
Multi-Client Oblivious RAM
with Poly-Logarithmic Communication

Sherman S. M. Chow1?[0000−0001−7306−453X], Katharina Fech2,
Russell W. F. Lai2, and Giulio Malavolta3

1 The Chinese University of Hong Kong, Hong Kong
2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

3 UC Berkeley & Carnegie Mellon University, USA
sherman@ie.cuhk.edu.hk, {fech,lai}@cs.fau.de, giulio.malavolta@hotmail.it

Abstract. Oblivious RAM enables oblivious access to memory in the
single-client setting, which may not be the best fit in the network setting.
Multi-client oblivious RAM (MCORAM) considers a collaborative but
untrusted environment, where a database owner selectively grants read
access and write access to different entries of a confidential database to
multiple clients. Their access pattern must remain oblivious not only
to the server but also to fellow clients. This upgrade rules out many
techniques for constructing ORAM, forcing us to pursue new techniques.
MCORAM not only provides an alternative solution to private anony-
mous data access (Eurocrypt 2019) but also serves as a promising build-
ing block for equipping oblivious file systems with access control and
extending other advanced cryptosystems to the multi-client setting.
Despite being a powerful object, the current state-of-the-art is unsatisfac-
tory: The only existing scheme requires O(

√
n) communication and client

computation for a database of size n. Whether it is possible to reduce
these complexities to polylog(n), thereby matching the upper bounds
for ORAM, is an open problem, i.e., can we enjoy access control and
client-obliviousness under the same bounds?
Our first result answers the above question affirmatively by giving a con-
struction from fully homomorphic encryption (FHE). Our main technical
innovation is a new technique for cross-key trial evaluation of ciphertexts.
We also consider the same question in the setting with N non-colluding
servers, out of which at most t of them can be corrupt. We build multi-
server MCORAM from distributed point functions (DPF), and propose
new constructions of DPF via a virtualization technique with bootstrap-
ping, assuming the existence of homomorphic secret sharing and pseu-
dorandom generators in NC0, which are not known to imply FHE.

Keywords: multi-client oblivious RAM, access control, homomorphic
encryption, distributed point function, homomorphic secret sharing

? This work is supported in parts by General Research Funds (CUHK 14209918 and
14210217) and Germany/Hong Kong Joint Research Scheme G-CUHK406/17 of the
Research Grants Council, University Grant Committee, Hong Kong, and German
Academic Exchange Service under Grant No.: PPP-HK 57391915. The authors would
like to thank Brice Minaud and anonymous reviewers for their helpful comments.

2 Authors Suppressed Due to Excessive Length

1 Introduction

Oblivious RAM (ORAM) [22] allows random accesses to physical memory lo-
cations without revealing the logical read/write access patterns. The original
motivation considers a software accessing the local memory, where the latter is
modeled as a machine that can only perform read and write operations but no
computation (known as the “balls and bins” model). Later, ORAM was also
considered in a network setting, where a client wishes to obliviously access its
data outsourced to a remote server, where computation might be allowed. Be-
sides direct applications in local and remote storage, ORAM techniques have
been shown useful for many other cryptographic goals.

In a realistic setting, a database can be accessed by hundreds of mutu-
ally untrusted clients. The security of ORAM or even its parallel variant
(OPRAM) [3,13] becomes insufficient as all clients (processors in the same
machine in OPRAM) share the same secret key. To remedy this, Maffei et al. [29]
considered multi-client ORAM (MCORAM), which aims to capture the fol-
lowing natural scenario: A database owner encodes an array of data M and
outsources the encoded database to a server. Clients can dynamically join the
system and request access rights to individual entries of M . After the permission
is granted, a client can obliviously perform random access to the permitted
entries of M , without communicating with the database owner or other clients.

