
Multi-Holder Anonymous Credentials
from BBS Signatures

Andrea Flamini1,2, Eysa Lee3, and Anna Lysyanskaya4

1 Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
2 Mathematics Department, University of Trento, Povo, Trento, Italy

andrea.flamini@polito.it
3 Data Science Institute, Brown University, Providence, RI, USA

eysa_lee@brown.edu
4 Computer Science Department, Brown University, Providence RI, USA

anna_lysyanskaya@brown.edu

Abstract. The eIDAS 2.0 regulation aims to develop interoperable dig-
ital identities for European citizens, and it has recently become law. One
of its requirements is that credentials be unlinkable. Anonymous creden-
tials (AC) allow holders to prove statements about their identity in a
way that does not require to reveal their identity and does not enable
linking different usages of the same credential. As a result, they are likely
to become the technology that provides digital identity for Europeans.
Any digital credential system, including anonymous credentials, needs to
be secured against identity theft and fraud. In this work, we introduce
the notion of a multi-holder anonymous credential scheme that allows
issuing shares of credentials to different authentication factors (or “hold-
ers”). To present the credential, the user’s authentication factors jointly
run a threshold presentation protocol. Our definition of security requires
that the scheme provide unforgeability: the adversary cannot succeed in
presenting a credential with identity attributes that do not correspond to
an identity for which the adversary controls at least t shares; this is true
even if the adversary can obtain credentials of its choice and cause con-
current executions of the presentation protocol. Further, our definition
requires that the presentation protocol provide security with identifiable
abort. Finally, presentations generated by all honest holders must be un-
linkable and must not reveal the user’s secret identity attributes even to
an adversary that controls some of the user’s authentication factors.
We design and prove the (concurrent) security of a multi-holder version of
the BBS anonymous credential scheme. In our construction, each holder
is issued a secret share of a BBS credential. Using these shares, the hold-
ers jointly compute a credential presentation that is identical to (and
therefore compatible with) the traditional, single-holder variant (due to
Tessaro and Zhu, Eurocrypt’23) of a BBS credential presentation.

Table of Contents

Multi-Holder Anonymous Credentials from BBS Signatures
Andrea Flamini, Eysa Lee, and Anna Lysyanskaya

1 Introduction . 1
1.1 Our Contribution. 2
1.2 Our Techniques . 3
1.3 Outline . 6

2 Related Works . 6
3 Preliminaries . 7

3.1 Sigma protocols . 9
3.2 BBS signatures . 9

4 Multi-Holder Anonymous Credentials . 11
5 Security Definitions . 12

5.1 Correctness . 13
5.2 Unlinkability . 13
5.3 Presentation with identifiable abort . 15
5.4 Concurrent unforgeability of presentations . 17

6 BBS Multi-Holder Anonymous Credentials . 19
6.1 Credential issuing . 20
6.2 Multi-holder presentation . 22
6.3 Verification . 25
6.4 Extensions . 26

7 Security Analysis . 26
7.1 Correctness of BBS MHAC . 27
7.2 Unlinkability of presentations of BBS MHAC. 27
7.3 Unlinkability of private attributes of BBS MHAC 28
7.4 Presentation with identifiable abort of BBS MHAC 28
7.5 Unforgeability of presentations of BBS MHAC. 28

A Sigma Protocol for Linear Relation . 34
B Analysis of BBS Presentation Protocol in [TZ23]. 35
C BBS MHAC Presentation Protocol Overview . 40
D Private Attribute Unlinkability of BBS MHAC Scheme. 41
E Identifiable Abort of BBS MHAC Scheme . 42
F Unforgeability of the BBS MHAC Scheme . 43

F.1 Unforgeability experiment instantiation . 43
F.2 Unforgeability proof . 45

G Advantage of the Presentation Unforgeability Reduction 54
G.1 Case A: extract the target credential . 54
G.2 Case B: extract a BBS forgery . 56

H Reducing the Size of Credential Shares . 57
I Pedersen Verifiable Secret Sharing . 58

I.1 Holder as a dealer . 58

I.2 Issuer as a dealer . 59
I.3 Issuance without dealer . 59

1 Introduction

According to W3C Verifiable Credential Data Model5, “a verifiable credential is
a tamper-evident credential that has authorship that can be cryptographically
verified”. Verifiable credentials are issued by issuers to holders, and the holders
can use them to create presentations used to prove claims about their identity
to verifiers.

Anonymous credentials are a special kind of verifiable credentials and allow
a holder to obtain and prove possession of a credential to a verifier in a way
that does not require the holder to reveal its identity or the credential itself.
This technology is particularly useful to protect the privacy of the holders by
preventing the issuers and the verifiers to track the holder’s activity.

Anonymous credentials recently attracted renewed interest due to the publi-
cation of the eIDAS 2.0 regulation6, which aims to facilitate secure cross-border
transactions by establishing a framework for digital identity and authentication
for digital services in the EU. The cryptographic community was invited to pro-
vide feedback on this regulation, and the resulting feedback document [BBC+24]
recommends the creation of the EUDI wallet (the digital wallet that Euro-
pean citizens will use to store their credential) which might support the use of
anonymous credentials; it specifically encourages the EU to use the BBS-based
family [BBS04,CL04,ASM06,BL10,CDL16,TZ23,LKWL22] of constructions of
anonymous credentials.

At a minimum, anonymous credentials satisfy two main properties, namely
unforgeability and privacy. Unforgeability guarantees that a user cannot gen-
erate a verifying presentation without the consent of the issuer, and privacy
guarantees that verifiers cannot correlate presentations of the same credential or
learn anything about its attributes not explicitly revealed in the presentation. A
useful additional property we consider is selective disclosure, which allows the
credential holder to choose a subset of signed attributes to reveal to the verifier
during the credential presentation phase [FSS+24].

A natural framework for constructing anonymous credentials, the so-called
CL framework proposed by Camenisch and Lysyanskaya [CL03], is instantiated
in several anonymous credentials systems such as [CL01,CL04,CDL16,PS16,TZ23].
In the CL framework, a credential is a signature on a set of attributes, and to
prove possession of the credential, the holder proves in zero-knowledge that they
hold a signature on a set of attributes that verifies under the credential issuer’s
public key.

BBS Signatures as Anonymous Credentials. Boneh, Boyen and Shacham [BBS04]
gave a group signature scheme that Camenisch and Lysyanskaya [CL04] sug-
gested could be adapted to anonymous credentials. The resulting schemes, BBS
and a variant called BBS+, were subsequently analyzed, improved, and adapted,
in a provably secure fashion, for use in direct anonymous attestation (DAA) and
anonymous credential schemes [ASM06,BL10,CDL16].
5 https://www.w3.org/TR/vc-data-model-2.0/
6 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

1

https://www.w3.org/TR/vc-data-model-2.0/
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

The state-of-the-art security proof for this use of BBS and a zero-knowledge
protocol for proving knowledge of a BBS signature were given by Tessaro and
Zhu [TZ23]. The BBS signature as described in [TZ23] is the most efficient of the
known candidate signatures in the CL framework [CL03,CL04,PS16,CDL16]7
and is also the object of a standardization effort of W3C [LKWL22]8.

Motivation. Digital credentials require that the users protect the cryptographic
material representing the credentials. Corruption, loss, or theft of the device
where this material is stored can result in identity theft and fraud, defeating the
purpose of a digital credential system. For anonymous credentials, the threat is
all the more serious here, as it is impossible to trace how the adversary used a
stolen credential (unlike in linkable verifiable credentials [AAM23]). Addition-
ally, an adversary who compromises a single-factor credential learns sensitive
information about this user, which is a threat to privacy.

Multi-factor authentication is a popular way to enhance the security of digital
authentication. For anonymous credentials, it would amount to storing shares
of credentials on multiple devices and proving possession of the credential in
a distributed fashion. This is similar to how shares of secret keys are used in
threshold signature schemes. In particular, if an adversary corrupts at most t−1
devices (and therefore learns the value of t− 1 shares of a credential), it should
not be able to generate a valid credential presentation. On the other hand, if a
threshold t of the devices agree to present the credential, they can generate a
valid presentation executing a multiparty protocol, while keeping their share of
the credential private.

1.1 Our Contribution

In this work, we introduce multi-holder anonymous credential (MHAC) schemes.
In a MHAC scheme, the credential attributes and the credential itself are not
stored on a single device of a single user, but instead are distributed among
multiple devices and/or holders. An adversary that gains control of fewer than t
devices will be unable to demonstrate possession of the credential or even learn
anything about the private attributes. In order to present a credential, devices
must jointly convince a verifier that a valid credential is distributed among the
parties.

An MHAC scheme addresses the same security goals as a single-holder anony-
mous credential system: unforgeability, which roughly means that the adversary
cannot present credential attributes that it was not issued, and privacy, which
means that a credential presentation reveals nothing other than the intended at-
tribute set and cannot be linked to another presentation of the same credential.

7 A comparison between [CL03,PS16,CDL16,TZ23] is performed in [FSS+24]
8 The authors of the specification have updated the credential format from BBS+ to

BBS signatures after the publication of [TZ23], however they have decided to adopt
an alternative protocol for the creation of the presentation of BBS credentials, which
has recently been included in an update of the paper of [TZ23, Appendix B].

2

Let us go over unforgeability for MHAC in more depth. Suppose an adversary
controls fewer than t holders of a credential with attributes a issued by an
honest issuer. Further, suppose that the adversary can query the issuer for new
credentials with attributes; let ai correspond to credentials from query i. It
can participate in computing several concurrent presentations of a credential
where it controls a subset of the holders, and arbitrarily schedule messages in
these presentations. Suppose some attribute aj (or, more generally, a subset of
attributes (aj1 , . . . , ajℓ)) does not appear any of ai. Then the adversary cannot
create a valid presentation of aj , even if it appears in a.

Moreover, we require that, when the adversary controls fewer than t holders,
its participation in a credential presentation results either in a correct output
for the honest participants, or in the identification (and, as a result, removal) of
at least one of the adversarial holders.

As far as privacy is concerned, we consider two different notions based on
what information the adversary already knows. Specifically, we require unlink-
ability (Definition 8) that applies in the case when the adversary controls the
credential verifier but none of the credential holders; here, a simulator creates
the adversary’s view on input just the attributes revealed as part of creden-
tial presentation, and this simulated view is indistinguishable from the real one.
Additionally, we require attribute hiding (Definition 9) that applies in the case
when the adversary controls fewer than t credential holders involved in present-
ing the credential. Here, the adversary already knows the identity of the holder
devices that computed the credential presentation, so the best we can hope for
is that the adversary does not learn anything it does not already know about
the credential attributes from participating in credential presentation.

Once we put forth these definitions, we satisfy them with a construction of an
efficient MHAC scheme compatible with the BBS anonymous credential scheme
described by Tessaro and Zhu in [TZ23]. By “compatible” we mean that the setup
and verification are identical, and the MHAC credential shares can be derived
from the credential issued in the underlying single-party scheme (here, BBS).
We prove that our MHAC scheme satisfies our security definition. Our scheme
also allows the holders to selectively disclose some of the attributes included in
the credential.

1.2 Our Techniques

First, let us recall BBS anonymous credentials. They require a bilinear pairing
e over groups G1, G2 of order q with generators g1 and g2, and additional
generators h1, . . . , hm for the group G1. The secret key x for the BBS signature
scheme is a random element of Zq, while the public key is pk = gx2 .

A BBS signature on the message vector a = (a1, . . . , am) is of the form (A, e),
where A = C(a)

1
e+x and C(a) is a way to encode a: C(a) = g1

∏m
i=1 h

ai
i . The

BBS verification algorithm verifies that A was computed correctly by checking
that e(A, (pk)ge2) = e(C(a), g2), or, equivalently, that e(A, pk) = e(B, g2), where
B = C(a)A−e.

3

Note that if this equality holds for a given pair A and B, then for any r ∈ Zq,
it will also hold for A = Ar and B = Br = C(a)rA−re = C(a)rA

−e
. Moreover,

given A and B for which this equality holds, and the values (α, β1, . . . , βm, γ)

such that B = gα1 (
∏m

i=1 h
βi

i)A
γ
, the message vector a and the BBS signature on

this vector can be recovered as follows: set r = α, let ai = βi/α, and let e = −γ.
As a result, a zero-knowledge proof of knowledge of the message vector a and

a signature (A, e) boils down to (1) picking a random r and computing A = Ar,
a “blinded” version of the value A; (2) computing the corresponding B = Br;
and (3) proving knowledge of the representation of B in bases g1, h1, . . . , hm and
A. A series of papers [CL04,BL10,CDL16] culminating in the work of Tessaro
and Zhu [TZ23] showed that indeed the resulting protocol is a zero-knowledge
proof of knowledge of a BBS signature.

Credential secret sharing. How do we secret-share a BBS anonymous cre-
dential in such a way that the protocol used to create a presentation is efficient?
Is it always possible for a holder to perform a secret sharing of its credential
irrespective of the type of BBS credential it is issued?

The more naive approach to distributing a BBS credential ((A, e),a) would
be to include in the credential an extra attribute that is never revealed and
distributed among the holders, basically leading to the distribution of a BBS+
anonymous credential [CDL16]. However, this approach would not take full ad-
vantage of the use of the more compact BBS anonymous credentials as described
in [TZ23], and restricts the distribution of the anonymous credential to creden-
tials including a random attribute which is never disclosed.

Instead, we describe how to distribute any BBS credential by providing each
holder with all the attributes signed in that credential, as this is likely to be
the most common application, and does not tie the distribution process to the
kind of BBS credential issued. This is done by secret-sharing the value e of the
BBS signature and providing every holder with the value A−e. Proving that this
distribution of the BBS signature is secure is an unexpectedly tricky task that we
address in the security proof of the unforgeability of presentations (in Section 7.5
and more in detail in Appendix F.2, Case A).

Given our basic construction, we enhance it by adding an optional feature:
the support of distribution of some private attributes {aj}j∈Prv in a that are
especially sensitive and that we might not want to store in the clear on any
device. The remaining attributes in a ({aj}j∈Pub) and the value A will be known
to each credential holder, i.e. they are part of the joint input to all participants.
Since we aim to be very flexible about the way the attributes are distributed, we
plug this feature onto the basic protocol where the value e is t-out-of-n secret-
shared. However, in some circumstances, in particular when a private attribute
is never revealed, the distribution of e becomes unnecessary.

Given its shares e(i), {a(i)j }j∈Prv of e and {aj}j∈Prv as well as the joint input,
each holder participates in a joint computation of the proof of knowledge of a,
A and e, while possibly revealing some of the attributes in {aj}j∈Pub.

4

Our protocol for computing this proof is efficient because the value D =(∏
j∈Prv h

aj

j

)
A−e is (implicitly) provided to all the holders. To be more precise,

we give to each holder {Di}i∈[n], with Di =
(∏

j∈Prv h
a
(i)
j

j

)
A−e(i) , from which

D can be recovered. While hiding the values of {aj}j∈Prv and e, D allows them
to compute the value B as (C(a)A−e)r, which is necessary to build the proof of
knowledge of a BBS signature. The proof of knowledge can be computed by the
holders in a distributed fashion by having each participant prove knowledge of
a different factor of B depending on its secret shares of e and {aj}j∈Prv.

Proving that distributing e and revealing to every holder D is safe is done
via a reduction to discrete logarithm. This reduction receives as input from the
DL challenger (g, h), and from the unforgeability adversary a set of attributes a,
from which it can compute C(a) = g1

∏m
i=1 h

ai
i . The challenging part in design-

ing the reduction resides in the generation of the values A, Ã(= Ae) satisfying
the conditions: (1) logA Ã = logg h, as well as (2) A = C(a)

1
x+logg h . Thus, if

the adversary succeeds in forging a proof of knowledge of this credential, our
reduction solves the discrete logarithm problem.

Access to {Di}i∈[n] is also helpful in achieving the identifiable abort property,
which allows identifying a malicious participant who would cause the protocol to
generate an invalid presentation. When the holders cooperate in the generation
of the proof of knowledge of a representation of B, each participant Pi, i ∈ S
proves knowledge of a representation of a factor B̃i of B =

∏
i∈S B̃i which can

be computed by every other party. Therefore if they generate an invalid proof,
their misbehaviour can be detected by verifying each participant proof.

We can also optimize the size of the credential shares, which otherwise would
be linear in the number of holders (due to the need to store {Di}i∈[n]). Instead,
at issue time, each Di will be signed under a public key used just for this purpose
and each holder stores only its own signed Di. Each holder can then send its
signed Di to others as part of the presentation protocol.

Presentation protocol overview. The presentation protocol executed by the
parties Pi, i ∈ S, |S| = t instructs a protocol participant, the primary party Pj ,

to sample a random r
$←− Zp and broadcast it to the other parties in S. Next, each

participating holder derives A = Ar and B = Br as defined in the presentation
protocol described in [TZ23] that we recall at the beginning of this section.

The simplest case for our protocol is when the presentation discloses all
the attributes {ai}i∈Pub, i.e. the set of revealed indices is Rev = Pub. Then the
presentation is simply a proof of knowledge of a discrete logarithm representation
of B with respect to C(a′) = g1

∏
i∈Rev h

ai
i , {hi}i∈Prv and A, i.e.

B = C(a′)r
∏
i∈Prv

hrai
i A

−e
.

