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Abstract

Multipartite secret sharing schemes are those that have multipartite access structures.

The set of the participants in those schemes is divided into several parts, and all the par-

ticipants in the same part play the equivalent role. One type of such access structure is

the compartmented access structure. We propose an ideal and efficient compartmented

multi-secret sharing scheme based on the linear homogeneous recurrence (LHR) rela-

tions. In the construction phase, the shared secrets are hidden in some terms of the

linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are

obtained by solving those terms in which the shared secrets are hidden. When the glob-

al threshold is t, our scheme can reduce the computational complexity from O(nt−1)

to O(nmax(ti−1) logn), where ti < t. The security of the proposed scheme is based on

Shamir’s threshold scheme. Moreover, it is efficient to share the multi-secret and to

change the shared secrets in the proposed scheme. That is, the proposed scheme can

improve the performances of the key management and the distributed system.

Keywords: secret sharing, linear homogeneous recurrence relations,

compartmented access structure, multi-secret

1. Introduction

Shamir [1] and Blakley [2] proposed the threshold secret sharing schemes in 1979.

Their schemes were based on the Lagrange interpolation algorithm and the linear pro-

jective geometry, respectively. In the (t, n) threshold secret sharing scheme, the secrets
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can be shared among n participants, and t or more users can recover the shared se-5

crets by pooling their shares, since greater than or equal to t participants (Let P =

{P1,P2, ...,Pn} be the set of the participants, where Pi is the i-th participant in the set

P, 1 ≤ i ≤ n) can construct a qualified subset. Less than t participants cannot get the

shared secrets, since less than t participants cannot construct a qualified subset. If the

participants of any unqualified subset cannot obtain any information about the shared10

secrets, then the scheme is called as the perfect scheme. The threshold secret sharing

schemes proposed by Shamir and Blakley are only special cases when all the partici-

pants have the same authority. Many applications were developed based on the secret

sharing scheme [3-4]. This is the reason that the secret sharing scheme is still popular

today.15

The threshold secret sharing schemes have many limitations in some condition.

Hence, other access structures were proposed successively. Shamir proposed the weight-

ed threshold secret sharing scheme [1]. The construction of this scheme is simple: take

a threshold scheme and give as many shares as its weight to each participant. Never-

theless, the obtained scheme is not ideal anymore. In 1987, Ito et al. first proposed a20

scheme to achieve the secret sharing on the general access structure [5]. Simmons first

proposed the multipartite access structure [7]. Brickell proposed a method to construct

an ideal secret sharing scheme for the multilevel and compartmented access structures

[6], but it is not efficient. Computational complexity and storage space size are usually

used to measure the efficiency of a scheme. The information rate is usually used to25

measure the efficiency of a secret sharing scheme. Therefore, to improve the efficiency

of the secret sharing scheme, many researchers focused on the study of specific fami-

lies of access structures, such as graph-based access structures [9], weighted threshold

access structures [10], bipartite access structures [11]-[13], tripartite access structures

[14]-[15], threshold access structures [16]. Especially Farràs et al. gave a complete30

characterization of the ideal multipartite access structures [17]. The multipartite secret

sharing scheme can be divided into two types. The one is the compartmented secret

sharing scheme, and the other is the hierarchical secret sharing scheme.

Recently, there were some researches on the compartmented access structure [18-

20]. Tassa et al. proposed two types of the compartmented secret sharing schemes35
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based on the bivariate Lagrange interpolation [8]. Though some of the existing schemes

are proved to be ideal and perfect, the above-mentioned methods are not efficient. Far-

ràs et al. used the matroids and the integer polymatroids to study the compartment-

ed access structure [17], [20], and it is easy to determine whether the secret sharing

schemes are ideal or not by the matroids and the integer polymatroids. The problem40

that how to design a scheme to realize a compartmented access structure can be consid-

ered as the problem that how to find a representation of a matroid from the presentation

of its associated polymatroid [26]. Chen et al. [26] proposed a compartmented se-

cret sharing scheme based on the general polymatroid and the Gabidulin codes, but

the scheme is also to try to obtain nonsingular matrices. Later, Chen et al. [27] gave45

another method based on the idea of [6], this scheme also needed to check many matric

for non-singularity. But Farràs et al. [17], [20] showed that it remains open whether

or not there exist efficient algorithms to obtain the representations of multipartite ma-

troids from representations of their associated polymatroids in general. Especially, the