For privacy, MCORAM expects two strengthened requirements against an
adversary who can corrupt an arbitrary subset of clients and the server:
– Read and write accesses are anonymous.
– Read and write accesses are indistinguishable, except when the adversary

has read access to the address being written.
Integrity is another interesting security feature needed in a multi-client sce-

nario – legitimately written entries should be retrievable by any permitted clients
and cannot be overwritten by malicious clients, assuming an honest server.

After three decades of development, the complexities of ORAM schemes are
well-understood. Unfortunately, many techniques for constructing ORAM break
down completely when the client can be corrupt. This forces us to pursue new
techniques in building MCORAM, regardless of the many ORAM constructions.

The only (fully-oblivious) MCORAM by Maffei et al. [30] requires O(n)
server computation and O(

√
n) communication and client computation. They

also show Ω(n) server computation is necessary (in the balls-and-bins model),
in contrast to polylog(n) computation of ORAM. For communication, no non-
trivial lower bound for MCORAM is known, while the upper bounds for ORAM
and MCORAM are polylog(n) and O(

√
n), respectively. The inherent complexi-

ties of MCORAM are still poorly understood. We are thus motivated to ask:

Is multi-client ORAM with polylog(n) communication possible?

Our Results. We answer the above question affirmatively. Our main contribu-
tion is a single-server MCORAM construction with O(log n) communication and
client computation, and O(n) server computation (omitting factors of poly(λ)).

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 3

Table 1. Comparison of MCORAM schemes for storing n messages in the following
criteria: security against malicious clients (MC), support of multiple data owners (MD),
security against t out of N corrupt servers, server computation, client computation,
and communication of the access protocol (factors of poly(λ) are omitted.)

Scheme MC MD (t,N) S Comp C Comp Comm

[29] 8 8 (1, 1) O(logn) O(logn) O(logn)
[30] 3 3 (1, 1) O(n) O(

√
n) O(

√
n)

This work 3 3 (1, 1) O(n) O(logn) O(logn)

This work 3 3 (N ′ − 1, N ′
2
), N ′ ∈ {2, 3, 4} O(n) polylog(n) polylog(n)

This scheme relies on a new usage of key-indistinguishable FHE, in which cipher-
texts encrypted under an unknown key are evaluated under non-matching keys.
When instantiated with a rate-1 FHE [8,19], the communication complexity is
optimal (log n) up to an additive fixed polynomial factor. In other words:

Theorem 1 (Informal). Assuming FHE, there exists a multi-client ORAM
scheme with poly-logarithmic communication complexity.

We also consider the setting with multiple (non-colluding) servers, in which
we propose an N2-server MCORAM scheme resilient against the corruption of
t servers, with polylog(n) communication and client computation. The scheme
assumes the existence of a (t,N) distributed point function (DPF) [21], where
N is the number of parties and t is the corruption threshold. We then show
new constructions of DPFs for parameters (t,N) ∈ {(2, 3), (3, 4)}, respectively,
assuming homomorphic secret sharing (HSS) and constant-depth pseudorandom
generators (PRGs), which are not known to imply FHE. Together with the ex-
isting (1, 2)-DPF [21], we show the following theorem.

Theorem 2 (Informal). Assuming HSS and PRG in NC0, there exist multi-
client {4, 9, 16}-servers ORAM schemes with poly-logarithmic communication
complexity, resilient against the corruption of {1, 2, 3} servers respectively.

As summarized in Table 1, we made clear contributions in communication
and client computation complexities. One may further ask for an even better
construction as (i) the computation of the servers is linear in the database size
and (ii) the client storage is proportional to the number of entries with access
granted. While the former is inherent to some extent (as shown in [30]) and
the latter appears to be natural for fine-grained access control allowing O(2n)
possible policies for each user, we show how to reduce the client storage by
constrained PRFs [2]. For simple access structures (such as prefix predicates),
known constrained PRFs (e.g., [24]) do not add any extra assumption.

