
International Journal of Information Security manuscript No.
(will be inserted by the editor)

SLAP: Simple Lattice-Based Private Stream Aggregation
Protocol

Jonathan Takeshita 1, Ryan Karl 1, Ting Gong 2, Taeho Jung 1,a

1Department of Computer Science
2 Department of Mathematics
University of Notre Dame
Notre Dame, Indiana, USA

Received: date / Accepted: date

Abstract Private Stream Aggregation (PSA) protocols

allow for the secure aggregation of time-series data, af-

fording security and privacy to users’ private data, with

significantly better efficiency than general secure com-

putation such as homomorphic encryption, multiparty

computation, and secure hardware based approaches.

Earlier PSA protocols face limitations including needless

complexity, a lack of post-quantum security, or other

practical issues. In this work, we present SLAP, a Simple

Lattice-based Private Stream Aggregation Protocol.

SLAP features two variants with post-quantum security,

with simpler and more efficient computations enabled by

(1) our white-box approach that builds the encryption

directly from the Ring Learning With Errors assumption

and (2) application of state-of-the-art algorithmic opti-

mizations in lattice-based cryptography. We prove that
SLAP with differentially private inputs is an aggregator

oblivious PSA scheme. We implement SLAP, and show

experimentally the improvements of SLAP over similar

work. We show a speedup of 20.76x over the previous

state-of-the-art RLWE-based PSA work’s aggregation,

and apply techniques including RNS, NTT, and batch-

ing to obtain a throughput of 390,691 aggregations per

second for 1000 users. The communication overhead of

SLAP is less than in previous work, with decreases of up

to 99.96% in ciphertext sizes as compared to previous

work in RLWE-based PSA. We also show the improve-

ment of SLAP over other state-of-the-art post-quantum

PSA with regards to throughput, and compare and con-

trast our RLWE-based approach with other work based

upon secret sharing and Learning-With-Rounding.

Keywords Public key cryptosystems · Lattice-based
Cryptography, · Private Stream Aggregation.

ae-mail: tjung@nd.edu

1 Introduction

1.1 Motivations

Many real-life applications can be posed as a problem of

aggregation. For example, to compute an average over

a set of data, the data can be additively aggregated

(i.e. summed), and then divided by the number of data

elements. In some such contexts where statistical anal-

ysis is essential, the privacy of individual data holders

is paramount. Examples of this include health care, ed-

ucation, and advertising, where individuals’ privacy is

often protected by law [7]. Due to such demands, secure

aggregation of large-scale user-generated datasets has

gained interest in industry, where such datasets need

to be analyzed. Facebook Research and Sony Research
have called for proposals in secure aggregation [32, 28],

and Google has adopted secure aggregation in their se-

cure federated learning framework [44]. Smart metering

is another application of aggregation in related work

[23, 24]. It is thus desirable to consider schemes that al-

low data aggregation to be efficiently computed without

risking users’ security against external eavesdroppers or

privacy against other participants.

One possible application of secure and private ag-

gregation is in aggregating data from hospitals, whose

patients’ privacy is protected by laws such as HIPAA.

Hospitals may want to jointly compute the total of

sensitive figures such as patient deaths or malpractice

incidents in a locality, but also want to conceal their

individual figures, both from external attackers (secu-

rity) or the authority computing the total (privacy).

Similarly, homeowners using smart metering may wish

to not disclose the exact details of their power usage,

as it may leak information about their personal habits

or travel patterns. Online advertising is another use

2

case; users’ web browsers seeing an advertisement can

privately send whether or how quickly a user clicked

on the ad. These are just a few possible applications of

secure and private aggregation.

Simply put, the secure data aggregation problem is

as follows: considering n users with data xi, how can we

allow a third party to compute
∑n−1

i=0 xi while preserving

users’ security and privacy? Semantic security against

eavesdroppers is easy enough to achieve with symmetric

encryption, but this does not prevent the aggregator

from learning individual users’ data. Privacy guarantees

are thus required to make sure the aggregator cannot

learn anything about individual data. This problem is

a general one that is applicable to privacy-preserving

statistical calculation (e.g., count, mean, standard devi-

ation), histogram calculation, federated deep learning

[58], smart metering [17], and can be seen in areas in-

cluding healthcare, education, and finance that require

computation over users’ private data. In the modern
era, the problem also implicitly includes efficiency of

both user-side and server-side operations, as well as min-

imizing communication overhead. Considering practical
efficiency and throughput is especially important at the

scale that Big Tech operates in - Facebook and Google

serve billions of users and their queries daily that they

might with to perform statistical analysis upon.

A simple solution to this problem is to use a trusted

third party to collect and aggregate users’ data as in

Figure 1; however, the existence of a fully trustworthy

third party is a strong assumption that we wish to elim-

inate. The shortcomings of more general approaches

to this problem have led to the creation of the idea of

Private Stream Aggregation (PSA), as shown in Fig-

ure 2. As originally introduced by Shi et al. [51], PSA
encompasses security and privacy in the idea of aggre-

gator obliviousness. Aggregator obliviousness requires

that no adversary can learn any new information about

a target’s data, even when compromising all other par-

ticipating parties. PSA is an area of active research

[9, 51, 33, 34, 36, 24, 55] due to its wide applicability to

secure computation.

1.2 Other Methods

Other approaches include the use of (fully) homomorphic

encryption, secure multiparty computation, or trusted

hardware to allow a third party to collect and aggre-

gate data without gaining any knowledge about the

users’ data besides the final aggregation. While these

approaches can achieve a high degree of security, they

incur a high overhead in computation and/or commu-

nication, and may have other issues rendering them

Fig. 1 Time-series Plain Aggregation

Fig. 2 Time-series Private Stream Aggregation with Noisy
Data

undesirable for ordinary users. Homomorphic Encryp-
tion (HE) can be applied to compute over encrypted

data, and can guarantee quantum security to encrypted

data [43, 13, 26]. However, there are many issues with

using existing HE schemes, including key management,

computational overhead, and complexity. Trusted Exe-

cution Environments, including Intel SGX, AMD Secure

Execution Environment, and TrustZone, can be used to

facilitate secure computing. However, these hardware

solutions are vulnerable to practical attacks, incur run-

time penalties, and introduce nontrivial implementation

difficulties [45]. Secure Multiparty Computation (MPC)
protocols are used to allow a set of parties to securely

compute a function over their inputs [59, 37]. These func-

tionalities may require multiple rounds of interactive

communication between parties, where for a single piece

of input data, multiple messages must be exchanged

between parties.

Differential Privacy aims to provide dataset-level

privacy by adding a small amount of noise to each

element, so that the computation of a function over

the dataset doesn’t reveal whether or not a particular

element is included in the dataset [9, 21, 51]. This can

give users some privacy, obscuring information about

3

their individual data that might otherwise be gleaned

from the final result. The normal model of Differential

Privacy assumes a trusted aggregator who aggregates

user input, then adds differentially private noise to mask

the exact result. PSA eliminates this assumption of a

trusted aggregator, replacing it with one of an untrusted

aggregator who receives inputs with value-obscuring

noise already added.

1.3 Private Stream Aggregation

Later work in secure aggregation worked towards con-

structing aggregation schemes secure against quantum

adversaries [1, 3, 49]. The state-of-the-art Ring Learning

With Errors (RLWE)-based LaPS scheme [9] achieves
additive aggregation with quantum security. However,

the LaPS scheme introduces needless complexity and

overhead in its operations, and its basic version only

guarantees security for a single round of aggregation. It
also relies on the BGV cryptosystem [13] as a black-box

primitive, which hinders the possibility of optimizing

the underlying system for the task of aggregation. Other

quantum-secure PSA not based on RLWE has been pro-

posed [55, 24], but faces issues of security [18] or practi-

cality with many users due to key size growth. There

exists other highly efficient recent work in quantum-

secure PSA [55, 24]. Though these works do not use

RLWE as their cryptographic assumption, they provide

more state-of-the-art benchmarks to compare our work

against.

In this work, we improve upon previous construc-

tions in secure aggregation by presenting simpler and

more efficient lattice-based quantum-secure aggregation

schemes. Instead of relying on HE schemes such as BGV

directly as a primitive, we create novel schemes that

arise directly from the LPR/NTRU assumptions and

their underlying principles of lattice-based hardness as-

sumptions [42, 31]. To create these schemes, we take a

white-box approach and design RLWE-based PSA pro-

tocols, without using other HE cryptosystems as primi-

tives. Further, our schemes allow for security through

multiple aggregations without key redistribution, fixing

weaknesses in previous work [9].

Our scheme uses one-time key generation to pro-

vide security without key redistribution across multiple

aggregations. This simple construction helps create a

PSA scheme that is comparable to the state-of-the-art

even with a naive implementation, and is capable of

greatly improving upon the state-of-the-art with various

optimizations. Our schemes satisfy the PSA security

definition of aggregator obliviousness, and apply differ-

ential privacy similarly to prior work. We show that our

optimized implementation can improve upon previous

work in RLWE-based PSA [9] by 65x for encryption

and 20x for aggregation, and can achieve a throughput

of over 390,691 aggregations per second for 1000 users.

We also show that our schemes are scalable, and more

efficient in communication overhead than previous work,

with very large improvements (over 99%) in ciphertext

size. We also compare our work to other state-of-the-art

post-quantum PSA protocols [24, 55], and show that

our work is comparable in latency and shows a great im-

provement in practical throughput over these schemes.

Our Contributions

– We present SLAP, a novel lattice-based and quantum-

secure PSA scheme with two versions, built using a

white-box approach directly from the RLWE prob-

lem. By taking this approach, we can construct
lattice-based schemes optimally tailored to the appli-

cation of PSA. Both versions are simpler and more

efficient than previous related work, and only need a

single trusted setup to allow for secure aggregations
across multiple timestamps. SLAP is particularly

efficient with regards to communication, with cipher-

text size smaller by up to 99.96% as compared to

other RLWE-based PSA. We show that SLAP is an

aggregator oblivious PSA scheme, and can attain

differential privacy.

– We further integrate the Number-Theoretic Trans-

form [41], Residue Number System [30], and double-

batching to greatly improve the practical perfor-

mance and throughput of SLAP. To our knowledge,

SLAP is the first work to fully explore and implement

these optimizations in PSA.

– We implement simple and optimized versions of both

variants of SLAP, and analyze the results to show

the practical efficiency and scalability of SLAP. Our

results show performance improvements of an order

of magnitude against previous work, which become

much greater when integrating our double-batching

strategy. We can achieve a latency as low as 3.26ms

for a single aggregation (with throughput of up to

390,691 aggregations per second with 1000 users, and

only one order of magnitude slower than plain aggre-

gation) with the largest set of parameters evaluated

by LaPS. This is the first work in quantum-secure to

consider the practical issues of throughput and com-

munication overhead in depth. SLAP is shown to be

comparable in terms of operation latency with the

leading state-of-the-art post-quantum PSA schemes

[9, 55, 24], and can greatly outperform preexisting

post-quantum PSA schemes in throughput due to

its batching. We are also able to conclude from our

experiments the relative superiority of noise-scaled

message encoding against message-scaled encoding

for the use of additive PSA.