Note that the credential shares contain the values Di, i ∈ S, therefore it is
possible for every participant to compute

– B̃j = C(a′)rD
rλS,j(0)
j , corresponding to the primary party Pj ;

5

– B̃i = D
rλS,i(0)
i ,∀i ∈ S \ {j}, corresponding to each other party;

where λS,i(0) is the i-th Lagrange coefficient w.r.t. participating parties S.
Moreover each party Pi, i ∈ S \ {j} knows a representation of B̃i w.r.t

{hi}i∈Prv, A, and Pj knows a representation of B̃j w.r.t. C(a′), {hi}i∈Prv, A.
Therefore, since B =

∏
i∈S B̃i, we instruct each party Pi, i ∈ S to prove

knowledge of the corresponding B̃i with respect to the aforementioned basis in a
coordinated way so that the proof of knowledge can be aggregated. More specif-
ically the parties execute a variant of the threshold Schnorr signature Sparkle
[CKM23a] producing in output a proof of knowledge of a representation of B
w.r.t. C(a′), {hi}i∈Prv, A. We show that this results in a concurrently secure pro-
tocol.

1.3 Outline

The rest of the paper is organized as follows. We briefly review related works in
Section 2 and preliminaries in Section 3. In Section 4, we define the notion of
multi-holder anonymous credentials, and in Section 5 we give the security notions
a multi-holder anonymous credential must satisfy. In Section 6, we give the
construction of a BBS-based multi-holder anonymous credential, and in Section 7
we prove this scheme secure.

2 Related Works

Distributed computation of zero-knowledge proofs. In [KMR12], the authors de-
scribe a framework for distributing the prover side of sigma protocols over mul-
tiple parties and provide a general characterization of such protocols defining
three different flavors of zero-knowledge. The authors apply their framework to
user-centric protocols, for example, the sigma protocol used to prove knowledge
of a CL anonymous credential [CL04].

The problem of turning the threshold version of a sigma protocol (similar
to [KMR12]) to a non-interactive protocol with respect to the verifier has been
studied in [BF24], where the authors determine the properties that the threshold
sigma protocol must satisfy to obtain an unforgeable threshold signature against
static and active adversaries. In their work the prover side does not require the
existence of the combiner since they assume a broadcast channel between the
provers.

Our work follows the setting adopted in [BF24], and more generally by thresh-
old digital signatures [CKM23a,DKL+23], since we design a protocol that does
not require the interaction between the provers and the verifier.

Therefore, in our security analysis, we do not need to consider the case in
which the verifier is malicious and we only focus on specific security notions for
the application to anonymous credential systems which are:

– the unforgeability of the presentations, meaning that an adversary who cor-
rupts at most t − 1 holders (i.e. knows t − 1 shares of credentials) can not
forge a presentation;

6

– the unlinkability of presentation, meaning that if the participants to the
protocol are honest, the presentation is indistinguishable from a simulated
presentation.

– the unlinkability of private attributes, meaning that an adversary who cor-
rupts at most t− 1 holders and passively corrupts the issuer can not distin-
guish if a credential includes a specific private attribute.

– the identifiable abort, meaning that the honest parties can identify a misbe-
having participant when a presentation creation fails.

Distributed anonymous credentials. There is a line of works which describes
solutions to distribute anonymous credentials on two distinct devices which have
distinct computational power or corruption models; for instance [HSS23,HS21]
distributing an anonymous credential between a digital wallet on a smart phone
and a computationally constrained object such as a smart card. In both cases
the involvement of the constrained object in the creation of the presentation is
essential, but the amount of operations it must perform does not depend on the
size of the credential and of the attributes to disclose, and the authors try to
keep it as small as possible. Protocols in which the credential is shared between a
device (e.g. smartphone) and a server or a blockchain have also been considered
in [LHAT20,MY24].

In our work, we describe a protocol which allows the storage and the pre-
sentation of credentials over an arbitrary number of devices, with an arbitrary
threshold of them needed to present the credentials. Each party is assumed to
have enough computational power to carry out the protocol, and we only require
that the adversary can corrupt a number of devices below the specified threshold
needed to present the credential.

3 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}, and let x $←− S denote sampling an
element x from a set S uniformly randomly. Let x $←− A(i1, . . . , in) denote that x
is the output of the probabilistic algorithm A which takes in input (i1, . . . , in).
Alternatively, we may make explicit the randomness used by A by writing x←
A(i1, . . . , in;R). A deterministic protocol V taking in input (j1, . . . , jm) and
outputting y is represented as y ← V (j1, . . . , jm).

Security and Communication Model. We work in the synchronous model against
a static adversary that can actively corrupt up to t−1 holders in the presentation
protocol. We assume point-to-point private communication between the issuer
and each holder. For the credential presentation protocol, we assume parties
have access to a private, authenticated broadcast channel between the set of
parties involved in the credential presentation protocol. Moreover, we assume
that each session is identified by a unique session identifier ssid agreed upon by
the parties involved in the protocol execution, which is included in each message
sent between parties and in broadcasts.

7

Private broadcast and synchrony are simplifying assumptions to describe a
simple t-of-n three-round protocol achieving presentation unlinkability and iden-
tifiable abort, but it is possible to loosen these requirements. The private channel
is needed to achieve the unlinkability of presentations, and we can remove the
broadcast channel using techniques similar to those used in [BLT+24] and in
[CKM23b] while preserving the unforgeability of presentations. Removing syn-
chrony is more tricky. Without either synchrony or an honest majority, we cannot
achieve identifiable abort or guarantee termination (see [CLOS02,CL17]). How-
ever, in the asynchronous setting we can still achieve selective abort, meaning
that the adversary can choose which executions produce output. The adversary
is not able to produce dishonest presentations in either of these settings.

Bilinear Groups. A bilinear group (or pairing group) is a trio of groups (G1,G2,GT)
with an efficient map (or pairing) operation e : G1 × G2 → GT, such that (1)
for any x,∈ Zp and y ∈ Zp, e(gx1 , g

y
2) = e(g1, g2)

x·y and (2) e(g1, g2) ̸= 1. There
are three types of pairings [GPS08]: type-1, in which G1 = G2; type-2, in which
G1 ̸= G2 and there exists an efficient isomorphism ψ : G2 → G1; and type-3, in
which G1 ̸= G2 and there does not exist an efficient isomorphism ψ.

Secret Sharing. A classic technique to create a t-of-n secret sharing of a value
v is Shamir’s secret sharing [Sha79]: a dealer samples a random (t − 1)-degree
polynomial p(·) such that p(0) = v and gives each party Pi their own point
on the polynomial p(i). Given at least t points, Lagrange interpolation can
be used to reconstruct p and retrieve v. We use Share(t, n, v) to denote the
dealer’s algorithm for generating a t-of-n Shamir secret sharing of v. That is,
{p(i)}i∈[n]

$←− Share(t, n, v), where p(0) = v. We also make use of verifiable se-
cret sharing (VSS), a variant of secret sharing which considers a possibly corrupt
dealer who may distribute shares that do not correspond to a valid sharing of
a value. VSS allows parties to verify that their received shares correspond to a
valid sharing of some value v.

Hardness Assumptions. We recall hardness assumptions BBS and our construc-
tion rely on: the discrete logarithm (DL) assumption and the q-strong Diffie-
Hellman (qSDH) assumption.

Definition 1 (Discrete logarithm assumption). Let pp ← (G, p, g) where
G is a cyclic groups of prime order p with generator g. The discrete logarithm
(DL) assumption holds in G if for any PPT adversary A

Pr[A(pp, g, gx) = x)] ≤ negl(λ)

where x $←− Zp, (g, g
x) ∈ G2 and κ is the security parameter.

Definition 2 (q-Strong Diffie-Hellman assumption [BB08]). Let G1 and
G2 be two cyclic groups of prime order p with generators g1 and g2, respectively.

8

The q-Strong Diffie-Hellman (qSDH) assumption holds in (G1,G2) if for any
PPT adversary A

Pr[A(G1,G2, g1, {g(x
i)

1 }i∈[q], g2, g
x
2) = (c, g

1
x+c

1)] ≤ negl(λ)

where (g1, {g(x
i)

1 }i∈[q], g2, g
x
2) ∈ Gq+1

1 ×G2
2 and λ is the security parameter.

3.1 Sigma protocols

Sigma protocols are a type of proof of knowledge with a three-move structure,
where the first message is a commitment from the prover, the second is a random
challenge from the verifier, and the final message is a response from the prover.
We recall the formal definition of a sigma protocol

in the notation of [Dam02] as follows.

Definition 3 (Sigma protocol [Dam02, Definition 1]). Given a relation R,
a sigma protocol π for the relation R is an interactive protocol between a prover
P and a verifier V with 3-move form, i.e. P sends a commitment cmt to V, who
replies to P with a random challenge ch, and finally P computes a response rsp
that is sent back to V. π also satisfies the following properties:

– π has completeness, which means that if P and V execute π with common
input y and private input w to P, with (w, y) ∈ R, V always accepts;

– π has special soundness, which means that, from any y, and from a pair of
valid conversations for input y, (cmt, ch, rsp), (cmt, ch′, rsp′) with ch ̸= ch′,
one can easily compute w s.t. (w, y) ∈ R;

– π has (special) honest-verifier zero-knowledge (HVZK), which means that
there exists a polynomial time algorithm Sim which on input a statement y
and a random challenge ch outputs a transcript (cmt, ch, rsp) with the same
distribution of the real conversations between honest P and V on input y.

In later sections we make use of a standard sigma protocol for linear relations,
which we recall in Appendix A (Figure 1) for reference.

3.2 BBS signatures

The BBS anonymous credential scheme presented by Tessaro and Zhu [TZ23] is
one of the pillars of our work. The authors revisit the security analysis of the
BBS signature [BBS04] and provide a novel protocol to prove possession of a
credential.

The idea of using BBS signatures [BBS04] to generate anonymous credentials
was initially proposed by Camenisch and Lysyanskaya in [CL04, Section 5], and
a slightly modified version known as BBS+ was studied and proven unforge-
able by [ASM06,CDL16]. [TZ23] later showed the modification is not needed for
unforgeability and propose a protocol for proof of possession (which could be
applied also to BBS+ signatures) which produces proofs smaller in size.

9

Definition 4 (BBS signature scheme [BBS04,CL04]). The algorithms defin-
ing the BBS digital signature are the following:

– PgenBBS(κ). Let G1 = ⟨g1⟩,G2 = ⟨g2⟩ and GT be groups of prime order p,
and e : G1×G2 → GT be the pairing operation. Sample h1, . . . , hm

$←− G1 and
set the set of public parameters pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm).

– KGenBBS(pp). Sample a random x
$←− Zp. Compute X2 = gx2 , and set sk← x,

and pk← X2.
– SignBBS(pp, sk, (a1, . . . , am)). Compute C(a) = g1

∏m
i=1 h

ai
i . Randomly gen-

erate e $←− Zp and compute A = C(a)
1

e+x . Output the pair (A, e) ∈ G1 × Zp.
– VerifyBBS(pp, pk, (A, e),a). Set C(a) = g1

∏m
i=1 h

ai
i and check that e(A,X2g

e
2) =

e(C(a), g2), or equivalently

e(A,X2) = e(C(a)A−e, g2). (1)

Lemma 1 ([TZ23, Theorem 1]). The BBS signature scheme is strongly un-
forgeable against chosen messages under the qSDH assumption.

Zero-Knowledge Proofs of Knowledge for BBS Signatures. A few effi-
cient zero-knowledge proofs of knowledge for BBS signatures are given by [TZ23].
We recall for convenience the protocol for Partial Disclosure given in [TZ23, Sec-
tion 5.2] in Appendix B, Protocol 4.

If we assume that the issuer only issues credentials containing BBS signatures
generated according to Definition 4, this protocol is a proof of knowledge of a
BBS signature and allows the prover to reveal some of the attributes signed in
it. We refer to the set of revealed attributes of the signature with the symbol
Rev ⊆ [m], and to the hidden attribute with the symbol Hid = [m] \ Rev.

At a high level, the prover first randomizes the signature material and then
executes a sigma protocol for linear relations. The verifier then checks that the
randomized signature material is consistent with the public key of the signer pk,
the sigma protocol for linear relations produced a valid response, and that the
BBS verification algorithm verifies for the randomized signature material (i.e.,
e(A,X2) = e(B, g2)).

Non-interactive and fresh proofs of knowledge. To present in a non-interactive
way a BBS credential, a sigma protocol to prove knowledge of the credential
(see Figure 2) is made non-interactive by applying the Fiat-Shamir transform.
Moreover, in order to be sure that the proof of knowledge of the credential is
fresh (i.e. has been created after the session with the verifier has been opened),
the verifier sends a random nonce nonce that the prover incorporates into the
proof. For completeness, we explicitly describe the presentation algorithm and
the verification in Appendix B, Figure 3.

10

4 Multi-Holder Anonymous Credentials

In this section we introduce the concept of a Multi-Holder Anonymous Credential
(MHAC) scheme. At high level, a MHAC scheme allows an issuer to issue shares
credi of a credential to multiple holders Pi, i ∈ [n]. Then, if at least a threshold
t of the holders agree to present the credential, they can execute a multi-party
protocol which returns a valid presentation pres of the credential. However, with-
out the participation of at least t holders, they are unable to produce a valid
presentation.

Definition 5 (Multi-holder anonymous credential scheme). A MHAC
scheme consists of the following algorithms:

– Issuer setup algorithm:

IssSetup(κ)
$−→ (pp, (pk, sk)).

This algorithm generates public parameters pp (e.g. the number of attributes
m) and the issuer key pair (pk, sk);

– Multi-holder credential issuing protocol:

CredIss(pp, sk, t, n, {Pi}i∈[n], {ai}i∈[m],Prv)
$−→ {credi}i∈[n].

This protocol is executed by the issuer (possibly interacting with the holders
Pi, i ∈ [n]) to generate shares {credi}i∈[n] of a credential with threshold t for
attributes {aj}j∈[m], where the attributes {aj}j∈Prv,Prv ⊆ [m] are “private”
and not necessarily known in the clear to all holders.

– Multi-holder presentation protocol:

CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)
$−→ pres.

This protocol is executed by a set {Pi}i∈S of t holders who jointly create a
presentation pres for nonce and public attributes {ai}i∈Rev.

– Multi-holder presentation verification algorithm:

VfPres(pp, pk, nonce, {ai}i∈Rev, pres)→ 0/1.

This algorithm is executed by the verifier who checks if pres is a valid presen-
tation (for nonce and {ai}i∈Rev) of a credential cred issued by pk such that,
if {a′j}j∈[m] are the attributes included in cred, then ∀j ∈ Rev, aj = a′j.

Now we introduce a special class of MHAC scheme which is of practical
interest: a MHAC scheme compatible with secure anonymous credential schemes.
We say that a MHAC scheme is compatible with an anonymous credential scheme
if the MHAC is built on top of an existing anonymous credential scheme in a
way that:

11

– an anonymous credential can be reconstructed from t credential shares.
Therefore, it is worth defining an algorithm ReconstructCred({credi}i∈S), |S| ≥
t that returns the reconstructed credential cred of the underlying anonymous
credential scheme, if the shares {credi}i∈S are consistent and valid shares.

– the presentation pres produced by CredPres has the same structure and is
verified in the same way as in the underlying anonymous credential scheme.
Moreover, as long as all the holders participating to the presentation pro-
tocol are honest, the distribution of the output pres is the same as for the
distribution of the presentations of the anonymous credential scheme.

Note that it is straightforward to convert between classic anonymous creden-
tials and their compatible multi-holder variants.

1. To convert a multi-holder version into the single holder, the issuer can simply
send t shares to a single party execute the algorithm ReconstructCred to
generate the associated credential and generate the presentation on its own.

2. To convert from a single holder credential to a multi-holder credential, the
party holding the full credential acts as the issuer and uses the issuing algo-
rithm to split the credential into shares. It distributes the shares to the other
holders and keeps only the share it generated for itself (i.e., it deletes the
full credential). In this case, it is desirable that the secret-sharing specified
by the MHAC scheme does not rely on specific restrictions on the structure
of the underlying single holder credential that, in some cases, might not be
satisfied.
For example, if the secret sharing is performed by distributing an attribute
s that is always kept hidden, then it will not be possible for a holder to
distribute over multiple devices a credential that is not provided of this
extra attribute.

Remark 1. In the above definition, we describe an issue algorithm that outputs
credential shares based on credential attributes it takes as input. However, an
issuer may be adversarial and the user might want to ensure that the adversary
does not learn anything about the private attributes being certified (even while
ensuring that these attributes satisfy a particular policy). Thus, as part of our
construction, we give a protocol that securely implements the issue algorithm in
a way that ensures the security of the private attributes.

5 Security Definitions

In this section we define the security notions associated to MHAC schemes,
namely correctness (Section 5.1), unlinkability (Section 5.2), presentation with
identifiable abort (Section 5.3), and concurrent unforgeability of presentations
(Section 5.4).

Definition 6 (Secure MHAC scheme). We say that a MHAC scheme is
secure if it satisfies the notions of correctness (Definition 7), unlinkability (Defi-
nitions 8 and 9), identifiable abort (Definition 11), and concurrent unforgeability
of presentations (Definition 12).

12

5.1 Correctness

Intuitively, correctness states that running credential presentation with an hon-
estly generated credential will always verify.

