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Abstract. Identity-based matchmaking encryption (IB-ME) is an advanced encryption scheme that
allows both the sender and the receiver to specify their respective identities. We study the notion of
hierarchical IB-ME (HIB-ME), which augments IB-ME with delegation capabilities.
Specifically, we first formalize HIB-ME and construct it based on hierarchical identity-based encryption
and hierarchical identity-based signature. Moreover, as applications of the HIB-ME, we show two chosen
ciphertext secure (H)IB-ME constructions for different security levels.

1 Introduction

1.1 Background and Motivation

Identity-based Matchmaking Encryption. Identity-based matchmaking encryption (IB-ME), proposed
by Ateniese et al. [AFNV19], is a novel extension of the ordinary encryption system. In this system, both the
sender and receiver can specify appropriate identities, which must be satisfied for the message to be revealed.
More specifically, in IB-ME, as a setup phase, each sender (resp., receiver) is provided a secret encryption
(resp., decryption) key associated to its identity σ (resp., ρ) by the authority called the key generation center
(KGC). Then, when a sender generates a ciphertext ct using encryption key ekσ, in addition to a plaintext
m, it selects the target identity of receiver ρ. Upon receiving a ciphertext ct from the sender with his identity
σ, a receiver who has a decryption key of ρ and selects a sender identity σ can decrypt the ciphertext ct. As
security requirements, IB-ME should satisfy two properties: privacy and authenticity. Roughly, if identity
requirements by senders and receivers do not match, privacy guarantees that any information of a plaintext
and an identity does not leak from a ciphertext. Also, authenticity ensures that only the sender who has
an encryption key associated with his identity σ can generate a ciphertext associated with σ. To show
the usefulness of IB-ME, Ateniese et al. [AFNV19] demonstrated that a privacy-preserving bulletin board
system 3 (over a Tor network) could be realized based on IB-ME. In that system, users who might belong
to different organizations can communicate secretly through this bulletin board or collect information from
anonymous sources.
Prior Works. Following the seminal work [AFNV19,AFNV21], research on various flavors of IB-ME has
been carried out. Francati et al. [FGRV21] proposed a mismatch-cases privacy and gave a construction from a
q-type assumption in the plain model. Chen et al. [CLWW22] dismantle q-type assumption and proposed the
first IB-ME construction from the standard assumption in the standard model. Wang et al. [WWLZ25] pro-
posed a generic construction of IB-ME based on a 2-level anonymous HIBE and an identity-based signature
scheme. Boyen and Li [BL23] constructed IB-ME that satisfy enhanced privacy under standard assumptions
using an anonymous IBE, an identity-based signature, an average-case randomness extractor, and a reusable
computational extractor. Belfiore et al. [BCF24] constructed IB-ME that achieves the notion of enhanced
privacy using as building blocks an anonymous IBE, a homomorphic signature, and a reusable computational
extractor. There exists some works [CHHS23,LLC24,WWLZ25] by taking another approach to achieve CCA
secure IB-ME as follows. Chiku et al. [CHHS23] towards CCA secure IB-ME schemes by taking two other
approaches. One is based on combining Boneh and Franklin IBE scheme [BF01], Sakai et al.’s identity-based
3 A bulletin board is an online platform where users can post messages, share information, and engage in discussions

on various topics. It allows for asynchronous communication, enabling users to interact at their convenience.
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Table 1. Comparison between our IB-ME scheme and the existing CCA secure IB-ME schemes. “Anon IBE” stands
for anonymous identity-based encryption, “IBS” stands for identity-based signature, “2-HIB-ME” stands for HIB-ME
with 2-level receiver delegation, “OTS” stands for one-time strong signature, and “(Q)ROM” (resp., “StdM”) stands
for (quantum) random oracle model (resp., standard model).

Schemes Privacy Level Crypto. Primitives Assumption Model
Chiku et al. [CHHS23] CCA BDH ROM
Chiku et al. [CHHS23] + [DLP14,PFH+22] CCA Anon IBE + IBS NTRU QROM
Lin et al. [LLC24] CCA SXDH StdM
CHK w/ OTS (§ 4.1) + [BKP14] CCA 2-HIB-ME + OTS k-lin StdM
CHK w/ OTS (§ 4.1) + [ABB10] CCA 2-HIB-ME + OTS LWE StdM
CHK w/o OTS (§ 4.2) + [BKP14] tweaked CCA 2-HIB-ME k-lin StdM
CHK w/o OTS (§ 4.2) + [ABB10] tweaked CCA 2-HIB-ME LWE StdM

non-interactive key exchange protocol [SOK00], and Fujisaki-Okamoto transformation [FO99]. Another one
is depending on a CCA secure IBE scheme, an IBS scheme, and a hash function modeled as a random
oracle. These constructions are toward not only CCA security but also enhanced privacy. Lin et al. [LLC24]
towards a CCA secure IB-ME scheme using the CHK conversion technique. This study applies the CHK
technique to specific pairing-based IBE and constructs a pairing-based CCA secure IB-ME construction.
Wang et al. [WWLZ25] insist on their IB-ME towards CCA security by replacing CPA secure HIBE with
CCA secure HIBE, but there is no security proof for CCA privacy.
Motivation. In this paper, we aim to formulate a model and give a general construction for hierarchical IB-
ME (HIB-ME), thereby providing a basis for further exploration of its theoretical applications. Incorporating
hierarchical structures into identity-based primitives is a natural and important step in the evolution of
advanced cryptographic primitives with centralized authority. This extension enables the distribution of key
generation tasks across multiple levels, reducing the burden on central authorities and improving overall
efficiency. Additionally, this extension has a potential for an application to achieve CCA security (e.g.,
[CHK04]).

1.2 Our Contribution

Based on the above motivation, this paper gives the following three technical contributions.
A New Primitive: Hierarchical Identity-Based Matchmaking Encryption. We devise a new exten-
sion of IB-ME called hierarchical identity-based matchmaking encryption (HIB-ME). Roughly, HIB-ME is an
extension of IB-ME in the sense that it enables senders (resp., receivers) to generate encryption keys (resp.,
decryption keys) for their children’s identities. Regarding security aspects, we define CPA privacy, CCA
privacy, tweaked CCA privacy, and authenticity. We show that a CPA secure HIB-ME scheme can be ob-
tained by combining hierarchical identity-based encryption (HIBE) and hierarchical identity-based signature
(HIBS) by extending the Wang et al.’s CPA secure IB-ME construction [WWLZ25].
Extension of CHK conversion in HIB-ME. As an application of HIB-ME, we propose a CCA secure
(H)IB-ME scheme in the standard model. Specifically, we offer a systematic analysis of the Canetti-Halevi-
Katz (CHK) conversion technique [CHK04] within the (H)IB-ME framework and propose two distinct vari-
ants of the CHK conversion tailored for (H)IB-ME (one is for CCA security and the other is for tweaked
CCA security). The resulting schemes are summarized in Table 1.

First, we show a natural extension of the CHK conversion, where a CCA secure (H)IB-ME is derived from
CPA secure HIB-ME and one-time signatures. Regarding the efficiency, for example, the ciphertext size is
almost the same as the underlying CPA secure (H)IB-ME scheme. From the previous works [ABB10,BKP14,
BW06,CHKP12,KN08,SKOS09], we can realize our generic construction over bilinear groups or lattices.

Moreover, we introduce a slightly weak but reasonable CCA security notion, called tweaked CCA security,
for (H)IB-ME. Roughly, tweaked CCA security is the same as (standard) CCA security except that the
(secret) encryption key used in generating challenge ciphertexts is not allowed to be leaked. As an advantage
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of tweaked CCA security, we show that a tweaked CCA secure (H)IB-ME scheme can be constructed solely
based on a CPA secure HIB-ME scheme (without strong one-time signature) by leveraging privacy and
authenticity of the underlying HIB-ME scheme. (That is, regarding the ciphertext size, our tweaked CCA
secure (H)IB-ME scheme does not have an overhead occurred by strong one-time signature.)

