for indices 1 ≤ j ≤ Q + 1 with algebraic
representations

a0rj =
Q+1∑
u=0

b(j)
u ru +

w∑
u=1

c(j)
u vu. (4)

Lemma 5.2. Let n⃗s = (1, s, s2, . . . , st). Then

vi =
∑

Z⊂[i],i∈Z

Q+1∑
j=0

β
(i)
jZrj

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)


for some choice of coefficients β

(i)
jZ ∈ Fp known to R.

(This is analogous to Lem. 4.4.)

Proof. By induction on i. For i = 1, the only group elements A has seen when it makes the first
Power(k1, ·) query are gr0 , . . . , grQ+1 , so the second input is of the form ∑Q+1

j=0 βjrj , so

v1 = (n⃗⊤
k1 a⃗)

Q+1∑
j=0

βjrj

 .

Assume the lemma for 1, . . . , i; we show it for i + 1. When making the (i + 1)-th Power query A
has seen gr0 , . . . , grQ+1 and v1, . . . , vi, so the input is of the form

Q+1∑
j=0

βjrj +
i∑

j=1
γjvj

hypothesis========
Q+1∑
j=0

βjrj +
i∑

j=1
γj

 ∑
Z⊂[j],j∈Z

Q+1∑
j′=0

β
(j)
j′Zrj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)

 .
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We then have

vi+1 = (n⃗⊤
ki+1 a⃗)

Q+1∑
j=0

βjrj + (n⃗⊤
ki+1 a⃗)

i∑
j=1

γj

 ∑
Z⊂[j],j∈Z

Q+1∑
j′=0

β
(j)
j′Zrj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)

 .

Note that as j ranges from 1 to i, Z ranges over all nonempty subsets of [i]. We can then rewrite
as

vi+1 = (n⃗⊤
ki+1 a⃗)

Q+1∑
j=0

βjrj +
∑

Z⊂[i+1],i+1∈Z
|Z|≥2

Q+1∑
j′=0

β
′(jZ)
j′Z rj′

∏
ℓ∈Z

(n⃗⊤
kℓ

a⃗)



where jZ = maxz∈Z\{i+1} z and β
′(jZ)
j′Z = γjβ

(jZ)
j′Z . Since the first term is the contribution of

Z = {i+1} and the second term is the contribution of all Z ̸= {i+1} such that Z ⊂ [i+1], i+1 ∈ Z,
combining these two terms yields all Z ⊂ [i + 1] such that i + 1 ∈ Z, which is exactly what’s covered
in the expression of vi+1 in the inductive step, so we are done.

As in Lem. 4.5, we now consider the above quantities in the formal variables A0, . . . , At and
R1, . . . , RQ+1 (R0 = 1).

Lemma 5.3. There is some 1 ≤ j ≤ Q + 1 such that

Sj(A⃗, R⃗) def= −A0Rj +
Q+1∑
u=0

b(j)
u Ru +

w∑
u=1

c(j)
u Vu ̸= 0.

(Note that if A succeeds then Sj (⃗a, r⃗) = 0 for all j.)

The rest of this section and Sect. 5.2 are dedicated to the proof of Lem. 5.3. In this section we
deal with the t′ = 0 (i.e., no corrupted shares) case, and then in Sect. 5.2 we extend it to the t′ > 0
case.

We first recall a lemma in [JKKX17]. Let q⃗ = (q1, . . . , qn) ∈ Nn, t ∈ N and suppose Ct+1(q⃗) ≤
Q, w = W (q⃗). Let k⃗ = (k1, . . . , kw) ∈ Zw

>0 be any vector with qj of its entries equal to j, for each
1 ≤ j ≤ n.

Lemma 5.4 ([JKKX17, Lemma 3]). There are no matrices A ∈ F(Q+1)×w
p , B ∈ Fw×(Q+1)

p , K ∈ Fw×w
p

such that:

1. K is diagonal with entries ki;

2. AB = I and AKiB = 0 for 1 ≤ i ≤ t.

Proof of Lem. 5.3 when t′ = 0. This proof follows the same outline as the proof of [JKKX17, Theo-
rem 6]. Assume towards a contradiction that Sj(A⃗, R⃗) = 0 for all j, and let V ′

i be Vi but with all
terms of degree ≥ 2 in the Ai removed. By Lem. 5.2,

V ′
i = (n⃗⊤

ki
A⃗)

Q+1∑
j=0

β
(i)
j Rj


(for notational convenience set β

(i)
j = β

(i)
j{i}). Since A0Rj has degree ≤ 1 in all Ai, we have

A0Rj =
Q+1∑
u=0

b(j)
u Ru +

w∑
u=1

c(j)
u V ′

u
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for 1 ≤ j ≤ Q + 1. These equations can be written in matrix form as A0R1
...

A0RQ+1

 = B1R⃗ + b⃗0 + C

V ′
1
...

V ′
w

 , (5)

V ′
1
...

V ′
w

 = (B2R⃗ + β⃗0)⊙


n⃗⊤

k1
A⃗

...
n⃗⊤

kw
A⃗

 ,

where

C =


c

(1)
1 · · · c

(1)
w

... . . . ...
c

(Q+1)
1 · · · c

(Q+1)
w

 , B1 =


b

(1)
1 · · · b

(1)
Q+1

... . . . ...
b

(Q+1)
1 · · · b

(Q+1)
Q+1

 , B2 =


β

(1)
1 · · · β

(1)
Q+1

... . . . ...
β

(w)
1 · · · β

(w)
Q+1

 ,

R⃗ =

 R1
...

RQ+1

 , b⃗0 =


b

(1)
0
...

b
(Q+1)
0

 , β⃗0 =


β

(1)
0
...

β
(w)
0

 .

Let β⃗1 = B2R⃗ + β⃗0, b⃗1 = B1R⃗ + b⃗0. We can write
n⃗⊤

k1
A⃗

...
n⃗⊤

kw
A⃗

 =


∑t

i=0 Aik
i
1

...∑t
i=0 Aik

i
w

 =
t∑

i=0

Ai

ki
1
...

ki
w


 ,

so by properties of the Hadamard productV ′
1
...

V ′
w

 = β⃗1 ⊙


n⃗⊤

k1
A⃗

...
n⃗⊤

kw
A⃗

 =
t∑

i=0

β⃗1 ⊙Ai

ki
1
...

ki
w


 =

t∑
i=0

AiKiβ⃗1 (6)

where

K =

k1
. . .

kw

 .

Substituting Equation (6) into Equation (5) gives A0R1
...

A0RQ+1

 = b⃗1 + C
(

t∑
i=0

AiKiβ⃗1

)
= b⃗1 +

t∑
i=0

AiCKiβ⃗1. (7)

As the above is an equality of polynomials, we have Cβ⃗1 = R⃗ and CKiβ⃗1 = 0 for 1 ≤ i ≤ t. Plugging
β⃗1 back in, we get (CB2 − I)R⃗ + Cβ⃗0 = 0 and CKiB2R⃗ + CKiβ⃗0 = 0 for 1 ≤ i ≤ t. By Lem. 5.4,
at least one of

CB2 − I, CKB2, CK2B2, . . . , CKtB2

is nonzero, so for some e, i the e-th row of the i-th matrix (0 ≤ i ≤ t) is nonzero. Denote this row
by u⃗⊤ and let c⃗⊤ be the e-th row of C. We then have u⃗⊤R⃗ + c⃗⊤Kiβ⃗0 = 0. We have arrived at a
contradiction: u⃗⊤ is nonzero so the left hand-side cannot be the zero polynomial.
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5.2 The Flaw for t′ > 0
We now prove Lem. 5.3 in the case t′ > 0: in the process we show the flaw in the proof of
[JKKX17, Theorem 7] (hardness of TOMDH in the GGM) and repair it by proving a new technical
lemma. Suppose A has chosen values f⃗ ′ = (f ′

1, . . . , f ′
t′) for the corruptible shares f⃗ = (f1, . . . , ft′) so

that P (fi) = f ′
i (note that fi are distinct). Written in matrix notation, the equalities P (fi) = f ′

i

become

[f⃗ t, . . . , f⃗ , 1⃗]


At

At−1
...