Definition 7 (Correctness). A MHAC scheme is correct if for values nonce,
{ai}i∈[m],Rev ⊆ [m] \ Prv, S ⊆ [n], |S| = t, t ≤ n, it holds that

1← VfPres(pp, pk, nonce, {ai}i∈Rev, pres)

where

(pp, (pk, sk))
$←− IssSetup(κ)

{credi}i∈[n]
$←− CredIss(pp, sk, t, n, {ai}i∈[m],Prv)

pres
$←− CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)

5.2 Unlinkability

When defining unlinkability, there are two general notions: (1) an adversary
cannot “link” usage of the same credential across different presentations and (2) if
a credential contains private attributes (i.e., attributes not known to all holders),
an adversary cannot learn any information about these private attributes from
presentations.

Unlinkability of presentations. This first notion of unlinkability across cre-
dential presentations we can only hope to capture in the setting where the cre-
dential presentation is generated by all honest parties. Intuitively, unlinkability
of a credential across different presentations cannot be realized if an adversary
participates in the presentation because it inherently must know the credential
in order to participate in the protocol. Moreover, to convince another party that
a presentation the adversary took part in corresponds to a particular credential,
the adversary can reveal the credential and the randomness it used to produce
the transcript.

Experiment 1 (ExpunlinkA (κ) — MHAC Presentation Unlinkability).

1. The adversary A generates a set of public parameters pp, an issuer public
key pk, and a multi-holder credential {credi}i∈[n] on attributes {ai}i∈[m] of
its choosing issued under pk. The adversary sends this information to the
challenger C together with the information related to the presentation that C
must produce, namely nonce, {ai}i∈Rev ⊆ {ai}i∈[m].

2. C runs pres← CredPres(pp, pk, t, {(Pi, credi)i∈S , {ai}i∈Rev, nonce}) with a set
S ⊆ [n], |S| = t and records the transcript of the protocol execution as T .
C then checks that VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 1 . If the presen-
tation does not verify, C aborts and the experiment outputs a random bit

13

b9. Otherwise, C samples uniformly at random a bit b. If b = 1, C over-
writes (pres, T) with the output from a simulated presentation as (pres, T)←
SimCredPres(pp, pk, t, τ, {ai}i∈Rev, nonce). Otherwise, C keeps (pres, T) as is.

3. C sends (pres, T) to the adversary A.
4. If b = b′, the experiments outputs 1. Otherwise the experiment outputs 0.

Definition 8 (Unlinkability of MHAC presentations). We say that the
presentations of a MHAC scheme are unlinkable if there exist an algorithm
SimCredPres(pp, pk, t, {ai}i∈Rev, nonce) such that an adversary A can win ExpunlinkA (κ)
with at most negligible advantage. That is,∣∣∣Pr[ExpunlinkA (κ) = 1

]
− 1

2

∣∣∣ ≤ ν(κ), where ν(κ) is negligible in κ.

Unlinkability of private attributes. For settings in which some attributes are
not known to all holders, we introduce another notion of unlinkability to capture
that an adversary does not learn anything about these secret attributes when
less than t holders are corrupt. Note that these private attributes are determined
when the credential is issued and are always a subset of the attributes that are
hidden from the verifier.

Experiment 2 (Expunlink−attr
A (κ) — MHAC Unlinkability of Private At-

tributes).

1. The challenger C runs (pp, (pk, sk))
$←− IssSetup(κ) and sends (pp, (pk, sk)) to

the adversary A.
2. A chooses and sends to C:

– a set of attributes a1, . . . , am−2;
– two challenge private attributes a(0)m−1, a

(1)
m−1;

– A subset cor ⊆ [n] of parties to corrupt, with |cor| < t.
3. C flips a coin b

$←− {0, 1} and runs CredIss with A honestly with private
attribute a(b)m−1 and public attributes a1, . . . , am−2

10. C plays the role of the
issuer and of the honest parties, and C sends to A its shares of credential
{credi}i∈cor.

4. The adversary may choose to run CredPres a polynomial number of times
with sets S ⊆ [n] of size t, distinct values nonce, and sets Rev of its choosing
(which do not contain the private attribute), with C playing the role of the
honest parties.

5. At the end, A sends C its guess b′. If b = b′, the experiment outputs 1,
otherwise the experiment outputs 0.

9 When the MHAC scheme is compatible with an anonymous credential scheme
(which is our main case of study), this step can be replaced by an instruction
to the challenger to verify the validity of the shares it is provided by executing
ReconstructCred({credi}i∈[n])→ cred and verifying the validity of cred.

10 Note that the challenger C, which in this experiment acts as an issuer, knows the
value of the private attribute. This is not always true in general, in fact a private
attribute might be unknown both to the holders and to the issuer.

14

Definition 9 (Unlinkability of Private Attributes). We say that the pri-
vate attributes of a MHAC scheme are unlinkable if any PPT adversary A can
win Expunlink−attr

A (κ) with at most negligible advantage. That is,∣∣∣Pr[Expunlink−attr
A (κ) = 1

]
− 1

2

∣∣∣ ≤ ν(κ), where ν(κ) is negligible in κ.

Remark 2. Note that Experiment 1 and 2 could be modified to allow the chal-
lenger to generate the public parameters using a trapdoor and send them, with
the trapdoor, to the adversary. However, our definition, which instructs the chal-
lenger to generate the parameters honestly (Experiment 2), or allows the adver-
sary to choose them (Experiment 1), is stronger and encompasses its variant
that involves using trapdoors in the parameter generation.

Remark 3. One might ask what the motivation is behind having private at-
tributes not known to holders. The private attributes might be attributes that
are sometimes revealed, but only in extremely rare circumstances. In these cir-
cumstances, the holders reconstruct the private attribute, reveal it, prove its
correctness, and then erase it. For private attributes that are never revealed, we
can consider a multi-authority scenario in which issuers use a private attribute
to ensure that multiple credentials are issued to the same entity. For example,
one issuer may be responsible for physically making sure that a user’s holder
devices meet an appropriate measure of hardware security; a private attribute
can be created by these devices at the time this “device binding” credential is
issued. Another issuer can incorporate the secret device binding attribute into
the credential it issues to take advantage of the hardware security guarantees
that comes with it: the holders can only successfully prove knowledge of this
attribute if they are using the appropriate hardware. In this case, the value of
the attribute can never be reconstructed. This use is specific to multi-authority
case which we do not formally address in this paper, however.

5.3 Presentation with identifiable abort

We adapt the notion of identifiable abort [IOZ14] to credential presentations.
Intuitively, in our setting, we wish to capture that a protocol satisfying iden-
tifiable abort allows the protocol participants to detect malicious behavior by
other participants which would prevent the creation of a valid presentation. Our
definition is weaker than what is typically used in general multiparty computa-
tion [IOZ14, Appendix B] because we do not aim to realize any functionality. We
only want to be assured that the protocol does not abort if all the participant
are honest, and that when the protocol aborts, at least a corrupted participant
is detected.

We do that by defining the notion of an identifiable abort detector algorithm
which is an algorithm run by each participant Pi of a multi-party protocol Π
and allows to determine if one of the other participants Pj has misbehaved.

Definition 10 (Identifiable Abort Detector Algorithm). Let Π be the
multi-party protocol and let {Pi}i∈S be the set of participants to a protocol exe-
cution. An identifiable abort detector W is an algorithm which can be executed

15

by any party Pi, i ∈ S and is a “wrapper” interactive algorithm that relays mes-
sages between Π algorithm run by Pi and the other participants in S. Essentially,
instead of executing protocol Π, party Pi executes W ◦Π which is defined as fol-
lows:

– W is initialized by the public inputs to the protocol, and it keeps state (on a
special state tape) after processing each message exchanged between Π and
Pi.

– Each time Π sends a message m to Pi, m is forwarded to W ’s input tape
before reaching Pi. W ’s processing of m results in either:
1. forwarding m to Pi: more precisely, W clears its input tape, updates its

state tape, and outputs (message,m) on its output tape, resulting in the
message going through. In this case Pi keeps executing Π;

2. aborting the protocol and identifying another participant, Pj, that devi-
ated from the prescribed protocol: more precisely, W writes (abort, j) for
some j ∈ S on its output tape. In this case Pi aborts the protocol and a
message (abort, j) is broadcast to Π 11.

Put another way, W observes the incoming communication of a party Pi

and has the option to either let the communication through, or to abort the
protocol; each time it chooses to abort, it also accuses another participant, j,
of maliciously deviating from the protocol. Whenever W outputs (abort, j) for
some j ∈ S, it causes Pi to abort the protocol as well.

Definition 11 (Presentation with identifiable abort). Let CredPres′ be a
multi-holder credential presentation algorithm. If there exists an efficient identi-
fiable abort detector algorithm W for CredPres′ such that the following properties
hold for the composed algorithm CredPres =W ◦ CredPres′:

– Correctness: Whenever CredPres never instructs a party to abort, the output
pres of CredPres verifies, i.e. VfPres(pp, pk, nonce, {ai}i∈Rev, pres) = 1.

– Identifiability: Whenever CredPres outputs a message is (abort, j) for some
j ∈ S, Pj did not follow the protocol instructions and is therefore corrupt.

We say that CredPres satisfies identifiable abort.

Remark 4. Note that this property is not concerned with assuring that only a
legitimate holder can carry out the presentation protocol without being detected.
Legitimacy of the credential being presented is addressed in the unforgeability of
presentations property described in Section 5.4. For identifiable abort, we only
want to be assured that if a holder would cause the protocol to output an invalid
presentation, the honest parties can identify the this holder. Conversely, if the
algorithm does not abort, the presentation will be valid.

11 This instance covers the case where another participant has output a message
(abort, k).

16

5.4 Concurrent unforgeability of presentations

We describe an experiment defining the unforgeability of a multi-holder anony-
mous credential presentation algorithm CredPres. The experiment resembles the
security experiment for threshold signature schemes. We can think of the shares
of the t-of-n multi-holder credential as shares of the signing key in a threshold
signature scheme. The message that gets signed is the nonce nonce provided by
the verifier before the presentation is created (see Figure 3).

If the adversary has t or more shares of a t-of-n multi-holder anonymous
credential, we will write that the adversary is given a “full credential”, since with
t shares the adversary can produce presentations on its own.

The experiment is divided in three phases: a Setup phase, a Training phase
and a Forgery phase. In the Setup phase, the challenger generates the parameters
and credential issuing keys. During the Training phase, the forger is allowed
polynomially many queries to an issuing oracle and a credential presentation
oracle. There are two types of issuing queries: (1) a query for a full credential
where the adversary gets all the shares of the credential and can present it
on its own from now on; and (2) a query for a “target” credential for which the
adversary is only provided a subset of fewer than t shares. We limit the adversary
to just one such target query; this is without loss of generality (see Observation 4
below).

Finally, in the Forgery phase, the forger outputs a tuple consisting of a nonce,
attributes, and credential presentation. If this tuple verifies and the contents
of the tuple do not correspond to a credential produced by the issuing oracle
or a presentation output by the presentation oracle, then the forger wins the
experiment. Otherwise, the forger loses.

The experiment Expc−uf−pres
A is given below and summarized in Figure 5.

Experiment 3 (Expc−uf−pres
F — Concurrent unforgeability of MHAC pre-

sentation).

Setup phase. The challenger executes IssSetup(κ), which returns the set of public
parameters pp and a key pair (sk, pk). The challenger sends (pp, pk) to F .

Training phase. The forger F has access to two oracles, Oiss and Opres, which it
may query in the following ways:

– F can query an issuing oracle Oiss for a polynomial number qI of full cre-
dentials cred for attributes {ai}i∈[m] of its choice, and one single query for
a partial credential (target credential) {credi}i∈cor for {ai}i∈[m].12
• Issuance of full credentials: on input the set of attributes {ai}i∈[m] chosen

by F , Oiss provides F with a credential cred = {credi}i∈[n]
$←− CredIss(pp, sk,

n, t, {ai}i∈[m],Prv) on these attributes.
Oiss stores a record (cred) in a credential table CT.

12 In this experiment we always assume that the adversary knows all the attributes
included in the credentials it is issued, therefore we do not need to mention the
private attributes.

17

• Issuance of the target credential: F gives as input to Oiss the tuple
({ai}i∈[m], t, n, cor) where {ai}i∈[m] are attributes chosen by F to include
in the credential, (t, n) are the parameters of the secret sharing of the
credential, and cor ⊂ [n], |cor| < t, are the parties F wants to corrupt.
Oiss computes CredIss(pp, sk, t, n, {ai}i∈[m],Prv)→ {credi}i∈[n] and gives
to F only the shares corresponding to the parties in cor.
Oiss stores the value targetCred← ({credi}i∈[n], n, t, cor).

– F can query a presentation oracle Opres for a polynomial number qP of pre-
sentations of the target credential specifying the nonce nonce to use and the
attributes {ai}i∈Rev to reveal 13. We allow the adversary to open concurrently
many sessions of the presentation protocol for the target credential and inter-
leave messages between different sessions. Therefore, to distinguish sessions,
F includes a unique session identifier ssid to messages sent to Opres. To sim-
plify the description, we will omit ssid which is included in every message
exchanged between the holders.
• Presentation of the target credential targetCred: F gives in input to Opres

the tuple (nonce, {ai}i∈Rev, hon) which specifies the nonce for the presen-
tation, the set of attributes to reveal and the set of parties hon ⊆ [n]\ cor
s.t. |cor|+ |hon| = t.
Opres, controlling hon, interacts with F , controlling cor, in the execution
of CredPres({Pi, credi}i∈cor∪hon, {ai}i∈Rev, nonce, pp, pk). If Opres sends its
last protocol message associated to that specific session, it stores in the
presentation table PT the record (nonce, {ai}i∈Rev)

14.

Forgery phase. At the end of the training, F produces a forgery (nonce⋆, {a⋆i }i∈Rev⋆ ,
pres⋆) given by a presentation pres⋆ for (nonce⋆, {a⋆i }i∈Rev⋆) of its choice.
F wins the experiment if VfPres(nonce⋆, {a⋆i }i∈Rev, pres

⋆) = 1 and the follow-
ing win conditions related to the queries made by F are satisfied:

– For every record (nonce, {ai}i∈Rev) in the presentation table PT:
(nonce⋆, {a⋆i }i∈Rev⋆) ̸= (nonce, {ai}i∈Rev).
This check guarantees that the forgery is not a forgery generated in a pre-
sentation query of the target credential.

– For every record cred in CT, being {ai}i∈[m] the attributes associated to cred,
{ai}i∈Rev⋆ ̸= {a⋆i }i∈Rev⋆ .
This guarantees that the forgery is not derived from a full credential that has
been issued by Oiss.

Observation 1. In this security game, we consider the issuance of credentials
as an algorithm which is executed by the issuer given the adversary’s input
13 Note that F can generate presentations for the full credentials on its own, without

the help of any oracle, and since it can query for the issuance of full credentials, we
omit the ability to query presentations of credentials it does not control.

14 Opres does not store the presentation output of the protocol execution because it
might not learn its value since in the protocol execution it always sends its messages
first

18

({ai}i∈[m], t, n, cor). However, in general, the issuing of credentials might happen
via an issuing protocol which allows an adversary to keep some attributes hidden
from the issuer, so we should allow the adversary to make queries for credentials
without sending all the attributes in the clear as we do. However, this kind of
query can be omitted in the security definition if we require issuing protocols that
always allow the challenger of the experiment (acting on behalf of the issuer) to
extract the attribute values, even when the adversary tries to keep them hidden,
for example by means of straight-line extractable NIZKPs.

Definition 12 (Concurrent unforgeability of MHAC presentations). We
say that a MHAC scheme has concurrently unforgeable presentations if for any
PPT adversary F , F wins with at most negligible probability in Expc−uf−pres

F (κ).
That is, Pr

[
Expc−uf−pres

F (κ) = 1
]
≤ ν(κ), where ν(κ) is negligible in κ.

Observation 2. In practical scenarios, the nonce is sent to the provers by a
verifier who wants to receive a fresh presentation (see Figure 3). Therefore, if
a presentation protocol is unforgeable, i.e. the adversary can not forge a presen-
tation for attributes {ai}i∈Rev and a nonce nonce of its choice, then it will not
succeed in forging a presentation for a nonce chosen by the verifier.

Observation 3. We remark that our unforgeability experiment (Experiment 3)
also captures the standard unforgeability for anonymous credentials. In our def-
inition, an adversary can win Experiment 3 by either producing a presentation
forgery of the target credential or by producing a presentation for a (full) creden-
tial that was never queried by the adversary. An adversary that forges credentials
in the traditional sense wins the unforgeability experiment via the latter condi-
tion.

Observation 4. Note that we could allow the adversary of the unforgeability
game to receive a polynomial number qIp = qIp(κ) of partial credentials. It is
easy to see that a scheme secure according to our definition of security is secure
also according to this stronger notion of security. However, the reduction to the
cryptographic assumption would reduce its tightness by a factor 1

qIp
, which is

non-negligible in κ. This would impact the dimension of the parameters when it
comes the time to instantiate the scheme.

6 BBS Multi-Holder Anonymous Credentials

In this section we describe a secure MHAC scheme which is compatible with
the BBS anonymous credential scheme [TZ23]. According to the definition of
MHAC scheme compatible with an anonymous credential scheme, the credential
issuance algorithm consists in computing a secret sharing of a BBS credential,
and the presentation structure is the same as the one presented by Tessaro and
Zhu in [TZ23, Section 5] (Figure 3) .

