
An Embedded Domain-Specific Language for Logical
Circuit Descriptions with Applications to Garbled Circuits

Andrei Lapets Wyatt Howe Ben Getchell Frederick Jansen
Nth Party, Ltd.
Boston, MA

{andrei, ben, wyatt, frederick}@nthparty.com

Abstract
Contemporary libraries and frameworks that make it possible to
incorporate secure multi-party computation protocols and capabili-
ties into production software systems and applications must some-
times deliver underlying capabilities (such as logical circuit syn-
thesis) to new kinds of environments (such as web browsers or
serverless cloud computing platforms). In order to illustrate some
of the benefits of addressing this challenge by building a solution
from the ground up that leverages the features of a contemporary
and widely used programming language, we present an embedded
domain-specific language that allows programmers to describe and
synthesize logical circuits. Notably, this approach allows program-
mers to employ many of the language features and any of the pro-
gramming paradigms supported by the host language. We illustrate
this flexibility by considering two use cases: synthesizing circuits
for relational operations and synthesizing circuits corresponding to
the SHA-256 cryptographic hash function.

1. Introduction
Software applications, services, and systems that employ secure
multi-party computation (MPC) [15, 18] can allow organizations
and individuals to offer and utilize data workflows and web services
that can operate on encrypted data without decrypting it. This
makes it possible to enjoy the benefits of workflows and services
while reducing or eliminating the risks and liabilities associated
with sharing or storing sensitive data [3, 12].

Some secure MPC frameworks and libraries employ garbled
circuit protocols [7, 19] in order to allow participating parties to
perform computations using sensitive data that must not be shared.
By design, these protocols allow the evaluation of logical circuits
on the private input data. This means that in order to evaluate
an algorithm for which only a high-level description exists, the
algorithm must be compiled at some point into a logical circuit.
This logical circuit can then be used by the framework as it steps
through the protocol, making it possible to evaluate the function the
circuit represents.

One traditional approach to implementing software solutions
that employ garbled circuit protocols is to split the development
effort into two stages. In the first stage, circuits are synthesized of-
fline for low-level building blocks (such as arithmetic operations).
In the second stage, these building blocks are composed as neces-
sary to achieve the algorithm’s functionality (typically by the appli-
cation developer, potentially with the aid of an interpreter or com-
piler). Within both of these stages, it is possible to use traditional
circuit description languages and synthesis tools, including well-
established solutions such as VHDL and Verilog [8] that are widely
adopted throughout the industry. However, this approach has a few
drawbacks.

First, many algorithms deployed to address real-world use cases
must operate on inputs of different sizes. Even cryptographic prim-
itives such as hash functions may have internal components that run
for a number of iterations that depends on the input size. Synthesiz-
ing a circuit for every possible input size may be inefficient (e.g.,
requiring extra storage for each circuit variant) or even infeasible
(e.g., if the range of expected input sizes is large). The ability to
synthesize circuits in real time could address this challenge.

Second, traditional languages and tools for encoding circuit de-
scriptions and performing circuit synthesis are not always well-
suited for use within contemporary software applications. As se-
cure MPC techniques quickly mature and are incorporated into
software systems and applications that are deployed in production
[12, 14], it is increasingly the case that MPC frameworks and li-
braries must (1) support rapid integration of MPC protocols into
applications built using contemporary software stacks that rely on
languages such as Python and JavaScript and (2) be compatible
with mobile operating systems, web browsers, and cloud-based en-
vironments such as Amazon Lambda and Google Cloud Functions.

Third, it may be easier for a new developer, client, or auditor to
evaluate the performance or to verify the correctness of the high-
level implementation of an algorithm using a language that is fa-
miliar to them. Examining an equivalent circuit description written
in a specialized hardware description language or a corresponding
synthesized circuit represented as a netlist may be cumbersome or
infeasible.

