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Abstract. The current Multi-key Fully Homomorphic Encryption (MKFHE) needs to add
exponential noise in the distributed decryption phase to ensure the simulatability of partial
decryption. Such a large noise causes the ciphertext modulus of the scheme to increase expo-
nentially compared to the Single-key Fully Homomorphic Encryption (FHE), further reducing
the efficiency of the scheme and making the hardness problem on the lattice on which the
scheme relies have a sub-exponential approximation factor Õ(n · 2

√
nL) (which means that the

security of the scheme is reduced). To address this problem, this paper analyzes in detail the
noise in partial decryption of the MKFHE based on the LWE problem. It points out that this
part of the noise is composed of private key and the noise in initial ciphertext. Therefore, as long
as the encryption scheme is leak-resistant and the noise in partial decryption is independent of
the noise in the initial ciphertext, the semantic security of the ciphertext can be guaranteed. In
order to make the noise in the initial ciphertext independent of the noise in the partial decryp-
tion, this paper proves the smudging lemma on discrete Gaussian distribution and achieves this
goal by multiplying the initial ciphertext by a “dummy” ciphertext with a plaintext of 1. Based
on the above method, this paper removes the exponential noise in the distributed decryption
phase for the first time and reduces the ciphertext modulus of MKFHE from 2ω(λL log λ) to
2O(λ+L) as the same level as the FHE.

Keywords: Multi-key homomorphic encryption · Noise flooding · Leakage resilient cryptogra-
phy.

1 Introduction

To address the privacy concerns of multiple data providers, López-Alt et al. [18] introduced the con-
cept of MKFHE and developed the first MKFHE scheme based on the modified-NTRU problem [26] .
Conceptually, it enhances the functionality of FHE by allowing data providers to do encryption inde-
pendently from other parties and the key generation and data encryption are done locally. To obtain
the evaluated result, all parties are required to execute a round of threshold decryption protocol.

1.1 Motivation

A series of works [4, 6, 11, 20] have shown that MKFHE is an excellent base tool for building round
optimal MPC. Although MKFHE is conceptually appealing, its ciphertext modulus q = 2ω(λL log λ)

(Note: λ is the security parameter, L is the circuit depth) as in the schemes [6, 12, 13, 20, 23] is
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exponentially larger than the ciphertext modulus q = 2O(L) of FHE. Such a large ciphertext modulus
leads to inefficiencies in the scheme and makes the hardness problems on the lattice that the scheme
relies on easier to solve (which means the security of the scheme is reduced). The details are as follows.

Noise flooding technology results in a large modulus q. Unlike the FHE, the decryption of
MKFHE is a distributed process: after the homomorphic evaluation is completed, each participant
needs to use their own private key to “partially decrypt” the ciphertext, and then make the “partially
decrypted” result public. After all participants make the results public, these results are summed
up to finally get the evaluation result of plaintext. As far as we know, whether it is MKFHE or
Threshold Fully Homomorphic Encryption (Th-FHE), such as [5, 6, 11–13, 20, 23], in order to ensure
the simulatability of the “partially decrypted” result, it is necessary to add exponential noise to
it. This technology is generally called noise flooding. For example, let the noise accumulated after
homomorphic evaluation is e, the private key of participant i is si, to simulate the partial decryption
result pi of participant i, the noise e added to pi must satisfy ⟨e, si⟩ /e = negl(λ) (Note: negl(λ)
is a negligible function with respect to λ). To ensure the correctness of the decryption result, the
modulus q needs to satisfy q > 4e. Thus the flooding noise e results in a q that is exponentially
larger than the q in single-key FHE. Typically in [20], the flooding noise e = 2O(λL log λ)Bχ (defined
as esm = 2O(dλ log λ)Bχ in [20, page.755], d denote the multiplicative depth, which we denote as L in
our paper), and the ciphertext modulus q = 2ω(λL log λ)Bχ (in [20, page.755]). Such a large ciphertext
modulus q severely affects the efficiency of the scheme, effectively ruling out parameter choices with
dimension n < 32768. For example, under the parameter set (n = 32768, q = 2880) recommended by
the homomorphic encryption standardization document [1] targeting 128-bit LWE security, even a
single homomorphic multiplication is not feasible for q = 2ω(λL log λ)Bχ, since λL logλ = 896 > 880. In
a larger parameter setting, such as (n = 65536, q = 21792), two levels of homomorphic multiplication
are barely achievable with the 124-bit LWE securtiy (estimated by Lattice Estimator). In contrast,
for the same parameter set (n = 65536, q = 21792), the original GSW scheme can support up to
approximately 59 levels of homomorphic multiplication (see [16, page.87]. The decryption requires
q/B > 8(N + 1)L where N = (n+ 1) log q, in our test, we set B = 6σ with σ = 3.2). Notably, works
such as [11–13,20,23] and recent LWE-based MKFHE scheme [6] adopt the ciphertext expansion
and noise flooding techniques introduced in [20]. As a result, they require ciphertext moduli of the
same scale as in [20], rendering these MKFHE schemes largely impractical in terms of efficiency.
Furthermore, a large ciphertext modulus q implies that the associated GapSVPγ problem underlying
the hardness of LWE must be solved with a large approximation factor γ = Õ(n · 2λL log λ) thereby
weakening the underlying lattice assumption.

1.2 Our method

In order to remove the flooding noise introduced in the distributed decryption phase, we studied the
result of partial decryption of participant i. This result can be simply expressed as

pi = ⟨si, e⟩+m mod q,

where si is the private key of participant i, e is the noise after homomorphic evaluation, m is the
evaluation result, and q is the ciphertext modulus. The actual equation of pi is more complicated
and contains some other items, in order to briefly explain the general idea, we ignore it here. (For
the specific equation of pi, please refer to Section 4.4). Assuming there are k participants, in order to
obtain the homomorphic evaluation result m, the partial decryption {pi}i∈[k] of all participants needs
to be made public. However pi contains the inner product ⟨si, e⟩ of the private key si and noise e. If

https://lattice-estimator.readthedocs.io/en/latest/readme_link.html
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pi is made public directly, ⟨si, e⟩ will be leaked, and the security of the ciphertext cannot be proved
at this time. Therefore, the current approach as used in [5,11–13,20] is to add an flooding noise e to
pi to mask ⟨si, e⟩.

pi = e+ ⟨si, e⟩+m mod q.

As we mentioned in the Motivation, this will result in a large modulus q.

Our Observations. We note that if the encryption is leak-resistant, then even if ⟨si, e⟩ leaks part
of si, as long as the entropy of si is large enough, the security of the ciphertext can be proven. This
can be guaranteed by leakage resilient cryptography, such as the Lemma 1 states in [11]. Now there
is only e left to be handle. Note that e is the noise accumulated after the homomorphic evaluation,
which is determined by the noise in the initial ciphertext. Therefore, leaking e may leak the noise
in the initial ciphertext, and the security cannot be guaranteed at this time. We observed that the
ciphertext of the encryption scheme based on the LWE problem has an asymmetric property: that
is, when two ciphertexts are multiplied, the noise of the ciphertext on the left will mask the noise of
the ciphertext on the right. That is to say, the ciphertext obtained by multiplying two ciphertexts
contains almost no noise from the ciphertext on the right, but only the noise from the ciphertext on
the left. For example, let C1 and C2 be the two ciphertexts of the dual GSW scheme [11] and E1

and E2 be the noise of C1 and C2 respectively. Let Cmult = C1G−1(C2) be the ciphertext obtained by
multiplying C1 and C2, where G−1(C2) represents the bit decomposition of C2. The noise in Cmult is
E1G−1 (C2) + E2, actually we have

E1G−1 (C2) + E2 ≈s E1G−1 (C2) , (1)

where ≈s denotes that the left and right sides of the equation are statistically indistinguishable.
That is to say, E2 is “drown out” by E1G−1 (C2). Therefore, the ciphertext Cmult is independent of
the noise E2 in the ciphertext C2. Based on the above observations, we can preprocess the initial
ciphertext before homomorphic evaluation: we can left-multiply the initial ciphertext by a “dummy”
ciphertext (plaintext is 1), so that the ciphertext after multiplication is independent of the noise in
the initial ciphertext. Then using the ciphertext as input and performing homomorphic evaluation,
the noise e in the result of the homomorphic evaluation is also independent of the initial ciphertext.
Combined with the anti-leakage property of the encryption scheme, the simulatability of distributed
decryption can be guaranteed even without adding flooding noise. For a detailed discussion, please
refer to Section 4.4. To rigorously prove this asymmetric property of ciphertext multiplication, that
is, to prove Equation (1), we need to prove the smudging lemma over discrete Gaussian distribution.

