
Noname manuscript No.
(will be inserted by the editor)

Cryptonite: A Framework for Flexible Time-Series Secure
Aggregation with Non-interactive Fault Recovery

Ryan Karl · Jonathan Takeshita · Nirajan Koirla · Taeho Jung

Received: 1 December 2021 / Accepted: DD Month YEAR

Abstract Private stream aggregation (PSA) is a tech-

nique that allows an untrusted server to compute ag-

gregate statistics over a group of multiple users’ data

while ensuring each user’s individual input remains pri-

vate. Existing work in the literature requires a trusted

third party to communicate with the server if the server

needs to support fault tolerance, in a way that requires

interactive recovery. In the real world, this may not be

practical or secure. In our work, we develop a new for-

malized framework for PSA that takes fault tolerance

into account, and is able to support non-interactive

recovery, while still preserving strong privacy guaran-

tees for individual users. A new level of security needs

to be defined for the non-interactive model due to the

malicious adversaries, as preexisting definitions do not

account for faults and their impact on security during
non-interactive fault recovery especially due to the resid-

ual function attacks. Following this, we develop the first

protocol that provably reaches our new level of security,

where individual inputs remain private even after the

aggregation server performs fault recovery operations.

The techniques we use are general, and can be used to

augment any PSA scheme to support non-interactive

fault recovery. Furthermore, we reach new levels of scal-

ability and communication efficiency over existing work,

and develop a protocol based on trusted hardware, cryp-

tographic hashing, and p-ary tress that is roughly 3x

faster than existing work in PSA, even if faults do not

occur.

Taeho Jung
Department of Computer Science
University of Notre Dame
Notre Dame, Indiana, USA
Tel.: +574-631-8322
E-mail: tjung@nd.edu

Keywords Fault Tolerance · Trusted Hardware ·
Secure Aggregation

1 Introduction

Within the context of many applications that process

large amounts of data, it is paramount that fresh re-

sults be available to consumers, despite the presence

of frequent system faults [25]. For example, web com-

panies such as Facebook and LinkedIn execute daily

data mining queries to analyze their latest web logs, and

online marketplace providers such as eBay and BetFair

run fraud detection algorithms on real-time consumer

trading activity[27]. Similarly, various types of failures

are common in systems with user interactions, and the

fault recovery must not affect performance adversely.

Critically, due to the number of users participating in

such protocols, the per-machine resource overhead of

any fault tolerance mechanism should be low. Thus, such

systems must be able to recover from failures without

significantly impacting output accuracy, computation

time expectations, or requiring interaction with unreli-

able/untrusted parties.

It is well known that existing work has proposed to

support privacy preserving computation (secure multi-

party computation (MPC), functional encryption (FE),

perturbation, etc.) over multiple users’ data. Of the

existing techniques, Private Stream Aggregation (PSA)

is very promising. PSA allows a third-party aggrega-

tor to receive encrypted values from multiple parties

and compute an aggregate function without learning

anything else, except what is learnable from the aggre-

gate value. PSA is generally superior to other types

of secure computation paradigms (e.g., MPC, FE) in

large-scale applications involving time-series data be-

2 Ryan Karl et al.

cause of its extremely low overhead and the ease of key

management [29, 16]. Notably, PSA is non-interactive

(i.e., users send their time-series data in a “stream” and

only one message is sent per time interval) and asyn-

chronous (i.e., users can leave after submitting their

inputs), making it more efficient in communication than

most existing alternative techniques [32]. However, ex-

isting solutions fail to achieve tolerance against faults

during the aggregation without placing trust in the ag-

gregators. We distinguish between non-interactive fault

tolerance, which is the ability to recover from faults
dynamically and “on the fly” without requiring extra

messages be sent from/to faulted users or some trusted

party, and interactive fault tolerance, which requires

additional messages be exchanged to support recovery.

In this paper, we present a novel framework, Cryp-

tonite, that allows any PSA scheme to gain non-interactive

fault tolerance without significant additional overhead.

There are many existing works that build ad-hoc solu-

tions for this purpose that generally focus on providing

one or a few of the following goals: privacy, efficiency,

practical benefits such as permitting a user to drop

in and out, or some type of interactive fault recovery

mechanism. In contrast, our framework generalizes data

aggregation, while still achieving traditional levels of

performance and security, but more importantly, it intro-

duces non-interactive recovery against faults to existing

secure aggregation primitives without requiring users to

trust the aggregator or requiring extra interaction.

This is a challenging problem to solve efficiently and

securely, as most existing solutions require communicat-

ing with a trusted third party key dealer, which requires

sending additional messages (generally two) during the

protocol, greatly increasing the total overhead. A bet-

ter solution would be non-interactive and would allow

the aggregator to recover from a fault locally without

sending additional messages, or requiring additional com-

putation on the user end. However, a non-interactive

protocol would need to guarantee correct function out-

put with only one communication round [12, 5, 13]. As

a result, such a protocol would be by its nature vulner-

able to the residual function attack [17] in the standard

model. In this attack, an adversary can repeatedly eval-

uate the function locally, while varying some inputs and

fixing the inputs of others, to deduce the values entered

by the participants. This vulnerability occurs because

an aggregator that does not receive all of the users’ en-

crypted inputs must be able to simulate acquiring such

inputs, in order to complete the calculation. Existing

work allows an aggregator to recover some partial data

from the function they were to compute, but does so

by sending a message to a trusted third party [9, 14] or

aggregator to provide sensitive information that could

harm an individual user’s privacy if released publicly

[7, 20]. Such existing work supports interactive fault

tolerance simply by allowing the aggregator to evalu-

ate an aggregation multiple times, which is essentially

the residual function attack. This technique is insecure,

and presents a serious privacy risk even if the data is

protected with privacy preserving (e.g., differentially

private) noise. We need a new, more rigorous notion

of privacy that accounts for fault tolerance without

sacrificing traditional security expectations.

In contrast, our scheme does not rely on any inter-

action with a third party, thus cutting down on com-

munication, while also supporting partial aggregation

among the surviving participants (thus achieving non-

interactive fault tolerance), to maximize utility for the

aggregator. Our simulations show that the fault recov-

ery mechanism introduces negligible extra overhead to

a PSA scheme when no faults occur. More importantly,

when faults occur, our framework allows the PSA to

recover from faults much more efficiently than other

fault recovery mechanisms for PSA. We achieve all of

this while providing security in the presence of stronger

adversaries, and our scheme can be easily extended

to support a wider variety of functions, such as max,

average, etc. [30, 14]. Our goals in designing this frame-

work are to 1) devise a system that is able to recover

from failures without significantly impacting processing

result accuracy or computation/communication time

expectations. 2) maximize user’s trust in the protocol

by requiring that any servers used to facilitate the ag-

gregation not be trusted by the users, and 3) enable

computations at aggregate levels while still protecting

any individual level data. Any system seeking to support

such goals should provide a formal privacy analysis to

demonstrate that the mechanism achieves the above
privacy goals.

Our original protocol leverages trusted hardware,

specifically Intel SGX, combined with elliptic curve cryp-

tography (ECC) to recover from faults, which may result

in a high overhead when the number of the participants,

and/or dropped users is high. For example, assuming

a 1% drop-out rate for 1 billion users, the sheer list of

10 million users’ IDs is at least 35MB since 30 bits are

needed at the minimum for the IDs among 1 billion

users. Passing such a large amount of messages/data in

and out of an SGX enclave would likely lead to excessive

paging due to the small 256MB limit of enclave memory

[21]. In addition, all users’ keys need to be kept inside

SGX (with paging) after the initial creation, and later

used during fault recovery, during which the expensive

paging is inevitable. Thus, to continue to support the

high efficiency benefit of PSA, this overhead needs to

be significantly reduced. To solve this problem, we can

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 3

create and maintain a recursively-defined p-ary tree to

keep the list of users and their keys in a form that can

be efficiently used for non-interactive recovery.

It is also known that utilizing ECC based techniques

on the users’ end for encryption and on the aggregator’s

end for aggregation is significantly less efficient that

other state-of-the-art techniques based on HMACs [20],

and in situations where faults are relatively unlikely, our

original protocol may be less useful than existing work.

To expand on our original idea and build a protocol that

can be practically deployed in a more realistic setting,

where faults may be unlikely but can quickly cripple a

system if they occur (especially in large numbers), we

develop a technique for supporting PSA that combines
TEEs with cryptographic hash chains. The hash chains

can be used to mask user inputs but can be generated in

a synchronized way within the TEE so we can unmask

these inputs locally even if a fault occurs. Our resulting

protocol is competitive with state-of-the-art techniques

whether or not faults occur, and is a more practical

scheme for deploying PSA in the wild.

This paper is expanded from our conference publica-

tion [18], and it has the following additional contribu-

tions:

1. We develop a novel technique based on p-ary trees

that reduces the amount of work that must be done

inside a trusted execution environment during the

non-interactive fault recovery if more than one fault

occur.

2. We develop a novel method for performing prov-

ably secure aggregation that leverages keyed cryp-

tographic hashing combined with a TEE that is

competitive with existing work, even if no faults
occur.

3. We demonstrate new levels of scalability and commu-

nication efficiency over existing work that supports

interactive fault tolerance. Our code is available at:

https://github.com/RyanKarl/CryptoniteDemo.

