
Fabric-X: Redesigning Hyperledger Fabric Architecture for
High-throughput Regulated Asset Exchange Applications

E. Androulaki, M. Brandenburger, M. Buzaglo, A. De Caro, K. Elkhiyaoui, A. Filios, L. Funaro, Y.
Manevich, H. Meir, S. Natarajan, M. Sethi, Y. Tock

IBM Research
ABSTRACT
The adoption of Distributed Ledger Technology (DLT) for critical
financial infrastructures like Central Bank Digital Currencies (CB-
DCs) is hindered by a significant performance gap. Permissioned
blockchains such as Hyperledger Fabric, while conceptually suit-
able, are limited by architectural bottlenecks in their monolithic
peer design and consensus mechanisms, preventing them from
achieving the required scale.

This paper presents a fundamental re-architecture of Hyper-
ledger Fabric that addresses these challenges end-to-end. We de-
compose the monolithic peer into independently scalable microser-
vices for endorsement, validation, and committing. To maximize
parallelism, we introduce a transaction dependency graph that en-
ables the safe, concurrent validation of transactions across multiple
blocks. Complementing the peer redesign, we introduce Arma, a
novel sharded Byzantine Fault Tolerant (BFT) ordering service that
dramatically increases throughput by ordering compact transaction
digests rather than full transaction payloads. We implemented and
benchmarked this framework with a UTXO-based CBDC applica-
tion. Our evaluation demonstrates a peak throughput exceeding
200,000 transactions per second (TPS)—a two-orders-of-magnitude
improvement over the standard implementation. This work proves
that permissioned DLTs can be engineered for national-scale pay-
ment systems, providing a resilient and highly performant foun-
dation for practical CBDC deployments and the integration of ad-
vanced, computationally intensive features.

PVLDB Reference Format:
E. Androulaki, M. Brandenburger, M. Buzaglo, A. De Caro, K. Elkhiyaoui, A.
Filios, L. Funaro, Y. Manevich, H. Meir, S. Natarajan, M. Sethi, Y. Tock
IBM Research. Fabric-X: Redesigning Hyperledger Fabric Architecture for
High-throughput Regulated Asset Exchange Applications. PVLDB, 14(1):
XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
URL_TO_YOUR_ARTIFACTS.

1 INTRODUCTION
Distributed ledger technology (DLT) has generated significant inter-
est in tokenization and programmable ledgers, particularly within

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

regulated financial market infrastructures. Tokenization enables the
digital representation of assets and their governing rules on a ledger,
while programmable ledgers use smart contracts to automate ac-
tions like ownership transfer and delivery versus payment. This
potential for automation promises increased speed and reduced
errors, leading financial institutions—including central banks, com-
mercial banks, and clearing houses—to explore newfinancial market
infrastructures based on these technologies. These institutions aim
to address existing inefficiencies in regulated finance, including
payment systems, by leveraging tokenization and smart contracts.

A prime example of this exploration is central bank digital cur-
rency (CBDC), a tokenized form of central bank liability on par with
cash and reserves. Over 130 central banks are investigating CBDC
through experimentation, reports, and pilot launches [citations].
Early results indicate the potential for faster and less risky whole-
sale payments, reduced fees, and greater financial inclusion for
retail payments. Another example is regulated liability networks,
platforms where CBDC, tokenized commercial bank money, and
tokenized securities coexist on a programmable ledger to automate
operations such as delivery versus payment and payment versus
payment.

Platforms facilitating the exchange of these tokenized assets
operate within diverse legal and regulatory frameworks. While
jurisdictional variations exist, a common thread is a centralized
or federated governance model, often with the central bank as a
key stakeholder. This is understandable given the potential impact
on monetary policy and financial stability. However, it’s crucial to
distinguish between governance and deployment. While a central
authority may oversee the system, the operational architecture
can be designed for enhanced resilience. Resilience, in this con-
text, refers to the system’s ability to maintain functionality amidst
disruptions, including technical failures, cyberattacks, and insider
threats.

A decentralized deployment model is critical for ensuring such
resilience. It involves distributing operational components across
multiple independent nodes, reducing reliance on a single point of
failure. This does not imply decentralized governance but rather a
design choice to mitigate risks like cyberattacks, natural disasters,
and insider threats. For example, a CBDC system with a centralized
architecture in a single data center is highly vulnerable to disrup-
tions. In contrast, a decentralized deployment spreads components
across dispersed nodes, incorporating redundancy and mechanisms
like Byzantine fault tolerance to maintain security and function-
ality. While the central bank governs the system, a decentralized
deployment enhances resilience, protects against threats, and fos-
ters stakeholder trust. Centralized governance and decentralized
deployment together ensure regulatory oversight and operational
stability.

https://doi.org/XX.XX/XXX.XX
URL_TO_YOUR_ARTIFACTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Consequently, financial institutions [1] and the research commu-
nity (e.g., [2]) have been exploring decentralized consensus-based
transaction processing systems, especially in the context of CBDC.
DLT systems can be broadly categorized as permissionless (public)
or permissioned (private). Permissionless blockchains, like Bitcoin
and Ethereum, are open to anyone and typically rely on energy-
intensive consensus mechanisms like Proof-of-Work. The public
transparency of data and transaction logic in these systems raises
concerns about data leakage. This openness, coupled with the limi-
tations of serial transaction execution, restricts their capacity and
makes them less suitable for regulated financial applications.

Permissioned blockchains, such as Hyperledger Fabric [citation],
are designed for specific groups with access controls and employ
more efficient consensus mechanisms. This allows for greater scal-
ability and performance due to factors like faster block generation,
higher transaction throughput, and lower latency. Furthermore,
permissioned DLTs offer flexibility in their transaction processing
models. They can follow the traditional order-execute model or
adopt the more efficient execute-order-validate (EOV) model.

Hyperledger Fabric supports the EOV architecture, which en-
hances confidentiality and exploits concurrency. In this architec-
ture, a transaction’s lifecycle consists of three pipelined phases:
(1) Execution: A client sends a transaction proposal to endorsing
peers specified by an endorsement policy. These peers execute the
smart contract triggered by the proposal, recording its effects in
terms of read and write sets. Transactions from different clients
may be parallelized during this phase. (2) Ordering: A consensus
protocol establishes a total order for the endorsed transactions,
grouping them into blocks. This order is then broadcast to all peers.
(3) Validation: Each peer validates the state changes from the en-
dorsed transactions with respect to the endorsement policy and
serializability.

However, despite its promising architecture, the standard imple-
mentation of Hyperledger Fabric falls critically short of the require-
ments for a national-scale CBDC or other demanding financial use
cases. Its limitations are significant:

(1) Performance and Scalability: The monolithic design of a
Fabric peer, which combines endorsing, validating, and
committing services on a single node, creates severe re-
source contention and I/O bottlenecks. This fundamentally
constrains throughput and prevents horizontal scaling.

(2) Privacy: Standard endorsement policies can inadvertently
leak the identities of transacting organizations, failing to
provide the anonymity and unlinkability required in many
financial scenarios.

(3) Efficiency: Transactions are bloated with multiple signa-
tures and certificates, and the sequential validation pro-
cess introduces significant latency, making it impossible to
achieve the high throughput needed for real-time systems.
Existing optimizations have failed to push performance be-
yond 20,000 transactions per second (TPS), a fraction of
what a CBDC would demand.

This research directly addresses these deficiencies by present-
ing a fundamental re-architecture of Hyperledger Fabric designed
to deliver the performance, scalability, and privacy necessary for
modern financial infrastructures. Our key contributions are:

Figure 1: Architecture of Fabric Peer and Commit Flow within a Peer

(1) A High-Performance Fabric Redesign: We decouple the
monolithic Fabric peer into a set of independently scalable
microservices for endorsement, validation, and committing.
By introducing parallel validation of transactions across
blocks using a dependency graph and employing threshold
signatures to reduce computational overhead, our design
breaks existing bottlenecks and achieves a throughput of
over 100,000 TPS.

(2) An Application-Layer UTXOModel for CBDCs: We demon-
strate the redesigned platform’s capabilities by implement-
ing a CBDC use case that utilizes an Unspent Transaction
Output (UTXO) model. This showcases how a token-based
system can be effectively built at the application layer on
Hyperledger Fabric, validating that our high-performance
architecture can support complex financial transaction logic.

2 HYPERLEDGER FABRIC
2.1 Background
Hyperledger Fabric (HLF) is a permissioned DLT systemwith strong
identity management, non-repudiation, and accountability mecha-
nisms. It utilizes an innovative execute-order-validate [3] transaction
model, which replaces the traditional order-execute approach. In
this model, transactions are speculatively executed before ordering.
Any transaction using stale data is rejected during the validation.
This design supports parallel execution, improving throughput,
and allows developers to write execution logic in their preferred
programming language.

Figure 1(a) illustrates the architecture of a Fabric peer, which in-
cludes components such as an endorser, signature validator, read-set
validator, committer, local key-value database, and user-deployed
chaincodes. Figure 2 depicts Hyperledger Fabric’s (HLF) transaction
flow, which begins with chaincodes—smart contracts written in
conventional programming languages. They execute during the
transaction’s execution phase. Each chaincode is tied to specific
endorsers according to an endorsement policy, which is a subset
of network participants responsible for its execution. Chaincodes
operate within defined namespaces that specify the ledger parti-
tions they can modify and are subject to validation through the
endorsement policy.

The transaction process begins when a client submits a trans-
action proposal to the endorsers, initiating chaincode execution.

2

Figure 2: Transaction Lifecycle in Hyperledger Fabric.