Smudging lemma over discrete Gaussian. Before going into a detailed technical description, we
first give a general idea so that we can have an intuitive understanding. The discrete Gaussian version
of the smudging lemma is obtained from the observation of the continuous Gaussian distribution: when
n is large enough, the sum of n independent and identically distributed (iid) Gaussian distributions is
almost the same as the sum of n+ 1 idd Gaussian distributions. Let X, Y be Gaussian distributions
with variance nσ2 and (n + 1)σ2 in R respectively, with probability density function f(x) and g(x)

as shown in Figure 1.

f(x) =
1√
nσ

e−
πx2

nσ2 , g(x) =
1√

n+ 1σ
e
− πx2

(n+1)σ2 .
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Fig. 1: Probability density function of one-dimensional Gaussian distribution

Let the intersection point of f(x) and g(x) be t. It’s easy to see that t is greater than
√

n
2πσ. The

statistical distance between X and Y is

∆(X,Y ) =

∫
x>t

g(x)− f(x) dx <

∫
x>t

g(x) dx <

∫
x>
√

n
2πσ

g(x) dx = negl(n).

That is to say, if the noise e is Gaussian with variance σ2, we only need to sample e′ from a Gaussian
distribution with variance nσ2. Then e + e′ ≈s e′, and ||e/e′|| = O(n−1), while for the general
smudging lemma 1 must satisfy ||e/e′|| = negl(n).

The one-dimensional case is relatively simple. Now consider the two-dimensional case. Let Σ1,Σ2 =

Σ1+σ2I be two symmetric positive definite matrices on R2×2. The probability density functions f(x)
and g(x) of two-dimensional random variables X and Y on R2×2 respectively are

f(x) = 1√
det(Σ1)

e−πxΣ−1
1 xT

, g(x) = 1√
det(Σ2)

e−πxΣ−1
2 xT

,

as shown in Figure 2. At this time, the intersection of f(x) and g(x) is a space curve, as shown in the

(a) (b) (c) (d) (e)

Fig. 2: Probability density function of two-dimensional Gaussian distribution. (a) is the probability
density function of f(x), (b) is the probability density function of g(x), (c) is the intersection of f(x)
and g(x), (d) is the top view of intersection, (e) is the intersection and the projection to xy plane.

subfigure (c) of Figure 2. Projecting the space curve onto the xy plane, it is an ellipse, as shown in
the subfigure (e) of Figure 2 which is Eints

Eints :
1

π
ln
(

det(Σ1)

det(Σ2)

)
= x(Σ−12 − Σ−11 )xT .

Then the statistical distance between X and Y is

∆(X,Y ) =

∫
R2\Eints

g(x)− f(x) dx ≤
∫
R2\Eints

g(x) dx. (2)
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The upper bound on the right side of Equation (2) is not easy to find, because the integral region
and the integral function are inconsistent. The integral region is determined by the ellipse Eints whose
“shape” is Σ−12 − Σ−11 , while the integral function g(x) has the “shape” Σ2. The isoprobability lines
of g(x) is shown in the subfigure (a) in Figure 3 which has the “shape” Σ2.

(a) (b) (c) (d)

Fig. 3: The isoprobability lines and intersection plots. (a) is the isoprobability lines of g(x). (b) is the
top view of isoprobability lines of g(x), it is shaped like some ellipses of Σ2. (c) is the isoprobability
lines of g(x) and the intersection in one picture. (d) is the top view of (c).

For the integral of the area enclosed by the isoprobability line, there is a closed analytical expression
that can be applied, which is generally called the tail probability of the Gaussian distribution [8]

Pr[xΣ−12 x ≥ χ2
2(α)] =

∫
xΣ−1

2 xT≥χ2
2(α)

g(x) dx < 1− α, (3)

where χ2
2(α) is the quantile function of the chi-square distribution with 2 degrees of freedom and α

as the probability [25]. Equation (3) means that for the two-dimensional Gaussian random variable
Y (whose probability density function is g(x)), the probability that it falls outside the Σ2 ellipse
with radius χ2

2 (α) is less than 1 − α. Note that the upper bound of the statistical distance between
X and Y requires integrating g(x) outside the ellipse Eints. The tail probability of the Gaussian
distribution as shown in Equation (3) support integrating g(x) outside a region of the ellipse Σ2. Put
the isoprobability lines and intersection curve in one picture, as shown in the subfigure (c) of Figure
3. Projecting the subfigure (c) to the xy plane, we get Figure 4. The red ellipse is Eints which is the

Fig. 4: Projection of isoprobability lines and intersection curve on the xy plane. The red ellipse is
the projection of the intersection curve, and the black ellipses are the projection of the isoprobability
lines.

projection of the intersection curve to the xy plane. The two black ellipses are the projections of the
isoprobability lines on the xy plane. The larger one is just tangent to Eints, and the smaller one is just
inscribed to Eints. Since we only need to find the upper bound of the statistical distance ∆(X,Y ),
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we can find an ellipse Einsc with the “shape” of Σ2 inscribed in the ellipse Eints, as the smaller black
ellipse shown in Figure 4. At this time, we have the statistical distance

∆(X,Y ) =

∫
R2\Eints

g(x)− f(x) dx ≤
∫
R2\Eints

g(x) dx ≤
∫
R2\Einsc

g(x) dx.

Let the ellipse Einsc be
Einsc : xΣ−12 xT = k,

where k ∈ R is the radius to be determined. Then Einsc is exactly the smaller black ellipse in Figure
4. At this time, the radius k to be determined satisfies kλ1 = λ2, where λ1 is the maximum eigenvalue
of Σ2, and λ2 is the minimum eigenvalue of Σ2−Σ1. Further, according to the result of Equation (3),
the upper bound of the statistical distance can be determined.

Extending the above result to a multi-dimensional discrete Gaussian random variable requires
extending Banaszczyk’s spherical theorem to the ellipsoid. Different from the integral of Gaussian
function, the discrete Gaussian summation on Zn is not easy. As a compromise, we use continuous
Gaussian integrals instead. The main idea is still the same, first find the intersection equation, which
forms an ellipsoid in this case, and then the statistical distance. Informally, we have the following
result for discrete Gaussian random variables. See Section 3. for more formal result.

Lemma (Informal). Let n be an integer, DZn,σ be the discrete Gaussian distribution with variance
σ2 on Zn, U be the uniform distribution over {0, 1}n×n. Let e1, e2 ← DZn,σ, M← U , the distribution
of e1M be X and the distribution of e1M + e2 be Y . It holds that

∆(X,Y ) < 2−n.

1.3 Our Contributions

As we elaborated in the Motivation section, the use of noise flooding techniques in multi-key homo-
morphic encryption schemes leads to a ciphertext modulus that is exponentially larger than that of
traditional single-key schemes, significantly reducing efficiency. To address this, we prove a smudging
lemma over the discrete Gaussian distribution and reveal an important asymmetry in the multi-
plication of ciphertexts under the DGSW encryption scheme–specifically, when two ciphertexts are
multiplied, the noise from the right ciphertext is masked by the left one. This key observation en-
ables us to eliminate the need for noise flooding in DGSW-based multi-key homomorphic encryption,
thereby reducing the ciphertext modulus to the same order of magnitude as that in conventional
single-key schemes.

