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Abstract. We present the first post-quantum secure Key-Updatable Public-Key Encryption
(UPKE) construction. UPKE has been proposed as a mechanism to improve the forward-
secrecy and post-compromise security of secure messaging protocols, but the hardness of all
existing constructions rely on discrete logarithm assumptions. We focus our assessment on
isogeny-based cryptosystems due to their suitability for performing a potentially unbounded
number of update operations, a practical requirement for secure messaging where user con-
versations can occur over months, if not years.
We begin by formalizing two UPKE variants in the literature as Symmetric and Asymmetric
UPKE, which differ in how encryption and decryption keys are updated. We argue that
Asymmetric UPKE constructions in the literature cannot be straightforwardly instantiated
using SIDH nor CSIDH. We then describe a SIDH construction that partially achieves the
required security notions for Symmetric UPKE, but due to existing mathematical limitations,
cannot provide fine-grained forward secrecy. Finally, we present a CSIDH Symmetric UPKE
construction that requires a parameter set in which the class group structure is fully known.
We discuss open problems which are applicable to any cryptosystem with similar requirements
for continuous operations over the secret domain.

Keywords: Secure messaging, post-quantum cryptography, isogenies, key-updateable en-
cryption

1 Introduction

Secure communication protocols are quickly evolving [3, 28, 29], driven by the need to meet simul-
taneous usability and security requirements, such as asynchronous communication while ensuring
forward secrecy and post-compromise security for conversations that can occur over months, if not
years. Key-Updatable Public-Key Encryption (UPKE) schemes have been proposed as a solution
to improve weak forward secrecy properties of existing secure messaging protocols such as the Sig-
nal and Message Layer Security (MLS) protocols [1, 2, 10, 21, 25, 34, 35]. In addition to standard
public-key encryption functionality, UPKE schemes allow encryption and decryption keys to be
asynchronously updated with fresh entropy, thereby healing the protocol by restoring security even
after exposure of secret values. Unfortunately, the security of all UPKE schemes proposed to date
relies on the hardness of the discrete logarithm problem.

In this work, we perform the first assessment of the viability of quantum-secure UPKE schemes.
We begin by formalizing two UPKE variants presented in the literature which we call Symmetric
UPKE and Asymmetric UPKE 1, and assess the extent to which existing isogeny-based cryptosys-
tems can instantiate both variants. We model Asymmetric UPKE after a construction proposed by

1 Note that symmetric and asymmetric here refers to the requirements of how the update operation is
performed, not the style of encryption.



Jost, Maurer, and Mularczyk [25], in which encryption keys are updated using elements in the public
domain, while decryption keys are updated using private values. We model Symmetric UPKE after
a construction proposed by Alwen et al. [1] to improve the forward-secrecy and post-compromise
security of TreeKEM [5], the group key-exchange primitive used by MLS, where both encryption
and decryption keys are updated using the same secret update value. Further, we introduce the
notion of IND-CPA-U security, a generalization of a security model by Alwen et al. [1] for UPKE
constructions.

We argue that Asymmetric UPKE constructions as currently defined in the literature cannot be
instantiated by either Supersingular Isogeny Diffie Hellman (SIDH) nor Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH). We then present a series of steps demonstrating that while SIDH
can in theory be used for Symmetric UPKE constructions, a viable construction in practice is
hindered by existing mathematical limitations. We then present a CSIDH-based Symmetric UPKE
construction which can be used today with the existing CSIDH-512 parameter set, or any CSIDH
parameter set where the class group structure is fully known. Knowing the class group structure
ensures unique group element representation and uniform sampling of secret key material. Taken
together, these properties ensure that knowledge of a secret key prior to an update will not leak
information about the key after an update operation, thereby fulfilling forward secrecy and post-
compromise security. We prove that our CSIDH construction fulfills IND-CPA-U security.

We focus our analysis on isogeny-based cryptosystems, as alternative quantum-secure crypto-
graphic primitives have undesirable usability or efficiency trade-offs for secure messaging protocols,
or simply cannot support the algebraic structure required for UPKE. In the setting of secure mes-
saging, user conversations can potentially endure months, if not years, and so supporting ongoing
protocol actions without bounds on the number of consecutive update operations is desirable. By
contrast, lattice-based cryptosystems accumulate errors for each additional operation, and so re-
quire either bounding the number of operations or performing some expensive compression function
to limit growth of errors [17, 18]. Code-based primitives similarly accumulate errors over repeated
operations, and so have similar restrictions on the number of possible operations that can be per-
formed [30]. Finally, multivariate and hash-based primitives are not a good fit for key-exchange
protocols in general, much less protocols with more advanced requirements such as updatability2.
Further, since updates occur only periodically, performance of update operations is less of a concern.

Contributions. In this work, we assess the viability of post-quantum secure key-updatable public-
key encryption (UPKE) schemes, and define constructions using isogeny-based cryptosystems for a
subset of these schemes. Towards this end, we present the following contributions:

– We give formal definitions of Symmetric UPKE and Asymmetric UPKE as two UPKE variants
presented in the literature. We also present IND-CPA-U, a generalized security model for proving
IND-CPA security specifically for UPKE schemes, a setting in which the adversary is assumed
to be able to adaptively choose updates and corrupt secret key material.

– We argue that the most prominent Asymmetric UPKE construction currently in the litera-
ture [25] cannot be straightforwardly instantiated by either SIDH or CSIDH.

– We then describe a SIDH-based Symmetric UPKE construction that is possible in theory, but
requires further mathematical advancements and careful cryptanalytic scrutiny to be instanti-

2 Hash functions only rely on one-way functions and thus cannot provide the structure needed for key
exchange. Multivariate schemes are generally built from a surjective trapdoor function that is difficult to
build a key exchange protocol from, and with no obvious algebraic structure to allow for updating.
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ated in practice. We present this scheme in order to make clear these gaps and possible future
research directions.

– We present a Symmetric UPKE construction that can be used today with CSIDH-512, or any
CSIDH parameter set where the class group has been fully computed. We prove this construction
to be IND-CPA-U secure, and provide an implementation.

Related Work The most closely related work to our own is the already mentioned work of Alwen et
al. [1] as a mechanism to improve forward secrecy and post-compromise security of TreeKEM [5].
Our Symmetric UPKE primitive is modeled after their construction, and our work is an effort to
define a post-quantum UPKE variant suitable for similar use. Further, we prove security in a more
robust model that models the adversary’s capability to both adaptively choose update values for
the victim as well as corrupt their local state. The work by Alwen et al. was in turn based upon
work by Jost et al. [25], which is most akin to our Asymmetric UPKE notion.

Both secure messaging protocols and post-quantum protocols are still in active development.
Efforts to combine the two into post-quantum secure messaging are so far rare in the literature,
although we refer to [7] as a recent example of exactly this. Their work constructs a version of
Signal’s X3DH protocol out of the (ring)-LWE problem.

Alternative (Unrelated) Notions of UPKE. There exists a separate notion of “updatable encryption”
in the literature [6, 24]. In these schemes, a ciphertext is updated using an update token such that
the encrypted message becomes an encryption under a new public key without decrypting the
message. These schemes should not be confused with key-updatable UPKE schemes.

Organization. We present preliminaries and an overview of isogenies and isogeny-based cryptosys-
tems in Section 2, and of updatable public-key encryption schemes in Section 3. In Section 4 we
assess the extent to which SIDH and CSIDH can be used to instantiate Asymmetric and Symmetric
UPKE constructions. We present a series of steps toward a SIDH Symmetric UPKE construction
in Section 5 and a CSIDH Symmetric UPKE construction in Section 6. We conclude in Section 8.

2 Preliminaries

Let λ denote the security parameter in unary representation. We denote sampling a value a from a

non-empty set S uniformly at random as a
$← S.

As we are constructing a hybrid encryption scheme, we will rely on the standard notions of a key
encapulation mechanism, or KEM , and a data encapsulation mechanism, or DEM. However we do
not define our scheme as a KEM in order to match the interface presented in previous work in this
area [1]. In order to use our protocol as a hybrid encryption scheme we will use a data encapsulation
mechanism, which we keep as an abstract interface for flexibility.

Definition 1. A Data Encapsulation Mechanism DEM [19] is a tuple of of three algorithms: a non-
deterministic key generation algorithm KeyGen(λ) that accepts a security parameter λ and outputs
a randomized key K, a non-deterministic encryption algorithm Encrypt(K,m) that accepts K and a
message m and outputs a ciphertext ctxt, and a deterministic decryption algorithm Decrypt(K, ct)
that outputs the message m.
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In Appendix D we will show that our CSIDH-based construction satisfies our IND-CPA-U definition
so long as CSIDH combined with the DEM scheme is IND-CPA. Thus we do not specify the security
requirements of the DEM specifically, only that it is enough to ensure that the hybrid system is
IND-CPA.