To address these drawbacks, we propose an approach that re-
lies on the development of an embedded domain-specific language
(EDSL) [5] for building circuit descriptions and performing circuit
synthesis. Such a language can be an effective tool within at least
two types of scenarios (which are not mutually exclusive) involving
secure MPC protocols that rely on garbled circuits. In the first type
of scenario, specific variants of circuits (built using specific ensem-
bles of gates that are suitable for particular protocols) are hand-
crafted by a programmer using features, libraries, and paradigms
found in a programming language with which they are familiar.
These circuits can then be incorporated into the overall application.
By using an EDSL within a familiar host language, a programmer
can leverage the full power of that language to build circuit de-
scriptions. In the second type of scenario, variants of circuits are
synthesized (based on abstract templates or patterns) on-demand
within secure MPC workflows. The availability of a well-designed
EDSL may mean that abstract circuit descriptions can be imple-
mented that are similar or identical to the high-level functions the
programmer must define. Furthermore, because circuit descriptions
are functions, they can be evaluated in real time to produce circuit
variants (based on the sizes of the inputs, the particular collection
of logical gates supported by an MPC framework, and other param-
eters) during the operation of the application.

2. Background and Related Work
Efforts related to the topic of this work can be separated into at
least two categories: (1) research related to embedded domain-
specific languages for circuit descriptions, and (2) research related
to programming tools and frameworks that support the assembly of
software solutions that employ secure multi-party computation.

There exists a rich ecosystem of mature frameworks and
domain-specific languages for describing and designing hardware
(including logical circuits) that have many features and associ-
ated tools [16]. Examples include Verilog and VHDL [8], as well
as embedded hardware description languages [2]. Such tools are
well-suited for assembling circuit descriptions and for synthesiz-
ing optimized circuit implementations. However, integrating such
tools into real-world software applications (especially applications
deployed in specific kinds of environments such as web browsers
or serverless computing platforms) may lead to cumbersome com-
patibility issues. Such tools are also not always easily integrated
into applications that must synthesize circuits in real time.

Of some relevance are low-level and high-level circuit descrip-
tion languages and associated synthesis tools for specific domains
such as quantum computing [6]. These framework and language
design efforts are similar to those being undertaken by the secure
MPC community (and includes past efforts [10, 11] by some of
the co-authors of this work), as in both cases there is a need for
a pipeline that translates high-level descriptions of algorithms into
abstract logical circuits (i.e., logical circuits that will not be di-
rectly implemented as physical hardware but will be used as a set
of instructions to conduct some sequence of procedures).

There is now an extensive and diverse array of frameworks that
can be used when assembling software solutions that employ MPC
[9]. This includes frameworks that support contemporary software
stacks and environments [1], each relying on either a single proto-
col or multiple protocols. Some frameworks [13, 17, 20] employ
garbled circuit protocols [7]. Employing these protocols to enable
the execution of a high-level algorithm on private inputs requires
the synthesis of logical circuits that correspond to that algorithm.
Such systems sometimes rely on collections of pre-built circuits or
specialized synthesis algorithms (e.g., for common arithmetic or
cryptographic operations). A strict separation between circuit syn-
thesis and the high-level aspects of a use case may limit opportuni-
ties for optimizations (such as refactoring) that depend on context.

3. Embedded Domain-Specific Language for
Circuit Descriptions

The EDSL presented in this work allows programmers to assemble
logical circuit descriptions and to synthesize logical circuits while
still utilizing the rich and expansive array of supported program-
ming paradigms, language features, built-in libraries, and third-
party packages of the Python host language. This is accomplished
by leveraging for the implementation of the EDSL several impor-
tant features of Python: higher-order functions, inheritance, opera-
tor overloading, decorators, and type annotations.

A core design principle of the EDSL is that programmers (or
other automated or semi-automated tools) using the host language
to describe a circuit already know how to define a circuit as a func-
tion. Thus, any EDSL that allows programmers to build up cir-
cuits should (1) minimize the number of idiosyncratic patterns and
amount of boilerplate necessary to create a circuit description and
at the same time (2) maximize compatibility with the language’s
imperative, functional, and object-oriented programming features.

The EDSL consists of two open-source Python packages. The
circuit1 package provides a data structure for representing circuits.

