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Abstract

Private Information Retrieval (PIR) allows several clients to query a database held by one
or more servers, such that the contents of their queries remain private. Prior PIR schemes have
achieved sublinear communication and computation by leveraging computational assumptions,
federating trust among many servers, relaxing security to permit differentially private leakage,
refactoring effort into an offline stage to reduce online costs, or amortizing costs over a large
batch of queries.

In this work, we present an efficient PIR protocol that combines all of the above techniques
to achieve constant amortized communication and computation complexity in the size of the
database and constant client work. We leverage differentially private leakage in order to provide
better trade-offs between privacy and efficiency. Our protocol achieves speed-ups up to and
exceeding 10x in practical settings compared to state of the art PIR protocols, and can scale to
batches with hundreds of millions of queries on cheap commodity AWS machines. Our protocol
builds upon a new secret sharing scheme that is both incremental and non-malleable, which may
be of interest to a wider audience. Our protocol provides security up to abort against malicious
adversaries that can corrupt all but one party.

1 Introduction

Private Information Retrieval (PIR) [28, 53] is a cryptographic primitive that allows a client to
retrieve a record from a public database held by a single or multiple servers without revealing the
content of her query. PIR protocols have been developed for a variety of settings, including informa-
tion theoretic PIR where the database is replicated across several servers [28], and computational
PIR using single server [53]. The different settings of PIR are limited by various lower bounds on
their computation or communication complexity. In essence, a server must “touch” every entry in
the database when responding to a query, or else the server learns information about the query,
namely what the query is not!

Recent PIR protocols [30, 51, 61, 72] achieve sub-linear computation and communication by re-
lying on a preprocessing/offline stage that shifts the bulk of computation into off-peak hours [10],
relaxing security to allow limited leakage [76], or batching queries, mostly in the case when they
originate from the same client. These advances allowed PIR to be used in a variety of applications
including private presence discovery [16,71], anonymous communication and messaging [6,25,54,67],
private media and advertisement consumption [42,43], certificate transparency [61], and privacy pre-
serving route recommendation [84].
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Existing sublinear PIR protocols are able to handle medium to large databases of size n and still
respond to queries reasonably quickly. However, they scale poorly as the number of queries increase:
the sub-linear cost (e.g.

√
n for Checklist [51]) of handling each query quickly adds up when the

number of queries approaches or exceeds the size of the database into a super-linear overall cost
(e.g. n

√
n). Efficiently batching such queries and amortizing their overheads is an open problem

when these queries are made by different clients: existing work that batches such queries assumes
the number of queries is much smaller than the database size [61], burdens clients with making noise
queries [76], or requires clients to closely coordinate and share secrets when preprocessing is used [10].
This complicates efforts to deploy PIR in a variety of important applications including software
updates, contact tracing, content moderation, blacklisting of fake news, software vulnerability look-
up, and similar large-scale automated services. We demonstrate this empirically in section 2.

In this work, we introduce DP-PIR, a novel differentially private PIR protocol tuned to efficiently
handle large batches of queries approaching or exceeding the size of the underlying database. Our
protocol batches queries from different non-coordinating clients. DP-PIR is the first protocol to
achieve constant amortized server computation and communication, as well as constant client com-
putation and communication.

While the details of our protocol are different from earlier work, at a high level our construction
combines three ideas:

1. Offloading public key operations to an offline stage so that the online stage consists only of
cheap operations [30, 72].

2. High throughput batched shuffling of messages by mix-nets and secure messaging systems
[57,58,79,81].

3. Relaxing the security of oblivious data structures and protocols to differentially private leakage
[65].

DP-PIR Overview Our protocol is a batched multi-server PIR protocol optimized for queries
approaching or exceeding the database size. DP-PIR is secure up to selective aborts against a
dishonest majority of malicious servers, as long as at least one server is honest. Our protocol
induces a per-batch overhead linear in the size of the database; this overhead is independent of
the number of queries q in that batch, with a total computation complexity of O(n+ q) per entire
batch. When the number of queries approaches or exceeds the size of the database, the amortized
computation complexity per query is constant. Furthermore, our protocol only requires constant
computation, communication, and storage on the client side, regardless of amortization. We describe
the details of our construction in section 5.

Our protocol achieves this by relaxing the security guarantees of PIR to differential privacy
(DP) [36]. Unlike traditional PIR protocols, servers in DP-PIR learn a noised differentially private
histogram of the queries made in a batch. Clients secret share their queries and communicate
them to the servers, which are organized in a chain similar to a mixnet. Our servers take turns
shuffling these queries and injecting generated noise queries similar to Vuvuzela [81]. The last server
reconstructs the queries (both real and noise) revealing a noisy histogram, and looks them up in
the database. The servers similarly secret share and de-shuffle responses, while removing responses
corresponding to their noise, and then send them to their respective clients for final reconstruction.
The noise queries are generated from a particular distribution to ensure that the revealed histogram
is (ϵ, δ)-differentially private, so that the smaller ϵ and δ get, the more noise queries need to be
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added. The distribution can be configured to provide privacy at the level of a single query or all
queries made by the same client in a single batch or over a period of time. The number of these
noise queries is linear in n and 1

ϵ and independent of the number of queries in a batch. The noise
does not affect the accuracy or correctness of any client’s output. Section 3 describes our threat
model and provides an interpretation of what this differentially oblivious [22] access pattern privacy
means (as compared to traditional PIR).

Our protocol offloads all expensive public key operations to a similarly amortizable offline pre-
processing stage. This stage produces correlated secret material that our protocol then uses online.
Our online stage uses only a cheap information-theoretic secret sharing scheme, consisting solely of
a few field operations, which modern CPUs can execute in a handful of cycles. The security of our
protocol requires that this secret sharing scheme, which we define in section 4, is both incremental
and non-malleable. Finally, section 6 describes how our protocol can be parallelized over additional
machines to exhibit linear improvements in latency and throughput.

Our Contribution We make three main contributions:

1. We introduce a novel PIR protocol that achieves constant amortized server complexity with
constant client computation and communication, including both its offline and online stage,
when the number of queries is similar to or larger than the size of the database, even when the
queries are made by different clients. Our offline stage performs public key operations linear
in the database and queries size, and the online stage consists exclusively of cheap arithmetic
operations.

2. We achieve a crypto-free online stage via a novel secret sharing scheme that is both incremen-
tal and non-malleable, based only on modular arithmetic for both sharing and reconstruction.
To our knowledge, this is the first information theoretic scheme that exhibits both proper-
ties combined. This scheme may be of independent interest in scenarios involving Mixnets,
(Distributed) ORAMs, and other shuffling and oblivious data structures.

3. We implement this protocol and demonstrate its performance and scaling to loads with hun-
dreds of millions queries, while achieving throughput several fold higher than existing state of
the art protocols. The experiments identify a criterion describing application settings where
our protocol is most effective compared to existing protocols, based on the ratio of the number
of queries over the database size.

Publication Note This is an extended version of our USENIX Security 2022 paper with the same
title. This paper expands on certain discussions and provides additional analysis and complete proofs
that were omitted from the published work for brevity and space limitations.

2 Motivation

Private Information Retrieval is a powerful primitive that conceptually applies to a wide range
of privacy preserving applications. Existing PIR protocols are well suited for applications with
medium to large databases and small or infrequent number of queries [6, 42, 70, 84]. However, they
are impractical for a large class of applications with a large number of queries.
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Motivating example One example that we consider throughout this work is checking for software
updates on mobile app stores. The Google Play and iOS app stores contain an estimated 2.56 and
1.85 million applications each [46], and the number of active Android and iOS devices exceed 3
and 1.65 billion, respectively [31]. These devices perform periodic background checks to ensure
that their installed applications are up to date. Currently, these checks are done without privacy:
the app store knows all applications installed on a device, and can perform checks to determine if
they are up-to-date quickly. However, the installed applications on one’s device constitute sensitive
information. They can reveal information about the user’s activity (e.g. which bank they use), or
whether the device has applications with known exploits.

It is desirable to hide the sensitive application information from the app store as well as potential
attackers. A device can send a PIR query for each application installed, and the servers can privately
respond with the most up-to-date version label of each application. If the installed application is out
of date, the device can then download the updated application via some anonymous channel, such as
Tor. However, unlike DP-PIR, existing PIR protocols cannot scale to such loads, where the number
of devices is about 1000x larger than the size of the database, each with tens of applications installed,
given how quickly the sub-linear overheads per query add up. We demonstrate this empirically with
three state of the art PIR protocols: Checklist [51], DPF [17], and SealPIR [5].

Additional Applications We believe that a large class of applications demonstrate similar prop-
erties ideal for DP-PIR. In privacy-preserving automated exposure notification for contact trac-
ing [21, 77, 78], the number of recent cases in a city or region (i.e. the size of the database) is far
smaller than the total population of that area (i.e. the number of queries). Similarly, identify-
ing misinformation in end-to-end encrypted messaging systems [52] usually involves a denylist far
smaller than the total number of messages exchanged in the system within a reasonable batching
time window.

Our protocol relies on having two or more non-colluding parties that together constitute the ser-
vice provider. This is a common assumption used by many other PIR protocols. Secure multiparty
computation (MPC) has been applied in many real world applications over the last decade. This
includes services federated over somewhat-independent subdivisions within the same large organiza-
tion [1,75], or additional parties that volunteer to participate to promote common social good [29,73].
A third category, which we believe is most suited for the app store example, involves providers ac-
tively seeking out third parties to federate their services [12, 56] under contractual agreements for
privacy or compliance reasons, usually in exchange for financial or reputation incentives. This has
spurred various startups [68,69] that provide their participation in secure multiparty computations
as a service.