We now give further background on isogenies and their use in public-key cryptosystems.

2.1 Isogenies and Isogeny-Based Cryptography

Let p be a prime number and Fp be a finite field of characteristic p, and let E0 and E1 be elliptic
curves defined over Fp. An isogeny φ : E0 → E1 is a rational map from E0(Fp) to E1(Fp) which
is also a group homomorphism [37], where Fp is the algebraic closure of Fp. When two curves are
isomorphic, they share the same j-invariant. which remains a constant value for all isomorphic
curves.

An endomorphism of an elliptic curve φ : E → E is a rational map from E to itself, defined over
an extension field Fpn . The set of all endomorphisms for an elliptic curve (over an algebraic closure)
forms a ring under the operations of point-wise addition and composition; we denote this ring of
endomorphisms as End(E ). When End(E ) is isomorphic to an order in a quaternion algebra, the
curve is classified as supersingular, otherwise, End(E ) is isomorphic to to an imaginary quadratic
field and the curve is classified as ordinary [37].

We next describe two existing cryptosystems—SIDH and CSIDH—whose security has been
demonstrated to reduce to the hardness of the Supersingular Isogeny Problem (or variants thereof),
described in Definition 2. We include additional background information on both in Appendix A.

Definition 2. Supersingular Isogeny Problem [23] Given a finite field K and two supersingular
elliptic curves E1, E2 defined over K such that |E1| = |E2|, compute an isogeny φ : E1 → E2

Supersingular Isogeny Diffie-Hellman (SIDH). Introduced by Jao and De Feo in 2011 [23],
SIDH is a Diffie-Hellman like scheme defined using secret isogenies between supersingular elliptic
curves to perform a key exchange protocol. SIDH can also be constructed as a PKE scheme [23].
SIDH has been adapted as a KEM with additional Fujisaki-Okamoto techniques [20] as an IND-
CCA2 secure candidate for the ongoing NIST competition to standardize quantum-resistant key
exchange protocols [22].

Performing key exchange via SIDH begins with each party agreeing to a starting public curve
E0(Fp2), where p is a prime of the form 2e13e2−1, and two sets of basis points {PA, QA}, {PB , QB} ⊂
E0, which are generators of the 2e1 and 3e2 -torsion subgroups respectively. For this work, we assume
secret values—which define the kernel of an isogeny—are of the form 〈[1]P + [n]Q〉, such that
participants only need to randomly generate the scalar n to define their secret key. Alice begins by

selecting nA
$← Z2e1 which defines her secret isogeny φA : E0 → EA, such that EA = E0/〈[1]PA +

[nA]QA〉. Similarly, Bob selects nB
$← Z3e2 , which defines his secret isogeny φB : E0 → EB , such

that EB = E0/〈[1]PB + [nB ]QB〉. Alice publishes her public key (EA, φA(PB), φA(QB)), while Bob
publishes his public key (EB , φB(PA), φB(QA)).

After obtaining each other’s public curves, their shared secret is a common curve EAB , which is
the same for Alice and Bob up to isomorphism. Alice arrives at EAB by calculating EB/〈φB(PA) +
[nA]φB(QA)〉 using her secret term nA, whereas Bob calculates EA/〈φA(PB) + [nB ]φA(QB)〉 using
his secret term nB . Alice and Bob obtain the same shared secret by finding the j-invariant of EAB ,
as their resulting values EB/〈φB(PA) + [nA]φB(QA)〉 ∼= EA/〈φA(PB) + [nB ]φA(QB)〉 are equal up
to isomorphism.
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Commutative Supersingular Isogeny Diffie-Hellman (CSIDH). As described in Section 2.1,
SIDH performs “Diffie-Hellman-like” operations over a set of supersingular elliptic curves over the
quadratic extension field Fp2 and isogenies between these curves. SIDH ensures commutativity of
key-exchange operations between two participants by additional sending auxiliary points on each
participant’s public curves. Participants arrive at the same curve up to isomorphism by “divid-
ing out” the starting elliptic curve by two non-intersecting subgroups. CSIDH [8] builds upon
the Couveignes-Rostovtsev-Stolbunov [11, 36] scheme, but instead uses the graph of supersingular
curves. The security of CSIDH is based on the Supersingular Isogeny problem defined in Defini-
tion 2, but CSIDH restricts the supersingular isogeny graph (where nodes are supersingular curves,
and edges are isogenies) to curves defined over Fp.

While the full ring of endomorphisms of supersingular curves over Fp2 is non-commutative,
restricting consideration to the subring of endomorphisms defined over Fp yields a (commutative)
imaginary quadratic order O. A consequence of this restriction is that the isogeny graph must also
be restricted to curves and isogenies defined over Fp. To ensure that isogeny operations can be
computed efficiently using Vélu’s formulas [38], the prime p in CSIDH is defined to be of the form
p = 4 · `1 · `2, . . . , ·`d − 1 for some set of small primes `d generating the class group cl(O).

Similarly to SIDH, participants performing a key-exchange must agree to some starting curve
curve E0(Fp). A secret key in CSIDH is a vector ~e ∈ Zd; each element in ~e is within some bound

to ensure the values are “small.” The vector ~e represents a secret ideal
∏d
i=1 `i

ei . By the Deuring
correspondence, this ideal corresponds to exactly one isogeny from the starting curve to another
curve in the graph.

While CSIDH is normally presented as if it were a group action, there are limitations to inter-
preting it as such. Sampling uniformly random elements from the group and efficiently computing
the group action on those elements requires computing the structure of the class group cl(O), which
takes subexponential time in general. The authors of CSI-FiSh [4] solved this problem by explicitly
computing the structure of cl(O) for the CSIDH-512 parameter set, which is a specific parameter set
using a 511-bit prime p. Such a computation requires subexponential time, and cannot reasonably
be extended to much larger parameter sets using present technology. In this case, the group is cyclic,
and the group order N is now known. Furthermore, the authors computed a basis of short vectors
generating the relation lattice of the set of small prime generators, allowing one to convert elements
of ZN to vectors ~e ∈ Zd given a choice of group generator, so that the representation

∏d
i=1 `

ei
i

can be used for isogeny computation. Fully computing cl(O) allows for efficient and uniform sam-
pling of elements in ZN and canonical representation in ZN . While the authors of CSI-FiSh used
these properties to define a signature scheme, we employ the same structure for the purposes of
constructing UPKEs.

Efficient Algorithms for the `-Isogeny Path Problem. The Deuring correspondence establishes a
mapping between supersingular curves over the quadratic extension field Fp2 and maximal orders
in a quaternion algebra.3 The endomorphism ring End(E ) of a supersingular curve E is isomorphic
to a maximal order O in Qp,∞ (the quaternion algebra over Q ramified at p and ∞). For each
maximal order O ∈ Qp,∞, there are at most two supersingular curves (up to isomorphism) with
endomorphism rings isomorphic to O. The correspondence also provides information about isoge-
nies. If there is an isogeny φ : E0 → E1, then looking at the corresponding maximal orders O0 and

3 The mapping is not quite bijective. Curves with conjugate j-invariants are mapped to the same maximal
order, so the mapping is at most two-to-one for isomorphic curves.
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O1, there is a left ideal in O0 which is also a right ideal in O1. If the isogeny has degree `k for a
prime `, the ideals will have the same norm.

Kohel et al. demonstrated that finding a path in the `-isogeny graph is easier when working over
the maximal orders and ideals [26]. Their algorithm (commonly referred to as the KLPT algorithm),
takes as input the endomorphism ring of an elliptic curve End(E1) and a prime ` and finds an ideal
with norm `k for some k that is a left ideal of End(E0) and a right ideal of End(E1). This ideal can
then be converted back to an isogeny φ : E0 → E1.

The reason this does not break SIDH is because of the requirement that the endomorphism
ring of E1 is known. Calculating the endomorphism ring of E1 is believed to be difficult—unless an
isogeny ψ : E0 → E1 is known. This means that for most cases KLPT can only find an isogeny from
E0 to another curve E1 if an isogeny between the two is already known.

These algorithms have proven to be quite useful in constructing cryptographic protocols. Finding
a second isogeny between two curves is useful for proving knowledge of a secret isogeny φ : E0 → E1.
By concatenating a commitment isogeny ψ : E1 → E2, KLPT can be used to generate an isogeny
η : E0 → E2 that does not go through E1. This technique has been used to construct signature
schemes, beginning with [16], and most recently to construct the signature scheme SQI-Sign [12],
based upon an improved version of the KLPT algorithm, which we call KLPT∗. This improved
version reduces the degree of the output isogeny from 9

2 log`(p) to 15
4 log`(p). Note however that

KLPT∗ relies on two assumptions (Assumptions 1 and 2) to prove that the output of KLPT∗

leaks no information about its input. In summary, KLPT∗ assumes that an isogeny of fixed degree
between two curves can be found with high probability, and that the output is statistically close to
a uniform sampling (a random walk).