A0

 = f⃗ ′. (8)

By the Vandermonde determinant, {f⃗0, f⃗ , . . . , f⃗ t′−1} is linearly independent. Furthermore, since
f⃗ has no zero entries, {f⃗u, f⃗u+1, . . . , f⃗u+t′−1} is linearly independent for any u ≥ 0. Therefore
bringing Equation (8) to row-reduced echelon form gives

1 0 . . . 0 α
(t)
t−t′ . . . α

(t)
0

0 1 0 α
(t−1)
t−t′ . . . α

(t−1)
0

... . . . ...
... . . . ...

0 0 . . . 1 α
(t−t′+1)
t−t′ . . . α

(t−t′+1)
0




At

At−1
...

A0

 =


α

(t)
−1

α
(t−1)
−1
...

α
(t−t′+1)
−1


for coefficients {α(ℓ)

j }. By standard properties of row reduction,

Aℓ +
t−t′∑
j=0

α
(ℓ)
j Aj = α

(ℓ)
−1 for t− t′ + 1 ≤ ℓ ≤ t, (9)

f⃗ j =
t∑

ℓ=t−t′+1
α

(ℓ)
j f⃗ ℓ for 0 ≤ j ≤ t− t′.

Returning to the proof of Lem. 5.3 when t′ > 0, by Equation (9) all Aℓ are known linear
combinations of A0, . . . , At−t′ , so Sj is a polynomial in A0, . . . , At−t′ , R⃗. Since Aℓ has degree 1 in
A0, . . . , At−t′ , the previous argument for the t′ = 0 case goes through up to Equation (7). The
proof of [JKKX17, Theorem 7] claims that at this point the equalities Cβ⃗1 = R⃗ and CKiβ⃗1 = 0
for 1 ≤ i ≤ t− t′ hold. However, this is incorrect: At−t′+1, . . . , At have not been set to zero; rather,
they are fixed linear combinations of the free variables A0, . . . , At−t′ . To give a correct proof, using
Equation (9) yields A0R1

...
A0RQ+1

 = b⃗1 + C
(

t∑
i=0

AiKiβ⃗1

)
= b⃗1 +

t−t′∑
j=0

AjCKj β⃗1 +
t∑

ℓ=t−t′+1

α
(ℓ)
−1 −

t−t′∑
j=0

α
(ℓ)
j Aj

CKℓβ⃗1

= b⃗1 +
t∑

ℓ=t−t′+1
α

(ℓ)
−1CKℓβ⃗1 +

t−t′∑
j=0

AjC

Kj −
t∑

ℓ=t−t′+1
α

(ℓ)
j Kℓ

 β⃗1,

Only after this can we equate coefficients of Aj like in Equation (7) for the t′ = 0 case: doing so
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gives CM0β⃗1 = R⃗, CMj β⃗1 = 0⃗, j ∈ [t− t′] where

Mj = Kj −
t∑

ℓ=t−t′+1
α

(ℓ)
j Kℓ.

Plugging in the definition of β1 yields

(CM0B2 − I)R⃗ + CM0β⃗0 = 0⃗, CMjB2R⃗ + CMj β⃗0 = 0⃗ for j ∈ [t− t′].

As before, to complete the proof of Lem. 5.3 it suffices to show CM0B2 − I or one of CMjB2 is
nonzero. Lem. 5.4 is no longer sufficient, so we require the following new lemma.

Lemma 5.5. Let M0, M1, . . . , Mt−t′ ∈ Fw×w
p be as above. There are no matrices A ∈ F(Q+1)×w

p , B ∈
Fw×(Q+1)

p such that AM0B = I and AMjB = 0 for 1 ≤ j ≤ t− t′.

As the proof of Lem. 5.5 is technically complex, we defer it to Sect. 5.4. For now, we present the
proof of Thm. 5.1 assuming Lem. 5.5.

5.3 Proof of Thm. 5.1 Assuming Lem. 5.5

Proof. Given such an adversary A for (t′, t, n, Q)-TOMDH, we define a reduction R that uses A to
solve (Q(n− t)− 1)-DL as follows:

Reduction R:

1. On (Q(n− t)− 1)-DL challenge (g, gx, . . . , gxQ(n−t)), R first samples an index i∗ ← [Q + t0 + 1].
(Intuitively i∗ is a guess of where the (Q(n − t) − 1)-DL challenge x should be inserted: if
i∗ ≤ t0, R inserts it into the t0-th secret share of P ; if i∗ > t0,R inserts it into the (i∗− t0)-th
challenge element.) Then R runs A and implicitly defines polynomial P (·) as follows: A, given
corruptible shares F = {f1, . . . , ft′} (R works regardless of which F is used in the TOMDH
game), outputs F ′ = {f ′

1, . . . , f ′
t′} ⊂ Fp to R as the share values. R’s polynomial P (·) must

satisfy P (fi) = f ′
i for each i. R samples a uniform random subset C = {c1, . . . , ct0} ⊂ [n] \ F ,

and samples c′
i ← Fp, i ∈ [t0]: if i∗ ≤ t0 R implicitly defines P (ci) = c′

i, P (ci∗) = x for
i ∈ [t0] \ {i∗}, otherwise R implicitly defines P (ci) = c′

i for i ∈ [t0]. We have defined P on
t′ + t0 = t + 1 points, so P is uniquely determined.

2. Next, if i∗ > t0, R defines ri := wi for i ∈ [Q + 1] \ {i∗ − t0} and ri∗−t0 := x; otherwise R
defines ri := wi for i ∈ [Q + 1]. R feeds (g, gr1 , . . . , grQ+1) to A as the TOMDH challenge.

3. When A queries Power(j, b), R must return bP (j). By Lagrange interpolation P (j) is a linear
combination of {P (c)}c∈C ∪ F ′ with known coefficients. If i∗ > t0, all of these values are
known to R, so R can directly answer the query. Otherwise, all of these values are known to
R except P (ci∗) = x. Therefore the query results R can be computed – by linearity – from
(1) the group elements given to R as input, (2) the algebraic representations of the queries,
and (3) the elements in the (Q(n− t)− 1)-DL challenge according to Lem. 5.2. If the degree
of the query output in x is larger than Q(n− t), R outputs HighDeg and aborts.

4. WhenA outputs B0, . . . , BQ,R defines the nonzero polynomial S1(A0, . . . , At−t′ , R1, . . . , RQ+1)
given by Lem. 5.3, and rewrites it as a polynomial S2 of C ′

1, . . . , C ′
t0 , R1, . . . , RQ+1 with∑t

j=0 Ajcj
i = C ′

i. By Lagrange interpolation this change of variables is invertible, so S2 is also
nonzero.
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After that, R computes the polynomial Vi∗ corresponding to S2 as defined in Lem. 3.3. Note
that R can always compute Vi∗ , as it is a function of values known to R:

Vi∗ =
{

Vi∗(Ri∗−t0) = Hi∗(Ri∗−t0 , ri∗−t0+1, . . . , rQ+1) if i∗ > t0

Vi∗(C ′
i∗) = Hi∗(C ′

i∗ , c′
i∗+1, . . . , c′

t0 , r1, . . . , rQ+1) otherwise

If Vi∗ = 0 then R outputs ⊥ and aborts. Otherwise, it factors Vi∗ and computes all roots. If
for some root x∗ we have gx∗ = gx then R returns x∗; otherwise R returns ⊥.

