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A New Efficient Hierarchical Multi-secret Sharing
Scheme Based on Linear Homogeneous

Recurrence Relations
Jiangtao Yuan, Jing Yang, Guoai Xu, Xingxing Jia, Fang-Wei Fu and Chenyu Wang

Abstract—Hierarchical secret sharing is an important key management technique since it is specially customized for hierarchical
organizations with different departments allocated with different privileges, such as the government agencies or companies.
Hierarchical access structures have been widely adopted in secret sharing schemes, where efficiency is the primary consideration for
various applications. How to design an efficient hierarchical secret sharing scheme is an important issue. In 2007, a famous
hierarchical secret sharing (HSS) scheme was proposed by Tassa based on Birkhoff interpolation, and later, based on the same
method, many other HSS schemes were proposed. However, these schemes all depend on Polya’s condition, which is a necessary
condition not a sufficient condition. It cannot guarantee that Tassa’s HSS scheme always exists. Furthermore, this condition needs to
check the non-singularity of many matrices. We propose a hierarchical multi-secret sharing scheme based on the linear homogeneous
recurrence (LHR) relations and the one-way function. In our scheme, we select m linearly independent homogeneous recurrence
relations. The participants in the highly-ranked subsets γ1, γ2, · · · , γj−1 join in the j-th subset to construct the j-th LHR relation. In
addition, the proposed hierarchical multi-secret sharing scheme just requires one share for each participant, and keeps the same
computational complexity. Compared with the state-of-the-art hierarchical secret sharing schemes, our scheme has high efficiency.

Index Terms—Hierarchical access structure, linear homogeneous recurrence relations, secret sharing scheme, multi-secret sharing
scheme
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1 INTRODUCTION

IN a (t, n) threshold secret sharing scheme [1], [21], the
secret can be shared among n participants, and any t

or more participants can constitute a qualified subset to
recover the shared secrets by pooling their shares. All the
qualified subsets constitute the access structure of the secret
sharing scheme. The secret sharing scheme is perfect if the
participants of any unqualified subsets cannot obtain any
information about the shared secrets. The secret sharing
scheme is ideal if each share has the same size as the secret.

1.1 Related work
The threshold secret sharing schemes proposed by Shamir
[1] and Blakley [21] are two special cases where all the
participants have the same privileges. Such threshold secret
sharing schemes are restrictive in practice. Hence, in order to
improve the practicality of secret sharing, many researchers
have focused on specific families of access structures, such
as weighted threshold access structure [1], graph-based
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access structure [5], bipartite access structure [6], and multi-
partite access structure [4] including compartmented access
structure and hierarchical access structure.

In 1979, Shamir [1] proposed the weighted threshold se-
cret sharing scheme. But this scheme is a trivial solution by
assigning multiple shares to each participant according to its
integral weight, which is inefficient. Then in 1988, Simmons
[3] proposed a multipartite access structure and he gave
the definition of the compartmented access structure and
the hierarchical access structure. After Simmons, Brickell
[2] proposed a method to construct an ideal secret sharing
scheme for the multilevel and compartmented access struc-
tures, but the scheme is not efficient, for the exponential
operations required to get nonsingular matrices.

The definition of the multipartite access structure is that
all participants in a group are divided into some subsets
and the participants in the same subset have the equivalent
role. Multipartite access structures are classically formed
by the compartmented access structure and the hierarchical
access structure. A family of the hierarchical access structure
contains the conjunctive hierarchical access structure and
the disjunctive hierarchical access structure. An important
type of hierarchical access structure is the disjunctive hierar-
chical access structure with the disjoint levels determined by
the strictly monotonic increasing thresholds and this access
structure gets much more attention than the conjunctive
hierarchical access structure.

The hierarchical threshold access structure is useful for
large companies where the staff belong to different levels
and have different privileges, for example, managers versus
employees. The managers have higher power than the em-
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ployees, and the managers are fewer than the employees.
The company requires that five of the staff can recover the
secret, but at least two of the five must be managers. If the
number of employees is not enough, then the managers are
allowed to replace employees. This structure can make the
companies have fine management and more efficient. Such
hierarchical threshold access structures have attracted many
attentions [22], [23]. In those hierarchical threshold secret
sharing schemes, the participants are divided into disjoint
levels γ1, γ2, ..., γm, where γi has higher rank than γi+1,
and the participants in subset γi have higher privileges
than those in subset γi+1. And a qualified subset satisfies
simultaneously that at least k1 participants are from the
highest level γ1, and at least k2 > k1 participants are from
γ1 ∪ γ2 and so on, and km > km−1 participants are from
∪m
i=1γi.

In 2007, Tassa [8] proposed some hierarchical threshold
access structures based on Birkhoff interpolation, and the
interpolation matrix must satisfy Polya’s condition. How-
ever, the Polya’s condition is just a necessary condition,
furthermore, the sufficient condition is scarcely satisfied.
The drawback of the above hierarchical threshold access
structure is that the distributor must perform exponential
checks when assigning identities and shares to the partici-
pants. The problem is that whether there exists an efficient
ideal secret sharing scheme for such an access structure.