4

– Both implementations (basic and fully optimized)

of our scheme are made available (anonymously) as

open-source code. We provide a software library that

can be used in future research in PSA and post-

quantum cryptography.

Organization In Section 2, we discuss related work

in PSA and differential privacy. In Section 3, we give

relevant background on the RLWE problem and differ-
ential privacy, as well as the scenario, security notion,

and orthogonal issues of PSA. In Section 4 we define

the basic operations of SLAP, and discuss its security,

novelty, and benefits. In Section 5 we introduce differ-

ential privacy and prove aggregator obliviousness for

SLAP. Section 6 discusses optimizations and practical

issues for SLAP. Section 7 contains our experimental

evaluation of SLAP, and Section 8 summarizes our work

and contributions.

2 Related Work

In this section, we review related work in PSA. Both pre-

quantum and post-quantum PSA works are included,

to show the progression of research. A brief overview of

Differential Privacy is also included here and in Section 3,

as it is a technique frequently used to obscure user

inputs to provide privacy. Like other work in PSA [51,

9, 24, 33], we focus primarily on novel and efficient

constructions, and are not primarily concerned with

robustness. Nevertheless, we include works on reliability

in PSA for reference to this orthogonal area.

2.1 Pre-quantum PSA

The seminal works of Shi et al. [51] and Rastogi et al. [48]

introduced the concepts of PSA and aggregator oblivi-

ousness, presenting schemes based upon Diffie-Hellman

and Fourier perturbation with differential privacy. The

work of Joye et al. [33] improved limits on plaintext

spaces, using the hardness assumption of Decisional

Composite Residuosity. Erkin et al. [23] propose a PSA-

like framework for use in smart metering using the

Pallier cryptosystem. Protocols for secure distributed

polynomial computations based on the discrete loga-

rithm problem have also been presented [34, 35], which

have the added advantage of not relying upon secure

channels of communication. These works are vulnerable

to quantum-capable attackers, who can utilize Shor’s al-

gorithm for solving integer factorization and the discrete

logarithm problem [52].

2.2 Post-quantum PSA

There exists some work in PSA-like protocols relying

on lattice-based cryptography, which is secure against

quantum-capable adversaries [1, 3, 49]. However, these

works have the disadvantage of heavily relying on a

trusted third party, and are less versatile, being de-

signed for the specific scenario of smart metering. Key-

homomorphic pseudorandom functions can be used to

construct quantum-secure PSA protocols such as the

leading RLWE-based LaPS protocol without the re-

quirement of a trusted third party (beyond initial setup)

[9, 54]. However, such protocols have extremely complex

decryption procedures or other weaknesses. In particular,

LaPS has a “double encryption”, where homomorphi-

cally encrypted user input is again concealed within an

Augmented learning-with-errors term.

The work of Ernst et al. [24] uses approximately

key-homomorphic PRFs and the learning-with-rounding

(LWR) problem to construct quantum-secure PSA. This

scheme is relatively simple and features small ciphertexts

with large plaintext spaces. The security of the LWR

and Ring-LWR problems is still of concern due to the

deterministic nature of the rounding [18].

PSA schemes using secret sharing [17, 10, 55] are

not weak to quantum adversaries. The LaSS protocol

of Waldner et al. [55] is of particular note, as it is most

recent and highly efficient. All of these protocols have

requirements including multiple rounds of communica-

tion, multiple trusted parties, and key sizes quadratic

in the number of users that hinder their scalability and

practical applicability. However, LaSS is highly effec-

tive for the scenario of lower numbers of users under a

stricter security model than that of LaPS.

Multi-Key Fully Homomorphic Encryption [6, 46]

can be used to implement PSA, along with many other

types of multi-user computations; such schemes are more

general and much more complex that what is needed for

PSA. Especially for weaker devices such as IoT nodes,

the extra overhead and storage may not be desirable.

In particular, the use of multiple encryptions [6] or

constructing matrices of ciphertexts [46] would require

large amounts of memory, storage, communication, and

computation, making these general schemes less prac-

tical than purpose-built PSA schemes for applications

involving aggregation.

LaPS [9], LaSS [55], and Ernst et al. [24] are the

works that we primarily compare and contrast our work

to. These works each use a different strategy to provide

quantum security, with LaPS’ use of RLWE-based homo-

morphic encryption being the closest to our direct use

of RLWE. All of these works provide some experimental

evaluation, with that of LaPS being the most extensive,

5

allowing us to make experimental comparisons of the

protocols.

2.3 Reliability and Fault-Tolerance in PSA

Related research in PSA does not always explore practi-

cal issues around robustness such as fault tolerance, re-

liability, input poisoning, or fully malicious participants
who might craft nonsensical messages or even refuse

to communicate. Often, PSA focuses on the theoretical

construction of protocols more than practical concerns

[51, 9, 55]. Other lines of research do provide solutions

for fault tolerance, dynamic join/leave, maliciously cho-

sen inputs, and error detection [56, 57, 38, 47, 39].

2.4 Differential Privacy

Differential Privacy refers to the technique of adding

specially-distributed noise to data to mask the exact

values [20, 48, 54]. It is commonly used in work in

aggregation to hide the exact result of a computation

[9, 51, 39, 2]. PSA schemes have users add differentially

private noise user-side, so that users do not have to

trust the aggregator to add noise after aggregation and

the final noise added in the aggregate result is bounded

above by a constant (with overwhelming probability).

3 Background

3.1 Notation

We summarize common notation in SLAP in Table 1.

For a number x, let ⌊x⌉ be the integer closest to x

(rounding up if the fractional portion of x is 1
2). Let [x]t

be the centered modular reduction of x mod t, such

that [x]t = x−⌊xt ⌉ · t ∈ Zt, where Zt = [−t
2 , t

2)∩Z, and
similarly Rq = Zq[X]/Φ(X) for Zq = [−q

2 , q
2). We use R

to denote the quotient ring of Z[X]/Φ(X). Here, Φ(X) is

the M = 2N -th cyclotomic polynomial with degree N =

2d for some positive integer d. Define Rt = Zt[X]/Φ(X),

the ring with all coefficients in Zt. Boldface lowercase

letters (e.g. a) denote ring elements. Centered modular

reduction can be applied coefficientwise to ring elements,

i.e. [a]t ∈ Rt.

3.2 Ring Learning With Error (RLWE) Problem

Let s be a random element of Rq drawn from a distribu-

tion χ. The distribution χ may be bounded by a small

number, or it can be uniformly random over Rq, with

no effect on the security of RLWE [26, 42]. Let ai, ei

be a polynomially bounded selection of elements of Rq,

with ai chosen uniformly at random1 and ei chosen

randomly from a distribution ζ on Rq. Here, ζ may be

the same as χ, or it may also be bounded by a small

number. In practice, 1-bounded distributions are often

used for χ and ζ. An adversary is given the set of pairs

(ai,bi) ∈ R2
q . Unknown to the adversary is whether the

values bi are RLWE terms, i.e., bi = [ai · s+ ei]q, or if

bi was randomly chosen from Rq. The decisional RLWE

problem is then to determine whether the terms bi are

RLWE terms or random elements of Rq.
The RLWE problem is believed to be intractable for

quantum computers [42]. RLWE terms of the form bi =

[ai · s+ t · ei]q with t, q coprime are also pseudorandom

[11, 12, 50], and mathematically convenient for some

schemes.

3.3 Differential Privacy and Computational Differential

Privacy

We recall relevant definitions from differential privacy

[54, 51, 48, 9] in this section. Let exp(·) be the exponen-

tial function. Denote the l1 norm of a database D as

||D||1 =
∑|D|

i=1 |Di|.

Definition 3.1 The l1 distance between databasesD0, D1

is ||D0 −D1||1. We say that D0, D1 are adjacent when
the distance between the databases is no more than 1.

Definition 3.2 A function M is (ϵ, δ)-differentially pri-

vate if for all adjacent databases D0, D1 and all U that

are subsets of the range of M , Pr[M(D0) ∈ U] ≤
exp(ϵ) · Pr[M(D1) ∈ U] + δ. (This is abbreviated to
M being ϵ-differentially private when δ is zero.)

Definition 3.3 A function M is (α, β)-accurate with

respect to a query function f (with the same domain

and range as M) when for all D in the domain of M ,

Pr[|M(D)− f(D)| ≤ α] ≥ 1− β.

Definition 3.4 The discrete Laplacian distribution is

defined for a scale parameter s > 1. Let σ = exp(−1/s) ∈
(0, 1). Then the discrete Laplacian distribution DLs is

definied to be the function with a probability mass

function of DLs(x) =
1−σ
1+σ · σ

|x|, for arguments x ∈ Z.

3.4 Private Stream Aggregation and Aggregator

Obliviousness

We consider semi-honest (honest-but-curious) parties for

PSA and aggregator obliviousness. Each user i possesses

1While an element ai could be zero, this happens with only
negligible probability.

6

Table 1 Common Important Notation

Notation Meaning

λ Security parameter, measured in bits.
Rq The polynomial ring that ciphertexts and other terms reside in.
q Ciphertext modulus, an integer that is commonly hundreds of bits.
N The polynomial modulus degree, a power of two commonly ranging from 210 to 215.
t The plaintext modulus, an integer much less than q. Commonly ranges from 16 to 192.
n Number of users in the PSA instantiation.

χ, ζ Small error distributions on Rq .
ts The timestamp at which a particular aggregation takes place.

xi,ts,xi,ts User i’s PSA input at timestamp ts.
ri,ts, ri,ts User i’s PSA noise at timestamp ts.

ei,ts User i’s PSA error term at timestamp ts.
ci,ts, ci,ts User i’s ciphertext at timestamp ts.

si, si User i’s PSA key.
s′, s′ The aggregator’s key.

H A random-oracle hash function mapping from timestamps to Rq .
Ats = H(ts) The element of Rq derived from H and ts, used as a public term in the aggregation.

parms The public PSA parameters Rq , t, n, H.
∆ Equal to ⌊ q

t ⌋, used in SLAPMS encryption and decryption.
yts,yts The final aggregation result, equal to the sum of users’ inputs and noise.

β A parameter controlling the probability that differentially private noise drawn from a Discrete Laplacian distribution will be zero.
ϵ, δ Differential Privacy parameters related to privacy.
α, β Differential Privacy parameters related to accuracy.
s, σ Parameters of the Discrete Laplacian distribution used to draw differentially private noise.

γ Proportion of users honestly adding differentially private noise.
w Maximum difference in user inputs when applying Differential Privacy.
k Number of RNS moduli used for the ciphertext.

q0 · · · qk−1 Coprime ciphertext moduli used in RNS, whose product is q. For use in the NTT, these should each be equivalent to 1 modulo 2N .
q∗i , q̃i, ωi, θi Precomputed parameters used in RNS base conversion and division-with-rounding.
v, zi, yi, ω, v Penultimate and final results in RNS base conversion and division-with-rounding.

k′ Number of RNS moduli used for the plaintext.

a piece of data xi, corresponding to some timestamp ts.

The users wish to calculate the aggregation
∑n−1

i=0 xi.