2 Related Work

Recently there has been interest in constructing PSA

systems that allow for dynamic user groups or interac-

tive fault tolerance, that are similar to fault-tolerable

deterministic threshold signatures[26]. Fault tolerance

in this context is the property that in the event that a

user or group of users do not send data to the aggrega-

tor, either due to a natural failure or a malicious act,

the aggregator can still recover a partial sum over the

remaining users’ messages that were successfully sent.

There are primarily two existing paradigms for this.

(1) Recovery via trusted parties: In the first [20, 14,

2, 1], the aggregator communicates with an independent

third party to notify them of the fault, and the third

party provides the inputs to the aggregator to allow

for the successful completion of the protocol for each

aggregation. Since the third party knows the secrets

assigned to every node, if some nodes fail to submit

data, the aggregator asks the dealer to submit synthetic

data on behalf of those failed nodes. This method incurs

a round trip communication overhead between the key

dealer and the aggregator for each aggregation (i.e.,
interactive). Some researchers [20] used a circle based

construction to improve efficiency, but had to interact

with a third party to recover from faults, which can

lead to high communication delay. Other work [2, 1]

explored using elliptic curves to improve the overhead of

communication and computation, while still supporting

interactive fault tolerance, but this requires that some

trusted, independent third parties be communicated

with each round for fault recovery. Similar work explored

outsourcing expensive computations to the cloud [14]

to support a wider variety of functions instead of just

sum, such as min, average, etc., but they also require

interactions with trusted third parties.

(2) Recovery via input buffering: In the second

paradigm [3, 8, 9], users buffer their inputs that they

send to the aggregator. Essentially, in this method users

send a set of ciphertexts corresponding to several times-

tamps/inputs to the aggregator. Thus, if a user fails to

communicate in the future, the aggregator can utilize

these ciphertexts to complete the aggregation and cancel

out the noise needed to recover the partial sum. This

increases the overall message size by a factor of how

many rounds the user buffers their input (to buffer for

2 rounds, the size of the message is twice as large, etc.).

One of the first works explicitly interested in support-

ing interactive fault tolerance [7] used a novel approach

based on a binary interval tree technique to reduce

the communication cost for joins and leaves, via input

buffering. However, their scheme has a high aggregation

error, which leads to the poor utility of the aggregate.

Another technique [36] for buffering future ciphertexts

was developed to reduce communication overhead, and

was later made more efficient and scalable [3, 8]. A

security-enhanced data aggregation scheme [9] with in-

teractive fault tolerance based on Paillier’s encryption

scheme has been proposed. Unfortunately, internal at-

tacks are not considered in the above data aggregation

schemes thereby allowing internal attackers to access

the consumers’ data. This was later improved [24] by

leveraging lifted El-Gamal encryption to improve per-

formance, and authentication methods were added for

message integrity, although the vulnerability to internal

4 Ryan Karl et al.

attackers was left as an open problem. Later work [10]

investigated using techniques to make key generation

non-interactive. There has been some work that tries

to solve this problem by allowing users to communicate

with each other if a fault is detected to restart the pro-

tocol [37, 34], but we are interested in developing better

approaches that do not require interaction among users,

as this can lead to significant overhead and scalability

issues.

Advantage of our work: The aforementioned schemes

are either inefficient, fail to achieve non-interactive fault
tolerance (i.e. extra messages must be sent to trusted par-

ties), and/or are insecure against the residual function

attack. In contrast, our scheme supports non-interactive

fault tolerance, thus cutting down on communication,

while also supporting partial aggregation among the sur-

viving participants without introducing residual function

attack vulnerabilities.

Orthogonal work: Defending against users that lie

about their values to pollute the final output is outside

the scope of the paper, but one possible defense is for

each user to use a non-interactive zero-knowledge proof

to prove the encrypted input is either in a valid range

or an already-committed value.

Common misconceptions: Note that it is not possible

to simply leverage historical data, or utilize machine

learning techniques to estimate possible inputs of faulted

users and use the inferred inputs to recover the final

aggregation. This is because, to have provable security

guarantees, the ciphertexts shared with the aggregator

in the PSA are computationally indistinguishable from

random numbers. Therefore, no inference approaches

can gain meaningful information from the ciphertexts
to predict and recover the missing inputs (e.g., due to

faults).

3 Preliminaries: Private Stream Aggregation

The field of PSA seeks to solve the following problem.

Suppose an aggregator wishes to calculate the sum of

n users periodically. Let x
(t)
i (where x

(t)
i ∈ {0, 1, . . . ,∆})

denote the data of user i in aggregation period t (where

t = 1, 2, 3, . . .). Then, the sum for time period t is∑n
i=1 x

(t)
i . In some scenarios, in each time period t, each

user i adds noise r
(t)
i to their data x

(t)
i , encrypts the

noisy data x̂
(t)
i = x

(t)
i +r

(t)
i with their key k

(t)
i and sends

the ciphertext to the aggregator. The aggregator can

then use their own key, k
(t)
0 to decrypt the noisy sum∑n

i=1

(
x
(t)
i + r

(t)
i

)
. In this scenario, k

(t)
i and k

(t)
0 change

in every time period. Note that we focus on the aggre-

gation scheme over the same time period and omit the t

to save space when the context is clear. We also do not

add noise r
(t)
i for simplicity of presentation. We assume

that every user communicates with the aggregator via a

wireless connection, but note that in our setup there is

no need for users to communicate with each other. We

assume that time is synchronized among nodes. Gener-

ally speaking, for a private aggregation protocol to be

secure, it must achieve three properties: 1) the aggrega-

tor cannot achieve any meaningful intermediate results

(i.e. they learn the final noisy sum but nothing else), 2)

the scheme is aggregator oblivious (a party without the

aggregator learns nothing), and 3) the scheme achieves

differential privacy. Note that requirement 3 is needed

in some contexts where it is assumed the accurate sum
may leak user privacy in presence of side information.

Thus, the aggregator is only allowed to obtain a noisy

sum (the accurate sum plus noise).

4 New Notion of Security

To achieve a meaningful level of security, current aggrega-

tion schemes strive to guarantee aggregator obliviousness

which is informally defined as follows:

Definition 1 (Aggregator Obliviousness)

Assuming that each honest participant pi only en-

crypts once in each time period, a secure aggregation

scheme achieves aggregator obliviousness if: 1) the ag-

gregator can only learn the final aggregate for each
time period, 2) without knowing the aggregator key,

no one can learn anything about the encrypted data,

even if several users collude, and 3) if the aggregator

colludes with a subset of the users, or if a subset of the

encrypted data has been leaked, the aggregator learns

no additional information about the honest participants’

individual data, beyond what can be inferred by the

final aggregation.

While this definition is useful in schemes that do

not consider fault tolerance, it becomes less useful once

faults occur and need to be recovered without inter-

actions. To recover from a fault without interactions,

an aggregator must be able to generate synthetic input

from any user to complete the calculation. This is be-

cause PSA schemes must encode data in such a way that

no partial information can be gained unless every partic-

ipant’s key is used in the final aggregation (for the sake

of aggregator obliviousness). However, this actually vio-

lates the aggregator obliviousness, since to recover from

faults without interactions, an aggregator must be able

to calculate any partial sums, which would allow the ag-

gregator to deduce everyone’s input by subtracting the

partial sums (i.e., residual function attack). Introducing

differential privacy is not sufficient as the noise must be

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 5

significantly larger than that in the PSA schemes with

computational differential privacy (O(n) where n is the

number of users rather than O(1) in existing schemes

[4, 29]) to prevent such residual function attack. Many

applications cannot afford to operate over results with

excessive noise, as the significant loss in data accuracy

prevents the subsequent data analysis from having any

utility to analysts [11]. Therefore, we are primarily in-

terested in investigating how to design a system where

the residual function attack is not possible even with-

out differentially private noise being introduced to the
input.

Note that introducing computational differential pri-

vacy [4, 29] on top of such a system is trivial. Users

can locally add calibrated noise to their inputs before
encryption for the sake of computational differential

privacy. This is independent from the rest of the PSA

and our framework, therefore we omit the description

due to the space limit.

Issues with Existing Techniques: Existing works

try to avoid this issue by introducing a trusted, indepen-

dent third party that can assist the untrusted aggregator

with completing the protocol. This is facilitated by al-

lowing the aggregator to request the third party provide

the keys or ciphertexts the user was supposed to send

to the aggergator so that they can complete the calcula-

tion and determine the partial sum. While there may
be scenarios where this adversary model is acceptable,

in the real world, it may be difficult or even impossible

to find such a trusted third party (arguably, if such a

third party exists it may be easier for users to send

their plaintexts directly to them to speed up process-

ing). More specifically, we are interested in supporting
privacy in a scenario where there are no independent

third parties involved in fault recovery. In this setting,

the two existing methods of achieving fault tolerance

are ineffective, as they are vulnerable to the residual

function attack. An aggregator can compute the same

function over different inputs, compute the difference

between the final outputs, to infer individual values

inputted by different users.

Consider the first family of fault tolerant protocols,

which allow the aggregator to ask an independent third

party to provide the information needed to recover the

output. If such an third party is not trusted, the aggre-

gator can request all of the private information from

this third party and recover every party’s individual

input via the residual function attack. We also note that

even if this third party is trusted, in existing work, it is

unclear how to prevent the untrusted aggregator from

lying about users faulting, even if they complete their

part of the protocol, to recover the synthetic inputs they

need to launch the residual function attack. The second

family of fault tolerant protocols, where users buffer

future inputs to the aggregator is similarly vulnerable.