The endorsers speculatively execute the chaincode, producing a
read-set (dependencies) and a write-set (proposed changes), collec-
tively forming a read-write set. This set is signed by the endorsers
and returned to the client. The client then constructs a transaction
that includes the signed read-write set along with the endorsers’
signature.

In the ordering phase, orderers—authorized network participants—
determine the sequence of transactions. These transactions are
batched into blocks and distributed to peers.

Upon receiving a block, each peer independently executes the
commit process shown in Figure 1(b). This involves three steps:

(1) Signature Validation: The signature validator verifies that
the endorsers’ signatures comply with the chaincode’s en-
dorsement policy.

(2) Read-Set Validation: Transactions that pass signature val-
idation proceed to this phase, where the read versions of
keys are compared with their committed versions. If the
versions match, the transaction’s write-set is added to the
pending writes list. For example (refer to Figure1(b)), if
transaction 𝑇1 reads key 𝑘1 at version 0, matching the com-
mitted version, its writes are added to the pending writes
after incrementing the version of 𝑘2. However, any transac-
tion referencing stale data is marked invalid. For instance,
𝑇2 reading 𝑘2 at version 1 will be invalid as the pending
writes indicate version 2 for 𝑘2.

(3) Commitment: The pending writes are applied to the local
key-value database, finalizing the transaction.

This structured process ensures the integrity and consistency of
the ledger, even under concurrent operations.

2.2 Assessing Hyperledger Fabric for CBDC
Requirements

The architectural design of Hyperledger Fabric (HLF) provides sev-
eral features that make it a strong conceptual candidate for build-
ing CBDC and other regulated financial systems. Its permissioned
model ensures that only known, authorized participants can access
the network, which is a prerequisite for financial compliance. The
platform’s core features offer a suitable starting point:

Flexible Smart Contracts: Chaincodes in HLF can be written in
general-purpose programming languages to implement essential
CBDC operations like issuance, transfer, and compliance checks.
Modular Consensus: HLF’s modular design supports swappable

consensus protocols, allowing a system to transition between Crash
Fault Tolerant (CFT) and Byzantine Fault Tolerant (BFT) mecha-
nisms to adapt to evolving security and performance requirements.
Granular Control: Compared to other enterprise platforms, HLF’s
endorsement policies allow for granular control over transaction
validation, providing a mechanism to enforce complex business
rules and security checks.

While these conceptual strengths make HLF an attractive foun-
dation, its standard implementation struggles to meet the stringent,
real-world demands of a large-scale CBDC. When benchmarked
against the required throughput, latency, and scalability for a na-
tional payment system, the current architecture reveals several fun-
damental bottlenecks. Therefore, addressing these implementation-
level deficiencies is essential before the platform can be considered
viable for such a critical role.

2.3 Limitations for CBDC Use-Case
The current Hyperledger Fabric implementation delivers a through-
put of only around 2,000 transactions per second (TPS), which
significantly falls short of CBDC requirements due to the following
limitations:

(1) Monolithic Peer Resource Contention: Each peer acts as
both an endorser and a validator on a single node, leading
to contention for CPU resources as these distinct workloads
compete for a limited number of cores.

(2) State Database Contention: Transaction execution (by the
endorser) and ledger updates (by the committer) are mu-
tually exclusive operations that compete for access to the
state database, limiting concurrency.

(3) Committer and Storage Bottlenecks: The committer’s per-
formance is constrained by the disk write bandwidth of
a single node, and the storage capacity of a single peer is
insufficient for a national-scale ledger.

(4) Large Transaction Size: Transactions are bloated with mul-
tiple signatures and x509 certificates, creating significant
network and storage overhead that degrades the perfor-
mance of the ordering service.

(5) Endorsement Policy Verification Overhead: Verifying multi-
ple signatures for each transaction against its endorsement
policy is computationally expensive and adds significant
commit latency.

(6) Sequential Validation Execution: The validator processes
the read-set of each transaction in a block sequentially to
ensure serializability, creating a major bottleneck in the
commit phase.

(7) Non-Pipelined Commit Flow: The validation and commit
phases for consecutive blocks are not pipelined; block 𝑖

can only be validated after block 𝑖 − 1 is fully committed,
increasing overall latency.

(8) Limited Consensus Throughput: Traditional BFT consen-
sus protocols used by HLF, while secure, do not scale well
and become a bottleneck as the number of ordering nodes
increases.

Existing literature suggests various optimizations for HLF, yet none
have succeeded in achieving throughput beyond 20,000 TPS. A
fundamental redesign of the Hyperledger Fabric architecture is

3

Signature
Verifier

Signature
Verifier

Signature
Verifier

….

RWSet
Validator

Committer

….

shard shard….

RWSet
Validator

Committer

RWSet
Validator

Committer

shard shardshard shard

Endorser Endorser

Query
Service

Query
Service

….

….

Endorser Service Committer Service

SideCar

Signature
Verification

Manager

Dependency
Graph

Manager

Coordinator

Validator
Committer
Manager

Blocks from
the ordering service

server

sharded distributed database

Figure 3: Proposed Fabric Peer Architecture

therefore necessary to overcome these limitations and meet the
demands of a CBDC system.

3 REDESIGNING HYPERLEDGER FABRIC
PEER ARCHITECTURE

To address the limitations found in Hyperledger Fabric (HLF), we
propose a fundamental re-architecture of the Fabric Peer.

3.1 Micro-Service Architecture
The conventional Hyperledger Fabric peer is implemented as a
monolithic service, as illustrated in Figure 1(a). We propose the dis-
aggregation of this monolithic architecture into a set of decoupled
microservices, depicted in Figure 3. This decomposition yields the
following distinct components: an Endorser Service for transaction
endorsement, a Query Service for read-only ledger queries, a Coor-
dinator to orchestrate the transaction lifecycle, a Signature Verifier
to verify endorsement signatures, a Validator-Committer Service
for transaction validation and ledger commitment, and a Sidecar.
The Sidecar receives blocks from the ordering service, forwards
them to the Coordinator for processing, aggregates transaction
statuses to determine block commitment, and notifies clients of
final transaction outcomes (commit or abort). The functionalities
of each service is detailed in Section 3.5.

To complement the microservice-based design, we replace the
peer’s local key-value store with a sharded, distributed database
that provides native support for advanced concurrency control pro-
tocols. This disaggregated architecture yields several significant
advantages. First, the decoupling of the Endorser and Signature
Verifier services enables their independent deployment and scal-
ing across multiple servers, thereby mitigating CPU resource con-
tention. Second, the adoption of a sharded database supporting
snapshot isolation obviates the requirement for exclusive ledger
access by the Endorser and Committer services. This distribution
of storage and I/O workload across multiple database shards en-
hances both write throughput and overall system scalability. In
summary, the proposed architecture directly addresses the first
three limitations detailed in Section 2.3. It enhances scalability
through the independent deployment of services, reduces resource
contention via service isolation, and improves data management
performance by incorporating a distributed database with sophisti-
cated concurrency control. Consequently, this re-architected Fabric

Peer provides a foundation for a more robust, scalable, and efficient
blockchain platform.

3.2 Threshold-Based Signatures
Hyperledger Fabric’s current namespace endorsement policy sys-
tem is powerful and flexible, allowing for the definition of sophisti-
cated rules that specify which set of organizations must endorse a
transaction through logical constructs like AND, OR, and n-OutOf.
However, this policy framework leads to two critical limitations.
First, it contributes to large transaction size (Limitation 4), as each
transaction must carry multiple signatures and their corresponding
X.509 certificates. This bloats transaction size, creating significant
network and storage overhead. An alternative, such as storing
certificates as known identities, could reduce transaction size but
would leak participant identities and would not reduce the num-
ber of signatures per transaction. Second, it results in significant
endorsement policy verification Overhead (Limitation 5). The mul-
tiple cryptographic operations required to verify each signature
against the policy add computational overhead and increase commit
latency.

To address these challenges, we propose introducing a threshold-
based signature scheme to operate in addition to the conventional
mechanism, which fundamentally alters the verification process.
In a (𝑡, 𝑛) threshold scheme, any 𝑡 participants from a group of 𝑛
can collaboratively generate a single, valid signature for the group,
while no individual can do so alone. This model yields a single,
aggregated signature that consolidates endorsements into one com-
pact proof, and its verification key can be inherently linked to the
policy itself. By replacing multiple verifications with a single one,
this approach reduces computational load, lowers latency, and im-
proves transaction throughput. Furthermore, threshold signatures
enhance privacy by concealing the identities of the specific endors-
ing organizations. While a purely threshold-based scheme may lack
the expressiveness of Fabric’s native policies, we envision a hybrid
model supporting both. This dual approach allows users to balance
the flexibility of traditional policies with the efficiency and privacy
of threshold signatures, creating a more versatile platform. Thus,
the proposed design directly addresses limitations (4) and (5) as
discussed in Section 2.3.

3.3 Parallel Validation and Pipelined Execution
Vanilla Fabric validates each transaction’s read-set sequentially.
This is because the validity of an earlier transaction can influence
the validity of later transactions as shown in Figure 1(b). While a
fully parallel validation approach, assuming no transaction conflicts,
would be ideal, it’s unrealistic to expect such behavior in practice.
However, we can anticipate that a majority of transactions will not
have conflicts.