compartmented access structure is useful in some applications. For example, although50

the general managers manage all the departments, they can’t make decisions about

anything. In the production process of a company’s products, whether the product is

qualified or not, it must be approved by the department leader who manages only the

department at which he/she works. Especially, the general managers are not good at

a certain technology, but the department leader is good at the technology. That is to55

say, the completion of the product requires the cooperation of all departments, and a

minimum number of employees in each department needs to involve in it. Mashhadi

and Dehkordi first introduced the Linear Homogeneous Recurrence (LHR) relation-

s to the (t,n) threshold secret sharing scheme [25]. Later, they introduced the linear

non-homogeneous recurrence (LNHR) relations to the secret sharing scheme [21]. But60

the participants have the equal authority and the qualified subset A satisfies |A| ≥ t in

Mashhadi and Dehkordis schemes.

The motivation of our scheme is to design an ideal and efficient secret sharing

scheme with the access structures which are more general than the threshold access

structures. One of the key contributions is to introduce the LHR relations into the mul-65

tipartite access structure, especially into the compartmented access structure, which
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divides the degree t of a polynomial into the low degrees of some polynomials and

each low degree equal to a fixed compartment threshold. In the proposed scheme, the

compartmented access structure is realized by using the linear homogeneous recurrence

(LHR) relations. The LHR relations are suitable for the compartmented access struc-70

ture since it has the ability to associate each compartment with a different polynomial.

It is easy to share multi-secret in our scheme. Each participant holds a share that is as

long as the secret. The security of the proposed scheme is based on Shamir’s threshold

scheme.

The remainder of this paper is organized as follows. Section 2 introduces the basic75

knowledge of the linear homogeneous recurrence relations and secret sharing scheme.

Section 3 gives the proposed scheme. In section 4, we analyze the security of the pro-

posed scheme. Section 5 discusses some important properties of the proposed scheme

and its performance. Finally, Section 6 draws our conclusion.

2. Preliminary Knowledge80

In this section, first of all, we introduce the basic mathematical knowledge used

in the proposed scheme. A detailed description of the linear homogeneous recurrence

relations can be found in [21, 22, 23, 28]. We also give a brief description about the

perfect scheme, ideal scheme and the compartmented access structure.

2.1. Linear Homogeneous Recurrence Relations85

Theorem 1 (Richard [22]) Let h0,h1, ...,h j, ... be a sequence of integers and Let α1,α2, ...,αm

be the distinct roots of the following characteristic equation of the linear homogeneous

recurrence relation with constant coefficients:

h j = a1h j−1 +a2h j−2 + · · ·+ath j−t , (1)

where at ̸= 0, ai is selected over GF(q) ( j ≥ t) and q is a large prime.

If αi is a ti-fold root of the characteristic equation of (1), then the part of the gen-

eral solution of this recurrence relation corresponding to αi is given as
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F(i)
j = ci1α j

i + ci2 jα j
i + · · ·+ citi jti−1α j

i

= (ci1 + ci2 j+ · · ·+ citi jti−1)α j
i

Let fi( j) = ci1 + ci2 j+ · · ·+ citi jti−1. So we can get

F(i)
j = fi( j)α j

i .

The general solution of the recurrence relation is

h j = F(1)
j +F(2)

j + · · ·+F(m)
j ,

where t = ∑m
i=1 ti.

If α1 = α2 = · · ·= αm = α , then the general solution of the recurrence relation is

h j = Fj, (2)

where

Fj = (c1 + c2 j+ · · ·+ ct jt−1)α j.

Definition 2 (Richard [22]) Let h0,h1, ...,h j, ... be an infinite sequence of numbers. Its

generating function is defined to be the infinite series

g(x) = ∑∞
i=0 hixi.

The coefficient of x j in g(x) is the nth term h j. Thus x j acts as a placeholder for h j.

A finite sequence h1, ...,h j can be regarded as the infinite sequence h1, ...,h j,0,0, ...,

in which all but a finite number of terms equal 0. Hence, every finite sequence has a

generating function

g(x) = ∑n
i=0 hixi,
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which is a polynomial.