1 The library is available at https://pypi.org/project/circuit/.

Instances of this data structure are the outputs of the circuit synthe-
sis process (and can be converted into other popular representations
such as the Bristol Fashion format2 using Python packages such as
bfcl3). The circuitry4 library includes two class definitions: one for
individual bits and one for bit vectors. In their simplest form, these
objects behave just like bits and bit vectors: they can be instantiated
to specific values (such as 0 or 1) and then Python infix operators
and other methods can operate on them (this is accomplished via
operator overloading). However, these objects can also be abstract,
representing not specific values but entire circuits that may evalu-
ate to many values. Thus, a Python expression such as x & y may
simultaneously represent (when evaluated) a concrete value such as
1 and an entire circuit consisting of an output logical conjunction
gate whose two inputs are the outputs of the circuits x and y.

To further aid programmers, the circuitry library provides deco-
rators that can be applied to definitions of functions that operate on
bits and bit vectors. These decorators can perform circuit synthesis
or can extend the definition of the function so that it can be applied
either to a bit vector or to a vector of input gates. When the func-
tion is given a vector of input gates and evaluated using the Python
interpreter, it synthesizes the circuit corresponding to the function.

4. Applications
We consider two use cases involving garbled circuits: the secure
two-party evaluation of common relational operations on private
inputs, and the secure two-party evaluation of the SHA-256 hash
function on an input that consists of two bit vectors (one from
each of the two parties). This section focuses on the construction
of high-level Python functions that can operate on bit vector inputs
and how the definitions of these functions can be used with little or
no modification to synthesize corresponding logical circuits. Once
these circuits have been synthesized, they can be converted into an
appropriate format and used within any MPC framework (such as
JIGG5) that relies on garbled circuit protocols.

4.1 Relational Operations
Suppose that a programmer represents individual bits in Python us-
ing the integers 0 and 1. One approach the programmer might use to
implement an equality function on bits is by using Python’s built-in
arithmetic and logical operators on integer values, as illustrated in
Figure 1. To synthesize a circuit that corresponds to this function,
the programmer can simply import the circuitry library, introduce
input and output type annotations, and add a decorator indicating
that the function should be synthesized into a circuit. This is il-
lustrated in Figure 2. As the interactive Python shell session in Fig-
ure 3 shows, the circuit synthesized from the function definition can
be converted into the Bristol Fashion format using the bfcl library.

The programmer then has some options when using the func-
tion defined in Figure 1 to implement an equality function for bit
vectors. In particular, they may adhere either to an imperative pro-
gramming style (e.g., by using language constructs such as loops)
or to a functional programming style (e.g., by using comprehen-
sions and higher-order functions). Both of these are illustrated in
Figure 4. One of these approaches may be preferable over the other
in a particular scenario due to trade-offs such as performance, read-
ability, or compatibility with optimizations. It might also be the
case that the programmer chooses one based on their personal pref-
erence or their level of experience. The EDSL can accommodate

2 The format definition and examples are available at https://homes.
esat.kuleuven.be/~nsmart/MPC/.
3 The library is available at https://pypi.org/project/bfcl/.
4 The library is available at https://pypi.org/project/circuitry/.
5 The library is available at https://github.com/multiparty/jigg.

def equal(x, y):
return (x & y) | ((1 - x) & (1 - y))

Figure 1. Implementation of an equality function for a pair of bits.

from circuitry import bit, synthesize

@synthesize
def equal(x: bit, y: bit) -> bit:

return (x & y) | ((1 - x) & (1 - y))

Figure 2. Implementation of an equality function for individual
bits that is also synthesized into a circuit.

>>> from bfcl import circuit as bristol_fashion
>>> bristol_fashion(equal.circuit).emit()
5 7
2 1 1
1 1
2 1 0 1 2 AND
1 1 0 3 INV
1 1 1 4 INV
2 1 3 4 5 AND
2 1 2 5 6 LOR

Figure 3. Retrieval of the circuit synthesized in Figure 2 and its
conversion into the Bristol Fashion format.

def equals(xs, ys):
z = 1
for i in range(len(xs)):

z = z & equal(xs[i], ys[i])
return z

def equals(xs, ys):
from functools import reduce
es = [equal(x, y) for (x, y) in zip(xs, ys)]
return reduce((lambda e0, e1: e0 & e1), es)

Figure 4. Two implementations of an equality function for bit
vectors; these exemplify the use of imperative (top) and functional
(bottom) programming styles.

both of these approaches, and performing circuit synthesis using
each of these definitions produces a circuit that can be evaluated to
determine the equality of two bit vectors.