19

Design principle. Every issuer can decide the structure, or schema, of the cre-
dentials it issues, determining, for example, (1) the number of attributes, which
could even be zero, (2) the semantic meaning of the attributes and (3) the pos-
sible values associated with each attribute, ranging from the binary value to all
Zp. As we have mentioned in Section 4, it is desirable to design a MHAC scheme
compatible with an anonymous credential scheme that does not require a specific
structure of the underlying anonymous credential. This, to take full advantage of
the compatibility of the MHAC scheme and to consistently ensure that a holder
can convert any credential it is provided into a multi-holder credential. The only
way to achieve this, and to have a secret sharing completely independent of the
credential structure, is to secret share the signature component, which in this
work is done by distributing the value e of the BBS signature (A, e).

Private attributes. Our construction (optionally) allows private attributes; they
are secret-shared by the holders. Attributes not known in the clear are denoted
by the set Prv, and attributes known by all holders are denoted as Pub. Though
our protocols are described in terms of t-of-n Shamir secret sharing, replacing
the sharing algorithm enables using different access structures (e.g., enforcing
that one party always participates in presentations). This extension is given in
Section 6.4.

6.1 Credential issuing

In this section, we describe protocols involving the issuer. The issuer setup (Al-
gorithm 1) only needs to be run once locally by the issuer.

Algorithm 1 (Issuer setup algorithm).

IssSetupBBS(κ)
$−→ (pp, (pk, sk))

The algorithm IssSetupBBS(κ) works as follows.

1. PgenBBS(κ)→ pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)
2. KGenBBS(pp)→ (sk, pk) = (x, gx2)
3. Output (pp, (pk, sk))

The credential issuance protocol can be run by the issuer with any set of n
holders. We give two variants of credential issuance CredIssBBS: one for issuing a
credential when there are no private attributes (Protocol 1) and another when
there are private attributes (Protocol 2).

Credential Issuance without Private Attributes. In the case where all at-
tributes are known in the clear, the holders simply supply the attributes to
the issuer, and the issuer can produce the shares of the credential locally.
Upon receiving attributes {ai}i∈[m], the issuer creates a credential as follows.

20

Protocol 1. CredIssBBS(pp, sk, {ai}i∈[m]) — Multi-holder issuing proto-
col (without private attributes)

1. Compute a BBS signature as (A, e)
$←− SignBBS(sk, {ai}i∈[m])

2. {e(i)}i∈[n]
$←− Share(t, n, e)

3. For i ∈ [n], set credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈[m],⊥)) with
Dj = A−e(j) and output credi to party Pi.

Credential Issuance with Private Attributes. In the case where some at-
tributes may not be known to all holders, each party’s credential will have a
share of each private attribute rather than the full attribute itself. Let Prv
denote the set of private attributes and Pub the set of attributes known by
each holder.
Our starting point here is multi-base Pedersen verifiable secret sharing (VSS)
[Ped91]15, for example as presented by Cachin et al. [CKLS02] (but with
threshold t < n/2 since we are in the synchronous case). That is, for each
private attribute aj ∈ Prv, each party Pi’s share of the credential contains
a Shamir secret share a(i)j ; additionally, the mth attribute am is always a
private attribute that is meant to serve as the randomness for Pedersen
VSS, so Pi also has a Shamir share of it, a(i)m .
To simplify our notation, we will include m in the set of private attributes
Prv and [m] = Prv ∪ Pub.
Finally, for each Pi, a share of multi-base Pedersen commitment Ci =∏

j∈Prv h
a
(i)
j

j to these attribute shares is known. We assume this was set up
prior to the protocol’s execution and that each holder has also published a
straight-line extractable [Fis05,KS22,LR22,CDG+24] proof of knowledge πi
of these secret shares.
To create a credential with private attributes, the issuer performs the fol-
lowing:

Protocol 2. CredIssBBS(pp, sk, {πi}i∈[n], {Ci}i∈[n],Prv, {ai}i∈Pub) —
Multi-holder issuing protocol (with private attributes)

1. For each Pi, verify proof πi corresponding to each Ci, and verify that
{Ci}i∈[n] are consistent with a Pedersen VSS of C =

∏
j∈Prv h

aj

j .
2. Compute C(a) = g1C

∏
j∈Pub h

aj

j . Pick a random e and compute
A = C(a)1/(x+e).

15 The private attributes may not be known by the holders and may not be known even
by the issuer. If the holders do not know the private attribute, the Pedersen VSS
can be executed starting from a value known by the issuer who divides it in shares,
or by the holders who generate the secret sharing of an unknown attribute [Ped91,
Section 5.2], and in this case not even the issuer will know this value.

21

3. Generate a secret sharing of e, {e(i)}i∈[n]
$←− Share(t, n, e).

4. For all k ∈ [n], compute

Dk = CkA
−e(k)

=
∏

j∈Prv

h
a
(k)
j

j A−e(k)

,

then set, for all i ∈ [n]

credi = (A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)),

and output credi to party Pi.

Observation 5. Note that, in case one of the private attributes is never revealed
and it is secret-shared using a t-out-of-n Shamir secret sharing, it is not necessary

to secret-share also the value e. In that case, the values Di =
∏

j∈Prv h
a
(k)
j

j and

credi = (A, e, {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

However, to keep the presentation of the scheme consistent with the case
where private attributes (1) are not used, or (2) are distributed in a way dif-
ferent from the (t, n)−Shamir secret sharing, or (3) might be revealed in rare
circumstances (see Remark 3), in our description of the protocol we secret-share
also the value e.

6.2 Multi-holder presentation

An overview of the presentation protocol is depicted in Appendix C, Figure 4.
We recall that the attributes revealed, denoted as Rev, is a subset of the public
attributes Pub. The remaining attributes not revealed to the verifier are denoted
as Hid. An extension for handling attributes shared only among a subset of n′ < n
holders is described in Section 6.4.

Every presentation protocol execution is associated with a unique session
identifier ssid which is included in every message sent by the participants over
the private broadcast channel, therefore, we will omit it in our description.

This protocol is run by a subset {Pi}i∈S ⊆ {P1, . . . ,Pn}, |S| = t, with each
party Pi ∈ S holding a share of a credential

credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

Protocol 3. CredPresBBS — Multi-holder presentation protocol

Let j ∈ S refer to a designated “primary party” Pj . Upon receiving the nonce

22

nonce from a verifier to present a credential with a set of revealed attributes
a′ = {aj}j∈Rev, parties Pi for i ∈ S produce the credential presentation as
follows.

Signature material randomization phase. Parties begin the presenta-
tion by first producing randomness.
1. The primary Pj first samples an element r $←− Zp broadcasts r to

every other party in S.
2. Every party Pi for i ∈ S computes:

A = Ar, D =
∏
k∈S

Dk
λS,k(0), C(a′) = g1

∏
j∈Rev

h
aj

j ,

B̃j =
(
C(a′) ·

(∏
k∈Hid\Prv

hak

k

)
·DλS,j(0)

j

)r
, B̃i =

(
D

λS,i(0)
i

)r
,

B =
∏
i∈S

B̃i =
(
C(a′) ·

(∏
k∈Hid\Prv

hak

k

)
·D
)r
.

where λS,i(0) denotes the Lagrange coefficient for interpolating party
Pi’s share with the parties indexed by S. Actually, B can be com-
puted only by the primary party.

Sigma protocol execution phase. The participants next jointly gen-
erate a proof of knowledge of a representation of B w.r.t.
C(a′), {hi}i∈Hid, A.
3. Parties begin the proof by doing the following:

– Pj samples α(j), {β(j)
i }i∈Hid, γ

(j) $←− Zp and computes

Uj = C(a′)α
(j)

·
∏
i∈Hid

h
β
(j)
i

i ·Aγ(j)

.
– Every other party Pk for k ∈ S \ {j} instead samples
{β(k)

i }i∈Prv, γ
(k) $←− Zp and computes

Uk =
∏
i∈Prv

h
β
(k)
i

i ·Aγ(k)

.
All the participants Pi, for i ∈ S, then compute commitments to
their Ui as comi = Hcom(ssid, nonce, Ui) and broadcast comi to the
other parties.

4. Upon receiving comk from every other party k ∈ S \ {i}, each Pi

opens its commitment by broadcasting Ui to every other party.
5. For each Uk that party Pi receives from each Pk, for k ∈ S \ {i}, if
Uk is not a valid opening for comk, then Pi outputs (abort, k) and
aborts.

23

6. For each k ∈ S, Pk computes:

U =
∏
i∈S

Ui, ch = Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
,{

z
(k)
i

}
i∈Prv

=
{
β
(k)
i + ch

(
r · a(k)i · λS,k(0)

)}
i∈Prv

,

z(k)e = γ(k) + ch
(
−e(k) · λS,k(0)

)
and broadcasts {z(k)i }i∈Prv and z(i)e .
The primary Pj additionally computes and broadcast

z(j)r = αj + ch · r,
{
z
(j)
i

}
i∈Hid\Prv

=
{
β
(j)
i + ch · (air)

}
i∈Hid\Prv

and broadcasts z(j)r , {z(j)i }i∈Hid\Prv.
7. Upon Pi receiving {zi}i∈Hid, z

(j)
e , z

(j)
r from the primary Pj , check

Uj · B̃ch
j

?
= C(a′)z

(j)
r ·

∏
i∈Hid

h
z
(j)
i

i ·Az(j)
e .

If the equality does not hold, then Pi outputs (abort, j) and aborts.
Otherwise, upon receiving z

(k)
e , {z(k)i }i∈Prv from party Pk for k ∈

S \ {j}, check

Uk · (B̃k)
ch ?

=
∏
i∈Prv

h
z
(k)
i

i A
z(k)
e .

If the equality does not hold, then Pi outputs (abort, k) and aborts.
8. For each k ∈ S, party Pk computes

zr = z(j)r , {zi}i∈Hid\Prv =
{
z
(j)
i

}
i∈Hid\Prv

,

{zi}i∈Prv =

{∑
i′∈S

z
(i′)
i

}
i∈Prv

, ze =
∑
i∈S

z(i)e .

where j corresponds to the index of the primary. Pk sets

pres←
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
and outputs the tuple (nonce, pres) as the output of the protocol.

Note that it is crucial to include the revealed attributes in the challenge
computation (Step 6) to avoid the principal revealing the attributes in a subset

24

of Hid ∩ Pub different from the one agreed with the other parties participating
in the presentation protocol.

When distributing the value e is unnecessary (see Observation 5), the presen-
tation protocol must be modified so that the principal carries out the creation
of the response corresponding to A. This leads to a straightforward variant of
the presentation protocol whose security can be proved as an exercise.

Comparing computational and communication cost to BBS We can evaluate the
cost of our protocol as a function of the number t of parties participating in
the protocol, hidden attributes h in the presentation, of which p are private
attributes p < h, and the number of attributes m. The principal party per-
forms 4 broadcasts and, omitting the computation of D, computes the following
exponentiations:

– in the second step: 1 to compute A, (m− h) to compute C(a′), h− p+ 2 to
compute B̃j , t− 1 to compute all the B̃i, i ∈ S \ {j};

– in the third step: h+ 2 exponentiations to compute Uj ;

for a total amount of m+ h− p+ t+ 4 exponentiations
The other parties each perform only 3 broadcasts and computes the following

exponentiations:

– in the second step : 1 to compute A, (m− h) to compute C(a′), h− p+2 to
compute B̃j , t− 1 to compute all the B̃i, i ∈ S \ {j};

– in the third step: p+ 1 exponentiations to compute Uk;

for a total amount of m+ t+ 3 exponentiations.
Part of these exponentiations are executed to perform the identifiable abort

checks; if we omit these checks, the number of exponentiations is reduced because
the party Pi does not have to compute the values B̃k for k ̸= i.

The centralized case described in [TZ23] requires the following exponentia-
tions:

– 1 to compute A = Ar;
– m− h to compute C(a′) and other h+ 2 to compute B;
– h+ 2 to compute the proof of knowledge of a representation of B.

For a total number of m+ h+ 5 exponentiations.

6.3 Verification

Since our MHAC scheme is compatible with the BBS anonymous credential
scheme, the verification algorithm is exactly the same as the one described in
[TZ23].

Algorithm 2 (Multi-holder presentation verification algorithm).

VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres)→ 0/1

25

Let pres =
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
. The verifier runs the same verification

algorithm as in the centralized case [TZ23]:

U ← B
−ch

C(a′)zr
∏
i∈Hid

hzii A
ze
,

ch
?
= Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
, e(A,X2)

?
= e(B, g2).

If the relations hold, the verifier outputs 1. Otherwise, outputs 0.

6.4 Extensions

Flexible presentation subsets. Let us refer to any subset of holders who can
present a MHAC using their shares of credential as a presentation subset for the
given credential. In this work we have described a scheme where the attributes
{aj}j∈Prv are shared among the holders in an homogeneous way using a (t, n)-
Shamir secret sharing, so any subset of t parties is a presentation subset.

This construction can be easily generalized, allowing the issuer to share one
attribute only among a subset of the holders (performing a (t′, n′)- Shamir secret
sharing with n′ < n), or even to a single holder (in this case, the cooperation of
this holder will be necessary to create the presentation). Therefore, the presen-
tation subsets can be any subset of holders that know enough shares for each
attribute. The participants will also be required to deterministically choose a
factorization of B which allows them to generate the proof of knowledge of the
representation in a coordinated way.

Share size optimization. In Appendix H we describe an optimization to the size
of the shares of the credentials. As currently given, the size of each credential
share is linear in the number n of participants due to each party knowing the
values Di of every other group member. This can be reduced by having the issuer
give each party Pi only its own value Di along with a signature σi on Di and
some values binding Di to the multi-holder anonymous credential. In the first
step of the presentation protocol, the participants broadcast their values comi

together with the values (Di, σi) corresponding to their share and the issuer’s
signature.

Distributing the issuer. Note that while our issuing protocol (Protocol 1) is
described in terms of a single issuer, distributing the issuer can be achieved by
replacing computation of the BBS component (Steps 1 and 2) with a distributed
protocol such as [DKL+23].

7 Security Analysis

In this section we prove our BBS MHAC scheme from Section 6 satisfies the se-
curity properties defined in Section 5. We split the proof into four parts, showing
that our BBS MHAC satisfies correctness, unlinkability, identifiable abort, and
unforgeability.

26

Theorem 3. Let ΠMHAC−BBS = (IssSetupBBS,CredIssBBS,CredPresBBS,VfPresBBS).
Assuming BBS is SUF-CMA and the DL assumption holds in our group G1,
ΠMHAC−BBS is a concurrently secure MHAC scheme in the programmable ran-
dom oracle model satisfying the security properties in Section 5 against an active
static adversary corrupting less than t holders and an honest-but-curious issuer.

The proof follows from Lemmas 2, 3, 4, 5, and 6.

7.1 Correctness of BBS MHAC

Lemma 2. ΠMHAC−BBS satisfies correctness (Definition 7).

Proof. Checking the steps of the presentation protocol it is easy to see that the
holders in possession of a BBS MHAC execute in a multi-party fashion the same
operations described in the presentation protocol in [TZ23], namely they per-
form the signature material randomization phase computing A and B such that
e(A,X2) = e(B, g2), and then they execute the sigma protocol execution phase
which outputs a proof of knowledge of B w.r.t. C(a), {hi}i∈Hid, A. Therefore the
correctness of ΠMHAC−BBS follows from the correctness of the algorithm for the
presentation of a BBS anonymous credential.

7.2 Unlinkability of presentations of BBS MHAC.

Lemma 3. ΠMHAC−BBS satisfies presentation unlinkability (Definition 8) in the
programmable random oracle model.

Proof. To prove unlinkability, we show there exist an algorithm SimCredPres(·)
which simulates an honest presentation of a multi-holder credential.

Regarding the multi-holder BBS anonymous credential scheme, it being com-
patible with the BBS anonymous credential scheme [TZ23], we can choose as
SimCredPres(pp, pk, τ, {ai}i∈Rev, nonce) the same algorithm used to simulate the
generation of presentation of a BBS anonymous credential presented in [TZ23] 16

that we recall in Appendix B. The transcript T of the communication between
the participants is instead generated as a random string of a given length which
is indistinguishable from a real transcript since the participants execute the pro-
tocol over a private broadcast channel.

Since the challenger of the experiment programs the random oracle, the simu-
lated presentation is indistinguishable from the real one, and the simulation fails
only with negligible probability if we allow the adversary to query the random
oracle a polynomial number of times. ⊓⊔
16 We recall that, together with the public key pk, the adversary must provide the

challenger C with a pair (U1, U2) such that e(U1, pk) = e(U2, g2) which the simulator
must use to simulate the generation of the values A,B. Such a pair is assumed
to be known for every BBS credential issuer because it can be obtained from any
presentation of any credential issued by that specific issuer, as it is specified in
[TZ23,CDL16,LKWL22].

27

7.3 Unlinkability of private attributes of BBS MHAC

Lemma 4. ΠMHAC−BBS satisfies private attribute unlinkability (Definition 9).

We provide a proof sketch below and give the formal proof in Appendix D.
Proof Sketch. It is possible to design a reduction to the hiding property [KL07]
of the Pedersen commitment scheme [Ped91] which is perfectly hiding.