To exploit this characteristic and enable parallel validation, we
introduce a transaction dependency graph in the Coordinator. To
ensure deterministic results across all nodes despite the inherent
non-determinism of concurrency, this graph carefully tracks depen-
dencies between transactions. Each node in the graph represents a
transaction. Let’s consider two transactions, 𝑇𝑖 and 𝑇𝑗 , where 𝑇𝑖 ap-
pears earlier in the block ordering than𝑇𝑗 (either in the same block
or a preceding block). An edge from 𝑇𝑗 to 𝑇𝑖 signifies that 𝑇𝑖 must

4

Table 1: The read-write set of transactions in block 𝐵1 and 𝐵2.

Block Tx. Read Set
(key, version)

Write Set
(key, value)

valid

𝐵1

𝑇1 (𝑘6, 1) (𝑘1, 𝑣1) ✓

𝑇2 (𝑘1, 2) (𝑘6, 𝑣6) ✗

𝑇3 (𝑘3, 1) (𝑘6, 𝑣7) ✓

𝑇4 - (𝑘5, 𝑣5) ✓

𝐵2
𝑇1 (𝑘5, 𝑛𝑖𝑙) (𝑘7, 𝑣1) ✗

𝑇2 (𝑘4, 3) (𝑘4, 𝑣4) ✓

be validated and committed/aborted before 𝑇𝑗 ’ can be considered
for validation. We define the following three dependencies which
sufficient to represent any potential conflict that could arise from
concurrent access to shared state

(1) read-write dependency (𝑇𝑖
𝑟𝑤(𝑘)
←−−−−− 𝑇𝑗):𝑇𝑖 writes a new value

to state 𝑘 , updating its version. 𝑇𝑗 reads the previous version of
state 𝑘 . If 𝑇𝑖 is valid, 𝑇𝑗 must be invalid because it read an outdated
version.

(2) write-read dependency (𝑇𝑖
𝑤𝑟 (𝑘)
←−−−−− 𝑇𝑗):𝑇𝑗 writes a new value

to state 𝑘 , updating its version. 𝑇𝑖 reads the previous version of
state 𝑘 . Regardless of 𝑇𝑖 ’s validity, 𝑇𝑗 can be validated. However,
this dependency ensures that 𝑇𝑗 is not committed before 𝑇𝑖 . If 𝑇𝑗
were committed first, 𝑇𝑖 would become invalid as it read an out-
dated version. This should not be allowed because 𝑇𝑖 appeared in
the block before 𝑇𝑗 , and committing 𝑇𝑗 first would lead to an incor-
rect result.We use this dependency to enforce the correct order of
commit.

(3) write-write dependency (𝑇𝑖
𝑤𝑤(𝑘)
←−−−−−− 𝑇𝑗): Both 𝑇𝑖 and 𝑇𝑗

write to the same state 𝑘 . Regardless of the validity of 𝑇𝑖 , 𝑇𝑗 can be
validated. This dependency ensures that𝑇𝑗 is not committed before
𝑇𝑖 to prevent 𝑇𝑗 ’s write from being overwritten and lost.

It’s important to note that an edge always points from a later
transaction (𝑇𝑗) to an earlier transaction (𝑇𝑖) i.e., if 𝑇𝑖 ←− 𝑇𝑗 then
𝑖 < 𝑗 because the commit order is determined during the ordering
phase. Consequently, the dependency graph is always directed and
acyclic (i.e., it contains no cycles). This acyclic nature is crucial
for enabling efficient parallel validation. The dependency graph
of transactions in Table 1 is shown in Figure 4. The transactions
𝑇1,𝑇4 in block 𝐵1 and 𝑇2 in block 𝐵2 are dependency-free and can
be processed in parallel. Other transactions have to wait for their
dependencies to be validated and committed or aborted.

T1 T2

T3
T4

T1

T2

wr (k6)
rw (k1)

wr (k
6) ww (k

6) rw (k 5
)

Block B1 Block B2

Figure 4:Dependency graph of transactions in Table 1.

When the Dependency Graph Manager receives new blocks, it
initiates the construction of local dependency graphs, one for each

block, where each graph captures dependencies between transac-
tions within its respective block’s scope. Importantly, these local
dependency graphs can be constructed in parallel for multiple indi-
vidual blocks simultaneously, enabling parallel graph construction
and significantly accelerating the process compared to building a
single global graph serially. Subsequently, these local graphs are
merged into the global dependency graph, strictly respecting block
order to accurately represent inter-block dependencies. A key op-
timization during this merge is that dependencies only need to
be established between transactions in the local graph and those
already residing in the global graph, since a new block’s transac-
tions can only depend on transactions within the same block or
prior ones that are already part of the global graph. This focused
approach minimizes the number of transactions the Dependency
Graph Manager processes sequentially to construct the global de-
pendency graph.

Transactions with no outstanding dependencies (i.e., those hav-
ing no outgoing edges in the dependency graph, also known as
having an out-degree of zero) are selected for validation and com-
mitment. To maximize parallelism, the validation of these indepen-
dent transactions is distributed across multiple Signature Verifier
services and Validator-Committer services. After valid transactions
are committed to the ledger, the dependency graph is updated. This
update may resolve dependencies for other transactions, making
them eligible for validation in the next cycle. Since the depen-
dency graph guarantees that concurrently validated transactions
are conflict-free, we can safely pipeline the validation and commit
phases, further enhancing performance. Thus, the proposed design
directly addresses the limitation 6 and 7 discussed in Section 2.3.

3.4 Consistency Proof
Our goal is to prove that parallel validation and commitment of
transactions using our dependency graph produces the same final
state as serial execution. In serial execution, transactions are pro-
cessed one by one, each validated against the state resulting from
the preceding ones. In contrast, our parallel approach validates
transactions concurrently, respecting dependency constraints, and
commits them in a topological order derived from the graph. We as-
sume that validation and commitment operations are deterministic
and that our dependency graph accurately captures all read-write,
write-read, and write-write dependencies between transactions.

We employ induction for this proof. The base case with a sin-
gle transaction is trivial: both serial and parallel execution yield
identical results. Now, let’s assume the inductive hypothesis: for 𝑘
transactions, parallel execution with the dependency graph results
in the same final state as serial execution. For the inductive step,
we introduce 𝑇𝑘+1 to the set. In serial execution, 𝑇𝑘+1 is validated
against the state after committing 𝑇1 through 𝑇𝑘 and then commit-
ted if valid. In parallel execution, the dependency graph is built
for all 𝑘 + 1 transactions. By our inductive hypothesis, the first ’k’
transactions are validated and committed in parallel, but due to the
dependency graph’s constraints, the resulting state is identical to
that achieved through serial execution.

There are two possibilities for𝑇𝑘+1: it either has dependencies on
preceding transactions or it doesn’t. If𝑇𝑘+1 depends on one or more
of the preceding 𝑘 transactions, it will only be validated after its

5

dependencies are satisfied. This ensures validation against the same
state as in serial execution, and due to deterministic operations, the
validation and commitment outcomes will be identical. If 𝑇𝑘+1 has
no dependencies, it can be validated immediately in parallel against
the initial state. While this differs from serial execution, where
it’s validated against the state after committing 𝑘 transactions, the
lack of dependencies signifies that there is no shared state between
𝑇𝑘+1 and the prior transactions. Consequently, the validation result
and the final state remain consistent regardless of when 𝑇𝑘+1 is
committed after 𝑇𝑘 .

Therefore, in both scenarios, the outcome for 𝑇𝑘+1 is consistent
between serial and parallel execution. By the principle of math-
ematical induction, we conclude that for any set of transactions,
parallel validation and commitment using the dependency graph
produce the same final state as serial execution. The dependency
graph ensures that the order of validation and commitment respects
all inter-transaction dependencies, effectively mimicking serial exe-
cution while enabling the performance benefits of parallelism. This
guarantees the consistency and integrity of the blockchain’s state
under our proposed parallel execution model.

3.5 Transaction Commit Flow
The commit process, with steps depicted in Figure 3, begins with
the Sidecar, which fetches blocks from the ordering service (in step
➊). The Sidecar maintains a list of active transactions, allowing it to
identify and mark any with duplicate identifiers before forwarding
the block to the Coordinator for processing (in step ➋). The Coor-
dinator sends the transactions to the Dependency Graph Manager,
which follows the steps described in Section 3.3 to continuously
identify dependency-free transactions and forward them to the
Signature Verifier Manager (in step ➌). This manager distributes the
transactions to available Signature Validators for preliminary valida-
tion and signature verification. Transactions with structural errors
are immediately marked as invalid, and all results are returned to
the Coordinator (in step ➍).

The Coordinator sends verified transactions to the Validator
Committer Manager (in step ➎), which routes them to available
Validator-Committer services (in step ➏). The underlying data is
organized across several tables. There are two primary system ta-
bles: one for storing the status of each transaction (txID, status),
with txID being unique, and another for storing namespace details,
including its endorsement policy (e.g., verification key) and version.
Additionally, each namespace has its own data table with columns
for key, value, and version, where the key column has a unique
constraint.

These Validator-Committer services execute a three-phase pipelined
process to validate and commit transactions using this data struc-
ture (in step ➐):

(1) Preparer Phase: The service first batches incoming transac-
tions. In this phase, the read-write set of each transaction
is divided into three categories: reads that need validation
against the committed state; new state inserts, which are
identified by a nil version signifying the state did not exist
when the contract was executed; and existing state updates,
which are identified by a non-nil version.

(2) Validator Phase: The reads are then validated against the
committed version of the data in the ledger. This separation
of inserts and updates enables an optimization: for new state
inserts (nil version), the service does not need to check if
the state already exists to detect staleness. Transactions
that fail validation due to stale reads are marked with an
invalid status, and their associated writes are discarded.