If there is no trusted third party, the aggregator can

simply request the buffered inputs, even if a user does

not fault, to execute the residual function attack. Sim-

ilarly, even if the third party that stores the buffer is

trusted, the security guarantee is somewhat unclear, as

the aggregator can lie about the fault status of users to

recover the synthetic input needed to execute the resid-

ual function attack. Clearly, we need a new definition

of aggregator obliviousness within the context of fault
tolerant systems, that accounts for such scenarios. By

extending the existing definitions [29, 15], we define the

fault-tolerable aggregator obliviousness as follows:

Definition 2 (Fault-Tolerable Aggregator Oblivi-

ousness)

Define a set of users i ∈ N , where 0 ≤ i ≤ |N |, where
the subset of users that fault is denoted U and the set

of users that do not fault is denoted J , were N = U ∪ J .
A set of users N participating in a secure aggrega-

tion scheme β, with public parameters params, during

timestep t, whose inputs and secret keys are denoted xi

and ski respectively, achieve aggregator obliviousness

with fault tolerance if no probabilistic polynomial-time

adversary has more than negligible advantage in winning

the below security game:

Setup : Challenger runs a Setup algorithm, and

returns the public parameters params to the adversary.

Queries: The adversary makes the following three

types of queries:

1. Encrypt: The adversary may specify (i, t, x) and

ask for the ciphertext. Challenger returns the ciphertext

affiliated with Enc(ski, t, xi) to the adversary.

2. Compromise: The adversary specifies an inte-

ger i ∈ {0, . . . , |N |} If i = 0, the challenger returns the

aggregator key sk0 to the adversary. If i ̸= 0, the chal-

lenger returns ski the secret key for the ith participant,

to the adversary.

3. Challenge: This query can be made only once

throughout the game. The adversary specifies a set of

participants Q and a time t∗ Any q ∈ Q must not have

been compromised at the end of the game. The adver-

sary also specifies a subset of Q denoted Y of users they

claim faulted (i.e. a user in Y may not have actually

faulted). For each user q ∈ Q the adversary chooses

four plaintexts (xq), (x
′
q), (xy), (x

′
y). The challenger flips

a random bit b. If b = 0, the challenger computes

∀q ∈ Q\Y : Enc (skq, t
∗, xq), ∀y ∈ Y : Enc (sky, t

∗, xy)

and returns the ciphertexts to the adversary. If b = 1,

the challenger computes and returns the ciphertexts

∀q ∈ Q\Y : Enc
(
skq, t

∗, x′q
)
, ∀y ∈ Y : Enc

(
sky, t

∗, x′y
)

instead.

6 Ryan Karl et al.

Guess: The adversary outputs a guess of whether b

is 0 or 1. We say that the adversary wins the game if

they correctly guess b and the following condition holds.

Let K ⊆ N denote the set of compromised participants

at the end of the game. Let M ⊆ N denote the set of

participants for whom an Encrypt query has been made

on time t∗ by the end of the game. Let Q ⊆ N denote

the set of (uncompromised) participants specified in

the Challenge phase. If Q = K ∪M := N\(K ∪M),

J ∪ Y ̸= ∅, and the adversary has compromised the

aggregator key, the following condition must be met:∑
q∈Q xq +

∑
y∈Y xy =

∑
q∈Q x′q +

∑
y∈Y x′y.

Essentially we say that a secure aggregation scheme

achieves fault-tolerable aggregator obliviousness if: 1)

the aggregator can only learn one sum for each time

period, even if a subset of users fault, 2) without knowing

the aggregator key, no one can learn anything about

the encrypted data, even if several users collude, and

3) if the aggregator colludes with a subset of the users,

or if a subset of the encrypted data has been leaked,

the aggregator learns no additional information about

the honest participants’ individual data. This better

captures the requirements needed to protect against

the residual function attack, since at least two separate

function evaluations must be completed by an adversary

for the attack to be successful. In the previous definition,

multiple sums could still be calculated by an attacker,

while still fulfilling the requirements of the definition.

Also, to be fault tolerant, multiple ciphertexts associated

with one user need to be available to the aggregator,

so making an assumption that only one ciphertext is

associated with each user may limit the utility of the

previous definition, as if a user faults, another ciphertext
associated with the user, but generated independently

from the user may be needed for recovery.

5 Cryptonite: A Novel Framework for Any PSA

Scheme

5.1 The Framework Definition

To achieve the above notion of privacy, we design a new

secure aggregation framework β in 1, that addresses fault

tolerance. At a high level, our framework follows the

same general procedure used by existing PSA schemes

based on additive key homomorphism to distribute pri-

vate keys to each participant during Setup. Following

this, each user leverages their private key to encrypt their

private data during Enc. After the aggregator receives

all the users’ ciphertexts, the aggregator can optionally

invoke a fault recovery mechanism, FaultRecover, for

a subset of users they claim faulted. This mechanism will

verify that the aggregator’s claim is accurate, and they

did not claim a user faulted when they in fact received

their ciphertext. If it is found the aggregator made a

false claim the protocol aborts. After this, the aggrega-

tor can recover the final aggregation result of the data it

successfully received from the users with AggrDec. We

formalize the fault recovery mechanism so that we can

better enforce that protocols will not be vulnerable to

the residual function attack. This framework supports

the same general functionality as the previous frame-

work, but allows the aggregator to recover the needed

information regarding users who fault to complete the
protocol in a privacy preserving manner as described in

2.

5.2 Framework Instantiation

To formally investigate the correctness and the security

of our framework, we instantiate a precise protocol, θ,

using Cryptonite. We first present our basic approach,

and we later overcome performance limitations in our

optimized version, which is presented in the following

section. The greatest challenge we face when designing

this protocol is how to guarantee that the aggregator

cannot act maliciously and acquire the synthetic data it

needs to execute a residual function attack. Since any ac-

tions taken by an aggregator must be tightly controlled

to support non-interactive fault recovery, and previous

work has shown achieving specific security guarantees

in certain non-interactive protocols is impossible in the

standard model without additional hardware assump-

tions [17], a natural choice to support this functionality
is to leverage trusted hardware, such as a Trusted Exe-

cution Environment (TEE), combined with PSA based

on additive key homomorphism. We summarize the req-

uisite background below.

Trusted Hardware: One of the most prevalent forms

of trusted hardware in modern computing is Intel SGX,

a set of new CPU instructions that can be used by

applications to set aside private regions of code and

data. It allows developers to protect sensitive data from

unauthorized access or modification by malicious soft-

ware running at higher privilege levels. To support this,

the CPU protects an isolated region of memory called

Processor Reserved Memory (PRM) against other non-

enclave memory accesses. Sensitive code and data is

encrypted and stored as 4KB pages in the Enclave Page

Cache (EPC), a region inside the PRM. Although EPC

pages are allocated and mapped to frames by the OS

kernel, page-level encryption guarantees confidentiality

and integrity. To provide access protection to the EPC

pages, the CPU maintains an Enclave Page Cache Map

(EPCM) that stores security attributes and metadata

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 7

Framework β
Setup(1λ) : Takes in a security parameter λ, and outputs public parameters param, a private key ski for each participant,
as well as a aggregator key sk0 needed for decryption of aggregate statistics in each time period. Each participant i obtains
the private key ski, and the data aggregator obtains the key sk0 at the end of this algorithm.
Enc(param, ski, t, xi) : During time step t, each participant calls the Enc algorithm to encode its data xi via ski. The
result is an encryption of xi using the additive key homomorphism from the chosen PSA, denoted ENC(xi) or ci.
FaultRecover(J, U, t): The fault recovery algorithm takes in the set of all the IDs of all the users that the aggregator
reports as having faulted, denoted J , during time period t, along with the IDs of all of the users that successfully sent
their encrypted data U . The algorithm then verifies that the two sets of users are disjoint. If the sets are not disjoint the
algorithm outputs nothing and the protocol aborts. If the two sets are disjoint, the algorithm outputs for all j ∈ J the
ciphertexts corresponding to an encryption of 0 as cj . This algorithm can only be called once for each time period.
AggrDec (param, sk0, t, cu∀u ∈ U, cj∀j ∈ J) Takes in the public parameters param, a key sk0, the ciphertexts for all
users in the set of users that did not fault u ∈ U as cu, and the ciphertexts for all users in the set of users that did fault
j ∈ J as cj , for the same time period t. For each i ∈ N where N is the union of U and J let ci = Enc (ski, t, xi). Let
x := (x1, . . . , xn). The decryption algorithm outputs f(x).

Fig. 1 Our Framework

associated with EPC pages. Note our framework can
work with any TEE. To utilize Intel SGX, applications

must be written in a two part model, where applica-

tions must be seperated into secure parts and non-secure
parts. The application can then launch an enclave, that

is placed in protected memory, to allow user-level code

to define private segments of memory. The contents of

these segments are protected and unable to be read or

saved by any process outside the enclave. Enclave entry

points are defined during compilation, such that the
secure execution environment is part of the host process,

and the application contains its own code, data, and the

enclave, but the enclave contains its own code and data

too [23].