2 Preliminaries

Notations. In this paper, we use the following notations. For n ∈ N, we denote [n] = {1, .., n}. Let λ ∈ N
denote the security parameter. x← X denotes the operation of sampling an element x from a finite set X.
y ← A(x; r) denotes that a probabilistic Turing machine A outputs y for an input x using a randomness
r, and we simply denote y ← A(x) when we do not need to write the internal randomness explicitly. PPT
stands for probabilistic polynomial time. x := y denotes that x is defined by y. We say a function ε(λ) is
negligible in λ, if ε(λ) = o(1/λc) for every c ∈ Z, and we write negl(λ) to denote a negligible function in λ.
∅ denotes the empty set. If O is a function or an algorithm and A is an algorithm, AO means A has oracle
access to O. For a bit string x, len(x) denotes the length of x.

2.1 One-Time Digital Signature

Let Sig denote a digital signature scheme. Sig consists of the following three algorithms (KGen,Sign,Ver):

KGen(1λ)→ (vk, sk): The key generation algorithm takes the security parameter 1λ as input, and outputs a
verification key vk and signing key sk.

Sign(sk,m)→ Σ: The signing algorithm takes a sk and plaintext m ∈ M as input, and outputs a signature
Σ.

Ver(vk,Σ,m)→ 1/0: The verifying algorithm takes vk, and Σ as input, and outputs 1 (meaning “accept”) or
0 (meaning “reject”).

Correctness. The correctness for Sig requires that for all λ ∈ N, (vk, sk)← KGen(1λ) and m ∈ M, it holds
that

Pr[1 = Ver(vk,Σ,m) |Σ← Sign(sk,m) ] = 1.

Security. Next, we define a one-time strong unforgeability (sEUF-CMA security) for a digital signature
scheme.

Definition 1 (One-time sEUF-CMA Security). Let Sig be a digital signature scheme. We say that Sig
satisfies one-time sEUF-CMA security if for all PPT adversaries A, it holds that

Advseuf-cma
Sig,A (λ) := Pr

 ((m,Σ) ̸= (m∗,Σ∗))∧
(Ver(vk,Σ,m) = 1)

∣∣∣∣∣∣∣∣
(vk, sk)← KGen(1λ);
m∗ ← A(vk);
Σ∗ ← Sign(sk,m∗);
(Σ,m)← A(vk,Σ∗);

 ≤ negl(λ).

2.2 Hierarchical Identity-Based Encryption

Let HIBE denote a hierarchical identity-based encryption (HIBE) [GS02, HL02, SW08]. HIBE for identity
space ID and message spaceM consists of following five algorithms (Setup,KGen,KDel,Enc,Dec):

Setup(1λ, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and the maximum hierar-
chical depth l as input, and outputs a master public key mpk and a master secret key msk.

KGen(mpk,msk, ID)→ skID: The key generation algorithm takes mpk, msk, and a user identity ID, and out-
puts a user secret key skID.
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KDel(mpk, skID′ , ID)→ skID′|ID: The key delegation algorithm takes mpk, skID′ , and a user identity ID, and
outputs a user secret key skID′|ID for the d+ 1 depth identity ID′|ID.

Enc(mpk, ID,m)→ ct: The encryption algorithm takes mpk, ID, and a plaintext m as input, and outputs a
ciphertext ct.

Dec(mpk, skID, ct)→ m/⊥: The decryption algorithm takes mpk, skID, and ct as input, and outputs m or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, (mpk,msk) ← Setup(1λ, l), ID ∈ ID, skID ←
KGen(mpk,msk, ID), and m ∈M,

Pr[Dec(mpk, skID,Enc(mpk, ID,m)) = m] = 1.

Moreover, we also require the distribution of skID′|ID ← KDel(mpk, skID′ , ID) is identical to the one from
KGen(mpk,msk, ID′|ID).
Security. Next, we define IND-hID-CPA security for a HIBE scheme.

Definition 2 (IND-hID-CPA Security). Let HIBE be an l-level HIBE scheme. We say that HIBE satisfies
IND-hID-CPA security if for all PPT adversaries A, it holds that

Advind-hid-cpaHIBE,A (λ, l) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
b←$ {0, 1},Lsk := ∅;
(mpk,msk)← Setup(1λ, l);
(ID∗

0, ID
∗
1,m

∗
0,m

∗
1)← AOKGen,OKDel,Osk(mpk);

ct∗b ← Enc(mpk, ID∗
b ,m

∗
b);

b′ ← AOKGen,OKDel,Osk(ct∗b);

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

with restriction (ID∗
b , ·) ∈ Lsk ∧ (prefix(ID∗

b), ·) ∈ Lsk for b ∈ {0, 1}, and OKGen is queried only once for the
same ID. Now, we define three type of oracles that A can access as follows:

– Key Generation OKGen(mpk,msk, ·): On input ID, the challenger runs skID ← KGen(mpk,msk, ID) and
updates Lsk := Lsk ∪ {(ID, skID)}.

– Key Delegate OKDel(mpk, ·, ·): On input (ID′, ·) ∈ Lsk, ID, the challenger extracts skID′ from Lsk, runs
skID′|ID ← KDel(mpk, skID′ , ID), and updates Lsk := Lsk ∪

{
(ID′|ID, skID′|ID)

}
.

– Key Reveal Osk(·): On input (ID, ·) ∈ Lsk, the challenger extracts skID from Lsk, and returns skID to A.
In addition, the challenger updates Lsk := Lsk \ {(ID, skID)}.

2.3 Hierarchical Identity-Based Signature

Let HIBS denote a hierarchical identity-based signature (HIBS) [GS02,SW08]. HIBS consists of following five
algorithms (Setup,KGen,KDel,Sign,Ver):

Setup(1λ, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and the maximum hierar-
chical depth l as input, and outputs a master public key mpk and a master secret key msk.

KGen(mpk,msk, ID)→ skID: The key generation algorithm takes mpk, msk, and a user identity ID, and out-
puts a user secret key skID.

KDel(mpk, skID′ , ID)→ skID′|ID: The key delegation algorithm takes mpk, skID′ , and a user identity ID, and
outputs a user secret key skID′|ID for the d+ 1 depth identity ID′|ID.

Sign(mpk, skID,m)→ Σ: The signing algorithm takes a mpk, skID, and a message m ∈ M as input, and
outputs a signature Σ.

Ver(mpk, ID,Σ,m)→ 1/0: The verifying algorithm takes mpk, ID ∈ ID, Σ, and m as input, and outputs 1
(meaning “accept”) or 0 (meaning “reject”).
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Correctness. For corectness, we require that for all λ ∈ N, (mpk,msk) ← Setup(1λ, l), ID ∈ ID, skID ←
KGen(mpk,msk, ID), m ∈M, and Σ← Sign(mpk, skID,m),

Pr[Ver(mpk, ID,Σ,m) = 1] = 1.

Moreover, we also require the distribution of skID′|ID ← KDel(mpk, skID′ , ID) is identical to the one from
KGen(mpk,msk, ID′|ID).
Security. Next, we define EUF-hID-CMA security for a HIBS scheme.

Definition 3. Let HIBS be an l-level HIBS scheme. We say that HIBS satisfies EUF-hID-CMA security if for
all PPT adversary A, it holds that

Adveuf-hid-cma
HIBS,A (λ, l) := Pr


(ID∗, ·) ∈ Lsk∧

(prefix(ID∗), ·) ∈ Lsk∧
((ID∗,m∗, ·) /∈ LΣ)∧

(Ver(mpk, ID∗,Σ∗,m∗) ̸= 0)

∣∣∣∣∣∣∣∣
Lsk,LΣ := ∅;
(mpk,msk)← Setup(1λ, l);
(ID∗,Σ∗,m∗)
← AOKGen,OKDel,Osk,OSign(mpk);


= negl(λ),

with restriction OKGen is queried only once for the same ID. Now, we define four type of oracles that A can
access as follows:

– Key Generation OKGen(mpk,msk, ·): Same as Definition 2.
– Key Delegate OKDel(mpk, ·, ·): Same as Definition 2.
– Key Reveal Osk(·): Same as Definition 2.
– Signature Generation OSign(·, ·): On input ID ∈ Lsk and m, the challenger extracts skID from Lsk, runs

Σ← Sign(mpk, skID,m), and returns Σ to A. In addition, the challenger updates LΣ := LΣ∪{(ID,m,Σ)}.