In 2007, Farràs et al. [7] gave a comprehensive character-
ization of the ideal multipartite access structures. But they
didn’t design a secret sharing scheme to realize their multi-
partite access structures, either. Then these scholars studied
the hierarchical secret sharing schemes using the results
about integer polymatroids in [9]. These techniques provide
a characterization of the hierarchical access structures that
admits an ideal and perfect secret sharing scheme [10], [15].
But [9], [10] also didn’t give a secret sharing scheme which
achieves the multipartite access structures. From their result,
we know that finding a solution to construct a multipartite
secret sharing scheme can be seen as finding a represen-
tation of a matroid from a presentation of its associated
polymatroid. However, Farràs et al. [9], [11] said that it is
still open whether or not there exist efficient methods to
get the representations of multipartite matroids from the
representations of their associated polymatroids in general.

Following their ideas, in 2019, Chen et al. [12] gave meth-
ods to construct ideal linear schemes realizing the compart-
mented access structure by the general polymatroid-based
method presented in [9] and the Gabidulin codes [14]. Then,
Chen et al. [13] used linear algebraic techniques to propose
a scheme to realize the multipartite access structure. Based
on the integer polymatroids, the main idea of [13] provides
a polynomial time algorithm to construct such a matrix M
that all the determinants of those special submatrices are
nonzero over some finite fields. Even though Chen et al.
gave a secret sharing scheme to realize hierarchical access
structure, they also need to check the non-singularity of
many matrices. So the proposed hierarchical secret sharing
schemes were either inefficient or randomized.

In 2008, Dehkordi and Mashhadi [18] firstly introduced
the linear homogeneous recurrence (LHR) relations to the
(t, n) threshold secret sharing scheme based on the RSA
cryptosystem. Later, in [16], they introduced the linear

non-homogeneous recurrence relations to the secret sharing
scheme based on the linear feedback shift register (LFSR)
public-key cryptosystem. But the participants are assumed
to have the equal privilege in their schemes [16], [18].

1.2 Our results

The paper is motivated by designing an efficient hierarchical
multi-secret sharing scheme by using linear homogeneous
tools. We propose a hierarchical secret sharing scheme based
on the LHR relations [17] and the one-way function [20].

The main idea of our scheme is listed as follows. The se-
cret distributor randomly selects m different LHR relations.
Then, the pseudo shares of the participants from the first
level γ1 are used to construct the first LHR relation, which
means that the distributor firstly get this LHR relation and
the pseudo shares of the participants are used to initialize
this LHR relation. Then the pseudo shares of the participants
from the first two levels γ1 ∪ γ2 are used to construct the
second LHR relation and so forth. Then the distributor
computes the required terms of these m LHR relations and
adds them to get some new values to distribute the shared
secrets. If the participants in the qualified subset want to
recover the shared secrets, they should solve the general
term of m LHR relations at first, and thus they can get the
required values, and obtain the shared secrets finally.

The security of the proposed scheme is guaranteed by
Shamir’s threshold scheme. We require that the participants
are semi-honest.

The key contributions of the paper are listed as follows.
1) We introduce the LHR relations into the hierarchi-

cal access structure, and avoid many checks of the non-
singularity of many matrices in the presented hierarchical
secret sharing schemes.

2) Our scheme can share multiple secrets at the same
time.

3) Each participant only holds one share during the
scheme, and our scheme is both perfect and ideal.

The remainder of this paper is organized as follows. In
Section 2, we provide preliminaries of secret sharing scheme
and LHR relations. In Section 3, we present a new efficient
hierarchical multi-secret sharing scheme. In Section 4, we
give the important properties of our scheme. In Section 5,
compared with the presented schemes, we prove that our
scheme is more efficient with better performance . Finally,
we draw the conclusion in Section 6.

2 PRELIMINARIES

2.1 Secret Sharing Schemes

In the following section, firstly, we will give the definition
of the secret sharing scheme based on information theory.

Definition 1 Let P denote the set of participants, that is
P = {P1, P2, · · · , Pn}. Then a (t, n) threshold secret sharing
scheme Π : S × R → S1 × S2 × · · · × Sn over P satisfies
the following two conditions, where S is the shared secret
space, R is a set of random inputs, and Si (1 ≤ i ≤ n) is the
share space.

1) For all A ⊆ P and |A| ≥ t, H(S|SA) = 0.
2) For all B ⊆ P and |B| < t, 0 < H(S|SB) ≤ H(S).
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If H(S|SB) = H(S), then the scheme is referred as the
perfect secret sharing scheme.

Next, we introduce the hierarchical access structure
briefly.

Definition 2 Let P = {P1, P2, · · · , Pn} denote the
set of the participants and |P | = n. In a hierarchical
secret sharing scheme, the set P can be divided into
disjoint levels γ1, γ2, · · · , γm, i.e., P = ∪m

i=1γi and
γi ∩ γj = ∅ for all 1 ≤ i < j ≤ m. The level γi contains
ni participants for i ∈ {1, 2, · · · ,m}, and Σm

i=1ni = n.
Let K = {ki}mi=1 be assorted in ascending order, which
means that 0 < k1 < k2 < · · · < km ≤ n. Then the
(K, n)−hierarchical threshold access structure is

AS = {A ⊂ P : |A
∩
(
∪i

j=1 γj)| ≥ ki, ∀i ∈ {1, 2, · · · ,m}}.

2.2 Linear Homogeneous Recurrence Relations

In this section, we give a brief introduction of the linear
homogeneous recurrence (LHR) relations. The detailed de-
scription of the LHR relations can be found in [17], [19], [24].