Analysis of R. Note that R simulates the T-OMDH game to A correctly, unless it outputs
HighDeg in step 3. HighDeg occurs only if i∗ ≤ t0 (which happens with probability t0/(Q + t0 + 1)).
In this case, if c ∈ C \ {ci∗} then Power(c, b) can always be answered. The queries for the other
(n − t′) − (t − t′) = n − t choices of c return b exponentiated by a linear polynomial in x. Since
Ct0(q⃗) ≤ Q, there are ≤ t− t′ “bad” indices i ∈ [n] \ F such that qi > Q. Since elements of C are
chosen uniformly at random from [n] \ F , with probability at least 1/

(n−t′

t−t′
)

all “bad” indices are in
C \ {ci∗}. If this is the case, R must then answer n− t other queries up to Q times: as the degree
in x increases by at most 1 per query, the degree of x in any query is at most Q(n− t), so HighDeg
does not occur. In total, HighDeg occurs only if i∗ ≤ t0 and C \ {ci∗} does not contain all “bad”
indices, so

Pr[HighDeg] ≤ t0
Q + t0 + 1

(
1− 1(n−t′

t−t′
))⇒ Pr[HighDeg] ≥ 1

Q + t0 + 1

(
Q + t0(n−t′

t−t′
) + 1

)
.

Next we assume that HighDeg does not occur. We have that

Pr[A succeeds | HighDeg] = ϵ.

If A succeeds, by Lem. 3.3 there is some j∗ ∈ [Q+ t0 +1] such that the polynomial Vj∗ corresponding
to S2 is nonzero. Since i∗ is chosen uniformly and is independent of A’s view, i∗ = j∗ happens with
probability 1/(Q + t0 + 1). If i∗ = j∗, then Vi∗ is a polynomial in Ri∗−t0 if i∗ > t0 and C ′

i∗ otherwise;
in both cases, by R’s simulation of the TOMDH game and Lem. 3.3, x is a root of Vi∗ , so R outputs
x and succeeds. Therefore,

Pr[R succeeds | HighDeg ∧ A succeeds] ≥ 1
Q + t0 + 1 .

Putting these all together,

Pr[R succeeds] ≥ Pr[R succeeds | HighDeg] Pr[HighDeg]

≥ Pr[R succeeds | HighDeg]
Q + t0 + 1

(
Q + t0(n−t′

t−t′
) + 1

)

= ϵ Pr[R succeeds | HighDeg ∧ A succeeds]
Q + t0 + 1

(
Q + t0(n−t′

t−t′
) + 1

)

≥ ϵ

(Q + t0 + 1)2

(
Q + t0(n−t′

t−t′
) + 1

)
.

We will not compute R’s runtime in concrete terms, but it suffices to notice that it is A’s runtime
plus O(λ).
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5.4 Proof of Lem. 5.5

Henceforth we assume the definitions in Sect. 5.2 of t′, t, n, q⃗, w, k⃗, {α(ℓ)
j } etc. The following lemmas

are proven in Appx. A.

Lemma 5.6. Let Q = Ct−t′+1(q⃗) + 1 and

m⃗j = k⃗j −
t∑

ℓ=t−t′+1
α

(ℓ)
j k⃗ℓ ∈ Fw

p .

Then for any w-dimensional vectors b⃗1, . . . , b⃗Q the set

V = {m⃗j ⊙ b⃗i}j∈{0,...,t−t′}
i∈[Q]

is linearly dependent over Fp.

Lemma 5.7. Let 1 ≤ j ≤ λ ≤ t− t′. If t− t′ + 1 ≤ ℓ′ ≤ t− j then

α
(ℓ′)
λ−j = α

(ℓ′+j)
λ +

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j ,

and if t− j + 1 ≤ ℓ′ ≤ t then

α
(ℓ′)
λ−j =

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j .

Lem. 5.6 is almost identical to [JKKX17, Lemma 2], while Lem. 5.7 is a new technical lemma we
require to handle the t′ > 0 case.

Proof of Lem. 5.5: Let a⃗⊤
1 , . . . , a⃗⊤

Q be the rows of A and b⃗1, . . . , b⃗Q be the columns of B for Q =
Ct−t′+1(q⃗) + 1. The conditions AM0B = I and AMjB = 0 for all j ∈ [t− t′] are equivalent to

a⃗⊤
i b⃗ =

{
1, if b⃗ = m⃗0 ⊙ b⃗i

0, if b⃗ ∈ V \ {m⃗0 ⊙ b⃗i}
(10)

We shall use Equation (10) to show the following, from which Lem. 5.5 easily follows:
Claim: Let j ∈ {0, . . . , t− t′}, i ∈ [Q]. Then

m⃗j ⊙ b⃗i ̸∈ Span(Vj,i),

where

Vj,i = {m⃗λ ⊙ b⃗γ | j ≤ λ ≤ t− t′, γ ∈ [Q], (λ, γ) ̸= (j, i)}.

Proof of Claim. Equation (10) immediately implies m⃗0 ⊙ b⃗i ̸∈ Span(V \ {m⃗0 ⊙ b⃗i}), the j = 0 case
of the Claim. For j > 0, unwrapping Equation (10) further, the first case gives

1 = a⃗⊤
i (m⃗0 ⊙ b⃗i) = a⃗⊤

i b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
0 a⃗⊤

i (k⃗ℓ ⊙ b⃗i). (11)
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For the second case, if b⃗ = m⃗s ⊙ b⃗u for 0 ≤ s ≤ t− t′, u ∈ [Q] such that (s, u) ̸= (0, i), then

0 = a⃗⊤
i (m⃗s ⊙ b⃗u) = a⃗⊤

i

k⃗s ⊙ b⃗u −
t∑

ℓ=t−t′+1
α(ℓ)

s (k⃗ℓ ⊙ b⃗u)

⇒

a⃗⊤
i (k⃗s ⊙ b⃗u) =

t∑
ℓ=t−t′+1

α(ℓ)
s a⃗⊤

i (k⃗ℓ ⊙ b⃗u). (12)

Suppose for the sake of contradiction there are coefficients δλ,γ such that

m⃗j ⊙ b⃗i =
∑

j≤λ≤t−t′,γ∈[Q]
(λ,γ)̸=(j,i)

δλ,γ(m⃗λ ⊙ b⃗γ)⇒

k⃗j ⊙ b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
j (k⃗ℓ ⊙ b⃗i) =

∑
j≤λ≤t−t′,γ∈[Q]

(λ,γ)̸=(j,i)

δλ,γ

k⃗λ ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ ⊙ b⃗γ)

 .

Since k⃗ has no zero entries, we have

b⃗i −
t∑

ℓ=t−t′+1
α

(ℓ)
j (k⃗ℓ−j ⊙ b⃗i) =

∑
j≤λ≤t−t′,γ∈[Q]

(λ,γ)̸=(j,i)

δλ,γ

k⃗λ−j ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ−j ⊙ b⃗γ)

 . (13)

To derive a contradiction, we show the right-hand side of Equation (13) is orthogonal to a⃗i, but
the left-hand side is not.