(Other types of aggregation such as multiplicative aggre-

gation are possible; in this work we only present additive

aggregation.)

Private Stream Aggregation schemes allow a third

party (the aggregator) to perform this aggregation while

providing users privacy for their time-series data sent

to the aggregator. A PSA scheme should provide pri-

vacy to individual users, preventing the aggregator from

learning their individual data even when compromising

or colluding with other users. PSA was first introduced

by Shi et al. [51] as the combination of a scheme for ag-

gregation secure against outside adversaries and the use

of privacy-preserving noise to obscure user inputs. PSA

schemes are formalized as the following 3 algorithms:

– Setup(λ, · · ·): Takes a security parameter λ as input,

along with any other required parameters, e.g., the

number of users n, or the range of their data. Returns

a set of parameters parms, users’ secret keys si, i ∈
[0, n− 1], and the aggregation key s′.

– NoisyEnc(parms, xi,ts, ri,ts, si, ts, · · ·): Takes
the scheme’s parameters, and a user’s secret key si,

time-series input xi,ts, and noise ri,ts, along with

a timestamp ts and any other required parameters.

Returns an encryption ci,ts of the user’s noisy input

under their secret key at timestamp ts. Users should

only run this function once for any given timestamp.

– Agg(parms, s′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s

parameters, the aggregation key, a timestamp, and

the n time-series ciphertexts

ci,ts = NoisyEnc(parms, xi,ts, ri,ts, si, ts, · · ·) from
the users (with timestamp ts). Returns the noisy

sum yts =
∑n−1

i=0 xi,ts + ri,ts.

Users runNoisyEnc on their data (once per timestamp),

and send ciphertexts ci,ts to the aggregator. The aggre-

gator calls Agg on the ciphertexts c0,ts, · · · cn−1,ts to

get the noisy aggregation result yts, which is desired to

be approximately equal to
∑n−1

i=0 xi,ts. In PSA schemes,

the algorithm Setup is run only once and in a trusted

manner [9, 51, 33]. This can be accomplished through

the use of an additional trusted third party, secure hard-

ware, or secure multiparty computation. Because it is

a one-time process, it has negligible influence to the

scalability of the entire protocol.

In PSA, because only a single round of input-dependent

communication must be performed, PSA can be more

efficient in communication than most existing MPC pro-
tocols [54, 37]. This is an advantage of PSA with semi-

honest parties; schemes with robustness and security

against malicious and colluding adversaries commonly

require more communication.

Aggregator Obliviousness Informally, we require that

an adversary able to compromise any number of the

aggregator and other users is unable to learn any ad-

ditionally revealed information about uncompromised

users’ data from the protocol. The idea of aggregator

7

obliviousness encompasses these ideas. Encrypt-once se-

curity places the additional restriction that an attacker

can only gain access to a single encryption for a partic-

ular user and timestamp. We restate the definition of

aggregator obliviousness with encrypt-once security in

Definition 3.5 [9, 51]:

Definition 3.5 Suppose we have a set of n users, who

wish to compute an aggregation at a time point specified
by the timestamp ts. An aggregation scheme AS is

aggregator oblivious with encrypt-once security [9, 51]

if no polynomially bounded adversary has an advantage

greater than negligible in the security parameter λ in

winning the following game:

The challenger runs the Setup algorithm and returns

the public parameters parms to the adversary. Then

the adversary will guess which of two unknown inputs

was a users’ data, by performing the following queries:

Encrypt: The adversary sends the values

(i, xi,ts, ri,ts, ts) to the challenger and receives back

NoisyEnc(parms, xi,ts, ri,ts, si, ts) to the adversary. For

a given user, only one query at a particular timestamp

ts can be made.

Compromise: The adversary sends i ∈ [0, n) ∪
{□} to the challenger. If i = □, the challenger gives

the aggregator’s decryption key s′ to the adversary.

Otherwise, the challenger returns the ith user’s secret
key si to the adversary.

Challenge: The adversary may only make this query

once. The adversary sends a set of participants S ⊂ [0, n)

to the challenger, with i ∈ S not previously compro-

mised. For each user i ∈ S, the adversary chooses two

plaintext-noise pairs at a new timestamp ts not previ-

ously used in any Encrypt query as (xi,ts, ri,ts), (x̃i,ts, r̃i,ts)
and sends them to the challenger. The challenger then

chooses a random bit b. If b = 0, the challenger com-

putes ci,ts = NoisyEnc(parms, xi,ts, ri,ts, si, ts) for ev-

ery i ∈ S. If b = 1, the challenger computes ci,ts =

NoisyEnc(parms, x̃i,ts, r̃i,ts, si, ts,) for every i ∈ S.

The challenger returns the ciphertexts {ci,ts}i∈S to the

adversary.

We say that the adversary wins the game if (1)

they can correctly guess the bit b chosen during the

Challenge and (2) if the aggregator is compromised,

then
∑

i∈S xi,ts + ri,ts =
∑

i∈S x̃i,ts + r̃i,ts.

In this game, an adversary can trivially learn infor-

mation about a single user’s data, by compromising the

aggregator and all other users, decrypting the compro-

mised users’ data, and computing the difference of the

aggregator’s sum and the sum of the compromised users’

data. These vulnerabilities are inherent in scenarios with

powerful adversaries; thus aggregator obliviousness re-

quires that no additional information is learned in such

cases of unavoidable leakage, as discussed at length in

[51].

Other Issues in PSA PSA constructions, including

this work, are primarily concerned with efficient and

functional constructions of the actual aggregation pro-

tocol [9, 51, 10, 17]. Differential Privacy techniques are

used in PSA, and can be used with many different PSA

protocols. Many practical issues such as fault tolerance,
data pollution, robustness, readiness of input, and fully

malicious participants are not considered in PSA con-

structions, though some lines of research do explore

these properties [38, 39, 47, 56, 57]. In particular, many

PSA schemes assume that for n users, at each epoch

every user will have exactly one input in the specified

range prepared for aggregation, and that no user will

fail to participate.

4 Basic Aggregation

We first present our PSA schemes without specifying

the details of differentially private noise, and discuss

the use of differentially private noise in Section 5. We

present two versions of our PSA scheme SLAP, whose
differences are in which portion of a ciphertext is scaled

and by what term. This leads to slight differences in

encryption and decryption, though the actual additive

aggregation in decryption (simply summing all cipher-

texts) is the same. Both variants have identical key

correlation requirements. These variants are evaluated

against each other in Section 7.

While lattice-based fully homomorphic encryption

(FHE) has been used in previous lattice-based PSA as

a black-box building block [9], we instead take a white-

box approach, constructing purpose-built lattice-based

cryptographic procedures specially formulated for PSA.

Our new schemes are key-homomorphic adaptations of

the ideas underlying the LPR and NTRU cryptosystems

[42, 31], adapted to the specific application of PSA.

This allows for a more efficient solution for the specific

purpose of PSA. One example of this is that cipher-

texts in SLAP are only a single polynomial from Rq,

while ciphertexts in RLWE FHE schemes are tuples of

elements of Rq [13, 26]. This property allows for less

communication overhead and more efficient encryption

and decryption.

LaPS mentions the possibility of generating a new

public key for each timestamp, but did not go into de-

tails and did not make it an explicit requirement of their

scheme [9]. However, this should be done for security

across multiple executions - without a fresh public ma-

trix for each aggregation, an aggregator can learn the

difference between a users’ inputs by subtracting LaPS

8

ciphertexts and decrypting the result. This attack is de-

scribed in detail in Remark 5.3 of [55]. SLAP thus uses

a random oracle to prevent this attack [25]. In practice,

this can be instantiated by defining a hash function for

users to utilize.

4.1 First Additive Scheme (Noise-Scaled)

The first variant of our scheme we present is noise-scaled,

meaning that in encryption, the small amount of ran-

dom noise added is scaled by the plaintext modulus t. A

modular reduction by t in decryption thus removes the

noise terms, leaving only the message. This idea of scal-

ing up the noise to allow for decryption (so that noise is

removed with a modular reduction) is used in the NTRU
[31] and BGV [13] lattice-based cryptosystems. In this

scheme SLAPNS , we consider the plaintext domain to

be the ring Rt and the ciphertext domain to be the ring

Rq, with q ≫ t, q and t coprime, and an appropriate
value of the polynomial modulus degree N to allow for a

desired level of security. The scheme SLAPNS is defined

as follows:

– SetupNS(λ, t, n): Takes in the security parameter λ,

the plaintext modulus t, and the number of users n.

Choose q such that

log2(3) + log2(n) + log2(t) < log2(q) (1) and q, t are

coprime. (This condition on n, t, q ensures that the

bound of Inequality 2 holds for correctness of decryp-

tion.) Choose the polynomial modulus N such that λ

bits of security are provided for the RLWE problem

with ring polynomial coefficients in Zq [4, 5]. (While

a larger value of q allows for more utility, it also de-

creases security - choosing larger values for N can off-

set this.) Choose users’ secret keys s0 · · · sn−1 from χ.

Construct the aggregator’s key as s′ = −[
∑n−1

i=0 si]q.

Choose a random oracle hash function H, mapping

from the domain of all timestamps to the range of Rq

[25]. Return parms = (Rq, t, n,H), the users’ secret

keys si, and the aggregation key s′.

– NoisyEncNS(parms,xi,ts ∈ Rt, ri,ts ∈ Rt, si, ts):

Choose the user’s error ei,ts from ζ. Let Ats = H(ts).

Return the user’s ciphertext for this timestamp

ci,ts = [Ats · si + tei,ts + [xi,ts + ri,ts]t]q (based upon

the secret key, the user’s input, a small random error,

and the public value).

– AggNS(parms, s′, ts, c0,ts · · · cn−1,ts): LetAts = H(ts).

Return yts = [[Ats · s′ +
∑n−1

i=0 ci,ts]q]t
Correctness Suppose for simplicity that ri,ts = 0, as it

can be assumed for this discussion that the noise has al-

ready been added to user input, as in the basic schemes

we consider exact correctness. (We follow the same rea-

soning as LaPS; parameter choices for applying differ-

ential privacy are discussed in Section 7.) When adding

n ciphertexts ci,ts, we find [Ats · s′ +
∑n−1

i=0 ci,ts]q =

[
∑n−1

i=0 (tei,ts + xi,ts)]q. The magnitude of the sum of

the errors is bounded by n · t, and the magnitude of

the sum of the inputs is bounded by n · t
2 . Then so

long as 3·n·t
2 < q

2 ,
∑n−1

i=0 (tei,ts + xi,ts) (2) will not over-

flow modulo q, guaranteeing correctness. Then reducing∑n−1
i=0 (tei,ts + xi,ts) modulo t removes the error terms

(recall that the noise terms ei are integral elements of

Rq), leaving us with the sum of the users’ inputs modulo

t.

4.2 Second Additive Scheme (Message-Scaled)

The second variant of our scheme we present is message-

scaled, where in encryption, the message is scaled by

∆ = ⌊ qt ⌋. This method of scaling up the message to

allow for correct decryption (so noise disappears during

rounding) is used in the LPR [42] and B/FV [26] lattice-

based cryptosystems. In this scheme, we again consider

the plaintext domain of Rt and the ciphertext domain of

Rq, with N chosen to ensure the desired level of security.