We removed the flooding noise introduced in the distributed decryption phase and for the first time
reduced the ciphertext modulus of the MKFHE from q = 2ω(λL log λ) to q = 2O(λ+L). Accordingly,
the approximation factor γ of the GapSVPγ problem is reduced from Õ(n · 2λL log λ) to Õ(n · 2λ+L).
In addition, we constructed a key conversion method in the initialization phase of the scheme. The
ciphertext generated by the converted key directly supports homomorphic evaluations, thereby re-
moving the complex ciphertext expansion operations in above schemes. Based on the above results,
we constructed a MKFHE based on the LWE problem under the plain model. We give a comparison
with schemes [5, 6, 11,21,23] in Table 1.
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Table 1: Scheme complexity comparison
Scheme Module q Interaction Model

MKFHE [23] 2O(λL)Bχ – CRS
MKFHE [11] 2O(λL)Bχ 2 rounds –
MKFHE [6] 2O(λL)Bχ 2 rounds CRS
Th-FHE [5] 2O(λL)Bχ 1 rounds CRS

Th-FHE [21] poly(λ)Bχ 1 rounds Trusted Third Party
Our scheme 2O(λ+L)Bχ 2 rounds –

The “Module q” column denotes the module base; λ denotes the security parameter, Bχ denotes the initial LWE noise, L
denotes the depth of the circuit. The “Interaction” column denotes the round of interaction introduced in the initialization
phase. The “Model” column indicates the computational model adopted. CRS stands for “Common Random String”, which is
generated by a trusted third party and distributed to all participants for use during key initialization..

1.4 Related work of MKFHE based on LWE

As suggested, we have re-investigated recent multi-key fully homomorphic encryption (MKFHE)
schemes from the past three years, restricting our survey to those based on the Learning with Errors
(LWE) assumption to ensure a fair comparison. The work most closely related to ours is Maliciously
Circuit-Private Multi-Key FHE and MPC Based on LWE [6], as both approaches are built upon [11]
framework. However, the key difference lies in the focus: their work aims to construct an MKFHE
scheme secure against malicious adversaries, whereas our emphasis is different. Methodologically, we
exploit the asymmetry and leakage resilience properties of DGSW ciphertext multiplication, which
allows us to avoid adding exponential-sized noise during distributed decryption. In contrast, their
scheme still relies on the noise flooding technique from [20], resulting in ciphertext module of size
2ω(λL log λ).

The work Low Communication Threshold Fully Homomorphic Encryption [21] shares the same
goal as ours—minimizing the noise introduced during distributed decryption. However, the approach
it adopts is fundamentally different from ours. Their method involves introducing a trusted third
party to apply a standard noise flooding technique to the ciphertext after homomorphic evaluation,
followed by ciphertext compression. As a result, the modulus of the compressed ciphertext remains
comparable to that of standard FHE schemes, namely q = poly(λ). Since the noise is compressed along
with the ciphertext, only a poly(λ)-sized noise needs to be added during partial decryption. A critical
limitation of this approach is that the noise flooding must be performed by a trusted third party;
otherwise, the noise distribution after compression may deviate from the desired discrete Gaussian.
We have included a comparison of these two schemes in Table 1. In addition, we have also reviewed
literature with methodologies similar to ours; please refer to the following subsection for details.

1.5 Related work on masking noise in ciphertext

Regarding the topic of “the use of the multiplicative properties of GSW ciphertexts to mask original
ciphertext noise” after conducting an in-depth literature review, we have not found any relevant lit-
erature. However, in terms of the objective of masking noise in ciphertexts, we have identified several
papers with similar approaches, such as Fhe circuit privacy almost for free [9], Sanitization of fhe
ciphertexts. [15] and Circuit privacy for FHEW/TFHE-style fully homomorphic encryption in prac-
tice [17]. The work [9] is on achieving circuit privacy in fully homomorphic encryption (FHE), since
the noise in homomorphically evaluated ciphertexts may leak information about the computation
circuit, the work introduces a method to randomize intermediate computation results. The approach
can be summarized as follows: first, it applies the efficiently computable function G−1rand(·) (as defined
in [19]) to convert the homomorphically evaluated ciphertext into a discrete Gaussian sample. Then
it performs an inner product (via ciphertext multiplication) with fresh encryption noise. This inner
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product term itself follows a discrete Gaussian distribution. To ensure that this term remains indepen-
dent of the original noise in the evaluated ciphertext, an additional large noise term y is introduced.
The key innovation of this work lies in its use of G−1rand(·) to obfuscate the noise in homomorphically
computed ciphertexts by transforming it into a discrete Gaussian sample. Once in this form, the
noise becomes easier to manage—requiring only a moderately large noise injection (unlike traditional
noise flooding techniques). Unlike the problem addressed in their work, our scheme requires analyz-
ing whether the new noise term (a linear combination of the left ciphertext’s noise plus the right
ciphertext’s noise) remains statistically independent of the right ciphertext’s original noise. Crucially,
since the new noise term is derived from a linear combination of the original noise vectors, the result-
ing multidimensional discrete Gaussian variables are not independent (their covariance is non-zero).
Consequently, the noise distribution deviates from a spherical Gaussian, leading to fundamentally
different proof techniques. For a detailed comparison, refer to their proof and our Lemma 3.

Similarly, with the goal of eliminating circuit information from ciphertext noise, the work [15]
proposes an iterative bootstrapping-based sanitization process. The core idea involves repeatedly
re-encrypting and homomorphically decrypting the ciphertext (i.e., bootstrapping) to progressively
reduce the statistical discrepancy between the evaluated ciphertext and freshly encrypted cipher-
texts. The process further enhances security by injecting small noise (“micro-flooding”) after each
bootstrapping operation, progressively obscuring the ciphertext’s distribution. Through multiple it-
erations (e.g., λ times), the statistical distance between ciphertexts decreases exponentially (becoming
< 2λ), ultimately achieving a state where the processed ciphertext becomes statistically indistinguish-
able from a fresh ciphertext.

The work [17] builds upon and improves [9]. While the latter proposed ciphertext randomization
for LWE-based FHE schemes, the former extends this result to the RLWE setting and further opti-
mizes the ciphertext sanitization process from [15], achieving the desired privacy with just a single
bootstrapping operation.

To summarize the key differences: in addressing the problem of eliminating information leakage
from the noise (where we focus on initial ciphertext noise, as opposed to circuit privacy’s concern
with circuit information), these works employ fundamentally different approaches from ours. Their
techniques include: discrete Gaussian sampling (where the efficient computable function G−1rand(·)
from [19] and [3] Claim 3.1 essentially performs discrete Gaussian sampling), and bootstrapping-
based methods.

Roadmap. In Section 2, we define some symbols and list some commonly used definitions and our
extended results on lattice. In Section 3, we proved the discrete Gaussian version of smudging lemma.
In Section 4, we constructed the MKFHE scheme based on LWE in the plain model. In Section 5 we
prove the security of our scheme. In Section 6, we present the performance and complexity analysis
of our scheme, and in Section 7, we provide a summary and outlook for future work.

2 Preliminaries

2.1 Notation

Let λ, n, and q be the security parameter, LWE dimension, and modulus base respectively. Let negl(λ)
be a negligible function parameterized by λ. Lowercase bold letters such as v, unless otherwise spec-
ified, represent vectors. Vectors are typically represented as row vectors, while matrices are denoted
by uppercase bold letters such as M. [k] denotes the set of integers {1, . . . , k}. If X is a distribution,
then a ← X denotes that the value a is chosen according to the distribution X. If X is a finite
set, then a ← X denotes that the value of a is uniformly sampled from X. For two distributions
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X and Y , let ∆(X,Y ) denote the statistical distance between X and Y , X ≈s Y to represent that
X and Y are statistically indistinguishable, while X ≈c Y represents that they are computationally
indistinguishable.

To decompose elements in Zq into binary, we review the Gadget matrix [3, 19] here. Let G−1(·)
be the computable function that for any M ∈ Zm×n

q , it holds that G−1(M) ∈ {0, 1}ml×n, where
l = ⌈log q⌉. Let g = (1, 2, . . . , 2l−1) ∈ Zl

q, G = Im ⊗ g ∈ Zm×ml
q , it satisfies GG−1(M) = M.