(3) Commit Phase: Valid transactions proceed to the final com-
mit phase. The service commits the results by first storing
the transaction’s final status and its identifier in the (txID,
status) table. It then applies the writes to the relevant names-
pace table. For new state inserts, it adds a new row with
the version set to 0; if this key already exists, the database’s
unique constraint raises a conflict that invalidates the trans-
action. For existing state updates, it modifies the row for
the given key with the new value while incrementing its
current version by 1.

Because the dependency graph guarantees that concurrently
processed transactions are conflict-free, a straightforward concur-
rency control mechanism, such as Read Committed Isolation, can
be employed in the distributed database to enhance performance.

Following validation, transaction identifiers (txID) and their sta-
tuses are sent from each Validator-Committer service back to the
Validator Committer Manager and then to the Coordinator (in steps
➑ and ➒). This outcome is also notified back to the dependency
graph, which removes the completed transaction to free up any
dependent transactions. The Coordinator forwards these statuses
back to the Sidecar (in step ➓), which aggregates the status for each
block, as transactions may be committed across block boundaries.

Once the next block in sequence is fully committed, the Sidecar
appends the block with its final transaction statuses to an append-
only block store, stores the last fully committed block number in
the state database for failure/recovery, and forwards the completed
block to registered clients, informing them whether their transac-
tions were committed or aborted.

3.6 Failure and Recovery
During the processing lifecycle, any of the microservices, including
the sidecar, coordinator, signature verifier, and validator-committer,
can potentially fail. The system is designed with specific mecha-
nisms to handle these failures gracefully and ensure correctness.

Failure of a Signature Verifier: The Signature Verifier Man-
ager maintains a list of transactions assigned to each verifier for
processing. If a verifier fails and its connection drops, the manager
detects this and automatically resubmits the pending transactions
to another available verifier. This design also robustly handles tran-
sient network issues. If the original verifier was not actually down
and eventually returns a response, the manager will no longer find
a matching pending transaction in its list for that verifier and will
simply ignore the late response, preventing any duplicate process-
ing.

Failure of a Validator-Committer Service: In a similar man-
ner, the Validator Committer Manager maintains a list of trans-
actions sent to each Validator-Committer (VC) service. If a VC
service fails, its pending transactions are resubmitted to another

6

one. This can create a scenario where, due to a transient network is-
sue, the same transaction is processed by more than one VC service.
This is addressed at commit time to prevent incorrect validation
or duplicate writes. When a VC service attempts to store the final
transaction status, it checks if a status for that specific txID already
exists in the database. If the txID, block number, and transaction
index match an existing record, the service identifies it as a re-
submission from a failure/recovery event and reuses the already
committed status, ensuring the commit operation is idempotent.

Failure of Coordinator: The sidecar periodically stores the last
fully committed block number in sequence into the state database.
When the coordinator restarts after a failure, it will read the last
fully committed block number and set it as the next expected block
number from th e sidecar. As a result, the sidecar would start to pull
blocks from the ordering service, starting with the next expected
block by the coordinator. Given that the architecture allows vali-
dation and commit of transactions across blocks, it is possible that
some transactions in the block being fetched are already committed.
Note that our validator-committer services allow resubmission of a
transaction and detect the existing status by comparing the txID,
block number, and transaction index within the block and return
the existing status without actually recommitting the transaction.

Failure of Sidecar:When the sidecar fails and restarts, it would
ask the coordinator for the next expected block number and com-
pare it against the last block stored in its block store. If there is
a gap, it would fetch those blocks from the ordering service and
statuses of those transactions from the state database through the
coordinator to bring the block store up to date. Then, it would start
to fetch from the next expected block from the ordering service.

Failure of Nodes in Distributed Database: To handle database
node failures in a distributed system, the replication of shards is
employed. When a shard fails, other replicas would exist. When the
whole state database fails or gets corrupted, the whole state has to
be rebuilt by fetching blocks from the beginning from the ordering
service.

4 A SCALABLE OREDERING SERVICE
In this section we introduce "Arma", a scalable, high performance
Byzantine fault tolerant (BFT) ordering service for HLF. Our goal
was to design an ordering service with an order of magnitude
better throughput than what is currently in HLF, while maintaining
reasonable latency for the CBDC use case.We also strive tomaintain
API compatibility with the current HLF ordering service, although
some minor changes were introduced.

Starting from v3, HLF provides the option for a BFT ordering
service (see [4, 5]). HLF’s ordering service uses the SmartBFT library
[6, 7], which is based on PBFT [8] and BFT-SMaRt [9]. In HLF v3, the
ordering service is a cluster of ordering service nodes (OSNs), each
of which is a process (server) which may be governed by a different
organization. In order to tolerate 𝑓 Byzantine failures, the cluster
must have at least 𝑛 = 3𝑓 + 1 OSNs (see top of Figure 5). In Arma,
each HLF v3 OSN is replaced by a "party", which is a distributed
implementation of an OSN. A party has multiple sub-components,
is controlled by a single organization, and is a "unit of failure"; that
is, if any sub-component of the party is faulty, we consider the
party as faulty. As in SmartBFT, Arma requires 𝑛 = 3𝑓 + 1 parties

R1

B1s1

C1

A1

E
tx1

E txN

…

B1

BAF1

[BA1,BA2,BA3,…]

SC
B1s2 B2

BAF2

…

Shard 2

Shard 1

O1 O3

O2 O4

Party 1

HLF v3
SmartBFT Ordering Service Cluster
4 nodes, f=1

HLF-Block(n)
HLF-Block(n+1)

…
…

Rp Router

Bp Batcher

Cp Consenter

Ap Assembler

p - Party

Routing Batching Consensus Assembly

OS Node

dissemination

consensus
on digests

Arma Party

Figure 5: Arma party composition. An Arma party is equivalent to an HLF v3
OS Node. An Arma party is composed of 4 sub-components: a router (R), one
or more batchers (B), a consenter (C), and an assembler (A). Endorsing clients
(E) submit transactions to the router. The router spreads transactions across
the shards, sending only to the batcher (B) of its own party (p) in a given shard.
Batchers aggregate transactions in to batches (B1,B2), and compute a signed
digest (batch attestation fragment) on the batches (BAF1,BAF2, resp.). The
consensus cluster collects BAFs and emits a total order of batch attestations
(BAs). The assembler consumes both totally ordered BAs from consensus, and
batches from the shards. It then assembles HLF blocks according to the order
induces by consensus and the content received from the shards. The HLF
blocks are then ready for the scalable committer (SC) to pull.

in order to tolerate 𝑓 Byzantine faults (for more details on BFT in
blockchain systems see [10] and references therein).

In Arma, three design principles help us achieve the performance
goals. First, we separate transaction ordering from transaction dis-
semination (Figure 5 ➊), ordering digests rather than full transac-
tions, thus alleviating network bottlenecks. Second, we decompose
transaction ordering into multiple sequential stages that can oper-
ate in parallel (Figure 5 ➋), pipelining the ordering service. And
third, we divide key elements of processing which can be done inde-
pendently of each other into shards (Figure 5 ➌), which can execute
in parallel. Pipelining and sharding are established techniques that
increase parallelism, and allow us to scale the performance of Arma
by adding hardware resources. The design of Arma draws inspi-
ration from "Narwal and Tusk" [11], yet is adapted to the special
needs of the HLF architecture.

4.1 Arma Overview
Arma runs in four stages routing, batching, consensus, and as-
sembly (Figure 5). When clients submit transactions to Arma, the
transactions enter the routing stage, during which they are vali-
dated against some pre-defined static system rules (e.g., admissible
transaction format and access control rules). Valid transactions
then move onto batching, whereby transactions are bundled into
batches and persisted to disk. During consensus, the batches are
totally ordered using a BFT consensus protocol. Arma utilizes the
SmartBFT library [12], which is a BFT consensus protocol adapted
for blockchains. However, for efficiency reasons, consensus does
not order the batches in their entirety; instead it orders their much
shorter signed digests, which are computed during batching. Thanks
to this optimization, we amplify the throughput of the SmartBFT
consensus protocol.

7

R1 B1s1

B1s2
A1

B1s3

R2 B2s1

B2s2
A2

B2s3

R3 B3s1

B3s2
A3

B3s3

R4 B4s1

B4s2
A4

B4s3

E

Shard 1 Shard 2 Shard 3
Hr(Tx)

Hr(Tx)

Hr(Tx)

Hr(Tx)

tx1

tx1

tx1

tx1

Control

C1

C2

C3

C4

BFT Consensus

B

tx1

tx1

tx1

tx1

BAF

Total order (BA,…)

Party 1

Party 2

Party 3

Party 4

Complaint

SC

HLF-Block(n)
HLF-Block(n+1)

…
…

TXs
Digests
Batches

Control
Blocks

BAF

BAF

Primary

Figure 6: Arma architecture. A correct endorsing client (E) tries to submit a TX
to all parties. Routers validate and dispatch the TX to a shard according to hash
function𝐻𝑟 . The primary batcher in a shard (e.g. 𝐵2𝑠3 in shard 3) bundles TXs
in a batch, persists it, and broadcasts it to the secondary batchers. Batchers that
persist a batch send a BAF to the consensus cluster. Upon receiving enough
BAFs, the consensus cluster emits a total order of BAs. Assembler nodes receive
a stream of BAs from consensus and collate them with matching batches they
pull from the shards. Assemblers then append HLF blocks to their ledger
and make it available to the scalable committer (SC). Finally, a batcher that
suspects misbehavior of the primary may complain to the consensus cluster
(e.g.𝐵4𝑠3 in shard 3), which given enough distinct complaints will exert control
and change the primary of a shard.