Theorem 2 (Richard [22]) Suppose that the LHR sequence {hi} is defined as (1), and

the characteristic equation a1xt−1 + · · ·+ at = xt has m different roots α1,α2, ...,αm

with multiplicities t1, t2, ..., tm, where t1+ t2+ · · ·+ tm = t. Then the generating function

of the sequence {hi} is

g(x) =
R(x)

(1−a1x)t1(1−a2x)t2 · · · (1−amx)tm
, (3)

where R(x) is a polynomial function of x with the degree at most t −1. Thus we can get

h j = f1( j)α j
1 + f2( j)α j

2 + · · ·+ fm( j)α j
m,

90

where fi( j) is a polynomial function of j with the degree at most ti − 1. Converse-

ly, given such polynomials

R(x) and (1−a1x)t1(1−a2x)t2 · · · (1−amx)tm ,

95

there is a sequence h0,h1, ...,h j, ... satisfying a linear homogeneous recurrence rela-

tion with constant coefficients of order t of the type (1) whose generating function is

given by (2).

2.2. Secret Sharing Schemes

In the following section, we will give the definition of the perfect scheme and ideal100

scheme, and the hierarchical access structure is also listed.

2.2.1. Perfect Scheme and Ideal Scheme

Definition 3 A (t, n) threshold secret sharing scheme ∏ : S×R −→ S1 ×S2 ×· · ·×Sn

over M, where S is the shared secret space, R is a set of random inputs and Si (1≤ i≤ n)

is the share space, satisfies the following two conditions:105

1) For all A⊆M and |A| ≥t, H(S|SA) = 0, where A is the subset of the participants,

|A| is the number of the participants in the subset A, SA denotes the information of the

shares to be obtained by the participants in the subset A, and H is the entropy.
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2) For all B ⊆ M and |B| < t, 0 < H(S|SB) ≤ H(S). If H(S|SB) = H(S), then the

scheme is called as the perfect scheme.110

Definition 4 (Tassa [8]) Let ∑Pi denote the set of possible shares for the participant

Mi ∈ M. The information rate of the scheme is defined as

ρ = min
log2 |S|

log2 |∑Pi |
,115

where |S| denotes the size of the shared secret, and |∑Pi | denotes the size of the shares

saved by the participant Mi. If ρ = 1, the scheme is called as the ideal scheme.

2.2.2. Compartmented Access Structure

n is used to denote the total number of the participants in the set P= {P1,P2, ...,Pn},120

i.e., n = |P|. In the compartmented secret sharing scheme, the set P is divided into dis-

joint compartments γ1,γ2, ...,γm, i.e., P =
∪m

i=1 γi and γi
∩

γ j = /0, i ̸= j. The participants

in the same compartment play an equivalent role. Let ti be the compartment γi thresh-

old. The compartment γi contains ki participants, where n = Σm
i=1ki and i ∈ {1, ...,m}.

The qualified subset of the compartmented threshold secret sharing scheme contains125

at least ti participants from the compartment γi, where i ∈ {1, ...,m} and ti ≤ ki. In

the proposed scheme, we suppose that the global threshold t is equal to ∑m
i=1 ti. The

compartmented access structure AS is given by

AS = {A ∈ 2M|(|A| ≥ t)∧ (∀ j = {1, ...,m})(|A∧ γ j| ≥ t j)}.130

3. The Proposed Scheme

Our scheme is based on the linear homogeneous recurrence relations. In the com-

partmented secret sharing, the set of participants is partitioned into compartments and

the shared secrets can be recovered only if the number of participants from any com-

partment is greater than or equal to a fixed compartment threshold ti, and the total num-135

ber of participants is greater than the global threshold t. In our scheme, we suppose that
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t = ∑m
i=1 ti. The proposed scheme consists of three phases, i.e. the initialization phase,

the construction phase(share generation phase and share distribution phase ) and the

recovery phase. The basic idea of the proposed scheme is illustrated as follows. The

system is consisted of some participants and a distributor. The distributor generate a140

LHR relation with m different roots, where m is the number of the disjoint compart-

ment. Then the distributor chooses the shared secrets and hides the shared secrets in

some terms of this LHR relation. The difficulty of our scheme is how to generate this

LHR relation. The recovery of the shared secrets is realized by solving the general

term of the LHR sequence {hi}. Then the participants who want to recover the shared145

secrets get those terms in which the shared secrets are hidden.

3.1. Initialization Phase

In the proposed scheme, suppose that the compartmented access structure is mono-

tone, that is, if there exists A and A ∈ AS (the access structure), ∀A′ ∈ 2Mand A ⊆ A′,

then we can get A′ ∈ AS. Ito et al. presented that if the access structure AS was mono-150

tone, then there existed a perfect secret sharing scheme for the access structure [24].