The adversary A of private attribute unlinkability sends to the challenger (i.e.
the reduction) B two attributes a∗0, a∗1 and the set of public attributes {ai}i∈Pub.
The reduction B sends the same messages to the challenger C of the hiding
property of Pedersen commitment who samples a bit b uniformly at random and
computes a commitment c ∈ G1 to a∗b and sends it to B.

The reduction B uses the received commitment to create the shares of cre-
dential for A, and its own partial shares of credential because it does not know
the shares of the attribute a∗b committed to by C.

During the presentation protocol queries the reduction B simulates the exe-
cution of the presentation protocol programming the random oracle.

At the end of the training, the adversary A outputs a bit b′ specifying their
guess about the attribute included in the credential, and B forwards b′ to C.

7.4 Presentation with identifiable abort of BBS MHAC

Lemma 5. Assuming that the protocol participants communicate over an au-
thenticated channel, Hcom is a secure commitment scheme, ΠMHAC−BBS satisfies
presentation with identifiable abort (Definition 11).

We sketch the proof of Lemma 5. A more detailed proof is given in Appendix E.
Proof Sketch. We observe that Protocol 3 already describes the composition of
a presentation protocol with the associated identifiable abort detector algorithm
W that manifests itself in Step 5 and Step 7. It is easy to see that correctness
holds because if W , which is already included in Protocol 3, does not output
⊥ at the end of Step 5, the participants have created a shared first message U
and can compute a shared challenge ch. Then if every participant Pi correctly
proves knowledge of a representation (w.r.t. the prescribed bases) of B̃i, these
proofs can be aggregated, leading to a proof of knowledge of a representation of
B. Concerning identifiability, it is easy to see that if the algorithm W outputs
(abort, i), the party Pi has misbehaved, either because it has not opened the
commitment to Ui correctly, or because it has not created a valid zero-knowledge
proof of B̃i.

7.5 Unforgeability of presentations of BBS MHAC.

Lemma 6. Assuming BBS is SUF-CMA and the DL assumption holds in our
group, ΠMHAC−BBS satisfies concurrent unforgeability of presentations (Defini-
tion 12) against an active static adversary corrupting less than t holders and an
honest-but-curious issuer.

We sketch the security proof of Lemma 6 and we provide a complete proof in
Appendix F.

28

Proof Sketch. To prove that ΠMHAC−BBS is unforgeable according to the security
notion of Definition 12, we instantiate the unforgeability experiment Expc−uf−pres

F (κ)
in the case of BBS MHAC in Appendix F.1, which results in the definition of
Expc−uf−pres

F,BBS (κ). Then, we show how it is possible to use an adversary F of the ex-
periment Expc−uf−pres

F,BBS (κ) as a subroutine of a reduction B to the DL assumption,
if the adversary forges a presentation derived from the target credential (Case
A), or to the qSDH assumption, if the adversary forges a presentation derived
from another credential it was never issued (Case B). More precisely, a reduction
that rewinds the adversary F will end up extracting, from the adversary’s forg-
eries (that are proofs of knowledge of a BBS credential) a credential that will fall
into one of these two cases (as we show in Appendix F.2). It is easy to see that,
for MHAC schemes compatible with secure anonymous credential schemes this
proving Case B is trivial, since it is possible to easily reduce to the unforgeability
of the digital signature scheme underlying the anonymous credential scheme.

Proving Case A instead is more challenging, and in this sketch proof we limit
to describe how our reduction can set up the unforgeability experiment to reduce
the DL assumption.

We consider a forger F who can forge a presentation associated to the target
credential it is issued.

We must define a reduction B interacting with F , and with the challenger
CDL of the DL problem (Definition 1), who can win the DL experiment with
non-negligible probability, if F wins the unforgeability experiment with non-
negligible probability.

The reduction B receives in input the tuple (p,G1, g, h) from CDL, where
(g, h) ∈ G2

1 is an instance of the discrete logarithm problem that B needs to
solve.

Setup Phase. B must generate the public parameters to send to F , and the is-
suer’s public key for the BBS signature scheme. It must generate it in a way that,
when F sends an issuance query ({ai}i∈[m], t, n, cor) for the target credential, it
will be able to generate t− 1 shares of the target credential for the parties in cor
corrupted by F

{credi}i∈cor ← ((A, {e⋆(i)}i∈cor, {Di}i∈[n], {aj}j∈[m]),

which is a secret sharing of a BBS credential ((A, e⋆), {ai}i∈[m]) where the value
e⋆ = logg h, and is unknown to B17. In particular, B(g, h) must generate pp, x
in a way that, for any {ai}i∈[m] ∈ Zm

p , it will be able to compute the value A =

C(a)
1

x+e⋆ , which is univocally determined by the attributes once DL challenge
(g, h) and pp, x are fixed. Additionally, B must be able to generate D = A−e⋆

17 We recall that in this experiment we do not consider private attributes because the
challenger always learns the attributes from the online-extractable proofs π it receive
from the holders in the issuing protocol (Protocol 2).

29

that is secret shared in {Di}i∈[n] which is implicitly included in every share of
credential.

To do that, B performs the following operations:

1. samples the group generator of G2, g2
$←− G2, the issuer’s secret key x $←− Zp,

and sets X2 = gx2 as in Algorithm 1;
2. sets k ← gxh, k ∈ G1, which is the trapdoor that allows B to compute,
∀a = {ai}i∈[m] ∈ Zm

p the values A,A−e⋆ satisfying Ax+e⋆ = C(a);

3. generates the public parameters pp as follows: γ0, γ1, . . . , γm
$←− Zp then,

set g1 ← kγ0 as the generator of G1 and hi = kγi ,∀i ∈ [m] and pp ←
(p,G1,G2,GT , e, g1, g2, h1, . . . , hm);

4. sends pp, X2 to F .

The simulation of parameter generation and key generation is indistinguishable
from a real execution of the parameter generation because the key generation is
calculated exactly the same way, and the elements (g2, g1, h1, . . . , hm) are chosen
uniformly at random in G2 × Gm+1

1 . However, B knows the discrete logarithm
of the elements in G1 with respect to the basis k = gxh.

Training Phase. During the Training Phase the adversary F we consider in Case
A will send an issuance query for the single target credential, giving in input to
Opres the tuple ({ai}i∈[m], t, n, cor), |cor| = t− 1.
Without loss of generality we can restrict to the case t = n, and cor = [t− 1].

Having received ({ai}i∈[m], t, n, cor) from F , B computes α = logk C(a),
which is

α = γ0

m∑
i=1

γiai.

Being k = gxh = gx+e⋆ , for the unknown e⋆, the knowledge of α allows B to
compute

A = C(a)
1

x+e⋆ = (kα)
1

x+e⋆ = (k
1

x+e⋆)α = gα,

Ae⋆ = (gα)e
⋆

= (ge
⋆

)α = hα.

In summary, B simulates the issuance of the target credential as follows:

1. computes α← γ0
∑m

i=1 γiai and sets A← gα and D ← (hα)−1;

2. simulates a secret sharing of e⋆: {e⋆(i)}i∈cor
$←− Z|cor|

p ;
3. sets Di ← A−e⋆(i) ,∀i ∈ cor and Dn ← D

∏
i∈corD

−1
i ;

4. B sets {credi}i∈cor ← ((A, {e⋆(i)}i∈cor, {Di}i∈[n], ({aj}j∈[m])).

This completes the simulation of the issuance of the target credential.
Note that B knows all the information associated with the target credential

apart from the value e⋆(n) = − logADn.
When F sends to B a query to create a presentation of the target credential,

with input (nonce, {ai}i∈Rev, hon), we can assume that F controls the primary

30

party who sends to B the value r ∈ Zp. Then B can compute A = Ar, B =

C(a)rA
−e⋆

= C(a)rDr and B̃n = Dr
n. Given this information, B can simulate

the presentation protocol by programming the random oracle similarly to how
it is done in [CKM23a].

We include all the remaining details of the simulation of Case A, and the
whole analysis of Case B, in Appendix F.2.

We highlight that our reduction can simulate the unforgeability experiment
without rewinding the adversary, therefore the reductions both to the DL as-
sumption and to the qSDH assumption18 described in Appendix F.2 allow the
adversary to open concurrent presentation session during the training phase.
This guarantees the concurrent security of the BBS multi-holder anonymous
credential scheme ΠMHAC−BBS.

Acknowledgments. Andrea Flamini acknowledges support from Eustema S.p.A.
through the PhD scholarship and is supported by the QUBIP project, funded by the
European Union under the Horizon Europe framework program [grant agreement no.
101119746]. Eysa Lee was supported by the Data Science Institute at Brown Univer-
sity. Anna Lysyanskaya was supported by NSF Grants 2312241, 2154170, and 2247305,
as well as funding from a Brown University Seed Award and Meta.

References

AAM23. Mobile Driver’s License (mDL) implementation guidelines, version 1.2. https:
//www.aamva.org/topics/mobile-driver-license, 01 2023.

ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
SCN 2006, volume 4116 of LNCS, pages 111–125, 2006.

BB08. Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the sdh assumption in bilinear groups. Journal of Cryptology, 21(2):149–177,
2008.

BBC+24. Carsten Baum, Olivier Blazy, Jan Camenisch, Jaap-Henk Hoepman, Eysa
Lee, Anja Lehmann, Anna Lysyanskaya, René Mayrhofer, Hart Montgomery,
Ngoc Khanh Nguyen, Bart Praneel, abhi shelat, Daniel Slamanig, Stefano
Tessaro, Søren Eller Thomsen, and Carmela Troncoso. Cryptographers’ feed-
back on the eu digital identity’s ARF. https://github.com/user-attachments/
files/15904122/cryptographers-feedback.pdf, 2024.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Annual international cryptology conference, pages 41–55. Springer, 2004.

BF24. Michele Battagliola and Andrea Flamini. Distributed fiat-shamir trans-
form: from threshold identification protocols to signatures. Cryptology ePrint
Archive, 2024.

BL10. Ernie Brickell and Jiangtao Li. A pairing-based daa scheme further reduc-
ing tpm resources. In International Conference on Trust and Trustworthy
Computing, pages 181–195. Springer, 2010.

18 The strong unforgeability of BBS signatures is proven to hold in [TZ23] under the
qSDH assumption.

31

https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf

BLT+24. Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi
Zhu. Twinkle: Threshold signatures from ddh with full adaptive security. In
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 429–459. Springer, 2024.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 13th ACM confer-
ence on Computer and communications security, pages 390–399, 2006.

BS23. Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
Draft 0.6, 2023.

CDG+24. Megan Chen, Pousali Dey, Chaya Ganesh, Pratyay Mukherjee, Pratik
Sarkar, and Swagata Sasmal. Universally composable non-interactive zero-
knowledge from sigma protocols via a new straight-line compiler. Cryptology
ePrint Archive, 2024.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation
using the strong diffie hellman assumption revisited. In Trust and Trustwor-
thy Computing: 9th International Conference, TRUST 2016, Vienna, Aus-
tria, August 29-30, 2016, Proceedings 9, pages 1–20. Springer, 2016.

CKLS02. Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl.
Asynchronous verifiable secret sharing and proactive cryptosystems. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Se-
curity, pages 88–97, 2002.

CKM23a. Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr
threshold signatures. In Helena Handschuh and Anna Lysyanskaya, edi-
tors, Advances in Cryptology – CRYPTO 2023, pages 678–709, Cham, 2023.
Springer Nature Switzerland.

CKM23b. Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr
threshold signatures. Cryptology ePrint Archive, 2023.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lec-
ture Notes in Computer Science, pages 93–118. Springer, 2001.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Security in Communication Networks: Third International Con-
ference, SCN 2002 Amalfi, Italy, September 11–13, 2002 Revised Papers 3,
pages 268–289. Springer, 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Annual international cryptology conference,
pages 56–72. Springer, 2004.

CL17. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery
in secure multiparty computation. Journal of Cryptology, 30(4):1157–1186,
2017.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages
494–503, 2002.

Dam02. Ivan Damgård. On σ-protocols. Lecture Notes, University of Aarhus, De-
partment for Computer Science, 84, 2002.

32

DKL+23. Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance. In
2023 IEEE Symposium on Security and Privacy (SP), pages 773–789. IEEE,
2023.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Annual International Cryptology Conference, pages
152–168. Springer, 2005.

FSS+24. Andrea Flamini, Giada Sciarretta, Mario Scuro, Amir Sharif, Alessandro
Tomasi, and Silvio Ranise. On cryptographic mechanisms for the selective
disclosure of verifiable credentials. Journal of Information Security and Ap-
plications, 83:103789, 2024.

GPS08. Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, pages
2004–2023, 2021.

HSS23. Julia Hesse, Nitin Singh, and Alessandro Sorniotti. How to bind anonymous
credentials to humans. In 32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 3047–3064, Anaheim, CA, August 2023. USENIX Association.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In Advances in Cryptology–CRYPTO 2014:
34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part II 34, pages 369–386. Springer, 2014.

KL07. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography:
principles and protocols. Chapman and hall/CRC, 2007.

KMR12. Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp. Efficient threshold
zero-knowledge with applications to user-centric protocols. In Information
Theoretic Security: 6th International Conference, ICITS 2012, Montreal, QC,
Canada, August 15-17, 2012. Proceedings 6, pages 147–166. Springer, 2012.

KS22. Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction in the
random oracle model with applications to signature aggregation. In Interna-
tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 279–309. Springer, 2022.

LHAT20. Wouter Lueks, Brinda Hampiholi, Greg Alpár, and Carmela Troncoso. Tan-
dem: Securing keys by using a central server while preserving privacy. Pro-
ceedings on Privacy Enhancing Technologies, 2020:327–355, 07 2020.

LKWL22. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The
BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-01, In-
ternet Engineering Task Force, October 2022. Work in Progress.

LR22. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable
σ-protocols in the global random-oracle model. In Theory of Cryptography
Conference, pages 203–233. Springer, 2022.

MY24. Jamal H Mosakheil and Kan Yang. Silentproof: Anonymous authentication
with blockchain-backed offloading. In Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security, pages 1361–1377,
2024.

Pas03. Rafael Pass. On deniability in the common reference string and random oracle
model. In Advances in Cryptology-CRYPTO 2003: 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003.
Proceedings 23, pages 316–337. Springer, 2003.

33

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference, pages
129–140. Springer, 1991.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In International conference on the theory and applications of cryptographic
techniques, pages 387–398. Springer, 1996.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29-March 4, 2016, Pro-
ceedings, pages 111–126. Springer, 2016.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting bbs signatures. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 691–721. Springer, 2023.

Unr15. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Advances in Cryptology-EUROCRYPT 2015: 34th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II
34, pages 755–784. Springer, 2015.

A Sigma Protocol for Linear Relation

We reproduce a sigma protocol for linear relations [BS23, Figure 19.8] in Fig-
ure 1, which will be used as a building block for our construction. An extensive
description of this protocol and related ones can be found in [BS23, Section 19.5].

Letting pp← (G, p, g1, . . . , gm), Figure 1 can be used to prove knowledge of
a representation of a statement h ∈ G with respect to the bases g1, . . . , gn ∈ G
for the relation

RLR(pp) = {(x1, . . . , xm, h) ∈ Zn
p ×G :

m∏
i=1

gxi
i = h}.

Theorem 4 ([BS23, Theorem 19.11]). The generic linear protocol in Fig-
ure 1 is a Sigma protocol for the relation RLR. Moreover, it provides special
soundness and is special HVZK.

34

Sigma protocol for linear relations

P
(
(x1, . . . , xm), h =

m∏
i=1

gxi
i

)
V
(
h =

m∏
i=1

gxi
i

)
r1, . . . , rm

$←− Zp,

R←−
m∏
i=1

grii
R

ch
$←− Zp

ch

for i ∈ {1, . . . ,m}
zi ←− ri + ch · xi z1, . . . , zm

Rhch ?
=

m∏
i=1

gzii

Fig. 1. Sigma protocol for RLR(pp). The public parameters pp defining the relation are
p,G, g1, . . . , gm.

B Analysis of BBS Presentation Protocol in [TZ23].

In this section we focus on the security analysis of Protocol 4 proposed in [TZ23].
The protocol is obtained by applying the Fiat-Shamir transform to the sigma
protocol in Figure 2. It easy to see that this sigma protocol satisfies the com-
pleteness property, we recall how it is possible to prove the HVZK property and
we extensively discuss the special soundness property that the protocol satisfies,
because it requires some caveat based on the use of the sigma protocol.

Protocol 4. Presentation of a BBS credential of [TZ23]

Signature material randomization phase. The holder
– sets C(a)← g1

∏m
i=1 h

ai
i and C(a′)← g1

∏
i∈Rev h

ai
i

– samples uniformly at random r
$←− Zp and computes

A← Ar

B ← C(a)rA
−e

= C(a′)r
(∏
i∈Hid

hrai
i

)
A

−e

Sigma protocol execution phase. The holder must prove knowledge of
a representation of B w.r.t. the bases C(a′), {hi}i∈Hid, A.

35

To do so, given the statement B the holder executes the sigma protocol
for the linear relation defined by the following parameters:

RLR(G1, p, C(a
′), {hi}i∈Hid, A) =

=
{(

(x, {yj : j ∈ Hid}, z)︸ ︷︷ ︸
witness

, B︸︷︷︸
statement

)
: B = C(a′)x

(∏
j∈Hid

h
yj

j

)
A

z
}

(2)

with RLR(G1, p, C(a
′), {hi}i∈Hid, A) ⊂ Z|Hid|+2

p ×G1. The prover will set
the witness as the tuple (r, {raj : j ∈ Hid},−e) for the statement B 19.