Consensus then delivers signed block headers, which are com-
pressed representation of the ordered transactions for block assem-
bly, during which the batches corresponding to a received block
header are fetched from disk and the full block is constructed.

To increase the degree of parallelism and speed up transaction
ordering, an Arma participant, called thereafter party, will host
multiple nodes such that each node is dedicated to one of Arma’s
stages. Notably, a party runs four nodes: (1) a router which performs
validation tasks; (2) a batcher which is in charge of batching; (3) a
consensus node which participates in consensus; and finally, (4) an
assembler which is responsible for block assembly.

To further scale Aram, we divide the transaction space into
shards of equal size, and have each party run one batcher per shard.
That is, if Arma has 3 shards, then a party will run a router, 3
batchers (instead of one), a consensus node, and an assembler. Now
when a client submits a transaction to a party, the transaction is
first validated by that party’s router, which if the transaction is
admissible, deterministically assigns it to a shard and dispatches it
to the relevant batcher.

In the following, we describe the four stages of Arma in more
details and discuss its BFT properties (see Figure 6).

4.2 Routing
Upon receiving a client’s transaction, a router proceeds with trans-
action validation followed by transaction routing.

Transaction Validation. Transaction validation consists of check-
ing that the received transaction is well formed and submitted by
an authorized Arma client. Client authentication and authorization
(A&A) can be done on the session level or per transaction. The
early identification and exclusion of invalid transactions protects
Arma’s resources against misuse and denial of service attacks. The

approach in HLF is to verify a client signature on every transaction,
and to carry the client certificate in every transaction. This ap-
proach is costly; although we support it, for performance we prefer
session level A&A. Nevertheless, given that transaction validation
is stateless, it is amenable to parallelization and horizontal scaling;
an Arma party may add router instances to scale the CPU intensive
task of verifying signatures, and therefore, speed up the processing
of incoming transactions.

Transaction Routing. A router maps each valid transaction to
an Arma shard and forwards it to the relevant batcher, which is
the batcher that the party managing the router has devoted to
that shard. The hash function 𝐻𝑟 (𝑇𝑋) → 𝑠ℎ𝑎𝑟𝑑–𝐼𝐷 should be
consistent across all parties, and deterministic. In other words, on
input of a transaction, a correct execution of this mapping process
will always yield the same target 𝑠ℎ𝑎𝑟𝑑–𝐼𝐷 . In order to effectively
load balance the shards, the output of this mapping should also be
uniformly distributed. The hash function 𝐻𝑟 does not need to be
secure; an efficient candidate could be based on CRC checksum.

4.3 Batching
Each shard in Arma comprises as many batchers as parties in the
system, and designates one batcher as primary while the rest of
the batchers are secondaries. The primary batcher is in charge of
bundling transactions it receives into batches. A primary batcher is
ousted and a new primary is elected if it (1) fails to include transac-
tions of correct clients into batches or (2) pollutes the batches with
bogus transactions (see Section 4.3.4). We call the time a batcher
serves as a primary a term. The term of a primary starts when it is
elected and it ends when it is removed. In the following, we identify
four batcher operations: transaction dissemination, batch attestation,
batch verification, and primary batcher rotation.

4.3.1 Transaction Dissemination. A correct client considers a trans-
action to be successfully submitted if it has been delivered to at
least 𝑁 − 𝐹 ≥ 2𝐹 + 1 parties (i.e., the routers of 𝑁 − 𝐹 parties ac-
knowledged receipt). This guarantees that the routers of at least
𝐹 +1 correct parties have received the transaction. Each such router
will subsequently map the transaction to a shard and forward it to
the relevant batcher – i.e., the batcher that is dedicated to the shard
and managed by the same party as the router.

If the batcher is a primary, it adds the transaction to its memory
pool, and then extracts a batch of transactions from thememory poll,
and persists the batch to disk. A batch is uniquely identified by the
tuple ⟨shard, primary, seqN, digest⟩, where shard and primary
identify the batcher generating the batch, seqN is a monotonically-
increasing sequence number generated by said primary, and digest
is a secure cryptographic hash of the batch (SHA256 on a serialized
form of ordered ⟨length, value⟩ tuples, to prevent a second pre-
image attack).

If the batcher is a secondary, it adds the transaction to its memory
pool. Secondary batchers replicate every persisted batch from the
primary through a reliable broadcast protocol (but not Byzantine
atomic broadcast as in [11]). When a secondary batcher receives
a batch from the primary, it validates it, persists it to disk, and
removes the corresponding transactions from its memory pools.

8

If a correct secondary has in its memory pool a transaction that
has not been included in a batch by the primary for a period of time,
it will directly forward said transaction to the primary batcher. This
ensures that the primary will eventually receive the transaction.
If the primary does not include the transaction in a future batch,
then a correct secondary can safely conclude that the primary is
misbehaving (censoring the transaction), and send a complaint vote
against it to the consensus nodes.

Figure 6 shows the transaction flow from clients to batchers
through the router nodes, and also how transaction batches are
disseminated among the batchers in each shard.

4.3.2 Batch Attestation. Once a batch 𝐵 is persisted to disk, a cor-
rect batcher𝑋 , be it primary or secondary, creates a batch attestation
fragment (BAF) by signing the message

⟨shard, primary, seqN, digest⟩

(the unique batch identifier). Next, the correct batcher sends the
BAF to all consensus nodes. This attests to the consensus nodes
that said batch is persisted at 𝑋 .

4.3.3 Batch& Transaction Verification. Note that transactions (TXs)
arrive to the batchers in three different ways. First, from the router
of the same party; those transactions are verified at the router. Sec-
ond, a secondary receives batches from the primary, and third, a
primary may receive forwarded TXs from a secondary. When a TX
is received from a foreign party, it needs to be verified, to prevent
that party from injecting junk TXs. This can be done by having the
secondary batchers verify all of the transactions in their incoming
batches, and primaries verifying forwarded TXs from secondaries.
However, a shortcut is available. A secondary may inspect each
transaction in an incoming batch, and first check if it is in the mem-
ory pool. If it is, said TX has been verified by its own router and
need not be verified again. The same can be done by the primary
when handling incoming forwarded TXs from secondaries. In both
case, when verification is needed, it is the same set of checks done
by a router when it processes incoming TXs.

When a correct secondary detects a bogus transaction from a
primary, it submits a complaint vote against the primary to the
consensus nodes. As we will see next, if enough secondaries com-
plain, the primary will be deposed and a new primary selected.
This is why the primary needs to verify every TX forwarded to it;
otherwise, a faulty secondary may corrupt a primary with a bogus
TX. If that TX ends up in a batch, it would cause correct secondaries
to depose said primary, which is a safety problem.

4.3.4 Primary Rotation. Batchers utilize the BFT consensus proto-
col executed by the consensus nodes as a bulletin board that tracks,
for each shard, complaint votes against a given primary. We recall
that whenever a correct secondary batcher detects misbehavior
from the primary, the secondary sends a complaint vote to the
consensus nodes for ordering and broadcast. We also recall that a
primary misbehaves in one of two ways, either it includes bogus
transactions in the batches it disseminates or it censors transactions
from correct clients. A complaint vote from a batcher in Arma con-
sists of its signature on the identifiers of the shard and the current
primary (or more accurately the term).

A primary change is initiated if 𝐹 + 1 distinct batchers of a shard
successfully submit complaint votes against the current primary (i.e.
the current term) to the consensus nodes. This results in increasing
the term by 1 and selecting a new batcher to be a primary. The
selection of the new primary uses round robin. By defining the
threshold to be 𝐹 + 1, Arma ensures that (1) no coalition of 𝐹 faulty
parties (i.e., batchers) can overthrow a correct primary, and (2) a
faulty primary will be overthrown only if at least 1 correct party
detects its misbehavior.

4.4 Consensus
A consensus node in Arma participates in a BFT protocol to order
the messages sent by the batcher nodes (BAFs and complaints) and
output signed decisions.

4.4.1 Batch Attestation Fragments Ordering and Arma Block Cre-
ation. The consensus nodes totally order BAFs using the BFT proto-
col. When 𝐹 + 1 distinct BAFs of the same batch (or more accurately
the same tuple ⟨shard, primary, seqN, digest⟩) have been totally
ordered, the consensus nodes collaborate to assemble a quorum of
signatures over a block header that matches the batch associated
with the digest. The signed block header contains the digest of
the batch, and a hash pointer to the previous block header, thus
extending the chain. Each decision may contain multiple block
headers.

4.4.2 Ordering andCollecting Complaint Votes. A secondary batcher
that detects primary misbehavior generates a complaint vote and
submits the complaint vote to the consensus nodes. The latter nodes
order the received vote that will eventually appear in a decision. If
the consensus nodes order 𝐹 + 1 distinct complaints on the same
primary (from the same shard), the nodes inform the batchers of a
term change (primary rotation in that shard). The batchers consume
the state from the consensus nodes and track the current term. If
a correct batchers sees a term change for its shard, it designates a
new primary batcher.

As mentioned earlier, Arma uses round-robin to designate the
new primary in a deterministic fashion. Notice that ordering and
outputting the complaint votes using BFT consensus combined
with round-robin enable the batchers of a shard to agree on the
term change with zero interaction. If the new primary is faulty,
then the process of submitting and collecting complaint votes is
repeated until a correct primary is selected.