We require q ≫ t, but do not require that q, t are coprime

(though this may be needed for efficient implementation

- see Section 6.1.1). The scheme SLAPMS is defined as

follows:

– SetupMS(λ, t, n): Takes in the security parameter λ,

the plaintext modulus t, and the number of users n.

Choose the ciphertext modulus q such that

log2(3)+log2(n)+2·log2(t) < log2(q) (3). (Note that

this bound, required for correctness of Inequality 4,

is stricter than Inequality 2 of SLAPNS .) Choose

the polynomial modulus N such that λ bits of secu-

rity are provided for the RLWE problem with ring

polynomial coefficients in Zq [4, 5]. Choose users’

secret keys s0 · · · sn−1 from χ. Construct the aggre-

gator’s key as s′ = −[
∑n−1

i=0 si]q. Choose a random

oracle hash function H, mapping from the domain

of all timestamps to the range of Rq [25]. Return

parms = (Rq, t, n,H), the users’ secret keys si, and

the aggregation key s′.

– NoisyEncMS(parms,xi,ts ∈ Rt, ri,ts ∈ Rt, si, ts):

Choose the user’s error ei,ts from ζ. Let Ats = H(ts).

Return the user’s ciphertext for this timestamp

ci,ts = [Ats · si + ei,ts + ∆[xi,ts + ri,ts]t]q (based

upon the secret key, the user’s input, a small ran-

dom error, and the public value).

– AggMS(parms, s′, ts, c0,ts · · · cn−1,ts): LetAts = H(ts).

Return yts = [⌊ tq (Ats · s′ +
∑n−1

i=0 ci,ts)⌉]t
Correctness Again, let all noise values ri,ts = 0. When

adding n ciphertexts ci,ts, we find ytmp = [Ats · s′ +∑n−1
i=0 ci,ts]q = [

∑n−1
i=0 (ei,ts+∆xi,ts)]q. Then ⌊ tqy

tmp⌉ =
⌊ tq (

∑n−1
i=0 (ei,ts +∆xi,ts))⌉ will be equal to

∑n−1
i=0 xi,ts

9

when t
q · ||

∑n−1
i=0 ei,ts − q mod t

t

∑n−1
i=0 xi,ts|| < q

2 (4)

[26]. Noting that q mod t
t < 1, this is satisfied when

t2 · n · 32 < q
2 .

4.3 Benefits and Novelty of SLAP

We highlight some of the novel and beneficial properties

of SLAP:

– Simplicity: SLAP is vastly simpler than prior state-

of-the-art work in RLWE-based PSA [9], with straight-

forward operations and parameter requirements. This

is due to our white-box approach, which directly

applies RLWE-based homomorphism instead of re-

lying on preexisting FHE schemes. This approach

allows for 1-element ciphertexts, as compared to the

2-element ciphertexts common in FHE, saving mem-

ory and computation. SLAP is thus easier and more

lightweight to implement and run, making it more

practical.

– Direct Use of RLWE: LaPS’s use of RLWE was

indirect, coming about through their use of the BGV

FHE scheme [12]. SLAP is the first PSA scheme to

rely directly on RLWE, showing how to apply the

additive homomorphism inherent in RLWE terms to

additive aggregation.

– Smaller Ciphertexts: As shown in Sections 7.1
and 7.3, SLAP has smaller ciphertexts as compared

to previous RLWE-based PSA [9], with reductions

in communication overhead of over 99% for larger

parameter settings. The lighter communication load

of SLAP makes it more practical for deployment

among users with less bandwidth, e.g., smartphones

and IoT nodes. As noted in Section 7.3, SLAP is not

as efficient in communication as non-RWLE post-

quantum PSA [24, 55], though it is comparable.

– Extensibility and Modularity: Thanks to the

simplicity of SLAP, it is easy to apply other work

in lattice-based cryptography, including the opti-

mizations of RNS, NTT, and batching (discussed in

Section 6), and the complex canonical embedding

used in the CKKS scheme [14] to allow approximate

computations. Further, SLAP can seamlessly be inte-

grated with other work in fault tolerance [38], further

improving its feasibility for practical use.

– Efficiency and Throughput: As seen in Section 7,

SLAP can outperform optimized implementations
of previous RLWE-based PSA by an order of mag-

nitude, and the throughtput is further improved

when batching is considered. Even considering the

much larger ciphertexts of SLAP as compared to non-

RLWE post-quantum PSA [55, 24], SLAP achieves

comparable latency and much higher throughput.

5 Guarantees of Privacy and Security

5.1 Achieving Differential Privacy

To construct privacy-preserving PSA using the exact

additive aggregation schemes presented in Section 4,

we require that users add differentially private noise to

their inputs before calling NoisyEnc. Adding differen-

tial privacy in this way is commonly utilized in other
PSA works [9, 51, 2]; we adopt the procedures of LaPS

because it is the most closely related work to ours in

post-quantum PSA. For the distribution of added noise,

we utilize the Discrete Laplacian distribution. In par-

ticular, we specify the noise added in each variant of

NoisyEnc to be chosen in a differentially private man-

ner: for an input xi,ts ∈ Rt and a Discrete Laplacian

parameter s, choose ri,ts ∈ Rt, where with probabil-

ity β, ri,ts has coefficients drawn from DLs, and with

probability 1− β, ri,ts will be zero.

The parameter s of the discrete Laplacian distribu-

tion used to draw the noise terms is determined by the

number of users, range of the users’ inputs, number

of users adding differentially private noise, and desired

level of privacy. This is formalized in Theorem 5.1. The

PSA schemes SLAPNS and SLAPMS using this mech-

anism of noisy encryption achieve differential privacy

and aggregator obliviousness:

Theorem 5.1 Consider a scenario with n users, whose

inputs fit in an interval of width w. Let the desired pri-

vacy level (ϵ, δ) satisfy ϵ > 0 and δ ∈ (0, 1). Define the

discrete Laplacian parameter s as s = w
ϵ . Let the propor-

tion of honest users γ (i.e., the number of users adding

differentially private noise) be at least 1
n ln(1δ). Then if

w ≥ ϵ
3 , then the schemes SLAPNS and SLAPMS using

NoisyEnc with differentially private noise drawn from

DLs achieve (ϵ, δ)-differential privacy. Further, these

PSA schemes achieve (α, β)-accuracy, where β ≥ (2δ)
− 1

γ

and α = 4w
ϵ

√
1
γ ln(

1
δ)ln(

2
β).

Proof This follows directly from [9], Theorem 3, which

itself is from [51], Lemma 1. Our desired function (sum-

mation) and method of differential privacy is the same.

This theorem gives a guarantee of privacy for the

desired (ϵ, δ), and gives bounds on the probability and

magnitude of the error resulting from the addition of
differentially private noise as described above.

5.2 Privacy via Aggregator Obliviousness

We now prove that SLAP satisfies the security require-

ment of aggregator obliviousness with encrypt-once se-

curity (given in Section 3.4).

10

Theorem 5.2 (Aggregator Obliviousness Security): Let

the output of NoisyEnc be indistinguishable from ran-

dom. Then both variants of SLAP are secure under

aggregator obliviousness with encrypt-once.

Our proof is very similar to existing PSA proofs

[9, 51] that use aggregator obliviousness as their secu-

rity notion, and we adapt these existing techniques for

our own protocol. The security is essentially proved by

showing that any adversary that can break the security

of SLAP is able to leverage this to break the difficulty

of RLWE.

We prove Theorem 5.2 as follows:

Proof We follow previous work [9, 51, 2] in assuming

that a potential adversary can choose the noise ri,ts
as part of the Challenge phase in the security game of

aggregator obliviousness. We aim to show that if there

exists a PPT adversary A that wins the aggregator

obliviousness security game, then there exists a PPT

adversary B that can that can solve the RLWE problem.

In the encrypt-once model, an adversary can only gain

access to one encryption from a user at a particular

timestamp, preventing the simple attack of taking the

difference of two ciphertexts to learn about the plain-

texts (as the terms Ats · si would cancel out). B can

make Sample queries to a challenger C, who will provide

B with sample values (pairs of ring polynomials). We

omit modular notation for simplicity. We also modify

the game of aggregator obliviousness to a real-or-random

guess in the Challenge phase, following previous work

[51, 9].

A fundamental property of aggregator obliviousness

is that it acknowledges the case where the adversary
compromises all but one participant, and allows that

they inevitably learn the secret key of that participant

and can therefore distinguish between valid encryptions

and random values. To account for this, the definition of

aggregator obliviousness requires that they do not learn

any additional information about that participant. We

note that if the adversary compromises all n or n − 1

users and the aggregator, an adversary cannot choose

differing challenge messages and thus cannot win the

game, so we proceed assuming an adversary will always

leave at least 2 parties uncompromised.

We now construct a reduction from SLAP to RLWE.

We consider an adversary B trying to break the security

of RLWE, and an adversary A who can purportedly

break the security of SLAP. A challenger C evaluates

the ability of B to break RLWE. B will formulate SLAP

parameters parms including Rq, t, n for a given security

level λ to A as a response to a Setup query from A.
Here, Rq is the ring in which B is attempting to break

RLWE. B will choose distinct values j, k ∈ [0,∪{□}. B

then chooses secret keys si ← χ, where i /∈ {j, k}. (As

above, B’s guess of uncompromised users j, k must be

users A does not choose to compromise; this will occur

with probability at least 1
n2 .)

Supposing A will make Encrypt queries at up to p =

poly(λ) timestamps, B will make p+ 1 Sample queries

to C, receiving a set of tuples S = {(aσ,bσ)}σ∈Zp+1
. B

will then set the public hash H(ts) in parms such that

for each of the p+1 possible values of ts that A will use,

H(ts) is some value aσ. Concretely, at every Encrypt

query made, if the timestamp ts of that query has not

been made, then B can select a not previously used pair

(aσ,bσ) from S, and use H(ts) = aσ. On the other hand,

if ts had previously been used in an Encrypt query for

a different user, then the previously used value will be

reused.

Upon an Encrypt query (i,xi,ts, ri,ts, ts) from A for

a party i ∈ [0, n)∪{□} at timestamp ts, if party i is not

compromised and has not previously been the target
of an Encrypt query at timestamp ts, B will return

NoisyEnc(parms,xi,ts, ri,ts, si, ts) if i /∈ {j, k}. For the
other values, our strategy for j, k is to let user j’s secret
key be the secret RLWE value and to let user k’s secret

key implicitly be the sum of all other users’ keys. If i = j,

then B finds the tuple (aσ,bσ) such that H(ts) was set

to aσ, and returns bσ + (xj,ts + rj,ts) to A. If i = k,

B again finds the appropriate value bσ, and returns

−bσ −H(ts) ·
∑

ℓ/∈{j,k} sℓ + δ′(xk,ts + rk,ts) to A, where
δ′ is t if using SLAPMS and 1 if using SLAPNS .