3 Key-Updatable Public-Key Encryption (UPKE)

We begin by formalizing the notion of a generalized UPKE scheme. We then present two variants
of UPKE schemes in the literature [1, 25], which differ in how update operations are performed.

Definition 3. Key-Updatable Public-Key Encryption (UPKE) A UPKE scheme U is a
tuple of six algorithms: a key generation algorithm KeyGen, an encryption algorithm Encrypt, a
decryption algorithm Decrypt, an algorithm to generate update values GenUpdate, and algorithms
to update private and public keys UpdatePrivate,UpdatePublic, respectively.

UPKE schemes must fulfill the following correctness, security, and usability notions.

– Correctness: The scheme should correctly perform public-key encryption and decryption both
before and after a series of updates.

– Forward secrecy : If an attacker learns the secret key for epoch n, the updated secret keys in
epochs 1 . . . , n− 1 should not be recoverable.

– Post-compromise security : If an attacker learns the secret key for epoch n, all updated secret
keys in epochs n+ 1, n+ 2, . . . should not be recoverable.

– Asynchronicity : Anyone with knowledge of a public key should be able to initiate an update,
so that the update operation to the public key is immediately available, and only the update
operation to the secret key should be performed eventually.
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– Key Indistinguishability : An adversary that has access to both a freshly generated keypair and
an updated keypair has a negligible advantage to distinguish between the two. Note that while
such a property may be desirable in practice for privacy reasons, our reason for requiring this
property is for the reduction to IND-CPA in our proof. However, alternative proof strategies
may not require this property.

Symmetric UPKE. We model Symmetric UPKE after a construction described by Alwen et
al. [1], which is presented as a mechanism to improve the forward-secrecy and post-compromise
security properties of TreeKEM.

In this construction, the sender of a message also generates the update value, which is transmit-
ted privately to the holder of the decryption key along with the ciphertext and message. The sender
of a message applies the update value to the other party’s encryption key, and then the receiver
applies the same update value to their decryption key.

Definition 4. Symmetric UPKE A Symmetric UPKE scheme instantiates U as follows:

– KeyGen(λ)→ (sk , pk): Accepts a security parameter λ and outputs a public encryption key pk
and secret decryption key sk .

– Encrypt(pk ,m)→ c: Encrypts a message m using pk , resulting in a ciphertext c.

– Decrypt(sk , c)→ m: Decrypts c using sk , producing the plaintext message m.

– GenUpdate(λ)→ µ: Accepts λ and outputs a randomly-generated update value µ.

– UpdatePrivate(sk , µ) → sk ′: Takes as input sk and the update value µ and produces a deter-
ministic output that is the updated sk ′.

– UpdatePublic(pk , µ)→ pk ′: Takes as input pk and update value µ, and produces a deterministic
output that is the updated pk ′.

Correctness. Symmetric UPKE constructions are correct if they correctly perform Encrypt and
Decrypt operations both before and after a series of UpdatePublic and UpdatePrivate operations.

Asymmetric UPKE. We first define a generic Asymmetric UPKE construction, and then present
Asymmetric UPKE† that is modeled after an existing construction in the literature. In the Asym-
metric UPKE setting, encryption and decryption keys are updated using distinct update values.

Definition 5. Asymmetric UPKE An Asymmetric UPKE scheme instantiates U as follows,
where KeyGen,Encrypt ,Decrypt remain identical to the Symmetric setting:

– GenUpdate(λ)→ (µsk, µpk): Produces the update for the encryption key µpk and an update for
the decryption key µsk.

– UpdatePrivate(sk , µsk)→ sk ′: Accepts as input sk and a secret update value µsk, and produces
an updated secret key sk ′.

– UpdatePublic(pk , µpk) → pk ′: Accepts as input pk and a update value µpk, and produces as
output a updated public key pk ′.

Correctness. As in the Symmetric setting, Asymmetric UPKE constructions are correct if Encrypt
and Decrypt operations can be correctly performed. before and after a series of UpdatePublic and
UpdatePrivate operations.
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Asymmetric UPKE†. Jost, Maurer, and Mularczyk [25] presented an ElGamal-based Asym-
metric UPKE construction that we refer to as Asymmetric UPKE†. In Asymmetric UPKE†, the
update value for the encryption key is in the public domain, while the update value for the decryp-
tion key is in the secret domain. Updates require a homomorphic one-way function f , such that
pk ′ = pk ◦ µpk = f(sk ′) = f(sk ◦ µsk).

3.1 Security

We now present a generalization of IND-CPA (Indistinguishability under Chosen Message Attack)
security for UPKE schemes described by Alwen et al. [1], which we define as “Indistinguishability
under Chosen Plaintext Attacks with Updatability”, or IND-CPA-U. We present this notion of IND-
CPA-U security in Figure 1. Our notion assumes a Symmetric UPKE construction, but extends to
the Asymmetric UPKE setting by simply allowing the adversary to learn public update values.

In Alwen et al.’s definition, the adversary is given the public key pk0 and provides a sequence
of updates µ1, . . . , µτ . The public and private keys are updated accordingly and the adversary is
issued an IND-CPA challenge under pkτ . The public and secret key are updated again, this time
with a secret update, and the adversary is given the resulting public and secret key. They then
must respond to the IND-CPA challenge.

Their model illustrates the fundamental idea behind how security works for updatable encryp-
tion: the adversary may learn (or even control) either the update value or the secret key, but as long
as they do not have both, the updated secret key remains secure. However they have the restriction
that the adversary controls the updates prior to the IND-CPA challenge, and receives the secret key
afterwards. We generalize this by allowing the adversary to adaptively choose whether they want
to control the update or learn a secret key, with the restriction that the IND-CPA challenge can
only be issued on a public key that has not been compromised in a straightforward way.

We begin by generating a keypair (pk0, sk0) and sending pk0 to A. We initialize i← 0 (the most
recent version of the keypair will be (pk i, sk i)). After this we let the adversary decide how the key
will be updated. To this end, we provide our adversary with the following oracles:

– The GiveUpdate(µ) oracle takes in an update value µ. It increments i← i+1, and then generates

(pk i, sk i)← UpdatePublic(pk i−1, µ),UpdatePrivate(sk i−1, µ)

before providing the new pk i to the adversary.
– The FreshUpdate() oracle corresponds to updates happening that the adversary does not con-

trol or know the update value for. It generates a random µ
$← GenUpdate() and then calls

GiveUpdate(µ), providing the new pk i to the adversary.
– The Corrupt(j) oracle provides sk j for a index j ≤ i.

Eventually, the adversary requests a challenge on an index j ≤ i and provides messages (m0,m1).

A bit b
$← {0, 1} is sampled and cb ← Encrypt(mb, pk j) is provided back to the adversary. After

making further queries to the update and corruption oracles, the adversary must issue a bit b′.
They are said to win if b = b′ and the index j is fresh. The freshness requirement ensures that the
adversary cannot trivially win.

An index j is considered fresh if:

– The adversary has not called Corrupt(j), and
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IND-CPA-U (Indistinguishability Under Chosen Plaintext Attack with Updatability) Game:

(pk0, sk0)← KeyGen(λ); i = 0 // Derive the starting keypair

j,m0,m1, st← A0(pk0) // Adversary queries oracles, returns index and challenge messages

b
$← {0, 1}, cb ← Encrypt(pk j ,mb) // Generate challenge ciphertext

b′
$← A1(cb, st) // The adversary outputs a guess for b

Adversary wins if IsFresh(j) and b′ = b.

where in addition to the normal IND-CPA oracles, the adversary has access to the oracles:

- GiveUpdate(µ)→ pk i, after performing // The adversary can update keys with chosen value
i = i+ 1; (pk i, sk i)← UpdatePublic(pk i−1, µ),UpdatePrivate(sk i−1, µ);
U = U ∪ i // Keep track of updates the adversary has provided

- FreshUpdate()→ pk i, after performing // Update with value not chosen by adversary

i = i+ 1; µ
$← GenUpdate(); (pk i, sk i)← UpdatePublic(pk i−1, µ),UpdatePrivate(sk i−1, µ)

- Corrupt(j), returning sk j after performing the following steps: // Allow the adversary to learn the jth keypair
C = C ∪ j
i = j; while i ∈ U do : C = C ∪ i, i = i− 1; // Left-adjacent updates chosen by A are now corrupt

k = j; while (k + 1) ∈ U do : C = C ∪ k, k = k + 1; // Right-adjacent updates from A are also corrupt

We define IsFresh(j) to return true if and only if j /∈ C

Fig. 1. IND-CPA-U experiment, where the adversary issues a guess in the regular IND-CPA game after
performing a series of arbitrary updates and corruptions. To ensure the adversary cannot trivially win, we
require the secret key under which the challenge is issued to be fresh, meaning the adversary cannot derive
its value from simply having corrupted that key or a prior key from which its value can be derived.