Definition 3 A LHR relation (hi)i≥0 with the k initial
values over a finite field GF (q) where q is a prime is defined
by these equations:{

h0 = c0, h1 = c1, · · · , hk−1 = ck−1,

hi+k + a1hi+k−1 + · · ·+ akhi = 0 (i ≥ 0),
(∗)

where c0, c1, · · · , ck−1 and a1, a2, · · · , ak are predefined
constants over GF (q). k is a positive variable, which is the
degree of this LHR relation.

Definition 4 For a LHR relation of (∗) with degree k
over GF (q), the auxiliary equation of this LHR relation is
defined as follows

p(x) = xk + a1x
k−1 + · · ·+ ak = 0.

Next we introduce some results used in our scheme.
Theorem 1 Let (hi)i≥0 be a LHR relation with degree

k over GF (q) and α1, α2, · · · , αm be distinct roots of its
auxiliary equation with multiplicities k1, k2, · · · , km, respec-
tively. Then the general term for this LHR relation is given
by

hi = p1(i)α
i
1 + p2(i)α

i
2 + · · ·+ pm(i)αi

m, (∗)′

where pj(i) = cj1 + cj2i+ · · ·+ cjkj i
kj−1 and

∑m
i=1 ki = k.

And these coefficients cjv (1 ≤ j ≤ m, 1 ≤ v ≤ kj) can
be determined by k initial values of the LHR relation of (∗).

Proof Let αj be a kj-fold root of the auxiliary equation
p(x) = xk + a1x

k−1 + · · ·+ ak = 0 of (∗) where 1 ≤ j ≤ m,
then we have:

αj is a kj-fold root of p0(x) = xi−kp(x), i.e., αi
j +

Σk
v=1avα

i−v
j = 0;

αj is a (kj − 1)-fold root of p1(x) = xp′0(x), i.e., iαi
j +

Σk
v=1av(i− v)αi−v

j = 0;
αj is a (kj − 2)-fold root of p2(x) = xp′1(x), i.e., i2αi

j +

Σk
v=1av(i− v)2αi−v

j = 0;

...

αj is a 1-fold root of pkj−1(x) = xp′kj−2(x), i.e.,
ikj−1αi

j +Σk
v=1av(i− v)kj−1αi−v

j = 0.

From the analysis above, we find that h
(j)
i = iv−1αi

j

(1 ≤ j ≤ m, 1 ≤ v ≤ kj) satisfies this LHR relation (hi)i≥0.
Therefore, the linear combination of h(j)

i , i.e.,

hi =
k1∑
v=1

c1vi
v−1αi

1 +
k2∑
v=1

c2vi
v−1αi

2 + · · ·+
km∑
v=1

cmvi
v−1αi

m

= p1(i)α
i
1 + p2(i)α

i
2 + · · ·+ pm(i)αi

m

also satisfies this LHR relation (hi)i≥0, which means that hi

is the general term of the LHR relation of (∗), i.e., the form
(∗)′.

We assume that there is a general term of the LHR
relation of (∗) satisfying hi = Hi for 0 ≤ i ≤ k−1, where Hi

is some predetermined constant over GF (q), i.e., the initial
values of this LHR relation. Next, in the equation (∗)′

hi =
k1∑
v=1

c1vi
v−1αi

1 +
k2∑
v=1

c2vi
v−1αi

2 + · · ·+
km∑
v=1

cmvi
v−1αi

m,

we substitute hi with these Hi for 0 ≤ i ≤ k − 1. Then, we
can obtain a linear system of k equations with k variables
cjv where 1 ≤ j ≤ m and 1 ≤ v ≤ kj . If the undetermined
coefficient method can be used to determine these cjv u-
niquely, that is to say, the linear system of equations has the
unique solution, then the general term of the LHR relation
of (∗) has the form (∗)′.

Next, we only need to prove that the coefficient determi-
nant of this linear system of equations is nonzero.

From the analysis above, we know that the determinant
of the coefficient is generalized Vandermonde determinant.
For 1 ≤ j ≤ m, let

Dj =


1 0 · · · 0
αj αj · · · αj

α2
j 2α2

j · · · 2kj−1α2
j

...
...

...
αk−1
j (k − 1)αk−1

j · · · (k − 1)kj−1αk−1
j

 .

Then we have the following results, where C is a nonzero
constant over GF (q):

D = |D1, D2, · · · , Dm| = C
m∏
j=1

α

(kj

2

)
j

∏
1≤i<j≤m

(αj−αi)
kikj .

When these α1, α2, · · · , αm are nonzero and different, the
determinant of the coefficient D ̸= 0, which means that this
linear system of equations has a unique solution.

Therefore, these coefficients cjv (1 ≤ j ≤ m, 1 ≤ v ≤ kj)
can be determined by k initial values of the LHR relation
(∗). �

Corollary 1 If α1 = α2 = · · · = αm = α, then the general
term of a LHR relation (hi)i≥0 with degree k over GF (q)
has the form hi = p(i)αi, where p(i) = c1+c2i+· · ·+cki

k−1.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3 THE PROPOSED SCHEME

In this section, we present our new hierarchical threshold
secret sharing scheme based on the LHR relations. The pro-
posed scheme consists of three phases, namely, initialization
phase, construction phase and recovery phase.

3.1 Initialization phase

Let D be the distributor, and P = {P1, P2, · · · , Pn} be the
set of the participants.