2 Technical Overview

2.1 MCORAM with Poly-Log Communication: Initial Attempts

A first attempt to construct MCORAM with poly-logarithmic communication is
to extend an ORAM with the same complexity. Simply sharing the same ORAM

4 Authors Suppressed Due to Excessive Length

secret key among all clients (e.g., [25]) fails. The secret state kept by each client is
the root issue. For obliviousness against the server and fellow clients, they must
be kept confidential from others. To ensure consistency of the operations across
all clients, they must be correlated. These contradicting requirements seem to
forbid the adoption of many ORAM techniques. Another idea is to secret-share
the ORAM secret key to all clients, and emulate the ORAM accesses using secure
multi-party computation. This requires interactions between many clients for
each access and is clearly undesirable when the number of clients is large.

We note that a database can be privately accessed without a persistent secret
client state in (single-server) private-information retrieval (PIR) [14], in which
a stateless client can read an entry while hiding its address. For the discussion
below, it is useful to recall the standard FHE-based PIR scheme, which achieves
poly-logarithmic communication. Recall that FHE allows homomorphic evalu-
ations of any circuits over ciphertexts. To read the entry M [a] of a database
M at address a, the client samples a fresh FHE key pair (pk, sk) and sends
(pk,Enc(pk, a)) to the server. The server homomorphically evaluates the follow-
ing circuit ReadM parameterized by M over Enc(pk, a):

ReadM (addr): Return M [addr].

This results in a ciphertext encrypting M [a] to be sent to the client.
We can extend a PIR scheme to the multi-client setting and yield a read-only

MCORAM. More concretely, the data owner encrypts each database entry with
a different key. Granting read access means delegating the decryption key of the
corresponding address. To read, recall that PIR clients are stateless, the client
first performs PIR, and then decrypts the retrieved encrypted entry locally.

Challenge: Write Access. Towards supporting write access, a rough idea
is as follows. First, each database entry M [a] is encrypted under FHE, so the
server cannot just see which entries have changed after a write access. Next, when
writing data m∗ to address a∗, the client encrypts its update instruction (a∗,m∗)
using FHE, so that the server could “somehow” update the database entries
homomorphically by evaluating a Write function over the ciphertexts of (a∗, m∗)
and (each entry of) M . This raises the question of – Under which key should (1)
each entry M [a], and (2) the update instruction (a∗,m∗) be encrypted?

Using the same key across all M [a] fails as we discussed – all clients need
to hold the same decryption key to access their data. Now we need to en-
crypt each M [a] under a key pka independently generated for each a. With
O(n) communication and client computation, the client can just create n FHE-
ciphertexts, each using a different key, and sends them to the server. With the
poly-logarithmic constraint, we face a dilemma: Either the client informs the
server about (a∗, pka∗) so that the latter knows which ciphertext it should up-
date, which violates obliviousness; or the server would need to somehow evaluate
Write over a∗, m∗, and M [a], where the first two are encrypted under pka∗ , and
the last is under pka, for a ∈ [n], and then it is unclear if correctness would hold.
Multi-key FHE does not seem to be useful in this context because its homomor-
phic evaluation results in a ciphertext under a new combined key, which creates

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 5

a complicated key-management problem and suffers from the problem of high
interaction similar to the secure multi-party computation solution.

2.2 FHE-based Construction

Our insight into resolving the dilemma is that some meaningful operations can
actually be done over FHE ciphertexts encrypted under different keys. Specifi-
cally, we introduce a cross-key trial evaluation technique that interprets a cipher-
text as one encrypted under a possibly mismatching key.4 Below, we illustrate
our technique with a simplified setting that is sufficient to capture the essence.

Cross-Key Trial Evaluation. Recall that the server database stores(
a,Enc(pka,M [a])

)
for a ∈ [n]. To write, a client sends the encrypted in-

struction
(
Enc(pka∗ , a

∗),Enc(pka∗ ,m
∗)
)

to the server, which evaluates for
each a ∈ [n] the following simplified writing circuit, parameterized by a, over
Enc(pka∗ , a

∗) and Enc(pka∗ ,m
∗) from the client, and Enc(pka,M [a]) from the

server storage, by treating as if all of them were created under pka:

SimpleWritea(addr, data′, data): If addr = a, return data′; else return data.