Elliptic Curves: Note that our framework instantia-

tion can work with any PSA that is based on additive

key homomorphism [31], but we chose elliptic curve cryp-
tography (ECC) for our concrete instantiation. ECC

provides the same level of security as RSA, Paillier,

or discrete logarithm systems over Zp with consider-

ably shorter operands (approximately 160–256 bit vs.

1024–3072 bit), which results in shorter ciphertexts and

signatures. As a result, in many cases, ECC has per-

formance advantages over other public-key algorithms

[6].

Protocol θ: Note that [31] uses a key-homomorphic

weak PRF to construct PSA, and uses the seminal PSA

of Shi et al. [29] as an example. Thus we choose to in-

stantiate our framework with theirs, so that our frame-

work can be adapted to turn any PSA that is based

on additive key homomorphism into a fault-tolerable

version. When the context is clear, we sometimes use

standard addition and multiplication operators, as done

in previous PSA papers [29, 7], when operating over

ciphertexts, for simplicity of presentation. Let G denote

a cyclic group of prime order p for which Decisional

Fig. 2 System Diagram

Diffie-Hellman is hard. Let H : Z → G denote a hash

function modeled as a random oracle. We assume the
aggregator is equipped with an Intel SGX, and model

our system design in Figure 2.

Setup(1λ) : Each user first performs attestation

with the aggregator’s Intel SGX, to verify it will faith-
fully execute the protocol (this is a one time process).

The Intel SGX performs key generation, and chooses

a random generator g ∈ G, and n + 1 random secrets

s0, s1, . . . , sn ∈ Zp such that s0+ s1+ s2+ . . .+ sn = 0.

The public parameters param := g. The aggregator ob-

tains the key sk0 := s0 and participant i obtains the

secret key ski := si. For practical purposes, we can use

secret shares that sum to zero as secret keys.

Enc(param, ski, t, xi) : For participant i to encrypt

a value x ∈ Zp for time step t, they compute the follow-

ing ciphertext ci ←− gxi ·H(t)ski , where H(t) denotes

the hash of t that maps t to an elliptic curve. Note, after

this the user sends its ciphertext and unique id to the

aggregator’s SGX.

FaultRecover(cj , cu, t): Here, after the time period

has ended, within the Intel SGX, we check each cipher-

text that was received against a data structure of all

users who participated in the setup process, and record

which users failed to respond within the time window.

8 Ryan Karl et al.

Note this process cannot be tampered with from outside

the enclave. Then, since the Intel SGX has each user’s

secret key, it can compute ci ←− g0 · H(t)skj for all

users j ∈ J . Notice that a nice property of this setup is

that if a user is late and sends a ciphertext associated

with time period t after that time period has passed, the

Intel SGX can simply discard it and there is no danger

of it being leaked to the aggregator.

AggrDec(param, sk0, t, cj , cu): Compute within the

enclave (note N = U ∪ J) V ← H(t)sk0
∏n

i=1 ci. To de-

crypt the sum, we can leverage Pollard’s lambda method,

as done in previous works [29], to compute the discrete

log of V base g. This method requires decryption time

roughly square root in the plaintext space, although in

general solving the discrete log is highly parallelizable

and can be done efficiently in practice as long as the

plaintext is small [7].

Note that this construction is secure under 2, and

we can prove this via a security game, using proof tech-
niques from existing work [29]. We include the full proof

in 8, and sketch it here for completeness. Essentially,

assuming that the Decisional Diffie-Hellman problem is

hard in the group G and that the hash function H is a

random oracle, we can prove that the above construc-

tion satisfies aggregator oblivious security with fault

tolerance, by showing via reduction to a series of hybrid

games that the game described above is hard to win for

our scheme. More specifically,to prove the theorem, we

will modify the aggregator oblivious security game as

such. In the Encrypt queries, if the adversary submits

a request for some tuple (q, x, t∗) where t∗ is the time

step specified in the Challenge phase, the challenger

treats this as a Compromise query, and simply returns

the skq to the adversary. Given skq, the adversary can

compute the requested ciphertext. The adversary has

access to a the functionality, FaultRecover, that can

only be called once (since this is enforced via trusted

hardware), which takes in a set of users that have not

been compromised (j ∈ J), and returns the set of cipher-

texts that correspond to those users encrypting 0. This

modification actually gives more power to the adversary.

Note that this protocol is not vulnerable to the residual

function attack, as the adversary cannot access multiple

ciphertexts associated with a user for a given timestamp.

Here, the individual ciphertexts are sent into the en-

clave, which can independently handle the computations

needed for fault recovery in an isolated environment that

cannot be spoofed or tampered with by an attacker (un-

like in the previously discussed techniques that provide

fault tolerance that requires additional communication

rounds). Thus, the fault recovery process can be per-

formed in a secure, non-interactive way, that removes

the opportunity for an attacker to spoof the fault recov-

ery to obtain an encryption of 0 for a user, even when

the user participates and does not fault, such that the

attacker can perform the residual function attack by

utilizing both ciphertexts to deduce the user’s plaintext

input. Achieving differential privacy is not the primary

focus of this paper, but we can easily adapt the methods

of existing works if needed [29, 7].

A More Efficient Protocol The above protocol achieves

security according to 2, but it incurs additional compu-

tational overhead since the aggregation is done inside

the TEE. It would be better if we could outsource the

aggregation computation to the untrusted aggregator

to improve performance and avoid the MEE’s overhead.

We can accomplish this by following the same Setup

procedure as before, but instead having users send two

messages simultaneously. They can send their ciphertext

(i.e. the result of Enc) to the untrusted aggregator, and

also send one separate message to the Intel SGX to in-

dicate they are participating in the protocol. Intuitively,
the aggregator can simultaneously begin the partial sum-

mation of the ciphertexts of the users that did not fault

outside the TEE (by calling AggrDec), while inside the

SGX, FaultRecover is run to determine which users

faulted and computes their synthetic ciphertexts which

are sent out of the TEE to the aggregator. In this way,
the somewhat expensive aggregation step can be done

on more powerful, albeit untrusted hardware (e.g., GPU,

FPGA), that has better access to parallel computing

resources, without compromising security. We note that

this scheme is not secure if the adversary can disrupt

communication between the users and the Intel SGX,

but we can solve this by simply having all users send

their ciphertexts signed with a digital signature directly

to the SGX first, instead of just the separate message.

Then the SGX can output the users’ ciphertexts who did

not fault to the untrusted space controlled by the aggre-

gator, along with the synthetic data used to overcome

existing, verified faults, which can be more efficiently

aggregated outside the enclave.

Outsourcing to Parallel-friendly Processors It may

seem more efficient to simply send plaintext data to an

SGX enclave to be aggregated, but it is known that

Intel SGX has difficulties exploiting multi-threading due

to the lack of common synchronization primitive sup-

port often found on traditional operating systems [23]

(threading can also introduce security vulnerabilities

[35]). Also, TEEs have been shown to run common func-

tionalities over an order of magnitude slower than what

can be achieved on comparable untrusted hardware, due

to the overhead of computing within the enclave [23],

and performing a large number of context switches to

send each user’s data into the TEE can add serious

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 9

overhead, especially in a big data setting. Overall per-

formance can be improved if we minimize the number of

context switches and outsource the aggregation step (i.e.,

AggrDec over inputs without faults) to processors with

high parallel computing ability (e.g., many-core CPUs,

GPUs, or FPGAs), because the additions of AggrDec

are perfectly parallelizable.

PSA Schemes Requiring Trusted Parties In PSA

schemes, the Setup is run only once and in a trusted

manner [4, 29, 15]. This is typically accomplished through

the use of an additional trusted third party key dealer

or secure multiparty computation. However, with our

framework, this can be replaced with the TEE, since the

integrity of private key generation that is secure from

eavesdropping will be guaranteed via remote attestation.

Thus, our framework can remove the reliance on an

external trusted third party in our PSA building block.

Efficient Online Fault Recovery via p-ary Trees

Our original protocol leverages SGX to recover from

faults, which may result in a high overhead when the

number of the dropped users is high. Recall with a 1%

drop-out rate for 1 billion users, the list of 10 million

users’ IDs is at least 35MB since 30 bits are needed at

the minimum for the IDs among 1 billion users. Passing

such information into SGX enclaves may cause expen-

sive paging due to the small limit of enclave memory,

and during recovery from faults the expensive paging

is inevitable. This overhead needs to be reduced signif-

icantly such that the high efficiency benefit of secure

aggregation schemes is not diluted.

To solve this problem, we can create and maintain a

recursively-defined p-ary tree (Figure 3) to keep the list

of users and their keys in a form that can be efficiently

used for non-interactive recovery. Each user’s ID and

the secret key will be stored in a leaf node. Leaf nodes

will be clustered into non-overlapping groups of up to

p leaf nodes, and one parent node is created for each

group such that all leaf nodes become its child nodes.

The parent node gets assigned a unique ID and contains

the sum of all the secret keys of its child nodes. Then,

the p-ary tree is defined recursively as follows. All trees

of depth d will be clustered into non-overlapping groups

of up to p subtrees, and a new root is created for each

group such that the roots of the subtrees become child

nodes of the new root. The new root gets assigned a

unique ID and contains the sum of all the secret keys of

its child nodes. This repeats until all leaf nodes/trees

are merged into one single p-ary tree. The complexities

of insertion and deletion in this tree are both O(logpn).