We believe that the differential privacy guarantees of DP-PIR suffice for applications where
the primary focus is protecting the privacy of any given client, but not overall trends or patterns.
Such as applications where it is also desirable for the (approximate) overall query distribution to be
publicly revealed, e.g. an app store that displays download counts or a private exposure notification
service that also identifies infection hotspots. DP-PIR is ideal for such applications, since it reveals
a noised version of this distribution, without having to use an additional private heavy hitters
protocol [13]. In practice, we emphasize that our relaxed DP guarantees should be viewed as an
improvement over the insecure status-quo, rather than a replacement for PIR protocols that have
stronger guarantees but impractical overheads in our target settings.
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Protocol Computation Communication
Online Offline Online Offline

BIM04 [10] n0.55 − n0.55 −
CK20 [30]

√
n n λ2 log n

√
n

Checklist [51]
√
n n λ log n

√
n

Naive † n - n/q∗ -
PSIR [72] † q∗n n logc n n/q
CK20 [30] † q∗

√
n n

√
n

√
n/q∗

BIM04 [10] ‡§ qn
w
3 − n

1
3 /q −

LG15 [61] ‡¶ q0.8n −
√
n −

This work ‡∥ cϵ,δn+ q cϵ,δn+ q 1 1

†: support batching of queries made by the same client.
‡: supports batching of queries made by different clients.
§: amortizes to n

w
3 , w ≥ 2 is the matrix mult. exponent.

¶: up to q =
√
n.

∥: amortizes to a constant when q ∼ n.

Table 1: Computation and communication complexity of various existing PIR protocols. Here, n
is the database size, q∗ and q are the number of queries made by a single or different clients. For
protocols that support batching, computation complexity represents the total complexity to handle
a batch. Communication is always per query

Comparison to Existing PIR Protocols Private Information Retrieval (PIR) has been been
extensively studied in a variety of settings. Information theoretic PIR replicates the database over
several non-colluding servers [9], while computational PIR traditionally uses a single database and
relies on cryptographic hardness assumptions [19,27,59].

Naive PIR protocols require a linear amount of computation and communication (e.g. sending
the entire database over to the client), and several settings have close-to-linear lower bounds on
either computation or communication [60].

Modern PIR protocols commonly introduce an offline preprocessing stage, which either encodes
the database for faster online processing using replication [10, 14, 30, 51] and coding theory [18,
20, 44, 72], performs a linear amount of offline work per client to make the online stage sub-linear
[20,30,51,51], or performs expensive public key operations so that the online stage only consists of
cheaper ones [30, 51, 72]. Other protocols rely on homomorphic primitives during online processing
[3, 5, 83].

Finally, some protocols allow batching queries to amortize costs. When combined with pre-
processing, batching is only supported for queries originating from the same client [30, 51, 72], or
ones that share secret state [10]. Batching queries from different clients without preprocessing is
possible [47] but has limitations. Earlier work induces a sublinear (but non constant) amortized
computation complexity [10, 61]. Our work amortizes the computation costs of queries made by
different queries down to a constant, while also requiring constant client work. In section 8, we
discuss ϵ-PIR [76] which also amortizes such queries but burdens clients with generating the noise
queries required for differential privacy.

Experiment Setup Our experiments measure the server(s) time needed to process a complete
set of queries with ϵ = 0.1 and δ = 10−6. While the trends shown in these results are intrinsic
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Figure 1: Checklist and DP-PIR Total completion time (y-axis, logscale) for varying number of
queries (x-axis, logscale) against a 2.5M database
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Figure 2: The ratios of queries/database (y-axis) after which DP-PIR outperforms Checklist by the
indicated x factor for different database sizes (x-axis, logscale)

properties of our protocol design, the exact numbers depend on the setup and protocol parameters.
Section 7 discusses our setup and the effects of these parameters in detail.

Checklist Figure 1 shows the server computation time of Checklist and DP-PIR when processing
different number of queries against a database with n = 2.5M elements. Our protocol has constant
performance initially, which starts to increase with the number of queries q as they exceed 10M. In
more detail, the computation time of DP-PIR is proportional to the total count of noise and real
queries cϵ,δn+ q, where c0.1,10−6 = 276. Therefore, the cost induced by q is negligible compared to
cϵ,δn until q becomes relatively significant.

On the other hand, Checklist scales linearly with the number of queries throughout, as its
computation time is proportional to q

√
n. When the number of queries is small, this cost is far

smaller than the initial overhead of our system. As q approaches n, both systems start getting
comparable performance. DP-PIR achieves identical performance to Checklist at q = 1.9M (slightly
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below 4
5 the size of the database), and outperforms Checklist for more queries. Our speedup over

Checklist grows with the ratio q
n , approaching a maximum speedup determined by

√
n when the

ratio approaches ∞. For a database with 2.5M elements, our experiments demonstrate that we
outperform Checklist by at least 2x, 5x, and 10x after the ratio exceeds 1.5, 3.9 and 8.1 respectively.
We note that the largest data-point in the two figures are extrapolated.

The ratio required for achieving a particular speedup is not identical for all database sizes. As
shown in Figure 2, DP-PIR prefers larger databases: the larger the database, the smaller the ratio
required by DP-PIR to achieve a particular speedup, and the larger the maximum speedup that
DP-PIR can achieve as q →∞.

We extrapolate from our empirical results to three possible scenarios for our Google Play store
example, where the database contains roughly 2.5M elements with 3B active users, with the same
setup and parameters as above. First, we assume each user makes exactly a single query (corre-
sponding to a single app on their phone) resulting in a batch of size q = 3B, and q

n = 1200. In
the second scenario, we assume each user checks the updates for all apps on their phone (e.g. say
at most 100 apps), but only configure our system to provide DP guarantees only at the level of
a single query (i.e. event-DP). In the last scenario, each user similarly makes 100 queries, but we
configure our system to provide user-level DP guarantees protecting all the queries of the same
user (i.e. user-DP), which results in adding 100 times the amount of noise. Our estimates indicate
that our protocol will exhibit speedups of 161x, 180x, and 161x over checklist in these scenarios
respectively. We discuss the different DP configurations in section 3. We exhibit similar trends with
larger speedups given even less queries over SealPIR [5] and DPF [17], as shown in appendix A.

3 Protocol Overview

Our protocol consists of c1, ..., cd clients and s1, ..., sm servers. We designate s1 and sm as a special
frontend and backend server respectively. We assume that every server si has a public encryption
key pki known to all servers and clients, with associated secret key ski. Every server has a copy
of the underlying database T = K → (V,Σ) mapping keys to values and signatures, such that
T [k] = (v, σ), where σ is a (m,m)−threshold signature over (k, v) by the m servers. The signatures
are only needed for integrity and do not affect the privacy of clients; they allow clients to verify
that the responses they received correspond to the correct T agreed upon by the servers, and can
be omitted when the backend is assumed to be semi-honest. We refer to the query made by client
ci by qi, and its associated response by ri = (vi, σi).

3.1 Setting

Our protocol is easiest to understand in the case of a single epoch consisting of an input-independent
offline stage followed by an online stage. The client state, created in the offline stage and consumed
in the online one, consists exclusively of random elements. Clients can store the seed used to produce
these elements to achieve constant storage relative to the number of queries and number of servers.
A client need only submit her secrets to the service during the offline stage, and can immediately
leave the protocol afterwards. The client can reconnect at any later time to make a query without
any further coordination.

The offline stage is more computationally expensive than the online one, since it performs a
linear number of public key operations overall. We suggest that the offline stage be carried out
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during off-peak hours (e.g. overnight), when utilization is low. Furthermore, both our stages are
embarrassingly parallel in the resources of each party. It may be reasonable to run the offline
stage with more resources, if these resources are cheaper to acquire overnight (e.g. spot instances).
Our offline stage is similar to Vuvuzela [81], which exhibits good throughput. However, the linear
number of public key operations performed by Vuvuzela makes it impractical for our online stage.
Indeed, our online stage is crypto-free using only a handful of arithmetic operations per query.

In practice, services using DP-PIR alternate between collecting a batch of queries submitted
from clients within some configurable time window, and processing that batch using our online
protocol. In section 7, we discuss the effects of this batching window on our performance. Each
batch requires corresponding offline processing. Our protocol allows multiple offline stages (e.g. the
ones corresponding to an entire day’s worth of batches) to be pooled together into a proportionally
larger stage executed in one shot during off-peak hours when resources are cheaper (e.g. the night
before). The clients can choose to make their queries at any time after preprocessing, but client
states from several uncombined offline stages should not be used in a single online batch, to avoid
allowing the adversary to identify the origin of the query by diffing out clients that participated in
different stages.

Our protocol assumes that T and its signatures are provided as input. Thus, the servers must
agree on T and produce signatures for it ahead of time. The same T and signatures can be reused by
many offline/online stages; servers need only compute new signatures when the underlying database
changes, and may rely on timestamps to enable clients to reject expired responses. The servers never
sign or verify any signatures during either the offline or online stages, and each client needs to verify
one signature per received response. Therefore, the efficiency of signing/verification is secondary.
Instead, our protocol prefers signature schemes that produce shorter signatures for lower bandwidth.

3.2 Threat Model

Our construction operates in the ‘anytrust’ model up to selective abort. Specifically, we tolerate up
to m− 1 malicious servers and d− 1 malicious clients.

In terms of confidentiality, our protocol differs from traditional perfectly-private PIR protocols
in that it leaks noisy access patterns over the honest clients’ queries, in the form of a differentially
private noisy histogram H(Q) = Hhonest(Q) + χ(ϵ, δ, ϕ).

As for integrity, our protocol is secure up to selective abort, and does not guarantee fairness.
Adversarial servers may elect to stop responding to queries, effectively aborting the entire protocol.
Furthermore, they can do so selectively: any server can decide to drop queries at random, the
frontend server can drop queries based on the identity of their clients, and the backend server can
drop queries based on their value.

We stress that an adversary cannot drop a query based on the conjunction of the client’s identity
and the value, regardless of which subset of servers gets corrupted. Also, an adversary can only
drop a query, but cannot convince a client to accept an incorrect response, since clients can validate
the correctness of received responses locally.

3.3 Interpreting Privacy

Our protocol can be configured to provide different levels of (ϵ, δ)-differential privacy by selecting
the parameters of the underlying distribution used to sample noise queries. The most efficient
(and easiest to understand) configuration is often called event-DP, which provides guarantees at the

8



level of any single honest query. Another DP configuration, commonly termed user-DP, provides
guarantees at the level of all queries made by any honest client. We use event-DP throughout the
paper except when otherwise noted.

We provide either guarantee at the level of a single isolated batch. In particular, we consider
two batches of queries Q and Q′ over the honest clients’ queries to be ϕ-neighboring batches when
they consists of identical queries except for ϕ queries. In event-DP, it is enough to consider ϕ = 1.
While in user-DP, we set ϕ to the number of queries a client can make within a batch (or an upper
bound of it). In either case, the sensitivity is 2ϕ, which means that for the same ϵ, δ the expected
number of noise queries we add grows linearly in ϕ.