2.2 Some background in probability theory

Definition 1. A distribution ensemble {Dn}n∈[N ] supported over integer, is called B-bounded if

Pre←Dn
[ ||e|| > B ] = negl(n).

Lemma 1 (Smudging lemma [5]). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let
e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be chosen uniformly, Then the distribution of e2
is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

Average Conditional Min-Entropy(in [10]). Let X be a random-variable supported on a finite set
X , and let Z be a random variable supported on a finite set Z. The average-conditional min-entropy
H̃∞(X|Z) of X given Z is defined as

H̃∞(X|Z) = − log(Ez

[
max
x∈X

Pr[X = x|Z = z]

]
).

2.3 Gaussian distribution on Lattice

Definition 2. Let ρσ(x) = exp(−π||x/σ||2) be a Gaussian function scaled by a factor of σ > 0. Let
Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,σ with support Λ + c is
defined as

DΛ+c,σ(x) =
ρσ(x)

ρσ(Λ + c) .

We note that ρσ(x) is just a special case of ρΣ(x), where Σ = σ2I. Therefore, some results on σ2I
should be naturally extended to Σ (symmetric positive definite).

Definition 3. Let ρΣ(x) = e−πxΣ−1xT be a Gaussian function with covariance matrix Σ (symmetric
positive definite). Let Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,Σ

with support Λ + c is defined as
DΛ+c,Σ(x) =

ρΣ(x)
ρΣ(Λ + c) .

Obviously, the above definition does satisfy the definition of a probability distribution. For a positive
definite matrix Σ, when ||x|| → ∞, ρΣ(x) converges.

Theorem 1 (Banaszczyk’s spherical theorem [7]). Let B = {x ∈ Rm : ||x|| ≤ 1} be the closed ball of
radius 1 in Rn, for any lattice Λ ∈ Rm, parameter σ > 0 and u ≥ 1/

√
2π it holds that

ρσ(Λ\uσ
√
mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√
2πeu · e−πu2

).

Next we introduce the ellipsoidal version of Banaszczyk’s spherical theorem, which will be used
in our proof of the smudging lemma on discrete Gaussian distribution. We give the proofs of the
theorem and lemma in Appendix A.1 A.2.
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Poisson’s summation formula. We recall that the Fourier transform of ρΣ(x) is ρ̂Σ(k) = det(Σ)ρΣ−1(k).
The Poisson’s summation formula of ρΣ(x) on a full-rank lattice Λ is

ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗).

Lemma 2. For positive definite matrix Σ1 and Σ2, if Σ1Σ2 − Σ2 is positive definite, then it holds
that

ρΣ1Σ2
(Λ) ≤ det(Σ1)ρΣ2

(Λ).

Theorem 2. For any lattice Λ ∈ Rm, let Σ ∈ Rm×m be a positive definite matrix, E(k) = {x ∈ Rm :

xΣ−1xT ≤ k} be a ellipsoid in Rn with radius k > 0, then it holds that

ρΣ(Λ\E(k)) ≤ 2−2k+m · ρΣ(Λ).

Definition 4 (Decision-LWE in [24]). Let λ be security parameter, for parameters n = n(λ) be an
integer dimension, q = q(λ) > 2, m = O(n log q) be an integer, and a distribution χ = χ(λ) over Z,
the LWEn,m,q,χ problem is to distinguish the following distribution

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A← Zm×n
q , z← Zn

q .

– D1: the jointly distribution (A, b) ∈ (Zm×n
q ×Zn

q ) is computed by A← Zm×n
q , b = sA+ e, where

s← Zn
q , e← χm.

As shown in Regev [22, 24], the LWEn,m,q,χ problem with χ being discrete Gaussian distribution
with parameter σ = αq ≥ 2

√
n is at least as hard as approximating the shortest independent vector

problem (GapSVPγ) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. It leads to
the assumption D0 ≈c D1.

2.4 Dual-GSW (DGSW) Encryption scheme

The Dual-GSW encryption scheme defined in [11] contains the four algorithms Init(·), KeyGen(·),
Enc(·), Dec(·). It is noted that in [11], the ciphertext modulus is set as q = poly(N) · nω(1), where
N is the number of parties and n is the LWE dimension. This modulus is essentially on the same
scale as q = 2ω(λL log λ)Bχ, due to the adoption of ciphertext expansion and noise flooding techniques
originally proposed in [20] (see [11, page 657, 658] for reference). In contrast, our scheme does not
rely on either of these two techniques. As a result, although our MKFHE construction is also based
on the Dual-GSW framework, the ciphertext modulus in our scheme can be set as q = 2O(λ+L).

– pp← Init(1λ, 1L): For a given security parameter λ, circuit depth L, choose an appropriate lattice
dimension n = n(λ,L), m = n log q + ω(λ). Let χ be a discrete Gaussian distribution over Z
bounded by Bχ. Let χ′ be a uniform distribution over [−2λBχ, 2

λBχ]. Let q = 2O(λ+L)Bχ be the
ciphertext modulus. Output pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← KeyGen(pp): Input the initial parameters pp. Let A ← Z(m−1)×n
q , s ← {0, 1}m−1,

b = sA mod q. Output (A, b) as the public key pk, t = (−s, 1) as the private key sk.

– C← Enc(pk, u): Input public key pk and plaintext u ∈ {0, 1}, choose a random matrix R← Zn×w
q ,

where w = ml, l = ⌈log q⌉ and an error matrix
(

E
e

)
where E← χ(m−1)×w, e← χ′

w Output the

ciphertext

C =

(
A
b

)
R +

(
E
e

)
+ uG,

where G is a gadget Matrix.
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– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈ Zm
q , v = ⟨tC,G−1(wT )⟩,

output u = ⌈ v
q/2⌉.

Brakerski et al. proved in [11] that DGSW is leak-resistant. Informally, even if a part of the private
key of the DGSW scheme is leaked, the DGSW ciphertext remains semantically secure.

3 Smudging lemma over discrete Gaussian

In this section we will prove two results regarding discrete Gaussian on the integer lattice Zn. Simply
put, when n is large enough, the distribution of the sum of n iid discrete Gaussian is statistically
indistinguishable from the distribution of the sum of n + 1 iid discrete Gaussian. This is similar to
the continuous Gaussian distribution.

Lemma 3. Let n > 0 be an integer, DZn,σ be the discrete gaussian distribution over Zn with variance
σ2, U be the uniform distribution over {0, 1}n×n. Let e1 ← DZn,σ, e2 ← DZn,σ, M ← U . Let Σ and
Σ′ are the covariance matrix of e1M and e1M + e2 respectively. Let δ ∈ R and

ρΣ′(Zn)

ρΣ(Zn)
= δ

√
det(Σ′)
det(Σ) ,

if δ > e−2+
6π

n+1 , we have
∆(e1M, e1M + e2) < 2−n.

Proof. We can think of e1M as an n-dimensional random variable x = (x1, x2, · · · , xn) over Zn, where
{xi =

∑n
j=1 ejzj,i}i∈[n], ej is the j-th element of e1, zj,i is the element in row j and column i of M.

According to the properties of covariance, we have the covariance matrix Σ of x

Σ =



1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2

 , Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if i ̸= j

In the same way, we can also regard e1M+ e2 as a n-dimensional random variable x′ = (x1 + e′1, x2 +

e′2, · · · , xn + e′n), where e′i is the i-th element of e2. Let Σ′ be the covariance matrix of x′, by the
properties of covariance, we have Σ′ = Σ + σ2I. Thus, we have x ∼ DZn,Σ(x), and x′ ∼ DZn,Σ′(x).
The probability density function of x and x′ are f(x) and g(x) respectively

f(x) = ρΣ(x)
ρΣ(Zn)

=
e−πxΣ−1xT

ρΣ(Zn)
, g(x) = ρΣ′(x)

ρΣ′(Zn)
=

e−πxΣ′−1xT

ρΣ′(Zn)
.