The proposed scheme requires a public bulletin board. Any person has the right

to read or download the contents from the public bulletin board. Only the legitimate

participants in the system can publish the information to the directory, and modify

or update the published content according to their own permissions. The information155

among the participants are exchanged and distributed on the bulletin board.

The proposed scheme is based on the LHR relation over GF(q), where q is a large

prime and GF(q) is the finite field. s1,s2, ...,sl denote l shared secrets that can be

shared among the participants. The distributor D selects xi j over GF(q) as the j-th

participant’s ID in γi, where xi j ∈ GF(q) \ {1,2, ..., l} (This makes sure that we can160

hide the shared secrets in the first terms h1,h2, ...,hl of the sequence) and i ∈ {1, ...,m}

and j ∈ {1, ...,ki}. Then the distributor D publishes the ID on the public bulletin board.

3.2. Construction Phase

The dealer D performs the following steps to generate the shares, distribute the

shares and hide the shared secrets in the first terms h1,h2, ...,hl :165
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1) The dealer D chooses m different integers α1,α2, ...,αm over GF(q), where each

of them is not zero and m corresponds to the number of disjoint compartments of the

participants.

2) The dealer D chooses m different polynomials over GF(q). Let f1, f2, ..., fm de-

note m different polynomials. The degree of the polynomial fi is equal to ti − 1, and170

the ti is the fixed compartment γi threshold. That is

fi = fi(x) = ci1 + ci2x+ ci3x2 + · · ·+ citi x
ti−1,

where the global threshold t is equal to ∑m
i=1 ti and i ∈ {1,2, ...,m}.175

3) D computes fi(xi j) and sends the share fi(xi j) to Pi j in compartment γi privately

in a secure channel, where 1 ≤ i ≤ m, 1 ≤ j ≤ ki and Pi j denotes j-th participant in

compartment γi . This participant keeps the share fi(xi j).

4) After all the shares have been sent to the pariticpants through fi, where 1≤ i≤m.

The dealer D computes180

f1( j)α j
1 + f2( j)α j

2 + · · ·+ fm( j)α j
m over GF(q).

Let

h j = f1( j)α j
1 + f2( j)α j

2 + · · ·+ fm( j)α j
m over GF(q).

185

5) After the general term is obtained, the dealer D continues to compute h1,h2, ..,hl .

Then D hides the shared secrets s1,s2, ...,sl in these terms h1,h2, ..,hl .

6) The dealer D computes yi = hi − si, where 1 ≤ i ≤ l.

7) The dealer D publishes yi(1 ≤ i ≤ l),α1,α2, ...,αm and q on the public bulletin

board.190

Remark 1 From the step 3) above, we know the polynomial fi corresponds to the

compartment γi, and just greater or equal to ti participants in the compartment γi can

recover the polynomial fi by pooling the shares.

Remark 2 From Theorem 1, we can determine that h j is the general solution of

a LHR relation with degree t and the roods of the characteristic equation of this LHR195

relation are {α1,α2, ...,αm}.
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3.3. Recovery Phase

If the participants in the qualified subset want to recover the shared secrets s1,s2, ...,sl ,

they should recover the polynomials f1, f2, ..., fm firstly. From the construction phase,

we know the order of the polynomial fi is ti − 1. ti is equal to the fixed compartment200

γi threshold and only the participants in the compartment γi can recover the polynomi-

al fi. Since the order of fi is ti − 1, we need greater or equal to ti participants in the

compartment γi to recover the polynomial fi.

So these participants in the qualified subset contain at least ti participants from the

subset γi = {Pi1,Pi2, ...,Piki} ( we use Pi j to denote the j-th participant in the compart-

ment γi), where 1 ≤ i ≤ m and 1 ≤ j ≤ ki. Suppose that the subset A ⊆ P satisfies

these conditions. A participant in the subset A can obtain the share of each participant

by the exchange in the secure channel. Assume that the participants in the qualified

subset A want to recover the shared secrets. In the subset A, ti participants from the

compartment γi pool the shares, where 1 ≤ i ≤ m. By using these shares, these partic-

ipants can determine fi, where 1 ≤ i ≤ m. After all the polynomials f1, f2, ..., fm have

been obtained, from Theorem 1 and the public parameters α1,α2, ...,αm on the public

bulletin board, the participants in the subset A can determine the general solution of the

recurrence relation. That is,

h j = f1( j)α j
1 + f2( j)α j

2 + · · ·+ fm( j)α j
m (mod q). (4)

From (4), the participants in the subset A can compute h1,h2, ..,hl . From the step 6)

of the construction phase, the participants in the subset A can obtain the shared secrets205

by si = hi − yi, where 1 ≤ i ≤ l.