Definition 1 (Differentially Private PIR Access Patterns). For any privacy parameters ϵ, δ, and
every two ϕ−neighboring batches of queries Q,Q′, the probabilities of our protocol producing identical
access pattern histograms are (ϵ, δ)-similar when run on either set:

Pr[H(Q) = H] ≤ eϵPr[H(Q′) = H] + δ

Our definition uses the substitution formulation of DP, rather than the more common addi-
tion/removal; see [80, §1.6] for details. Substitution is commonly used in secure computation pro-
tocols involving DP leakage [65]. We use this variant since our protocol does not hide whether
a client made a query in a batch or not: the adversary already knows this e.g. by observing IP
addresses associated to queries. Instead, we hide the value of the query itself. Substitution is more
conservative adding twice the expected amount of noise queries, since its sensitivity is 2ϕ compared
to ϕ in the other.

So far, we only discussed guarantees within a single online stage. In any long running DP system
where clients can make unbounded queries, it is impossible to achieve user-DP globally. Instead,
practical systems [62] often rely on the user-time-DP model, where the guarantees extend over all
queries made by a client over a set moving time window (e.g. a week). We can achieve this by
setting ϕ to the number of queries that a client may make over a time window, regardless of how the
client distributes the queries over the batches in that window. This follows from DP’s composition
theorem.

One way to interpret our DP guarantees (aka “differential obliviousness” [22]) is that they provide
any client with plausible deniability: a client that made queries q1, ..., qϕ over some period of time
can claim that her true queries were any different q′1, ..., q

′
ϕ, and external distinguishers cannot

falsify this claim since the probability of either case inducing any same observed histogram of access
patterns is similar.

Whereas traditional differential privacy mechanisms trade privacy for accuracy, differential obliv-
iousness trades privacy for performance while always providing accurate outputs. In DP-PIR, in-
creasing privacy (by lowering ϵ and δ or increasing ϕ) results in additional noise queries, making
our protocol proportionally slower, and requiring a proportionally larger batch of queries to achieve
the same amortization, and thus speedup, over other protocols. The amount of noise queries scales
linearly in ϕ and 1

ϵ and sub-linearly in δ (see Table 3).

4 Incremental Non-Malleable Secret Sharing

Our protocol relies on shuffling real queries with noise queries by our chain of servers, similar to
Vuvuzela and other mixnets where public key onion encryption is used to pass secrets through that
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chain. However, this induces a large number of public key operations, proportional to m× |batch|.
We use a novel cheaper arithmetic-based secret sharing scheme instead of onion encryption during
our online stage.

The secret sharing scheme provides similar security guarantees to onion encryption, to ensure
that input and output queries are untraceable by external adversaries:

1. Secrecy: As long as one of the shares is unknown, reconstruction cannot be carried out by an
adversary.

2. Incremental Reconstruction: A server that only knows a single secret share and a running
tally must be able to combine them to produce a new tally. The new tally must produce the
original secret when combined with the remaining shares.

3. Independence: An adversary cannot link any partially reconstructed output from a set of
outputs to any shared input in the corresponding input set.

4. Non-Malleability: An adversary who perturbs any given share cannot guarantee that the
output of reconstruction with that perturbed share satisfies any desired relationship. In par-
ticular, the adversary cannot perturb shares such that reconstruction yields a specific value
(e.g., 0), or a specific function of the original secret (e.g., adding a fixed offset).

Formally, we define a secret sharing scheme with incremental reconstruction with the usual
sharing mechanism but a new method to recover the original secret.

Definition 2. An incremental secret sharing scheme S over a field F and m parties contains two
algorithms.

• Sh(q) disperses a secret q into a randomly chosen set of shares q⃗ = q1, . . . , qm ∈ F and some
initial tally l0.

• Rec(li−1, qi)→ li performs party i’s partial reconstruction to produce running tally li.

The scheme is correct if for all sharings (q⃗, l0)← Sh(q), the overall reconstruction returns lm = q.

Non-malleability is critical for preserving security when the last (backend) server is corrupted.
The backend can observe the final reconstructed values of all queries to identify queries perturbed
by earlier colluding servers. If the perturbation can be undone (e.g. by removing a fixed offset),
then the backend can learn the value of the query and link it to information known by other servers,
such as the identity of its client.

We formally define non-malleability through the following indistinguishability game. It guaran-
tees that if an adversarial set of m − 1 parties submits a tampered partial tally l∗i−1 to the honest
party i, then the tally l∗i returned by the honest party is uniformly random. As a result, l∗i is
independent of (and therefore hides) the secret q, and it only completes to a reconstruction of q
with probability 1/|F|.

Definition 3. Consider the following two games that only differ in the final step. Call them Left

and Right respectively.
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Adversary A Challenger C
secret q, honest party i

q⃗, l0 = Sh(q)

calculate all ljadversary shares l0, {qj}j ̸=i

modified tally l∗i−1 ̸= li−1
l∗i = Rec(l∗i−1, qi)

r ← Fl∗i or r

return bit b

We say that an incremental secret sharing scheme S = (Sh,Rec) is non-malleable if for all
adversaries A, the Left and Right games are (perfectly) indistinguishable.

Several non-malleable secret sharing schemes exist [8, 41]. However, they are not incremental:
their reconstruction is a one-shot operation over all shares. Conversely, known incremental schemes,
such as additive or XOR-based sharing, are vulnerable to malleability. It would have been possible
to use different primitives in our protocol that satisfy our desired properties, such as authenticated
onion symmetric-key encryption. However, these operations remain more expensive than simple
information theoretic secret sharing schemes that can be implemented with a handful of arithmetic
operations.

Our Incremental Sharing Construction Given a secret q, a prime modulus z, and an integer
m, our scheme produces m+ 1 pairs q0 = (x0, y0), q1 = (x1, y1), ..., qm = (xm, ym), where each pair
represents a single share of q. All x and y values are chosen independently at random from Fz and
F∗
z respectively, except for the very first pair x0, y0, whose values are set to:

x0 = ⟨[(q − xm)× y−1
m ] ...− x1⟩ × y−1

1 mod z, y0 = 0.

All shares except the first one can be selected prior to knowing q. This is important for our
offline stage. The modulus z must be as big as the key size in the underlying database (32 bits
in our experiments). To reconstruct the secret q, we show below the incremental reconstruction
operations Rec(li−1, qi) to construct the first partial tally and all subsequent ones:

l0 = y0 × 1 + x0 mod z,
lj = yj × lj−1 + xj mod z.

Correctness (i.e., lm = q) stems from our choice of (x0, y0). We provide a proof showing that our
construction is indeed non-malleable in appendix E.

5 Our DP-PIR Protocol

Offline Stage Our offline stage consists of a single sequential pass over the m servers. Clients
generate random secrets locally, and submit them after onion encryption to the first server in
the chain. The first server receives all such incoming messages from clients, until a configurable
granularity is reached, e.g. after a certain time window passes or a number of messages is received.
All incoming messages at that point constitutes the input set for that server. The server outputs a
larger set. This set contains both the processed input messages, as well as new messages inserted
by the server.
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Algorithm 1 Client i Offline Stage
Input: Nothing.
Output state at the client: a list of anonymous secrets [ai0, ..., aim], one per each of the m servers.
The client uses these secrets in the online stage.
Output to s1: Onion encryption of ai1, ..., aim.

1. Generate Random Values: For each Server sj , the client generates 4 values all sampled
uniformly at random: (1) A globally unique identifier tij . (2) Two incremental pre-shares
xij ∈ Zz and yij ∈ Z∗

z. (3) An additive pre-share eij ∈ [0, 2b). We define ei = Σ eij mod 2b

which the client uses to reconstruct the response online.

2. Build Shared Anonymous secrets: The client builds aij = (tij , t
i
j+1, x

i
j , y

i
j , e

i
j), for every

server 1 ≤ j ≤ m, using the generated random values above, with tim+1 = ⊥. These secrets
are stored by the client for later use in the online stage.

3. Onion Encryption: The client onion encrypts the secrets using the correspond server’s
public key, such that OEncim = Enc(pkm, aim) and OEncij = Enc(pkj , aij :: OEncij+1).

4. Secrets Submission: The client sends the onion cipher OEnci1 to server s1. The client can
leave the protocol as soon as receipt of this message is acknowledged.

The client-side protocol is shown in algorithm 1. Concretely, for each server j, client i generates
secret aij = (tij , t

i
j+1, x

i
j , y

i
j , e

i
j), where tij and tij+1 are random tags chosen from a sufficiently large

domain that the client uses online to point each server to its secret without revealing its identity,
xij and yij are secret shares from our incremental secret sharing scheme used to reconstruct the
query, and Σ eij mod 2b = ei are additive secret shares used to mask the response. The exponent b
corresponds to the bit size of values and signatures (instantiated to 32 + 384 in our experiments).
Our offline protocol uses onion encryption from CCA-secure public key encryption to pass secrets
through the servers (here, :: denotes string concatenation):
OEnci1 = Enc(pk1, a

i
1 :: Enc(pk2, a

i
2 :: ... Enc(pkm, aim) ... ))

In addition to secrets from clients, each server must inject sufficiently many secrets at subsequent
servers to handle all noise queries that the server needs to make in the online stage. This corresponds
to steps 3 and 4 in algorithm 2, where the server computes the exact noise amount by pre-sampling.

The output set of each server contains onion ciphers, encrypted under the keys of the subsequent
servers in the chain. None of the plaintexts decrypted by the current server survives, they are all
consumed and stored in the server’s local mapping for use during the online stage. No linkage
between messages in the input and output sets is possible without knowing the server’s secret
key, since the ciphers in the input cannot be used to distinguish between (sub-components of) their
plaintexts, and since the output set is uniformly shuffled. This is true even if the adversary perturbs
onion ciphers prior to passing them to an honest party (by CCA security), which in-essence denies
service to the corresponding query.