1) D divides the set P into disjoint levels γ1, γ2, · · · , γm,
i.e., P = ∪m

i=1γi and γi ∩ γj = ∅ for all 1 ≤ i < j ≤ m. For
1 ≤ i ≤ m, each subset ∪i

j=1γj corresponds to two values
(ki,

∑i
j=1 nj), where ki is the threshold of the subset ∪i

j=1γj
and

∑i
j=1 nj is the number of participants in subset ∪i

j=1γj .
Notice that Σm

i=1ni = n and 0 < k1 < k2 < · · · < km ≤ n.
2) D selects randomly l secrets key1, key2, · · · , keyl ∈

GF (q)∗, where q is a big prime.
3) D selects randomly m different one-way functions

f1(·), f2(·), · · · , fm(·) and publishes them.
4) D chooses the share Sj

i ∈ GF (q)∗ with respect to the
i-th participant at level γj , where 1 ≤ j ≤ m and 1 ≤ i ≤ nj .

3.2 Construction phase

Let Nj = n1 + n2 + · · · + nj denote the number of the
participants in ∪j

i=1γi. Then the distributor D performs the
following steps to distribute the shares:

1) D selects m different integers α1, α2, · · · , αm over
GF (q)∗ and publishes them.

2) For 1 ≤ j ≤ m, 1 ≤ i ≤ Nj , suppose that the share
of the i-th participant at level ∪j

i=1γi is Si = Sv
u, where

1 ≤ v ≤ j, and 1 ≤ u ≤ nv and i = Nv−1 + u. In particular,
we define N0 = 0 and Nm = n.

3) For 1 ≤ j ≤ m and 1 ≤ i ≤ Nj , D computes the
pseudo shares Iji = fj(Si) (mod q).

4) For 1 ≤ j ≤ m, let (x − αj)
kj = xkj + aj1x

kj−1 +
· · · + ajkj = 0 where aji ∈ GF (q) and 1 ≤ i ≤ kj . Then
the distributor D constructs the j-th LHR relation (h

(j)
i )i≥0

with the kj initial values, which is defined by{
h
(j)
0 = Ij1 , h

(j)
1 = Ij2 , · · · , h

(j)
kj−1 = Ijkj

,

h
(j)
i+kj

+ aj1h
(j)
i+kj−1 + · · ·+ ajkjh

(j)
i = 0,

i ≥ 0. (1)

5) D computes h
(j)
i where 1 ≤ j ≤ m and kj ≤ i ≤

n+ l − 1.
6) D computes yji = Iji − h

(j)
i−1 (mod q) and publishes

yji , where 1 ≤ j ≤ m and kj < i ≤ Nj .
7) Let hi = h

(1)
i +h

(2)
i + · · ·+h

(m)
i for n ≤ i ≤ n+ l− 1,

then D computes di = keyi − hn+i−1 (mod q) where 1 ≤
i ≤ l.

8) D publishes {d1, d2, · · · , dl}.
The Fig.1 shows how to operate the construction phase,

where γ1 + γ2 + · · ·+ γj denotes ∪j
i=1γi, (h

(j)
i )i≥0 denotes

the j-th LHR relation, {h(j)
i }n+l−1

i=0 denotes the term from
h
(j)
0 to h

(j)
n+l−1 of the j-th LHR relations and Pshare denotes

the pseudo share.

3.3 Recovery phase

In this section, we present how the shared secrets are recov-
ered.

A subset A ⊂ P is authorized if and only if it contains
at least km participants, of whom at least km−1 are from
∪m−1
i=1 γi, of whom at least km−2 are from ∪m−2

i=1 γi and so
on. Then we know that A contains at least k1 participants
from γ1. In the qualified subset, these km participants need
to recover the general terms of m LHR relations before
obtaining the shared secrets. The detailed description is
shown as follows.

1) Firstly, k1 participants in γ1, i.e., {Pi}i∈A(1) (A(1) ⊆
{1, 2, · · · , N1}) can compute their pseudo share by I1i =
f1(Si).

Next, these participants can compute k1 terms of the first
LHR relation from the following equations:

h
(1)
i−1 =

{
I1i , 1 ≤ i ≤ k1
I1i − y1i , k1 < i ≤ N1

According to Theorem 1, using k1 points (i −
1, h

(1)
i−1/α

i−1
1 ), these participants can determine the polyno-

mial p(1)(x) with degree k1 − 1 defined as follows.

p(1)(x) =
∑

i∈A(1)

h
(1)
i−1

αi−1
1

j ̸=i∏
j∈A(1)

x− (j − 1)

i− 1− (j − 1)
(mod q)

= c
(1)
0 + c

(1)
1 x+ · · ·+ c

(1)
k1−1x

k1−1 (mod q).

According to Corollary 1, they can get general term of
the first LHR relation h

(1)
i = p(1)(i)αi

1.
2) Secondly, k2 participants in γ1 ∪ γ2, including at least

k1 participants involving in the recovery of the general
term of the first LHR relation from γ1 and other k2 − k1
participants from γ2, i.e., {Pi}i∈A(2) (A(2) = A(1)∪A2, A2 ⊆
{N1 + 1, N1 + 2, · · · , N2}) can compute their pseudo share
by I2i = f2(Si).