The right-hand side of Equation (13) is orthogonal to a⃗i: We need to show

0 = a⃗⊤
i

k⃗λ−j ⊙ b⃗γ −
t∑

ℓ=t−t′+1
α

(ℓ)
λ (k⃗ℓ−j ⊙ b⃗γ)

 (14)

= a⃗⊤
i (k⃗λ−j ⊙ b⃗γ)−

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ)−
t∑

ℓ=t−t′+j+1
α

(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ). (15)

Applying Equation (12) to the summands in the first two terms of (15) yields

t∑
ℓ′=t−t′+1

α
(ℓ′)
λ−j a⃗⊤

i (k⃗ℓ′ ⊙ b⃗γ)−
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
λ a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗γ)

− t∑
ℓ=t−t′+j+1

α
(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ)

=
t∑

ℓ′=t−t′+1
a⃗⊤

i

α
(ℓ′)
λ−j −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 (k⃗ℓ′ ⊙ b⃗γ)−
t∑

ℓ=t−t′+j+1
α

(ℓ)
λ a⃗⊤

i (k⃗ℓ−j ⊙ b⃗γ)

=
t∑

ℓ′=t−t′+1

α
(ℓ′)
λ−j −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 a⃗⊤
i (k⃗ℓ′ ⊙ b⃗γ)−

t−j∑
ℓ′=t−t′+1

α
(ℓ′+j)
λ a⃗⊤

i (k⃗ℓ′ ⊙ b⃗γ).

By Lem. 5.7 the coefficients in this sum vanish, so the entire sum is zero and Equation (14) holds.
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The left-hand side of Equation (13) is not orthogonal to a⃗i: We will show

1 = a⃗⊤
i b⃗i −

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i). (16)

Again by Equation (12)

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i) =
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
j a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗i)

+
t∑

ℓ=t−t′+j+1
α

(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i),

and by Equation (11)

a⃗⊤
i b⃗i = 1 +

t∑
ℓ′=t−t′+1

α
(ℓ′)
0 a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i).

Together we have

a⃗⊤
i b⃗i −

t∑
ℓ=t−t′+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i)

=1 +
t∑

ℓ′=t−t′+1
α

(ℓ′)
0 a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i)−
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
j a⃗⊤

i

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j(k⃗ℓ′ ⊙ b⃗i)

− t∑
ℓ=t−t′+j+1

α
(ℓ)
j a⃗⊤

i (k⃗ℓ−j ⊙ b⃗i)

=1 +
t∑

ℓ′=t−t′+1

α
(ℓ′)
0 −

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
j α

(ℓ′)
ℓ−j

 a⃗⊤
i (k⃗ℓ′ ⊙ b⃗i)−

t−j∑
ℓ′=t−t′+1

α
(ℓ′+j)
j a⃗⊤

i (k⃗ℓ′ ⊙ b⃗i).

By Lem. 5.7 (set λ = j) the coefficients in this sum vanish, so the entire expression equals 1 and
Equation (16) holds.

We now return to Equation (13): multiplying both sides by a⃗⊤
i and using Equations (14) and (16)

we arrive at 1 = 0, a contradiction.

We now return to Lem. 5.5. By Lem. 5.6, V is linearly dependent, so we have δi,j ∈ Fp not all
zero such that

t−t′∑
j=0

Q∑
i=1

δi,j(m⃗j ⊙ b⃗i) = 0.

If a coefficient δi,0 is nonzero then m⃗0⊙ b⃗i ∈ Span(V \{m⃗0⊙ b⃗i}), contradicting the Claim. Therefore

t−t′∑
j=1

Q∑
i=1

δi,j(m⃗j ⊙ b⃗i) = 0.

By the same reasoning the Claim also implies δi,1 = 0, δi,2 = 0, . . . , δi,t−t′ = 0, and we arrive at a
contradiction.
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6 Separation Results
In this section we assume all reductions R are PPT reductions in the AGM; that is, R and the
adversary A run by R are both algebraic. Furthermore, we allow R to run its adversary A as many
times as it wants, but we do not allow R to choose the random coins of A or rewind A (otherwise
A could fail with overwhelming probability). These requirements are not repeated in the theorem
statements below.

We will use the meta-reduction methodology: given a reduction R from problem P1 to problem
P2, we construct a meta-reduction M that uses R to unconditionally solve P1 by simulating R’s
access to an adversary A for P2. As in [BFL20], to correctly and cleanly argue about the probability
distributions, (a) if R incorrectly simulates the security game to A, then we let A output ⊥ and
abort, and (b) M completely simulates R’s access to A and copies R’s final output, even if M
obtains enough information to cease interacting with R and solve the problem directly.

6.1 Separation Result for OMDL

Theorem 6.1. For any Q ≥ 0, suppose there is a reduction R from Q-OMDL to (Q + 1)-OMDL.
Then Q-OMDL is easy.

Concretely, suppose R (T ′, ϵ′)-solves Q-OMDL given access to an adversary A that (T, ϵ)-
solves (Q + 1)-OMDL. Then there is an (algebraic) meta-reduction M such that MR (T ′, ϵ′)-solves
Q-OMDL, as long as T ≥ (Q + 1)[2(Q + 3)λ + Q + 1] and ϵ ≤ 1− p−1 −O(p−2).

Proof. Given such a reduction R, we define a meta-reduction M that uses R to solve Q-OMDL.
While running R,M needs to play the role of R’s Q-OMDL challenger, as well as the (Q+1)-OMDL
solver that R uses. M works as follows:

Meta-reduction M:

1. On Q-OMDL challenge (A−1, A0, . . . , AQ), M feeds the challenge to R.

2. M, as R’s challenger, must answer (up to) Q discrete log oracle queries by R. This can be
easily simulated since M itself is part of the Q-OMDL game, so it can just forward the oracle
queries of R to its own oracle, along with the algebraic representations of the query elements.

3. To simulate a run of the (Q + 1)-OMDL solver,

(a) Suppose that R runs the solver on challenge (B−1, B0, . . . , BQ+1)7; since R is algebraic,
it must also provide the algebraic representations Bj = ∏Q

i=−1 A
zi,j

i with each zi,j ∈ Fp

for i = −1, . . . , Q and j = −1, . . . , Q + 1. If R simulates the generator B−1 = 1G, M
outputs ⊥ and aborts.

(b) M can make Q + 1 queries to DL (the (Q + 1)-OMDL solver’s discrete log oracle
simulated by R). M will choose uj,i ← Fp for i = 0, . . . , Q and j = 0, . . . , Q + 1, and
query mi = DL(∏Q+1

j=0 B
uj,i

j ), providing algebraic representations (0, u0,i, . . . , uQ+1,i). M
checks if R simulates DL correctly, i.e., if Bmi

−1 = ∏Q+1
j=0 B

uj,i

j for all i; if the equality does
not hold for any i, then M outputs ⊥ and aborts.

(c) Finally, M returns dlogB−1(B0), . . . , dlogB−1(BQ+1) to R with some overwhelming prob-
ability (how this is achieved is described later).

7Note that in our definition of OMDL the group generator g is sampled by the game challenger, rather than fixed
in advance; this allows R to set B−1 to be different from A−1.
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4. When R is finished, it is supposed to output dlogA−1(A0), . . . , dlogA−1(AQ), and M copies
R’s output.

Let Z be the (Q + 3)× (Q + 2) matrix

Z =

 z−1,−1 . . . zQ,−1
... . . . ...

z−1,Q+1 . . . zQ,Q+1

 ,

which is defined by R and known to M in step 3a. If M does not abort in step 3a, B−1 ̸= 1G so
the first row of Z is nonzero.

Lemma 6.2. Let Bei
−1 = Ai, B

dj

−1 = Bj for i = −1, . . . , Q and j = 0, . . . , Q + 1. (So M needs to
compute (d0, . . . , dQ+1).) Then

Ze⃗ = Z


e−1
e0
...

eQ

 =


1
d0
...

dQ+1

 = d⃗.