Online Stage The client-side online protocol is shown in algorithm 3. The server-side online
stage (algorithm 4) is structured similarly to the offline stage. However, it requires going through
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Algorithm 2 Server sj Offline Stage
Configuration: The underlying database T : K → (V,Σ), and privacy parameters ϵ, δ, ϕ.
Input from sj−1 or clients if j = 1: A set of onion ciphers of anonymous secrets, one per each
incoming request.
Output state at sj: A mapping M of unique tag tij to its corresponding shared anonymous secrets
aij used to handle incoming queries during the online stage. A list of generated anonymous secrets
L used to create noise queries during the online stage. A sampled histogram N of noise queries to
use in the online stage.
Output to server sj+1: A set output onion ciphers corresponding to input onion ciphers and noise
generated by sj .

1. Onion Decryption: For every received onion cipher OEncij , the server decrypts the cipher
with its secret key skj , producing aij and OEncij+1.

2. Anonymous Secret Installation: For every decrypted secret aij = (tij , t
i
j+1, x

i
j , y

i
j , e

i
j), the

server stores entry (tij+1, x
i
j , y

i
j , e

i
j) at M [tij ] for later use in the online stage.

If j < m:

3. Noise Pre-Sampling: The server samples a histogram representing counts of noisy queries
to add for every key in the database N ← χ(ϵ, δ, ϕ), and computes the total count of this
noise S =

∑
N .

4. Build shared anonymous secrets for noise: The server generates S many anonymous
secrets and onion encrypts them for all sj′ with j′ > j, using the same algorithm as the client.
The server stores these secrets in L.

5. Shuffling and Forwarding: The server shuffles all onion ciphers, including all OEncij+1

decrypted in step (1) or generated by step (4), and sends them over to the next server sj+1.

the chain of servers twice. The first phase (steps 1-4) moves from the clients to the backend server,
where every server incrementally reconstructs the values of received queries using the stored secrets
(steps 1-2), and injects its noise queries into the running set of queries (step 3). The second phase
moves in the opposite direction (steps 5-6), with every server removing responses to their noise
queries, and incrementally reconstructing the received responses, until the final value of a response
is reconstructed by its corresponding client. The backend operates differently than the rest of the
servers (steps 7-8). It computes the reconstructed query set, and finds their corresponding responses
in the database via direct look-ups. The backend need not add any noise queries, which alleviates
the need for shuffling at the backend.

Discussion The security of both offline and online stages rely on the same intuition. First, an
adversary that observes the input and output sets of an honest server should not be able to link
any output message to its input. Second, the adversary must not be able to distinguish outputs
corresponding to real queries from noise injected by that server.

The honest server shuffles and re-randomizes all its input messages, which guarantees that
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Algorithm 3 Client i Online Stage
Input: A query qi.
Input state at the client: a shared anonymous secrets aij = (tij , t

i
j+1, x

i
j , y

i
j , e

i
j) per server sj

generated by the offline stage.
Output: A value vi corresponding to T [qi].

1. Compute Final Incremental Secret Share: Client computes li1 = xi0, so that (xi0, 0)
combined with (xi1, y

i
1), ..., (x

i
m, yim) is a valid sharing of qi, per our incremental secret sharing

scheme.

2. Query Submission: Client sends (ti1, l
i
1) to server s1.

3. Response Reconstruction: Client receives response ri1 from s1 and reconstructs (vi, σi) =
ri1 − ei mod 2b.

4. Response verification: The client ensures that σi is a valid signature over (qi, ri) by
s1, ..., sm−1.

the adversary cannot link input and output messages. In the offline stage this re-randomization
is performed with onion-decryption, while the online stage performs it using our non-malleable
incremental reconstruction and additive secret sharing for its two phases respectively. We do not
need to use a non-malleable secret sharing scheme for response handling, since the adversary cannot
observe the final response output, which is only revealed to the corresponding client, and thus
cannot observe the effects of a perturbation.

Shuffling in the noise with the re-randomized messages ensure that they are indistinguishable. A
consequence of this is that a server cannot send out any output message until it receives the entirety
of its input set from the previous server to avoid leaking information about the permutation used.
Idle servers further along the chain can use this time to perform input independent components
of the protocol, such as sampling the noise, building and encrypting their anonymous secrets, or
sampling a shuffling order.

A malicious server may deviate from this protocol in a variety of ways: it may de-shuffle responses
incorrectly (by using a different order), attach a different tag to a query than the one the offline stage
dictates, or set the output value corresponding to a query or response arbitrarily (including via the
use of an incorrect pre-share). The offline stage does not provide a malicious server with additional
deviation capability: any deviation in the offline stage can be reformulated as a deviation in the
online stage, after carrying out the offline stage honestly, with both deviations achieving identical
effects. Finally, a backend server may choose to provide incorrect responses to queries by ignoring
the underlying database.

Each of these deviations has the same effect: the non-malleability of both our sharing scheme
and onion encryption ensures that mishandled messages reconstruct to random values, and mishan-
dled responses will not pass client-side verification unless the adversary can forge signatures. In
either case, the affected clients will identify that the output they received is incorrect and reject it.
Ergo, servers can only use this approach to selectively deny service to some clients or queries. A
malicious frontend can deny service to any desired subset of clients since it knows which queries cor-
respond to which clients, a malicious backend can deny service to any number of client who queried
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Algorithm 4 Server sj Online Stage
State at sj: The mapping M , list L, and noise histogram N stored from the offline stage.
Input from sj−1 or clients if j = 1: A list of queries (tij , l

i
j).

Output to sj−1 or clients: A list of responses rij corresponding to each query i.

1. Anonymous Secret Lookup: For every received query (tij , l
i
j), the server finds M [tij ] =

(tij+1, x
i
j , y

i
j , e

i
j).

2. Query Handling: For every received query, the server computes output query
(tij+1,Rec(l

i
j , (x

i
j , y

i
j))), where Rec is our scheme’s incremental reconstruction function.

If j < m:

3. Noise injection: The server makes output queries per stored noise histogram N , using the
stored list of anonymous secrets L and the client’s online protocol. By construction, there are
exactly as many secrets in L as overall queries in N .

4. Shuffling and Forwarding: The server shuffles all output queries, both real and noise, and
sends them over to the next server sj+1. The server waits until she receives the corresponding
responses from sj+1, and de-shuffles them using the inverse permutation.

5. Response Handling: Received responses corresponding to noise queries generated by this
server are discarded. For every remaining received response rij+1, the server computes the
output response rij = rij+1 + eij mod 2b.

6. Response Forwarding: The server sends all output responses rij to sj−1, or the correspond-
ing client ci if j = 1.

If j = m:

7. Response Lookup: The backend server does not need to inject any noise or shuffle. By
construction, step (2) computes (⊥, qi) for each received query. The backend finds the cor-
responding T [qi] = (vi, σi). If qi was not found in the database (because a malicious party
mishandled it), we return an arbitrary random value.

8. Response Handling: The backend computes responses rij = (vi :: σi)+eij mod 2b, and sends
them to sj−1.

a particular entry in the database, and any server can deny service to random clients. The backend
and frontend capabilities cannot be combined even when colluding since at least one honest server
exists between the frontend and backend. These guarantees are similar to those of Vuvuzela [81]
and many other mixnet systems.

Formal Security We rigorously specify our security guarantee in Theorem 1, which refers to the
ideal functionality defined in Algorithm 5. The ideal functionality formalizes our notion of “selective”
abort. In particular, it formalizes capabilities of the adversary to deny service to a specific query
based on at most one of its value or its origin client. A construction for the simulator and proof for
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Algorithm 5 Ideal Functionality F
Input: A set of queries qi, one per client, the underlying database T : K → (V,Σ), and privacy
parameters ϵ, δ, ϕ.
Output: A set of outputs vi, one per client, either equal to the correct value or ⊥.
Leakage: A noisy histogram H revealed to sm.

1. if s1 is corrupted, F receives a list of client identities from the adversary. These clients are
excluded from the next steps, and receive ⊥ outputs.

2. F reveals the noised histogram H = Hhonest +N to the backend server sm, where Hhonest is
the histogram of queries made by honest clients not excluded by the previous step, and N is
sampled at random from the distribution of noise χ(ϵ, δ, ϕ).

3. if the backend is corrupted, F receives a list of counts ci for every entry in the database ki,
and outputs ⊥ to ci-many clients, randomly chosen among the remaining clients that queried
ki.

4. if any server, other than sm and s1, is corrupted, F receives a number c, and outputs ⊥ to
c-many clients, randomly chosen among the remaining clients.

5. if s1 is corrupted, F receives an additional list of client identities to receive ⊥.

6. F outputs vi such that T [qi] = (vi, σi) for every client i not excluded by any of the steps
above.

Theorem 1 are provided in appendices B and C.

Theorem 1 (Security of our protocol Π). For any set A of adversarial colluding servers and clients,
including no more than m−1 servers, there exists a simulator S, such that for client inputs q1, ..., qd,
we have:

ViewReal(Π, A, (q1, ..., qd)) ≈ ViewIdeal(F ,S, (q1, ..., qd))

Differential Privacy Our security theorem contains leakage revealed to the backend server in the
form of a histogram over queries made by honest clients and honest servers. Our privacy guarantees
hinge on this leakage being differentially private, which entails adding noise to that histogram from
a suitable distribution. Algorithm 6 shows the mechanism each server uses to sample the noise
queries N , and we prove that it indeed achieves (ϵ, δ)-differential privacy in appendix D. Step (2)
is a Laplace substitution (ϵ, 0)-DP histogram release, which may produce negative values. Step (3)
ensures values are non-negative by clamping into [−B,B] and shifting by B, where B is carefully
selected in (1) to yield a privacy loss of exactly δ. Table 3 shows the expected number of noise
queries per server and database element for different ϵ and δ.

6 Scaling and Parallelization

Existing PIR protocols can be trivially scaled over additional resources, by running completely
independent parallel instances of them on different machines. This approach is not ideal for our
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Algorithm 6 Noise Query Sampling Mechanism χ(ϵ, δ, ϕ)

Input: The size of the database |T |, privacy parameters ϵ, δ, and the number of protected queries
ϕ.
Output: A histogram N over T representing how many noise queries must be issued for each
database entry.

1. Clamping threshold B := |CDF−1
Laplace(0,2ϕ/ϵ)(

δ
2)|.