We will also maintain a partial copy of the p-ary tree

which contains the IDs of the nodes only, and let the ag-

gregator keep the copy in an unencrypted form. When

Fig. 3 A p-ary Tree

a set of users drop out in the middle of aggregation,

the aggregator will determine the minimum set of inter-

nal/leaf nodes that contain the users who did not drop,

and pass the IDs of these nodes to the SGX enclaves

such that the sum of secret keys of the remaining users

can be calculated efficiently inside SGX, after which the

partially aggregated PSA ciphertexts can be decrypted

inside SGX enclaves.

New Secure Aggregation Technique Based on

Cryptographic Hashing

To improve the speed of the protocol, we developed

a technique that combines a stream cipher, based on

keyed cryptographic hashing (HMAC) slightly similar

to that of Lamport [19], with a TEE. This makes en-

cryption, aggregation, and decryption faster since we do

not need to use relatively more expensive elliptic curve

operations as in our earlier work. Without a TEE this

approach would not be practical, because for the users’

private keys/masking values we would need to rely on a

trusted third party key dealer to communicate the de-

masking values to the untrusted aggregator every time

they want to recover the final aggregation. The trusted

third party would need to know all of the individual

private keys/masking values, so if they were to collude

with the aggregator, security would be broken (and if

they are already trusted enough to know all the secret

keys/masking values, it might make more sense to just

have them do the aggregation over the users’ plaintexts

without resorting to encryption). For fault tolerance, we

need to have some way of safely updating these individ-

ual keys/masking values in a synchronized way between

the aggregator and the users. We can get around these

problems by creatively utilizing SGX. We provide a high

level summary our approach below, before providing a

more rigorous description.

10 Ryan Karl et al.

First, the SGX generates secret seeds si and sends

them over a secure channel to the users. The users gener-

ate their secret key ski by computing the cryptographic

hash of si as ski = H(s), and take a keyed cryptographic

hash of time step t using the secret key to generate a

random masking value bi = K(ski, t), where H denotes

taking a cryptographic hash, and K denotes taking a

keyed cryptographic hash (HMAC). The users encrypt

their input xi using the bi to get ciphertext ci = bi + xi.

They then each send ci to the aggregator, who sums

them to get C =
∑

ci. Because the si are still in the
SGX, during the time step inside the SGX for all the

users/keys we can calculate B = −
∑

bi. Then we can

compute C +B =
∑

xi = X to recover the final aggre-

gation result X. We can still provide fault recovery by

adding back in the appropriate bi to cancel the masking

out to 0. We need to update the masking values at both

the user end and in the SGX in a synchronized way, and

to do this we can take the cryptographic hash of the

previous ski on both ends. We can continue doing this

each round for each new time step.

More formally, the protocol consists of the following

algorithms, and it is assumed the choice of secure hash

function (SHA, etc.) is shared beforehand as a public

parameter:

Setup(1λ) : Each user first performs attestation

with the aggregator’s Intel SGX, to verify it will faith-

fully execute the protocol (this is a one time process).

The Intel SGX performs key generation, and chooses n

random secret seeds s1, . . . , sn, that are used to gener-

ate secret keys by computing ski = HASH(si), where

HASH(si) denotes the cryptographic hash of si. The

aggregator computes the demasking value b0 :=

−
∑n

i=1 HMAC(ski, t) and participant i computes the

secret key ski = HASH(si) and then computes their
masking value as bi := HMAC(ski, t). after receiving

si over a secure channel.

Enc(ski, xi, t) : For participant i to encrypt a value

xi ∈ Zp they encrypt the plaintext by computing ci =

bi + xi. Note, after this the user sends their ciphertext

to the aggregator’s SGX, and they can update their

key by computing ski := HASH(ski), and then up-

date their masking value as bi := HMAC(ski, t
′) where

HASH(ski) denotes the cryptographic hash of ski and

t′ is the next time step (note key updates can be pre-

computed and stored).

FaultRecover(cj , cu, t): Here, after the time period

has ended, we check each ciphertext that was received

and record which users failed to respond within the time

window. Then, since the Intel SGX has each user’s secret

key, within the Intel SGX, we update the aggregators’

demasking value by computing b0 := b0+ bj for all users

j ∈ J where J is the set of users that faulted.

AggrDec(sk0, t, cj , cu): Outside the enclave the ag-

gregator computes C =
∑

u∈U cu, where U is the set of

users that responded. After this, the C is sent into the en-

clave. Compute within the enclave b0 +C to recover the

final sum
∑

u∈U xu. We can then update the secret keys

and demasking value inside the enclave by computing

ski := HASH(ski) and b0 := −
∑n

i=1 HMAC(ski, t
′)

(note key updates can be precomputed and stored). Fi-

nally the aggregated sum is returned to the aggregator

and sent out of the enclave.

We provide a sketch of a proof of security below
for completeness, and an extended discussion can be

found in the appendix. Essentially, by the security and

collision resistance of the cryptographic hash function

and the security of generating a truly random seed

inside the Enclave, the random streams generated by

each user are indistinguishable from random. Because

these streams of numbers are used to perform the stream

cipher encryption, the adversary cannot deduce which

ciphertext corresponds to which input for each user

for each round, as this would require them to be able

to distinguish from random numbers and the streams

of numbers. As a result, the semantic security of the

ciphertexts generated in our scheme follows directly from

the security and collision resistance of the cryptographic

hash. We note that even if the untrusted aggregator

colludes with some malicious users, although they can

learn the individual inputs of the malicious users, since

they only receive the aggregated sum as a final result,

they cannot learn which honest user inputted which

individual value, provided there is more than one honest

user. Thus, the protocol is secure.

6 Experiments

To better understand the practical performance of our

protocol we ran experiments using C++11 that simu-

lated having thousands of users run our protocol, as is

standard in the literature [7, 20]. For these tests, we used

a workstation running Ubuntu 16.04 LTS equipped with

a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with Intel

SGX support. We did not leverage GPUs/FPGAs be-

cause we did not have access to computers equipped with

both Intel SGX and GPUS/FPGAs. During tests we sim-

ulated the cryptosystem over Koblitz curve secp160k1,

that offers 160 bits of security. We used time series data

from the 3W dataset from the UCI machine learning

data repository [33], and report the average time for 50

trials for each experiment.

Although there are space constraints associated with

an Enclave, and a program that exceeds the allocated

space incurs paging overhead, we found that in prac-

tice we could efficiently process aggregation over large

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 11

0.00001

0.0001

0.001

0.01

0.1

1

Page In Recover Aggregate Total Time

Se
co

nd
s

Number of Users

Basic Protocol

1 10 100 1000 10000

0.00001

0.0001

0.001

0.01

0.1

1

Page In Recover Aggregate Total Time

Se
co

nd
s

Number of Users

Improved Protocol

1 10 100 1000 10000

(a) Overall Time of Basic Scheme (b) Overall Time of Improved Scheme

0.000001

0.00001

0.0001
0.001

0.01

0.1
1

10

Page In Recover Aggregate Total Time

Tree-based Protocol

1 10 100 1000 10000

0.001

0.1

10

1 10 100 1000 10000 100000
Se

co
nd

s

Number of Faults

Basic Protocol Recovery Time

100000 1000000 10000000 100000000

(c) Overall Time of Tree-based Scheme (b) Recovery Time of Basic Scheme

0.001

0.1

10

1 10 100 1000 10000 100000

Se
co

nd
s

Number of Faults

Improved Protocol Recovery Time

100000 1000000 10000000 100000000

0.00001

0.001

0.1

1 10 100 1000 10000 100000

Se
co

nd
s

Number of Faults

Tree-based Protocol Recovery Time

100 1000 10000 100000

(c) Recovery Time of Basic Scheme (d) Recovery Time of Tree-based Scheme

Fig. 4 Experimental Results

numbers of users without major issues. Note the data

footprint per user is roughly 100 bytes, and since in prac-

tice we can fit roughly 93 mb of data into an Enclave

before triggering paging, we conservatively estimate

that we can support about 900,000 users per Enclave,
assuming we can fit the remaining program logic and

metadata into roughly 3 mb. Since Intel plans to support

Enclaves up to 1 terabyte in size in upcoming releases,

we anticipate this being less of an issue in the future

[22].

Basic Scheme: The results for our basic scheme, as-

suming no users fault, are shown in 4a. It is interesting

to note that in all cases the overall time is dominated

by the overhead of paging into and out of the enclave,

and other important operations, such as performing the

aggregation, only minimally contribute to the overall

runtime. This makes sense, as it has been documented

that these operations are comparatively expensive, due

to the expensive cryptographic operations involved and

the time needed to marshal the data. However, our

results show that the overall time scales well in the pres-

ence of a large number of users. For instance our protocol

takes about a second to finish when there are 10,000

users, assuming the attestation setup is precomputed.
We report the additional time needed to recover from

faults in 4d. We notice that since the dummy cipher-

texts can be precomputed, the amount of time needed to

recover is dominated by the time needed to traverse the

data structure to determine which users faulted. As a

result, the more users that are involved in the protocol,

the longer this process takes. However, we note that

even in the worst case, when many thousands of users

fault, the additional recovery time is under 30 seconds.