At this time, the intersection equation of f(x) and g(x) is

eπx(Σ−1−Σ′−1)xT

=
ρΣ′(Zn)

ρΣ(Zn)
.

Because Σ′ = Σ+ σ2I, we have Σ′
−1

= Σ−1− (Σ+ 1
σ2Σ

2)−1 by the Woodbury matrix identity or the
Hua’s identity. Thus, we have

eπx(Σ+ 1
σ2 Σ2)−1xT

=
ρΣ′(Zn)

ρΣ(Zn)
,



12 Xiaokang Dai Wenyuan WuB, and Yong Feng

take the logarithm, we have
x(Σ +

1

σ2
Σ2)−1xT =

1

π
ln ρΣ′(Zn)

ρΣ(Zn)
.

Let B = Σ + 1
σ2Σ

2, a = 1
π ln ρΣ′ (Zn)

ρΣ(Zn) , we have the ellipsoid equation Eints of the intersection of f(x)
and g(x) is

Eints : x(aB)−1xT = 1.

When x is on the ellipsoid Eints, we have x(aB)−1xT = 1 and f(x) = g(x), when x is outside Eints,
we have x(aB)−1xT > 1 and f(x) < g(x), when x is inside the Eints, we have x(aB)−1xT < 1 and
f(x) > g(x). By the definition of Statistical distance and the above result, we have

∆(x, x′) = 1

2

∑
x∈Zn

|g(x)− f(x)| = 1

2

 ∑
x∈Eints

(f(x)− g(x)) +
∑

x∈Zn\Eints

(g(x)− f(x))

 , (4)

also because ∑
x∈Zn

f(x) =
∑

x∈Eints

f(x) +
∑

x∈Zn\Eints

f(x) = 1. (5)

∑
x∈Zn

g(x) =
∑

x∈Eints

g(x) +
∑

x∈Zn\Eints

g(x) = 1. (6)

Let (5) - (6), we have ∑
x∈Eints

f(x)− g(x) =
∑

x∈Zn\Eints

g(x)− f(x). (7)

Substituting Equation (7) into Equation (4), we have

∆(x, x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x).

Because the “shapes” of Eints and g(x) are inconsistent (The “shape” of Eints is B, and the “shape”
of g(x) is Σ′), we need to find an ellipsoid with the “shape” of Σ′ inscribed in Eints. Let k > 0 and

kxT = Σ′(aB)−1xT .

When k takes the minimum eigenvalue of Σ′(aB)−1, we have kxΣ′−1xT = 1 is inscribed in Eints. The
minimum eigenvalue of Σ′B−1 and the maximum eigenvalue of BΣ′

−1 are exactly reciprocals of each
other, which is n(n+1)

4 . (note that BΣ′
−1

= 1
σ2Σ). Therefore, the ellipsoid Einsc that is inscribed in

Eints is
Einsc : xΣ′−1xT =

an(n+ 1)

4
.

Thus, we have

∆(x, x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x) <
∑

x∈Zn\Einsc

g(x).

By Theorem 2 and the assumption δ > e−2+
6π

n+1 , we have∑
x∈Zn\Einsc

g(x) < 2−
an(n+1)

4 +n < 2−n.

⊓⊔
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Remark. Note that
∫
Rn ρΣ(x) dx =

√
det(Σ). In other words, when the ratio of the discrete Gaussian

sum and the ratio of the continuous Gaussian integral are not significantly different (up to δ), Lemma
3 applies. We cannot accurately obtain the value of the discrete Gaussian sum ρΣ (Zn), so we can only
use the integral of the Gaussian function

∫
Rn ρΣ(x) dx =

√
det(Σ) instead. This is our motivation

for introducing δ. Numerical experiments show that the difference between the two is not significant,
and the ratio is close to 1. Therefore δ > e−2+

6π
n+1 should be considered a conservative estimate. The

above results can be easily extended to discrete Gaussian matrices.

Lemma 4. Let m > 0, n > 0 be two integers, DZm×n,σ be the discrete gaussian distribution over Zm×n

with variance σ2, U be the uniform distribution over {0, 1}n×n. Let E1 ← DZm×n,σ, E2 ← DZm×n,σ,
M← U . Let Σ and Σ′ are the covariance matrix of E1M and E1M + E2 respectively. Let δ ∈ R and

ρΣ′(Zmn)

ρΣ(Zmn)
= δ

√
det(Σ′)
det(Σ) ,

if δ > e−2+
2π(m+1)

n+1 + 2
mn , we have

∆(E1M,E1M + E2) < 2−n.

Proof. The proof of Lemma 4 is exactly the same as the proof of Lemma 3, except that the covariance
matrices of E1M and e1M are different. Also, we can think of E1M as an mn-dimensional random
variable x = (x1, x2, · · · , xmn) over Zmn, where {xi =

∑n
j=1 ec,jzj,d}i∈[mn], c = ⌈ in⌉, d = i mod n,

ec,j is the element in row c and column j of E1, zj,d is the element in row j and column d of M. Let
T ∈ Rn×n be the symmetric matrix

T =



1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2


The covariance matrix Σ ∈ Rmn×mn of the random variable x is

Σ =


T

T
· · ·

T

 , Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if |i− j| < n, i ̸= j

0, if |i− j| ≥ n, i ̸= j

The following proof is the same as Lemma 3, we omit it here. ⊓⊔

4 A MKFHE scheme based on DGSW in the plain model without noise
flooding

Our scheme is based on the DGSW scheme. In this section, we first introduce a new key transform
algorithm called KeyLifting(·), then describe the entire scheme.

4.1 The key lifting Algorithm

Our KeyLifting(·) algorithm is inspired by the concept of key homomorphic properties introduced
in [5]. In that work, the authors observed that LWE samples generated under different secret keys
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exhibit additive properties. In contrast, our setting involves public keys of the form syndrome b = sA
mod q, rather than standard LWE samples. Moreover, while [5] assumes a common public matrix A
generated by a trusted third party and shared among all participants, in our construction, each user
independently generates their own public matrix Ai.

The KeyLifting(·) algorithm is a two-round interactive process defined in Algorithm 1. Without
loss of generality, assuming that there are k participants in total, the input of the algorithm is the
DGSW key pair {pki, ski}i∈[k] of all participants. After two rounds of interaction, the outputs is
hki = (Ai, bi) called the hybrid key.

Algorithm 1: KeyLifting(·) converts DGSW key to hybrid key
Input: DGSW key pair {pki, ski}i∈[k].
Output: hybrid key hki = (Ai, bi).
1: First round: participant i broadcasts pki and receives {pkj}j∈[k]\i from the channel.
2: Second round: i generates and broadcasts {bi,j = siAj}j∈[k]\i and receives {bj,i = sjAi}j∈[k]\i from

the channel. Let bi =
∑k

j=1 bj,i

Return hki = (Ai, bi).

The semi-malicious adversary may generate matrix {Aj}j ̸=i with trapdoor, then si is leaked. More
specifically, in the KeyLifting(·) phase, {bi,j = siAj}j∈[k],j ̸=i will lose si at most (k − 1)n log q bits.
Therefore, as long as the min-entropy of s1 after leakage remains greater than log q + 2λ, that is, if
the key length m satisfies m− (k − 1)n log q > log q + 2λ, then the ciphertext remains computation-
ally indistinguishable from uniform. This is precisely the property of leakage-resilient encryption, as
described in the Security subsection on page 655 of [11], or refer to the detailed security proof of our
scheme in Section 5 of this paper. The hybrid key of each participant is different, but the ciphertext
generated by hybrid key directly supports homomorphic evaluation. As the Claim 1 states

Claim 1. Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid key hki, hkj
respectively

Ci =

(
Ai

bi

)
Ri + Ei + uiG, Cj =

(
Aj

bj

)
Rj + Ej + ujG,

it holds that(omit small error)

t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G,

t̄(Ci + Cj) ≈ (ui + uj)t̄G, t̄CiG−1(Cj) ≈ (uiuj)t̄G.