3 Hierarchial Identity-Based Matchmaking Encryption

In this section, we introduce a new cryptographic primitive called hierarchical identity-based matchmaking
encryption (HIB-ME).

3.1 Formalization of HIB-ME

In this section, we provide the syntax, correctness, and security definitions for HIB-ME. Informally, HIB-ME
is an extension of IB-ME in the sense that it enables senders (resp., receivers) to generate encryption keys
(resp., decryption keys) for their children’s identities. Let (k, l)-level HIB-ME denote an HIB-ME scheme
with a maximum depth k for sender keys and depth l for receiver keys. (k, l)-level HIB-ME consists of the
following seven algorithms (Setup,SKGen,SKDel,RKGen,RKDel,Enc,Dec):

Setup(1λ, k, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and the maximum hier-
archical sender depth k and receiver depth l as input, and outputs a master public key mpk and a master
secret key msk.

SKGen(mpk,msk, σ)→ ekσ: The sender key generation algorithm takes mpk, msk, and a sender identity σ,
and outputs a encryption key ekσ.

SKDel(mpk, ekσ′ , σ)→ ekσ′|σ: The sender key delegation algorithm takes mpk, ekσ′ , and a sender identity σ,
and outputs a encryption key ekσ′|σ for the d+ 1 depth identity σ′|σ.

RKGen(mpk,msk, ρ)→ dkρ: The receiver key generation algorithm takes mpk, msk, and a receiver identity
ρ, and outputs a decryption key dkρ.

RKDel(mpk, dkρ′ , ρ)→ dkρ′|ρ: The receiver key delegation algorithm takes mpk, dkρ′ , and a receiver identity
ρ, and outputs a decryption key dkρ′|ρ for the d+ 1 depth identity ρ′|ρ.

Enc(mpk, ekσ, rcv,m)→ ct: The encryption algorithm takes mpk, ekσ, a target receiver identity rcv, and a
plaintext m, and outputs a ciphertext m.
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Dec(mpk, dkρ, snd, ct)→ m/⊥: The decryption algorithm takes mpk, dkρ, a target sender identity snd, and
ct, and outputs m or ⊥.

Correctness. For correctness, we require that for all λ ∈ N, (mpk,msk)← Setup(1λ, k, l), σ, snd, ρ, rcv ∈ ID
such that σ = snd ∧ ρ = rcv, ekσ ← SKGen(mpk,msk, σ), dkρ ← RKGen(mpk,msk, ρ), and m ∈M,

Pr[Dec(mpk, dkρ, snd,Enc(mpk, ekσ, rcv,m)) = m] = 1.

Moreover, we also require the distribution of ekσ′|σ ← SKDel(mpk, ekσ′ , σ) (resp., dkρ′|ρ ← RKDel(mpk, dkρ′ , ρ))
is identical to the one from SKGen(mpk,msk, σ′|σ) (resp., RKGen(mpk,msk, ρ′|ρ)).
Security. Next, we define security requirements (hib-cca-priv security, hib-tcca-priv security, hib-cpa-priv secu-
rity, and hib-auth security) for HIB-ME. hib-cca-priv security is based on [CHHS23,LLC24], While hib-cpa-priv
security is based on [AFNV21], and hib-auth security is based on [FGRV21], hib-tcca-priv security is original
meaningful privacy definition. While CCA security is the most desirable security, we can consider a weaker
version that A cannot get the (secret) encryption key of the target sender σ∗. In the tweaked CCA security
experiment, A can no longer compute encryption using the challenge (secret) encryption key. Hence A is
given access to encryption oracle OEnc.

Definition 4 (Privacy). Let HIB-ME be an (k, l)-level HIB-ME scheme. We define the advantage of each
privacy game as

AdvprivHIB-ME,A(λ, k, l) :=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b
′ = b

∣∣∣∣∣∣∣∣∣∣∣∣

b←$ {0, 1},Lek,Ldk,Lct := ∅;
(mpk,msk)← Setup(1λ, k, l);
(σ∗

0 , σ
∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1)← AO(mpk);

ekσ∗
b
← SKGen(mpk,msk, σ∗

b );

ct∗b ← Enc(mpk, ekσ∗
b
, rcv∗b ,m

∗
b);

b′ ← AO(ct∗b);

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
.

In addition, we define eight type of oracles as follows:

– Sender Key Generate OSKGen(mpk,msk, ·): On input σ, the challenger runs ekσ ← SKGen(mpk,msk, σ)
and updates Lek := Lek ∪ {(σ, ekσ)}.

– Receiver Key Generate ORKGen(mpk,msk, ·): On input ρ, the challenger runs dkρ ← RKGen(mpk,msk, ρ)
and updates Ldk := Ldk ∪ {(ρ, dkρ)}.

– Sender Key Delegate OSKDel(mpk, ·, ·): On input σ′ such that (σ′, ·) ∈ Lek and σ, the challenger
extracts ekσ′ from Lek, runs ekσ′|σ ← SKDel(mpk, ekσ′ , σ), and updates Lek := Lek ∪

{
(σ′|σ, ekσ′|σ)

}
.

– Receiver Key Delegate ORKDel(mpk, ·, ·): On input ρ′ such that (ρ′, ·) ∈ Ldk and ρ, the challenger
extracts dkρ′ from Ldk, runs dkρ′|ρ ← RKDel(mpk, dkρ′ , ρ), and updates Ldk := Ldk ∪

{
(ρ′|ρ, dkρ′|ρ)

}
.

– Sender Key Reveal Oek(·): On input σ such that (σ, ·) ∈ Lek, the challenger extracts ekσ from Lek

and returns ekσ to A. In addition, the challenger updates Lek := Lek \ {(σ, ekσ)}.
– Receiver Key Reveal Odk(·): On input ρ such that (ρ, ·) ∈ Ldk, the challenger extracts dkρ from Ldk

and returns dkρ to A. In addition, the challenger updates Ldk := Ldk \ {(ρ, dkρ)}.
– Encrypt OEnc(mpk, ·, ·, ·): On input σ such that (σ, ·) ∈ Lek, rcv, and m, the challenger extracts ekσ

from Lek, runs ct ← Enc(mpk, ekσ, rcv,m), and returns ct to A. In addition, the challenger updates
Lct := Lct ∪ {(σ, rcv,m, ct)}.

– Decrypt ODec(mpk, ·, ·, ·): On input ρ such that (ρ, ·) ∈ Ldk, snd, and ct, the challenger returns ⊥ if
snd = σ∗ ∧ ρ = rcv∗ ∧ ct = ct∗b . Otherwise, it extracts dkρ from Ldk, runs m← Dec(mpk, dkρ, snd, ct), and
returns m to A.

Now, we say that HIB-ME satisfies:

1. hib-cpa-priv if for all PPT adversary A that can access to O := {OSKGen,ORKGen,OSKDel,ORKDel,Oek,Odk},
it holds that AdvprivHIB-ME,A(λ, k, l) = negl(λ) with restriction (rcv∗, ·) /∈ Ldk ∧ (prefix(rcv∗), ·) ∈ Ldk.

2. hib-cca-priv if for all PPT adversary A that can access to O := {OSKGen,ORKGen,OSKDel,ORKDel,Oek,Odk,

ODec}, it holds that AdvprivHIB-ME,A(λ, k, l) = negl(λ) with restriction (rcv∗, ·) ∈ Ldk∧(prefix(rcv∗), ·) ∈ Ldk.
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3. hib-tcca-priv if for all PPT adversary A that can access to O := {OSKGen,ORKGen,OSKDel,ORKDel,Oek,Odk,

OEnc,ODec}, it holds that AdvprivHIB-ME,A(λ, k, l) = negl(λ) with restriction (σ∗, ·) ∈ Lek ∧ (prefix(σ∗), ·) ∈
Lek ∧ (rcv∗, ·) ∈ Ldk ∧ (prefix(rcv∗), ·) ∈ Ldk.