For every i ∈ |T |:

2. Sample ϵ-DP Laplace noise: ui ←− Laplace(0, 2ϕϵ ).

3. Clamp negative noise: u′i := max[0, B +min(B, ui)]).

4. N [i] = floor(u′i)

protocol: each instance would need to add an independent set of noise queries, since each reveals an
independent histogram of its queries. Instead, our protocol is more suited for parallelizing a single
instance over additional resources, such that only a single histogram is revealed without needing to
add ancillary noise queries.

In a non-parallel setting, the notions of a party and a server are identical. For scaling, we allow
parties to operate multiple machines. These machines form a single trust domain. This maintains
our security guarantees at the level of a party. Particularly, the protocol remains secure if one party
(and all its machines) is honest. Machines owned by the same party share all their offline secret
state and the noise queries they select.

A machine mj
i belonging to party j communicates with a single machine mj−1

i and mj+1
i from

the preceding and succeeding parties, in order to receive inputs and send outputs respectively. The
machine also communicates with all other machines belonging to the same party j for shuffling.

Distributing Noise Generation Our protocol generates noise independently for each entry in
the database, we can parallelize the generation by assigning each machine a subset of database
entries to generate noise for, e.g. mj

i is responsible for generating all noise queries corresponding to
keys {k| k % j = 0}. This distribution is limited by the size of the database. If parallelizing the noise
generation beyond this limit is required, an alternate additive noise distribution (e.g. Poisson [79])
can be used instead, which allows several machines to sample noise for the same database entry
from a proportionally smaller distribution.

Distributed Shuffling Machines belonging to the same party must have identical probability of
outputting any input query after shuffling, regardless of which server it was initially sent to. An
ideal shuffle guarantees that the number of queries remains uniformly distributed among machines
after shuffling. We choose one that requires no online coordination to ensure it maintains perfect
scaling. Machines belonging to the same party agree on a single secret seed ahead of time. They use
this shared seed locally to uniformly sample the same global permutation P using Knuth shuffle.
Given a total batch of size l, each machine mj

i need only retain P [ i×l
m : (i+1)l

m ], which determines
the new indices of each of its input queries. The target machine that each query q should be sent
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Figure 3: Completion time for varying number of queries against a 100K database (logscale)

to can be computed by P [q]% l
m . This algorithm performs optimal communication l

m per machine
but requires each machine to perform CPU work linear in the overall number of queries to sample
the overall permutation. This work is independent of the actual queries, and can be done ahead of
time (e.g. while queries are being batched or processed by previous parties).

Distributing Offline Anonymous Secrets We require all machines belonging to the same party
to share all secrets they installed during the offline stage, so that any of them can quickly retrieve
the needed ones during the online stage. Maintaining a copy of all secrets in the main memory of
each machine may be suitable for smaller applications. At larger scales, it may be more appropriate
to use shared key-value storage or in-memory distributed file system [7,55,66,85].

7 Evaluation

Experiment Setup Our various experiments measure the server completion time for a batch
of queries. For the online stage, this is the total wall time taken from the moment the first server
receives a complete batch ready for processing, until that batch is completely processed by the entire
protocol, and its outputs are ready to be sent to clients. For the offline stage, the measurements
start when the complete batch is received by the first server, and ends when all servers finished
processing and installing the secrets. Measurements include the time spent in CPU performing
various computations from the protocol, as well as time spent waiting for network IO as messages
get exchanged between servers. Our measurements do not include client processing or round-trip
time.

All experiments in the paper use ϵ = 0.1 and δ = 10−6. Keys and values in our database are
each 4 bytes, with signatures that are 48 bytes long (e.g. BLS [15]). We ran our experiments on
AWS r4.xlarge instances that cost around $0.25 per hour, using only one thread. A primary factor
in selecting these instances is RAM, since we need sufficient memory to store large query batches.
We implemented our protocol using a C++ prototype with about 6.1K lines of code. Our prototype
relies on libsodium’s crypto_box_seal [32] for encryption. Our code is available on GitHub [33].
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Figure 5: Completion time for varying number of parties with 100K queries against a 10K database

Scaling Figures 3 and 4 show how our protocol scales with the number of queries and database
size, respectively. Our runtime is dominated by noise queries when the number of queries is smaller
than the size of the database, and begins to increase with the number of queries as they exceed
it. For a large enough number of queries, our runtime scales linearly as the overhead of noise
queries is amortized away over the real queries. Our noise overhead scales linearly with the size
of the database. The cost of processing any input query in isolation (without noise) is constant
and does not depend on the database size, which only affects the number of noise queries added
by our protocol. The offline stage is about 500x more expensive than our online stage. This is
expected since the offline stage performs a public key operation for each corresponding modular
online arithmetic operation.

Figure 5 shows how our protocol scales with the number of parties. Our protocol is most
efficient when only two parties are involved. When the number of parties increases, a query has to
pass through more servers as it crosses the chain. This is more pronounced in the offline stage, as
it additionally increases the size and layers of each onion cipher, causing the offline stage to scale
super-linearly in the number of parties. In addition, each server naively adds the full amount of
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Machines / Party Server time (seconds)
Offline Online

1 5010 11
2 2560 8.2
4 1296 4.0
8 664 2.2

Table 2: Horizontal scaling with 1M queries and a 100K DB

δ
ϵ 1 0.1 0.01 0.0001

10−5 23 230 2302 23025
10−6 27 276 2763 27631
10−7 32 322 3223 32236

Table 3: Expected number of noise queries B per database element as a function of different ϵ
(columns) and δ (rows)

noise queries required to independently tolerate up to m − 1 corrupted parties. Adding less noise
by relying on additional assumptions (e.g., honest majority) is an open problem, which can help
improve our scaling with the number of parties, and can have important consequences to mixnets,
the DP shuffling model, and DP mechanisms in general. Techniques such as noise verification [57]
may be useful to ensure that (partial) noise generated by an honest server is not tampered with by
future malicious servers.

Table 2 demonstrates how our protocol scales horizontally. Parallelizing the online stage pri-
marily parallelizes communication. However, parallel shuffling introduces an additional round of
communication per party. As a result, our online stage speed up when using 2 machines is not 2x.
We exhibit linear speedups as the number of machines exceeds 2.

Finally, the expected number of noise queries added per database element is a function of ϵ and
δ. Table 3 lists this expected number for various combinations of ϵ and δ. The expectation increases
linearly as ϵ decreases but scales better with δ. This means that the amount of noise overhead (and
thus the number of queries required for that overhead to amortize effectively) grows linearly with
1
ϵ . Our protocol trades security for performance. It can efficiently amortize the cost of independent
queries due to its relaxed DP security guarantees. As ϵ becomes smaller, this relaxation becomes less
meaningful, as the DP security guarantees approach those of computational security. While linear
scaling with 1

ϵ appears to be intrinsic to our protocol, we believe it may be possible to reduce the
scaling constant, by using different basis distributions that are inherently non-negative or discrete
(e.g. Poisson [79] or Geometric [65]), or by adapting recent work on privacy amplification [26, 37]
that achieves the same level of privacy using less noise with oblivious shuffling.

Latency Latency in Checklist and similar systems includes the computation cost of a single query
in isolation (which is low), and any queuing delays experienced by the query after its arrival if the
computational resources are busy handling previous queries. This delay depends on the rate at
which queries come in, and can be significantly larger than the batching overheads in applications
with a large query load. In contrast, our protocol is primarily throughput oriented and its latency
is a secondary concern determined by two components: the idle waiting time required to collect the
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batch of queries from different clients, which we call the batching window, and the active processing
time of that batch after collection. The first component depends on the configuration. The later
component is precisely the total computation time measured in the various experiments in earlier
parts of the paper. Lowering the batching window beyond a certain point can have a negative
impact on latency (and even throughput), since it can result in smaller batches dominated by noise
where amortization is not effective. Furthermore, it can introduce queuing delays at the level of
batches, where a previous ongoing batch still occupies system resources after the next batch has
been collected.

We analyze DP-PIR’s latency and the effects of the batching window in appendix F. We sum-
marize three important observations: (1) Queuing delays in existing systems are significant and can
cause them to exhibit latency worse than DP-PIR with a large number of queries. (2) Both DP-PIR
and existing systems can be scaled horizontally to exhibit lower latency. Traditional PIR protocols
can achieve sub-second latencies if given enough resources, but this can be prohibitively expensive
when the query rate is high. (3) For our target large query loads, DP-PIR can be configured to
exhibit decent latency with a much lower budget than existing systems.

The Offline Stage PIR protocols with an offline stage typically do so to improve their online
latency, which is less critical in our target applications. It is possible to combine both DP-PIR
stages into a single stage that performs onion-encryption of the query directly, without the need
to install anonymous secrets. This combined protocol would exhibit similar trends to our current
design, but will be around two orders of magnitude slower than our online protocol on its own.
A fair comparison here must also account for the offline cost of existing protocols, which can be
significantly larger than our offline cost. For example, Checklist relies on an expensive per-client
offline stage linear in the size of the database, which we observe takes up to 7 seconds per client in
our experiments. In DP-PIR, the offline cost for a single query amortizes to a few milliseconds. One
key difference is that a client can reuse the hint produced by Checklist’s offline stage to make many
following queries, rather than a fixed number of queries in DP-PIR. However, the hint becomes
invalid whenever the database is updated. Checklist provides an updatable offline construction,
where a single update to the database can be carried over to a previous offline computation in cost
logarithmic in the database size.

We believe the that the offline-online design provides better deployment cost and performance,
and allows DP-PIR to meet the availability and liveness requirements of many applications, including
our App store example. Concretely, the offline-online design allows greater control over the batching
window, which governs the effectiveness of amortization, client latency, and the duration needed
for updates to the database to become visible to clients at the next batch. For example, it may be
desirable to allow clients to query the App store multiple times a day, e.g. every hour, in order to
discover important app updates earlier. A natural way to achieve this is to use a batching window
of one hour or less. However, this is only effective if this window includes sufficient queries for
amortization, and has sufficient time to complete processing before the next batch. The offline
setup lowers both requirements, making smaller windows practical (or alternatively, cutting the
online cost of the same window by 500x).