– There is not a sequence of updates (in either direction) all of which from GiveUpdate that
connects the index j to an index k for which Corrupt(k) has been called.

In Figure 2 we visualize how the queries that the adversary has performed cause a given index
to be considered fresh or not.

Let Wb denote the event that Experiment b defined in Figure 1 outputs b. We define the advan-
tage of an adversary A against a UPKE scheme U as Adv(A,U) = Pr[Wb]− 1.

Definition 6. A UPKE scheme is IND-CPA-U secure if for any polynomial-time adversary A, the
value of Adv(A,U) is negligible.

Unlike IND-CPA games for plain PKE schemes, the IND-CPA-U definition presented in Def-
inition 6 captures the notion of forward secrecy and post-compromise security by allowing A to
learn any secret key material and provide whatever update values that it wishes, with conditions
preventing the adversary from trivially winning the IND-CPA game.
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pk0 pk1 pk2 pk3 pk4 pk5 pk6

Fig. 2. A series of updates applied to public keys. In this diagram, updates that occur as a result of
GiveUpdate queries are solid, while updates that are a result of FreshUpdate queries are dashed. Keys that
are connected by updates that the adversary has provided or has knowledge of can be viewed as a block. If
one index in a given block is compromised, leaking the secret key, then the secret key for any index in the
block can be calculated. In our security model, such indices are not considered fresh, and if the adversary
requests the challenge on such an index, they are penalized.

4 Assessing Isogeny-Based UPKE

As seen in Section 3, UPKE constructions require that UpdatePrivate output an sku whose dis-
tributed is independent from sk , to ensure forward secrecy and post-compromise security. Further,
this operation should be asynchronous, so that external parties can update the public key without
requiring the keyholder to be online.

With these requirements in mind, isogeny-based cryptography presents an attractive option for
UPKE constructions. While lattice-based cryptography can support key-exchange operations, in
the setting where an unbounded number of update operations can be performed, the security of
existing lattice-based constructions unfortunately degrades with each update operation. 4

We now discuss the extent to which existing isogeny-based schemes—SIDH and CSIDH—can
support Symmetric and Asymmetric UPKE constructions.

Isogeny-Based Symmetric UPKE. As described in Section 4, Symmetric UPKE constructions
apply the same update value µ to both sk and pk . Unfortunately, several practical limitations
impact both SIDH and CSIDH-based UPKE constructions, which we discuss in Sections 5 and 6.

We compare our constructions against a naive “online” UPKE construction that we call Double
Encrypt, that does not achieve the desired goals of asynchronicity and fine-grained forward secrecy,
which we aim to improve upon. As a naive “starting point” construction, Double Encrypt simply
allows any party to select a keypair at random and perform nested encryption to the recipient using
the recipient’s long-lived keypair and this ephemeral public key (after sending the recipient the
corresponding secret key, encrypted to their long-lived keypair). When the recipient comes online,
they simply generate a fresh long-lived keypair. Double Encryptachieves all properties required
of a UPKE scheme as defined in Section 3 except for asynchronicity and fine-grained forward
secrecy. Specifically, Double Encrypt maintains a static key for each “window” before and after the
keyholder performs an update, and so the forward secrecy of Double Encrypt is maintained only
for each window. We provide specific details of Double Encrypt in Appendix B,

Isogeny-Based Asymmetric UPKE. Definition 5 describes a generalized notion of Asym-
metric UPKE, followed by Asymmetric UPKE†, a concrete construction in the literature [25].

4 For example, the obvious thing to do with a lattice-based system is to add together two (ring)-LWE
samples to update a public key. However the corresponding secret key will then be the sum of two (ring)-
LWE secrets. The distribution of the resulting secret will be dependent on the previous secret, making
it difficult to argue for the security of such a system.
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We now describe why there is no straightforward way to use SIDH or CSIDH to instantiate a
Asymmetric UPKE† style construction. We narrow our assessment to Asymmetric UPKE† in order
to effectively determine the assumed mathematical structure.

In Definition 5, UpdatePublic applies a public update value µpk to pk , whereas UpdatePrivate

applies a private update value to sk . As such, Asymmetric UPKE† requires a homomorphic structure
between the public and private domains.

More formally, the Asymmetric UPKE† construction assumes the existence of a function f that
maps the private domain to a public one. For example, pk = f(sk), and f(µsk) = µpk. For a discrete

logarithm-based system like Asymmetric UPKE†, f is the simple mapping f : x 7→ gx. The public
key update operation then works because the domain and codomain of f have group operations ×
and ?, and f(µsk × sk) = f(µsk) ? f(sk) = µpk ? pk .

The failure of both SIDH and CSIDH in trying to instantiate Asymmetric UPKE† is that the
protocol requires f to be a group homomorphism, and current isogeny schemes offer, at best, a group
action. SIDH defines only one operation—applying isogenies via Vélu’s formula—over elements in
the set of supersingular curves over Fp2 . While SIDH can “combine” public and private values by
some (non-group) operation, SIDH does not define a group operation between group elements. More
clearly, it is difficult to imagine how to apply one public value in SIDH—a supersingular curve—
to another. As such, SIDH cannot be used in a straightforward way as the underlying public-key
encryption primitive to construct the Asymmetric UPKE† scheme.

For similar reasons, CSIDH cannot be used for an Asymmetric UPKE† construction. The private
values in CSIDH form a commutative group, so one might hope for more algebraic structure to be
useful. But for Asymmetric UPKE, we need some sort of structure in the public domain. Public
values in CSIDH are still elliptic curves, and without an operation that can be applied between
elliptic curves or a new way to separate private and public values, CSIDH as currently defined also
cannot support Asymmetric UPKE constructions.

5 Symmetric UPKE via SIDH

A naive SIDH-based Symmetric UPKE construction would simply generate an isogeny µ as a se-
cret update, and perform a plain SIDH key exchange using µ to update the keyholder’s public key
(EA, φA(PB), φA(QB)) under µ(EA), to obtain the updated public key (EAµ, φAµ(PB), φAµ(QB)).
After sending µ via an encrypted channel to the keyholder, the keyholder would similarly up-
date their secret key φA : E0 → EA by performing a plain SIDH key exchange obtaining sk ′ =
φAµ = 〈φµ(PA) + [nA]φµ(QA)〉. Unfortunately, this naive construction is not forward secure, as the
torsion points remain linearly dependent after each update. We discuss this limitation further in
Appendix C.

We now describe an “online” SIDH UPKE construction that achieves roughly the same windowed
forward secrecy as Double Encrypt. Our construction requires the keyholder to publish their updated
public key after updating their corresponding private key using KLPT∗. However, other participants
can perform a “partial update” of other participant’s public keys non-interactively to achieve some
measure of forward secrecy. Note that we present this construction purely as a proof of concept and
to demonstrate where gaps exist in the effort to instantiate SIDH-based Symmetric UPKE.

At a high level, the output of KLPT∗ will be broken into SIDH-sized chunks. The elliptic
curve after each chunk will form part of the public key. This means that we will be performing
an SIDH-style key exchange with the secret isogeny of one party being significantly longer than

11



the other. Instances where one party’s isogeny is longer than the others are called ‘unbalanced’ or
‘overstretched’, and have been considered in a cryptanalytic context previously [27]. We touch on
this further in Section 7. Due to these potential security problems and because we only introduce
this scheme to motivate a potential approach, we do not provide a security proof, nor do we claim
the existence of one.

An “Online” Construction. Since KLPT∗ outputs isogenies of degree greater than 2e1 and the
point generating the isogeny’s kernel lies outside of E0(Fp2), our construction represents secrets as
a composition of k SIDH-sized isogenies, and public keys as a set of k curves. Let the curves EA1

to
EAk

represent part of Alice’s secret key, and the curves EA1B to EAkB be a shared secret between
Alice and Bob obtained by performing one SIDH operation per curve in each party’s keys. The issue
to avoid is that after performing an update, Bob cannot send both of his auxiliary points to Alice
on the shared curve EAiB , as an attacker could compute the curve using these two points. This
is because elliptic curves used in SIDH have two parameters and the knowledge of two point on a
curve generates a solvable linear equation system. Hence, an attacker having access the intermediate
shared secret curves would then only need to break the final SIDH exchange, making the scheme
less secure. We describe a fix that sends only both auxiliary points on the first curve but only a
single point for each subsequent curve.