Upon a Compromise query from A for a party i ∈
[0, n) ∪ {□}, B will first check that i /∈ {j, k}, and

will abort if this is not the case. (B has probability

approximately 1
n2 of correctly choosing j, k to not be

users compromised by A.) Otherwise, B responds to the

query by returning party i’s secret key si to A. The set

of uncompromised users is denoted as K ⊆ [0, n) ∪ {□}.
When A sends a Challenge query to B, it chooses

a set of not previously compromised users U ∈ K, and

sends input-noise pairs {(xu,ts, ru,ts)}u∈U , where ts was

not used in a previous Encrypt query. Then, B will once

again find the tuple (aσ,bσ) such that H(ts) was set to

aσ. Then, B computes ci,ts =

NoisyEnc(parms,xi,ts, ri,ts, ts) for i ∈ U \ {j, k}. It
also computes cj,ts = bσ + (xj,ts + rj,ts) and ck,ts =

−bσ −H(ts) ·
∑

ℓ/∈{j,k} sℓ + δ′(xk,ts + rk,ts). Finally, B
returns all ciphertexts ci,ts for i ∈ [0, n) ∪ {□} to A.

Finally, B can simply observe the response of A after

receiving its Challenge results. If A responds that it

has been given ciphertexts that are simply messages

padded with a random sample, then B can also conclude

the same for its game with C. On the other hand, if A
responds that it is in a real version of SLAP and had

received a SLAP ciphertext, then B can conclude that

11

it received a RLWE sample from C. Thus if A has an

advantage greater than negligible in breaking aggregator

obliviousness, then B can gain an advantage greater

than negligible in breaking RLWE. This constitutes a

reduction from RLWE to SLAP. ⊓⊔

6 Practical Considerations

6.1 Standard Lattice-Based Cryptography

Optimizations

SLAP, like similar work in FHE [26, 13, 14], deals with

ring polynomials where both their degree and coefficients
may be large, with polynomial degrees up to N = 215

and coefficients that are hundreds of bits wide. As with

similar work, we can apply optimizations to improve

the runtime of the underlying polynomial arithmetic.

Large polynomial degrees may make polynomial mul-

tiplication computationally intensive; to mitigate this

the Number-Theoretic Transform (NTT) can improve

the runtime of polynomial multiplication [41]. For large

coefficients, Residue Number System (RNS) represen-

tations is used to break these large numbers down into

smaller, more manageable components. Full-RNS vari-

ants of FHE schemes have reduced the complexity of

those cryptosystems’ most intensive operations to the

complexity of the NTT [8, 15, 30], and bring a great

practical benefit. The simple and limited lattice opera-

tions of SLAP allow these optimizations to be directly

“plugged-in” to SLAP with no modifications required.

These optimizations were also present in the HElib FHE

library [29], which was used to implement LaPS.

6.1.1 Residue Number System

The Chinese Remainder Theorem states that given a

number q that can can be written as a product of k

coprime numbers q = q0 · q1 · · · · · qk−1, the rings Zq

and×k−1
i=0 Zqi = Zq0 ×Zq1 × · · · ×Zqk−1

are isomorphic.

This isomorphism can be applied to write a number

x ∈ Zq in Residue Number System (RNS) form as

([x]q0 , [x]q1 , · · · , [x]qk−1
) ∈×k−1

i=0 Zqi . Addition and mul-

tiplication on numbers in Zq can then be carried out by

simply performing the same operations coefficientwise

on the operands in RNS form. This is most useful with

a q that is significantly larger than a computer word

(64 bits in modern systems) and can be factored into

coprime qi that can fit into a computer word. By writing

numbers in RNS form, each of the k RNS components

can fit into a computer word, so operations only require

single-precision arithmetic.

Our schemes, like their analogues in fully homomor-

phic encryption (FHE), require some operations that

cannot be directly performed in RNS. In particular,

rounded division (required in AggMS) and modular re-

duction to another RNS base (used in both variants’

Agg) are not easily implemented with numbers in RNS

form. In fully homomorphic encryption, full-RNS vari-

ants have been created to allow for the use of RNS

representations without having to reconstruct numbers

in Zq for the problematic operations [8, 30]. The full-

RNS variant using floating-point operations [30] is much

simpler and as efficient as the full-RNS variant using

integer-only operations [8]. We thus adapt the integer-
only RNS variant [30] for use in SLAP, and can directly

apply their procedures.

Base Conversion Suppose we have a number x in

RNS form with respect to q, written as (xi)i∈[0,k) =

([x]q0 , [x]q1 , · · · , [x]qk−1
). In both variants of SLAP, we

wish to compute [x]t during aggregation as part of re-

turning our result in Rt. We can then use the procedure

of CRT Basis Extension from Section 2.2 of [30]. Let

q∗i = q
qi
∈ Z and q̃i be the inverse of q∗i (mod qi). Then

our goal is to compute [x]t = [(
∑k−1

i=0 [xi · q̃i]q̃i ·q∗i)−v ·q]t,
where v ∈ Zk is equal to ⌈

∑k−1
i=0

[xi·q̃i]q̃i
qi
⌋. This can be

done by computing yi = [xi · q̃i]q̃i (as an integer) and

zi =
yi

qi
(in floating-point). Then v =

∑k−1
i=0 zi, and we

can compute [x]p = [(
∑k−1

i=0 yi · [q∗i]p])− v · [q]p]p. To do

this efficiently, the parameters [q∗i]p, q̃i, and [q]p can all

be precomputed.

Division with Rounding Now suppose that for x in

RNS form, we wish to scale x by t
q and round to the

nearest integer, as in AggMS . To accomplish this, we

use the procedure of Simple Scaling from Section 2.3 of

[30]. We can then compute y = ⌈ tq · x⌋ = [⌈(
∑k−1

i=0 xi ·
(q̃i · t

qi
))⌋]t. To do this, we precompute t·q̃i

qi
= ωi + θi

separated into integer and fractional parts, where ωi ∈
Zt and θi ∈ [− 1

2 ,
1
2). We can then compute the terms

ω = [
∑k−1

i=0 xi · ωi]t and v = ⌈
∑k−1

i=0 xi · θi⌋ (where ω is

computed with single-precision integer arithmetic, and

v is computed with floating-point arithmetic). Then the

final result is [ω + v]t.

6.1.2 Number-Theoretic Transform

In lattice-based cryptography, the most intensive low-

level operation that is performed on polynomial operands

is polynomial multiplication. Textbook algorithms for

polynomial multiplication have complexity of O(N2).

Considering that values of N may commonly range

from 210 to 215, it is desirable to reduce this complex-

ity. To accomplish this, the Number-Theoretic Trans-

form (NTT) can be applied [41]. This strategy uses two

operations: the forward transformation NTT and the

inverse transformation INTT . For a,b ∈ Rq, the ring

12

polynomial product a · b ∈ Rq can be computed as

INTT (NTT (a) ◦NTT (b)), where ◦ denotes coefficien-

twise modular multiplication (a linear-time operation).

Because both NTT and INTT can be computed in

O(N · log(N)), the complexity of polynomial multiplica-

tion can thus be reduced from quadratic to loglinear. For

polynomials modulo xN +1 and q, a negacyclic wrapped

convolution can be used to perform the NTT [41]. For

this, it is required that q satisfies the condition q ≡ 1

mod 2N , so that primitive 2N -th roots of unity can be

easily found. When using RNS form (as in Section 6.1.1),
all moduli qi must satisfy this condition. In practice,

these moduli are often precomputed as prime numbers.

6.2 Batching and Encoding

In many practical applications, users will have scalar

data xi,ts ∈ Zt, not polynomial inputs xi,ts ∈ Rt. A

simple solution is to simply set the constant term (or any

single coefficient) of xi,ts equal to xi,ts and set all other

coefficients to zero. However, this does not fully utilize

all N coefficients of xi,ts. We can perform N batched

aggregations in parallel by assigning each coefficient of

the ciphertext to be a piece of data corresponding to

a different computation. Because polynomial addition

is a coefficientwise operation, we can use this simple

batching method and do not require the common (and

much more complex) method of batching using the

polynomial version of the CRT (as in the the “double-

CRT” form) [27]. The common method of batching could

also be used, though encoding and decoding is more

complex and would introduce more latency.

Another method of batching is to use RNS decom-

position (see Section 6.1.1) on the plaintext, breaking

coefficients modulo t into a tuple of coefficients modulo

the coprime factors of t. This allows smaller messages to

be batched together. Decomposing t into k′ RNS moduli

gives us a total of N ·k′ inputs packed together into a sin-

gle ring polynomial when using both batching methods,

allowing higher throughput with less computation and

communication. This double batching will reduce the

plaintext space, decreasing the allowable range of users’

inputs and the number of users for a given ciphertext
modulus.

Besides the above methods of batching, our scheme is

also amenable to the application of a complex canonical

embedding [14] that can be used to encode an array of

floating-point values into a plaintext element of Rt, and

perform floating-point aggregation.

7 Experimental Evaluation

In this section, we present experimental evaluations

of our work. The LaPS scheme [9] is the most closely

related work to ours, so we primarily compare SLAP

against LaPS to best understand the improvements

gained in performance and communication. We also

compare SLAP to a simple non-PSA plain aggregation

(that does not use SIMD or RNS batching), to ana-

lyze the slowdown in SLAP as compared to a realistic

non-secure implementation. Further, we also consider

other state-of-the-art post-quantum PSA [55, 24] when

evaluating the practical throughput of SLAP.

In our experimental evaluations, we consider the

same parameters for differential privacy as in previous

work [9]: ϵ = 1, δ = 0.1, which gives a minimum re-

quired proportion of honest participants γ ≥ 0.0023

for (ϵ, δ)-privacy. Choosing β = 2
exp(10) gives us (α, β)-

accuracy with α = 4w
√

1
γ ln(

1
δ) · 10 (with total noise

approximately O(w
√
n)). Concretely, this can be used

to perform an aggregation with differential privacy over

inputs within an interval of length 65 with 1000 users.

The noise of a differentially private aggregation in-

exorably grows with the number of users. Thus, for

large-scale scenarios with many users, one should con-

sider: either changing the parameters, requiring a larger

proportion of honest users, or using other strategies

such as rate-limiting to prevent adversaries from com-

promising honest participants’ privacy by performing

brute-force attacks [22, 21].

Our work’s novelty is not in differential privacy, so

our experimental results reflect runtime and memory

consumption with respect to the number of users, overall

plaintext space, and polynomial modulus degree. We do

not further discuss noise or accuracy, as our work does

not bring novel contribution in this area. Parameters for

differential privacy have a negligible effect on runtime

and memory consumption as compared to these. For

a more detailed discussion, one can refer to the well-

established literature applying differential privacy to

aggregation and PSA [51, 9, 54, 48, 2].