Next, these participants can compute k2 terms of the
second LHR relation from the following equations:

h
(2)
i−1 =

{
I2i , 1 ≤ i ≤ k2
I2i − y2i , k2 < i ≤ N2

According to Theorem 1, using k2 points (i −
1, h

(2)
i−1/α

i−1
2 ), these participants can determine the polyno-

mial p(2)(x) with degree k2 − 1 defined as follows:

p(2)(x) =
∑

i∈A(2)

h
(2)
i−1

αi−1
2

j ̸=i∏
j∈A(2)

x− (j − 1)

i− 1− (j − 1)
(mod q)

= c
(2)
0 + c

(2)
1 x+ · · ·+ c

(2)
k2−1x

k2−1 (mod q).

According to Corollary 1, they can get general term of
the second LHR relation h

(2)
i = p(2)(i)αi

2.
3) Similarly, corresponding participants repeat the oper-

ations above.
Until km participants in P = ∪m

i=1γi, including at least
km−1 participants involving in the recovery of the general
term of the (m − 1)-th LHR relation from ∪m−1

i=1 γi and
the other km − km−1 participants from γm, i.e., {Pi}i∈A(m)

(A(m) = A(m−1)∪Am, Am ⊆ {Nm−1+1, Nm−1+2, · · · , n})
can compute their pseudo share by Imi = fm(Si).
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Fig. 1: The construction phase

Next, these participants can compute km terms of the
m-th LHR relation from the following equations:

h
(m)
i−1 =

{
Imi , 1 ≤ i ≤ km
Imi − ymi , km < i ≤ n

According to Theorem 1, using km points (i −
1, h

(m)
i−1/α

i−1
m ), these participants can determine the polyno-

mial p(m)(x) with degree km − 1 defined as follows:

p(m)(x) =
∑

i∈A(m)

h
(m)
i−1

αi−1
m

j ̸=i∏
j∈A(m)

x− (j − 1)

i− 1− (j − 1)
(mod q)

= c
(m)
0 + c

(m)
1 x+ · · ·+ c

(m)
km−1x

km−1 (mod q).

According to Corollary 1, they can get general term of
the m-th LHR relation h

(m)
i = p(m)(i)αi

m.
4) These km participants from P = ∪m

i=1γi add the m
general terms of corresponding LHR relations and get hi =

h
(1)
i + h

(2)
i + · · ·+ h

(m)
i .

5) Finally, these km participants can recover the shared
secrets by the following equations:

keyi = di + hn+i−1 (mod q)

where 1 ≤ i ≤ l.
The Fig.2 shows the main idea of the recovery phase,

where Pts denotes the participants, γ1 + · · · + γj denotes
∪j
i=1γi, j-LHRR denotes the j-th LHR relation, and h

(j)
i

denotes the general term of the j-th LHR relation.
Remark 1 For 0 < i < j ≤ m, in a hierarchical secret

sharing scheme, the participants in γi have higher privileges
than the participants in γj . Therefore, the participants in γi
can replace the participants in γj from the description above.
However, these participants must form one of the qualified
subset of the hierarchial access structure:
AS = {A ⊂ P : |A

∩
(
∪i

j=1 γj)| ≥ ki, ∀i ∈ {1, 2, · · · ,m}}.
In particular, at least km participants from γ1 can satisfy

the above condition, which means that they can recover the
secrets.

3.4 Illustrative Example

In this section, we give an explicit example to demonstrate
our scheme and show how the LHR relations are useful in
the hierarchical access structure.

Initialization phase
1) Suppose that there are n = 10 participants, then the

distributor divides them into two level γ1 and γ2 satisfying
n1 = |γ1| = 4 and n2 = |γ2| = 6. And let the threshold be
k1 = 2 and k2 = 3.

2) D selects two secrets key1 = 7 and key2 = 9 from
GF (19)∗.

3) D selects two one-way functions f1(x) = 2x + 1
(mod 19) and f2(x) = 22

x (mod 19) + (−1)x (mod 19).
4) D chooses randomly the share for the participants at

the γ1 be S1
1 = 1, S1

2 = 2, S1
3 = 3, S1

4 = 4 and at the γ2 be
S2
1 = 5, S2

2 = 6, S2
3 = 7, S2

4 = 8, S2
5 = 9, S2

6 = 10.
Construction phase
Let N1 = n1 = 4 and N2 = n1 + n2 = 10, then the

distributor D performs the following steps to distribute the
shares:

1) D selects two different integers α1 = 2 and α2 = 1
and publishes them.

2) For j = 1, 1 ≤ i ≤ N1 = 4, suppose that the share of
the participants at level γ1 be S1 = S1

1 = 1, S2 = S1
2 = 2,

S3 = S1
3 = 3, S4 = S1

4 = 4.
For j = 2, 1 ≤ i ≤ N2 = 10, suppose that the share of the

participants at level ∪2
i=1γi be S1 = S1

1 = 1, S2 = S1
2 = 2,

S3 = S1
3 = 3, S4 = S1

4 = 4, S5 = S2
1 = 5, S6 = S2

2 = 6,
S7 = S2

3 = 7, S8 = S2
4 = 8, S9 = S2

5 = 9 and S10 = S2
6 =

10.
3) For j = 1, D computes the pseudo shares of the

participants in γ1: I11 = f1(S1) = 3, I12 = f1(S2) = 5,
I13 = f1(S3) = 9, I14 = f1(S4) = 17.