4.5 Assembly
After each round of consensus, one or more Arma block headers
are persistently stored by the consensus nodes. Each block header
includes a digest referencing a batch, a monotonically increasing se-
quence number, and the previous block hash. The assembler nodes
retrieve the Arma block headers from the consensus nodes, while
the batches are retrieved from the batcher nodes. Each Arma block
header is attached with a quorum of signatures from the consen-
sus nodes, which the assembler nodes verify (unless it receives it
from a consenter of its own party, which is trusted). This and the
block sequence number guarantee that all assembler nodes commit
the same headers in the same order. For each Arma block header,

9

an assembler node is responsible for retrieving the correspond-
ing batch, attaching them together to form a complete block and
subsequently storing it. For performance, assemblers speculatively
pre-fetch batches, but they can always request a specific batch by
accessing all batchers in a shard.

4.6 BFT Properties of Arma
Here we informally explain the BFT features of Arma. The core
of the Arma protocol is the consensus cluster, which implements,
using the state machine replication paradigm, two basic functions.
First, it collects BAFs, counts them, and when they cross the 𝑓 + 1
threshold, totally orders BAs with corresponding block headers. Sec-
ond, it controls the function of every shard by collecting complaints
and changing primaries if needed. The consensus cluster is built us-
ing the SmartBFT library [12] which like PBFT [8], provides safety
and liveness based on the eventual-synchrony model. To carry the
safety and liveness features all the way to the assemblers we must
show that given a BA and corresponding block header provided by
consensus, an assembler would be able to find the corresponding
batch in a shard. This is implemented jointly by the behavior of the
batchers and the state machine in the consensus cluster: correct
batchers submit a BAF to consensus after they had validated and
persisted a batch (either as primary or secondary); since consensus
emits a BA after collecting 𝑓 + 1 signed BAFs, we are guaranteed
that at least one correct batcher has said batch. An assembler can
always contact all batchers in a shard and request each one for a
certain batch identifier ⟨shard, primary, seqN, digest⟩, and get at
least one copy of said batch.

Moreover, a correct Arma client is expected to try and submit
to all parties. Censorship resistance in Arma relies on that, since
this guaranties that at least 𝑓 + 1 correct batchers in a shard would
get the transaction, and hence would be able to complain if the
primary censors said transaction. This is also the key to liveness
in the shards, since given incoming transactions, correct batchers
expect batches from the primary. If a primary stops progress, it
would be eventually replaced. For a more details see [13].

5 CBDC: A TOKENIZED UTXO APPROACH
This section introduces a token-based architecture for a Central
Bank Digital Currency (CBDC). Here, a token, defined as (owner,
value), represents the CBDC asset. A distributed ledger maintains
the state of these tokens, updated through "Issue" (creation) and
"Transfer" (ownership change) operations, submitted as transac-
tions. Our architecture employs the Unspent Transaction Output
(UTXO) model, offering enhanced privacy and concurrency control
compared to traditional account models. Although Hyperledger
Fabric primarily uses an account model, its key-value data model
and chaincode functionality allow us to implement a UTXO model
at the application layer. This involves user wallets and a specialized
"token chaincode" on endorser nodes.

This section details the transaction flow, covering both Issue
and Transfer transactions. The transaction flow begins with a user
wallet creating a client transaction. This is submitted to endorser
nodes for processing by the token chaincode, which validates it
and creates a settlement transaction. This is then sent to Hyper-
ledger Fabric’s ordering service, which orders it into a block. Finally,

committer nodes perform a final validation before committing the
transaction to the ledger.

5.1 Transaction Flow
5.1.1 User Wallet and Client Transaction Creation. The user wallet,
held by each participant (issuers, payers, or payees), is responsible
for translating user instructions into transactions and securely
storing sensitive information. The wallet stores the user’s unique
identifier (𝑒𝑖𝑑), their secret key (𝑠𝑘) for signing transactions, and for
each owned token 𝜏 , the token itself (containing owner and value)
along with its unique key in the ledger (𝑘𝑒𝑦—hash of the token 𝜏).

Users interact with their wallets to initiate either Issue or Trans-
fer transactions. For an Issue transaction, initiated by an authorized
issuer, the wallet creates a transaction containing the new tokens
to be created, each defined as (owner, value), along with the issuer’s
digital signature, cryptographically proving their authorization. For
a Transfer transaction, initiated by a payer to transfer value to a
payee, the wallet constructs a transaction containing the tokens to
be spent along with their corresponding unique keys in the ledger,
the outputs which are the tokens designated for the payee and
the "change" returned to the payer, and signatures generated by
the payer, cryptographically proving their ownership of the input
tokens.

5.1.2 Token Chaincode: Validation and Settlement Transaction Cre-
ation. The client transaction is submitted to the token chaincode,
which is responsible for validating the transaction and creating a
corresponding settlement transaction. For Issue transactions, the
chaincode verifies the issuer’s signature, ensuring that only au-
thorized entities can create new tokens. For Transfer transactions,
the chaincode performs several checks. It verifies the correctly
computed transaction ID (TxID). It also checks that the inputs are
correctly formatted as (token, key) pairs, with the key being the
hash of the token. Finally, it verifies the signatures using the public
keys of the owners of the input tokens.

If all validation checks are successful, the chaincode creates a
settlement transaction. For Issue transactions, the read-set is empty,
and the write-set includes entries to add the new output tokens
to the ledger: < 𝑘𝑒𝑦, 𝑠𝑒𝑟_𝑜𝑢𝑡 >, where 𝑘𝑒𝑦 is a unique key for
the output token, and 𝑠𝑒𝑟_𝑜𝑢𝑡 is the serialized representation of
the output token. For Transfer transactions, the read-set includes
entries of the form < 𝑘𝑒𝑦, 0 >, indicating that when the transaction
is committed, the ledger state for each 𝑘𝑒𝑦 should be at version
0 (unspent). The write-set includes entries to add the new output
tokens to the ledger and entries to mark the input tokens as deleted.

5.1.3 Hyperledger Fabric: Settlement Transaction Validation. The
signed settlement transaction is processed by Hyperledger Fabric.
The ordering service orders transactions into blocks, and commit-
ters perform the final validation. For Issue transactions, commit-
ters simply apply the write-set as there are no double-spending
checks applicable. For Transfer transactions, this includes a critical
double-spending check. Committers verify that the input tokens
referenced in the read-set (𝑘𝑒𝑦𝑠) are indeed at version 0 in the ledger.
If not, the transaction is rejected. If the double-spending check (and
other endorsement checks) are successful, the committers apply

10

Number of Endorsers Signing Aggregation
𝑡 = 3 0.147 ±4% 0.124 ±0%
𝑡 = 5 0.147 ±4% 0.241 ±1%
𝑡 = 10 0.147 ±4% 0.624 ±1%

Table 2: Latency for threshold signing and signature share aggregation for
different thresholds (Section ??).

the write-set to the ledger: adding new output tokens and marking
input tokens as deleted.

6 EXPERIMENTAL EVALUATION
In this section we evaluate the performance characteristics of our
system’s architecture as described in Section 3 and 4. In Section 6.1
we evaluate the transaction execute phase capturing stateless checks
of transaction validity. We proceed in Section 6.2 with the perfor-
mance evaluation of the order phase. Finally, in Section 6.3 we
evaluate the validate phase with our enhanced HLF committers

Experimental Setup We implemented the user wallets, the
endorsers, and the certifiers using the Fabric Smart Client [15] and
the Token SDK [16], and extended the HLF ordering service [17] to
support the Arma consensus protocol [18]. We implemented the
committers as a distributed service in Go [19] using GRPC [20]
for network communication, and yugabyteDB [21] as shard data-
base to persist ledger states. To evaluate various aspects of the
settlement engine, we implemented a workload generator that can
produce synthetic workloads to simulate millions of users and stress
individual components of the settlement engine.

Performancemetrics (i.e., throughput and 99th percentile latency)
are collected via Prometheus [22] with a sample rate of one second.
Each reported data point is the average of at least fifteen minutes
running time after a warm-up phase.

Finally, we deployed the components of the settlement engine
on IBM Cloud [23] in three different regions, namely, London, Paris,
and Milan. The bare-metal servers are equipped with dual 48 core
CPUs (Intel(R) Xeon(R) 8260 CPU @ 2.40 GHz), 64 GB RAM, 1 TB
SSD (Raid 0), and 10 Gbps network with Ubuntu Linux 20.04 LTS
Server.

6.1 Transaction Execution
In this section we analyze the transaction latency observed at the to-
ken endorser. The latency for token generation and validity check
are 100 milliseconds and 274 milliseconds, respectively. Table 2
shows the latency for threshold signature generation with the com-
bination of (𝑡 = 3, 5, 10) endorser shares using non-interactive
threshold BLS signing implemented using the TSS library [24]. The
execute phase scales horizontally as the performed operations are
stateless.

Our results show that, even when ZKPs are utilized for confi-
dentiality and unlinkability in payment transactions, the execute
phase does not go above 20 milliseconds, while latency is brought
down to a few milliseconds when only anonymity of transactions
is assured. Notice that the impact of threshold signing mechanisms
is negligible on the overall latency of the execute phase, even when
the threshold is 10 nodes.

23:18 Arma: Byzantine Fault Tolerant Consensus with Horizontal Scalability

20 40 60 80 100 120 140 160

1 000

2 000

3 000

4 000

Throughput (x1000 TX/sec)

La
te

nc
y

(m
ill

ise
co

nd
s)

|Tx| = 300B

N=4
N=10
N=16

10 15 20 25

1 000

1 500

2 000

Throughput (x1000 TX/sec)

La
te

nc
y

(m
ill

ise
co

nd
s)

|Tx| = 3.5KB

N=4
N=10
N=16

Figure 6 Performance with varying number of nodes (N) and varying TX size.