Unlike existing work that requires additional commu-

nication to support fault recovery, since we leverage a

co-located TEE, we can remove the time needed for two

communication rounds over existing works [9, 14], while

12 Ryan Karl et al.

still supporting strong privacy guarantees, to improve

communication complexity.

Improved Scheme: Since the amount of time needed

to page into the enclave leads to significant overhead, we

designed an improved protocol to try and minimize the

performance impact by safely outsourcing more com-

putations to the untrusted adversary. We report our

results, assuming no users fault, in 4b. It is interesting

to note that because we reduce the amount of enclave

computation, we are able to improve our overall aggre-

gation performance by at least 26% in most cases. This

makes sense, as we are able to reduce the amount of

expensive enclave operations. We report the recovery

time in 4e. We note that the amount of time needed

to recover is comparatively more expensive than in the

basic scheme, as we need to marshal out of the enclave

the dummy ciphertexts needed to recover from faults

to the untrusted aggregator. As a result, this can some-

times increase the overall runtime by several seconds in
the worst case practical scenario when many users fault.

This is tolerable for our applications, but it does illus-

trate a tradeoff that may inform which scheme should

be used on a case by case basis.

Tree-based Scheme: Since there was a significant

amount of overhead and scalability issues from utilizing

ECC on its own, we designed an improved protocol

that utilizes keyed cryptographic hashing and secure

pseudorandom number generators slightly similar to

that of Lamport [19] combined with a TEE. We also

minimize the overhead of fault recovery by utilizing

a p-ary tree to store recovery information within the

TEE. We report our results, assuming no users fault,

in 4c. It is interesting to note that because we replace

the expensive ECC computation with other techniques

based on cryptographic hashing, we are able to improve

our overall aggregation performance by over an order of

magnitude in most cases. This makes sense, as we are

able to reduce the amount of expensive elliptic curve

operations operations and replace them with hash-based

operations. Interestingly, the time to page-in increases

due to the extra time needed to generate and traverse

the tree. However, this is a one-time cost. We report the

recovery time in 4f. It took roughly 3 days to generate

a p-ary tree for 1,000,000 users (in practice this would

be a one-time cost) so we only report results for ≤
100,000 users. It is interesting to note that the overall

growth rate of the recovery time is less than the original

schemes, as we have precomputed the potential recovery

values needed and stored them in the p-ary tree (here

p=2). This reduces the relative increase in recovery time

as more users fault. However, there is some overhead

associated with traversing the tree, and in situations

where only a few users fault (less than 10) the tree-based

recovery is slightly slower. Thus we recommend that the

tree be deployed in situations where it is expected that

faults are relatively frequent (i.e. 0.001% fault rate).

Comparison to Existing Work: We experimentally

evaluated our work when compared to baseline tech-

niques, and ran simulations to compare our scheme to

two state of the art secure aggregation schemes: 1) the

Binary scheme [7] which has users buffer their inputs

that they send to the aggregator, and 2) the Circle

scheme [20], which has the aggregator communicate

with a trusted party, to support fault tolerance. Our

technique outperforms these schemes in scenarios where

faults occur, often by several orders of magnitude. We

compare times reported in Figs. 4,5.
We compare the encryption time and the aggregation

time of the respective protocols, assuming no users fault,

and vary the number of users. Note that the computa-

tional complexity of both of our schemes and the Circle
Scheme is much less than that of the Binary scheme.

This makes sense, as the Binary scheme requires that

users compute ⌊(log2(n)⌋ encryptions per round where

n is the number of users, in order to support fault toler-

ance via their binary tree mechanism, which negatively

impacts the run time. In contrast, our schemes and the

Circle scheme only require one encryption per round,

and thus support more efficient encryption. Note that

the Circle scheme is slightly faster than our first two

schemes, as they leverage a more efficient cryptographic

primitive, the HMAC. The HMAC also contributes to

the improved performance of the Circle scheme over

our schemes and the Binary technique during aggrega-

tion. However, our Tree-based technique, which uses a

cryptographic primitive that is known to be faster than

ECC, offers the best performance, due the underlying

efficiency of computing a hash on modern hardware.

Thus we conclude that our encryption scheme scales

well and is efficient in the presence of large numbers of

users.

We also compared the aggregation time of the respec-

tive protocols when there are 100,000 participants, and

varied the number of user faults. We report results in 6.

Note our Tree-based scheme has the fastest overall run

time whether or not faults are introduced, sometimes

by several orders of magnitude. This makes sense, as

to recover from faults, we can efficiently interact with

the on board TEE. In contrast the Circle Scheme incurs

the roundtrip time of communicating with a trusted

key dealer to collect the cryptographic keys needed to

recover from the faults, and the Binary scheme must

traverse the binary tree of ciphertexts it constructed to

gather the ciphertexts it needs to cancel the appropri-

ate randomness and recover the noisy plaintext. Unlike

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 13

0

0.02

0.04

0.06

0.08

10 Users 100 Users 1000 Users 10000
Users

100000
Users

Se
co

nd
s

Encryption Time for Schemes

Ours Ours Improved Circle

Binary Ours Tree-based

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

10 Users 100
Users

1000
Users

10000
Users

100000
Users

1000000
Users

Se
co

nd
s

Aggregation Time

Ours Ours Improved Circle

Binary Ours Tree-based

(a) Encryption Comparison (b) Aggregation Comparison

Fig. 5 Experimental Comparison Results

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 Faults 10 Faults 100 Faults 1000
Faults

10000
Faults

100000
Faults

Se
co

nd
s

Aggregation Time for 100,000 Users with Faults

Ours Ours Improved Circle Binary Ours Tree-based

Fig. 6 Aggregation with Faults Comparison

both of these schemes, we can recover from faults with-

out either buffering ciphertexts, which causes increased

communication overhead, or requiring additional rounds

of communication, while supporting a stronger level

of security overall, that does not require that we com-
municate with a trusted third party to recover from a

fault.

7 Conclusion

We defined a new level of security for Private Stream

Aggregation in the presence of faults and malicious

adversaries. After describing a new framework for PSA

that accounts for fault tolerance, we developed the first

protocol that provably reaches this security level. Our

simulations demonstrated our work reaches high levels

of scalability and communication efficiency over existing

work while supporting a higher level of security and

better fault tolerance. Our techniques are general, and

can extend any PSA scheme to support non-interactive

fault recovery.

Acknowledgements

This work was supported by Facebook as a winner of

the Role of Applied Cryptography in a Privacy-Focused

Advertising Ecosystem Facebook RFP. Any opinions,

findings and conclusions or recommendations expressed

in this material are those of the authors and do not

necessarily reflect those of the sponsor.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human

participants or animals performed by any of the authors.

References

1. Bao H, Lu R (2015) Ddpft: Secure data aggregation

scheme with differential privacy and fault tolerance.

In: IEEE ICC 2015, IEEE, pp 7240–7245

2. Bao H, Lu R (2015) A new differentially private

data aggregation with fault tolerance for smart grid

communications. IEEE IoT-J 2(3):248–258

3. Bao H, Lu R (2017) A lightweight data aggrega-

tion scheme achieving privacy preservation and data

integrity with differential privacy and fault toler-

ance. Peer-to-Peer Networking and Applications

10(1):106–121

4. Becker D, Guajardo J, Zimmermann KH (2018)

Revisiting private stream aggregation: Lattice-based

psa. In: NDSS

5. Beimel A, Gabizon A, Ishai Y, Kushilevitz E,

Meldgaard S, Paskin-Cherniavsky A (2014) Non-

interactive secure multiparty computation. In:

CRYPTO, Springer, pp 387–404

14 Ryan Karl et al.

6. Boneh D, Goh EJ, Nissim K (2005) Evaluating 2-dnf

formulas on ciphertexts. In: Theory of cryptography

conference, Springer, pp 325–341

7. Chan THH, Shi E, Song D (2012) Privacy-preserving

stream aggregation with fault tolerance. In: FC,

Springer, pp 200–214

8. Chen J, Ma H, Zhao D (2017) Private data aggrega-

tion with integrity assurance and fault tolerance for

mobile crowd-sensing. Wireless Networks 23(1):131–

144

9. Chen L, Lu R, Cao Z (2015) Pdaft: A privacy-
preserving data aggregation scheme with fault tol-

erance for smart grid communications. Peer-to-Peer

networking and applications 8(6):1122–1132

10. Chotard J, Sans ED, Gay R, Phan DH, Pointcheval

D (2018) Decentralized multi-client functional en-

cryption for inner product. In: Asiacrypt, Springer,

pp 703–732

11. Gillin D (2000) The federal trade commission and

internet privacy. Marketing Research 12(3):39

12. Halevi S, Ishai Y, Jain A, Komargodski I, Sahai

A, Yogev E (2017) Non-interactive multiparty com-

putation without correlated randomness. In: ASI-

ACRYPT, Springer, pp 181–211

13. Halevi S, Ishai Y, Kushilevitz E, Rabin T (2018)

Best possible information-theoretic mpc. In: Theory

of Cryptography Conference, Springer, pp 255–281

14. Han S, Zhao S, Li Q, Ju CH, Zhou W (2015)

Ppm-hda: privacy-preserving and multifunctional

health data aggregation with fault tolerance. IEEE

Transactions on Information Forensics and Security

11(9):1940–1955

15. Joye M, Libert B (2013) A scalable scheme for
privacy-preserving aggregation of time-series data.

In: FC, Springer, pp 111–125

16. Jung T, Mao X, Li X, Tang S, Gong W, Zhang L

(2013) Privacy-preserving data aggregation without

secure channel: multivariate polynomial evaluation.
In: IEEE INFOCOM

17. Karl R, Burchfield T, Takeshita J, Jung T (2019)

Non-interactive mpc with trusted hardware secure

against residual function attacks. In: SecureComm,

Springer, pp 425–439

18. Karl R, Takeshita J, Jung T (2021) Cryptonite: A

framework for flexible time-series secure aggregation

with non-interactive fault recovery. In: International

Conference on Security and Privacy in Communica-

tion Systems, Springer

19. Lamport L (1981) Password authentication with

insecure communication. Communications of the

ACM 24(11):770–772

20. Li Q, Cao G (2013) Efficient privacy-preserving

stream aggregation in mobile sensing with low ag-

gregation error. In: PETS, Springer, pp 60–81

21. Martin D (2020) Intel xeon ice lake cpus to get sgx

with expanded security features

22. Martin D (2020) Intel xeon ice lake cpus to get sgx

with expanded security features

23. Mofrad S, Zhang F, Lu S, Shi W (2018) A compari-

son study of intel sgx and amd memory encryption

technology. In: ACM HASP, pp 1–8

24. Ni J, Zhang K, Alharbi K, Lin X, Zhang N, Shen

XS (2017) Differentially private smart metering

with fault tolerance and range-based filtering. IEEE
Transactions on Smart Grid 8(5):2483–2493

25. Parikh N, Sundaresan N (2008) Scalable and near

real-time burst detection from ecommerce queries.

In: ACM SIGKDD, ACM, KDD ’08, p 972–980

26. Rabin T (1998) A simplified approach to threshold

and proactive rsa. In: Annual International Cryp-

tology Conference, Springer, pp 89–104

27. Russell MA (2011) Mining the social web. ” O’Reilly

Media, Inc.”

28. Shannon CE (1949) Communication theory of

secrecy systems. Bell system technical journal

28(4):656–715

29. Shi E, Chan TH, Rieffel E, Chow R, Song D (2011)

Privacy-preserving aggregation of time-series data.

In: Proc. NDSS, Citeseer, vol 2, pp 1–17

30. Shi J, Zhang R, Liu Y, Zhang Y (2010) Prisense:

privacy-preserving data aggregation in people-

centric urban sensing systems. In: INFOCOM, IEEE,

pp 1–9

31. Valovich F (2017) Aggregation of time-series

data under differential privacy. In: LATINCRYPT,

Springer, pp 249–270

32. Valovich F, Aldà F (2017) Computational differ-

ential privacy from lattice-based cryptography. In:

NutMiC, Springer, pp 121–141

33. Vargas REV, Munaro CJ, Ciarelli PM, Medeiros AG,

do Amaral BG, Barrionuevo DC, de Araújo JCD,
Ribeiro JL, Magalhães LP (2019) A realistic and

public dataset with rare undesirable real events in oil

wells. Journal of Petroleum Science and Engineering

181:106,223

34. Wang X, Liu Y, Choo K (2020) Fault tolerant, multi-

subset aggregation scheme for smart grid. IEEE

Transactions on Industrial Informatics

35. Weichbrodt N, Kurmus A, Pietzuch P, Kapitza R

(2016) Asyncshock: Exploiting synchronisation bugs

in sgx enclaves. In: ESORICS, Springer, pp 440–457

36. Won J, Ma CY, Yau DK, Rao NS (2014) Proactive

fault-tolerant aggregation protocol for private smart

metering. In: INFOCOM, IEEE, pp 2804–2812

37. Xue K, Yang Q, Li S, Wei DS, Peng M, Memon I,

Hong P (2018) Ppso: A privacy-preserving service

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 15

outsourcing scheme for real-time pricing demand

response in smart grid. IEEE Internet of Things

Journal 6(2):2486–2496

8 Proof of Fault Tolerable Aggregator

Obliviousness

Theorem 1 Assuming that the Decisional Diffie-Hellman

problem is hard in the group G and that the hash func-

tion H is a random oracle, then the above construction

satisfies aggregator oblivious security with fault tolerance,

as described in 2.

Proof. First, we prove that the following intermediate

game is difficult to win, given that Decisional Diffie-

Hellman is hard. Let G be a group of prime order p.

Setup: The challenger picks random generators g, h ∈
G, and random α0, α1, . . . , αn ∈ Zp such that

∑n
i=0 αi =

0. The challenger gives the adversary: g, h, gα0 , gα2 , . . . , gαn .

Queries: The adversary can compromise users adap-

tively and ask for the value of αi. The challenger returns

αi to the adversary when queried.

Challenge: The adversary selects an uncompro-

mised set Q ⊆ {0, . . . , N}, and specifies a subset of Q

denoted Y of users they claim faulted, where J = Y for

the duration of the game. The challenger flips a random

bit b. If b = 0, the challenger returns to the adversary

{hαq | q ∈ Q\Y } , {hαy | y ∈ Y }. If b = 1, the challenger

picks |Q|/|Y | random elements h′q, for q ∈ Q/Y and |Y |
random elements h′y, for y ∈ Y from the group G, such

that
∑

q∈Q h′q+
∑

y∈Y h′y =
∑

q∈Q hαq+
∑

y∈Y hαy . The

challenger returns h′q, for q ∈ Q/Y and h′y, for y ∈ Y

to the adversary. The adversary can make additional

compromise queries, as described in the above step as

they see fit.

Guess: The adversary guesses either b = 0 or 1. The

adversary wins if they have not asked for any αq for

q ∈ Q, Y = J , and if they successfully guess b.

Lemma 1 The above game is difficult for computa-

tionally bounded adversaries assuming Decisional Diffie
Hellman is hard for group G.

We define the following sequence of hybrid games,

and assume that the set Q specified by the adversary in

the challenge stage is Q = {q1, q2, . . . , qm} . For simplic-

ity, we write (β1, . . . , βm) := (αq1 , . . . , αqm) , and include

Y within Q to save space. In Gamed, the challenger

sends the following to the adversary: R1, R2, . . . , Rd,

hβd+1 , ..., hβm . Here, each Rq(q ∈ [d]) means an inde-

pendent fresh random number, and the following con-

dition holds:
∏

1≤q≤d Rq =
∏

1≤q≤d h
βq . Clearly Game1

is equivalent to the case when b = 0, and Gamem−1 is

equivalent to the case when b = 1. With the hybrid argu-

ment we can show that games Gamed−1 and Gamed are

computationally indistinguishable. To demonstrate this,

we show that if, for some d, there exists a polynomial-

time adversary A who can distinguish between Gamed−1

16 Ryan Karl et al.

andGamed, we can then construct an algorithm B which

can solve the DDH problem.

Suppose B obtains a DDH tuple
(
g, gx, gl, T

)
. B’s

task is to decide whether T = gxl or whether T is a

random element from G. Now B randomly guesses two

indices e and b to be the dth and the (d+1)th values of the

set Q specified by the adversary in the challenge phase.

The guess is correct with probability 1
N2 , and in case the

guess is wrong, the algorithm B aborts. Now B picks ran-

dom exponents {αq}q ̸=e,q ̸=b and sets αb = x and αe =

−
∑

q ̸=e αq. Notice that B does not know the values of αe

and αb, however, it can compute the values of gαb = gx

and gαe =
(∏

q ̸=e g
αq

)−1
= (gx)

−1
.
∏

q ̸=e,q ̸=b g
αq · B

gives A the tuple
(
g, h = gl, gα1 , . . . , gαn

)
. If A asks for

any exponent except αe and αb,B returns the corre-

sponding αq value to A; if A asks for αe or αb, the

algorithm B aborts.

In the challenge phase,A submits a setQ = {q1, q2, . . . qm}.
If e and b are not the dth and the (d + 1)th values of

the set Q, i.e., if qd ̸= e or qd+1 ̸= b, the algorithm B
aborts. If qd = e and qd+1 = b, then B returns to A:
R1, R2, . . . , Rd−1, (

∏
q/∈{q1,...,qd+1}(g

l)αq ·
∏d−1

q=1 Rq ·T)−1,
T , and (gl)αqd+2

,...,(gl)αqm
. Clearly if T = gxl, then the

above game is equivalent to Gamed−1. Otherwise, if

T ∈R G, then the above game is equivalent to Gamed.

Thus, if A has a non-negligible advantage in guessing

whether it is playing Gamed−1 or Gamed and B could
solve the DDH problem with non-negligible advantage.

Now to prove the theorem, we will modify the aggre-

gator oblivious security game. In the Encrypt queries, if

the adversary submits a request for some tuple (q, x, t∗)
where t∗ is the time step specified in the Challenge
phase, the challenger treats this as a Compromise

query, and simply returns the skq to the adversary.

Given skq, the adversary can compute the requested

ciphertext. The adversary has access to a the functional-

ity, FaultRecover, that can only be called once (since

this is enforced via trusted hardware), which takes in

a set of users that have not been compromised (j ∈ J),

and returns the set of ciphertexts that correspond to

those users encrypting 0. Note that this modification

actually gives more power to the adversary. From now
on, we will assume that the adversary does not make

any Encrypt queries for the time t∗.