Let (PAi , QAi) be a basis of the 2f1-torsion of EAi and let (PAi+1 , QAi+1) be a basis of the 2f1-
torsion of EAi+1

. Alice can write φAi+1
(PAi

) and φAi+1
(QAi

) as linear combinations of PAi+1
and

QAi+1
. This can be done by using a pairing defined on points of EAi+1

, for example, the Weil pairing,
to reduce the problem of finding a linear combination to finding a discrete logarithm. Since φAi+1

has
a cyclic kernel, we have that (PAi+1 , φAi+1(PAi), φAi+1(QAi)) or (QAi+1 , φAi+1(PAi), φAi+1(QAi))
generates the entire 2f1-torsion of EAi+1 . Using linear algebra, Alice can then check which of
PAi+1

or QAi+1
is required to generate the entire torsion, using the corresponding auxiliary point

φBi+1
(PAi+1

) sent by Bob. From this, Alice can use the commutativity of SIDH key exchange to
compute the other auxiliary point. Once all k SIDH schemes have been completed, the shared se-
cret between Alice and Bob is the j-invariant of the final curve EAkB . We call this variation on the
scheme “extended SIDH” as the secret key is a chain of isogenies whose composition is of much
higher degree than the usual SIDH isogeny.

This induces the following “online” UPKE scheme. Note that this construction deviates from
the definition of Symmetric UPKE presented in Definition 4, in that UpdatePrivate outputs the
completely updated public key (achieving better forward secrecy), whereas UpdatePublic outputs
a partially updated public key (achieving partial forward secrecy). Note that UpdatePrivate is
necessary to obtain forward secrecy since, otherwise, the initial secret chain of isogenies would
simply be a subchain of the updated secret key.

– KeyGen(λ): Sample (α1, β1), . . . (αk, βk)
$← Z2

2e1 . Let sk = (φA1
, . . . , φAk

) as a chain of 2fi-

isogenies E = EA0

φA1−−→ EA1

φA2−−→ EA2

φA3−−→ · · ·
φAk−−−→ EAk

with fi ≤ e1. Set pk to be the tuple
(EA, φA1(PB), φA1(QB)) and a list of tuples (EAi+1 , φAi+1(PBi), φAi+1(QBi), Gi). Both sk and
pk are defined recursively by doing the following:

- PAi and QAi form the canonical basis of the 2e1 -torsion of EAi . PBi and QBi form the
canonical basis of the 3e2 -torsion of EAi .

- φAi+1
is the 2fi+1 -isogeny from EAi

whose kernel is the cyclic group generated by αi+1PAi
+

βi+1QAi
.
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- EAi+1 is the codomain of φAi+1 .

- Gi is the additional auxiliary point on EAiB used to complete the SIDH scheme for the
(i + 1)th isogeny, either φBi+1

(PAi+1
) or φBi+1

(QAi+1
). To determine which, we define a

ChooseAuxiliary algorithm, described in Section 5.1.

- Output (sk , pk).

– Encrypt(pk ,m): Sample b
$← Z3e2 which defines φB : E0 → Eenc. From Eenc, compute EAkB us-

ing Algorithm 3 of Section 5.2. ComputeK
$← KDF (j(EAkB)) and ctxt ← DEM.Encrypt(K,m).

Let ct = (Eenc, ctxt). Output ct .

– Decrypt(sk , c): Parse ct as (Eenc, ctxt); set K
$← KDF (j(Eenc)). Output DEM.Decrypt(K, ctxt).

– GenUpdate(λ) → µ: Sample (α′, β′)
$← Z2

2e1 . Produce the isogeny µ = φA′ : EAk
→ EA′ , of

degree 2f
′

with f ′ ≤ e1 and kernel generated by α′PAk
+ β′QAk

. Output µ.

– UpdatePublic(pk , µ) → pk ′: Add the tuple (EA′ , φA′(PBk
), φA′(QBk

), Gk) to pk , resulting in
pk ′.

– UpdatePrivate(sk , µ) → (sk ′, pk ′′): Append µ = φA′ to the isogeny chain sk . Apply KLPT∗

on the composition of the isogenies in sk to obtain a new chain of isogenies E
φA′1−−→ EA′1

φA′2−−→

EA′2

φA′3−−→ · · ·
φA′

`−−→ EA′ . Output sk ′ = (φA′1 , . . . , φA′`) and completely updated public key pk ′′.

So long as Alice and Bob choose the same canonical torsion basis of each elliptic curve, Gi can
be encoded using a single bit and does not depend on Bob’s ephemeral key. This can be done by
having Alice and Bob use the same algorithm to find the basis.

We now elaborate on the extent to which our construction can achieve the required properties
of a UPKE scheme.

Correctness: Since both the initial and updated keys are a chain of SIDH protocols, correctness is
respected.

Forward secrecy: Because the output of KLPT∗ will not leak information about its inputs (if the
underlying assumptions of KLPT∗ regarding fixed-length outputs and the randomness of the
output hold), an attacker obtaining the updated key gains no information on the keys before the
last application of KLPT∗. As such, our scheme achieves forward secrecy roughly comparable to
Double Encrypt, since all participants get some measure of “windowed” forward secrecy between
when an external party performs UpdatePublic, and the keyholder performs UpdatePrivate.

Post-compromise security: Since the output of KLPT∗ will not leak information about its inputs
(again, if its underlying assumptions hold), an attacker looses all information once KLPT∗ is
reapplied during the next update.

Asynchronicity : This scheme cannot support asynchronous updates.

Key Indistinguishability : This scheme does not provide key indistinguishability.

As this construction does not fully instantiate the requirements for Symmetric UPKE (due to the
lack of asynchronicity), we purely present this construction as a proof of concept not intended for use
in practice. For this reason as well as the potential security problems introduced by overstretching
SIDH parameters, we do not make formal claims of security. Hence, while we discuss how to avoid
current torsion point attacks in Section 7, we omit a formal proof of security.
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5.1 Choosing and Getting Auxiliary Points

Recall that in KeyGen, the public key includes one additional auxiliary point on EAiB , which is
used to complete the SIDH scheme for the (i+ 1)th isogeny. We now describe the implementation
of ChooseAuxiliary , an algorithm to determine whether this auxiliary point is on φBi+1

(PAi+1
) or

φBi+1
(QAi+1

).

Let Gi be the received auxiliary point (either φBi+1
(PAi+1

) or φBi+1
(QAi+1

)) and let ψAi+1
:

EAiB → EAi+1B be isogeny induced by the ith SIDH exchange. Let WeilPairing(E , P,Q, n) be the
Weil pairing of two points P and Q of order dividing n in the elliptic curve E , and DiscreteLog(a, b, n)
be the discrete logarithm of a by b, two elements in a group of order dividing n. Let
IsLinearCombination([U1, . . . , Uk], V ) be a function returning True if V is a linear combination of
U1, . . . , Uk and False otherwise. Finally, let LinearCombination([U1, . . . , Uk], V ) be a function return-

ing (a1, . . . , ak) such that V =
∑k
i=1 aiUi.

The ChooseAuxiliary algorithm selects the information required to evaluate the auxiliary points
for the next exchange, by the following steps.

- Use Weil pairings and discrete logarithms to define φAi
(PAi

) and φAi
(QAi

) as linear combina-
tions of PAi+1

and QAi+1
.

- Use linear algebra to check if QAi+1
is a linear combination of PAi+1

, φAi
(PAi

) and φAi
(QAi

).
If that is the case, choose φBi+1(PAi+1). Otherwise, choose φBi+1(QAi+1).

We define ChooseAuxiliary more precisely in Algorithm 1.

Algorithm 1 Auxiliary points decision algorithm

1: procedure ChooseAuxiliary(EAi ,EAi+1 , PAi , QAi , PAi+1 , QAi+1 , φAi+1)
2: w1 ←WeilPairing(EAi+1 , PAi+1 , QAi+1 , A)
3: w1 ←WeilPairing(EAi+1 , QAi+1 , PAi+1 , A)
4: w3 ←WeilPairing(EAi+1 , PAi+1 , φAi+1(PAi), A)
5: w4 ←WeilPairing(EAi+1 , PAi+1 , φAi+1(QAi), A)
6: w5 ←WeilPairing(EAi+1 , QAi+1 , φAi+1(PAi), A)
7: w6 ←WeilPairing(EAi+1 , QAi+1 , φAi+1(QAi), A)
8: v11 ← DiscreteLog(w5, w2, A)
9: v12 ← DiscreteLog(w3, w1, A)

10: v21 ← DiscreteLog(w6, w2, A)
11: v22 ← DiscreteLog(w4, w1, A)
12: V1 ← (v11, v12) . φAi+1(PAi) = v11PAi+1 + v12QAi+1

13: V2 ← (v21, v22) . φAi+1(QAi) = v21PAi+1 + v22QAi+1

14: if IsLinearCombination([V1, V2], (1, 0)) then
15: b← 1 . b = 0 is Alice requires the auxiliary point of PAi+1 and b = 1 if QAi+1 is required

instead.
16: else if IsLinearCombination([V1, V2], (0, 1)) then
17: b← 0
18: else
19: b

$← {0, 1}
20: return (b, V1, V2)
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Once the additional point Gi has been received, the GetAuxiliary algorithm evaluates the auxil-
iary points by solving the equation system obtained with ChooseAuxiliary . We define GetAuxiliary
more precisely in Algorithm 2.