For each a ∈ [n], the server overwrites the a-th ciphertext it stored with the
ciphertext output by evaluating SimpleWritea. Let us examine what happens
depending on whether a matches a∗ from the update instruction. If a = a∗,
all three ciphertexts are encrypted under the same key; the server would get a
ciphertext of m∗ under pka∗ , i.e., M [a∗] is correctly overwritten with m∗.

If a 6= a∗, it seems paradoxical that this evaluation gives us anything mean-
ingful since there is no correctness guarantee when homomorphic evaluations
are performed under a wrong public key pka∗ 6= pka. However, as a matter of
fact, the homomorphic evaluation still proceeds as if everything is encrypted
under pka. Namely, it interprets its input, particularly the first ciphertext
Enc(pka∗ , a

∗), as if it is encrypted under pka. With this treatment, it is very
unlikely that Enc(pka∗ , a

∗) is also a ciphertext of a under pka. More precisely,
Dec(ska,Enc(pka∗ , a

∗)) should be “independent” of a (we will revisit this
shortly), and therefore the check addr = a would most likely fail. Then, by the
correctness of FHE, the evaluation would result in a new ciphertext encrypting
data = M [a] under pka, i.e., entries M [a] with a 6= a∗ remain unchanged.

The critical insight here is that the random outcomes of operating on a
“wrong” ciphertext, with overwhelming probability, “match” with the desired
behavior we expect as if cross-key evaluation is possible. Note that after each
write operation, the entries are left in a consistent state, i.e., each entry M [a]
is still encrypted under pka, and the database size stays the same. For this to
be true, our FHE scheme must satisfy a strong variant of correctness, where the

4 This technique is reminiscent of decrypting a random string interpreted as an FHE
ciphertext in the surprising result of Canetti, Lombardi, and Wichs [12], which con-
structs non-interactive zero-knowledge from any circular-secure FHE.

6 Authors Suppressed Due to Excessive Length

evaluation algorithm must be well-defined and correct over the entire ciphertext
space (and not necessarily in the support of a particular public key). In Sec-
tion 4.2, we show how to generically transform any FHE scheme to satisfy this
notion, provided that it meets some weak structural requirements.

Finally, the FHE scheme here needs to be key-private, i.e., ciphertexts un-
der different keys are indistinguishable. Fortunately, essentially all known FHE
schemes are key-private, as their ciphertexts are typically indistinguishable from
uniformly sampled elements from the ciphertext space.

Achieving Integrity and a Formal Reduction. The above approach can
provide writing functionality, but not integrity as everyone can encrypt using the
keys pka. Furthermore, we relied on the heuristic that Dec(ska,Enc(pka∗ , a

∗)) 6= a
with high probability, which is difficult to guarantee formally.

We propose a technique that resolves both issues simultaneously using any
signature scheme Σ. Clients with writing rights to a are granted an address-
dependent signing key skΣa . Instead of encrypting (a∗,m∗), the client computes
Enc(pka∗ , σ

∗) and Enc(pka∗ ,m
∗), where σ∗ is a signature of (r,m∗) under pkΣa∗ ,

and r is a random nonce chosen by the server for each access. Correspondingly,
the server homomorphically evaluates for each a the circuit WritepkΣa ,r, param-

eterized by (pkΣa , r), over the ciphertexts of Enc(pka∗ , σ
∗), Enc(pka∗ ,m

∗), and
Enc(pka,M [a]), again as if they are all ciphertexts under pka:

WritepkΣa ,r(sig, data
′, data): If sig is a valid signature of (r, data′) under

pkΣa , return data′; else return data.