Interactive BBS credential presentation of [TZ23]

Prover P
(
(A, e, {ai}i∈Hid), ({aj}j∈Rev)

)
Verifier V

(
{aj}j∈Rev

)
r

$←− Zp, A← Ar, B ← C(a)rA
−e

vr, {vj}j∈Hid, ve
$←− Zp,

U ← C(a′)vr
(∏
j∈Hid

h
vj
j

)
A

ve A,B,U

ch
$←− Zp

ch

zr ← vr + ch · r
zj ← vj + ch · raj , ∀j ∈ Hid

ze ← ve + ch · (−e)

rsp← (zr, {zj}j∈Hid, ze) rsp

UB
ch ?

= C(a′)zr

 ∏
j∈Hid

h
zj
j

A
ze

e(A,X2)
?
= e(B, g2)

Fig. 2. Sigma protocol for RBBS(pp, X2). We recall that C(a′) ← g1
∏

i∈Rev h
ai
i and

C(a)←
∏m

i=1 h
ai
i .

Honest Verifier Zero-Knowledge. Assuming that the signer publishes a pair
(U,Ux) ∈ G2

1, then it is also possible to simulate the interaction of a prover

36

with an honest verifier20. In fact, a simulator can simulate the signature ma-
terial randomization phase by sampling r

$←− Zp and computing A ← Ur and
B ← (Ux)r then by simulating the sigma protocol execution phase, which can
be simulated since there exist a simulator for the sigma protocol for linear rela-
tions (see Appendix A), we obtain a simulator for the whole interactive protocol.

Special soundness. Regarding the special soundness property, observe that the
sigma protocol for linear relation is a knowledge sound sigma protocol, therefore
from two transcripts for the same first message and different challenge it is pos-
sible to extract a witness for the statement B under the relation R(A,Hid, pp),
namely the witness (ρ, {µj : j ∈ Hid}, ε)21.

Now we must distinguish two cases:

– ρ ̸= 0: in this case the extractor can extract a valid BBS signature (A, e = −ϵ)
for the messages in a′′ = {ai : i ∈ Rev}∪ {µj

ρ : j ∈ Hid}. In fact it holds that

B = C(a′)ρ

(∏
i∈Hid

hµi

i

)
A

ε
=⇒ B

1
ρ = C(a′)

(∏
i∈Hid

h
µi
ρ

i

)
A

ε
ρ = C(a′′)A

ε
ρ

(3)
and also that

e(A,X2) = e(B, g2) =⇒ e(A
1
ρ , X2) = e(B

1
ρ , g2) = e(C(a′′)(A

1
ρ)ε, g2) (4)

where the last equality holds by Equation 3. Combining Equation 4 and
Equation 1, by setting A← A

1
ρ and e← −ε the extractor extracts a signa-

ture (A, e) for the messages in a′′. This contradicts the unforgeability of the
BBS signature and therefore the qSDH assumption.

– ρ = 0: in such case the extractor can not extract a valid signature for the
messages in a′′, but
• if µi = 0,∀i ∈ Hid then the extractor extracts the secret key of the signer
x = ϵ, since B = A

ϵ
and e(B, g2) = e(A,X2). Given the secret key of

the issuer the extractor can “forge” as many signatures as it wants;
• if µi ̸= 0 for some i ∈ Hid then the extractor can compute B =(∏

i∈Hid h
µi

i

)
A

ϵ
. But

e(A,X2) = e(B, g2) =⇒ e(A,X2) = e(

(∏
i∈Hid

hµi

i

)
A

ϵ
, g2),

20 Note that pairs of random elements (S, T) in G1 can not be assumed indistinguishable
from pairs of elements of the form (U,Ux) since it is always possible to check if
e(S,X2) = e(T, g2)

21 Note that this setting is different from the one described in Section A, in fact the
prover must prove knowledge of the representation of a statement with respect to a
set of bases which depend on the statement (A depends on B).

37

which means that

e(A,X2g
e
2) = e(

∏
i∈Hid

hµi

i , g2)

therefore the extractor can extract a tuple (A, e, {µi}i∈Hid) such that
A =

(∏
i∈Hid h

µi

i

) 1
x+e . We refer to such a tuple as wildcard credential22.

This is not a BBS signature on a set of attributes therefore this protocol is not
a proper special sound sigma protocol to prove knowledge of a BBS credential
but a proof of knowledge of a BBS credential or a wildcard credential. More
formally, it is a sigma protocol for the following relation.

R(pp, X2) =

=
{(

(A, e, {ai}i∈Hid)︸ ︷︷ ︸
witness

, {aj}j∈Rev︸ ︷︷ ︸
statement

)
: e(A,X2g

e
2) = e

(
g1
∏
i∈Hid

hai
i

∏
j∈Rev

h
aj

j , g2

)
∨ e(A,X2g

e
2) = e(

∏
i∈Hid

hai
i , g2)

} (5)

Now we argue why this sigma protocol can be used to create proofs of knowl-
edge of BBS credentials.

Observation 6. In an anonymous credential system we must assume that the
issuer is, in the worst case, a passive adversary (i.e. honest but curious). This
means that the issuer only issues well formed credentials of the form ((A, e), {ai}i∈[m])

satisfying e(A,X2g
e
2) = e

(
g1
∏

i∈Hid h
ai
i

∏
j∈Rev h

aj

j , g2

)
. Therefore, if it were

possible to show that an adversary who can see only BBS signatures (the only
information that the issuer gives to the other actors in the ecosystem) can not
forge a wildcard credential, then it would be possible to be assured that valid
presentations are proofs of possession of a BBS credential.

In [TZ23] the authors prove the strong unforgeability under chosen message
attacks of the BBS signature under the qSDH assumption. This means that an
adversary who can see a polynomial number of BBS signatures for messages of
its choice (i.e. BBS credentials) can not create a signature different from the ones
it has seen before under the qSDH assumption. Using a similar argument, it is
possible to prove that an adversary who can see a polynomial number of BBS
signatures for messages of its choice not only it can not forge a BBS signature,
but it can not forge even a wildcard credential ((A, e), {ai}i∈Hid) under the qSDH
assumption. The proof of this statement can be obtained by adapting the proof
of unforgeability of BBS signatures in [TZ23, Section 3] by considering an adver-
sary producing as forgery a wildcard credential, and show that a reduction can
use such forgery to break the qSDH assumption. The simulation of the unforge-
ability experiment is identical, the only change required to the security proof is
22 We call it wildcard credential because this credential would allow the holder to

present any attribute in the positions j ̸∈ Hid setting the exponent of C(a′) to 0

38

Non interactive BBS credential presentation

Prover P
(
(A, e, {ai}i∈Hid), ({aj}j∈Rev)

)
Verifier V

(
{aj}j∈Rev

)
nonce

$←− Zp

nonce

r
$←− Zp, A← Ar, B ← C(a)rA

−e

vr, {vj}j∈Hid, ve
$←− Zp,

U ← C(a′)vr
(∏
j∈Hid

h
vj
j

)
A

ve

ch← H(nonce, A,B, U, {aj}j∈Rev)

zr ← vr + ch · r
zj ← vj + ch · raj , ∀j ∈ Hid

ze ← ve + ch · (−e)
pres← (A,B, ch, zr, {zj}j∈Hid, ze)

pres

U ← B
−ch

C(a′)zr

 ∏
j∈Hid

h
zj
j

A
ze

ch
?
= H(nonce, A,B, U, {aj}j∈Rev)

e(A,X2)
?
= e(B, g2)

Fig. 3. Signature of the nonce provided by the verifier to the holder to generate a proof
of knowledge of a BBS credential issued by pk = X2.

the way the reduction retrieves the solution to the qSDH experiment from the
forgery of the adversary, which in this case is a wildcard credential.

This is the reason why the sigma protocol described in Protocol 4 can be
used to prove knowledge of a BBS credential. Since we must assume that the
issuer is not actively corrupt can be used to generate proof of knowledge of a
BBS credentials under the qSDH assumption.

Protocol for fresh presentations. Below, in Figure 3, we describe the algorithms
for the creation and verification of a fresh BBS presentation computed using
the sigma protocol made non-interactive applying the Fiat-Shamir transform
generating the challenge using the nonce that the holder has received from the
verifier.

39

P1 P2 · · · Pn

r rr
$←− Zp

Broadcast r: everyone computes A = Ar, D =
∏

i∈[n] Di, B = (C(a′)D)r

A,B B =
∏

i∈[n] B̃i

Re-distribute B

B̃1 = (C(a′)D1)
r B̃2 = Dr

2 · · · B̃n = Dr
n

PoK B̃1 w.r.t.
the bases
C(a′), {hj}j∈Prv, A

PoK B̃2 w.r.t.
the bases
{hj}j∈Prv, A

· · ·
PoK B̃n w.r.t.
the bases
{hj}j∈Prv, A

Variant of Threshold Schnorr signature of nonce
with bases C(a′), {hj}j∈Prv, A, with pk = {B̃i}i∈[n],

ski = (r, {a(i)
j }j∈Prv, ei),∀i ∈ [n]

pres← (A,B, nonce,a, ch, zr, {zi}i∈Prv, ze)

Fig. 4. Presentation protocol overview for the simplified case of (1)full disclosure of
the attributes {aj}j∈Pub and (2) full threshold, i.e. t = n. In this example the primary
party is P1.

C BBS MHAC Presentation Protocol Overview

In Figure 4 we sketch the presentation protocol executed by a set of holders
{Pi}i∈[n] of a (n, n) − BBS multi-holder anonymous credential. The inputs of
each party Pi are:

– credi = (A, e(i), {Dk}k∈[n]\{i}, {a
(i)
k }k∈Prv, {ak}k∈Pub)

– a′ = {ak}k∈Rev

– the presentation nonce;

We recall that Dk =
∏

j∈Prv h
a
(k)
j

j A−e(k)

.
The boxes representing the PoK of B̃i describe the operations that each

holder executes in the variant of Threshold Schnorr signature, it is not a separate
step. Also, in the security proof, the reduction does not have to extract the secret
shares of all the holders controlled by the adversary (otherwise it would be a),
but only the BBS credential used by the adversary to generate its forgery.

40

D Private Attribute Unlinkability of BBS MHAC Scheme

In this section we formally prove Lemma 4 that states that the BBS MHAC
scheme satisfies the unlinkability of private attributes defined in Definition 9.
For the sake of simplicity we consider the full threshold case, i.e. t = n and an
adversary who corrupts the parties in [t− 1].

Proof. We define a reduction B to the hiding property of the Pedersen commit-
ments which are perfectly hiding. The reduction works as follows:

1. The reduction B sends to the adversary A a set of public parameters for the
BBS MHAC scheme and an issuer key pair (x, gx2), x

$←− Zp.
2. The adversary A of the private attribute unlinkability sends to B two at-

tributes a∗0, a∗1 and the set of public attributes {ai}i∈Pub.
3. B sends the same messages a∗0, a∗1 to the challenger C of the hiding property

of the Pedersen commitment who samples a bit b uniformly at random and
computes a Pedersen commitment of a∗b , namely D = h

a∗
b

m−1h
s
m ∈ G1 for

s
$←− Zp and sends it to B.

4. B generates a BBS credential cred = (A, e) with e $←− Zp and

A =

(
g1
(∏
i∈Pub

hai
i

)
D

) 1
x+e

.

And from cred generates the shares of credential forA (controlling the parties
{Pi}i∈[n−1]):

– B samples, (a∗(i)b , s(i), e(i))
$←− Z3

p,∀i ∈ [n− 1];

– setsDi = h
a
∗(i)
b

m−1h
s(i)

m A−e(i) ,Dn ← D∏
i∈[n−1] Di

, and e(n) ← e−
∑

i∈[n−1] e
(i).

– sets for all i ∈ [n− 1]

credi =
(
A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, a

∗(i)
b , s(i))

)
,

and
credn =

(
A, e(n), {Dk}k∈[n]\{n}, ({aj}j∈Pub,⊥,⊥)

)
.

– B sends the shares credi to A.
5. A sends queries to perform presentation protocol executions giving in input

the values nonce and Rev of its choosing. We informally describe the simu-
lation of the presentation queries. B executes the presentation protocol, but
when it comes the time to execute Step 3 of the presentation protocol, since
it does not know a representation of Dn w.r.t. hm−1, hm, A. B performs the
following operations:
– it simulates a sigma protocol transcript for the proof of knowledge of

a representation of Dn, picking ch, z
(n)
m−1, z

(n)
m , z

(n)
e

$←− Zp and setting

Un ← B̃−ch
n h

z
(n)
m−1

m−1 h
z(n)
m

m Az(n)
e B obtains (Un, ch, z

(n)
m−1, z

(n)
m , z

(n)
e).

41

– At the end of Step 3 B can compute the value U =
∏

i∈[n] Ui because it
knows how to open the commitments to Ui, i ∈ [n − 1] broadcasted by
A (since it is simulating the random oracle).

– B programs the random oracle setting Hsig(nonce, U,A,B, {ai}i∈Rev) =
ch so that it can execute the following steps since it knows the responses
associated to the first message Un and the challenge ch.

The simulation of the protocol fails with negligible probability using a similar
argument as the one showed in Appendix G.1.

6. At the end of the training, the adversary A outputs a bit b′ specifying their
guess about the attribute included in the credential, and B forwards b′ to C.

7. B forwards b′ to C and wins the hiding experiment with the same advantage
of A.

E Identifiable Abort of BBS MHAC Scheme

We prove Lemma 5.

Proof. To prove that CredPres (Protocol 3), satisfies the definition of presenta-
tion with identifiable abort, we observe that Protocol 3 already describes the
composition of a presentation protocol with the associated identifiable abort
detector algorithm W that manifests itself in Step 5 and Step 7.

W takes as input the public inputs to CredPres and processes each message
received by a participant Pi. If at any point during the execution of CredPres
a message would result in Pi outputting (abort, j) (which might happen only
in Step 5 and Step 7), then W aborts with output (abort, j). Otherwise, at the
conclusion of the protocol, W outputs ⊥.

Note that we assumeHcom is a secure commitment scheme, so Step 4 can only
be opened to the value committed to in Step 3. Otherwise, by binding, parties
would abort in Step 5 identifying the malicious party whose commitment was
opened dishonestly. Therefore, we only need to consider when the commitment in
Step 3 is opened to the previously committed value by the protocol participants.

We will now argue correctness and identifiability in two parts.

Correctness. Correctness states that whenever the output of W is ⊥, the output
pres of CredPres verifies. That is, if the protocol does not abort, then the output
of the protocol verifies. Let us consider a run of the protocol that does not abort:

– Pi does not abort in Step 5: it means that every participant has opened
its commitment correctly and it is possible to compute the aggregated first
message of the underlying sigma protocol U and therefore the challenge ch.

– Pi does not abort in Step 7: then every Pi, i ∈ S \ {j} has proven knowledge
of a representation of B̃i = Dr

i w.r.t. {hk}k∈Prv, A, and the primary Pj

has proven knowledge of B̃j with respect to the bases (C(a′), {hk}k∈Hid, A)
using the same challenge ch. This means that the proofs of knowledge can
be aggregated (see Step 8) resulting in the generation of a valid proof of
knowledge of a representation of B =

∏
k∈S Bk =

∏
k∈S B̃k w.r.t. the bases

(C(a′), {hk}k∈Hid, A).

42

This means that the participants have generated a valid proof of knowl-
edge of a representation of B w.r.t. C(a′), {hk}k∈Hid, A, where A and B satisfy
e(A,X2) = e(B, g2), therefore the presentation is valid.

Identifiability. Now we consider identifiability, which states that whenever the
output is (abort, j) for some j ∈ S, Pj is corrupt. Let us consider the scenarios
in which an abort may occur:

– There exists j s.t. Pi outputs (abort, k) in Step 5. It means that Pk did not
open correctly its commitment, therefore it is malicious.

– There exists j s.t. Pi outputs (abort, j) in Step 7. It means that Pk did
not create a valid coordinated proof of knowledge of a representation of B̃k

therefore it misbehaved in Step 6 and is identified as corrupt.

F Unforgeability of the BBS MHAC Scheme

We now translate Experiment 3 for the specific case of the BBS multi-holder
anonymous credential scheme described in Section 6, then we prove its security.

F.1 Unforgeability experiment instantiation

Expc−uf−pres
A (κ) :

pp
$←− Pgen(κ)

(pk, sk)
$←− KGen(pp)

(nonce⋆, {a⋆
i }i∈Rev⋆ , pres

⋆)
$←− AOiss,Opres(pp, pk)

// verification of the validity of the forgery

flag← 1

if
(
(nonce⋆, {a⋆

i }i∈Rev⋆) ∈ PT
)

flag← 0

for cred ∈ CT // for attributes {ai}i∈[m]

if {ai}i∈Rev⋆ = {a⋆
i }i∈Rev⋆

flag← 0

return
(
VfPres(nonce⋆, {a⋆

i }i∈Rev, pres
⋆) = 1

)
∧ flag

Fig. 5. Description of the multi-holder anonymous credential concurrent unforgeability
of presentation experiment Expc−uf−pres

A (κ).

Experiment 4 (Expc−uf−pres
F,BBS — Concurrent unforgeability for BBS MHAC

scheme).