3.4. Example

In this subsection, we give a example to show how the dealer D distributes the

secrets in the construction phase and the participants recover the shared secrets in the

recovery phase.210

3.4.1. Initialization phase

1) Suppose that the set P of the participants is divided into two disjoint compart-

ments γ1 = 4, γ2 = 6, i.e., |P| = |γ1 ∪ γ2| = 10 and k1 = 4,k2 = 6. Let t1 = 2 and

10



t2 = 3.

2) The D randomly selects two shared secrets s1 = 5,s2 = 6 over GF(21), where215

the prime q = 21. Set x11 = 3,x12 = 4,x13 = 5,x14 = 6,x21 = 7,x22 = 8,x23 = 9,x24 =

10,x25 = 11,x26 = 12 over GF(21)\{0,1,2}.

3.4.2. Construction phase

1) The D selects two values α1 = 2,α2 = 1.

2) The D randomly selects two polynomials f1, f2 over GF(21). Let f1 = 2x+ 1220

(mod 21) and f2 = x2 + x+3 (mod 21).

3) The D distributes the share fi(xi j) to the j-th participant Pi j in γi, where 1 ≤ i ≤ 2

and 1 ≤ j ≤ ki. These shares are listed as follows.

f1(x11)= 7, f1(x12)= 9, f1(x13)= 11, f1(x14)= 13, f2(x21)= 17, f2(x22)= 12, f2(x23)=

9, f2(x24) = 8, f2(x25) = 9, f2(x26) = 12.225

4) Let h j = (2 j + 1)2 j + ( j2 + j + 3) (mod 21) and then the D computes h1 =

11,h2 = 8.

5) D computes y1 = 11−5 = 6,y2 = 8−6 = 2.

6) D publishes {y1,y2},{α1,α2} and q.

3.4.3. Recovery phase230

Before the participants can recover the shared secrets, these participants should re-

cover the two polynomials f1, f2. For t1 = 2 and t2 = 3, a qualified subset must contain

at least two participants from γ1 and three participants from γ2. These participants

recover the shared secrets by exchanging their shares. We suppose two participants

P11,P13 from γ1 and three participants P21,P23,P24 from γ2. The two polynomials are235

recovered as follows.

1) Firstly, we show how the polynomial f1 is recovered by P11,P13. For the two

points (3, 7) and (5, 11), a polynomial can be determined by

f1(x) = 7
x−5
3−5

+11
x−3
5−3

= 2x+1 (mod 21)
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2) Secondly, the polynomial f2 is recovered by P21,P23,P24. For the three points (7,

17), (9, 9) and (10, 8), a polynomial can be determined by

f2(x) = 17
(x−9)(x−10)
(7−9)(7−10)

+9
(x−7)(x−10)
(9−7)(9−10)

+8
(x−7)(x−9)

(10−7)(10−9)

= 17
(x2 −19x+90

6
−9

x2 −17x+70
2

+8
x2 −16x+63

3
(mod 21)

= x2 + x+3 (mod 21)

3) From the public values α1 = 2,α2 = 1, these participants can get

h j = (2 j+1)2 j +( j2 + j+3) (mod 21).

4) These participants compute h1 = 11,h2 = 8.

5) From the public values y1,y2, these participants can obtain the two shared secrets

through the equation

si = hi − yi,1 ≤ i ≤ 2,

so s1 = 5,s2 = 6.

4. Security Analysis

In this section, we will analyse that the unqualified subset cannot obtain the shared240

secrets and prove that the public values α1,α2, ...,αm cannot leak any information about

the shared secrets. First, we give a proposition below.

Proposition 1 If αi is a ti-fold root of the characteristic equation of LHR relation and

the general solution for this LHR relation is given by

245

h j = ∑m
i=1(∑

ti
k=1 cik jk−1)α j

i ,

then its coefficient cik can be determined by t initial values by solving linear system

of equation, where t = ∑m
i=1 ti.