Let K ⊆ N denote the set of compromised partic-

ipants. Let K̄ := N\K denote the set of uncompro-

mised participants. Since we assume the aggregator is

untrusted, we are interested in the case where Q = K̄

or the aggregator key has been compromised. We must

show that the adversary cannot distinguish whether the

challenger returns a true encryption of the plaintext

submitted in the challenge stage, or a random tuple

with the same aggregation.

Given an adversary A who can break the PSA game

with non-negligible probability, we construct an algo-

rithm B that can solve the above intermediate problem

with non-negligible probability. B obtains from the chal-

lenger C the tuple g, h, gα0 , gα1 , . . . , gαn . B sets α0 to
be the aggregator’s key, and α1, . . . , αn to be the se-

cret keys of participants 1 through n respectively. Note

param is g.

Let qH denote the total number of oracle queries

made by the adversary A and by the algorithm B itself.

B guesses at random an index b ∈ [qH]. Suppose the

input to the bth random oracle query is t∗. The algorithm

B assumes that t∗ will be the challenge time step. If the

guess is found to be wrong later, B aborts.

Hash Function Simulation: The adversary sub-

mits a hash query for the integer t. B first checks the

list L to see if t has appeared in any entry (t, z). If so,

B returns gz to the adversary. Otherwise, if this is not

the bth query, B picks a random exponent z and returns

gz to the adversary, and saves (t, z) to a list L. For the
bth query, B returns h.

Then the following Queries can take place:

•Encrypt: The adversary A submits an Encrypt

query for the tuple (q, x, t). In the modified version of

the game, we ensure that t ̸= t∗, as otherwise, we simply

treat it as a Compromise query. B checks if a hash

query has been made on t, and if not, B makes a hash

oracle query on t. Thus, B learns the discrete log of H(t).

Now H(t) = gz, so B knows z, and since B also knows

gαq ,B can compute the ciphertext gx · (gz)αq as gx ·
(gαq)

z
.

•Compromise: B forwards A’s query to its own

challenger C, and forwards the answer αq to A.
•FaultRecover: B forwards A’s query to its own

challenger C, and forwards the set of ciphertexts (i.e.

∀j ∈ J , c←− g0 ·H(t)skj)) to A.
Challenge: The adversary A submits a set N =

J ∪Q and a time t∗, as well as plaintexts {xq | q ∈ N}.
If t∗ does not agree with the value submitted in the bth

hash query, then B aborts. B submits the set Q in a

Challenge query to its own challenger, and it obtains

a tuple {Tq}q∈N . The challenger returns the following

ciphertexts to the adversary: ∀q ∈ Q : gxq · Tq (i.e.

c←− gxq ·H(t)skq · Tq).

More queries: Same as the Query stage.

Guess: If the adversary A guesses that B has re-

turned a random tuple then B guesses b′ = 1. Otherwise,

B guesses that b′ = 0

If the challenger C returns B a faithful Diffie-Hellman

tuple ∀q ∈ Q : Tq = hαq , then the ciphertext returned

to the adversary A is a true encryption of the plaintext

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Non-interactive Fault Recovery 17

submitted by the adversary. Otherwise, if the challenger

returns to B a random tuple, then the ciphertext re-

turned to A is random under the product constraint.

9 Proof of Security for Tree-based Scheme

Within the field of cryptography, semantic security is

a concept used to describe the following functionality:

Suppose there exists an adversary that is permitted to

choose between two plaintext messages, that we denote

p0 and p1, and they later receive an encryption of either

one of the two. An encryption scheme is semantically

secure if such an adversary cannot guess with proba-

bility exceeding 1
2 if the provided ciphertext is either

an encryption of p0 or and encryption of p1. This re-

quirement is equivalent to requiring encryptions to be

indistinguishable.

For the following proof of semantic security, we first
make remarks regarding the additive stream cipher (one

time pad) for completeness. The privacy of users’ sensi-
tive data is ensured in our scheme using an approach sim-

ilar to symmetric cryptography (in particular an additive

stream cipher). With the additive stream cipher, if we

use Fz to denote a field, we can have the TEE generate

a stream of pseudorandom elements r1, r2, ...rj , ... ∈ Fz

in an offline phase. Later, the remote client i can send

an input ci = xi ⊕ rj during an online phase, and the

TEE can compute xi = ci ⊕ rj , where ⊕ is the one-

time pad operation to recover the xi inside of the TEE,

while keeping this activity hidden from the untrusted

aggregator.

We recall Shannon’s definition of perfect secrecy [28]:

Definition 3 (Perfect Secrecy) An encryption scheme

achieves perfect secrecy if for all messages m1,m2 in

message spaceM and all ciphertexts c ∈ C, we have

Prob
K←K

[Enc (K,m1) = c] = Prob
K←K

[Enc (K,m2) = c]

where both probabilities are taken over the choice of

K in K and over the coin tosses of the probabilistic

algorithm Enc.

This means that for any given ciphertext, every possi-

ble message in the message space has the same likelihood

of being the actual plaintext message, and the plaintext

is completely independent from the ciphertext. As a

result, this definition of secrecy means that the adver-

sary can learn no information regarding the underlying

plaintext. Note that as long as the length of the key is

the same length of the message, it is well known that

the Additive Stream Cipher can be shown to fulfill this

definition.

This results from the fact that every ciphertext could

correspond to any message as the total keyspace is as

large as the message space. This means that utilizing a

brute force search will give the adversary no additional

information.

Below is a proof of this [28] for completeness.

Theorem 2 The Additive Stream Cipher satisfies Per-

fect Secrecy as defined in Def. 3.

Proof Proof: Take any m ∈ M and c ∈ C, and let

k∗ = m ⊕ c. Recall that: ProbK←K[Enc(K,m) = c] =

ProbK←K[(K ⊕ m) = c] = ProbK←K[K = c ⊕ m] =

ProbK←K [K = k∗] = 1
2ℓ

Since the above equation holds

for each m ∈M, this means for every m1,m2 ∈M we

have ProbK←K [Enc (K,m1) = c] = 1
2ℓ
, and

ProbK←K [Enc (K,m2) = c] = 1
2ℓ
, thus

ProbK←K [Enc (K,m1) = c] =

ProbK←K [Enc (K,m2) = c].

We now prove the security of our scheme in the

following theorem:

Theorem 3 Assuming the TEE is secure, the random

number generator is cryptographically secure, and trusted
setup infrastructure is secure, our protocol securely com-

putes the final aggregation result via the aggregation

calculation function f in the presence of malicious ad-

versaries.

Proof Without loss of generality, we assume the attacker

controls the first m < n users, where n denotes the total

number of users. Our task is to show that a probabilis-

tic polynomial time simulator can generate an entire

simulated view, given B̂ and x1, · · ·xm for an attacker in-

distinguishable from the view an attacker sees during the

real protocol execution, where xi denotes the input value

from user i, f denotes the aggregation function, and y

denotes the final aggregation. Notice that the simula-

tor can find x′m+1, · · · , x′n such that y = f(x1, · · · , xm,

x′m+1, · · · , x′n). Besides this, it follows the protocol as

described pretending to be the honest players. As the

trusted setup was performed successfully and is exactly

the same in both the ideal and real worlds, every user

(adversary controlled or otherwise) has secret key si or

s′i they may use to generate a cryptographically secure

stream of numbers denoted ri ∈ R or r′i ∈ R′ during
an offline phase. Note in either world, when the users

run Enc, because the algorithm has access to an infi-

nite stream (for practical purposes) of cryptographically

secure random numbers via [19], the randomness used

during the one-time pad encryption indistinguishable

from a truly random sequence within the ciphertext

range. In addition, we can continue computing the hash

18 Ryan Karl et al.

algorithm to generate numbers that are indistinguish-

able from a truly random sequence within the ciphertext

range.

This means when users in either world run Enc over

their messages xi or x
′
i to compute the associated ci or

c′i, this is the same as computing the additive stream

cipher calculation ci = xi ⊕ rj , since the ciphertext is

indistinguishable from the random rj . By the perfect

secrecy of the additive stream cipher, the messages sent

in both worlds by all users are semantically secure, and

indistinguishable from each other for each message sent.
Once the aggregator receives all the given ciphertexts

for the current time window, no information about the

corresponding plaintexts for the honest users can be

inferred at this point in the protocol, since this encryp-

tion is semantically secure, and each user (honest or

otherwise) used their own unique cryptographically se-

cure random seed to generate their cryptographically

secure random stream. From here, the attacker sends

the ciphertexts into the TEE, where they isolated from

the adversary (and encrypted via AES with Intel SGX),

and the trusted TEE can safely run AggrDec over the

ciphertexts to recover the set of plaintexts for either

world. Following this, the final aggregation B̂ or B̂′ is
outputted to the aggregator, while the plaintexts remain

in the TEE and are kept secret. Now since the plaintexts

used are identical in both worlds, B̂ and B̂′ are identical

too. Note that the proof of aggregator obliviousness for

this scheme is very similar to the one above, and would

use similar techniques to those already in the literature

[29, 4], so we omit it to avoid redundancy. Thus, all

the attacker can learn is what can be inferred based on

the output of the the final aggregation and inputs they
control. As we know the attacker cannot distinguish

between real and simulated executions and our protocol

securely computes the aggregation over the participants

data.