Proof. According to the KeyLifting(·) algorithm, it holds that

t̄Ci =

(
k∑

i=1

−si, 1
)[(

Ai∑k
j=1 bj,i

)
+ Ei + uiG

]
= t̄Ei + uit̄G ≈ uit̄G.

Similarly, t̄Cj ≈ uj t̄G, t̄(Ci + Cj) ≈ (ui + uj)t̄G, and t̄CiG−1(Cj) ≈ uit̄GG−1(Cj) ≈ uit̄Cj ≈
(uiuj)t̄G. ⊓⊔

Therefore, although Ci and Cj are generated by different hybrid keys, they correspond to the same
decryption key t̄ and support homomorphic evaluation without any additional modifications.
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4.2 Our scheme

Our scheme is similar to those proposed in [11] and [6], as all are based on the DGSW frame-
work. However, unlike theirs, we eliminate the need for complex ciphertext expansion operations by
introducing the keylifting algorithm to enable homomorphic evaluation. Moreover, our distributed
decryption avoids the use of flooding noise. The scheme includes the following six algorithms Init(·),
Gen(·), KeyLifting(·), Enc(·), Eval(·), LocalDec(·), FinalDec(·).

– pp ← Init(1λ, 1L, 1W , k): Let λ be security parameter, L circuit depth, W circuit output length,
lattice dimension n = n(λ,L), noise distribution χ and χ′ over Z bounded by Bχ and 2λBχ

respectively, modulus q = 2O(λ+L)Bχ, number of partis k, m = (kn+W + 1) log q + 2λ, suitable
choosing above parameters to make LWEn,m,q,Bχ

is infeasible. Output the initial parameters
pp = (k, n,m, q, χ, χ′).

– (pki, ski) ← Gen(pp): Input the initial parameters pp. Let Ai ← Z(m−1)×n
q , si ← 0, 1m−1, bi,i =

siAi mod q, output (Ai, bi,i) as the DGSW public key pki, ti = (−si, 1) as the DGSW private
key ski of party i.

– hki ← KeyLifting({pki, ski}i∈[k]): All parties are engaged in the Algorithm 1, output the hybrid
key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui ∈ {0, 1}, output ciphertext

Ci =

(
Ai

bi

)
R +

(
E
e

)
+ uiG,

where R← Zn×ml
q , l = ⌈log q⌉, E← χ(m−1)×ml, e← χ′ml, G = Im ⊗ g is a gadget matrix.

– CC ← Eval(S, C): Input the ciphertext set S = {Ci}i∈[N ] which are encrypted by the hybrid keys
{hki}i∈[k], the circuit C with input length N , depth L, output the evaluated ciphertext CC .

– pi ← LocalDec(CC , ski): Input the ciphertext CC and the private key ski of i, let CC =

(
Cup

clow

)
,

where Cup is the first m − 1 rows of CC and clow is last row of CC . Party i computes pi =

−siCupG−1(wT ), where w = (0, . . . , 0, ⌊q/2⌉) ∈ Zm
q , then broadcast pi.

– udec ← FinalDec({pi}i∈[k]): After receiving {pi}i∈[k], let p =
∑k

i=1 pi + clowG−1(wT ), output
udec =

⌊
p

q/2

⌉
.

4.3 Correctness of distributed decryption

This section verifies the correctness of distributed decryption and gives an expression for pi (based
on the simulated perspective of other k − 1 parties), which is used to analyze the noise components
in pi. It is easy to see that for the evaluated ciphertext CC , decryption with t̄ always satisfies the
following equation

t̄CC = eC + uC t̄G, (8)

where eC is the noise accumulated after homomorphic evaluation, and uC is the result of homomorphic
evaluation. After further multiplication by G−1(wT ), we have

t̄CCG−1(wT ) = eCG−1(wT ) + uC

⌊q
2

⌉
, (9)

According to the definition of p, it is obvious that t̄CCG−1(wT ) = p. The decryption result udec can
be rewritten as

udec =

⌊
p

q/2

⌉
=

⌊
eCG−1(wT ) + uC⌊ q

2
⌉

q/2

⌉
=

⌊
eCG−1(wT ) + eround + uC

q
2

q/2

⌉
=

⌊
eCG−1(wT ) + eround

q/2
+ uC

⌉
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where |eround| < 1/2, as long as |eCG−1(wT ) + eround| < q/4, we have the decryption result udec equal
to the evaluation result uC .

Now that we know the decryption result udec, let’s look at the expression of pi, substituting
udec = uC and t̄CCG−1(wT ) = p into equation (9) we have p = eCG−1(wT ) + udec

⌊
q
2

⌉
. From the

perspective of the other k − 1 parties, pi can be rewritten as

pi = udec
⌊q
2

⌉
+ eCG−1(wT )− clowG−1(wT )−

k∑
j ̸=i

pj (10)

Note that {pi}i∈[k] are public and clow, G−1(wT ) are known, anyone can compute eCG−1(wT ) after
obtaining the decryption result udec. The eC is the noise accumulated after the homomorphic evalua-
tion, which is related to the noise in the initial ciphertext and the circuit C. In fact, it also contains the
private key t̄. We will introduce the composition of eC in detail in the following subsection. Therefore,
for security reasons, the traditional approach is to add a large noise to cover up eC before publishing
pi.

4.4 Decryption without noise flooding

To illustrate how our approach works, let us first review the noise flooding technique. We note that
introducing noise flooding in the partial decryption phase is essential to guarantee the semantic
security of initial ciphertext, and noise flooding achieves this by masking the private key and the
noise in the initial ciphertext in the partial decryption. For partial decryption to be simulatable,
the magnitude of the noise introduced needs to be exponentially larger than the noise after the
homomorphic evaluation.

By noise flooding (in [6, 11–13, 20]). Let C be the Boolean circuit with input length N , depth
L, let S = {Ci}i∈[N ] be the initial ciphertext set encrypted by hybrid key {hki}i∈[k]. Let t̄ be the
decryption key defined in Claim 1. Taking S as input, homomorphically evaluation boolean circuit
on C obtain ciphertext CC . It holds that t̄CC = eC + uC t̄G. Let Cup is the first m− 1 row of CC and
clow is the last row of CC . By the parameter settings in [20], Bsmdg = 2λL log λBχ, q = 2ω(λL log λ)Bχ,
the flooding noise which introduced in LocalDec(·) is ei ← [−Bsmdg, Bsmdg]. The partial decryption
result of party i would be pi = −siCupG−1(wT ) + ei. At this point, from the perspective of the other
k − 1 parties, pi can be rewritten as

pi = udec
⌊q
2

⌉
+ eCG−1(wT ) + ei − clowG−1(wT )−

k∑
j ̸=i

pj

Because Bsmdg = 2λL log λBχ, q = 2ω(λL log λ)Bχ, it holds that |eCG−1(wT )/ei| = negl(λ), further
eCG−1(wT ) + ei ≈s ei. Therefore, the noise eC in pi is drowned out by ei.

Our approach (without noise flooding). In this subsection, we first use Lemma 4 to prove
the asymmetry of ciphertext multiplication. Thus, by multiplying the initial ciphertext set S =

{Ci}i∈[N ] by a dummy ciphertext whose plaintext is 1, the noise in the ciphertext after multiplication
is independent of the noise in S. Secondly, we point out that the noise obtained by decrypting the
ciphertext after homomorphic evaluation is actually composed of the noise in the dummy ciphertext
and the private key. Finally, combined with the leakage-resilient property of our scheme, the partial
decryption result of party i can be simulated even without the flooding noise.
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Let Ci be an initial ciphertext in S and Cdummy be the dummy ciphertext with plaintext 1, we
have

Cdummy =

(
A
b

)
R + E + G, Ci =

(
A
b

)
Ri + Ei + uiG.

After left-multiplying Ci by Cdummy, let C′i = CdummyG−1(Ci) = Πi +Ψi + uiG where

Πi =

(
A
b

)
RG−1(Ci) +

(
A
b

)
Ri, Ψi = EG−1(Ci) + Ei.