250

From (4), we know when the participants in a unqualified subset want to recover

the shared secrets, they must recover every polynomial fi, 1 ≤ i ≤ m. Assume that the
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number of the participants is t −1 in the unqualified subset. If the total number of the

participants in the unqualified subset is t − 1, where t = Σm
i=1ti, then there exists the

situation that the number of the participants contained in some compartment γi is ti−1.

Theorem 3 The linear homogeneous recurrence relation is secure for the unqualified

participants if and only if the polynomial is secure for the unqualified participants.

Proof First , we give a analysis that the public values α1,α2, ...,αm do not leak any

information about the shared secrets. From the public values α1,α2, ...,αm, the char-

acteristic equation of a LHR relation can be determined, according to Theorem 1. If

a LHR relation is given, then the characteristic equation of this LHR relation can be

determined and the root of the characteristic equation can be found. Thus the public

values α1,α2, ...,αm do not leak any information except characteristic equation of a

LHR relation. From (4), we have

h′′j = h j − ( f1( j)α j
1 + · · ·+ fi−1( j)α j

i−1+

fi+1( j)α j
i+1 + · · ·+ fm( j)α j

m) = fi( j)α j
i (mod q)

⇒ h′′j/α j
i = fi( j) (mod q).

(5)

For the Theorem 1, h′′j is also the general term of a LHR relation with ti degree, where

the order of the polynomial fi(·) is ti−1. We have supposed that the unqualified subset

contains t −1 participants and ti −1 out of t −1 is in γi (Let the ti −1 random terms be

hi1 ,hi2 , ...,hiti−1 ).

(⇒) Suppose that the of the linear homogeneous recurrence relation with ti degree is255

secure for the unqualified participants. From the above, we know that public value

αi does not leak any information except the characteristic equation. If the polynomial

with degree (ti−1) is not secure for the unqualified participants, that is to say, the ti−1

points can determine a polynomial with degree (ti−1). From (5), we also infer that the

ti −1 values can determine the linear homogeneous recurrence relation with degree ti.260

This is contradictory to our assumption.

(⇐) Suppose that the polynomial with degree (ti − 1) is secure for the unqualified

participants. If the linear homogeneous recurrence relation degree ti is not secure for
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the unqualified participants, then ti − 1 random terms (hi1 ,hi2 , ...,hiti−1 ) can determine

the linear homogeneous recurrence sequences. According to (5), so we pick up ti − 1265

different terms and then can get ti − 1 different points of the polynomial fi( j). Since

the number of the roots of the fi(·) is ti − 1 at most in the field F, we can say that

ti − 1 points can determine a polynomial wit degree (ti − 1). This is contradictory to

our assumption. �
Therefore, when the participants in the unqualified subset want to obtain the shared270

secrets, our scheme is safe. Each share is sent through a secure channel, so we do not

discuss about the shares leakage.

5. Discussion

In our scheme, each participant just holds one share to share the secrets si,s2, ...,sl

in the whole recovery process. In this section, we will prove that our scheme is perfect275

and ideal , and we also prove that it is efficient to distribute multiple secrets.

We first show that the proposed scheme is perfect. So we should prove that for

all A ⊆ P and |A| < t, H(S|SA) = H(S). Equivalently, we require that for any shared

secrets s,s′ ∈ S and viewA ∈ SA,

280

Pr[∏(s,R)|A = viewA] = Pr[∏(s′,R)|A = viewA],

where viewA denotes that the participants in the subset A master the Information of

the shares and A = {P1,P2, ...,Pt−1}, and s is distributed by the linear homogeneous re-

currence (LHR) relation (h j). we use (h j) to denote the linear homogeneous recurrence285

relation. The other s′ is distributed through the linear homogeneous recurrence (LHR)

relation (h′j). Since the number of the participants in the subset A is t −1, there exists

the situation that the number of the participants contained in some compartment γi is

less than the threshold ti. We assume that the participants in the subset A can recover

all the polynomials except fi. Suppose two linear homogeneous recursive (LHR) se-290

quences {h j} and {h′j} satisfy the following conditions. That is
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h j = f1( j)α j
1 + f2( j)α j

2 + · · ·+ fm( j)α j
m (mod q),

and

h′j = f ′1( j)α j
1 + f ′2( j)α j

2 + · · ·+ f ′m( j)α j
m (mod q).