The offline stages for multiple online stages can be pooled together and executed ahead of time.
Clients can choose to issue less queries than they signed up for in the pooled offline stage without
privacy loss. Service providers can use this to execute the combined offline stages during off-peak
hours when resources are cheaper (e.g. overnight). Furthermore, providers can use different setups
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for each stage to optimize the effectiveness of their budget. The offline stage is CPU-intensive due
to its public key operations, while the online stage is entirely network bound.

8 Related Work

Section 2 discusses existing work on Private Information Retrieval. Here, we discuss related work
from other areas.

Mixnets Traditional mixnets [23] consist of various parties that sequentially process a batch
of onion-ciphers, and output a uniformly random permutation of their corresponding plaintexts.
Various Mixnet systems [11, 38] add cover traffic to obfuscate various traffic patterns. However,
ad-hoc cover traffic is shown to leak information over time [64].

Recent work mitigates this by relying on secure multiparty computation [4] or differential privacy.
Vuvuzela [81] adds noise traffic from a suitable distribution to achieve formal differential privacy
guarantees over leaked traffic patterns, and Stadium [79] improves on its performance by allowing
parallel noise generation and permutation. Similar techniques have been used in private messaging
systems [57], and in differential privacy models that utilize shuffling for privacy amplification [37]
or for introducing a shuffled model that lies in between the central and the local models [26].

Differential Privacy and Access Patterns Using differential privacy to efficiently hide access
patterns of various protocols has seen increasing interest in the literature. ϵ−PIR relaxes the security
guarantees of PIR to be differentially private [76] in the semi-honest setting. Their two AS schemes
are closest to our protocol: they require clients (rather than servers) to generate noise queries along
with their real queries, and send all of them through an anonymous network for mixing. When
the number of clients is large enough, this can amortize the number of queries any of them have
to generate to a constant. However, this approach generates far more total load on the system.
For example, in our app store example with 2 servers, a 2.5M database, and 3B clients, each client
needs to generate 282 noise queries to hide a single query with ϵ = 0.1, which results in close to
850B queries to the system in total, compared to the < 4B total load on our system (but with
δ = 10−6 ̸= 0). These constructions do not provide integrity guarantees, and will require further
noise queries to protect against potential malicious or unavailable clients.

Others relax the security of Oblivious RAM (ORAM), a primitive where a single client obliviously
reads and writes to a private remote database [39, 40], to be differentially private. Extensions of
ORAM address multi-client settings [63]. Differentially oblivious RAM [22, 82] guarantees that
neighboring access patterns (those that differ in the location of a single access, i.e. event-DP) occur
with similar probability. DP access patterns have been studied for searchable encryption [24] and
generic secure computation [65].

Secret Sharing Shamir Secret Sharing [74] allows a user to split her data among n parties such
that any t of them can reconstruct the secret. Secret sharing schemes with additional properties
have been studied for use in various applications. Some schemes, such as additive secret sharing,
allow the secret to be reconstructed incrementally by combining a subset of shares of size k into a
single share that can recover the original secret when combined with the remaining n − k shares.
Non-malleable secret sharing schemes [8, 41] additionally protect against an adversary that can
tamper with shares, and guarantees that tampered shares either reconstruct to the original message
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or to some random value. Aggarwal et al. [2] show generic transformations to build non-malleable
schemes from secret sharing schemes over the same access structure.

9 Future Work and Extensions

Reducing Noise The applicability of our protocol to any particular use case hinges on the ratio
of real to noise queries, which in our protocol is in the order of q

n . Reducing the overall amount
of noise injected into the system can make our protocol more attractive to applications where this
ratio is low. An interesting recent line of work [26, 37] suggests that adding an oblivious shuffling
mechanism to any local-model differentially private protocol provides better differentially private
guarantees than an identically-configured one without. Since we assume that at least one server
is honest and hence acts as an oblivious shuffler, then a tighter analysis of our system will yield
better privacy parameters than the ones we suggest, over the same amount of noise. Alternatively,
we might achieve the same privacy with fewer noise queries.

Leveraging Honest Clients Another direction for reducing the noise is to consider different
weaker thresholds. Imagine a setup where 2-out-of-m parties are trusted to be honest; it is likely
possible that the same privacy parameters can be met in that setup with each party injecting a
reduced amount of noise. However, this does not immediately follow from the composition theorem
of differential privacy: these 2 honest parties may be separated in the chain by adversarial parties,
whose actions would affect query vectors that consists of a fraction of the total noise needed for
achieving differential privacy. It is unclear to us whether this can be exploited by the adversary, or
whether it is a limitation in the privacy analysis techniques used to reason about such scenarios. This
direction of work may have implications on differential privacy research beyond PIR. Techniques
such as noise verification [57] may be useful here to ensure that noise generated by an honest server
is not tampered with prior to reaching the next honest server. It is worth noting that in certain
setups, our protocol can be demonstrated to be safe while using a fraction of the total noise per
party. For example, if an honest majority of parties is assumed, it is guaranteed that there will be
at least two consecutive honest parties, and thus parties are able to inject half the total amount of
noise each.

Streaming One of the limitations of our system involves needing to batch real queries with fake
ones. This batching has a significant impact on the latency of our system, as discussed in appendix F.
A possible extension of the protocol could provide ways to shuffle or mix the queries as they come
without stalling the system. The crux of this problem lies in finding appropriate mechanisms
to streamline noise queries with real ones, while handling frequency and traffic analysis leakage
over time. There is some amount of work in differential privacy literature that explores streaming
mechanisms [34, 35, 45, 49]. This may be complemented with other Mixnet-based techniques, such
as randomly introducing delays to messages as a way to mimic shuffling [50]. This line of work
requires rethinking about time intervals and time delays as an additional dimension that needs to
be protected by differential privacy via randomization.

Fairness Another dimension for improvement is providing security up to abort with fairness guar-
antees. While there may be inherent limitations to our design, e.g., a server refusing to accept any
queries and thus denying everyone service, it may be possible to improve the criteria upon which
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such a server may refuse service, for example, not allowing backend servers to deny service based
on the query values. We foresee that this could be achieved by using techniques from verifiable
mixnets [79], in order to prove that no intermediate server drops messages along the way, and con-
structing appropriate zero-knowledge proofs to ensure that the front-end and back-end servers do
not drop messages either.

10 Conclusion

This paper introduces a novel PIR protocol targeted exclusively at applications with high query
rates relative to the database. This focus is intentional and necessary: DP-PIR handles large
batches so well specifically because it handles small ones poorly. Our construction makes PIR
usable in scenarios that were previously impractical or unexplored. DP-PIR is primarily geared
towards amortizing total server work (i.e. throughput), but not for sub-second client latency, and
only provides relaxed differential privacy guarantees.

The performance of DP-PIR is closely tied to its configurations, which determine the number of
noise queries generated by our system, and thus the number of queries required to amortize their
overheads effectively. Our experiments meet or extend beyond standard configurations suggested by
existing work. Checklist [51] supports exactly two parties, and PIR schemes are rarely instantiated
with more than three. For small databases (e.g. n < 100K), the naive solution of sending the entire
DB to the client may be desirable. Vuvuzela [81] recommends ϵ ∈ [0.1, ln(3)] and sets δ = 10−4,
and other work [65,76] also mostly focuses on ϵ ≥ 0.1.

The ratio of queries to database size q
n is the primary performance criteria that governs how

effective DP-PIR is compared to existing protocols. Within the space of typical configurations
outlined above, our experiments demonstrate that applications with q

n < 1
10 are unsuited for DP-

PIR, while applications with q
n > 10 are almost always guaranteed to exhibit speedups of several

folds when using DP-PIR. Applications with ratios in [ 110 , 10] may or may not be suited to DP-PIR,
depending on their exact configurations. For example, we can achieve better performance than
existing work for a ratio of 0.8 when the database size is 2.5M , but not when it is of size 1M
(section 2). Thus, such applications require individual analysis to determine the best way to realize
them.

Our protocol shifts expensive public key operations to an offline stage. This allows for more
flexibility over the batching window to meet application requirements, and a more efficient allocation
of computational resources. However, applications were these factors are not a concern may elect
to combine the two stages into a single one, that still exhibits similar trends to our online stage,
but is about two orders of magnitude more expensive. Finally, these ratios, and the number of
noise queries, also depend on the level (and duration) of protection offered to users (e.g. event-
DP vs user-time-DP) as expressed by ϕ. DP-PIR intentionally relaxes its guarantees for increased
performance. This relaxation becomes less meaningful as ϵ and ϕ approach perfect security.
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Figure 7: The ratios of queries/database (y-axis) after which DP-PIR outperforms DPF for different
database sizes (x-axis, logscale)

A DPF and SealPIR

The setup and parameters in both comparisons below is identical to section 2.

DPF Boyle, Gilboa, and Ishai [17] propose a PIR protocol based on distributed point functions
(DPF). Unlike the offline-online protocol introduced in Checklist that uses punctured pseudorandom
sets, DPF requires linear work in the database size to handle user queries. However, DPF requires no
offline preprocessing and significantly lower client computation and communication than checklist.
We compare our system to the DPF implementation provided as an alternative backend for checklist
based on the optimized implementation of Kales [48]. Figures 6 and 7 show our results. For
a database with 100K elements, DPF outperforms DP-PIR when the number of queries is small
relative to the size of the database. When the number of queries q approaches 31K, with n

q = 0.0124,
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Figure 9: The ratios of queries/database (y-axis) after which DP-PIR outperforms SealPIR for
different database sizes (x-axis, logscale)

the two systems exhibit identical completion time, with DP-PIR significantly outperforming DPF
as the number of queries grow beyond that.

SealPIR Figures 8 and 9 show similar results for SealPIR. In the first experiment, we use a
database size of only 10K elements, and find that DP-PIR outperforms SealPIR at relatively few
queries (around 32) with a ratio q

n of just 0.003. Similarly, we achieve 2x, 5x, and 10x speedups
for modest ratios all below 0.02. These ratios decrease as the database size grows, similar to our
experiment with Checklist. We outperform SealPIR with far fewer queries than we do Checklist
and DPF, in large part because SealPIR’s uses expensive homomorphic operations during its online
stage, while checklist offloads expensive linear work to an offline stage. Our protocol goes even
further, only executing a couple of modular arithmetic operations per query online.
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B Simulator Construction

Input: T : K → (V,Σ), and ϵ, δ.
Simulating the Offline Stage: The offline stage has no inputs on the client side, and only needs
access to T, ϵ, and δ on the server side. The simulator can simulate this stage perfectly by running
our protocol when simulating honest parties, and invoking the adversary for corrupted ones.
Simulating Client Online Queries: The simulator uses “junk” queries for this simulation. The
actual queries are injected by the simulator later during the query phase.