7.1 Example Parameters

Table 2 shows minimal parameter choices to guaran-

tee correctness and 128-bit security. These are derived

directly from Equations (1) and (3). The ciphertext mod-

uli required for SLAPMS is generally larger, which also

necessitates a larger polynomial modulus degree. The

ciphertext modulus size needed for SLAPNS is smaller

than the outer ciphertext modulus of LaPS (q1), and is

often even smaller than the inner ciphertext modulus

13

Table 2 SLAP Parameter Requirements for 128-bit security

Users |t| SLAPNS |q| SLAPMS |q| SLAPNS N SLAPMS N

100 32 42 75 211 211

1000 32 45 78 211 211

10000 32 49 82 211 211

10000 128 145 274 213 214

1015 128 181 310 213 214

1021 128 201 330 213 214

Table 3 Ciphertext Size Comparison of LaPS and SLAPNS (SLAPNS always at 128 bits of security)

Users |t| LaPS LaPS |q| SLAPNS |q| LaPS N SLAPNS N LaPS SLAPNS Percent Improvement
security ciphertext ciphertext Improvement (LaPS size /

bytes bytes SLAP size)

100 16 80 36 25 211 210 16384 8192 50.00% 2×
1000 16 80 39 28 211 211 16384 16384 0.00% 1×

10000 16 80 43 32 211 211 16384 16384 0.00% 1×

100 32 128 63 41 220 211 8388608 16384 99.80% 512×
1000 32 128 64 44 220 211 8388608 16384 99.80% 512×

10000 32 128 67 48 220 211 16777216 16384 99.90% 1024×

10000 128 80 196 144 224 213 536870912 196608 99.96% 2730.67×
1015 128 80 201 184 224 213 536870912 196608 99.96% 2730.67×
1021 128 80 221 204 224 213 536870912 262144 99.95% 2048×

(q0) [9]. Also, our required polynomial modulus degrees

are smaller. This shows that SLAP is more efficient than

previous work in communication overhead, due to not

doubly enclosing input in Augmented LWE terms and

FHE ciphertexts.

7.2 Implementation Details

To evaluate the efficiency of our scheme, we analyzed

the performance of both a basic implementation of the

scheme as originally presented in Section 4 and a more

optimized implementation using the optimizations dis-

cussed in Section 6, both utilizing the differentially pri-

vate noise mechanism of Section 5.1. In the optimized

library, the full-RNS optimizations (as in Section 6.1.1)

are implemented, and the Number-Theoretic Transform

is used to accelerate polynomial multiplication (as in

Section 6.1.2). The basic implementation does not inte-

grate these optimizations, but uses NTL [53] for integer

and polynomial arithmetic. The optimized version of

SLAP includes a submodule for the optimized ring poly-

nomial arithmetic, which can be used independently of

the implementations of SLAP. Our library and driver im-

plementations (in C++14) are published anonymously

at

https://anonymous.4open.science/r/slap-codaspy/.

The code is single-threaded, though SLAP and our li-

brary can be parallelized for high-performance appli-

cations. Our experiments were run on a server com-

puter with an AMD EPYC 7451 CPU, running at up to

2.3GHz. We use the standard ciphertext modulus and

polynomial modulus specifications from

Fig. 3 Scalability with a 32-bit plaintext space

HomomorphicEncryption.org [4]. Our tests took aver-

age runtimes over 50 trials.

7.3 Basic Comparison to State-of-the-art PSA

We generally consider users to have a message space of

16 bits. This is in line with the experimental evaluations

performed by LaPS, and is useful for many applications,
e.g. quantized machine learning [9, 16]. LaSS [24] con-

siders an 85-bit plaintext space, and Waldner et al. [55]

considers plaintext spaces of 2, 16, and 64 bits.

We first compare SLAP directly to LaPS, matching

exactly the largest set of parameters they considered

in order to make a fair comparison against their re-

ported results. LaPS is implemented using the HElib ho-

momorphic encryption library [29], which incorporates

optimizations such as the double-CRT representation

and Discrete Fourier Transform for efficient arithmetic.

We compare both the basic and optimized (full-RNS)

https://anonymous.4open.science/r/slap-codaspy/
HomomorphicEncryption.org

14

Table 4 Latency of SLAP with 1000 users and 16-bit messages

Variant Full-RNS NoisyEnc Full-RNS Agg Basic NoisyEnc Basic Agg

Noise-Scaled 1.17 ms 3.26 ms 43.53 ms 95.38 ms
Message-Scaled 5.91 ms 16.98 ms 166.40 ms 272.26 ms

Table 5 Speedup of SLAP vs. LaPS (using HElib) with 1000 users and 16-bit messages at 128 bits of security

Variant Full-RNS NoisyEnc Full-RNS Agg Basic NoisyEnc Basic Agg

Noise-Scaled 65.97x 20.76x 1.79x 0.71x
Message-Scaled 13.09x 3.98x 0.46x 0.25x

implementations of SLAP to LaPS, though comparison

with the full-RNS implementation is the more direct one.

We begin by considering the largest set of parameter

settings used in LaPS, i.e., a 16-bit plaintext space, 128

bits of security, and 1000 users. Parameter settings for

LaPS are taken directly from their publication. Table 4

shows the performance of SLAP with these parameters,

along with the time it takes to do the computation in

plaintext.

We note that our experiments are run on a server

computer, while the experiments of LaPS, LaSS, and

Ernst et al. were run on (presumably weaker) laptop

computers. However, these differences in hardware do
not account for the orders-of-magnitude improvements

in latency and throughput that SLAP shows over these

schemes. The vast majority of the improvement over

LaPS in latency is due to the smaller operands and more

efficient operations of SLAP, and our improvement in

throughput over LaSS and Ernst et al. is due to the

combination of comparable latency and amenability to

batching.

Table 5 shows the speedup of SLAP as compared to

LaPS for operation latency. From this, we see that our

full-RNS implementation of SLAP is able to speed up

NoisyEnc by 65.97x andAgg by 20.76x (with SLAPNS).

Even without any optimizations such as those present

in HElib, our basic implementation of SLAP still had

performance comparable to LaPS. Notably, this compar-

ison is for the parameters of n = 1000, |t| = 16, where

(as shown in Table 3) there is no difference in ciphertext

size as seen at larger parameter settings; this shows that

the runtime improvements of SLAP are not solely due to

smaller operands, but are a result of the simpler design

of SLAP.

Besides the runtime comparison, SLAP shows sig-

nificant improvements in the necessary communication

overhead as compared to LaPS. Table 3 shows the sizes

of ciphertexts in SLAPNS and LaPS for different param-

eter settings. (SLAPMS also showed improvement, but

the improvement was less due to its stricter parameter

bounds.) In this analysis, we assume an implementation

would store ciphertext moduli in 64-bit words - when

the actual minimum number of bytes is counted instead,

then the improvement of SLAPNS becomes slightly

greater. For every setting shown, the ciphertext size of

SLAPNS is less than or equal to that of LaPS, and

shows significant improvement for larger parameters.

The decrease in ciphertext size is over 99% for larger pa-

rameter sets. This difference in size of operands implies

greatly reduced communication time, and also helps to

explain the runtime improvements of our scheme as com-

pared to LaPS. In SLAP, ciphertexts and keys are the

same size, as both are single elements of Rq. While the

ciphertexts of SLAP are larger than those of LaSS and

Ernst et al. [24], the plaintext elements transferred per

ciphertext is comparable - these schemes have ciphertext

sizes of 128 and 85 bits respectively, while SLAP has 39

bits per batched plaintext for 1000 users and a 16-bit

plaintext space.

As a practical example, Table 11 shows the esti-

mated communication times for a users’ ciphertext for

common Internet upload speeds in the United States,

given in megabits/second (Mbps). Even at the slowest

upload speeds and largest parameter sets, ciphertexts

of SLAPNS can be sent in under a second. In contrast,

ciphertexts from LaPS may take much longer to send

to the point of human-noticeable latency, even taking

over a minute to send ciphertexts from the largest set

of parameters considered. This shows the practical im-

provements that SLAP can bring to users with slower

upload speeds when using RLWE-based PSA.

We can thus surmise that the improvements of SLAP

over LaPS are partially due to smaller parameters al-

lowed for by a purpose-built design, where instead of

using FHE as a black box, our specifically-designed and

much simpler operations can be used.

Noting that SLAPNS is the more efficient variant in

terms of latency, we can also compare it to other post-

quantum PSA work, as shown in Table 6 (1000 users,

16-bit plaintexts or as close as possible). SLAPNS is

comparable in latency to both LaSS and Ernst et al.,

and all of those show a great improvement as compared

to LaPS. LaSS and Ernst et al. both feature aggregation

time of about 1 millisecond for encryption and aggrega-

15

Fig. 4 Throughput Comparison of Post-Quantum PSA

tion. This comparison was only done for the small case

of 1000 users, due to the diverse experiments between

the 4 works. As shown in Section 7.4, the comparable

latency of SLAP to other PSA work, combined with
our propensity for batching, can lead to very strong

practical performance.

While SLAP is capable of significant improvements

in communication overhead as compared to LaPS, its

ciphertexts are significantly larger than those of other
state-of-the-art post-quantum PSA. LaSS’s AES cipher-

texts are 128 bits, while Ernst et al.’s scheme uses 85-bit

ciphertexts. Even when accounting for batching, the

larger per-input ciphertext expansion of SLAP leads to

worse throughput for communication. Large ciphertext

expansion is a common issue to RLWE-based cryptosys-
tems, and addressing this is an active area of research

[19, 40]. While this work’s benefits are mostly in simplic-

ity and server-side computational throughput, reducing

the ciphertext expansion for RLWE-based PSA is a

focus of our future work.

7.4 Scalability, Throughput, and Batching

We next tested the scalability of the aggregation and

decryption of SLAP (both basic and full-RNS imple-

mentations) with respect to the number of users in the

aggregation. Taking |t| = 32, we evaluated the runtime

of Agg for n = 100, 1000, 10000, and 100000. As Figure 3

shows, the runtime of aggregation increases linearly with

the number of users, showing the scalability of SLAP.

The direct comparison to LaPS only compared the

case when a single message is included in a ciphertext.

However, as discussed in Section 6.2, we can pack N

inputs into a single scheme plaintext, by setting the

coefficients of the plaintext polynomial to each of the

N inputs. Doing this greatly increases our scheme’s

overall throughput, as seen in Tables 7 and 8. With

the parameters of 1000 users and 16-bit messages, the

ciphertext modulus degree is 2048, so we pack 2048 mes-

sages into one ciphertext. As shown in Tables 7 and 8,

introducing even simple batching greatly increases the

throughput SLAP can achieve. With this, the runtime

of PSA’s aggregation can be improved to 628,605 aggre-

gations/second, reducing our amortized runtime to only

microseconds.

We next examined the possible throughput of SLAP,

accounting for using the double-packing method from

Section 6.2, encryption time, network latency, and ag-

gregation time. We show the results of this analysis in

Tables 9 and 10. We tested 16-bit messages packed into

plaintext domains of 32 and 64 bits, each of which ex-

ceeds the parameters experimentally evaluated for LaPS.

Each plaintext polynomial with N coefficients and k′

RNS components for t can hold N · k′ data elements
total, with accounting for overflow. In our analysis, we

assume that the download speed of the aggregator is

not a bottleneck (e.g., the aggregator is a server with a

gigabit connection), and that users will have an unlim-

ited supply of data ready that it can run NoisyEnc on,

then send to the aggregator. Then the limiting factor

in SLAP’s practical throughput is the greatest of the

runtimes of NoisyEnc and Agg, and the users’ upload

times. Thus both schemes are able to show a throughput

of up to 78,138 aggregations per second at 5 Mbps, and

390,691 aggregations per second at 25 Mbps. In contrast,

a plain aggregation’s main bottleneck was computation,

due to the lack of the high ciphertext expansion com-

mon in RLWE encryption. SLAP achieves throughput

only one order of magnitude less than plain aggregation

using RNS for SIMD operations.