43

Setup phase. The challenger of the experiment generates the BBS public param-
eters pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

$←− PgenBBS(κ) and the issuer’s
key pair (sk, pk) = (x,X2)

$←− KGenBBS(pp) where X2 = gx2 .

Training phase. In our MHAC scheme the adversary needs to access two random
oracles, namely ROcom,ROsig to generate its commitments and the challenge for
the presentation computation. The interactions with ROcom,ROsig,Oiss and Opres

are described as follows

– Random oracle queries: the adversary has access to a random oracles ROsig,ROcom

used to create the challenge ch and the commitments comi respectively. The
adversary can send at most qH queries to the random oracles, where qH is
polynomial in the security parameter κ.

– Credential issuance queries: the oracle Oiss initialises an empty credential
table CT. We describe the two kind of queries, namely queries for a full
credentials or for the partial credentials. In both cases the adversary always
sends queries for credentials without private attributes as we have argued in
Observation 1:
• queries for full credentials: Oiss takes in input from F a set of attributes
{ai}i∈[m] and provides F with a credential cred = ((A, e), {ai}i∈[m]),
where (A, e) is a BBS signature on {ai}i∈[m].23

Finally the oracle stores in CT a record

(A, e, {ai}i∈[m]);

• query for the target credential: F sends as input to Oiss a tuple

({ai}i∈[m], t, n, cor),

then Oiss generates a credential cred = (A, e, {ai}i∈[m]) for the set of
attributes it was queried and split it in shares according to the parameters
(t, n) it has received in input generating the shares

credi = (A, e(i), {Di}i∈[n]\{i}, ({aj}j∈[m])).

F receives from Oiss the |cor| < t shares of the credential associated to
the parties in cor.
Finally Oiss sets targetCred to

(A, {e(i)}i∈[n], {Di}i∈[n], {aj}j∈[m], n, t, cor).

The number of issuance queries for full credentials F can perform is qI which
is polynomial in the security parameter κ.

23 Note that F from a BBS signature can generate a multi-holder BBS credential for
any possible parameter (t, n) choice.

44

– Presentation queries: the presentation oracle Opres initialises the presenta-
tion table PT and has reading access to record targetCred. The adversary
can query the presentation oracle Opres for presentations of the target cre-
dential. Query for the presentation of targetCred: F inputs to Opres a tu-
ple (nonce, {ai}i∈Rev, hon) where {ai}i∈Rev are a subset of the attributes in-
cluded in targetCred. Opres interacts with F in the creation of a presenta-
tion on behalf of the parties in hon and at the end stores in PT the record
(nonce, {ai}i∈Rev). The adversary possibly opens many concurrent sessions
of presentation of the target credential, each of them is identified by an iden-
tifier ssid.

Forgery phase. At the end, F must perform its forgery and sends the challenger
a presentation pres⋆ = (A,B, ch, zr, {zj}j∈Hid, ze) for the statement {a⋆i }i∈Rev⋆

and nonce nonce⋆.

Winning conditions. The winning conditions are the same as described in Ex-
periment 3.

According to Definition 12, a protocol for the presentation of a BBS multi-
holder anonymous credentials is unforgeable if Pr

[
Expc−uf−pres

F,BBS (κ) = 1
]

is negli-
gible in the security parameter κ.

F.2 Unforgeability proof

In this section we prove the unforgeability of the multi-holder BBS presentation
protocol described in Protocol 3.

Proof. The proof is divided in two cases, corresponding to the two ways the ad-
versary can win the experiment: in the first (Case A) we consider an adversary
who wins the experiment producing a forgery associated to the target creden-
tial issued to it during the experiment, in the second (Case B) we consider an
adversary who produces a forgery for a credential it has never been issued.

Standard reduction simplifications. In the security proof we will apply the fol-
lowing simplification to our model:

– From (t, n)-Shamir secret sharing to additive (n, n) secret sharing. For the
sake of simplicity, and without loss of generality, as we did for the description
of Protocol 3, in the security proof we assume that the issuance of the partial
credential happens using a full threshold (n, n)-secret sharing (additive secret
sharing). We will also assume that cor = [n−1], therefore the adversary will
be provided with the n− 1 shares

(A, {e(i)}i∈[n−1], {Di}i∈[n], {aj}j∈[m])

where e =
∑n

i=1 e
(i), D ← Ae and the issue oracle Oiss passes to the presen-

tation oracle Opres the record targetCred equal to

(A, {e(i)}i∈[n], {aj}j∈[m], n, n, [n− 1]).

45

– A mandatory random oracle query. We will assume that F , before sending
to B its forgery of presentation (A,B, ch, zr, {zj}j∈{Hid}, ze) for the message
nonce and revealed attributes {ai}i∈Rev, has queried the random oracleROsig

on the input
(ssid, nonce, U,A,B, {aj}j∈Rev).

Otherwise one can program a forger F ′ who does the same operations of F
but before outputting the forgery sends this extra query to ROsig to satisfy
this assumption. In such case we must increase the maximum amount of
queries F can perform to qH + 1.

Case A: reduction to DL Reduction B simulates the challenger of Expc−uf−pres
F,BBS (κ)

while interacting with F . Let us show how B simulates the public data genera-
tion, the oracles ROcom,ROsig,Oiss and Opres, and finally how it uses F to solve
its challenge in ExpDL

B (κ) which takes place in the group G1, the same used for
BBS.

In this reduction we consider an adversary F who wins by forging a
presentation using the target credential it is issued.

Setup, public parameters and key generation. The reduction B receives in
input the tuple (p,G1, g, h) from CDL, where (g, h) ∈ G2

1 is an instance of the dis-
crete logarithm problem that B needs to solve. B generates the public parameters
and the issuer’s key pair for the BBS signature scheme as described in Figure 6.
The simulation of the parameter generation and key generation is indistinguish-
able from a real execution of the parameter generation because the key gener-
ation is computed in the exact same way, and the elements (g2, g1, h1, . . . , hm)
are chosen uniformly at random in G2 × Gm+1

1 . However B knows the discrete
logarithm of the elements in G1 with respect to k = gxh.

Random oracles simulation. B can simulate the random oracles ROcom and
ROsig programming them using the hash tables HTcom,HTsig which are initialised
to empty and whenever one of the two oracles is queried a message m, B checks
the corresponding hash table and, if there is an entry (m, d) (in such case we
write HT(m) = d), returns the digest d, otherwise it samples d $←− Zp, stores in
the corresponding hash table the record (m, d) and returns d.

The counter cH used in the description of the simulation of the random
oracles in Figure 7 is shared among the two interfaces B.ROsig and B.ROcom.

Issuing oracle simulation. We distinguish two cases corresponding to the
issuance queries for full credentials and the single query for the target credential.

– When F sends an issuance query for a full credential for the attributes
{ai}i∈[m], B simulates Oiss by generating a credential according to the BBS

signing algorithm SignBBS(x, {ai}i∈[m])
$−→ (A, e), and sending it to F . Then

46

B.Setup(p,G1,G2,GT , e, g, h)

g2
$←− G2 // generator for G2

x
$←− Zp // BBS issuer secret key

X2 ← gx2 // BBS issuer public key

k ← gxh // note that if logg h = e, then g
x
h = g

x+e

γ0, γ1, . . . , γm
$←− Zp

g1 ← kγ0 // generator for G1

hi = kγi , ∀i ∈ [m]

pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

HTcom,HTsig ← ∅ // hash tables

CT,PT← ∅ // credential and presentation tables

cH , cI , cP ← 0 // counters for random oracle, issuing and presentation queries

targetCred← ⊥ // the queried partial credential

(pp, X2) F
return (pp, X2,HTcom,HTsig,CT,PT, cH , cI , cP)

Fig. 6. Simulation of the setup algorithm of the unforgeability experiment

B.ROcom(m)

if cH < qH ∧ HTcom(m) = ⊥
cH ← cH + 1

d
$←− Zp

HTcom.add(m, d)

return HTcom(m)

B.ROsig(m)

if cH < qH ∧ HTsig(m) = ⊥
cH ← cH + 1

d
$←− Zp

HTsig.add(m, d)

return HTsig(m)

Fig. 7. Simulation of the random oracles of the unforgeability experiments (Case A).

47

B stores in CT the credential cred← (A, e, {ai}i∈[m]). In this case the simu-
lation is perfect.

– When F sends its only issuance query for the target credential giving in
input ({ai}i∈[m], t, n, cor), B simulates the issuance of the target credential
so that the value e⋆ of the underlying BBS signature (A, e⋆) is actually
the discrete logarithm logg h

24. To do so, B must produce two values A,D
s.t. logAD = logg h, and to do so, it exploits its knowledge of the discrete
logarithms of g1, h1, . . . , hm w.r.t. k, and the fact that k = gxh as we show
in Figure 8. We recall that for the sake of simplicity we assume that t = n
and that F always chooses to corrupt the parties in cor = [n− 1].
The simulation of the issuance of the target credential is perfect as well.
The resulting value D will satisfy D = Ae⋆ , where e⋆ is the solution of
the input challenge to B, i.e. e⋆ = logg h. Moreover, the set {e(i)}i∈cor is
indistinguishable from an honest execution since, being |cor| < t they are
selected uniformly at random.

Presentation oracle simulation. When F sends a presentation query for
the target credential, F inputs to Opres a tuple (nonce, {ai}i∈Rev, hon).
B simulates Opres by retrieving the tuple targetCred equal to

(A, {e(i)}i∈cor, {Di}i∈[n], {aj}j∈[m], n, t, cor)

where B does not know the values in {e(i)}[n]\cor(= e(n)) which are set to ⊥ since
e⋆ = logg h is unknown to B.
B must simulate an interaction between the parties in cor controlled by F

and the parties in hon controlled by Opres. Without loss of generality we can
assume that the primary party is one of the corrupted participants, so that the
adversary can choose the value r in the first step. The case where the primary
party is controlled by B can be simulated likewise.

Since we are adopting the simplification of additive secret sharing, we recall
that t = n so we do not consider the Lagrange coefficients in the aggregation of
the shares of e.

The simulation of the execution of Protocol 3 using as nonce nonce and
revealing the attributes {ai}i∈Rev works as follows:
F broadcasts, on behalf of the primary party Pj , j ∈ cor, the value r used to

generate A and B.
Every party can compute the values A,C(a′), B as prescribed by the presen-

tation protocol (Protocol 3) in Step 2.
Then the participants must generate the proof of knowledge of a represen-

tation of B w.r.t. C(a′), {hi}i∈Hid, A and this happens by having each party
generate a proof of knowledge of:

24 Note that F in this experiment knows all the attributes since it can choose them,
even the secret shared ones, but we will show that it will not be able to forge a
presentation

48

B.IssueCred(a = {ai}i∈[m], t, n, cor)

if (t, n, cor) = (⊥,⊥,⊥) ∧ (cI < qI) // full credential query

cI ← cI + 1

(A, e)
$←− SignBBS(sk = x, {ai}i∈[m])

cred← ((A, e), {ai}i∈[m])

CT.add(cred)

return cred

if (t, n, cor) ̸= (⊥,⊥,⊥) ∧ targetCred = ⊥ // partial credential query

α← γ0

m∑
i=1

γiai

A← gα // if h = g
e⋆ then k = g

x+e⋆ i.e. A = (k
α
)

1
x+e⋆ = (C(a))

1
x+e⋆

D ← (hα)−1 // D would be A
−e⋆

// Note that A
x
D = A

x+e⋆
= A

x
A

e⋆
= g

αx
h
α

= (g
x
h)

α
= k

α
= g1

m∏
i=1

h
ai
i

{e(i)}i∈cor
$←− Z|cor|

p

Di ← A−e(i) ,∀i ∈ cor // we assume cor = [n − 1]

Dn ← D
∏
i∈cor

D−1
i // = A

−e⋆
∏
i∈cor

A
e(i)

{credi}i∈cor ← ((A, {e(i)}i∈cor, {Di}i∈[n], {aj}j∈[m])

targetCred← ((A, {e(i)}i∈cor, {Di}i∈[n], {aj}j∈[m], t, n, cor)

// Note that e
(n) is not known to B

return {credi}i∈[cor]

return ⊥

Fig. 8. Simulation of the answers to issuance queries in the unforgeability experiment
(Case A).

49

– B̃i = Dr
i w.r.t. the basis A for each i ̸= j;

– whereas the primary participant Pj will generate a proof of knowledge of
B̃j = C(a′)rDr

j

∏
k∈Hid h

rak

k w.r.t. the bases C(a′), {hj}j∈Hid, A.

Recall that every party can compute the values B̃i, i ∈ [n] from the known
values Di and r, and also that the reduction B, acting on behalf of Pn does not
know the value e(n) but can compute the value B̃n, as it knows the value Ae(n)

.
At this point, the reduction B simulates the execution of the sigma protocol

to prove knowledge of the representation of B̃n.
Since B does not know the value e(n), it must simulate the protocol execution

by firstly computing its responses z(n)e
$←− Zp and a challenge ch

$←− Zp. Then B
sets Un ← B̃−ch

n A
z(n)
e .

B sets comn ← Hcom(ssid, nonce, Un) if (ssid, nonce, Un) was previously in-
cluded in the hash table HTcom, otherwise samples comn

$←− Zp and programs
HTcom adding the entry (comn, (nonce, Un)). B broadcasts comn to the other
participants.

When B has received the values comi from the other participants, it must have
received an hash query for (nonce, Ui) such that there is an entry (comi, (ssid, nonce, Ui))
in HTcom, therefore B can compute in advance the value U ←

∏
i∈[n] Ui and pro-

gram the random oracleHsig adding to the hash table HTsig an entry (ch, (ssid, nonce, U,A,B, {ai}i∈Rev)).

Event bad. The simulation might fail if the random oracle Hsig needs to be
overwritten and we call this event bad.

Given that the challenge associated to the protocol execution is the one cor-
responding to the simulated transcript, B does not have to compute the response
and can return the values sampled at random at the beginning of the simulation,
namely z(n)e .

This allows B to simulate the presentation protocol execution, and also to
perform all the identifiable abort checks.

This terminates the simulated execution of the presentation query of a partial
credential. The probability that B correctly simulates the experiment is

Pr[B simulates] ≥ 1−
(
(qH + qP)

2

p

)
which is overwhelming in the security parameter and is evaluated in Appendix
G.1.

Exploit of the forgery. Eventually the adversary F outputs a forgery

(nonce, {ai}i∈Rev, pres)

which is valid, i.e. VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres) = 1, with

pres =
(
A,B, ch, (zr, {zj}j∈Hid, ze)

)
.

50

Being U ← B
−ch

C(a′)zr
∏

j∈Hid h
zj
j A

ze , according to our reduction simplifi-
cations, F must have sent a query to ROsig for (ssid, nonce, A,B, U, {ak}k∈Rev),
which returned the value ch and this query happens after the signature material
randomization phase, since A,B must be determined.
B rewinds F to the moment in which it performed such query (which is after

the signature randomization phase) and sets HTsig({ak}k∈Rev, nonce, A,B, U)←
ch′.

By the general forking lemma [BN06] (a formalisation of the Forking Lemma
in [PS96]), with non-negligible probability the adversary F will end the experi-
ment execution outputting a forgery associated to the same hash query (therefore
also for the same (nonce, {ai}i∈Rev, pres

′)) such that

pres′ =
(
A,B, ch′, (z′r, {z′j}j∈Hid, z

′
e)
)

and
B

−ch′

C(a′)z
′
r

(∏
j∈Hid

h
z′
j

j

)
A

z′
e = U.

This allows us to extract the credential ((A, e⋆), {ai}i∈[m]) using the algo-
rithm shown in [TZ23] and that we recall in Appendix B.

We evaluate the advantage AdvDL
B (κ) of the reduction in winning the DL

experiment as a function of the advantage Adv
c−uf−pres(A)

F,BBS (κ) of the adversary F
of the presentation unforgeability experiment in Appendix G.1 where we show
that:

AdvDL
B (κ) ≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(A)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(A)

F,BBS (κ)

)
. (6)

Therefore if there exists an adversary which wins with non-negligible proba-
bility the unforgeability experiment we could design an adversary of the DL ex-
periment which wins with probability which is non-negligible as we have shown
above.

Since in this section we consider the case in which the extracted credential
is targetCred, B extracts (A, e⋆), {a1, . . . , am} such that Ae⋆ = D according to
the notation used in the description of the simulation of Oiss. Since A = gα and
D = hα, then we can state that h = ge

⋆

, therefore B sends to the challenger
of the discrete logarithm experiment the value e winning the experiment every
time that F wins.

Case B: reduction to suf − cma for BBS. Tessaro and Zhu in [TZ23] prove
the BBS signature scheme strongly unforgeable against chosen message attacks
under the qSDH assumption. In this section we prove that an attacker F of

51

Expc−uf−pres
F,BBS (κ) can be used to design an attacker B of the strong unforgeabil-

ity experiment for the BBS signature scheme Expsuf−cma
B,BBS (κ) described in [TZ23,

Figure 1].
A corollary of our proof is that the unforgeability of presentations of the

multi-holder BBS anonymous credential scheme reduces to the qSDH assump-
tion.

In this reduction we consider an adversary F which forges a presentation
associated to a credential it has never been issued.