With a similar argument as above, M [a] would be overwritten by m∗ if a∗ = a
and σ∗ is a valid signature, which can only be generated by clients having writing
rights to a∗. Unlike using SimpleWritea, we can further argue about the converse
without relying on heuristics. Concretely, if a 6= a∗ but Dec(ska,Enc(pka∗ , σ

∗))
is a valid signature of

(
r,Dec(ska,Enc(pka∗ ,m

∗))
)

under pkΣa , we can extract a

signature forgery with respect to the verification key pkΣa , violating the unforge-
ability of the signature scheme. Consequently, it holds that when a 6= a∗, M [a]
would not be overwritten except with negligible probability.

Applications. The above technique can be generalized to enable (key-
dependent) conditional evaluations of FHE ciphertexts, with the condition
depends on not only the messages encrypted within but also the keys used to
generate the ciphertexts. This feature is useful in (outsourced) access-control
applications such as an “oblivious whitelisting firewall” that only allows incom-
ing ciphertexts encrypted under one of the whitelisted keys to pass through
without the firewall keeping any secret key.

Reducing Secret Key Size. So far, we have assumed that the data owner
generates address-dependent secret keys, and grants clients reading and writing

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 7

rights by delegating the keys for the corresponding addresses. In the worst case,
data owner and client keys are of size linear in the size of the database.

A common technique to reduce the data-owner key size is to generate those
address-dependent secret keys by a pseudorandom function (PRF). Towards re-
ducing the client key size, a constrained PRF (cPRF) can be used. Recall that
cPRF can create a constrained key KX that constrains the PRF key K within
some subset X of the domain. Given KX , one can evaluate the PRF on all inputs
x ∈ X, while the PRF values of all x /∈ X remain pseudorandom. That means
the data owner can delegate to the clients cPRF keys that allow derivation of
the address-dependent secret keys. If the cPRF keys are succinct, e.g., of size
sublinear in the size of X, the client key size is also short. For example, the well-
known PRF construction by Goldreich, Goldwasser, and Micali [24] is a cPRF
for prefix constraints with logarithmic-size keys.

On Sublinear Server Computation. The focus of our work is to minimize the
communication complexity of the protocol. We note that recent works [11,7] have
investigated the possibility of sublinear server computation (with preprocessing)
in PIR (essentially a read-only MCORAM with no access control) in the single-
client setting, and have proposed a solution based on new hardness assumptions
on permuted Reed-Solomon codes. They also consider the public-key setting,
which does not require any secret state to read the database, i.e., multiple clients
are allowed to query the database obliviously. Unfortunately, the only proposed
solutions build on a strong notion of virtual black-box obfuscation. We consider
constructing an MCORAM with sublinear server computation (from standard
assumption) as a fascinating open problem.

2.3 DPF-based Multi-Server Construction

The scheme described above resolves the open question of communication effi-
ciency for MCORAM using FHE schemes, which are yet to become efficient in a
practical sense, and are only known to be realizable from lattices. Towards find-
ing more practical solutions, to broaden the spectrum of assumptions, and to get
a larger variety of MCORAM schemes, we turn our attention to the multi-server
setting, in which we leverage the non-collusion between different servers. We re-
strict to the three-message setting where the servers do not talk to each other.
This motivates the non-collusion assumption and rules out trivial constructions.5

In this direction, we rely on another tool known as distributed point functions
(DPF), which were shown to be useful in constructing PIR and in complexity
theory [21], as well as private queries on public data [32]. A DPF allows a client

5 In the three-message setting, the accessing client sends one message to each of the
servers, each server sends one message back to the client, and the client sends one
final message back to each server. Thus, the servers cannot communicate with each
other (even through the client) in coming up with the responses to the client. Not
letting the servers communicate also ruled out any straightforward adaption that
evaluates an ORAM under the hood of secure two/multi-party computation.

8 Authors Suppressed Due to Excessive Length

to split a given point function into keys (k1, . . . , kN). Given ki, one can locally
evaluate the shared function at some input point to obtain a value zi. Computing
z1 + · · ·+zN reconstructs the function output at the evaluated point. If the point
function is hidden even if t-out-of-N shares are leaked, we call it a (t,N)-DPF.
The main efficiency measure for a DPF is the size of the shares, which can be
as small as log n, where n is the size of the truth table of the point function.