Definition 5 (Authenticity). Let HIB-ME be an (k, l)-level HIB-ME scheme. We say that HIB-ME satisfies
hib-auth security if for all PPT adversary A, it holds that

Advhib-authHIB-ME,A(λ, k, l) := Pr

 (snd∗, ·) ∈ Lek∧
(snd∗,m∗) /∈ Lct∧

Dec(mpk, dkρ∗ , snd
∗, ct∗) ̸= ⊥

∣∣∣∣∣∣∣
Lek,Ldk,Lct := ∅;
(mpk,msk)← Setup(1λ, k, l);

(snd∗, ρ∗, ct∗,m∗)← AO(mpk);


= negl(λ),

with restriction (snd∗, ·) ∈ Lek ∧ (prefix(snd∗), ·) ∈ Lek ∧ (snd∗, ρ∗, ·, ct∗) /∈ Lct. Where A can access O :=
{OSKGen,ORKGen,OSKDel,ORKDel,Oek,Odk,OEnc} defined in Definition 4.

3.2 Construction from Anonymous HIBE and HIBS

In this section, we show a construction of CPA secure HIB-ME scheme. We can obtain hib-cpa-priv and
hib-auth secure (k, l)-level HIB-ME scheme HIB-ME from k-level HIBS and l+ 1-level HIBE. The main idea
of the construction is extension of Wang et al.’s sign-then-encrypt IB-ME scheme [WWLZ25].
Construction. Fix integers k ≥ 1, l ≥ 1. Let HIBE = (SetupHIBE,KGenHIBE,KDelHIBE,EncHIBE,DecHIBE) be
an l+ 1-level HIBE scheme, and HIBS = (SetupHIBS,KGenHIBS,KDelHIBS,SignHIBS,VerHIBS) be a k-level HIBS
scheme. Then, our (k, l)-level HIB-ME scheme HIB-ME = (Setup,SKGen,SKDel,RKGen,RKDel,Enc,Dec) is
described as follows:

Setup(1λ, k, l): It runs (mpkHIBS,mskHIBS)← SetupHIBS(1
λ, k) and (mpkHIBE,mskHIBE)← SetupHIBE(1

λ, l+1).
Then, it outputs (mpk,msk) where mpk := (mpkHIBS,mpkHIBE) and msk := (mskHIBS,mskHIBE).

SKGen(mpk,msk, σ): It runs ekσ ← KGenHIBS(mpkHIBS,mskHIBS, σ) and outputs ekσ.
SKDel(mpk, ekσ′ , σ): It runs ekσ′|σ ← KDelHIBS(mpkHIBS, ekσ′ , σ) and outputs ekσ|σ′ .
RKGen(mpk,msk, ρ): It runs dkρ ← KGenHIBE(mpkHIBE,mskHIBE, ρ) and outputs dkρ.
RKDel(mpk, dkρ′ , ρ): It runs dkρ′|ρ ← KDelHIBE(mpkHIBE, dkρ′ , ρ) and outputs dkρ|ρ′ .
Enc(mpk, ekσ, rcv|σ,m): It runs Σ ← SignHIBS(mpkHIBS, ekσ,m||rcv) and ct ← EncHIBE(mpkHIBE, rcv|σ,m||Σ),

and outputs ct.
Dec(mpk, dkρ, snd, ct): It runs dkρ|snd ← KDelHIBE(mpkHIBE, dkρ, snd) m||Σ ← DecHIBE(mpk, dkρ|σ, ct).

If VerHIBS(mpkHIBS, snd,Σ,m||ρ) = 1, it outputs m. Otherwise, it outputs ⊥.

Correctness. If the ciphertext ct ← EncHIBE(mpkHIBE, rcv|snd,m||Σ) generated correctly, VerHIBS(mpkHIBS,
snd, σ,m||ρ) always outputs 1 due to the correctness of HIBS. Hence, if HIBE satisfies correctness, HIB-ME
also satisfies correctness.
Security. Here, we show that our scheme satisfies security requirements.

Theorem 1. Suppose that the HIBE scheme HIBE is IND-hID-CPA secure. If there exists an adversary A
that breaks hib-cpa-priv security if HIB-ME, there exists an adversary B that breaks IND-hID-CPA security of
HIBE such that

Advhib-cpa-privHIB-ME,A (λ, k, l) = Advind-hid-cpaHIBE,B (λ, l + 1)

where k (resp., l) is the maximum depth of senders (resp., receivers). The running time of B is about that
of A.

Proof. Let A be an adversary that breaks the hib-cpa-priv security of HIB-ME. We show an adversary B that
breaks the IND-hID-CPA security of HIBE by using A. The description of B is as follows.

1. Upon receiving mpkHIBE, B generates (mpkHIBS,mskHIBS)← SetupHIBS(1
λ, k), picks coin b̂←$ {0, 1}, and

prepares Lek,Ldk := ∅. Then, B executes A on input mpk := (mpkHIBE,mpkHIBS).
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2. When A makes some oracle queries, B answers as follows:
(a) When A makes a sender key generation (resp., delegation) query on input σ (resp., σ′ such that

(σ′, ·) ∈ Lek and σ), B runs ekσ ←
KGenHIBS(mpkHIBS,mskHIBS, σ) (resp., ekσ′|σ ← KDelHIBS(mpkHIBS, ekσ′ , σ where ekσ′ extracted from
Lek) and updates Lek := Lek ∪ {(σ, ekσ)} (resp., Lek := Lek ∪

{
(σ′|σ, ekσ′|σ)

}
).

(b) When A makes a receiver key generation (resp., delegation) query on input ρ (resp., ρ′ such that
(ρ′, ·) ∈ Ldk) and ρ), B queries ρ (resp., ρ′ and ρ) to its challegner and updates Ldk := Ldk ∪ {(ρ,⊥)}
(resp., Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender key reveal query on input σ such that (σ, ·) ∈ Lek, B extracts ekσ from Lek,
and returns ekσ to A. In addition, B updates Lek := Lek \ {(σ, ekσ)}.

(d) When A such that (ρ, ·) ∈ Ldk, B queries to its challenger to obtain dkρ and returns it to A. In
addition, B updates Ldk := Ldk \ {(ρ,⊥)}.

(e) When A makes challenge ciphertexct query on input (σ∗
0 , σ

∗
1), (rcv∗0, rcv∗1), and (m∗

0,m
∗
1), B computes

Σ← SignHIBS(mpkHIBS, ekσ∗
b̂
,m∗

b̂
||rcv∗) and makes a challenge ciphertext query on input (rcv∗0|σ∗

b̂
, rcv∗1|σ∗

b̂
)

and
(m∗

0||Σ,m∗
1||Σ) to obtain ct∗, and returns it to A.

3. Finally, when A outputs b′, B outputs the same.

From above construction, B perfectly simulates the hib-cpa-priv game againstA. Moreover, since (rcv∗0, ·) /∈
Ldk ∧ (rcv∗1, ·) /∈ Ldk implies (rcv∗, ·) /∈ Lsk ∧ (rcv∗1, ·) /∈ Lsk, B is admissible. Therefore, if A breaks the
hib-cpa-priv security, B also breaks the IND-hID-CPA security, that is,

Advhib-cpa-privHIB-ME,A (λ, k, l) = Advind-hid-cpaHIBE,B (λ, l).

Theorem 2. Suppose that the HIBS scheme HIBS is EUF-hID-CMA secure. If there exists an adversary A
that breaks hib-auth security of HIB-ME, there exists an adversary B that breaks EUF-hID-CMA security of
HIBS such that

Advhib-authHIB-ME,A(λ, k, l) = Adveuf-hid-cma
HIBS,B (λ, k)

where k (resp., l) is the maximum depth of senders (resp., receivers). The running time of B is about A.

Proof. Let A be an adversary that breaks the hib-cpa-priv security of HIB-ME. We show an adversary B that
breaks the EUF-hID-CMA security of HIBS by using A. The description of B is as follows.