0 1 2 4
0

50

100

150

200

250

Shards

T
hr

ou
gh

pu
t

(x
10

00
T

X
/s

ec
) N=4

N=7
N=10

Figure 7 Caption.

6.2 Distributed Arma593

In the experiments described below we evaluated a fully distributed implementation of Arma,594

in which each component is running in a separate process.595

In all experiments we used 4 parties, i.e.: 4 routers, 4 consensus nodes and 4 assemblers, as596

well as 4 → |shards| batchers. A separate set of clients submitted 160B transactions to all597

routers. The maximal batch size was 10000, and the maximum duration of filling a batch598

with transactions was 500ms.599

6.2.1 LAN Deployment600

The LAN experiment had 14 bare metal servers, each with 40 CPUs and 64GB of RAM. All601

servers were located in the same data center, with < 1ms of latency between them. In all602

experiments a router and a consenter process were collocated on a server (4 servers), and the603

remaining batcher and assembler processes were evenly distributes across the other 10 servers604

(4+8, 4+16, 4+32, assembles+batchers, for 2,4,8 shards, respectively). Clients located in the605

same data center submitted transactions.606

Figure 7: Ordering service throughput with the Arma consensus protocol.

6.2 Transaction Ordering
Next, we investigate the efficiency of the settlement engine’s or-
dering using the newly proposed consensus algorithm, Arma [18].
Figure 7 illustrates the throughput of the ordering service instan-
tiated with a varying number of parties and a varying number of
shards, with a latency of approximately 1 second.

We observe that the best throughput of up to 220, 000 tx/s (with
about 1 second latency) is achieved with 4 parties and 2 shards
(1 router, 2 batchers, 1 consenter, and 1 assembler per party). The
throughput increases when using 2 shards instead of only one shard,
however with 4 shards there is no noticeable improvement. The
throughput decreases when deploying more parties. With 7 parties
and 4 shards the throughput is 100, 000 tx/s. It is unclear why with
7 parties we get such a decreases in performance relative to 4 parties,
we expected to see a smaller difference. This behavior can be due
to the spread of parties across different data centers. This warrants
further investigation that we plan to report in future versions of
this paper.

The reported throughput of SmartBFT [12], the consensus algo-
rithm currently deployed by HLF, is about 2, 500 tx/s; Arma achieves
a 20-fold speedup. This effect can be attributed to the separation
of transaction ordering from transaction dissemination, sharding,
and pipelining of transaction processing, as explained in Section 4.
Note that in contrast to classical HLF transactions, which require a
size of about 3.5 KB, the compact form of the settlement transac-
tion only requires less than 300 B to perform the same operation
(spending two inputs and creating two outputs), thereby reducing
the network load. This explains some (but not all) of the difference
in the performance achieved by Arma compared to the current BFT
HLF ordering service.

6.3 Transaction Validation
We evaluate the validation phase using the implementation of our
enhanced committer, as outlined in Section 3. We measure the
impact on transaction throughput and latency, of the following
parameters: transaction size, invalid signatures, and double spend-
ing. We also evaluate the impact of number of database nodes on
the performance of validator-committer services. We deployed the

11

0K

50K

100K

150K

200K

250K

300K

In=1
Out=1

In=2
Out=2

In=3
Out=3

In=4
Out=4

 0

 0.2

 0.4

 0.6

 0.8

 1
Throughput

99th %ile Latency

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y

(s
)

#Inputs and #Outputs in Each Transaction

(a)

0K

50K

100K

150K

200K

250K

300K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1
Total Throughput

Valid Tx. Throughput
Invalid Tx. Throughput
99th %ile Tx. Latency

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y

(s
)

Percentage of Transactions With Invalid Signature

(b)

0K

50K

100K

150K

200K

250K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
Total Throughput

Valid Tx. Throughput
Invalid Tx. Throughput

99th %ile Valid Tx. Latency

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y

(s
)

Percentage of Invalid Transactions

(c)

Figure 8: Impact on transaction throughput and latency of (a) varying number of inputs and outputs per transactions; (b) varyingmix of valid and invalid transaction
signatures; and (c) varying number of double spend transactions.

components of the committer and the workload generator on mul-
tiple servers within the same region. Unless otherwise specified,
we deployed the committer with three signature verifiers, nine
validator-committer services colocated with nine nodes in a dis-
tributed database, one coordinator, and one sidecar. Note that when
we overload the committer beyond its capacity, a queue begins to
form, leading to an increase in throughput but with an increased
latency. Throughout all experiments, we shaped the workload to
keep the latency below one second.

Impact of transaction size To understand the effect of transac-
tion complexity on system performance, we varied the number of
inputs (read-set) and outputs (write-set) per transaction. As shown
in Figure 8a, increasing the transaction size from one input and
one output (1/1) to four of each (4/4) resulted in a 40% decrease in
throughput, from 250,000 to 150,000 transactions per second (tps).

This performance decline is primarily due to the increased over-
head in managing the dependency graph at the coordinator. Larger
transactions introduce more complex dependencies, which in turn
require more time for graph construction and updates. For instance,
when increasing the input/output count from 1/1 to 4/4 for a batch
of 500 transactions, the graph construction time increased from 1.6
ms to 3 ms, and the post-commit graph update time rose from 2.8
ms to 4.5 ms. Furthermore, the dependency graph is protected by
a synchronization primitive to ensure data integrity, which serial-
izes access and can become a point of contention, further limiting
throughput.

Bottleneck Analysis. To confirm that the coordinator is the pri-
mary bottleneck, we independently benchmarked the other key
components of the system: the signature validators and the validator-
committers. Our findings indicate that these components are not
the limiting factor. The signature verification process scales linearly
with the number of verifiers; a single verifier can handle 150,000
tps, and two can achieve 300,000 tps. Similarly, scaling the validator-
committer services and distributed database nodes from 6 to 15
increased shard throughput from 200,000 to 500,000 tps. Given that
both the validator-committer and signature validation components
demonstrate scalable performance well above the observed sys-
tem throughput, we conclude that the coordinator is the current
bottleneck in our system.

Impact of faulty transactions To analyze system performance
when handling faulty transactions, we conducted an experiment
by submitting a mix of valid and invalid transactions.

Invalid signatures. First, we focused on transactions with invalid
threshold signatures, which can result from insufficient endorse-
ments or malformed content. In this scenario, all transactions were
configuredwith two inputs and two outputs, while the proportion of
invalid transactions was varied from 0% to 30%. As illustrated in Fig-
ure 8b, we observed a counter-intuitive increase in overall through-
put from 200,000 tps to 240,000 tps as the percentage of faulty
transactions grew. This performance gain occurs because transac-
tions with invalid signatures are rejected early in the pipeline by
the signature validators. This pre-processing significantly reduces
the workload on the validator-committer, as it does not need to
process the state changes for these invalid transactions. This effi-
ciency is also reflected in the transaction latency. As the share of
invalid transactions increased from 0% to 30%, the average commit
latency for a batch of 1000 transactions decreased by over 50%,
from 375 ms to 175 ms. The primary reason for this improvement
is the reduction in write operations; for an invalid transaction, the
committer only records its identifier and status instead of applying
the full set of state changes, resulting in a notable performance
enhancement.

Double spendings. This scenario evaluates the system’s perfor-
mance when processing transactions with double-spend attempts.
A double-spend occurs when a transaction attempts to use an input
that has already been confirmed in the ledger. As illustrated in
Figure 8c, the presence of these conflicting transactions initiates
a significant performance degradation, which stems from two dis-
tinct bottlenecks. First, as the number of conflicting inputs rises, the
complexity of dependencies between transactions within the batch
increases. This directly slows down the dependency graph manage-
ment, causing the graph construction time for a 500-transaction
batch to increase from 1.6 ms to 4 ms and the post-commit update
time to rise from 2.8 ms to 6 ms. Second, and concurrently, the
validator-committer service must perform significant extra work
when a transaction conflicts with the already committed state in
the ledger——that doubles the internal latency of the validator-
committer service from 300 ms to 600 ms. It is the combination of
these two factors—slower intra-batch dependency processing and
the intensive work of resolving conflicts against the ledger.

This internal processing bottleneck translates directly into the
severe reduction in system-wide performance shown in the figure.
As the proportion of double-spend transactions rises to 30%, the
total throughput falls by 33%, from 200,000 tps to 134,000 tps. More

12

critically, the throughput of valid transactions, or "goodput," expe-
riences a far more dramatic collapse of nearly 48%, plummeting
to just 103,000 tx/s. This shows that the system’s capacity for use-
ful work is disproportionately impacted. This inefficiency is also
reflected in the end-user latency, which doubles from 511 ms to
over 1000 ms and stabilizes at this higher plateau, confirming that
the entire commit process becomes fundamentally more expensive
when conflicts are present.

Metric coordinator signature
verifier

vcservice+
database-node

cpu 17% 38% 71%
memory 7 GB 3 GB 32 GB
disk - - 29%
network send 1.7 Gbps 0.05 Gbps 0.8 Gbps
network recv 1.2 Gbps 0.3 Gbps 0.86 Gbps

Table 3: Resource utilization of the coordinator, signature verifier, and
Validator-Committer service (vcservice) with its co-located database node.

Resource Utilization To understand the resource footprint
of our system, we measured the CPU, memory, disk, and net-
work utilization across its core components, as detailed in Table 3.
The Validator-Committer service (vcservice) is the most resource-
intensive component. Each vcservice instance is co-located with
a distributed database node, and this combination drives the high-
est CPU usage to 71% and memory consumption to 32 GB due to
the intense I/O, processing, and memory demands of the database.
In contrast, the coordinator is primarily network-bound. It con-
sumes the most bandwidth because it must receive blocks from
the sidecar, distribute transactions to all signature verifiers and
validator-committers, aggregate their responses, and forward the
final statuses back to the sidecar. This heavy communication work-
load results in high data transmission rates (1.7 Gbps send and
1.2 Gbps receive). Finally, the signature verifier is the most light-
weight of the three components, operating with modest resource
requirements across all metrics.