Algorithm 2 Auxiliary points evaluation algorithm

1: procedure GetAuxiliary(EAi ,EAi+1 , PAi , QAi , PAi+1 , QAi+1 , φAi+1 , ψAi+1 , φBi(PAi), φBi(QAi), Gi)
2: (b, V1, V2)← ChooseAuxiliary(EAi ,EAi+1 , PAi , QAi , PAi+1 , QAi+1 , φAi+1)
3: if b = 0 then
4: P ← Gi

5: (a1, a2, a3)← LinearCombination([V1, V2, (1, 0)], (0, 1))
6: Q← a1ψAi+1(φBi(PAi)) + a2ψAi+1(φBi(QAi)) + a3Gi

7: else
8: Q← Gi

9: (a1, a2, a3)← LinearCombination([V1, V2, (0, 1)], (1, 0))
10: P ← a1ψAi+1(φBi(PAi)) + a2ψAi+1(φBi(QAi)) + a3Gi

11: return (P,Q) . P = φBi+1(PAi+1) and Q = φBi+1(QAi+1)

The idea of using Weil pairings to verify if a set of points generates the torsion group of an elliptic
curve was first discussed in [31]. The algorithm in that paper, although different from Algorithm 2,
uses the same fundamental idea of using Weil pairings to reduce the problem to a discrete logarithm
computation. However, the construction in Section 5 is the first application of that algorithm to
allow SIDH exchanges with isogenies with degree larger than p. We refer to these exchanges as
“extended SIDH”, which we further explain in Section 5.2.

5.2 Extended SIDH

Recall that “extended SIDH” refers to the operation of performing one plain SIDH operation for
each element in sk , as sk is a chain of isogenies whose composition is of higher degree than p. We
employ extended SIDH in Encrypt and Decrypt to derive the shared key K.

We now describe how to perform this extended SIDH operation in detail. Let sk = (φA1 , . . . , φAk
)

be Alice’s private isogeny chain with kerφAi+1
= αi+1PAi

+ βi+1QAi
. Let (PB0

, QB0
) be a basis

of the 3e2-torsion on E = EA0
. Let (PBi+1

, QBi+1
) = (φAi+1

(PBi
), φAi+1

(QBi
)). Let φB be Bob’s

secret isogeny on E with kernel 〈PB0
+ skBQB0

〉 for a secret integer skB . Let φBi
be the associated

3e2-isogeny on EAi with kernel 〈PBi + skBQBi〉. The idea behind Extended SIDH is the following
commutative diagram:

E EA1 · · · EAk

EB EA1B · · · EAkB

φA1
φA2

φAk

ψA1
ψA2

ψAk

φB0
φB1

φBi
φBk
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Bob computes EAkB when generating φBk
. Alice uses the following algorithm.

Let φB(PA) and φB(QA) be the auxiliary points given by Bob on the initial curve E . Let EB
be the public codomain of φB Let G = (G1, . . . , Gk−1) be the list of auxiliary points given by Bob
on each of curve EA1

, . . . ,EAk−1
. Let IsogenyFromKernel(E ,K) be a function returning the isogeny

with kernel generated by the point K ∈ E , and IsogenyCodomain(φ) be a function returning the
codomain of the isogeny φ.

The ExtSIDH computes EAkB by repeating the following steps for i from 0 to k − 1:

- Using Algorithm 2, compute the auxiliary points (φBi(PAi), φBi(QAi) of the 3e2-torsion basis
of EAi

. This step is not necessary for the first isogeny φA1
as both its auxiliary points are given.

- Compute ψAi+1
the isogeny from EAiB with kernel generated by αi+1φBi

(PAi
) +βi+1φBi

(PAi
).

- Compute EAi+1B the codomain of ψAi+1
.

We define ExtSIDH more precisely in Algorithm 3.

Algorithm 3 Extended SIDH

1: procedure ExtSIDH(sk ,EB , φB(PA), φB(QA), G)
2: (P,Q)← (φB(PA), φB(QA))
3: ψA1 ← IsogenyFromKernel(EB , α1φB(PA) + β1φB(QA))
4: EA1B ← IsogenyCodomain(ψA1)
5: for 0 ≤ i ≤ k − 2 do
6: (P,Q)← GetAuxiliary(EAi ,EAi+1 , PAi , QAi , PAi+1 , QAi+1 , φAi+1 , ψAi+1 , P,Q,Gi)
7: ψAi+2 ← IsogenyFromKernel(EB , αi+1P + βi+1Q)
8: EAi+2B ← IsogenyCodomain(ψAi+2)

9: return EAkB

6 Symmetric UPKE Construction via CSIDH

We described in the prior section the difficulties in constructing a SIDH-based UPKE scheme due to
the simultaneous requirements for asynchronicity, forward secrecy, and post-compromise security.
We now show how CSIDH, combined with knowledge of the class group structure, can overcome
these challenges and construct a scheme that satisfies all notions of a secure and useful UPKE.

CSIDH UPKE, first attempt. CSIDH admits operations that are much closer to those used in
the classical construction from Alwen et al. [1]. Recall that secret keys in CSIDH are represented by
a vector of ` integers. For efficiency reasons, the integers are usually chosen to be within a bound B,
for example, B = 5 so that all entries are between −5 and 5. Then the group element [e1, e2, . . . , e`]
represents the group element

ge11 ge22 . . . ge`` ,

for a set of canonical generators {gi}. Since the group is commutative, we have that if g is represented
by [e1, . . . , e`] and h is represented by [f1, . . . , f`] then g ·h can be represented by [e1+f1, . . . , e`+f`].
A basic design for a symmetric UPKE scheme would then be for the update value to be a random
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group element, to update the public key by applying the group action, and to update the secret
key by adding the group elements together.

Unfortunately, this simple design is not secure. If each entry for the update value is drawn
uniformly from −B to B, then the distribution of each entry of the new public key is centered at
the old public key. This leaks a certain amount of information about the old secret key. For example,
if only one update has occurred, if an entry is 2B then the adversary immediately knows that the
corresponding entry before the update must have been B.

One fix may be to increase the bound B in an attempt to show that leaking the secret key
between certain updates still doesn’t reveal enough of the secret key to allow a break. Such an
analysis must be done carefully, but reveals another fundamental problem. As more updates occur,
the size of each entry in the vector is likely to grow. The efficiency of CSIDH is directly dependent
on the `1-norm of this vector, and so allowing it to grow with updates will result in a slower and
slower decryption process, eventually becoming unacceptable.

Note that this is almost exactly the same problem that a first attempt at a lattice-based scheme
would run into. If one were to define a scheme based on the LWE problem, then updates could be
generated by sampling an LWE secret. The secret key would then be updated by adding the update
value to the old secret. But as described for CSIDH, this will cause the error term to grow over time,
eventually causing the system to fail. Furthermore, because errors are not chosen uniformly, the
distribution of a secret will always be dependent on the previous secret, meaning some information
about previous keys is leaked in the event of a compromise.

One technique to circumvent this problem that has been to employ rejection sampling, as in
the signature scheme SeaSign [14]. However, rejection sampling only works when we can reject the
group elements that would leak information on the secret key. Since the party selecting the update
value is not the owner of the public key, rejection sampling is not an option in our scenario. Instead,
we will need the group elements to be represented in a way that has better properties.

As mentioned in Section 2.1, the signature scheme CSI-FiSh uses a different representation for
group elements. Let N denote the order of the group. To compute the group action (i.e., apply the
isogeny to an elliptic curve) one converts an element of ZN (represented simply by an integer) to
an ideal in Z` and then applies the action as in CSIDH. Representing group elements as an integer
in ZN gives a unique representation. It is also still very easy to apply the group operation in this
representation — it is just addition modulo N .