1. Upon receiving mpkHIBS, B generates (mpkHIBE,mskHIBE)← SetupHIBE(1
λ, l+1) and prepares Lek,Ldk,Lct :=

∅. Then, B executes A on input mpk := (mpkHIBE,mpkHIBS).
2. When A makes some oracle queries, B answers as follows:

(a) When A makes a sender key generation (resp., delegation) query on input σ (resp., σ′ such that
(σ′, ·) ∈ Lek) and σ), B queries σ (resp., σ′ and σ) to its challenger and updates Lek := Lek∪{(σ,⊥)}
(resp., Lek := Lek ∪ {(σ′|σ,⊥)}).

(b) When A makes a receiver key generation (resp., delegation) query on input ρ (resp., ρ′ such that
(ρ′, ·) ∈ Ldk and ρ), B runs dkρ ← KGenHIBE(mpkHIBE,mskHIBE, ρ) (resp., dkρ′|ρ ← KDelHIBE(mpkHIBE, dkρ′ , ρ)

where dkρ′ extracted from Lek) and updates Ldk := Ldk∪{(ρ, dkρ)} (resp., Ldk := Ldk∪
{
(ρ′|ρ, dkρ′|ρ)

}
).

(c) When A makes a sender key reveal query on input σ such that (σ, ·) ∈ Lek, B extracts ekσ from Lek,
and returns ekσ to A. In addition, B updates Lek := Lek \ {(σ,⊥)}.

(d) When A such that (ρ, ·) ∈ Ldk, B queries to its challenger to obtain dkρ and returns it to A. In
addition, B updates Ldk := Ldk \ {(ρ, dkρ)}.

(e) When A makes encryption query on input σ, rcv, and m, B queries σ, rcv, and m|rcv and obtains
Σ. Then, B computes ct← EncHIBE(mpkHIBE, rcv|σ,m|Σ) and returns ct to A. In addition, B updates
Lct := Lct ∪ {(σ, rcv,m, ct)}.
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3. Finally, whenA outputs snd∗, ρ∗, and ct, B extracts dkρ∗ from Ldk, computes m∗|Σ∗ ← DecHIBE(mpkHIBE, dkρ∗ , ct).
If VerHIBS(mpkHIBS, snd

∗,m∗|rcv∗,Σ∗) = 1, B submits snd∗, m∗|rcv∗, Σ∗ as forgery to its challenger. Oth-
erwise, B halts.

From above construction, B perfectly simulates the hib-auth game against A. Moreover, since (snd∗, ·) ∈
Lek implies (snd∗, ·) ̸= Lsk and (snd∗, ρ∗,m∗, ·) /∈ Lct implies (snd∗,m∗|ρ∗,Σ∗) /∈ LΣ, B is admissible. There-
fore, if A breaks the hib-auth security, B also breaks the EUF-hID-CMA security, that is,

Advhib-authHIB-ME,A(λ, k, l) = Adveuf-hid-cma
HIBS,B (λ, k).

Remark 1. We can obtain mismatch case privacy using computational reusable extractor using the same
techniques of [FGRV21,BL23,CHHS23].

4 Applications of HIB-ME

In this section, we show some applications of HIB-ME. In Section 4.1, we show how to achieve a full-fledged
CCA secure (H)IB-ME scheme by employing CHK transformation [CHK04]. In Section 4.2, we remove the
ciphertext overhead of the one-time signature and prove that our tweaked CHK transformation uplifts CPA
secure IB-ME to tweaked CCA secure IB-ME using authenticity.

4.1 Construction with Native CHK paradigm

In this section, we give the formal description of our CCA secure (k, l)-level HIB-ME scheme from an (k, l+1)-
level HIB-ME scheme and a strong one-time signature scheme. Roughly, toward CCA security, we extend
the technique by Canetti et al. [CHK04].
Construction. Fix integers k ≥ 1 and l ≥ 2. Let HIB-ME′ = (Setup′,SKGen′,SKDel′,RKGen′,RKDel′,Enc′,Dec′)
be a (k, l + 1)-level HIB-ME scheme with a sender identity space ID and a receiver identity space ID =
{0, 1}|ID. Let Sig = (KGen,Sign,Ver) be a strong one-time signature scheme with a verification key space ID.
Then, our (k, l)-level HIB-ME scheme HIB-ME = (Setup,SKGen,SKDel,RKGen,RKDel,Enc,Dec) is described
as follows:

Setup(1λ, k, l): It runs (mpk,msk)← Setup′(1λ, k, l + 1) and outputs (mpk,msk).
SKGen(mpk,msk, σ): It runs ekσ ← SKGen′(mpk,msk, σ) and outputs ekσ.
SKDel(mpk, skσ′ , σ): It runs ekσ′|σ ← SKDel′(mpk, ekσ′ , σ) and outputs ekσ′|σ.
RKGen(mpk,msk, ρ): It runs dkρ ← RKGen′(mpk,msk, 0.ρ) and outputs dkρ.
RKDel(mpk, dkρ′ , ρ): It runs dkρ′|ρ ← RKDel′(mpk, dkρ′ , 0.ρ) and outputs dkρ′|ρ.
Enc(mpk, ekσ, rcv,m): It runs (sk, vk)← KGen(1λ) and sets rcv′ := 1.vk|0.rcv. Then, it runs ctxt← Enc′(mpk, ekσ, rcv

′,m)
and Σ← Sign(sk, ctxt), and outputs ct := (ctxt, vk,Σ).

Dec(mpk, dkρ, snd,m): It checks whether 0 = Ver(vk, ctxt,Σ) holds. If this is the case, then it returns ⊥. Oth-
erwise, it generates dk0.ρ|1.vk ← RKDel′(mpk, dkρ, 1.vk). Finally, it runs m← Dec′(mpk, dk0.ρ|1.vk, snd, ctxt)
and outputs the plaintext m.

Correctness. If the ciphertexct ct = (ctxt, vk,Σ) is generated correctly, Ver(vk, ctxt,Σ) always outputs 1
due to the correctness of Sig. Hence, if HIB-ME′ satisfies correctness, HIB-ME also satisfies correctness.
Security. Here, we show that our scheme satisfies security requirements.

Theorem 3. Suppose that the HIBME scheme HIB-ME′ is hib-cpa-priv secure and the Signature scheme Sig
is sEUF-CMA secure. If there exists an adversary A that breaks the hib-cca-priv security of HIB-ME, there
exists an adversary B1 that breaks the sEUF-CMA security of Sig, B2 that breaks hib-cpa-priv security of
HIB-ME′ such that

Advhib-cca-privHIB-ME,A (λ, k, l) ≤ Advseuf-cma
Sig,B1

(λ) + Advhib-cca-privHIB-ME′,B2
(λ, k, l + 1),
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where k (resp, l) is the maximum depth of senders (resp., receivers). The running time of B is about that of
A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, . . . , 3} and define

ϵi := Pr
[
b = b′

∣∣∣GameAi (λ, k, l)
]
.

Game0 : This is the original hib-cca-priv security game. By definition, we have∣∣∣∣ϵ0 − 1

2

∣∣∣∣ := Advhib-cca-privHIB-ME,A (λ, k, l).

Game1: In previous game, the challenger picks (vk∗, sk∗) in the challenge phase. But in this game, the
challenger runs (vk∗, sk∗) ← KGen(1λ) in the setup phase. Since there is no difference from A’s viewpoint,
we have

ϵ1 = ϵ0.

Game2: In this game, we change the behavior of the pre-challenge decryption oracle. Specifically, when
A makes a decryption query on input (snd, ρ, ct = (ctxt, vk,Σ)), the challenger always returns ⊥ to A if
vk = vk∗.

Let Forge be A sends valid signature Σ such that Ver(vk∗,Σ∗,m) to decryption oracle. The two games
become different if Forge occurs. Thus, |ϵ2 − ϵ1| ≤ Pr[Forge].

To estimate Pr[Forge], we show that if A triggers the event Forge, we can construct an adversary B1 that
breaks the sEUF-CMA security of Sig. The construction of B1 is as follows.