1. The simulator assigns random query values to each honest client in its head. The simulator
then runs our client protocol for these input query values, providing each client with the
anonymous secrets the simulator selected when simulating that client’s offline phase.

2. The simulator runs the adversary’s code to determine the query message of each corrupted
client.

Simulating Server Online Protocol - First Pass: The simulator goes through the servers in
order, from s1 to sm−1.

1. If si is corrupted: The simulator runs the adversary on the query vector constructed by the
previous step, which outputs the next query vector.

2. If si is the first non-corrupted server:

• Neither s1 nor the backend are corrupted: The simulator executes step 3 below.

• If s1 is corrupted: The simulator begins by identifying any mishandled honest client
queries in the current query vector. For each honest client query, the simulator looks
for it by its tag, which the simulator knows because she simulated the offline stage of
that client. The simulator validates that the associated tally has the expected value,
furthermore, it checks that the anonymous secret installed at si during the offline stage
match the ones the simulator generated when simulating the client portion of that offline
stage. All of these checks depend on the honest client and honest server si offline state,
which the simulator knows.
If any of tags, tallies, or shares do not match their expected value, or are missing, then the
simulator knows that the adversary has mishandled this client’s query (or corresponding
offline stage) prior to server si. The simulator sends the identities of all such clients to
the ideal functionality (step 1 in F).

• If backend is corrupted: The simulator receives a noised histogram Hhonest from
the ideal functionality. The simulator identifies all honest queries that have not been
mishandled so far. Say there are k such queries. As part of simulating si, the simulator
will replace the tallies of these queries with new tallies, such that the tally of honest
query w ≤ k would reconstruct to the value of the w-th entry in Hhonest, when combined
with the remaining shares that the simulator generated for that client during its offline
stage.
Furthermore, the simulator needs to inject noise queries for si. The simulator chooses
the tallies for these queries so they reconstruct to the remaining values in Hhonest. This
guarantees that all correctly handled honest client queries combined with this server’s
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noise have the distribution Hhonest.
The simulator shuffles the updated query vector and uses it as the output query vector
for this server.

3. If Neither Above Cases are True: The simulator executes our protocol honestly, including
using the same noise queries from the offline stage, to produce the next query vector.

Simulating The Backend: The simulator executes our protocol truthfully, if the backend is not
corrupted, or runs the adversary’s code if the backend is corrupted, and finds the next response
vector.
Simulating Server Online Protocol - Second Pass: The simulator goes through the servers in
reverse order, from sm−1 to s1.

1. If si is corrupted: The simulator runs the adversary on the current response vector, out-
putting the next response vector.

2. If si is the first encountered non-corrupted server:

• If the backend is corrupted: The simulator identifies all responses corresponding to
honest queries that were misshandled. The responses do not have tags directly embedded
in them. However, they should be in the same order as the queries at si, which do have
these tags. Furthermore, the correct value of the response is know to the simulator, since
she can compute it using the T , the value of the corresponding query, and the additive
pre-share installed during the offline stage.
The server sends a histogram over the count of these mishandled responses to the ideal
function, grouped by their corresponding query value (step 3 in F).

• If the backend is not corrupted: The simulator executes step 3 below.

3. If si is not corrupted: The simulator identifies all honest queries that were mishandled,
using the same mechansim as above. The simulator ignores mishandled queries that were
detected in either of the two cases above (the special cases of the first server or backend being
corrupted). The simulator only needs to keep count of such mishandled query.
If si is the last honest server, she sends this count to the ideal functionality (step 4 in F).

Simulating Client Online Responses: For every honest client, the simulator checks that her
corresponding response, as outputted by s1, reconstructs to the expected response value. If the
response does not match, then it could have been mishandled by the adversary earlier, and have
been already identified by the simulator, such responses are ignored.
The remaining mishandled responses must have been mishandled after the last honest server was
simulated. The simulator sends a list of identities of all clients with such responses to the ideal
function (step 5 in F).

C Proof of Theorem 1

Proof. The view of the adversary consists of all outgoing and incoming messages from an to adver-
sary corrupted parties. We show that these messages are indistinguishable in the real protocol from
their simulator-generated counterparts.
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First, note that all output messages from honest clients in the offline stage are cipher of random
values. This is true in both the real and ideal world, and thus these messages are statistically indis-
tinguishable. The same is true for messages corresponding to noise anonymous secrets created by
an honest server. The adversary only receives such messages in the offline protocol, and therefore
behaves identically in both real and ideal worlds.

Case 1: The backend server sm is honest.

1. The access patterns are not part of the view, and therefore do not need to be simulated.

2. The corrupted clients are simulated perfectly and has identical outgoing message distributions
in the real and ideal worlds.

3. The honest clients are choosing their queries randomly in the ideal world. However, their mes-
sages only include a tag and a tally. The tag is itself selected randomly during the offline stage,
and thus has identical distribution. The tally is indistinguishable from random, regardless of
the query it is based on, provided that at least one secret share remains unknown, by secrecy
of our incremental sharing scheme. In particular, the honest server share is computationally
indistinguishable to the adversary from any other possible share value, by CCA security of
the onion encryption scheme.

4. The input messages of the first malicious server have indistinguishable distributions in the real
and ideal worlds, and therefore the outgoing messages of that malicious server has indistin-
guishable distributions, since any honest servers prior to this malicious server are simulated
according to the protocol perfectly. Inductively, this shows that all malicious servers have
indistinguishable distributions during the first pass of the online stage.

5. The backend executes the honest protocol in both worlds. While the backend sees different
distributions in either worlds, since honest clients make random queries when simulated, the
honest protocol is not dependent on that distribution, and only output responses in the form
of secret shares. These secret shares are selected at random during the offline stage by the
client, without knowing the response or the query. Therefore, the output of the backend is
indistinguishable in both worlds.

6. Finally, a similar argument shows that the adversary input and output response vectors are
all indistinguishable from random in both worlds, since the last secret share of honest queries
remains unknown.

Case 2: The backend server sm is corrupted.

1. The access patterns are part of the view, the simulator must yield a view consistent with
them.

2. The outgoing messages of each corrupted client has identical distributions in the real and ideal
worlds.

3. The honest client queries are selected randomly. However, they are secret shared. Their
secret share component (tally) is indistinguishable from random in both worlds, given that
the honest server share is unknown to the adversary. Therefore, their initial tallies are also
indistinguishable (but not the access patterns they induce).

36



4. The input vector to the first server has identical distributions in both worlds, if that server is
malicious, then its output vector will also have identical distributions. This argument can be
applied to all malicious servers up to the first honest server.

5. The first honest server retains all queries from malicious servers and clients, and handles them
as our honest protocol would. However, the server discards all client noise and injects its own
queries into it from the provided H. This is indistinguishable to the following server from
the case where these queries are handled truthfully: (1) the tag component of the query is
handled honestly and adversarial perturbations on their enclosing onion ciphers during the
offline stage fail due to CCA-security, (2) the tally component of the honest client queries
are the result of an incremental reconstruction in our protocol, since the server’s share being
reconstructed is unknown, the output of this operation is indistinguishable from random even
knowing the input. (3) the total count of queries induced by H is exactly the count of honest
client queries that this server discards, plus an amount of noise queries sampled according to
the honest noise distribution, this count has the same distribution as the count induced by
the honest protocol.

6. The output of the first honest server is indistinguishable, and all the remaining servers are
simulated truthfully, therefore their outputs are also indistinguishable., up to the backend.

7. The backend server is corrupted, and can reconstruct the access patterns from the input.
However, these access patterns are now indistinguishable between the two worlds, this is
because the access patterns of the secret shared queries as outputted by the first honest
server in both worlds are indistinguishable: they are both equal to H + malicious clients and
servers queries + mishandled queries. The mishandled queries are guaranteed to reconstruct to
random, by our incremental secret sharing non-malleability property, even when their original
queries are different (random in the simulated world).

8. The same argument from Case 1 demonstrates that the view from the second pass of the
online stage is indistinguishable in both worlds.

The only thing that remains is to show that the interactions of the simulator and adversary
with the ideal function F are indistinguishable. There are at most 4 such interactions. All of
these interactions depend on the simulators ability to detect when a query or response has been
mishandled.

A query may be mishandled by (1) corrupting its tag (2) corrupting its tally by setting it to a
value different than the one determined by the associated offline anonymous secrets. Both of these
cases can be checked by the simulator, since she has access to the expected uncorrupted anonymous
secret values created by every honest client and server. Either of these cases result in the query
reconstructing to random, the second case follows from our non-malleability property, the first
induces the following honest server to apply an incorrect share when incrementally reconstructing,
and thus follows from our non-malleability property as well.

On the other hand, a response can be mishandled by (1) corrupting its tally/value (2) corrupting
its relative order within a response vector. The first case arises when an adversary sets the tally value
to one different than the sum of its previous value and additive pre-share from its corresponding
anonymous secret, as well as when a backend server disregards the underlying database, and assigns
a different initial value to a given response. Maliciously perturbing onion ciphers or tallies in the view
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of the adversary fall under this case, since this essentially amounts to dropping the corresponding
queries, as they are protected by the non-malleability of CCA encryption and our secret sharing
scheme. The second case happens when the adversary does not deshuffle responses with the inverse
order of the corresponding shuffle. The simulator can check these two cases as well: if a deshuffle
was performed correctly, then every response and query at the same index must correspond to one
another, and the simulator can compute the expected value of that response from its query value,
database T , and additive pre-shares. If the response and query did not match, then either the
shuffling or tally computation was corrupted.

We can consider consecutive servers that are adversarially controlled to be a single logical server,
since they can share their state and coordinate without restrictions. For example if the first and
second server are corrupted, the second server can identify the identities of clients of corresponding
to each of its input queries, because the first server can reveal its shuffling order to the second.
Similarly with the backend and previous server. This shows that the correct points to check for
mishandling is when an honest server is encountered, rather than after every malicious server, since
consecutive servers may perform operations that each appear to be mishandling, but consecutively
end up handling queries and responses correctly.