Note that the size of the input bit vector is not specified ex-
plicitly in either approach; this is determined automatically by the
algorithm when it is executed (either for the purpose of determining
a concrete output value or to synthesize a circuit). This ensures that
even if the set of concrete circuit descriptions is arbitrarily large,
the circuit that is used for a particular input can have a size that
is tailored to that input. Similar high-level, dynamic-length imple-
mentations exist for all arithmetic operators. For example, the in-
stance of add32 used throughout the implementation in Figure 5 is

an alias for a generalized add n function that works for any two bit
vectors of the same length.

4.2 SHA-256 Hash Function
By leveraging the EDSL, a working Python implementation of
the SHA-256 algorithm implemented by the authors according
to the FIPS 180-4 specification [4] can be used with almost no
modification to perform circuit synthesis. Figure 5 presents the
complete definition of the SHA-256 function that can both be
evaluated on individual bit vectors and can be used to synthesize a
corresponding logical circuit with the same input-output behavior.

The implementation in Figure 5 illustrates a number of features
and benefits of the EDSL.

• Throughout the implementation, infix operators for common
operations on bits and bit vectors are used. This includes logical
operators (such as &, |, and ~) and operators for shifting, rotat-
ing, and concatenating bit vectors (such as >> and +). These can
be used because the EDSL overloads the methods for these op-
erations within the definitions of the bit and bit vector classes.

• The number of iterations of the hash computation is based on
how many 512-bit portions constitute the message as a whole.
This means that the variant of the circuit that is built during
synthesis depends on the input size specified at the time of
synthesis. The input size can be specified by supplying to the
sha256 function a vector of input gates (rather than actual bits)
of the desired length.

• Python lists and associated features (such as list comprehen-
sion syntax and slice notation) are used throughout to maintain
tables of bits and to reuse bits as necessitated by the SHA-256
specification. When this algorithm is evaluated in a vector of
input gates, these are effectively tables of references to circuit
gates. This ensures that circuit gates are reused (at least when
the information flow between table entries in the algorithm it-
self leads to such reuse).

• The constant class constructor from the circuitry library is
used to ensure that the synthesized circuit includes gate inputs
that correspond to the appropriate fixed bits from the initial hash
and the table of constants. The bitlist6 library is used to convert
32-bit integers into bit vectors of length 32.

5. Conclusions and Future Work
We have introduced a library that serves as an embedded domain-
specific language for describing circuits. The library takes advan-
tage of native host language features for code reuse and composi-
tion that include functions, data structures, comprehension syntax,
and iteration constructs. We have also shown that circuits can be
synthesized directly from function definitions by taking advantage
of host language features such as decorators and type annotations.

The EDSL will be enhanced in the future in at least three ways.
Hooks will be introduced into the class definitions that enable cir-
cuit optimizations to be applied as a circuit is being constructed
(e.g., the caching and reuse of references to internal gates or the
application of algebraic laws). In addition to this, abstract interpre-
tations of circuit construction operators will be implemented (e.g.,
to allow the derivation of a polynomial that describes the size of a
circuit rather than the circuit itself). Finally, a static analysis feature
will be added that automatically determines whether a Python func-
tion definition can safely be converted to a circuit (i.e., the body of
the function does not have instances of branching constructs such
as if in which the value of the condition expression can be influ-
enced by an input value).