We are going to build DPFs for new values of (t,N) not achieved before. In
particular, the existing query system [32] was only instantiated by (1, 2)-DPF.

From DPF to Multi-Server MCORAM. There is a folklore N2-server
ORAM construction (a.k.a. distributed ORAM [9]) assuming only a (t,N)-DPF.
Using a DPF with polylog(n) communication, the construction achieves
polylog(n) communication. While its server computation complexity is O(n),
it has been shown to outperform other optimized competitors in practice [16].
More importantly, we observe that we can adopt this DPF-based scheme to the
multi-client setting in a relatively simple manner.

On a very high level, the construction arranges a set of N2 servers in a
square matrix according to some (e.g., lexicographical) ordering. The database
M is split into N shares such that M̄1 + · · ·+M̄N = M , and all servers belonging
to the i-th row are given the i-th share M̄i. Clients can read the a-th location
M [a] by sharing a point function (which evaluates to a bit-string with the a-th
bit being 1) to each server in some i-th row. The responses from a server allow
the client to decode the i-th share of M [a]. Repeating this for all N rows, the
client could recover all shares and hence M [a]. Writing can be done similarly,
except that shares of the DPF are distributed row-wise to keep the share of the
databases consistent (see Section 7 for more details).

New DPF Constructions. With the generic transformation, we can focus
on constructing DPFs. The only known DPF with (poly)logarithmic-size shares
from non-lattice assumptions is due to Boyle et al. [4]. They show how to con-
struct a (1, 2)-DPF with logarithmic-size shares, assuming only the existence of
PRGs, which is equivalent to the existence of one-way functions. This yields a
(1, 4)-MCORAM resilient against a single server.

For improving resilience against a higher number of faulty servers, we investi-
gate new constructions of DPFs with different parameters. In this work, we build
a (2, 3)-DPF and a (3, 4)-DPF with poly-logarithmic communication. These new
constructions give us a (2, 9)-MCORAM and a (3, 16)-MCORAM, respectively.

The design blueprint is as follows. We start with a crucial observation that the
evaluation algorithm of the existing (1, 2)-DPF [4] can be run in an NC1 circuit by
instantiating the underlying PRG appropriately. Our key insight into increasing
the number of parties is a virtualization technique for emulating the execution
of the DPF evaluation algorithm of each party by 2 servers. To realize such
bootstrapping, we leverage another tool called homomorphic-secret sharing [6].
By applying our techniques to one or two parties, we obtain a (2, 3)-DPF and a
(3, 4)-DPF, respectively. Both schemes rely on a PRG that can be computed in

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 9

NC0 (e.g., Goldreich PRG [23]) and either the decisional Diffie-Hellman (DDH)
or the decisional composite residuosity (DCR) assumption.

3 Related Work

ORAM has been extensively studied for more than three decades, but mostly in
the single client setting, with drastically different research challenges compared
to the multi-client setting. For example, S3ORAM [27] is a single-client ORAM
that splits the server-side computation across 3 servers via secure multiparty
computation, which we aim to avoid. Recent works [3,13] considered how to pre-
serve obliviousness when a large number of clients access the database in parallel,
without considering security against malicious clients or access control. These
works require the clients to synchronize with each other and periodically interact
with the data owner, which is not needed by our MCORAM constructions.

ORAM and similar cryptographic techniques such as private information
retrieval (PIR) [14,28] have been utilized in building oblivious file systems (e.g.,
TaoStore [31] and prior works cited by [30,31]). These systems do not support
access control, and their obliviousness does not hold against malicious clients.
(Also see [30, Table 1].) Oblivious transfer (OT) can be considered as an ORAM
without writing. Camenisch [10] proposed OT with access control. Seeing a valid
zero-knowledge proof of the client credential, the “server” helps the client decrypt
one (randomized) entry of the encrypted database previously sent to the client.
Since the decryption key is needed, the data owner should remain online.