Our simulator does the mishandling checks at the level of an honest server. Furthermore,
the simulator assumes that any mishandling was done according to the strongest identification
method available to the adversary at that point. For example, it assumes that the first server
always mishandles queries based on their clients identities, even though that server may mishandle
queries randomly. In either cases these result in indistinguishable distributions. An adversary that
mishandles queries randomly has the same distribution as a simulator that copies that random
choice and translates it to identities. No server has the capability to mishandle based on both
identity and value, since there must be at least one honest server somewhere between the backend
and first server (including either of them).

Finally, intermediate servers (those surrounded by honest servers on both ends) see only query
and response vectors that have been shuffled honestly by at least one server, and have a random
share applied to their tally by that server as well. So their inputs are indistinguishable from random,
and thus they can only mishandle randomly. The first server (and its adjacent servers) see query
and response vectors whose tallies are random (because at least one share corresponding to them
is unknown), but have a fixed order, since no shuffling has yet occurred, therefore they mishandle
queries based on the order (i.e. client identity) as well as randomly. Lastly, the backend (and its
adjacent servers) see queries and responses that have been shuffled by at least one honest server, but
whose values are revealed, since no shares of these values are unknown. The backend can mishandle
queries based on their known value, but not based on their client identity, since mishandling based
on index/order is identical to mishandling randomly, because the order is random.

D Analysis of the Noised Histogram Release

Theorem 2 (Leakage is Diferentially Private). H = Hhonest + χ(ϵ, δ, ϕ) is (ϵ, δ)-Differentially Pri-
vate.

Proof. We define (ϕ-)neighboring histograms over access patterns to differ in ϕ or less queries. In
other words, no more than ϕ queries from one can be substituted in the other. Therefore, the
sensitivity is 2ϕ, corresponding to a change to the first histogram where all ϕ queries are removed
from one bin, which thus decreases by ϕ, and added to a different bin, which similarly increases
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by ϕ. Hence adding noise from Laplace0,2ϕ/ϵ constitutes an (ϵ, 0)-differentially private histogram
release mechanism, this corresponds to value ui in our mechanism from algorithm 6.

Our mechanism selects B such that Prob[ui ≤ −B] = Prob[ui ≥ B] = δ
2 . Note that u′i ̸= ui+B

iff either of these disjoint cases is true, so Prob[u′i ̸= ui + B] = δ. This implies that using u′i
constitutes an ϵ, δ-differentially private mechanism.

Finally, taking the floor of u′i is equivalent to taking the floor of u′i+ c, where c is the true count
of honest queries, since c is guaranteed to be integer. Therefore, floor maintains differential privacy
by post-processing.

E Proof of Incremental Non-Malleability

Theorem 3 (Non-malleability of our Incremental Secret Sharing Scheme). Let S = (Sh,Rec) de-
note our incremental secret sharing construction from §4. This scheme satisfies the non-malleable
property of Def. 3.

Proof. Let A be an adversary who plays the non-malleability game. Suppose that it chooses a secret
q and honest party i in the first round of the game. The adversary receives back in response the
shares q⃗′ = {qj}j ̸=i and the initial tally l0, from which it can compute all legitimate partial tallies
including li−1 and li.

Our aim is to show that for any modified partial tally l∗i−1 ̸= li−1 that the adversary might
choose in the second round of the game, the resulting partial tally after the honest party l∗i ≡ r
is (perfectly) indistinguishable from random even given the adversary’s knowledge of q and q⃗′. In
the Right game, the random value r ∈ {0, 1, . . . , z − 1} is uniformly sampled from the space of
all elements in Fz. Ergo, it suffices to show that any value of l∗i within {0, 1, . . . , z − 1} is equally
probable in the Left game, where this probability is taken over the challenger’s sampling of the
honest party’s share (i.e., the one piece of randomness that is hidden from the adversary).

Fix an arbitrary choice of l∗i−1 and l∗i , subject to the game’s requirement that l∗i−1 ̸= li−1. Let
qi = (xi, yi) denote the honest party’s share, which the adversary A does not know. We observe
that there exists exactly one choice of qi that is consistent with both (i) the secret q and associated
partial tallies li−1 and li and (ii) returning l∗i in the Left game. These constraints impose the
following system of two linear equations in two unknowns:

xi + yi × li−1 = li mod z

xi + yi × l∗i−1 = l∗i mod z

Since li−1 ̸= l∗i−1 and z is prime (meaning that nonzero entries are invertible mod z), this system of
equations has exactly one solution:

xi = li − li−1 × (li − l∗i )× (li−1 − l∗i−1)
−1 mod z

yi = (li − l∗i )× (li−1 − l∗i−1)
−1 mod z

Therefore, even with l∗i−1 chosen by the adversary, any execution of the Left game results in l∗i
having the uniform distribution conditioned on A’s view, so it is perfectly indistinguishable from
the Right game as desired.
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Figure 10: Median latency for various query rates for a single 30 minutes batch with a 2.5M elements
DB (logscale)

F Batching and Latency

The latency of a query in our protocol consists of two components: the idle time the query spends
waiting for its batch to be completely collected, and the active time spent processing that batch
after collection. In existing PIR protocols that do not rely on batching, such as Checklist, a query’s
latency is the time required to process that single query in isolation, plus any queuing delays in cases
where the computation resources are still processing earlier queries when that query arrives. Note
that DP-PIR may encounter similar delays if processing a previous batch does not complete by the
time the next batch is ready. Thus, latency in DP-PIR is governed by two correlated parameters:
the rate at which new queries are made by clients, and the time window for collecting a batch,
as shown by the following two simulations. The simulations rely on the same setup as section 2
(2 parties, r4.xlarge instances, ϵ = 0.1, and δ = 10−6). We frame them around our App Store
example where the database consists of 2.5M elements with 3B clients. For simplicity, we assume
that queries arrive uniformly. In both simulations, the dashed vertical lines highlight the query rate
corresponding to each client making 1 and a 100 requests a day respectively.

Latency of an Isolated Batch First, we consider a single batch in isolation shown in figure 10.
For lower query rates, the 30 minutes batching window utterly dominates the latency, as the number
of queries in the batch, and thus its processing time, is small. For checklist, lower query rates mean
that it can process a query before the next one comes in, and thus exhibit no queuing delays. With
higher query rates, the queuing delays increasingly accumulate for checklist, while DP-PIR becomes
dominated by the time required to process the increasingly larger batches.

Latency Over Many Batches Depending on the query rate, attempting to improve DP-PIR
latency by reducing the batching window may have an inverse effect. We observe this in our second
simulation in figure 11, where we fix the number of total queries to 3B, and observe the average
latency over all of them as the interval between consecutive queries becomes smaller. Checklist
starts accumulating queuing delays as queries start arriving closer to each other, eventually reaching
a ceiling corresponding to processing the entire 3B requests serially. When DP-PIR is configured
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Figure 11: Median latency over 3B queries and a 2.5M DB for various query rates and batching
windows (logscale)

with a 30 minute batching window, the batching time dominates the latency for lower query rates,
and starts increasing as the query rate increased to a ceiling corresponding to processing the entire
3B request in a single batch. The 1 minute batching window exhibits extremely poor latency for
lower rates, since it induces having many more batches overall each dominated by noise queries, and
whose processing time takes longer than the batching window, thus delaying processing of following
batches. The optimal batching window must strike a balance between stretching long enough to
contain a sufficiently large number of queries to amortize the noise overheads, while also minimizing
the latency overhead of idly waiting for the batch to be collected.

Horizontal Scaling It is natural to mitigate large query loads by introducing additional compu-
tation resources. The active latency of DP-PIR is linearly proportional to the number of machines
per party, since having more machines linearly reduces the active processing time of a batch. Im-
portantly, this allows us to use a proportionally smaller batching window to minimize the idle batch
collection time without introducing queuing delays for future batches. Adding more machines to
Checklist introduces additional queues for queries reducing queuing delays. The relative effective-
ness of adding the same number of machines to DP-PIR and checklist depends on the query rate.
For example, when each of the 3B clients makes a single query per day, Checklist can completely
eliminate queuing delays by having 4 machines per parties, providing far better latency than DP-
PIR (although our throughput remains much higher). However, in the more extreme case where
each client has a 100 applications installed on their phone, and checks for updates 10 times a day,
the number of machines required by checklist to eliminate queuing delays becomes unrealistic. In
that case, our simulations indicate that by using < 300 parallel machines, we can horizontally scale
DP-PIR (configured for user-DP) to achieve a median latency of 90 seconds using a 1 minute batch-
ing window and a 1, 800$ daily budget. With the same budget, Checklist achieves a median latency
in excess of several hours, and would require an estimated budget of 12, 500$ to achieve the same
90 seconds latency.

Although relatively better than Checklist in cases with extreme query rates, the costs required
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to achieve sub-second latency with DP-PIR are still considerable, and require careful fine-tuning of
the batching window. Our system is not primarily designed for latency but rather for throughout.
The relative trends shown in these simulations are primarily due to how challenging large loads are
to existing systems (from both a throughput and a latency perspective), rather than the design of
DP-PIR itself. We believe our work demonstrates that PIR can be applied to application scenarios
previously thought impractical, especially throughput wise. However, these application domains
remain largely understudied.

Further investigation into alternative modes of mixing or shuffling that do not involve batching
is required to adapt our approach to sub-second latency scenarios. For example, emitting noise
queries at random time intervals drawn from a suitable DP distribution, while similarly reordering
or delaying real queries on the fly. The main challenge with such batching-free approaches is in
quantifying the leakage: the backend now sees many partial access patterns throughout protocol
execution, rather than a single noised access pattern per an entire batch. Standard differential
privacy arguments appear insufficient for reasoning about this kind of release, or for designing
mechanisms that require noise be added in the time dimension.

Conclusion Our protocol is primarily throughput oriented and is more suited for scenarios where
latency is secondary. When the query rate is high, our protocol can exhibit decent latency (e.g.
a few minutes) with a significantly lower dollar budget than existing protocols, primarily because
higher query rates induce overwhelming queuing delays in traditional PIR protocols, where the cost
of handling a single query is non-constant in the database size.
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