6 The library is available at https://pypi.org/project/bitlist/.

from bitlist import bitlist
from circuitry import constants

def iteration(d_8_32s, m_64_8s):
"""
Perform a single iteration of the hash computation over the current
digest (consisting of 32 bit vectors with each having 8 bits) based on a
message portion (consisting of 64 bit vectors with each having 8 bits)
to produce an intermediate hash.
"""

Table of constants (64 individual bit vectors each having 32 bits).
table = [constants(list(bitlist(i, 32))) for i in [

1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221,
3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580,
3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895,
666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037,
2730485921, 2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344,
430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779,
1955562222, 2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298

]]

Functions used during the hash computation.
Ch = lambda x, y, z: (x & y) ^ ((~x) & z)
Maj = lambda x, y, z: ((x & y) ^ (x & z)) ^ (y & z)
Sigma_0 = lambda bs: ((bs >> {2}) ^ (bs >> {13})) ^ (bs >> {22})
Sigma_1 = lambda bs: ((bs >> {6}) ^ (bs >> {11})) ^ (bs >> {25})
sigma_0 = lambda bs: ((bs >> {7}) ^ (bs >> {18})) ^ (bs >> 3)
sigma_1 = lambda bs: ((bs >> {17}) ^ (bs >> {19})) ^ (bs >> 10)

w = [] # Message schedule.
for j in range(16):

w.append(m_64_8s[j*4] + m_64_8s[j*4+1] + m_64_8s[j*4+2] + m_64_8s[j*4+3])
for j in range(16, 64):

w.append(add32(add32(add32(sigma_1(w[j-2]), w[j-7]), sigma_0(w[j-15])), w[j-16]))

wv = [i32 for i32 in d_8_32s] # Eight 32-bit working variables.
for j in range(64):

c = add32(add32(Ch(wv[4], wv[5], wv[6]), table[j]), w[j])
t1 = add32(add32(wv[7], Sigma_1(wv[4])), c)
t2 = add32(Sigma_0(wv[0]), Maj(wv[0], wv[1], wv[2]))
wv = [add32(t1, t2), wv[0], wv[1], wv[2], add32(wv[3], t1), wv[4], wv[5], wv[6]]

return [add32(d_8_32s[j], wv[j]) for j in range(8)] # Return intermediate hash.

def sha256(message):
"""
Accept a list ‘message‘ of bit vectors each having 8 bits (for a total number that is a multiple of 512),
and compute a SHA-256 message digest consisting of 32 individual bit vectors each having 8 bits.
"""

Initial hash value represented as eight individual bit vectors each having 32 bits.
digest = [constants(list(bitlist(i, 32))) for i in [

1779033703, 3144134277, 1013904242, 2773480762,
1359893119, 2600822924, 528734635, 1541459225

]]

Perform hash computation for appropriate number of iterations depending on the message length.
for i in range(len(message) // 64):

digest = iteration(digest, message[(i * 64) : (i * 64) + 64])

Turn eight individual bit vectors each having 32 bits into 32 individual bit vectors each having 8 bits
using the ‘/‘ operator that has been overloaded to act as a splitting operation on bit vectors.
return bits([b for bs in digest for b in bs]) / {8}

Figure 5. Python implementation of the SHA-256 hash function (for properly padded inputs of a size divisible by 512) that conforms to the
FIPS 180-4 specification [4] and that supports both evaluation on inputs and (without modification) circuit synthesis via the circuitry library.

References
[1] K. D. Albab, R. Issa, A. Lapets, P. Flockhart, L. Qin, and I. Globus-

Harris. Tutorial: Deploying Secure Multi-Party Computation on the
Web Using JIFF. In 2019 IEEE Cybersecurity Development (SecDev),
pages 3–3, McLean, VA, USA, September 2019. URL https://doi.
org/10.1109/SecDev.2019.00013.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović. Chisel: Constructing hardware
in a scala embedded language. In Proceedings of the 49th An-
nual Design Automation Conference, DAC ’12, page 1216–1225,
New York, NY, USA, 2012. Association for Computing Machin-
ery. ISBN 9781450311991. URL https://doi.org/10.1145/
2228360.2228584.

[3] A. Bestavros, A. Lapets, and M. Varia. User-Centric Distributed
Solutions for Privacy-Preserving Analytics. Communications of the
ACM, 60(2):37–39, February 2017. URL https://doi.org/10.
1145/3029603.

[4] Q. Dang. Changes in Federal Information Processing Standard (FIPS)
180-4, Secure Hash Standard. Cryptologia, 37(1):69–73, 2013. URL
https://doi.org/10.1080/01611194.2012.687431.