Proof. From step 3a we have Bj = ∏Q
i=−1 A

zi,j

i , so

B
dj

−1 = Bj =
Q∏

i=−1
A

zi,j

i =
Q∏

i=−1
B

eizi,j

−1 = B
e−1z−1,j+···+eQzQ,j

−1 .

As j ranges from −1 to Q + 1 (with d−1 = 1) we obtain the lemma.

Next, let U be the (Q + 2)× (Q + 3) matrix

U =


1 0 · · · 0
0 u0,0 · · · uQ+1,0

0
... . . . ...

0 u0,Q · · · uQ+1,Q

 ,

which is defined by M in step 3b.

Lemma 6.3. Suppose M does not abort in step 3b. Then

UZe⃗ = Ud⃗ =


1

m0
...

mQ

 = m⃗.

Proof. By Lem. 6.2 UZe⃗ = Ud⃗; we now prove that Ud⃗ = m⃗. From step 3b we have Bmi
−1 =∏Q+1

j=0 B
uj,i

j , so

Bmi
−1 =

Q+1∏
j=0

B
uj,i

j =
Q+1∏
j=0

B
djuj,i

−1 = B
d0u0,i+···+dQ+1uQ+1,i

−1 .

As i ranges from −1 to Q (with m−1 = 1) we obtain the lemma.
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AssumingM does not abort in step 3b, we now describe howM computes (d0, . . . , dQ+1) in step
3c. If ker(Z) ̸= ker(UZ) then M outputs ⊥ and aborts. (Since ker(Z) ⊆ ker(UZ),M can check if
ker(Z) ̸= ker(UZ) by verifying that dim(ker(Z)) ̸= dim(ker(UZ)) via row reduction.) OtherwiseM
computes some v⃗ such that UZv⃗ = m⃗ (since e⃗ is one such v⃗ by Lem. 6.3, such a v⃗ always exists and
can be computed via row reduction), and then returns (d0, . . . , dQ+1) as the last Q + 2 entries of Zv⃗.

Analysis of M. To begin with, in R’s viewM’s behavior in step 3 defines a (Q+1)-OMDL solver
A in the real (Q + 1)-OMDL game; in particular, the DL queries in step 3b are uniformly random
and thus independent of M’s view while simulating R’s Q-OMDL challenger (e.g., independent of
the matrix Z). Below we show that A has advantage 1− p−1 −O(p−2) in the real (Q + 1)-OMDL
game; this is the more difficult part of the overall analysis of M. After that, it is clear that if the
reduction R “works” for A, then M solves Q-OMDL with runtime and probability equal to R’s,
since M merely passes inputs and outputs (including oracle queries) between M’s own challenger
and R.

Analysis of A. First suppose R correctly simulates the (Q + 1)-OMDL game to A. Then A does
not abort in steps 3a,3b, so A aborts if and only if ker(Z) ̸= ker(UZ), in step 3c. Suppose A
doesn’t abort. The set of v⃗ such that UZv⃗ = m⃗ is e⃗ + ker(UZ) by Lem. 6.3. By assumption
ker(Z) = ker(UZ) so v⃗ = e⃗ + k⃗ for some k⃗ ∈ ker(Z). Therefore Zv⃗ = Ze⃗ + Zk⃗ = Ze⃗, so by Lem. 6.2
the last Q + 2 entries (i.e., excluding d−1 = 1) are the correct values of dj , and A succeeds.

Next, we show that A aborts with negligible probability. Since U and Z are chosen independently,
we bound the probability of ker(Z) ̸= ker(UZ) where Z is a fixed matrix with a nonzero first row.
Note that ker(Z) ̸= ker(UZ) if and only if im(Z) ∩ ker(U) ̸= {0}. Since im(Z) has dimension at
most Q + 2, and the probability of im(Z) ∩ ker(U) ̸= {0} is maximized when im(Z) is as large as
possible, it suffices to consider the case im(Z) = H (⃗h) for some h⃗ ̸= 0⃗. Let u⃗i be the i-th row of U,
1 ≤ i ≤ Q + 2. Since ker(U) = H(u⃗1, . . . , u⃗Q+2) we have im(Z) ∩ ker(U) = H (⃗h, u⃗1, . . . , u⃗Q+2).

To lighten notation, define

S1 = {h⃗}, Si = {h⃗, u⃗1, . . . , u⃗i−1} if i > 1.

Applying Lem. 3.5 to H (⃗h, u⃗1, . . . , u⃗Q+2) gives

Pr[im(Z) ∩ ker(U) = {0}] = Pr[⃗h ̸= 0]
Q+2∏
i=1

Pr[u⃗i ̸∈ Span(Si) | dim(Si) = i]. (17)

Note that h⃗ ̸= 0 by assumption, and u⃗1, h⃗ are independent: if u⃗1 = λh⃗, λ ̸= 0 then

im(Z) = H (⃗h) = {v⃗ ∈ FQ+3
p | (v⃗)1 = 0},

which contradicts the assumption Z has a nonzero first row. Therefore

Pr[u⃗1 ̸∈ Span(S1) | dim(S1) = 1] = 1

so the i = 1 term of Equation (17) is 1. For i > 1, if u⃗i ∈ Span(Si) then there are coefficients
{αj}i−1

j=1 and β such that u⃗i = ∑i−1
j=1 αj u⃗j + βh⃗. Take the first entry of the vectors in the equation;

since

(u⃗j)1 =
{

0 j ̸= 1
1 j = 1

,
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we have

0 = α1 + β(⃗h)1. (18)

There are pi choices of {αj}i−1
j=1 and β, but by Equation (18) there are only pi−1 possible choices of

u⃗i contained in Span(Si). Since (u⃗i)1 = 0 and (u⃗i)2, . . . , (u⃗i)Q+3 ∈ Fp, there are pQ+2 total choices
for u⃗i, so

Pr[u⃗i ̸∈ Span(Si) | dim(Si) = i] = 1− pi−1

pQ+2 = 1− pi−Q−3.

Putting it all together,

Pr[im(Z) ∩ ker(U) = {0}] =
Q+2∏
i=2

(1− pi−Q−3) =
Q+1∏
i=1

(1− p−i) = 1− p−1 −O(p−2).

Overall, we have shown that A’s success probability is at least 1−p−1 + O(p−2). If R incorrectly
simulates the (Q + 1)-OMDL game to A, either B−1 = 1G or the discrete log oracle DL is not
implemented correctly. Then A aborts in step 3a or step 3b respectively.

Regarding A’s runtime, in step 3b A makes Q + 1 queries to DL, each of which involves Q + 2
exponentiations and Q + 1 multiplications; after that, A checks consistency of the answers, which
involves Q + 1 exponentiations. So the total number of group operations is up to (Q + 1)[2(Q +
2)λ + Q + 1] + (Q + 1) · 2λ = (Q + 1)[2(Q + 3)λ + Q + 1]. Step 3c does not involve any group
operations and is thus “free”.

6.2 Separation Result for OMDL and Q-DL

Theorem 6.4. For any Q ≥ 0, suppose there is a reduction R from Q-OMDL to 1-DL. Then
Q-OMDL is easy.

Concretely, suppose R (T ′, ϵ′)-solves Q-OMDL given access to an adversary A that (T, ϵ)-solves
1-DL. Then there is an (algebraic) meta-reduction M such that MR (T ′, ϵ′)-solves Q-OMDL, as
long as T ≥ (2Q2 + 6Q + 4)λ + (Q + 1)2 and ϵ ≤ 1− 4p−1 −O(p−2).