For j = 2, D computes the pseudo shares of the par-
ticipants in ∪2

i=1γi: I
2
1 = f2(S1) = 3, I22 = f2(S2) = 17,

I23 = f2(S3) = 8, I24 = f2(S4) = 6, I25 = f2(S5) = 2,
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Fig. 2: The recovery phase

I26 = f2(S6) = 15, I27 = f2(S7) = 5, I28 = f2(S8) = 0,
I29 = f2(S9) = 0, I210 = f2(S10) = 11.

4) For j = 1, let (x − 2)2 = x2 − 4x + 4, and D

constructs the first LHR relation (h
(1)
i )i≥0 with two initial

values, which is defined by{
h
(1)
0 = I11 = 3, h

(1)
1 = I12 = 5,

h
(1)
i+2 − 4h

(1)
i+1 + 4h

(1)
i = 0,

i ≥ 0. (2)

For j = 2, let (x − 1)3 = x3 − 3x2 + 3x − 1, and
D constructs the second LHR relation (h

(2)
i )i≥0 with three

initial values, which is defined by{
h
(2)
0 = I21 = 3, h

(2)
1 = I22 = 17, h2

2 = I23 = 8,

h
(2)
i+3 − 3h

(2)
i+2 + 3h

(2)
i+1 − h

(2)
i = 0,

i ≥ 0. (3)

5) For j = 1, using the first LHR relation, D computes
h
(1)
2 = 8, h(1)

3 = 12, h(1)
4 = 16, h(1)

5 = 16, h(1)
6 = 0, h(1)

7 =

12, h(1)
8 = 10, h(1)

9 = 11, h(1)
10 = 4, h(1)

11 = 10.
For j = 2, using the second LHR relation, D computes

h
(2)
3 = 14, h(2)

4 = 16, h(2)
5 = 14, h(2)

6 = 8, h(2)
7 = 17, h(2)

8 =

3, h(2)
9 = 4, h(2)

10 = 1, h(2)
11 = 13.

6) For j = 1, D computes y13 = 1, y14 = 5 and publishes
{y13 , y14}.

For j = 2, D computes y24 = 11, y25 = 5, y26 = 1, y27 = 16,
y28 = 2, y29 = 16, y210 = 7 and publishes {y24 , y25 , · · · , y210}.

7) D computes h10 = h
(1)
10 + h

(2)
10 = 5 and h11 = h

(1)
11 +

h
(2)
11 = 4. Then D computes d1 = key1 − h10 = 2 and

d2 = key2 − h11 = 5.
8) D publishes {d1, d2}.
Recovery phase
In this phase, for k1 = 2 and k2 = 3, the qualified subset

should contain at least two participants from γ1 and three

participants from γ1 ∪ γ2 simultaneously. Each participant
Pi recover the shared secrets by exchanging his/her share
Si with the other participants. Next, we consider how to
recover shared secrets under two conditions.

(1) At least two participants in γ1 and at least one
participants in γ2 can pool their shares to recover the shared
secrets by the way mentioned in Section 3.3. We assume that
two participants from γ1 are P1, P3 and one participant from
γ2 is P6.

Firstly, P1 and P3 can recover the general term of (2) as
follows.

1) P1 and P3 can get their pseudo shares I11 = f1(S1) = 3
and I13 = f1(S3) = 9.

2) For 1 ≤ i ≤ 2, they get h(1)
0 = I11 = 3. For 2 < i ≤ 4,

they get h(1)
2 = I13 − y13 = 8.

3) According to Theorem 1, using two points (0, 3/20)
and (2, 8/22), the two participants can determine the poly-
nomial p1(x) with the degree 1:

p(1)(x) =
3

20
· x− 2

0− 2
+

8

22
· x− 0

2− 0
(mod 19)

= 9x+ 3 (mod 19),

so the general term of (2) is h(1)
i = (9i+ 3)2i.

Secondly, P1, P3 and P6 can recover the general term of
(3) as follows.

4) P1, P3 and P6 can get their pseudo shares I21 =
f2(S1) = 3, I23 = f2(S3) = 8, and I26 = f2(S6) = 15.

5) For 1 ≤ i ≤ 3, they get h(2)
0 = I21 = 3 and h

(2)
2 = I23 =

8. For 3 < i ≤ 10, they get h(2)
5 = I26 − y26 = 14.

6) According to Theorem 1, using three points (0, 3/10),
(2, 8/12) and (5, 14/15), the three participants can deter-
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mine the polynomial p2(x) with the degree 2:

p(2)(x) =
3

10
· x− 2

0− 2
· x− 5

0− 5
+

8

12
· x− 0

2− 0
· x− 5

2− 5

+
14

15
· x− 2

0− 2
· x− 5

0− 5
(mod 19)

= 17x2 + 16x+ 3 (mod 19),

so the general term of (3) is h(2)
i = 17i2 + 16i+ 3.

7) Then these participants can get hi = h
(1)
i + h

(2)
i =

(9i+ 3)2i + (17i2 + 16i+ 3).
8) Finally, P1, P3 and P6 can recover the shared secrets

by the following equations:

key1 = d1 + h10 = 2 + 5 = 7,

key2 = d2 + h11 = 5 + 4 = 9.

(2) Because the participants in γ1 have higher privileges
than the participants in γ2 and the participants in γ1 can
replace the participants in γ2, at least three participants in
γ1 can pool their shares to recover the secrets by the way
mentioned in Section 3.3. We assume that three participants
from γ1 are P1, P3 and P4.