7 RELATEDWORK
PerformanceOptimization ofHyperledger FabricHyperledger
Fabric’s performance bottlenecks are well-studied, with research
ranging from foundational analysis to architectural redesigns. Ini-
tial benchmarking work identified the commit phase as a primary
bottleneck [25], while other analyses framed Fabric’s concurrency
challenges as classic database problems [26]. Building on these in-
sights, targeted optimizations have improved performance within
the existing model. Gorenflo et al.’s influential "FastFabric" [27]
achieved 20,000 TPS through fixes like caching and removing re-
dundant checks. Other efforts have focused on increasing paral-
lelism by proposing hybrid execution models like XOX Fabric [29]
or by applying transactional dependency analysis [28]—a concept
that informs our own work. More recent research has proposed
fundamental architectural changes. Notably, Thakkar et al. intro-
duced "Sparse Peers" [30], where peers process only a subset of
transactions, demonstrating that rethinking the peer’s role is a
viable path to scalability. While these efforts offer valuable gains,

they are ultimately constrained by a focus on specific parts of the
system. Our research advances this trajectory by presenting a holis-
tic, end-to-end redesign. We propose a more granular decoupling
of the peer into microservices and introduce a fully redesigned,
scalable ordering service. This comprehensive approach allows our
framework to achieve a level of performance an order of magnitude
beyond what has been previously reported.

CBDC Architectures and Privacy-Preserving Payments
Prior work on Central Bank Digital Currencies (CBDCs) includes
early centralized models [31] and high-throughput processors like
the Hamilton Project [32], which, while performant, lack the full
decentralization and BFT-resilience of our approach. Addressing
the critical requirement of privacy, other systems like Platypus
[33] offer compliance features but lack parallel processing, while
other privacy-focused frameworks [34] have not been experimen-
tally benchmarked. Meanwhile, powerful privacy-enhancing tech-
nologies like Zerocoin [35] and Zcash [37] use computationally
expensive cryptography to ensure confidentiality. The significant
overhead of these methods makes them impractical for large-scale
systems without an exceptionally performant underlying platform.
Our work provides this foundation; by delivering high throughput,
our architecture serves as a critical enabler for integrating such
intensive privacy features, complementing systems focused on au-
ditable privacy [14] by providing the infrastructure they require.

8 CONCLUSION
To address the significant performance gap between existing DLTs
and the demands of a Central Bank Digital Currency, this paper
presented a fundamental re-architecture of Hyperledger Fabric.
We introduced a decoupled microservices peer with a parallelized
commit flow and Arma, a novel, scalable Byzantine Fault Toler-
ant ordering service. Our experimental evaluation confirms this
design achieves a peak throughput exceeding 200,000 transactions
per second—a two-orders-of-magnitude improvement over stan-
dard Fabric. This work demonstrates that permissioned DLTs can
be engineered to meet the rigorous demands of modern financial
systems, providing a scalable and resilient foundation for prac-
tical CBDC deployments and the future integration of advanced
privacy-enhancing technologies.

REFERENCES
[1] Wholesale central bank digital currency experiments with the banque de

france. https://www.banque-france.fr/sites/default/files/media/2021/11/09/
821338_rapport_mnbc-04.pdf.

[2] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. Utt: Decentralized ecash with accountable
privacy. Cryptology ePrint Archive, Paper 2022/452, 2022. https://eprint.iacr.
org/2022/452.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18. ACM, 2018.

[4] Yacov Manevich, Yoav Tock, and Hagar Meir. Hyperledger fab-
ric v3: Delivering smart byzantine fault tolerant consensus. https:
//www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-
smart-byzantine-fault-tolerant-consensus, 2024.

[5] Hyperledger fabric. https://github.com/hyperledger/fabric/releases/tag/v3.0.0,
2023.

13

https://www.banque-france.fr/sites/default/files/media/2021/11/09/821338_rapport_mnbc-04.pdf
https://www.banque-france.fr/sites/default/files/media/2021/11/09/821338_rapport_mnbc-04.pdf
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-fault-tolerant-consensus
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-fault-tolerant-consensus
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-fault-tolerant-consensus
https://github.com/hyperledger/fabric/releases/tag/v3.0.0

[6] Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. A byzantine fault-
tolerant consensus library for hyperledger fabric. In 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9, 2021.

[7] The SmartBFT library, open-source repository. https://github.com/hyperledger-
labs/SmartBFT, 2024.

[8] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the Third Symposium on Operating Systems Design and Implementation,
OSDI ’99, page 173–186, USA, 1999. USENIX Association.

[9] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. State
machine replication for the masses with BFT-SMART. In 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2014, Atlanta,
GA, USA, June 23-26, 2014, pages 355–362. IEEE Computer Society, 2014.

[10] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang. Bft in blockchains: From
protocols to use cases. ACM Comput. Surv., 54(10s), September 2022.

[11] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT
Consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems, EuroSys ’22. ACM, 2022.

[12] Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. A byzantine fault-
tolerant consensus library for hyperledger fabric. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021,
2021.

[13] Yacov Manevich, Hagar Meir, Kaoutar Elkhiyaoui, Yoav Tock, and May Buzaglo.
Arma: Byzantine fault tolerant consensus with horizontal scalability, 2024.

[14] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Björn Tackmann. Privacy-Preserving Auditable Token Payments
in a Permissioned Blockchain System. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, AFT ’20. ACM, 2020.

[15] https://github.com/hyperledger-labs/fabric-smart-client.
[16] https://github.com/hyperledger-labs/fabric-token-sdk.
[17] https://github.com/hyperledger/fabric.
[18] Yacov Manevich. Arma: Byzantine fault tolerant consensus with linear scalability.

ArXiv, abs/2312.13777, 2023.
[19] https://go.dev/doc/devel/release#go1.20.
[20] https://grpc.io.
[21] https://github.com/yugabyte/yugabyte-db.
[22] https://prometheus.io.
[23] https://www.ibm.com/cloud.
[24] Threshold signature scheme library. https://github.com/IBM/TSS/.
[25] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance bench-

marking and optimizing hyperledger fabric blockchain platform. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 264–276, 2018.

[26] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
Blurring the lines between blockchains and database systems: the case of hyper-
ledger fabric. In Proceedings of the 2019 International Conference on Management
of Data, SIGMOD ’19, page 105–122, New York, NY, USA, 2019. Association for
Computing Machinery.

[27] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fastfabric:
Scaling hyperledger fabric to 20,000 transactions per second. In 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pages 455–
463, 2019.

[28] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’20, page 543–557, New York, NY, USA, 2020.
Association for Computing Machinery.

[29] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. Xox fabric: A hy-
brid approach to blockchain transaction execution. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9, 2020.

[30] Parth Thakkar and Senthilnathan Natarajan. Scaling blockchains using pipelined
execution and sparse peers. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 489–502, New York, NY, USA, 2021. Association for
Computing Machinery.

[31] George Danezis and Sara Meklejohn. Centrally Banked Cryptocurrencies. In
Network and Distributed System Security Conference, 2016.

[32] James Lovejoy, Madars Virza, Cory Fields, Kevin Karwaski, Anders Brownworth,
and Neha Narula. Hamilton: A High-Performance transaction processor for
central bank digital currencies. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, 2023.

[33] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. Platypus: A cen-
tral bank digital currency with unlinkable transactions and privacy-preserving
regulation. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22. ACM, 2022.

[34] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. Peredi: Privacy-
enhanced, regulated and distributed central bank digital currencies. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’22. ACM, 2022.

[35] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security
and Privacy, 2013.

[36] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Wuille. Confidential assets. In Financial Cryptography and Data Security. Springer
Berlin Heidelberg, 2019.

[37] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized Anonymous Payments
from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014. IEEE Computer Society, 2014.

14

https://github.com/hyperledger-labs/SmartBFT
https://github.com/hyperledger-labs/SmartBFT
https://github.com/hyperledger-labs/fabric-smart-client
https://github.com/hyperledger-labs/fabric-token-sdk
https://github.com/hyperledger/fabric
https://go.dev/doc/devel/release#go1.20
https://grpc.io
https://github.com/yugabyte/yugabyte-db
https://prometheus.io
https://www.ibm.com/cloud
https://github.com/IBM/TSS/

	Abstract
	1 Introduction
	2 Hyperledger Fabric
	2.1 Background
	2.2 Assessing Hyperledger Fabric for CBDC Requirements
	2.3 Limitations for CBDC Use-Case

	3 Redesigning Hyperledger Fabric Peer Architecture
	3.1 Micro-Service Architecture
	3.2 Threshold-Based Signatures
	3.3 Parallel Validation and Pipelined Execution
	3.4 Consistency Proof
	3.5 Transaction Commit Flow
	3.6 Failure and Recovery

	4 A Scalable Oredering Service
	4.1 Arma Overview
	4.2 Routing
	4.3 Batching
	4.4 Consensus
	4.5 Assembly
	4.6 BFT Properties of Arma

	5 CBDC: A Tokenized UTXO Approach
	5.1 Transaction Flow

	6 Experimental Evaluation
	6.1 Transaction Execution
	6.2 Transaction Ordering
	6.3 Transaction Validation

	7 Related Work
	8 Conclusion
	References