From these experiments, we can conclude that SLAPNS

is generally superior to SLAPMS . The noise-scaled vari-
ant of SLAP has better parameter bounds, ciphertext

sizes, and performance than the message-scaled variant.

We can further conclude that PSA implemented with

SLAP can be extremely computationally efficient in

terms of computation. With ciphertexts that are smaller

as compared to previous work, SLAP also requires less

communication, which can further decrease the latency

that end users of PSA will experience. Overall, these

experiments show the high performance of SLAP, espe-

cially as compared to other work.

We can also compare SLAP to other quantum-secure

PSA when considering throughput, which is another im-

portant practical metric besides simple latency that can

be used to evaluate real-world performance. In Figure 4,

we show the decryption throughput for SLAP as well

as the protocols of Ernst et al., LaPS, and LaSS. As

indicated by the schemes’ decryption latencies for 1000

users (as shown in Table 6, SLAPNS has slightly worse

throughput without batching at this small scale. How-

ever, when considering batching, SLAPNS shows orders-

16

Table 6 Latency Comparison of Post-Quantum PSA for 1000 users and 16-bit plaintexts (if possible)

Scheme SLAPNS Ernst et al. [24] LaSS [55] LaPS [9]

Encryption Latency (ms) 1.17 0.913 0.509 77.3304
Decryption Latency (ms) 3.26 0.875 0.277 67.6243

Table 7 Speedup of SLAP vs. plain aggregation with 1000 users and 16-bit messages

Variant Full-RNS Agg Basic Agg Full-RNS Agg, batched Basic Agg, batched

Noise-Scaled 0.0139x 0.0005x 28.39x 0.97x
Message-Scaled 0.0027x 0.0002x 5.45x 0.34x

Table 8 Throughput (with batching) of SLAP with 1000 users, 16-bit messages, 2048 data points per ciphertext (calcula-
tions/second)

Variant Full-RNS NoisyEnc Full-RNS Agg Basic NoisyEnc Basic Agg

Noise-Scaled 1,747,079 628,605 47,369 21,470
Message-Scaled 346,726 120,626 12,308 7,522

Table 9 Throughput of full-RNS SLAP with 1000 users and 16-bit messages with 5 Mbps upload speed

Variant |t| k′ N NoisyEnc Agg Upload Time (ms) Ciphertext SLAP Throughput Slowdown
(ms) (ms) at 5 Mbps Uploads/s (aggs/s) vs. Plain

Noise-Scaled 32 1 2,048 1.05 2.70 26.21 38.15 78,138 14.69
Message-Scaled 32 1 4,096 4.33 14.62 104.84 9.54 39,069 29.38

Noise-Scaled 64 2 2,048 4.32 15.84 52.42 19.08 78,138 7.34
Message-Scaled 64 2 4,096 13.81 52.12 104.84 9.54 78,138 7.34

Table 10 Throughput of full-RNS SLAP with 1000 users and 16-bit messages with 25 Mbps upload speed

Variant |t| k′ N Upload Time (ms) Ciphertext SLAP Throughput Slowdown vs. Plain
at 25 Mbps Uploads/s (aggs/s)

Noise-Scaled 32 1 2,048 5.24 190.77 39,061 2.94
Message-Scaled 32 1 4,096 20.97 47.69 195,345 5.88

Noise-Scaled 64 2 2,048 10.48 95.38 390,691 2.09
Message-Scaled 64 2 4,096 20.97 47.69 390,691 3.49

Table 11 Ciphertext Upload Time (seconds) of LAPS and SLAPNS (SLAPNS always at 128 bits of security)

Users |t| (bits) LaPS Security SLAPNS (s) LaPS (s) SLAPNS (s) LaPS (s) SLAPNS (s) LaPS (s)
(bits) at 5 Mbps at 5 Mbps at 25 Mbps at 25 Mbps at 50 Mbps at 50 Mbps

100 16 80 1.31E-02 2.62E-02 2.62E-03 5.24E-03 1.31E-03 2.62E-03
1000 16 80 2.62E-02 2.62E-02 5.24E-03 5.24E-03 2.62E-03 2.62E-03

10000 16 80 2.62E-02 2.62E-02 5.24E-03 5.24E-03 2.62E-03 2.62E-03

100 32 128 2.62E-02 1.34E+01 5.24E-03 2.68E+00 2.62E-03 1.34E+00
1000 32 128 2.62E-02 1.34E+01 5.24E-03 2.68E+00 2.62E-03 1.34E+00

10000 32 128 2.62E-02 2.68E+01 5.24E-03 5.37E+00 2.62E-03 2.68E+00

10000 128 80 3.15E-01 8.59E+02 6.29E-02 1.72E+02 3.15E-02 8.59E+01
10E15 128 80 3.15E-01 8.59E+02 6.29E-02 1.72E+02 3.15E-02 8.59E+01
10E21 128 80 4.19E-01 8.59E+02 6.29E-02 1.72E+02 4.19E-02 8.59E+01

of-magnitude improvement over the other 3 schemes. It

should be noted that due to implementation differences

in hardware, programming languages, etc., the compari-

son is not quite exact, though the improvement is much

larger than can be attributed to the hardware or lan-

guage differences alone. LaSS and Ernst et al. use Go,
while LaPS and our implementation use C++.

In considering the throughput of communication, the

relative disadvantage of SLAP as compared to LaSS and

Ernst et al. is still present, but greatly reduced when con-

sidering the propensity of SLAP for batching. Recalling

the 128 and 85 bits (16 and 11 bytes) used for plaintexts

(and ciphertexts) for LaSS and Ernst et al. respectively,

we suppose that for the application of computing sums

of 1000 users’ 16-bit inputs without overflow (requiring

16 + 10 = 26 bits of plaintext space), these protocols

can pack 4 and 3 inputs into a message, respectively. (In

practical use, the inputs for the scheme of Ernst et al.

may be even more limited due to the scaling up of inputs

required by their use of an approximately homomorphic
PRF.) SLAP can also use this packing, managing to fit

k′ = 7 26-bit messages into a 192-bit plaintext space.

These parameters lead to |q| = 214 and N = 8192

for SLAPNS , leading to a ciphertext of approximately

262144 bytes, holding N ∗ k′ = 7 ∗ 8192 = 57344 user in-

puts. With this, SLAPNS achieves about 86% and 80%

of the communication throughput of LaSS and Ernst et

al., respectively. (Batching is not considered in LaPS,

17

and the highly complex nature of their scheme makes

assumptions such as those for LaSS and Ernst et al. dif-

ficult.) As noted above, the bottleneck of PSA schemes

with aggregation and decryption latency on order of a

few milliseconds is computation, not communication, so

the relatively larger communication of SLAP as com-

pared to LaSS and Ernst et al. is unlikely to bring a

practical slowdown for high-bandwidth servers. How-

ever, communication overhead is still a practical issue

important for the sake of client bandwidth, and we aim

to address the ciphertext expansion in future research.

7.5 Comparison to Other PSA

Early work by Shi et al. [51] does not report experimen-

tal results, but estimate that their work should support

0.6ms encryption and 1.5s decryption on modern hard-

ware. The schemes presented by [49] and [1] are highly

similar; both are lattice-based PSA-like work specifically

tailored to the scenario of smart meters, which is differ-

ent from general PSA. [49] fixes some security holes in

[1], but does not provide any experimental evaluation

for a direct comparison. In both cases, the communica-

tion overhead (measured in rounds) their schemes incur

is higher than the single round of communication per

aggregation in a PSA scheme. In [3], the runtime of ag-

gregation is dominated by LWE decryption, which runs

at 0.14 ms; however, the parameter setting of |q| < 15

and N = 256 used in their evaluation is extremely small

as compared to parameters used in SLAP or LaPS.

We wrote a test implementation of selected aggrega-

tion schemes without quantum security [51, 33, 34, 36]
to examine the relative performance. Each scheme was

run with a 2048-bit plaintext space, and had a number

of users ranging from 4 to 1964, with each test having

40 more users. The results of these tests are reported in

Table 12, with some operations’ runtimes given as per-

user time as appropriate. Aggregation in non-quantum

secure formats can run in microseconds or milliseconds;

SLAP thus shows performance at least comparable to

that of non-quantum aggregation.

8 Conclusion

In this work, we presented SLAP, a new Private Stream

Aggregation scheme with two variations featuring effi-

ciency, simplicity, and quantum security. The setup of

SLAP allows for security across multiple rounds of aggre-

gation, improving upon previous work. We prove both

the privacy and security of SLAP under differential pri-

vacy and aggregator obliviousness, and apply practical

optimizations. Our implementations of both variants of

SLAP shows improvements of up to over 20x for aggrega-

tion against previous work. Our experiments also show

that SLAP can achieve aggregation with throughput of

up to 390,691 aggregations/second at 25Mbps, and is

only one order of magnitude slower than plain aggrega-

tion. SLAP is particularly efficient in its communication

overhead as compared to the previous state-of-the-art

lattice-based PSA, achieving a decrease in ciphertext

size of up to 99.96% for large parameters, which greatly

improves the practical viability of lattice-based PSA.

Further, SLAP is comparable in latency and shows great
improvements in practical throughput as compared to

other leading post-quantum PSA schemes [24, 55]. We

conclude that SLAP brings both theoretical and prac-

tical improvements to the current state-of-the-art in

post-quantum PSA.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human

participants or animals performed by any of the authors.

Funding

This work was supported by Facebook as a winner of

the Role of Applied Cryptography in a Privacy-Focused

Advertising Ecosystem Facebook RFP. Any opinions,

findings and conclusions or recommendations expressed

in this material are those of the authors and do not

necessarily reflect those of the sponsor.

References

1. Abdallah A, Shen XS (2016) A lightweight lattice-

based homomorphic privacy-preserving data aggre-

gation scheme for smart grid. IEEE Transactions

on Smart Grid 9(1):396–405

2. Ács G, Castelluccia C (2011) I have a

dream!(differentially private smart metering).

In: International Workshop on Information Hiding,

Springer, pp 118–132

3. Agarkar AA, et al. (2020) Post quantum security

solution for data aggregation in wireless sensor net-

works. In: 2020 IEEE Wireless Communications and

Networking Conference (WCNC), IEEE, pp 1–8

18

Table 12 Runtime (µs) of Schemes without Quantum Security (2048-bit plaintext space)

Operation Joye agg. [33] Joye enc. Jung 2013 agg. (per user) [34]

Time (µs) 3563.46 2.07 32.02

Operation Jung 2013 enc. Jung PDA enc. (per user) [36] Jung PDA enc. of Special User 2 (per user)

Time (µs) 32.02 0.06 1776.15

Operation Jung PDA agg. (per user) Shi agg. (per user) [51] Shi enc.