Firstly, P1 and P3 can recover the general term of (2)
using the same way as before, which is h(1)

i = (9i+ 3)2i.
Secondly, P1, P3 and P4 can recover the general term of

(3) as follows.
1) P1, P3 and P4 can get their pseudo shares I21 =

f2(S1) = 3, I23 = f2(S3) = 8, and I24 = f2(S4) = 6.
2) For 1 ≤ i ≤ 3, they get h(2)

0 = I21 = 3 and h
(2)
2 = I23 =

8. For 4 < i ≤ 10, they get h(2)
3 = I24 − y24 = 14.

3)According to Theorem 1, using three points (0, 3/10),
(2, 8/12) and (3, 14/13), the three participants can deter-
mine the polynomial p2(x) with the degree 2:

p(2)(x) =
3

10
· x− 2

0− 2
· x− 3

0− 3
+

8

12
· x− 0

2− 0
· x− 3

2− 3

+
14

13
· x− 0

3− 0
· x− 2

3− 2
(mod 19)

= 17x2 + 16x+ 3 (mod 19),

so the general term of (3) is h(2)
i = 17i2 + 16i+ 3.

4) Then, three participants from γ1 can get hi = h
(1)
i +

h
(2)
i = (9i+ 3)2i + (17i2 + 16i+ 3).

5) Finally, P1, P3 and P4 can recover the shared secrets
key1 = 7 and key2 = 9.

4 THE PROPERTY OF OUR SCHEME

In this section, we will prove that our scheme is secure and
show that our scheme is both perfect and ideal.

Firstly, we mainly give an analysis that shows why our
scheme keeps secure for the participants in the unqualified
subset.

When the participants in an unqualified subset want to
recover the shared secrets, they must recover all general
terms of m LHR relations at first. For illustration conve-
nience, we suppose that the unqualified subset B satisfies
the conditions as follows:

1) B
∩
(
∪j

i=1 γi) = kj − 1,
2) B

∩
(
∪t

i=1 γi) ≥ kt,
where 1 ≤ j ≤ m, 1 ≤ t ≤ m and t ̸= j. That is to say,

the unqualified subset can recover all general terms of the
m − 1 LHR relations, except the general term of j-th LHR
relation.

Theorem 2 Public values α1, α2, · · · , αm do not leak
any information except the auxiliary equation of the LHR
relation.

Proof From the public value αi, the auxiliary equation
(x − αi)

ki = 0 of a LHR relation with degree ki can be
determined. However, without knowing any ki terms of
this LHR relation, the general term of this LHR relation can
not be determined. Thus these public values α1, α2, · · · , αm

do not leak any information except the auxiliary equation
of the LHR relation. �

Theorem 3 For 1 ≤ j ≤ m,, the LHR relation with degree
kj is secure for the unqualified participants if and only if the
polynomial with degree kj − 1 is secure for the unqualified
participants.

Proof For 1 ≤ j ≤ m, from Corollary 1 and the public
value αj ̸= 0, we can get

h(j)(i) = p(j)(i)αi
j ⇒ p(j)(i) = h(j)(i)/αi

j (4)

where the degree of p(j)(i) is kj − 1. From Theorem 2, we
know that public value αj does not leak any information
except the auxiliary equation of the j-th LHR relation.

(⇒) Suppose that the LHR relation with degree kj is
secure for the unqualified participants, which means that
kj − 1 values can not determine the general term of a LHR
relation with degree kj . If the polynomial with degree kj−1
is not secure for the unqualified participants, that is to say,
kj−1 points can determine a polynomial with degree kj−1.
From (4), we also infer that kj − 1 values can determine the
general term of a LHR relation with degree kj , which is
contradictory to our assumption.

(⇐) Suppose that the polynomial with degree kj − 1 is
secure for the unqualified participants. If the LHR relation
with degree kj is not secure for the unqualified participants,
then these kj−1 terms (h(j)

i1
, h

(j)
i2

, · · · , h(j)
ikj−1

) can determine
the general term of the j-th LHR relation. According to (4),
this means that kj − 1 points can determine the polynomial
pj(i) with degree kj − 1, which is contradictory to our
assumption. �

Secondly, we will show that our scheme is both perfect
and ideal.

Before we prove this result, we point that each partici-
pant only needs to keep one share, but can construct m LHR
relations with different pseudo shares. From the description
of the recovery phase, we find that those n1 participants
chosen to construct the first LHR relation are used to
construct the other m − 1 LHR relations, too. Because the
distributor chooses different one-way functions to compute
pseudo shares to construct different LHR relations, all the
participants in our scheme only need to keep one share.

For example, in Section 3.4, each participant Pi in γ1
generates two different pseudo shares f1(Si), f2(Si) in the
construction phase. But each participant Pi in γ1 just needs
to hold one share Si during the whole scheme.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Theorem 4 Our hierarchical threshold secret sharing
scheme is perfect and ideal.

Proof From Theorem 3, we know that the problem
whether the participants from the unqualified subset B can
recover the general term of the j-th LHR relation can be
seen as the problem whether kj − 1 random points can
determine the polynomial with degree kj − 1. Obviously,
this is impossible because only greater than or equal to kj
points can determine the polynomial with degree kj − 1
uniquely. The probability of determining one shared secret
is not greater than that of randomly selecting one shared
secret from the predefined finite field GF (q). So our scheme
satisfies H(S|SB) = H(S). Therefore, our scheme is as
secure as Shamir’s threshold secret sharing scheme, then
our scheme is perfect.