Our Construction. To prevent leakage from secret key updates described above, our construction
requires a class group structure that is fully known, so that the secret key and update value can
both be represented in ZN . The calculation of this value N as well as the methodology to convert
the representation was a major contribution of the CSI-FiSh paper [4]. To update a public key, we
apply the group action, and to update the secret key we add modulo N . Because we can sample
uniformly over ZN , we have that the updated secret key leaks no information about the previous
secret key, as desired.

We now describe the scheme in full, relying heavily on group action notation. Let N be the
order of the class group cl(O) ∼= ZN . To apply the group action onto a supersingular elliptic curve
E (denoted g ? E ), we first need to convert the element to a representation in Z` with a low L1

norm, and then apply the action as in the original CSIDH paper.

– KeyGen(λ): Sample gsk
$← ZN and set Epk := gsk ? E0. Output (sk , pk) = (gsk,Epk).
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– Encrypt(pk ,m): Sample genc
$← ZN and compute K ← KDF (genc ? pk), Eenc ← genc ? E0, and

ctxt ← DEM.Encrypt(K,m). Output ct = (Eenc, ctxt).

– Decrypt(sk , ct): Parse ct as (Eenc, ctxt), setK ← KDF (sk?Eenc), output DEM.Decrypt(K, ctxt).

– GenUpdate(): Sample µ
$←− ZN .

– UpdatePrivate(sk , µ): Output sk ′ ← sk + µ (mod N).

– UpdatePublic(pk , µ): Output pk ′ ← µ ? pk .

Theorem 1. Let A be an adversary capable of winning the IND-CPA-U game with advantage ε that
makes qgen queries to the FreshUpdate oracle. We will construct an adversary capable of winning an
IND-CPA game in time approximately equal to the running time of A with advantage ε/(qgen + 1).

We demonstrate that our construction attains IND-CPA-U security, by showing a reduction
from an adversary capable of winning the IND-CPA-U game to one that can win a plain IND-CPA
game. By a plain IND-CPA game, we mean a game in which no calls to the GenUpdate, GiveUpdate,
or Corrupt oracles are made.. We present our complete proof in Appendix D.

Implementation. Because our scheme requires the structure of the class group to be known, our
CSIDH-based scheme can only be instantiated if such a computation has been performed. At the
present time, this requirement limits us to the CSIDH-512 parameter set, which claims 64 bits of
post-quantum security. Peikert [32] has questioned this security claim, and more recent analysis [9]
indicates that CSIDH-4096 is necessary for NIST level 1 security. Computing the structure of the
class group is a sub-exponential computation, and so becomes feasible with the availability of
a quantum computer to perform the computation. As such, the scheme may not be able to be
instantiated until it is most needed.

Other than computing the class group, the main challenge in an implementation is in computing
the group action. To compute the group action, the element of ZN is converted to a vector in Z`,
which represents the group element

∏`
i=1 g

ei
i for a vector ~e and set of generators {gi}i. This vector

is then applied to the elliptic curve as is done in CSIDH.
Thus the additional complication over any other CSIDH implementation is in converting the

element of ZN to a vector of integers. This process is described in the CSI-FiSh paper, and the
authors have provided code to do this (for the CSIDH-512 parameter set). The authors of CSI-FiSh
found that the process of converting to a vector only makes a key negotiation 15% slower. Using
their implementation of CSI-FiSh, we have a proof of concept script that illustrates the process of
updating the secret and public keys. Our script is available at https://github.com/tedeaton/

CSIDH-UPKE.

7 Future Research Directions

In UPKE constructions, to ensure post-compromise and forward secrecy, the update value be prop-
erly ‘mixed in’ with the secret key when performing an update.

Recall our SIDH construction presented in Section 5. The KLPT∗ algorithm performs a func-
tionality very close to what is needed; however, the outputs of KLPT∗ are too long to be computed
within SIDH. As we have seen, while ‘breaking up’ the KLPT∗ output into SIDH-sized segments
allows for computation, it does not result in an asynchronous protocol. Furthermore, since each
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update increases the length of Alice’s total isogeny, a large number of updates would make Alice’s
isogeny much longer than both Bob’s isogeny and the usual isogenies used in SIDH. The security
analysis of such a version of SIDH is challenging since prior work has shown that ‘unbalanced’ [33]
and ‘overstretched’ [13, 27] versions of SIDH where the degree of one isogeny is much larger than
the other may be less secure. We remark that these attacks require knowledge of the initial curve’s
endomorphism ring, and thus could potentially be countered by choosing the initial curve E to
be a random elliptic curve with unknown End(E ), and including this curve in the original pub-
lic key. It may also be of interest to note that while several published schemes in the literature
employ unbalanced SIDH parameters, as far as we know our scheme is the first cryptosystem pro-
posal that actually uses overstretched SIDH parameters in an essential way. Note that while simply
re-initializing the protocol can prevent arbitrarily unbalanced parameters, but such an approach
creates complexity tradeoffs for implementations, in turn opening to door to alternative security
issues.

Overcoming these issues likely means improving both KLPT∗ or widening the range of isogenies
SIDH can compute with. However, there are limitations to how much KLPT∗ variants can be
improved. A simple counting argument shows that paths of length e1 on the `-isogeny graph will
only reach a small fraction of available elliptic curves. The cryptographer’s dream is to have the
output of KLPT∗ match the input of SIDH, but this cannot happen only with improvements to
KLPT∗; new versions of SIDH working with a wider class of isogenies must be designed and shown
to be secure.

8 Conclusion

In this work, we have performed the first assessment of the post-quantum readiness for key-updatable
public-key encryption schemes by determining the extent to which two isogeny-based cryptosystems
can be used to instantiate Symmetric and Asymmetric UPKE constructions. We provided formal-
izations for both Asymmetric and Symmetric UPKE and a generalized security notion, denoted
IND-CPA-U. Because neither SIDH nor CSIDH define a group action among elements in the public
domain, neither supports Asymmetric UPKE designs that require update operations between public
update values and encryption keys. However, both SIDH and CSIDH can be used for Symmetric
UPKE constructions. The SIDH-based Symmetric UPKE construction, while possible in theory,
requires mathematical improvements for a construction in practice. Our CSIDH-based construction
can be instantiated today using CSIDH-512 as the parameter set. We highlighted several open prob-
lems that would improve our constructions, including the need for security analysis for unbalanced
or overstretched SIDH parameters, as well as stronger CSIDH parameter sets. Such improvements
will benefit any protocol that requires ongoing and asynchronous randomization of secret terms.
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sion of lattice-based UPKE operations. We thank Douglas Stebila for his review of our proof and
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A Algebraic Structures for SIDH and CSIDH

In Section 2.1, we presented background on both SIDH and CSIDH. We now provide additional
analysis of the algebraic structure for both.

SIDH. Unlike groups such as Zp or elliptic curves over some finite field, the endomorphism ring for
supersingular curves over Fp2 is neither commutative nor defines a group action at all. To perform
SIDH, participants require agreeing upon additional “auxiliary points” which ensure both parties
arrive at the same shared secret after completing the protocol. This structure defined by SIDH can
be thought of as a semigroup; although note that since any function can be considered a semigroup,
this classification is not particularly informative.

CSIDH. Couveignes [11] first defined the concept of a hard homogeneous space as a finite com-
mutative group G acting over some set X, a generalization of the structure for a group suitable to
performing Diffie-Hellman-like operations. Similarly to SIDH, CSIDH defines a finite commutative
group consisting of the ideal-class group cl(O) acting over the set of supersingular curves through
the application of isogenies. However, importantly, the graph of supersingular curves in CSIDH
is restricted to the field Fp, thereby ensuring that cl(O) can act freely and transitively over the
group. As cl(O) is commutative, CSIDH can support commutativity of operations over this set of
supersingular curves via the group action.

As discussed in Section 2.1, group elements are represented by a vector ~e ∈ Zd, representing
the ideal

∏d
i=1 `

ei
i . This representation is used because in general applying the group action is

computationally difficult. To get around this, CSIDH uses a canonical set of generators g1, . . . , gd
and works be only applying small powers of these generators to the starting curve E . Two major
limitations of this representation are that it does not allow for uniform sampling over the class
group, and the representation of group elements is not necessarily unique.

Beullens et al. [4] solved this problem, at least for the CSIDH-512 parameter set by explicitly
computing the structure of the class group. For this parameter set, they found an N such that
cl(O) ∼= ZN and described a method to swap between the representation of group elements as a
member of ZN and of Zd. This allows for both uniform sampling and unique representation.

B A Naive Online-Only UPKE Scheme.

We briefly describe a scheme that achieves the notions required for UPKE described in Section 3,
except for that of asynchronicity. We use this scheme to measure the effectiveness of our construc-
tions.