1. Upon receiving vk∗, B1 runs (mpk,msk) ← Setup′(1λ, .k, l + 1). Next, B1 sets Lek,Ldk := ∅ and picks
b̂← {0, 1}. Then, B1 executes A on input mpk.

2. When A makes some oracle queries, B1 answers as follows:
(a) When A makes sender (resp., receiver) key generation query on input σ (resp., ρ), B1 runs ekσ ←

SKGen′(mpk,msk, σ) (resp., dkρ ← RKGen′(mpk,msk, 0.ρ)) and updates Lek := Lek∪{(σ, ekσ)} (resp.,
Ldk := Ldk ∪ {(ρ, dkρ)}).

(b) When A makes sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek

(resp., ρ′ such that (ρ′, ·) ∈ Ldk) and σ (resp., ρ), B1 extracts ekσ′ from Lek (resp., dkρ′ from
Ldk), runs ekσ′|σ ← SKDel′(mpk, ekσ′ , σ) (resp., dkρ′|ρ ← RKDel′(mpk, dkρ′ , 0.ρ), and updates Lek :=

Lek ∪
{
(σ′|σ, ekσ′|σ)

}
(resp., Ldk := Ldk ∪

{
(ρ′|ρ), dkρ′|ρ

}
).

(c) When A makes sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp., ρ
such that (ρ, ·) ∈ Ldk), B1 extracts ekσ from Lek (resp., dkρ from Ldk), returns ekσ (resp., dkρ to A,
and updates Lek := Lek \ {(σ, ekσ)} (resp., Ldk := Ldk \ {(ρ, dkρ)}).

(d) When A makes decryption query on input (snd, ρ, ct := (ctxt, vk,Σ)), B1 works as follows:
– if vk = vk∗: B1 checks whether Ver(vk∗,Σ, ctxt) = 1 or not. If so, B1 outputs (Σ, ctxt) as forgely

and halts. Otherwise, B1 returns ⊥.
– if vk ̸= vk∗: B1 checks whether Ver(vk∗,Σ, ctxt) = 1 or not. If so, B1 extracts dkρ from Ldk,

runs dk0.ρ|1.vk ← RKDel(mpk, dkρ, 1.vk), m ← Dec(mpk, dk0.ρ|1.vk, snd, ctxt), and returns m to A.
Otherwise, B1 returns ⊥.

(e) When A makes challenge query on input (σ∗
0 , σ

∗
1), (rcv∗0, rcv∗1), m∗

0,m
∗
1, B1 extracts ekσ∗ from Lek,

and runs ctxt∗
b̂
← Enc(mpk, ekσ∗

b̂
, 0.rcv∗

b̂
|1.vk∗,m∗). Next, B1 sends ctxtb̂ to its challenger and obtains

Σ∗. Then, B1 returns ct∗ = (ctxt∗
b̂
, vk∗,Σ∗) to A.

3. Finally, when A outputs b′, B1 halts.

From the above construction, B1 perfectly simulates hib-cca-priv game for A. Since (ctxt∗
b̂
,Σ′∗) ̸= (ctxt,Σ)

holds from the requirements for decryption queries by A, the tuple of a message and a signature (ctxt,Σ)
output by B1 satisfies the winning conditions of the experiment sEUF-CMA game. Therefore, we have
Pr[Forge] = Advseuf-cma

Sig,B1
(λ), i.e.,

|ϵ2 − ϵ1| = Advseuf-cma
Sig,B1

(λ).
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Finally, to estimate ϵ2 = 1
2 , we construct an adversary B2 that breaks the hib-cpa-priv of HIB-ME′ using

an adversary A that breaks Game2. The construction of B2 is as follows.

1. Upon receiving mpk, B2 runs (sk∗, vk∗) ← KGen(1λ). Next, B2 sets Lek,Ldk := ∅ and picks b̂ ← {0, 1}.
Then, B executes A on input mpk.

2. When A makes some oracle queries, B2 answers as follows:
(a) When A makes a sender (resp., receiver) key generation query on input σ (resp., ρ), B2 makes a

sender (resp., receiver) key generation query to its challenger on input σ (resp., ρ), and updates
Lek := Lek ∪ {(σ,⊥)} (resp., Ldk := Ldk ∪ {(ρ,⊥)}).

(b) When A makes a sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek and
σ (resp., ρ′ such that (ρ′, ·) ∈ Ldk and ρ), B2 makes a sender (resp., receiver) key delegation query
to its challenger on input σ′ and σ (resp., 0.ρ′ and 0.ρ), and updates Lek := Lek ∪ {(σ′|σ,⊥)} (resp.,
Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp.,
ρ such that (ρ, ·) ∈ Ldk), B2 makes a sender (resp., receiver) key reveal query to its challenger
on input σ (resp., ρ), receives ekσ (resp., dkρ), and returns as it is to A. In addition, B2 updates
Lek := Lek \ {(σ,⊥)} (resp., Ldk := Ldk \ {(ρ,⊥)}).

(d) When A makes decryption query on input snd, ρ and ct = (ctxt, vk,Σ), B2 returns ⊥ if vk =
vk∗ or Ver(vk,Σ, ctxt) = 0. Otherwise, B2 makes a receiver key delegation query on input 0.ρ and
1.vk, and a receiver key reveal query on input 0.ρ|1.vk to receive dk0.ρ|1.vk. Then, B runs m ←
Dec(mpk, snd, dk0.ρ|1.vk, ctxt) and returns m to A.

3. When A makes the challenge ciphertext query on input (σ∗
0 , σ

∗
1), (rcv∗0, rcv∗1) and (m∗

0,m
∗
1), B2 sets rcv′0 :=

0.rcv∗0|1.vk
∗ and rcv′1 := 0.rcv∗1|1.vk

∗, and makes the challenge ciphertext query on input (σ∗
0 , σ

∗
1), (ρ′0, ρ′1)

and (m∗
0,m

∗
1) to receives ctxt∗. Then, B2 runs Σ∗ ← Sign(sk∗, ctxt∗) and returns ct∗ := (ctxt∗, vk∗,Σ∗) to

A.
4. When A makes some oracle queries, B2 answers as follows. (Except decryption oracle query, B2 behaves

the same way as in the pre-challenge query.)
(a) When A makes a decryption query on input snd, ρ and ct, B2 returns ⊥ if vk = vk∗. Otherwise, B2

makes a receiver key delegation query on input 0.ρ and 1.vk, and a receiver key reveal query on input
0.ρ|1.vk, and receives dk0.ρ|1.vk

4. Then, B2 runs m← Dec(mpk, dk0.ρ|1.vk, snd, ctxt) and returns m to
A.

5. Finally, when A outputs b′, B2 outputs the same way.

From above construction, B2 perfectly simulates Game2 for A and the challenge bits of B2 and A corre-
spond. Therefore, we have ∣∣∣∣ϵ2 − 1

2

∣∣∣∣ = Advhib-cpa-privHIB-ME′,B2
(λ, k, l + 1).

Putting everything together, we have

Advhib-cca-privHIB-ME,A (λ, k, l) = Advseuf-cma
Sig,B1

(λ) + Advhib-cpa-privHIB-ME′,B2
(λ, k, l + 1).

Theorem 4. Suppose that the HIB-ME scheme HIB-ME′ is hib-auth secure. If there exists an adversary A
that breaks the hib-auth security of HIB-ME, there exists an adversary B that breaks the hib-auth security of
HIB-ME′ such that

Advhib-authHIB-ME,A(λ, k, l) = Advhib-authHIB-ME′,B(λ, k, l + 1).

where k (resp., l) is the maximum depth of senders (resp., receivers). The running time of B is about that
of A.
4 If vk ̸= vk∗, since 0.rcv∗0|1.vk (resp., 0.rcv∗1|1.vk) is different from 0.rcv∗0|1.vk∗ (resp., 0.rcv∗1|1.vk) and it do not leaks

about 0.rcv∗0|1.vk∗ (resp., 0.rcv∗1|1.vk), B2 can query 0.rcv∗0|1.vk (resp., 0.rcv∗1|1.vk) to receiver key reveal query.
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Proof. To prove the theorem, we construct an adversary B that breaks hib-auth of HIB-ME′ using A that
breaks hib-auth of HIB-ME. The construction of B is as follows.