Setup, public parameters and key generation B receives the BBS public parame-
ters from the challenger of the experiment Expsuf−cma

F,BBS (κ). The reduction B per-
forms the following operations:

B.Setup(p,G1,G2,GT , e, g1, g2, h1, . . . , hm, X2)

pp← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)

pk← X2

HTcom,HTsig ← ∅ // hash tables

CT,PT← ∅ // credential and presentation tables

cH , cI , cP ← 0 // counters for random oracle, issuing and presentation queries

targetCred← ⊥ // the queried partial credential

(pp, X2) F
return (pp, X2,HTcom,HTsig,CT,PT, cH , cI , cP)

Random oracles simulation. The random oracles are simulated as described in
Case A.

Issuing oracle simulation. When the reduction B receives a issuing query, with
input ({ai}i∈[m], t, n, cor) it sends a signing query to the oracle OSIGN of the
strong unforgeability experiment for BBS signatures for the messages {ai}i∈[m]

receiving a signature (A, e) on these messages. Then if it was a full credential
query B sends ((A, e), {ai}i∈[m]) to F and stores the credential in the credential
table CT. If it is the single partial credential query F can perform, B generates
a (t, n) secret sharing of e, {e(i)}i∈[n]

$←− Share(t, n, e) and sets targetCred to be
equal to

(A, {e(i)}i∈[n], {Di}i∈[n], {aj}j∈[m], t, n, cor)

and sends to F the shares of credentials corresponding to the parties in cor.

52

B.IssueCred({ai}i∈[m], t, n, cor)

if (t, n, cor) = (⊥,⊥,⊥) ∧ cI < qI // full credential query

cI ← cI + 1

{ai}i∈[m] OSIGN // send a sign query to the BBS signing oracle.

(A, e) OSIGN

cred← ((A, e), {ai}i∈[m])

CT.add(cred)

return cred

if (t, n, cor) ̸= (⊥,⊥,⊥) ∧ targetCred = ⊥ // partial credential query

{ai}i∈m OSIGN // send a sign query to the BBS signing oracle.

(A, e) OSIGN

{e(i)}i∈[n]
$←− Share(t, n, e)

Di ← A−e(i) ,∀i ∈ [n]

{credi}i∈cor ← (A, {Di}i∈[n], {e(i)}i∈cor, {ak}k∈[m])

// In the reduction we will consider t = n and cor = [n − 1]

targetCred← (A, {e(i)}i∈[n], {Di}i∈[n], {aj}j∈[m], t, n, cor)

return {credi}i∈[cor]

return ⊥

Presentation oracle simulation. Regarding the queries for presentations of the
target credential, the reduction B simply executes the presentation protocol since
it knows all the shares of the credentials associated to targetCred and in this case
the simulation is perfect since the reduction knows all the information needed
to execute the protocol steps.

Exploit of the forgery. The adversary F eventually outputs a forgery. B rewinds
F as we have described in Case A, and manages to extract a credential cred⋆ =
((A, e), {ai}i∈[m]).

In this section we consider the case in which the extracted credential is associ-
ated to a credential never issued to F , therefore cred⋆ ̸∈ CT, and either {ai}i∈[m]

was never queried to OSIGN, the sign oracle of the strong unforgeability exper-
iment, or it was queried but returned a different signature (A′, e′), therefore B
can send to the challenger of Expsuf−cma

F,BBS (κ) the forgery ((A, e), {ai}i∈[m]), which
is a valid forgery for the strong unforgeabilty experiment for the BBS signature.

We evaluate the advantage Advsuf−cma
B,BBS (κ) of the reduction B in winning the

strong unforgeability experiment for BBS signatures [TZ23] as a function of the
advantage Adv

c−uf−pres(B)

F,BBS (κ) of the adversary F of the presentation unforgeabil-

53

ity experiment in Appendix G.2 where we show that:

Advsuf−cma
B,BBS (κ) ≥

(
Adv

c−uf−pres(B)

F,BBS (κ)

)2

qH
−

(
Adv

c−uf−pres(B)

F,BBS (κ)

)
p

. (7)

⊓⊔

Remark 5. If the MHAC scheme satisfies the unforgeability of presentations, this
implies that also the credential issuing algorithm is unforgeable; otherwise, the
adversary could forge a credential for a set of attributes different from the ones
included in the credentials it was issued and create a valid presentation out of
it.

G Advantage of the Presentation Unforgeability
Reduction

In this section we provide an upper-bound to the advantage of the reduction
in winning the DL experiment (Case A) or the SUF-CMA experiment for BBS
signatures (Case B).

We first upper-bound the probability that the reduction B fails the simulation
of the presentation unforgeability experiment, then we find a lower-bound to the
advantage of the reduction in winning the DL experiment (Case A) or the strong
unforgeabilty under chosen message attack experiment for BBS signatures (Case
B).

G.1 Case A: extract the target credential

Simulation failure probability We upper-bound the probability that one of the
events bad occurs as a consequence of the queries of F . The events happen if the
hash table HTsig is overwritten during the simulation.

Being i ∈ [qP] the index representing the i-th presentation query performed
by F , and by bad(i) the event that bad happens during the i-th presentation
query, we can upper-bound the probability that the event bad(i) happens.

Note that these events can be represented as the random sampling of an
element from a large set of distinct elements which results to assume a value
belonging to a small set of values which are the values previously included in the
hash tables. Note that the query for

(nonce, U,A,B{ai}i∈Rev)

has each component chosen by F apart from U which results to be sampled at
random. Being qH the number of hash queries F can perform and qP the number
of presentation queries, the hash table HTsig has at most qH+qP elements during
the simulation execution, therefore the probability that event bad(i) happens is
less than qH+qP

p where p is the number of possible values of U .

54

Let q ← qH + qP , then

Pr[B simulates] = Pr

 ∧
i∈[qP]

¬bad(i)
 ≥

∏
i∈[qP]

(
1− q

p

)
≥
(
1− q

p

)q

≥ 1−
(
q2

p

)
(8)

where the last inequality holds because(
1− q

p

)q

= 1 +
∑
i∈[q]

(
q

i

)(
−q
p

)i

and for each j, (
q

j

)(
q

p

)j

≥
(

q

j + 1

)(
q

p

)j+1

since writing explicitly the products, one obtains

1

q − j
≥ q

(j + 1)p

which holds for p≫ q.
Therefore, assuming that q is odd 25

∑
i∈[q]

(
q

i

)(
−q
p

)i

=

1− q2

p
+

q−1∑
i=2,i even

[(
q

i

)(
−q
p

)i

−
(

q

i+ 1

)(
q

p

)i+1]
≥ 1− q2

p
(9)

Note that the simulation takes a polynomial time to be executed and do not
requires to rewind the adversary F .

Therefore the simulation is successful with probability

Pr[B simulates] ≥ 1−
(
(qH + qP)

2

p

)
which is overwhelming in the security parameter κ, being q polynomial in κ and
p super-polynomial.

25 If q is even, we should add an extra positive element
(

2q
p

)3q

which makes the relation

hold anyways.

55

Advantage of the reduction. We can finally evaluate the advantage of B in win-
ning the discrete logarithm experiment as a function of the advantage of F in
winning the unforgeability of presentation experiment.

Let us define

– AdvDL
B (κ) as the probability that B interacting with F wins the DL experi-

ment;
– Adv

c−uf−pres(A)

F,BBS (κ) = Pr
[
FB wins c− uf − pres(A)|B simulates

]
as the prob-

ability that F wins the unforgeability of presentation forging the target cre-
dential according to case A, which is equal to the probability that F wins
the experiment interacting with B, provided that B correctly simulates the
experiment.

Since B interacting with F wins the DL experiment if it correctly simulates
the challenger of the unforgeability experiment and F forges a presentation both
before and after being rewound, we can apply the Generalised Forking Lemma
[BN06] to the algorithm that is successful if

– F produces a valid forgery (which happens with probability Adv
c−uf−pres(A)

F (κ));
– B does not fail the simulation of the experiment.

This algorithm succeeds with probability

ϵA = Pr
[
FB wins c− uf − pres(A) ∧ B simulates

]
=

Pr[B simulates] Pr
[
FB wins c− uf − pres(A)|B simulates

]
=

Pr[B simulates]Adv
c−uf−pres(A)

F,BBS (κ) ≥(
1− q2

p

)
Adv

c−uf−pres(A)

F,BBS (κ) (10)

Therefore, by the Generalized Forking lemma we have

AdvDL
B (κ) ≥ ϵA

(
ϵA
qH
− 1

p

)
≥(

1− q2

p

)2

qH

(
Adv

c−uf−pres(A)

F,BBS (κ)

)2

−

(
1− q2

p

)
p

(
Adv

c−uf−pres(A)

F,BBS (κ)

)
. (11)

G.2 Case B: extract a BBS forgery

Simulation failure probability In this case the reduction B reduces the hardness
of forging a multi-holder presentation to the hardness of forging a BBS signature.

For this case the simulation never fails.

56

Advantage of the reduction. The advantage of B in winning the strong unforge-
ability experiment of the BBS signature is

Advsuf−cma
B,BBS (κ) = Pr

[
BF wins suf − cma for BBS

]
which is the probability that B interacting with F wins the strong unforgeability
experiment described in [TZ23] for BBS signatures.

As for Case A, we apply the Forking Lemma to the algorithm which is suc-
cessful if B correctly simulates (which happens with probability 1) and F outputs
a valid forgery (constructed starting from a credential never issued to F), and
we define the probability of success of this algorithm as

ϵB = Pr
[
FB wins c− uf − pres(B) ∧ B simulates

]
=

Pr[B simulates] Pr
[
FB wins c− uf − pres(B)|B simulates

]
=

Adv
c−uf−pres(B)

F,BBS (κ) (12)

By applying the Generalised Forking Lemma [BN06] we obtain

Advsuf−cma
B,BBS (κ) ≥ ϵB

(
ϵB
qH
− 1

p

)
≥(

Adv
c−uf−pres(B)

F,BBS (κ)

)2

qH
−

(
Adv

c−uf−pres(B)

F,BBS (κ)

)
p

. (13)

H Reducing the Size of Credential Shares

We describe an optimization that can be used to reduce the size of the credential
shares which only requires to increase the size of the first broadcast message in
the presentation protocol execution.

Optimization 1 (Issuing algorithm CredIssBBS). In order to reduce the
size of the share of credential, which is polynomial in the number n of par-
ticipants, the issuer could sign the values Di and issue to each party Pi the
partial credential credi = (A, e(i), σi, Di, ({aj}j∈Pub, {a(i)j }j∈Prv)), where, being
h = H(X2, pp, A, {aj}j∈Pub) the hash of the credential data which are shared
by all the participants, σi is a digital signature σi = Sign(h||Di, sk) (Di =(∏

j∈Prv h
a
(i)
j

j

)
A−e(i)) created using a secret key sk possessed by the issuer. Then,

in the third step of the protocol the parties taking part to the presentation pro-
tocol execution broadcast their comi together with Di and the signature σi of the
issuer. In this way they prove that they are using a share of credential which
has been certified by the issuer. Then in order to successfully execute the pre-
sentation protocol the holder must prove knowledge of the associated integers

e(i), {a(i)j }j∈Prv s.t. Di =
(∏

j∈Prv h
a
(i)
j

j

)
A−e(i) .

57

If we consider a MHAC scheme compatible with a secure anonymous creden-
tial scheme, if the issuer only issues full credential we have already described
how an holder can distribute the credential issued by the issuer among multiple
holders by performing the secret sharing of the credential, giving a share to each
holder and then deleting the credential issued. In this case, the holder performing
the secret sharing of the BBS credential generates a key pair (skh, pkh), signs the
values Ãi using a secret key skh obtaining σi, and sends the pair (σi, pkh) to
each holder Pi. Then it deletes the BBS credential and the secret key skh. The
protocol participants will broadcast in the first step the signature of Di and the
other participants can verify it using pkh.

I Pedersen Verifiable Secret Sharing

In this section, we describe how it is possible to generate multi-holder anonymous
credentials with private attributes using as a building block the verifiable secret
sharing by Pedersen [Ped91]. We will consider three cases: the first one where
a private attribute is chosen by a dealer who is the issuer; the second case in
which the attribute is chosen by a dealer who is a holder who wants to keep it
hidden also from the issuer; the third where the private attribute is generated
by the holders (and possibly also by the issuer) and remains unknown by both
the holders and the issuer.

We will consider that the private attribute is the one in position m − 1.
Using the same notation as in [Ped91], we define the Pedersen commitment to
a∗ calculated using randomness s $←− Zp and bases hm−1, hm as

E(a∗, s) = ha
∗

m−1h
s
m.

I.1 Holder as a dealer

The dealer who wants to distribute the private attribute a∗ performs the follow-
ing operations.

1. The dealer computes a Pedersen commitment to a∗ sampling s $←− Zp and
computing D = E(a∗, s).

2. Being n the number of holders of a (t, n)−multi-holder anonymous credential,
the dealer samples at random a polynomial

F (x) = F0 + F1x+ · · ·+ Ft−1x
t−1 $←− Zp[x]

of degree at most t − 1, and such that F (0) = F0 = a∗, and uses this
polynomial to generate a Shamir-secret sharing [Sha79] of a∗, setting a∗(i) =
F (i),∀i ∈ [n].

3. The dealer additionally generates another random polynomial of degree at
most t− 1:

G(x) = G0 +G1x+ · · · ,+Gt−1x
t−1 $←− Zp[x]

58

with G(0) = G0 = s, and uses it to compute a secret sharing of the random-
ness s of the commitment D. It generates the secret shares s(i) = G(i),∀i ∈
[n] and sends secretly to Pi the pair (a∗(i), s(i)).

4. The dealer also computes the commitments Ei = E(Fi, Gi) to Fi,∀i ∈ {0}∪
[k − 1] and broadcast Ei to all the participants and to the issuer (note that
E0 = D).

Share verification. Each holder Pi upon receiving (a∗(i), s(i)), {Ei}i∈{0}∪[k−1],
checks that

E(a∗(i), s(i)) =

k−1∏
j=0

Eij

j

and if it does not hold, sends an abort message.
Note that if nobody aborts, then everyone can compute the values E(a∗(i), s(i)).
Every party creates a straight-line extractable [Pas03,Fis05,Unr15,KS22] NIZKP

of knowledge of a representation of E(a∗(i), s(i)), then the issuer computes the
shares of credential executing Protocol 1.

The unlinkability with private attributes can be instantiated assuming that
the challenger of the experiment controls both the issuer of the credential, an
the dealer.

I.2 Issuer as a dealer

In this case, the issuer performs the operations performed by the holder in the
previous case (Section I.1), and in this case, it does not have to sign in a blind
way any attribute since it also knows the private attributes.

I.3 Issuance without dealer

In this section we instantiate the protocol for the generation of an anonymous
shared secret proposed by Pedersen in [Ped91, Section 5.2] in the context of our
multi-holder issuing protocol, showing how the parties can generate a shared
attribute a∗ (and the masking attribute s corresponding to the m−th position)
which is not known by anyone.

Each holder Pi (and possibly the issuer) executes the following operations:

– sample a∗i
$←− Zp uniformly at random;

– distribute a∗i as if it was the dealer using the Pedersen VSS described in
Section I.1 and signs each share (a

∗(j)
i , s

(j)
i)∀j ∈ [n] \ {i} that sends to the

parties {Pj} and the broadcasted values (Ei,0, · · · , Ei,t−1);
– Pi verifies the shares received by the other parties, and if one does not verify,

Pi broadcast the share with the signature of the associated dealer and aborts.
– compute the share (a∗(i), s(i)) of a∗ =

∑
j∈[n] a

∗
j setting a∗(i) =

∑
j∈[n] a

∗(i)
j

and s(i) =
∑

j∈[n] s
(i)
j , then by computing

(E0, · · · , Et−1) = (
∏
j∈[n]

Ej,0, · · · ,
∏
j∈[n]

Ej,t−1)

59

Every party creates a straight line extractable [Pas03,Fis05,Unr15,KS22]
NIZKP of knowledge of a representation of E(a∗(i), s(i)), then the issuer com-
putes the shares of credential executing Protocol 1.

60

	Multi-Holder Anonymous Credentials from BBS Signatures
	Introduction
	Our Contribution
	Our Techniques
	Outline

	Related Works
	Preliminaries
	Sigma protocols
	BBS signatures

	Multi-Holder Anonymous Credentials
	Security Definitions
	Correctness
	Unlinkability
	Presentation with identifiable abort
	Concurrent unforgeability of presentations

	BBS Multi-Holder Anonymous Credentials
	Credential issuing
	Multi-holder presentation
	Verification
	Extensions

	Security Analysis
	Correctness of BBS MHAC
	Unlinkability of presentations of BBS MHAC.
	Unlinkability of private attributes of BBS MHAC
	Presentation with identifiable abort of BBS MHAC
	Unforgeability of presentations of BBS MHAC.

	Sigma Protocol for Linear Relation
	Analysis of BBS Presentation Protocol in tessaro2023revisiting.
	BBS MHAC Presentation Protocol Overview
	Private Attribute Unlinkability of BBS MHAC Scheme
	Identifiable Abort of BBS MHAC Scheme
	Unforgeability of the BBS MHAC Scheme
	Unforgeability experiment instantiation
	Unforgeability proof

	Advantage of the Presentation Unforgeability Reduction
	Case A: extract the target credential
	Case B: extract a BBS forgery

	Reducing the Size of Credential Shares
	Pedersen Verifiable Secret Sharing
	Holder as a dealer
	Issuer as a dealer
	Issuance without dealer