It holds that t̄Πi = 0, and by Lemma 4, we have Ψi ≈s EG−1(Ci). Thus C′i is independent of
the noise Ei in the initial ciphertext Ci. Let S′ = {C′i}i∈[N ], then the ciphertext C′C obtained by
homomorphically evaluation on S′ and boolean circuit C is independent of the initial noise {Ei}i∈[N ]

in {Ci}i∈[N ].
Next, we analyze what information the noise obtained after decrypting C′C contains. Similar to

the ciphertext of the DGSW scheme, the ciphertext C′C can be expressed as C′C = Π + ΨC + uCG
where Π satisfying t̄Π = 0, ΨC is the noise depending on {Ψi}i∈[N ] and boolean circuits C. uC is the
result depending on the plaintext set {ui}i∈[N ] and C. Decrypting C′C we have t̄C′C = t̄ΨC+uC t̄G. Let
e′C = t̄ΨC , we call e′C the noise obtained by decrypting C′C . Obviously, e′C is composed of the private
key t̄ and {Ψi}i∈[N ], and is independent of the initial noise {Ei}i∈[N ] in the initial ciphertext set S.
At this time, the partial decryption result of party i is (without flooding noise)

pi = udec
⌊q
2

⌉
+ e′CG−1(wT )− clowG−1(wT )−

k∑
j ̸=i

pj

The inner product e′CG−1(wT ) ∈ Zq only leaks party i’s private key si with at most log q bits. As C
is a boolean circuit with output length W , the partial decryption leaks W log q bits of si.

4.5 Parameter settings

In this subsection, we discuss how to determine some parameters and their impact on security and
efficiency. The main parameters are the number of parties k, the dimension of the LWE problem
n, the LWE noise Bχ, the key length m, the ciphertext modulus q, the security parameter λ, the
circuit depth L and output length W . For the ciphertext modulus q, in subsection 4.3, we give
the condition |eCG−1(wT ) + eround| < q/4 for correct decryption where eC is the accumulated noise
after homomorphic evaluation bounded by (m log q)L2λBχ. G−1(wT ) is the binary decomposition of
q/2, and |eround| < 1/2. Thus q > 4 log q(m log q)L2λBχ must be satisfied. For the key length m, in
order to ensure that the entropy of s is still large enough after losing (kn +W ) log q bits, satisfying
m− (kn+W ) log q > log q+2λ (the remaining log q+2λ is used for the DGSW anti-leakage security
proof, see Lemma 5),   the lower bound of m should be (kn+W+1) log q+2λ. The security parameter λ
is generally set to 128 (note that λ is the security parameter of the statistical distance, not the security
level of the LWE problem). The remaining parameters, such as k, L and W depend on the specific
application. We can refer to several (n, q) parameter combinations provided in the Homomorphic
Encryption Standard [1] for an LWE security level of 128 where the noise Bχ ≈ 6σ. Therefore, the
order of determining parameters should be

1. Determine k, L, W and λ according to the specific application.
2. Refer to the Homomorphic Encryption Standard [1] to select a specific (n, q) pair.
3. Let m = (kn + W + 1) log q + 2λ and verify whether (n, q) determined in step 2 satisfy q >

4 log q(m log q)L2λBχ. If not, select a larger n, q combination until the inequality is satisfied.
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For example, selecting parameters k = 3, L = 2, W = 224 and λ = 128, we choose the homomorphic
encryption standard-recommended parameters (n = 8192, q = 2220), which also provides an exact
128-bit security level for LWE problem and q > 4 log q(m log q)L2λBχ. It should be noted that when
selecting the parameter pair (n, q), the recommended values provided in standard documents serve
only as general guidelines. In practical applications, (n, q) should be chosen as small as possible,
provided that the decryption inequality is satisfied and the LWE security level remains at least 128
bits (which can be estimated using the Lattice Estimator [2]).

5 Security Proof against Semi-Malicious Adversary

In this section, we first prove that DGSW with partial key leakage is still semantically secure. The
proof process is basically the same as Lemma 1 in [11], except that the amount of key leakage is
different. Then, we reduce the security of our scheme to the security of DGSW ciphertext.

Lemma 5. Let k,m, n, q, w,W be the parameters and χ, χ′ be the distribution defined in our scheme.
Let A1 ← Z(m−1)×n

q , s1 ← {0, 1}m−1, b1,1 = s1A1 mod q, the DGSW public key be (A1, b1,1), and
the ciphertext of 0 be

CDGSW =

(
A1

b1,1

)
R +

(
E0

e1

)
.

Even if s1 loses (kn +W ) log q bits (kn log q bits lost in the keylifting phase and W log q bits lost in
the distributed decryption phase), it holds that CDGSW is still computationally indistinguishable from
the uniform distribution.

Proof. Let C0 = A1R + E0, c1 = b1,1R + e1, we have c1 = s1A1R + e1 = s1(C0 − E0) + e1 =

s1C0 − s1E0 + e1. Note that E0 is sampled from χ and e1 is sampled from χ′. By Lemma 1, we
have c1 ≈s s1C0 + e1. Further, according to the LWE assumption, we can replace C0 with a uniform
matrix U on Z(m−1)×w

q and we have (C0, c1) ≈c (U, s1U+ e1). Note that m = (kn+W +1) log q+2λ,
under a semi-malicious adversary, the keylifting phase s1 will lose kn log q bits and the distributed
decryption phase will lose W log q bits. At this time m − (kn + W ) log q > log q + 2λ, according to
the leftover hash lemma, let U be the seed and s1 be the source, we have that (U, s1U) is statistically
indistinguishable from the uniform distribution. Through the above hybrid argument, we have that
the DGSW ciphertext and the uniform distribution are computationally indistinguishable, even if s1
is lossy. ⊓⊔

We complete the simulation by constructing a reduction from our ciphertext to the DGSW ciphertext.

Theorem 3. Assume that the first party is the Challenger and the other k− 1 parties are controlled
by the adversary A, if A can distinguish the ciphertext of our scheme from the uniform distribution,
then he can also distinguish the DGSW ciphertext from the uniform distribution with the same (up
to negligible) advantage.

Proof. Consider the following Game

1. Challenger generates pk1 = (A1, b1,1 = s1A1) where A1 ← Z(m−1)×n
q , s1 ← {0, 1}m−1 sends pk1

to adversary A.

2. After receiving pk1, A generates {pki}i∈[k]/1, where pki = (Ai, bi,i = siAi), sends it to Challenger.

3. After receiving {pki}i∈[k]/1, Challenger sets {b1,i = s1Ai}i∈[k]/1 (the leakage of s1), sends it to A.

4. After receiving {b1,i}i∈[k]/1, A adaptively chooses {s′i}i∈[k]/1, where s′i ∈ {0, 1}m−1, sets {bi,1 =

s′iA1}i∈[k]/1, sends it to Challenger.

https://lattice-estimator.readthedocs.io/en/latest/readme_link.html
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5. After receiving {bi,1}i∈[k]/1, Challenger sets hk1 = (A1,
∑k

i=1 bi,1).

6. A chooses a bit u← {0, 1}, sends it to Challenger.

7. Challenger chooses a bit α← {0, 1}, if α = 0 sets C← Enc(hk1, u), otherwise C← Zm×ml
q , sends

C to A.

8. After receiving C, A outputs bit ᾱ, if ᾱ = α, then A wins.

Obviously the above Game simulates the KeyLifting(·) and Enc(·) of our scheme. The first four steps
outline the detailed process of KeyLifting(·) assuming a rushing adversary. After the third step of the
above game, A obtained pk1 and {b1,i}i∈[k]/1 (the leakage of s1). We use the ciphertext of DGSW to
construct C. Let

CDGSW =

(
A1

b1,1

)
R +

(
E0

e1

)
=

(
C0

c1

)
.

be the Dual-GSW ciphertext generated by pk1, which is semantically secure by Lemma 5, even if s1
is lossy. Let s′ =

∑k
i=2 s′i are adaptively chosen by A after seeing pk1 and {b1,i}i∈[k]/1. Let

C′ = CDGSW +

(
0

s′C0

)
,

it holds that s′C0 = s′(A1R + E0) =
∑k

i=2 bi,1R + s′E0 and

C′ = CDGSW +

(
0

s′C0

)
=

(
A1

b1,1

)
R +

(
E0

e1

)
+

(
0

s′C0

)
=

(
A1

b1

)
R +

(
E0

e1 + s′E0

)
.