The degrees of the polynomials fi and f ′i are ti −1. Since we can determine all the

polynomials except fi and f ′i , if we can recover two polynomials fi and f ′i , then h j and

h′j can be determined. Thus we can determine the shared secrets s, s′. Since

fi(xi2) = b0 +b1xi2 + · · ·+bti−1xti−1
i2

fi(xi3) = b0 +b1xi3 + · · ·+bti−1xti−1
i3

...

fi(xiti) = b0 +b1xiti + · · ·+bti−1xti−1
iti

and

f ′i (xi2) = b′0 +b′1xi2 + · · ·+b′ti−1xti−1
i2

f ′i (xi3) = b′0 +b′1xi3 + · · ·+b′ti−1xti−1
i3

...

f ′i (xiti) = b′0 +b′1xiti + · · ·+b′ti−1xti−1
iti ,

we can get

C(b0, ...,bti−1)
T = ( fi(xi2), · · · , fi(xiti))

T ,

C(b′0, ...,b
′
ti−1)

T = ( f ′i (xi2), · · · , f ′i (xiti))
T ,

(6)

where

CT =


1 1 1 1

xi2 xi3 · · · xiti
...

... · · ·
...

xti−1
i2 xti−1

i3 · · · xti−1
iti

 (7)

and xi j is a participant’s ID.

From the characteristic of the Vandermonde matrix, we can deduce rank(C) =

ti − 1. There is no unique solution to (6). The probabilities of determining the vector295

(b0, ...,bti−1)
T and the vector (b′0, ...,b

′
ti−1)

T are equal. Since in the proposed scheme,

when m polynomials are determined, then the shared secrets can be determined. So

The probabilities of determining s and s′ are equal, i.e.
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Pr[∏(s,R)|A = viewA] = Pr[∏(s′,R)|A = viewA].300

So H(S|SA) = H(S). Therefore, the proposed scheme is perfect.

In our scheme, each participant’s ID is published on the public bulletin board, and

each participant’s share is selected over GF(q). Each participant just should hold one

share, and the shared secrets are selected over GF(q). So the information rate of the305

proposed scheme reaches the upper bound by one. Therefore, the proposed scheme is

ideal.

When the global threshold t is large, it usually takes a lot of computation to obtain

the pairs of points of the polynomial. Because the order of the polynomial may also

be t − 1, it costs a lot of time to compute on a polynomial with a large degree. In our310

scheme, we divide the global threshold t into m small thresholds t1, t2, ..., tm, where

t = ∑m
i=1 ti. Each threshold ti corresponds to a polynomial with the degree ti − 1. S-

ince the global order t is divided into m small low thresholds in the proposed scheme,

it is efficient to get the evaluations on these low order polynomials. The computa-

tional complexity is reduced from O(nt−1) to O(nmax(ti−1) logn), where 1 ≤ i ≤ m and315

t = ∑m
i=1(deg fi + 1). Therefore, in the construction phase, it is efficient to distribute

the shared secrets, and in the recovery phase, it is also efficient to recover the shared

secrets.

For safety reasons or a certain requirement, we should change the shared secrets.

The process of changing the shared secrets are given as follows.320

1) D chooses l new shared secrets.

2) D computes yi = hi − si, where 1 ≤ i ≤ l.

3) D updates yi on the public bulletin board, where 1 ≤ i ≤ l.

From the above process, we know the computational cost is low to change the

shared secrets.325
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6. Conclusion

In this paper, based on the linear homogeneous recurrence relations and the com-

partmented access structure, we propose a compartmented multi-secret sharing scheme.

We prove that the proposed scheme is ideal and perfect. The security of our scheme

is based on Shamir’s threshold scheme. Each polynomial corresponds to a different330

subset of the participants and the degree of the polynomial is equal to the threshold

of the compartment minus one, that is, we divide the t-th degree polynomial into m

different polynomials. The sum of the degrees of m different polynomials is equal to

t−m. It is more efficient to distribute or recover the shared secrets by using some poly-

nomials with low orders than to distribute/recover the shared secrets by using a poly-335

nomial with a large order, i.e., the computational complexity is reduced from O(nt−1)

to O(nmax(ti−1) logn). Moreover, our scheme is efficient when we share the multi-

secret. Especially, when we want to change the shared secrets, we can find the pro-

posed scheme is more efficient than the existing popular multi-secret sharing schemes

that were not based on the linear homogeneous recurrence relations. In the proposed340

scheme, each participant only needs to hold one share in the whole process.
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