1. Upon receiving mpk, B executes A on input mpk.
2. When A makes some oracle queries, B answers as follows.

(a) When A makes a sender (resp., receiver) key generation query on input σ (resp., ρ), B makes a
sender (resp., receiver) key generation query to its challenger on input σ (resp., ρ), and updates
Lek := Lek ∪ {(σ,⊥)} (resp., Ldk := Ldk ∪ {(ρ,⊥)}).

(b) When A makes a sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek and
σ (resp., ρ′ such that (ρ′, ·) ∈ Ldk and ρ), B makes a sender (resp., receiver) key delegation query
to its challenger on input σ′ and σ (resp., 0.ρ′ and 0.ρ), and updates Lek := Lek ∪ {(σ′|σ,⊥)} (resp.,
Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp.,
ρ such that (ρ, ·) ∈ Ldk), B makes a sender (resp., receiver) key reveal query to its challenger
on input σ (resp., ρ), receives ekσ (resp., dkρ), and returns as it is to A. In addition, B updates
Lek := Lek \ {(σ,⊥)} (resp., Ldk := Ldk \ {(ρ,⊥)}).

(d) When A makes a encryption query on input σ such that (σ, ·) ∈ Lek, rcv such that (rcv, ·) ∈ Ldk,
and message m, B runs (sk, vk) ← KGen(1λ) and sets rcv′ = 0.rcv|1.vk. Next, B sends a encryption
query on input σ, rcv′, and m to obtain ctxt. Then, B computes Σ ← Sign(sk, ctxt) and returns
ct = (ctxt, vk,Σ). In addition, B updates Lct := Lct ∪ {(σ, rcv,m, ct)}.

3. Finally, whenA submits (snd∗, ρ∗, ct∗ = (ctxt∗, vk∗,Σ∗)) as a forgery, B submits the same (snd∗, 0.ρ∗|1.vk, ctxt∗)
if Ver(vk,Σ∗, ctxt∗) = 1.

We can verify that B perfectly simulates the hib-auth game. Therefore, if A breaks the hib-auth security
of HIB-ME, B also breaks the hib-auth security of HIB-ME′. Thus, we have

Advhib-authHIB-ME,A(λ, k, l) = Advhib-authHIB-ME′,B(λ, k, l + 1).

4.2 Construction with Tweaked CHK Paradigm

In this section, we provide a construction of tweaked CCA secure (H)IB-ME. Our tweaked CCA secure
(H)IB-ME scheme can be obtained solely based on a CPA secure (H)IB-ME scheme. Notably, compared
to the previous CCA secure (H)IB-ME scheme in Section 4.1, our tweaked CCA secure (H)IB-ME scheme
does not need a strong one-time signature scheme which incurs a ciphertext overhead (with the length of a
verification key and a signature). Note that, in the (ordinary) IBE setting, the non-adaptive CCA security
(a.k.a. the CCA1 security) can only be achieved with a similar construction, while in the IB-ME setting, we
can achieve more reasonable security notion (adaptive security but with query limitations).
Construction. Fix integers k ≥ 1 and l ≥ 2. Let HIB-ME′ = (Setup′,SKGen′,SKDel′,RKGen′,RKDel′,Enc′,Dec′)
be a (k, l + 1)-level HIB-ME scheme with a sender identity space ID and a receiver identity space ID′ =
{0, 1}.ID. Then, we show how to construct (k, l)-level HIB-ME scheme HIB-ME = (Setup,SKGen,SKDel,
RKGen,RKDel,Enc,Dec). Setup algorithm Setup, sender key generation algorithm SKGen, sender key del-
egation algorithm SKDel, receiver key generation algorithm RKGen, and receiver key delegation algorithm
RKDel is the same as construction in section 4.1. Now, we show encryption algorithm Enc and decryption
algorithm Dec as follows:

Enc(mpk, ekσ, rcv,m): It sets rcv′ := 0.rcv|1.snd, runs ct← Enc(mpk, ekσ, rcv
′,m), and outputs ct.

Dec(mpk, dkρ, snd, ct): It runs dk0.ρ|1.snd ← RKDel(mpk, dkρ, 1.snd) and m← Dec(mpk, dk0.ρ|1.snd, snd,m), and
outputs m.

Correctness. Obviously, if HIB-ME′ satisfies correctness, HIB-ME satisfies correctness.
Security. Here, we show that our scheme satisfies seurity requirements.
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Theorem 5. Suppose that the HIB-ME scheme HIB-ME′ satisfies hib-cpa-priv security and hib-auth security.
If there exists an adversary A that breaks the hib-tcca-priv security of HIB-ME, there exists an adversary B1
that breaks the hib-cpa-priv security of HIB-ME′ and B2 that breaks the hib-auth security of HIB-ME′ such
that

Advhib-tcca-privHIB-ME,A (λ, k, l) ≤ Advhib-cpa-privHIB-ME′,B1
(λ, k, l + 1) + Advhib-authHIB-ME′,B2

(λ, k, l + 1)

where k (resp., l) is the maximum depth of senders (resp., receivers). The running time of B is about of A.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, 1} and define

ϵi := Pr
[
b = b′

∣∣∣GameAi (λ, k, l)
]
.

Game0: This is the originial hib-tcca-priv secuirty game. By definition, we have∣∣∣∣ϵ0 − 1

2

∣∣∣∣ := Advhib-tcca-privHIB-ME,A (λ, k, l).

Game1: Same as Game0, except that, when A makes a decryption query (ρ, snd, ct), the challenger returns
as 

m if (snd, ρ,m, ct) ∈ Lct

Dec(mpk, dk0.ρ|1.snd, snd.ct) if snd ̸= σ∗ ∨ ρ ̸= rcv∗

⊥ othweise

to A.
Let Forge be A sends valid ciphertext tuple snd, such that snd ∈ Lek, ρ such that ρ ∈ Ldk, ct such that

Dec(mpk, dkρ, snd, ct) ̸= ⊥ ∧ (snd, rcv, ·, ct) /∈ Lct to decryption query. The two games become different if
Forge occurs. Thus |ϵ1 − ϵ0| = Pr[Forge].

To estimate Pr[Forge], we show that if A triggers the event Forge, we can construct an adversary B2 that
breaks hib-auth security of HIB-ME′. The construction of B2 is follows.

1. Upon receiving mpk, B2 sets Lek,Ldk,Lct := ∅ and picks b̂←$ {0, 1}. Then, B executes A on inputs mpk.
2. When A makes some oracle queries, B2 answers as follows.

(a) When A makes a sender (resp., receiver) key generation query on input σ (resp., ρ), B2 makes a
sender (resp., receiver) key generation query to its challenger on input σ (resp., ρ), and updates
Lek := Lek ∪ {(σ,⊥)} (resp., Ldk := Ldk ∪ {(ρ,⊥)}).

(b) When A makes a sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek and
σ (resp., ρ′ such that (ρ′, ·) ∈ Ldk and ρ), B2 makes a sender (resp., receiver) key delegation query
to its challenger on input σ′ and σ (resp., 0.ρ′ and 0.ρ), and updates Lek := Lek ∪ {(σ′|σ,⊥)} (resp.,
Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp.,
ρ such that (ρ, ·) ∈ Ldk), B2 makes a sender (resp., receiver) key reveal query to its challenger
on input σ (resp., ρ), receives ekσ (resp., dkρ), and returns as it is to A. In addition, B2 updates
Lek := Lek \ {(σ,⊥)} (resp., Ldk := Ldk \ {(ρ,⊥)}).

(d) When A makes a encryption query on input σ such that (σ, ·) ∈ Lek, rcv such that (rcv, ·) ∈ Ldk,
and message m, B sets rcv′ = 0.rcv|1.σ. Next, B sends a encryption query on input σ, rcv′ and m to
obtain ct, and returns ct. In addition, B updates Lct := Lct ∪ {(σ, rcv,m, ct)}.