Time (µs) 12.83 0.16 491.20

4. Albrecht M, Chase M, Chen H, Ding J, Goldwasser

S, Gorbunov S, Halevi S, Hoffstein J, Laine K,

Lauter K, Lokam S, Micciancio D, Moody D, Mor-

rison T, Sahai A, Vaikuntanathan V (2018) Homo-

morphic encryption security standard. Homomor-

phicEncryption.org, Toronto, Canada, Tech rep

5. Albrecht MR, et al. (2018) Estimate all the {LWE,

NTRU} schemes! In: International Conference on

Security and Cryptography for Networks, Springer,

pp 351–367

6. Ananth P, Jain A, Jin Z, Malavolta G (2020) Multi-

key fully-homomorphic encryption in the plain

model. In: Theory of Cryptography Conference,

Springer, pp 28–57

7. Archer D, et al. (2017) Applications of homomorphic

encryption. HomomorphicEncryption org, Redmond

WA, Tech Rep

8. Bajard JC, Eynard J, Hasan MA, Zucca V (2016) A

full RNS variant of FV like somewhat homomorphic
encryption schemes. In: International Conference

on Selected Areas in Cryptography, Springer, pp

423–442

9. Becker D, Guajardo J, Zimmermann KH (2018) Re-

visiting Private Stream Aggregation: Lattice-Based

PSA. In: NDSS

10. Bell J, Bonawitz K, Gascón A, Lepoint T, Raykova

M (2020) Secure single-server aggregation with

(poly) logarithmic overhead. IACR Cryptol ePrint

Arch

11. Blanco-Chacón I (2020) On the RLWE/PLWE

equivalence for cyclotomic number fields. Applica-

ble Algebra in Engineering, Communication and

Computing pp 1–19

12. Brakerski Z, Vaikuntanathan V (2011) Fully homo-

morphic encryption from ring-LWE and security

for key dependent messages. In: Annual cryptology

conference, Springer, pp 505–524

13. Brakerski Z, Gentry C, Vaikuntanathan V (2014)

(leveled) fully homomorphic encryption without

bootstrapping. ACM Transactions on Computation

Theory (TOCT) 6(3):1–36

14. Cheon JH, Kim A, Kim M, Song Y (2017) Homo-

morphic encryption for arithmetic of approximate

numbers. In: International Conference on the The-

ory and Application of Cryptology and Information

Security, Springer, pp 409–437

15. Cheon JH, Han K, Kim A, Kim M, Song Y (2018)

A full RNS variant of approximate homomorphic

encryption. In: International Conference on Selected

Areas in Cryptography, Springer, pp 347–368

16. Crane M, Trotman A, O’Keefe R (2013) Maintain-

ing discriminatory power in quantized indexes. In:

Proceedings of the 22nd ACM international confer-

ence on Information & Knowledge Management, pp

1221–1224

17. Danezis G, Fournet C, Kohlweiss M, Zanella-

Béguelin S (2013) Smart meter aggregation via

secret-sharing. In: Proceedings of the first ACM

workshop on Smart energy grid security, pp 75–80

18. Ding J, Gao X, Takagi T, Wang Y (2019) One sam-

ple ring-lwe with rounding and its application to key

exchange. In: International Conference on Applied

Cryptography and Network Security, Springer, pp
323–343

19. Dobraunig C, Grassi L, Helminger L, Rechberger C,

Schofnegger M, Walch R (2021) Pasta: A case for

hybrid homomorphic encryption. Cryptology ePrint

Archive

20. Duchi JC, Jordan MI, Wainwright MJ (2013) Lo-
cal privacy and statistical minimax rates. In: 2013

IEEE 54th Annual Symposium on Foundations of

Computer Science, IEEE, pp 429–438

21. Dwork C (2008) Differential privacy: A survey of

results. In: International conference on theory and

applications of models of computation, Springer, pp

1–19

22. Dwork C, Yekhanin S (2008) New efficient attacks on

statistical disclosure control mechanisms. In: Annual

International Cryptology Conference, Springer, pp

469–480

23. Erkin Z, Tsudik G (2012) Private computation of

spatial and temporal power consumption with smart

meters. In: International Conference on Applied

Cryptography and Network Security, Springer, pp

561–577

24. Ernst J, Koch A (2021) Private stream aggregation

with labels in the standard model. Proceedings on

Privacy Enhancing Technologies 4:117–138

19

25. Evans D, Kolesnikov V, Rosulek M (2017) A prag-

matic introduction to secure multi-party compu-

tation. Foundations and Trends® in Privacy and

Security 2(2-3)

26. Fan J, Vercauteren F (2012) Somewhat practical

fully homomorphic encryption. IACR Cryptol ePrint

Arch 2012:144

27. Gentry C, Halevi S, Smart NP (2012) Homomorphic

evaluation of the AES circuit. In: Annual Cryptology

Conference, Springer, pp 850–867

28. Group S (????) Sony research award program

29. Halevi S, Shoup V (2014) Helib. Retrieved from

HELib: https://githubcom/shaih/HElib

30. Halevi S, Polyakov Y, Shoup V (2019) An improved

RNS variant of the BFV homomorphic encryption

scheme. In: Cryptographers’ Track at the RSA Con-

ference, Springer, pp 83–105

31. Hoffstein J, Pipher J, Silverman JH (1998) NTRU:

A ring-based public key cryptosystem. In: Inter-

national Algorithmic Number Theory Symposium,

Springer, pp 267–288

32. Inc F (2020) Role of applied cryptography in a

privacy-focused advertising ecosystem request for

proposals

33. Joye M, Libert B (2013) A scalable scheme for

privacy-preserving aggregation of time-series data.

In: International Conference on Financial Cryptog-

raphy and Data Security, Springer, pp 111–125

34. Jung T, Mao X, Li XY, Tang SJ, Gong W, Zhang L

(2013) Privacy-preserving data aggregation without

secure channel: Multivariate polynomial evaluation.

In: 2013 Proceedings IEEE INFOCOM, IEEE, pp

2634–2642

35. Jung T, Li XY, Wan M (2014) Collusion-tolerable

privacy-preserving sum and product calculation

without secure channel. IEEE Transactions on De-

pendable and secure computing 12(1):45–57

36. Jung T, Han J, Li XY (2016) PDA: semantically
secure time-series data analytics with dynamic user

groups. IEEE Transactions on Dependable and Se-

cure Computing 15(2):260–274

37. Karl R, Burchfield T, Takeshita J, Jung T (2019)

Non-interactive MPC with trusted hardware secure

against residual function attacks. In: International

Conference on Security and Privacy in Communica-

tion Systems, Springer, pp 425–439

38. Karl R, Takeshita J, Jung T (2020) Cryptonite: A

framework for flexible time-series secure aggrega-

tion with online fault tolerance. Cryptology ePrint

Archive, Report 2020/1561

39. Li Q, Cao G (2013) Efficient privacy-preserving

stream aggregation in mobile sensing with low ag-

gregation error. In: International Symposium on Pri-

vacy Enhancing Technologies Symposium, Springer,

pp 60–81

40. Li Y, Zhou J, Li Y, Au OC (2015) Reducing the

ciphertext expansion in image homomorphic en-

cryption via linear interpolation technique. In: 2015

IEEE Global Conference on Signal and Information

Processing (GlobalSIP), IEEE, pp 800–804

41. Longa P, Naehrig M (2016) Speeding up the num-

ber theoretic transform for faster ideal lattice-based

cryptography. In: International Conference on Cryp-

tology and Network Security, Springer, pp 124–139
42. Lyubashevsky V, Peikert C, Regev O (2013) On

ideal lattices and learning with errors over rings.

Journal of the ACM (JACM) 60(6):1–35

43. Martins P, Sousa L, Mariano A (2017) A survey on

fully homomorphic encryption: An engineering per-

spective. ACM Computing Surveys (CSUR) 50(6):1–

33

44. McMahan B, Ramage D (2017) Federated learning:

Collaborative machine learning without centralized

training data

45. Mofrad S, Zhang F, Lu S, Shi W (2018) A compari-

son study of intel sgx and amd memory encryption

technology. In: Proceedings of the 7th International

Workshop on Hardware and Architectural Support

for Security and Privacy, pp 1–8

46. Mukherjee P, Wichs D (2016) Two round multiparty

computation via multi-key fhe. In: Annual Interna-

tional Conference on the Theory and Applications

of Cryptographic Techniques, Springer, pp 735–763

47. Przydatek B, Song D, Perrig A (2003) SIA: Se-

cure information aggregation in sensor networks. In:

Proceedings of the 1st international conference on
Embedded networked sensor systems, pp 255–265

48. Rastogi V, Nath S (2010) Differentially private ag-

gregation of distributed time-series with transfor-

mation and encryption. In: Proceedings of the 2010

ACM SIGMOD International Conference on Man-
agement of data, pp 735–746

49. Romdhane RB, Hammami H, Hamdi M, Kim TH

(2019) At the cross roads of lattice-based and ho-

momorphic encryption to secure data aggregation

in smart grid. In: 2019 15th International Wireless

Communications & Mobile Computing Conference

(IWCMC), IEEE, pp 1067–1072

50. Rosca M, Stehlé D, Wallet A (2018) On the ring-

LWE and polynomial-LWE problems. In: Annual

International Conference on the Theory and Appli-

cations of Cryptographic Techniques, Springer, pp

146–173

51. Shi E, Chan TH, Rieffel E, Chow R, Song D (2011)

Privacy-preserving aggregation of time-series data.

In: Proc. NDSS, vol 2, pp 1–17

https://githubcom/shaih/HElib

20

52. Shor PW (1994) Algorithms for quantum compu-

tation: discrete logarithms and factoring. In: Pro-

ceedings 35th annual symposium on foundations of

computer science, IEEE, pp 124–134

53. Shoup V, et al. (2001) NTL: A library for doing

number theory

54. Valovich F, Aldà F (2017) Computational differen-

tial privacy from lattice-based cryptography. In: In-

ternational Conference on Number-Theoretic Meth-

ods in Cryptology, Springer, pp 121–141

55. Waldner H, Marc T, Stopar M, Abdalla M (2021)
Private stream aggregation from labeled secret shar-

ing schemes. IACR Cryptol ePrint Arch 2021:81

56. Won J, Ma CY, Yau DK, Rao NS (2014) Proac-

tive fault-tolerant aggregation protocol for privacy-

assured smart metering. In: IEEE INFOCOM 2014-

IEEE Conference on Computer Communications,

IEEE, pp 2804–2812

57. Xue K, Yang Q, Li S, Wei DS, Peng M, Memon I,

Hong P (2018) PPSO: A privacy-preserving service

outsourcing scheme for real-time pricing demand

response in smart grid. IEEE Internet of Things

Journal 6(2):2486–2496

58. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated

machine learning: Concept and applications. ACM

Transactions on Intelligent Systems and Technology

(TIST) 10(2):1–19

59. Yang Y, Huang X, Liu X, Cheng H, Weng J, Luo X,

Chang V (2019) A comprehensive survey on secure

outsourced computation and its applications. IEEE

Access 7:159,426–159,465

	Introduction
	Related Work
	Background
	Basic Aggregation
	Guarantees of Privacy and Security
	Practical Considerations
	Experimental Evaluation
	Conclusion