Proof. Given such a reduction R, we define a meta-reduction M that uses R to solve Q-OMDL.
While running R, M needs to play the role of R’s Q-OMDL challenger, as well as the 1-DL solver
that R uses. M works as follows:

Meta-reduction M:

1. On Q-OMDL challenge (A−1, A0, . . . , AQ), M feeds the challenge to R. Let Ai = Axi
−1 for

i = 0, . . . , Q and x⃗ = (x0, . . . , xQ).

2. M, as R’s challenger, must answer (up to) Q discrete log oracle queries by R. Say Q′ of them
are made before R runs the 1-DL solver, and let the queries be on V1, . . . , VQ′ with algebraic
representations Vj = ∏Q

i=−1 A
vi,j

i for j = 1, . . . , Q′. Define polynomials Lj(X0, . . . , XQ) =∑Q
i=−1 vi,jXi (denote X−1 = 1), so Vj = A

Lj(x⃗)
−1 . M stores Lj in a sequence L, but excludes

those that can be linearly expressed by existing polynomials in L; together with rj = Lj(x⃗) in
a separate sequence L′. Concretely, M initializes L = {L∗

0 = 1} and L′ = {r∗
0 = 1}. When R

makes a discrete log oracle query on Vj ,
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• If Lj ∈ Span(L), i.e., Lj = ∑ℓ−1
j′=0 αj′L∗

j′ for some αj′ ∈ Fp (where ℓ = |L|), then M can
compute rj = dlogA−1(Vj) = ∑ℓ−1

j′=0 αj′r∗
j′ by itself.

• Otherwise M queries its own discrete log oracle on Vj , receiving rj as the result. M sets
L∗

ℓ := Lj , r∗
ℓ := rj and adds them to L,L′, respectively.

Either way, M returns rj to R.

3. To simulate a run of the 1-DL solver,

(a) Suppose that R runs the solver on challenge (B−1, B0, B1); since R is algebraic, it
must also provide the algebraic representations Bj = ∏Q

i=−1 A
zi,j

i for j = −1, 0, 1. If R
simulates the group generator B−1 = 1G, M outputs ⊥ and aborts. If B0 = B1 = 1G,
M outputs 0. Otherwise define Pj(X0, . . . , XQ) = ∑Q

i=−1 zi,jXi, so Bj = A
Pj(x⃗)
−1 ; and

S = P1P−1 − P 2
0 .

Let In be the ideal generated by {L∗
k(X⃗)− r∗

k}
n−1
k=1 for some n. Note that the generators

of In are linearly independent as L is linearly independent (guaranteed in step 2), and
that x⃗ ∈ V (In) for any n. Define [R]n to be the canonical representative (see Sect. 3.1)
of R in Fp[X0, . . . , XQ]/In.

(b) If [S]ℓ = 0 we have [P1]ℓ = ([P0]ℓ/[P−1]ℓ)2[P−1]ℓ; by Lem. 3.4 this implies [P0]ℓ/[P−1]ℓ = c
for some c ∈ Fp ([P−1]ℓ ̸= 0 since B−1 ̸= 1G). M returns c to R.

The case when [S]ℓ ̸= 0 is handled as follows.

(c) If ℓ ≤ Q, M samples {v∗
i,j} ← Fp for i = −1, . . . , Q, j = ℓ, . . . , Q and queries its discrete

log oracle DL on V ∗
j = ∏Q

i=−1 A
v∗

i,j

i . (M queried DL ℓ − 1 times in step 2, so its total
number of queries is Q.) Define L∗

j (X0, . . . , XQ) = ∑Q
i=−1 v∗

i,jXi so V ∗
j = A

L∗
j (x⃗)

−1 ;M adds
L∗

j to L. If L is linearly dependent or [S]Q+1 = 0, M outputs ⊥ and aborts.

(d) Since IQ+1 is generated by Q independent elements, there is a nonpivotal variable Xt

such that [S]Q+1 is a polynomial only in Xt. For each root x′
t of [S]Q+1, M substitutes

Xt = x′
t into the equations defining IQ+1, recovering the full solution x⃗′ via row reduction.

M then computes u′ = P0(x⃗′)/P−1(x⃗′) and checks whether Bu′
−1 = B0, B

(u′)2

−1 = B1. If
this holds for some u′, M returns u′ to R. Otherwise M outputs ⊥ and aborts.

4. After the 1-DL solver is finished, R might make some additional (up to Q−Q′) discrete log
oracle queries and further invocations of the 1-DL solver.

(a) If M returned in step 3b, M can continue to forward R’s discrete log oracle queries to
its own DL oracle, since M has only made DL queries also made by R. M simulates
subsequent invocations of the 1-DL solver as in step 3.

(b) If M returned in step 3d, M has “used up” all of its DL queries, so it cannot make any
more. However, in this case M has recovered x⃗, so it can now answer R’s discrete log
oracle query on Vj by returning Lj(x⃗), and can simulate any invocation of the 1-DL
solver by returning u = P0(x⃗)/P−1(x⃗).

5. When R is finished, it is supposed to output dlogA−1(A0), . . . , dlogA−1(AQ), and M copies
R’s output.
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Analysis of M. As in the proof of Thm. 6.1, in R’s view M’s behavior in step 3 defines a 1-DL
solver A in the real 1-DL game. Below we show that A has advantage 1− 4p−1−O(p−2) in the real
1-DL game. After that, it is clear that if the reduction R “works” for A, then M solves Q-OMDL
with runtime and probability equal to R’s, since M merely passes inputs and outputs between M’s
own challenger and R, and can answer R’s oracle queries correctly in steps 2 and 4. (Note that
steps 2 and 4 do not involve any group operations and are thus “free”.)

Analysis of A. First suppose that R simulates the 1-DL game to A correctly, i.e., R submits a valid
1-DL instance (B−1 ̸= 1G, B0 = Bu

−1, B1 = Bu
0 ). Since B−1 ̸= 1G, A does not output ⊥ in step 3a.

If u = 0, then B0 = B1 = 1G so A outputs 0 in step 3a and succeeds in the 1-DL game; below
we assume u ̸= 0. Since Bj = A

Pj(x⃗)
−1 (see step 3a) we have u = P0(x⃗)/P−1(x⃗) = P1(x⃗)/P0(x⃗), so

S(x⃗) = 0 (P−1(x⃗), P0(x⃗) ̸= 0 since B−1 ̸= 1G and u ̸= 0).
If A enters step 3b, i.e., [S]ℓ = 0, then u = P0(x⃗)/P−1(x⃗) = [P0]ℓ(x⃗)/[P−1]ℓ(x⃗) = c, so A

succeeds.
If A enters step 3c, it may abort if L is linearly dependent or [S]Q+1 = 0; let these events be

D, E respectively. To show Pr[D ∨ E] is negligible, note

Pr[D ∨ E] = Pr[D] + Pr[E ∧ D̄] = Pr[D] + Pr[E | D̄] Pr[D̄] ≤ Pr[D] + Pr[E | D̄]

so we upper-bound Pr[D] and Pr[E | D̄]. Define Sj = {L∗
0, . . . , L∗

j}; Pr[D] is then given by applying
Lem. 3.5 to L:

Pr[dim(SQ) = Q + 1] = Pr[L∗
0 ̸= 0]

Q−1∏
j=0

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1].

The first item is 1 (since L∗
0 = 1 ̸= 0), and byM’s simulation of the discrete log oracle, dim(Sℓ−1) = ℓ,

so if ℓ = Q + 1 the product is 1. Otherwise we are left with

Q−1∏
j=ℓ−1

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1].