(e) When A makes a decryption query on input snd such that (snd, ·) ∈ Lek, ρ such that (ρ, ·) ∈ Ldk,
ct, if (snd, ρ, ·, ct) ∈ Lct, B extracts m from Lct and returns m. Otherwise, B obtains dk0.ρ|1.snd by
making a receiver key reveal query on input 0.ρ|1.snd. If Dec(mpk, dk0.ρ|1.snd, snd, ct) ̸= ⊥, B outputs
(snd, 0.ρ|1.snd, ct) as forgery and terminates. Otherwise, B returns ⊥ to A.

3. When A makes the challenge ciphertext query on input (σ∗
0 , σ

∗
1), (rcv∗0, rcv

∗
1), and (m∗

0,m
∗
1), B2 sets

rcv′0 = 0.rcv∗0|1.σ∗
0 and rcv′1 = 0.rcv∗1|1.σ∗

1 , makes a encryption query on input (σ∗
0 , σ

∗
1), (rcv′0, rcv′1), and

(m∗
0,m

∗
1) and obtains ct∗. Then, B2 returns ct∗ to A and updates Lct := Lct ∪ {(σ∗, rcv∗,m∗, ct∗)}.
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4. Finally, A outputs b′ ∈ {0, 1}, B2 halts.

From the above construction, B2 perfectly simulates hib-tcca-priv game for A. Since B can reveal the target
receiver’s decryption key in hib-auth game, B2 satisfies the winning conditions of hib-auth game. Therefore,
we have Pr[Forge] = Advhib-authHIB-ME′,B2

(λ, k, l + 1), i.e.,

|ϵ1 − ϵ0| = Advhib-authHIB-ME′,B2
(λ, k, l + 1).

Finally, to estimate
∣∣ϵ1 − 1

2

∣∣, we construct an adversary B1 that breaks the hib-cpa-priv using an adversary
A that breaks Game1. The construction of B1 is as follows.

1. Upon receiving mpk, B1 sets Lek,Ldk,Lct := ∅ and executes A on input mpk.
2. When A makes some oracle queries, B1 answers as follows.

(a) When A makes a sender (resp., receiver) key generation query on input σ (resp., ρ), B1 makes a
sender (resp., receiver) key generation query to its challenger on input σ (resp., ρ), and updates
Lek := Lek ∪ {(σ,⊥)} (resp., Ldk := Ldk ∪ {(ρ,⊥)}).

(b) When A makes a sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek and
σ (resp., ρ′ such that (ρ′, ·) ∈ Ldk and ρ), B1 makes a sender (resp., receiver) key delegation query
to its challenger on input σ′ and σ (resp., 0.ρ′ and 0.ρ), and updates Lek := Lek ∪ {(σ′|σ,⊥)} (resp.,
Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp.,
ρ such that (ρ, ·) ∈ Ldk), B1 makes a sender (resp., receiver) key reveal query to its challenger
on input σ (resp., ρ), receives ekσ (resp., dkρ), and returns as it is to A. In addition, B1 updates
Lek := Lek \ {(σ,⊥)} (resp., Ldk := Ldk \ {(ρ,⊥)}).

(d) When A makes a encryption query on input σ such that (σ, ·) ∈ Lek, rcv such that (rcv, ·) ∈ Ldk, and
message m, B sets rcv′ = 0.rcv|1.σ. Next, B sends a sender key reveal query on input σ to obtain
ekσ. Then, B computes ct ← Enc(mpk, ekσ, rcv

′,m) and returns ct to A. In addition, B updates
Lct := Lct ∪ {(σ, rcv,m, ct)}.

(e) When A makes a decryption query on input snd, ρ and ct, if (snd, ρ, ·, ct) ∈ Lct, B extracts m
from Lct and returns m to A. Otherwise, if ρ = rcv∗ ∧ snd ̸= σ∗, B1 returns ⊥ to A. Otherwise,
B1 makes a receiver key reveal query on 0.ρ|1.snd to obtain dk0.ρ|1.snd. Then, B1 computes m ←
Dec(mpk, dk0.ρ|1.snd, snd, ct) and returns m to A.

3. When A makes the challenge ciphertext query on input σ∗, rcv∗ and m∗, B1 sets rcv′ := 0.rcv∗|1.snd∗,
makes the challenge query on input σ∗, rcv′, m∗ and receives ct∗. Then, B1 returns ct∗ to A.

4. Finally, A outputs b′ ∈ {0, 1}, B1 outputs the same guess.

From the above construction, B1 perfectly simulates Game1 fro A and the challenge bits of B1 and A
correspond. Therefore, we have ∣∣∣∣ϵ1 − 1

2

∣∣∣∣ = Advhib-cpa-privHIB-ME′,A(λ, k, l + 1)

Putting everything together, we have

Advhib-tcca-privHIB-ME,A (λ, k, l) = Advhib-cpa-privHIB-ME′,B1
(λ, k, l + 1) + Advhib-authHIB-ME′,B2

(λ, k, l + 1).

Theorem 6. Suppose that the HIB-ME scheme HIB-ME′ satisfies hib-auth security. If there exists an ad-
versary A that breaks the hib-auth security of HIB-ME, there exists an adversary B that breaks the hib-auth
security of HIB-ME′ such that

Advhib-authHIB-ME,A(λ, k, l) = Advhib-authHIB-ME′,B(λ, k, l + 1)

where k (resp., l) is the maximum depth of senders (resp., receivers). The running time of B is about of A.

14



Proof. To prove the theorem, we construct an adversary B that breaks hib-auth of HIB-ME′ using A that
breaks hib-auth of HIB-ME. The construction of B is as follows.

1. Upon receiving mpk, B executes A on input mpk.
2. When A makes some oracle queries, B answers as follows.

(a) When A makes a sender (resp., receiver) key generation query on input σ (resp., ρ), B makes a
sender (resp., receiver) key generation query to its challenger on input σ (resp., ρ), and updates
Lek := Lek ∪ {(σ,⊥)} (resp., Ldk := Ldk ∪ {(ρ,⊥)}).

(b) When A makes a sender (resp., receiver) key delegation query on input σ′ such that (σ′, ·) ∈ Lek and
σ (resp., ρ′ such that (ρ′, ·) ∈ Ldk and ρ), B makes a sender (resp., receiver) key delegation query
to its challenger on input σ′ and σ (resp., 0.ρ′ and 0.ρ), and updates Lek := Lek ∪ {(σ′|σ,⊥)} (resp.,
Ldk := Ldk ∪ {(ρ′|ρ,⊥)}).

(c) When A makes a sender (resp., receiver) key reveal query on input σ such that (σ, ·) ∈ Lek (resp.,
ρ such that (ρ, ·) ∈ Ldk), B makes a sender (resp., receiver) key reveal query to its challenger
on input σ (resp., ρ), receives ekσ (resp., dkρ), and returns as it is to A. In addition, B updates
Lek := Lek \ {(σ,⊥)} (resp., Ldk := Ldk \ {(ρ,⊥)}).

(d) When A makes a encryption query on input σ such that (σ, ·) ∈ Lek, rcv such that (rcv, ·) ∈ Ldk, and
message m, B runs (sk, vk)← KGen(1λ) and sets rcv′ = 0.rcv|1.vk. Next, B sends a encryption query
on input σ, rcv′, and m to obtain ct. Then, B computes Σ← Sign(sk, ct) and returns ct = (ct, vk,Σ).
In addition, B updates Lct := Lct ∪ {(σ, rcv,m, ct)}.

3. Finally, whenA submits (snd∗, ρ∗, ct∗ = (ct∗, vk∗,Σ∗)) as a forgery, B submits the same (snd∗, 0.ρ∗|1.vk, ct∗)
if Ver(vk,Σ∗, ct∗) = 1.

We can verify that B perfectly simulates the hib-auth game. Therefore, if A breaks the hib-auth security
of HIB-ME, B also breaks the hib-auth security of HIB-ME′. Thus, we have

Advhib-authHIB-ME,A(λ, k, l) = Advhib-authHIB-ME′,B(λ, k, l + 1).
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