We refer to our naive scheme as Double Encrypt. In summary, the scheme uses a long-lived
keypair as well as an ephemeral keypair, to ensure forward secrecy. Double Encrypt is defined as
follows:

– KeyGen(λ) → (sk I , pk I): Accepts a security parameter λ and output a public encryption key
pk I and secret decryption key sk I .

– Encrypt(pk I , pkUm) → c: Encrypts a message m using first the public key pk I and then a
second time using an ephemeral update public key pkU , resulting in a ciphertext c.

– Decrypt(sk I , skU , c) → m: Decrypts the ciphertext c using skU to decrypt the outer layer and
sk I to decrypt the inner layer, producing as output the plaintext message m.
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– GenUpdate(λ) → (pkU , skU ): Accepts a security parameter λ and outputs a set of encryption
and decryption keys (pkU , skU ). This is performed by the keyholder themselves.

– Update(λ) → sk ′: Performed by the keyholder; takes as input a security parameter λ, and
performs KeyGen(λ)→ (sk ′I , pk ′I). The keyholder deletes (sk I , pk I) and sets (sk ′I , pk ′I) as their
new encryption and decryption keypair.

In Double Encrypt, the keyholder directly updates their encryption and decryption keys, which
requires the keyholder to be online in order to update pk I to pk ′I .

C Naive SIDH Construction

We now present a first naive SIDH UPKE construction and discuss its limitations with respect to
forward secrecy. These limitations led to our use of KLPT∗ and the “online” SIDH-based UPKE
construction that we present in Section 5.

SIDH-based UPKE, first attempt. A first step towards a Symmetric UPKE scheme using
SIDH has a similar form to plain public-key encryption via SIDH defined by Jao and De Feo [23].
However, here, the update step is performed using a SIDH key exchange operation, where the
resulting curve from the exchange becomes the updated public key as opposed to the negotiated
shared secret.

Alice performs key generation in exactly the same way as in plain SIDH, by first sampling a

scalar nA
$← Z2e1 which then defines her secret encryption key skA is the isogeny φA : E0 → EA,

such that EA = E0/〈[1]PA + [nA]QA〉. Alice then generates her public encryption key pkA is the
curve with auxiliary points (EA, φA(PB), φA(QB)). exactly the same way as in plain SIDH

Let’s say now that Bob wishes to generate an update for Alice’s keypair. To do so, he simply
performs an SIDH KeyGen in exactly the same manner as Alice. He samples a secret update value

nµ
$← Z3e2 which he uses to define a secret isogeny µ : E0 → Eµ. Bob then applies µ to derive Alice’s

new public key EAµ by performing a plain SIDH KeyGen, and then transmits µ to Alice (using an
encrypted channel). Alice applies µ to her secret term similarly by performing a plain SIDH key
exchange operation.

Differently to plain SIDH key exchange, Alice’s updated public key now becomes the resulting
curve EAµ, along with updated auxiliary points.

(EAµ, φAµ(PB), φAµ(QB))

Alice’s updated secret key skA correspondingly becomes the updated isogeny φAµ : E0 → EAµ,
such that

φAµ = 〈φµ(PA) + [nA]φµ(QA)〉.

Note that transmitting µ instead of just the auxiliary points prevents active attacks as described
previously in the literature [15].
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Problem: The naive scheme does not preserve forward secrecy or post-compromise
security. While the naive scheme does enable performing updates to SIDH public and private keys
via a secret update value, this approach does not fulfill the notions of forward secrecy or post-
compromise security as required for UPKE schemes. We now describe how the scheme fails to be
IND-CPA-U secure.

Recall that in the IND-CPA-U game described in Section 3.1, the adversary is allowed to perform
the GiveUpdate query with update values of the adversary’s own choosing, and can learn any keypair
by performing Corrupt on some index j denoting the secret key of interest. The adversary wins the
game if they have a non-negligible chance at guessing the contents of some ciphertext that has been
encrypted after some series of τ update, for which the adversary cannot derive the corresponding
skτ secret key.

In this naive construction, after applying the series of τ update values, the challenger’s secret
key skA will have the following form:

φ(A1,...,τ) = 〈φ1(. . . (φτ (PA))) + [nA]φ1(. . . (φτ (QA)))〉

Even after applying τ updates, the nA term remains static, and consequently the torsion points
across updates remain linearly dependent, meaning that the naive scheme cannot provide for-
ward secrecy or post-compromise security. An adversary can derive skA simply by compromis-
ing a prior “window” and then applying the τ updates to derive φ(A1,...,τ), by solving a system
of linear equations. Even if φ(A1,...,τ+1) were instead represented as a group element Pτ+1 that
generates the kernel of φ(A1,...,τ+1) (to avoid persisting the static nA value), the adversary could
still learn φ(A1,...,τ+1) simply by solving the discrete logarithm problem for the generator point
Qτ+1 = [nA]φ1(. . . (φτ + 1(QA))). Solving for the discrete logarithm in this setting is easy even for
a classical computer, as the order of the group is smooth and hence can be performed in polynomial
time.

Proposed Fix: Use KLPT∗ to output a fresh secret. As described in Section 2.1, KLPT∗

finds an isogeny path between two supersingular curves with known endomorphism rings. As such,
KLPT∗ can be used to efficiently find the “composition” of an update value and the original secret,
and ensures that knowledge of the output composition will not leak information about inputs.

D Proof of CSIDH-Based UPKE

In Section 6, we present a CSIDH-based UPKE construction. We present the proof of its IND-CPA-
U security here.

Proof. As we are showing a reduction to a plain IND-CPA game, we will start by being given a

public key pk∗. To begin, select a uniformly random index i
$← {0, . . . , qgen}. The idea of the proof is

to set the public key after the ith FreshUpdate query to be pk∗, and hope that the adversary requests
the IND-CPA-U challenge to be issued on a public key that occurs before the next FreshUpdate. If
we are correct, then the adversary’s ability to distinguish which message was encrypted under pk∗

(or a related key) will allow us to win the IND-CPA game.
At the start of the game, if i = 0 then we set pk0 → pk∗. Otherwise, we sample a new uniform

pk0 from KeyGen. From here we proceed as normal. If the adversary makes a corruption query,
then we provide them with the corresponding private key. When a GiveUpdate(µ) query is made,
we update the secret and public key and make note of the µ value.
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When the ith query to FreshUpdate is made, we set the resulting public key to pk∗. We carry
on, and when the next FreshUpdate query is made we sample a fresh public key from KeyGen. If
the adversary ever makes a Corrupt query on any of the keys between these FreshUpdate queries,
then we abort. We will consider the probability of having to abort occurring momentarily.

Eventually, the adversary requests the IND-CPA-U challenge on a public key with index j. We
hope that this index means a key that falls between the ith FreshUpdate and the i + 1th call to
FreshUpdate. When this happens, the adversary submits m0,m1 as part of the challenge.

We then forward m0,m1 to receive back an encryption of mb, consisting of C = g ? E0 for
a random g, as well as DEM.Encrypt(K,mb). Let µ1, µ2, ..., µk be k queries to GiveUpdate af-
ter the ith FreshUpdate query. We provide the adversary with (−µ1 − µ2 − · · · − µk) ? C and
DEM.Encrypt(K,mb).

Note that K = KDF (g ? pk∗) = KDF ((−µ1−· · ·−µk) ? g ? (µ1 + · · ·+µk) ? pk∗), which means
that the message is encrypted under the correct key. So, when the adversary submits a guess for b,
we can guess the same value, and if the adversary is correct, so are we.

When we set the public key to pk∗ after the ith call to FreshUpdate, the adversary cannot notice
that we have not genuinely updated the public key, unless they issue a Corrupt query. If such a
Corrupt query is issued, we must abort. However, note that if our guess is correct, and the IND-
CPA query is requested in this segment of public keys, then no Corrupt query will be issued, or else
the adversary’s advantage is 0.

Because updates are sampled uniformly over Zp, the resulting public key is uniformly random
over the public key space (this follows from the fact that the group action is regular). So after a
FreshUpdate has occurred, the adversary has no information on the distribution of the secret key,
and we can thus replace the public key with the challenge public key pk∗. The adversary has no
advantage in distinguishing that we have done this. As a result, we have a 1/(1 + qgen) chance of
correctly guessing where the challenge will be requested. If we are correct, the adversary does not
change their behavior at all, as they have no advantage in distinguishing that we are not managing
the game honestly. This means the chance that we abort is exactly qgen/(1 + qgen).

Our advantage in winning the IND-CPA game is thus the adversary’s advantage in winning the
IND-CPA-U game times the probability we do not abort, which is ε/(1 + qgen), as desired.

We note that the techniques in this proof can also be applied to the classical construction of
Alwen et al. [1]. While they couple together the public key update and encryption functions, the
same general strategy can be used to show that the stronger IND-CPA-U notion can be satisfied
by their construction.
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