For the j-th term, if L∗
j+1 ∈ Span(Sj) there are coefficients {αj′}jj′=0 such that L∗

j+1 = ∑i
j′=0 αj′L∗

j′ .
Therefore there are pj+1 choices of {αj′}jj′=0 for L∗

j+1 ∈ Span(Sj) out of pQ+2 total choices. By
linear independence there are pj+1 choices of L∗

j+1 ∈ Span(Sj), so the j-th term is 1− pj+1/pQ+2 =
1− pj−Q−1; then

Q−1∏
j=ℓ−1

Pr[L∗
j+1 ̸∈ Span(Sj) | dim(Sj) = j + 1] =

Q−1∏
j=ℓ−1

(1− pj−Q−1) =
Q−ℓ+2∏

j=2
(1− p−j) = 1− p−2 −O(p−3).

Next, we show Pr[E | D̄] is negligible; that is, assuming L is linearly independent, the probability
that [S]Q+1 = 0 is negligible. This probability is maximized when ℓ is the smallest, so it suffices
to consider the case ℓ = 1. For t = 1, . . . , Q, let Et be the event that [S]t ̸= 0 but [S]t+1 = 0; by
assumption [S]1 = S ̸= 0 so E = ∨Q

t=1Et. We now bound Pr[Et | D̄ ∧ ∧t−1
i=1Ēi] for each t.

Since ∧t−1
i=1Ēi occurs we have [S]t ̸= 0. Let Ut(X⃗) = L∗

t (X⃗)− r∗
t ; if Et also occurs then [S]t ≡ 0

(mod ⟨[Ut]t⟩), so [Ut]t divides [S]t.

Lemma 6.5. For each choice of Ut, there are < 2pt−1 choices of U ′
t such that Ut ≡ U ′

t (mod It).
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Proof. In the trivial case when t = 1 and I1 = {0} we must have U ′
t = Ut, and 1 < 2p1−1 = 2. We

now assume t > 1 so {L∗
i (X⃗)− r∗

i = 0}t−1
i=1 is nonempty: these equations can be written as

MX⃗ = c⃗ for some M ∈ F(t−1)×(Q+1)
p , c⃗ ∈ FQ+1

p .

Write Ut(X⃗) = a⃗ · X⃗ + a, U ′
t(X⃗) = b⃗ · X⃗ + b for some a⃗, b⃗ ∈ FQ+1

p ; a, b ∈ Fp and define

x⃗0 =
{

0⃗, if c⃗ = 0⃗
x⃗, otherwise.

In either case Mx⃗0 = c⃗, so

V (It) = {y⃗ ∈ FQ+1
p |My⃗ = c⃗} = x⃗0 + ker(M).

Since Ut ≡ U ′
t (mod It) we have Ut(x⃗0 + k⃗) = U ′

t(x⃗0 + k⃗) for any k⃗ ∈ ker(M). Plugging this in and
rearranging gives

(⃗a− b⃗) · (x⃗0 + k⃗) = b− a.

Since L is linearly independent, {L∗
i (X⃗)− r∗

i }
t−1
i=1 is as well, so dim(ker(M)) = Q + 2− t. We

then choose k⃗1, . . . , k⃗Q−t+2 to be a basis of ker(M), obtaining Q− t + 3 constraints on a⃗− b⃗ as k⃗

ranges over 0⃗, k⃗1, . . . , k⃗Q−t+2. To examine the linear independence of these constraints, suppose
there is α0, α1, . . . , αQ−t+2 such that

α0x⃗0 +
Q−t+2∑

i=1
αi(x⃗0 + k⃗i) = 0,

Q−t+2∑
i=0

αi(b− a) = 0.

By the second equation, either ∑Q−t+2
i=0 αi = 0 or b = a. If b ̸= a, we haveQ−t+2∑

i=0
αi

 x⃗0 +
Q−t+2∑

i=1
αik⃗i = 0 (a)⇒

Q−t+2∑
i=1

αik⃗i = 0 (b)⇒ α1 = · · · = αQ−t+2 = 0 (a)⇒ α0 = 0,

where (a) follows from ∑Q+2−t
i=0 αi = 0 and (b) follows from independence of {k⃗i}, so there are

Q− t + 3 independent constraints. If b = a and ∑Q−t+2
i=0 αi = 0 the same logic holds, but if b = a

and ∑Q−t+2
i=0 αi ̸= 0,Q−t+2∑

i=0
αi

 x⃗0 = −
Q−t+2∑

i=1
αik⃗i ⇒ x⃗0 = −

Q−t+2∑
i=0

αi

−1Q−t+2∑
i=1

αik⃗i

 ,

which implies x⃗0 ∈ ker(M), so x⃗0 = 0⃗ by the definition of x⃗0. In this case there are Q− t + 2 linearly
independent constraints by the independence of {k⃗i}.

Consequently when b ̸= a, a⃗− b⃗ is contained in a (Q + 1)− (Q− t + 3) = (t− 2)-dimensional
affine subspace of FQ+1

p , and thus there are ≤ pt−2 possible choices for a⃗− b⃗; otherwise the subspace
is ≤ (t− 1)-dimensional, and there are ≤ pt−1 choices of a⃗− b⃗. All together, there are at most

(p− 1)pt−2 + pt−1 = pt−2(2p− 1) < 2pt−1

choices of U ′
t in total.
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Since [S]t ̸= 0 and has degree at most 2, there are at most 2p choices of [Ut]t that will divide
[S]t (the two coprime linear factors of [S]t and all of their scalar multiples). By Lem. 6.5 there are
< 2p(2pt−1) = 4pt possible choices for Ut such that [Ut]t divides [S]t. Since there are pQ+1 total
choices for Ut and the choice of Ut is independent of [S]t,

Pr
[
Et | D̄ ∧

t−1∧
i=1

Ēi

]
<

4pt

pQ+1 = 4p−(Q−t+1).

We then have

Pr[Ē | D̄] = Pr

 Q∧
t=1

Ēt | D̄

 =
Q∏

t=1
Pr
[
Ēt | D̄ ∧

t−1∧
i=1

Ēi

]
>

Q∏
t=1

(1− 4p−(Q−t+1)) =
Q∏

t=1
(1− 4p−t) = 1− 4p−1 −O(p−2),

so Pr[E | D̄] ≤ 4p−1 + O(p−2).
Adding up Pr[D] and Pr[E | D̄], the probability that A aborts in step 3c is at most

(p−2 + O(p−3)) + (4p−1 + O(p−2)) = 4p−1 + O(p−2).

Finally, if A does not abort in step 3c, then in step 3d 0 = S(x⃗) = [S]Q+1(xt) so xt is a root of
[S]Q+1. Therefore A will compute x⃗ and u = P0(x⃗)/P−1(x⃗) = P1(x⃗)/P0(x⃗). The check on u passes
and A returns u, i.e., A succeeds in the 1-DL game. We conclude that A’s advantage is at least
1− 4p−1 −O(p−2).

The remaining case is that R simulates the 1-DL game to A incorrectly, i.e., either B−1 = 1G

or dlogB−1(B0) ̸= dlogB0(B1); in this case we show that M will abort. If the former, M aborts in
step 3a. If the latter, note that dlogB−1(B0) ̸= dlogB0(B1) is equivalent to S(x⃗) ̸= 0. Therefore
0 ̸= S(x⃗) = [S]ℓ(x⃗), so [S]ℓ ̸= 0 and M does not hit step 3b. Therefore either M aborts in step 3c,
or M makes it to step 3d: in the latter case, the check on u′ will never pass so M also aborts.

Regarding A’s runtime, in step 3c A makes up to Q + 1 queries to DL, each of which involves
Q + 2 exponentiations and Q + 1 multiplications; after that, in step 3d A checks consistency of
the answers, which involves 2 exponentiations. So the total number of group operations is up to
(Q + 1)[2(Q + 2)λ + Q + 1] + 2 · (2λ) = (2Q2 + 6Q + 4)λ + (Q + 1)2.