Because e1 is uniform over [−2λBχ,−2λBχ] and ||s′E0||∞ < kmBχ, then ||s′E0/e1||∞ = negl(λ). By
Lemma 1, it holds that C′ ≈s C. Let Adv = ||Pr[ᾱ = α] − 1

2 || denote A’s advantage in winning
the game, if A can distinguish between C and the uniform distribution by advantage Adv, then he
can also distinguish between CDGSW and the uniform distribution with the same (up to negligible)
advantage. ⊓⊔

6 Performance Analysis

We give the complexity analysis of our scheme, focusing on the public key size, ciphertext size, the
number of communication rounds during the initialization phase, the underlying security assumptions,
and the computational model adopted. Furthermore, we compare our approach with existing state-
of-the-art schemes to highlight the improvements.

In our scheme, the public key is the Dual-GSW public key (A, b) where A ∈ Z(m−1)×n
q and

b ∈ Zn
q with m = (kn + W + 1) log q + 2λ, q = 2O(λ+L). Therefore, the public key size is

O
(
n(kn+W )(λ+ L)2

)
. The ciphertext is a matrix over Zm×m log q

q with a size of O
(
(kn+W )2(λ+ L)4

)
.

Additionally, to generate the hybrid key, we introduce two rounds of interaction in the KeyLifting(·)
algorithm. We summarize a comparison with other multi-key FHE schemes in Table 2. For fairness,
all the compared schemes are LWE-based.

Here, we focus on explaining why the public key and evaluation key sizes in [6] and [11] are
relatively large. This is primarily because both schemes follow the ciphertext expansion paradigm
introduced in [20]. In brief, in schemes [20], [11] and [6], the initial ciphertexts do not support homo-
morphic evaluation directly as they are generated by different public keys. To enable homomorphic
evaluation, the ciphertexts must first undergo an expansion process, which relies on the evaluation
keys. The evaluation keys, in essence, is the ciphertexts encoding of the random matrix embedded
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Table 2: Performance Analysis
Scheme PubKey + EvalKey Ciphertext Round Assumption Adversary Model

MKFHE [23] O(n4(k + L)4) O(n2k2(λL)2) – LWE semi-honest CRS
MKFHE [11] O(k3n4(λL)6) O(k3n2(λL)4) 2 LWE semi-malicious –
MKFHE [6] O(k3n4(λL)6) O(k4n2(λL)4) 2 LWE malicious-client –
Our scheme O(n(kn + W )(λ + L)2) O((kn + W )2(λ + L)2) 2 LWE semi-malicious –

n denotes the LWE dimension, k is the number of parties, L represents the circuit depth, λ is the security parameter, and
W denotes the output length of the circuit. The PubKey + EvalKey column indicates the combined size of the public key and
the evaluation key, while the Ciphertext column shows the ciphertext size, measured in bits. The Round column specifies the
number of communication rounds required during the initialization phase. The Assumption column lists the underlying security
assumptions of each scheme. The Adversary column shows the adversary model. The Model column indicates the computational
model adopted. CRS stands for “Common Random String”, which is generated by a trusted third party and distributed to all
participants for use during key initialization.

in the initial ciphertext. For instance, in [6], given an initial ciphertext C ∈ Zm×m log q
q , expansion

requires encrypting each entry of the random matrix R ∈ Zn×m log q
q in C. As a result, the evaluation

keys consist of nm log q ciphertexts over Zm×m log q
q with total size O(k3n4(λL)6). For further details,

please refer to Section 3.2 of [6], specifically the EncBHP(·) and ExpandBHP(·) algorithms. Table 2
shows that the ciphertext in scheme [6] is k times larger than that in [11]. Although both schemes
expand the ciphertext into matrices over Zkm×km log q

q , the actual ciphertext is sparse, containing only
2k − 1 matrices over Zm×m log q

q , with the remaining positions being zeros. To protect against mali-
cious clients, the scheme [6] fills these zero positions with dummy ciphertexts, resulting in an overall
ciphertext size that is k times larger than that of scheme [11]. For more details, refer to Section 3.3
of [6].

7 Conclusion

In this work, we presented a Multi-Key Fully Homomorphic Encryption (MKFHE) scheme that elim-
inates the need for exponential noise flooding during distributed decryption—a major bottleneck in
prior constructions. By leveraging the asymmetric noise-masking properties of Dual-GSW ciphertext
multiplication and proving a new smudging lemma for discrete Gaussian distributions, we demon-
strated that the initial ciphertext noise can be decoupled from the decryption process. Leveraging
the leakage-resilience of our encryption scheme, we are able to eliminate the use of flooding noise
in distributed decryption, thereby reducing the ciphertext modulus q from 2ω(λL log λ) to 2O(λ+L),
aligning it with single-key FHE schemes while preserving security. Our approach also introduces
a KeyLifting(·) technique that removes the need for ciphertext expansion, streamlining homomorphic
evaluation across multiple keys. The scheme achieves security against semi-malicious adversaries in the
plain model, relying solely on the standard LWE assumption. Compared to state-of-the-art MKFHE
constructions, our work improves efficiency, as evidenced by the reduced ciphertext size and public
key complexity. Future work will focus on extending the proposed approach to MKFHE schemes
based on polynomial rings, with the goal of enabling practical implementation and deployment in
general-purpose applications.
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Appendix

A The proof of Lemma 2 and Theorem 2

Recall that the integral of ρΣ(x) is det(Σ), thus the Fourier transform of ρΣ(x) is ρ̂Σ(k) = det(Σ)ρΣ−1(k),
and the Poisson summation formula of ρΣ(x) is ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗).

A.1 The proof of Lemma 2

By the Poisson summation formula, we have

ρΣ1Σ2 = det(Σ1) det(Σ2) det(Λ∗)ρ(Σ1Σ2)−1(Λ∗),

det(Σ1)ρΣ2 = det(Σ1) det(Σ2) det(Λ∗)ρΣ−1
2
(Λ∗).

If ρΣ−1
2
(Λ∗) > ρ(Σ1Σ2)−1(Λ∗), then we done. For ρΣ−1

2
(x) = e−πxΣ2xT , ρ(Σ1Σ2)

−1(x) = e−πxΣ1Σ2xT ,
if Σ1Σ2 − Σ2 is positive semi-definite, then we have ρΣ−1

2
(x) > ρ(Σ1Σ2)−1(x), thus ρΣ−1

2
(Λ∗) >

ρ(Σ1Σ2)−1(Λ∗).

A.2 The proof of Theorem 2

Let E(k) = {x ∈ Rm : xΣ−12 xT < k} be the ellipsoid with “shape” Σ2 and radius k, and positive
definite matrix Σ1, Σ2, we have

ρΣ1Σ2
(Λ) ≥ ρΣ1Σ2

(Λ\E(k))

=
∑

x∈(Λ\E(k))
e−πx(Σ1Σ2)

−1xT+πxΣ−1
2 xT

· e−πxΣ−1
2 xT

=
∑

x∈(Λ\E(k))
e

1
2πxΣ−1

2 xT

· e−πxΣ−1
2 xT

(let Σ1 = 2I)

≥
∑

x∈(Λ\E(k))
e

1
2πk · e−πxΣ−1

2 xT

= e
π
2 k · ρΣ2

(Λ\E(k)).

By Lemma 2 we have 2m · ρΣ2
(Λ) ≥ ρ2Σ2

(Λ) and e
π
2 > 4, thus ρΣ2

(Λ\E(k)) < 2m−2k · ρΣ2
(Λ).
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