Each participant should just hold one share during the
whole scheme, and both the share and the shared secrets are
selected over GF (q). So the share held by a participant is as
long as the shared secret, which means that our scheme is
ideal. �

5 DISCUSSION

In this section, we mainly show some important character-
istics of our scheme and compare our scheme with some
presented schemes [8], [13].

5.1 Global Threshold
The global threshold of our scheme is km, which means
that the qualified subsets of our scheme must contain km
participants. From Theorem 1, we get hi is a general term
of a (k1 + k2 + · · · + km)-th order LHR relation, however,
our scheme only needs km participants to recover the shared
secrets.

For j = 1, 2, · · · ,m, if kj − kj−1 (k0 = 0) participants
from the subsets γj use their pseudo shares to recover the
general term h

(j)
i , then they must use their other pseudo

shares to recover the general terms h
(j+1)
i , · · · , h(m)

i . For
example, if k1 participants from γ1 use their pseudo shares
to recover the general term h

(1)
i , these k1 participants need

to use their other pseudo shares to recover the general terms
h
(2)
i , h(3)

i , · · · , h(m)
i . Therefore, our scheme needs at least

k1 + (k2 − k1) + · · · + (km − km−1) = km participants
to recover the shared secrets, which means that the global
threshold of our scheme is km.

In the illustrative example in Section 3.4, we know that
hi is the general term of a LHR relation with degree 5.
However, each participant Pi in γ1 generates two different
pseudo shares f1(Si), f2(Si) in the recovery phase. For in-
stance, the participants P1 and P3 generate {f1(S1), f2(S1)}
and {f1(S3), f2(S3)}, respectively. Then, f1(S1), f1(S3) are
used to recover the general term of the first LHR relation,
and f2(S1), f2(S3) with f2(S4) or f2(S6) are used to recover
the general term of the second LHR relation. Their different
pseudo shares can be used to recover different LHR relation-
s. Therefore, even though the degree of this LHR relation is
five, just three participants are required to reconstruct the
general terms of two LHR relations. Therefore, the global
threshold of this example is k2 = 3.

5.2 Computational complexity
When the threshold of the secret sharing scheme is km,
the computational complexity of the scheme based on the
polynomial usually arrives at O(nkm−1).

Because the security of our scheme does not depend on
the values of α1, α2, · · · , αm, we can let α1, α2, · · · , αm be
special values, such as 1,−1, 2,−2, · · · . Therefore the power
of αi is easy to calculate, and the computational complexity
of the power of αi is O(log n) in our scheme.

So the computational complexity of our scheme is
O(nkm−1 log n).

5.3 Performance feature
In this section, we give a performance analysis of the
schemes in [8], [13], and our scheme.

TABLE 1: Comparing the presented schemes with our
scheme

Schemes Tassa [8] Chen et al. [13] Our scheme

The most
time cost

for
calculation

Assigning
identities

and shares
to the

participants

Finding
nonsingular

matrices

Generating
or

recovering
LHR

relations

Approach Birkhoff
interpolation

Integer polymatroids
and

Brickell’s method [2]
LHR relations

Time cost Exponential
time

Exponential
time

Polynomial
time

Multi-secret NO NO YES
Ideal YES YES YES

From the table above, in Tassa’s scheme [8], the distribu-
tor must perform possibly exponential checks when assign-
ing identities and shares to the participants. Even though
Chen et al. [13] gave a hierarchical secret sharing scheme
based on the integer polymatroids, the non-singularity of
many matrices should be checked, because the main idea of
the scheme comes from Brickell [2].

However, in our scheme, the distributor just needs to
construct m different LHR relations, compute some required
terms and use them to distribute multiple secrets. What’s
more, the participants only need to do the reconstruction
and the summation calculation of the general terms of dif-
ferent LHR relations in our scheme. Although more values
need to be published, our scheme avoids many checks. This
is because different approaches are used in these schemes.
In addition, the time cost of our scheme is polynomial time.
Furthermore, our scheme can share multiple secrets at the
same time, whereas the other two schemes can only share
one secret one time. And our scheme is both perfect and
ideal. Therefore, compared with Tassa’s and Chen et al.’s
scheme, our scheme not only is more efficient, but also has
better properties.

6 CONCLUSION

Based on the LHR relations and the one-way function, we
propose a hierarchical multi-secret sharing scheme. We list
the characteristics of the proposed scheme as follows.

Our scheme overcomes the drawback that the distributor
must perform possibly exponential checks when assigning
identities and shares to the participants, when the schemes
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are based on Birkhoff interpolation. Our scheme also over-
comes the drawback of Chen et al.’s scheme in which the
non-singularity of many matrices needs to be checked. Our
scheme is as secure as Shamir’s secret sharing scheme,
then our scheme ia also a perfect secret sharing scheme. In
addition, each participant just holds only one share during
the whole scheme and the share is as long as the secret,
which means that our scheme is ideal. Besides, although
we need more public values, our scheme can share multiple
secrets simultaneously.

In the future, because we assume that the participants
are semi-honest in our scheme, we can consider adding
verification phase into our scheme without this assumption.
What’s more, the way used in our scheme can be applied
to compartmented secret sharing schemes easily, so we can
consider constructing new compartmented secret sharing
scheme using LHR relations.
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