[5] M. Fowler and R. Parsons. Domain-Specific Languages. Addison-
Wesley, Upper Saddle River, NJ, 2011. ISBN 978-0321712943.

[6] S. Garhwal, M. Ghorani, and A. Ahmad. Quantum Programming
Language: A Systematic Review of Research Topic and Top Cited
Languages. Archives of Computational Methods in Engineering,
Dec. 2019. ISSN 1886-1784. URL https://doi.org/10.1007/
s11831-019-09372-6. ZSCC: 0000000.

[7] O. Goldreich. Cryptography and cryptographic protocols. Dis-
tributed Comput., 16(2-3):177–199, 2003. URL https://doi.org/
10.1007/s00446-002-0077-1.

[8] S. Golson and L. Clark. Language Wars in the 21st Century: Verilog
versus VHDL—Revisited. In Synopsys Users Group (SNUG), 2016.

[9] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. SoK:
General Purpose Compilers for Secure Multi-Party Computation. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1220–
1237, 2019. URL https://doi.org/10.1109/SP.2019.00028.

[10] A. Lapets and M. Rötteler. Abstract Resource Cost Derivation for
Logical Quantum Circuit Descriptions. In Proceedings of FPCDSL
2013: The 1st Workshop on Functional Programming Concepts in
DSLs, Boston, MA, USA, September 2013. URL https://doi.
org/10.1145/2505351.2505358.

[11] A. Lapets, M. Silva, M. Thome, A. Adler, J. Beal, and M. Rötteler.
QuaFL: A Typed DSL for Quantum Programming. In Proceedings
of FPCDSL 2013: The 1st Workshop on Functional Programming
Concepts in DSLs, Boston, MA, USA, September 2013. URL https:
//doi.org/10.1145/2505351.2505357.

[12] A. Lapets, F. Jansen, K. D. Albab, R. Issa, L. Qin, M. Varia, and
A. Bestavros. Accessible Privacy-Preserving Web-Based Data Anal-
ysis for Assessing and Addressing Economic Inequalities. In Pro-
ceedings of ACM COMPASS 2018: First Conference on Computing
and Sustainable Societies, San Jose, CA, USA, June 2018. URL
https://doi.org/10.1145/3209811.3212701.

[13] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A
Programming Framework for Secure Computation. In 2015 IEEE
Symposium on Security and Privacy, pages 359–376, 2015. URL
https://doi.org/10.1109/SP.2015.29.

[14] L. Qin, P. Flockhart, A. Lapets, K. D. Albab, M. Varia, S. Roberts,
and I. Globus-Harris. From Usability to Secure Computing and Back
Again. In Proceedings of the 15th Symposium on Usable Privacy
and Security (SOUPS), Santa Clara, CA, USA, August 2019. URL
https://dl.acm.org/doi/10.5555/3361476.3361490.

[15] A. Shamir. How to share a secret. Communications of the ACM, 22
(11):612–613, 1979. URL https://doi.org/10.1145/359168.
359176.

[16] L. Truong and P. Hanrahan. A Golden Age of Hardware Description
Languages: Applying Programming Language Techniques to Improve
Design Productivity. In B. S. Lerner, R. Bodı́k, and S. Krishnamurthi,

editors, 3rd Summit on Advances in Programming Languages, SNAPL
2019, May 16-17, 2019, Providence, RI, USA, volume 136 of LIPIcs,
pages 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. URL https://doi.org/10.4230/LIPIcs.SNAPL.2019.7.

[17] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient Mul-
tiParty computation toolkit. https://github.com/emp-toolkit,
2016.

[18] A. C. Yao. Protocols for Secure Computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS
’82, pages 160–164, Washington, DC, USA, 1982. IEEE Computer
Society. URL http://dx.doi.org/10.1109/SFCS.1982.88.

[19] A. C. Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages
162–167, 1986. URL https://doi.org/10.1109/SFCS.1986.
25.

[20] S. Zahur and D. Evans. Obliv-C: A Language for Extensible
Data-Oblivious Computation. Cryptology ePrint Archive, Report
2015/1153, 2015. https://eprint.iacr.org/2015/1153.