Remark 6.6. Asymptotic-wise, Thm. 6.1 is stronger than what’s needed for a separation result
for OMDL: a successful reduction should work for any PPT (Q + 1)-OMDL solver that succeeds
with non-negligible probability, while our result even rules out reductions that are much weaker, i.e.,
those that only work for PPT (Q + 1)-OMDL solvers whose success probability is overwhelming.
The same goes for Thm. 6.4.

7 Future Work
While our work covers all group-based one-more assumptions in the literature, there are some
potential future directions that remain unexplored. Bauer, Fuchsbauer, and Plouviez [BFP21] note
it appears unlikely that OMDL can be shown to be hard in the GGM via standard applications
of the Schwartz–Zippel lemma, the technique by which all other existing proofs of hardness in the
GGM proceed. Instead, they use a different proof technique, and suggest that this difference may
be linked to the result of [BFL20] that the hardness of Q-OMDL cannot be concluded from the
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hardness of Q′-DL in the AGM (for any Q ≥ 0, Q′ ≥ 1). Our work lends additional credence to
this intuition, showing that Q-OMDL and Q′-DL define infinite and incomparable hierarchies of
problems in the AGM. We believe an intriguing direction for future work is to explore to what
extent results in the AGM function as “meta-theorems” in the GGM. It seems probable that a
problem is part of the Q-DL hierarchy in the AGM if and only if it admits a “standard” proof of
hardness in the GGM: how might this be formalized and proven?
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A Proof of Lems. 5.6 and 5.7
Since Lem. A.1 and Lem. 5.6 are almost identical to [JKKX17, Lemmas 1 and 2], we provide proofs
for them primarily for clarity of exposition, as we fix several typos and other minor mistakes in the
original proofs.

Lemma A.1 ([JKKX17, Lemma 1]). Let u, n ∈ Z>0. Then there is no q⃗ = (q1, . . . , qn) ∈ Zn
≥0 such

that

1. w ≥ Qu;

2. qi ≤ Q for all 1 ≤ i ≤ n,

for w = W (q⃗) and Q = Cu(q⃗) + 1.

Proof. Proof by induction on Q. If Q = 1 then Cu(q⃗) = 0 so there are at most u− 1 nonzero entries
of q. If Item 2 holds then w ≤ u− 1 so Item 1 cannot hold.

Now we show if the claim is false for Q it’s false for Q− 1. Suppose q⃗ is a counterexample to the
claim with Q = Cu(q⃗) + 1. Then q⃗ has at most u− 1 entries ≥ Q; otherwise we’d have Cu(q⃗) ≥ Q
by decreasing these entries Q times. Let (q⃗)′ be q⃗ with the largest u entries decreased by 1, and
w′ = W ((q⃗)′). By assumption w ≥ Qu and qi ≤ Q, so w′ = w − u ≥ Qu− u = (Q− 1)u, q′

i ≤ Q− 1
and Cu((q⃗)′) = Q− 2 by construction. Therefore (q⃗)′ is a counterexample for Q− 1.

Proof of Lem. 5.6. Let M ∈ Fw×Q(t−t′+1)
p be the matrix whose columns are vectors in V : it is

sufficient to show rank(M) < Q(t− t′ + 1). For r ∈ [n] there are qr coordinates of k⃗ with entry r.
Consider the corresponding rows in M and denote this qr ×Q(t− t′ + 1) submatrix as Mr. Note
that the columns of Mr are the vectorsrj −

t∑
ℓ=t−t′+1

α
(ℓ)
j rℓ

 [⃗bi] for j ∈ {0, . . . , t− t′}, i ∈ [Q]

where [⃗bi] is the vector b⃗i restricted to the rows of M with entry r. Therefore rank(Mr) ≤ Q: all
columns with i = i0 are multiples of [⃗bi0 ]. For any qr > Q we then select Q rows of Mr that span the
row space of Mr to form M′

r. For any qr ≤ Q set M′
r = Mr. Let q′

r be the number of rows of M′
r

(so q′
r ≤ Q) and let w′ = W ((q⃗)′). Now let M′ ∈ Fw′×Q(t−t′+1)

p be the concatenation of M′
1, . . . , M′

n.
By construction the row space of M′ equals the row space of M, so rank(M′) = rank(M).

Additionally, Ct−t′+1((q⃗)′) = Ct−t′+1(q⃗) = Q− 1. To see this, by construction Ct−t′+1((q⃗)′) ≤
Q − 1. On the other hand, take v⃗1, . . . , v⃗Q−1 ∈ Vt−t′+1 such that ∑Q−1

i=1 v⃗i ≤ q⃗. Each entry of∑Q−1
i=1 v⃗i is at most Q− 1 so ∑Q−1

i=1 v⃗i ≤ (q⃗)′ since (q⃗)′ is the vector q⃗ with entries > Q decreased to
Q. Therefore Ct−t′+1((q⃗)′) ≥ Q− 1.

By Lem. A.1 we have w′ < Q(t− t′ + 1), so rank(M) = rank(M′) ≤ w′ < Q(t− t′ + 1).

Proof of Lem. 5.7. Recall from Sect. 5.2 that {f⃗u, f⃗u+1, . . . , f⃗u+t′−1} is linearly independent for
any u ≥ 0, and

f⃗ j =
t∑

ℓ=t−t′+1
α

(ℓ)
j f⃗ ℓ for 0 ≤ j ≤ t− t′.
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By the linear independence of {f⃗ (t−t′+j)+1, f⃗ (t−t′+j)+2, . . . , f⃗ t+j} it suffices to show

t∑
ℓ′=t−t′+1

α
(ℓ′)
λ−j f⃗ ℓ′+j

︸ ︷︷ ︸
E

=
t−j∑

ℓ′=t−t′+1

α
(ℓ′+j)
λ +

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j +
t∑

ℓ′=t−j+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j

=
t−j∑

ℓ′=t−t′+1
α

(ℓ′+j)
λ f⃗ ℓ′+j

︸ ︷︷ ︸
F1

+
t−j∑

ℓ′=t−t′+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j +
t∑

ℓ′=t−j+1

 t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j

 f⃗ ℓ′+j

︸ ︷︷ ︸
F2

.

We have

E = f⃗ j ⊙
t∑

ℓ′=t−t′+1
α

(ℓ′)
λ−j f⃗ ℓ′ = f⃗ j ⊙ f⃗λ−j = f⃗λ.

Additionally,

F1 =
t∑

ℓ′=t−t′+1+j

α
(ℓ′)
λ f⃗ ℓ′ = f⃗λ −

t−t′+j∑
ℓ′=t−t′+1

α
(ℓ′)
λ f⃗ ℓ′

.

Finally,

F2 =
t−t′+j∑

ℓ=t−t′+1

 t−j∑
ℓ′=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j +

t∑
ℓ′=t−j+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j


=

t−t′+j∑
ℓ=t−t′+1

 t∑
ℓ′=t−t′+1

α
(ℓ)
λ α

(ℓ′)
ℓ−j f⃗ ℓ′+j

 =
t−t′+j∑

ℓ=t−t′+1
α

(ℓ)
λ f⃗ j ⊙

 t∑
ℓ′=t−t′+1

α
(ℓ′)
ℓ−j f⃗ ℓ′


=

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ f⃗ j ⊙ f⃗ ℓ−j =

t−t′+j∑
ℓ=t−t′+1

α
(ℓ)
λ f⃗ ℓ,

so F1 + F2 = f⃗λ = E.
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