Also relying on zero-knowledge proofs, group ORAM [29] allows the client to
access the database according to a predefined policy without any interaction with
the data owner. Yet, the obliviousness does not hold against malicious clients.

Blass, Mayberry, and Noubir [1] proposed “multi-client ORAM” in a model
different from ours, in which all the clients trust each other. Their focus is
security against a server that is actively malicious and may rewind the state
information shared by multiple clients (and stored by the server).

A recent work of Hamlin et al. [26] considered a closely related problem
called private anonymous data access (PANDA), yet with some crucial differ-
ences. PANDA can be considered as combining the best of PIR and ORAM. It
focuses on achieving sublinear server computation, leveraging assumptions such
as only t out of the N clients can be corrupt for some predefined threshold t,
and the set of clients are fixed at setup. In contrast, MCORAM allows any sub-
set of the clients to be corrupt, and clients can dynamically join the system.
All PANDA schemes have both communication and computation complexities
scale multiplicatively in t. One of their schemes (Secret-Writes PANDA) achieves
the closest functionality aimed by MCORAM. However, writing is append-only,
meaning that their server storage grows linearly in the total number of writes
performed by all clients. Reads and writes are also distinguishable. While one
could hide the access type by performing dummy reads and writes, the append-
only nature makes the server storage grows linearly in the number of reads and
writes. In short, MCORAM with polylog(n) communication provides a better

10 Authors Suppressed Due to Excessive Length

alternative with no reliance on the client corruption threshold for security or
communication efficiency.

4 Preliminaries

Let PPT denote probabilistic polynomial time. The security parameter is denoted
by λ ∈ N. We say that a function negl(·) is negligible if it vanishes faster than
any inverse polynomial. We write the set {1, . . . , N} as [N].

4.1 Constrained Pseudorandom Functions

A constrained PRF (cPRF) [2] is a PRF equipped with the additional algorithms
Constrain and cEval. Let X be the domain of the PRF. For any subset X ⊆ X ,
Constrain produces a constrained key KX from the secret key K. Given KX ,
cEval can evaluate the PRF over any input x ∈ X, yet the PRF values for
x′ /∈ X remain pseudorandom. We focus on polynomial-size domains, so the
membership x ∈ X for any X ⊆ X can be checked in polynomial time.

Definition 1 (Constrained Pseudorandom Functions). A constrained
pseudorandom function family with domain X and range Y is defined as a tuple
of PPT algorithms (KGen,Eval,Constrain, cEval) such that:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm
returns a secret key K.

Eval(K,x): On input the secret key K and a value x ∈ X , the deterministic
evaluation algorithm returns a (pseudorandom) value y ∈ Y.

Constrain(sk, X): On input the secret key and a set X ⊆ X , the constrain algo-
rithm returns a constrained secret key KX .

cEval(KX , x): On input a constrained key KX and a value x ∈ X , the determin-
istic constrained evaluation algorithm returns a value y ∈ Y or ⊥.

We only require a cPRF to satisfy weak selective-input variants of correctness
and pseudorandomness, where the adversary first commits to a set ChSet before
given access to the evaluation and constrain oracles. The adversary promises not
to query the oracles over inputs which has any intersection with ChSet.

Definition 2. A constrained PRF cPRF with domain X and range Y is said to
be selective-input correct if, for all PPT algorithms A, it holds that

Pr
[
CorrectnessA,cPRF(1λ) = 1

]
≤ negl(λ)

where CorrectnessA,cPRF is defined in Fig. 1.

Definition 3. A constrained PRF cPRF with domain X and range Y is said to
be selective-input pseudorandom if, for all PPT algorithms A, it holds that∣∣∣∣Pr [Pseudorandom0

A,cPRF(1λ) = 1
]
− Pr

[
Pseudorandom1

A,cPRF(1λ) = 1
]∣∣∣∣ ≤ negl(λ)

where Pseudorandomb
A,cPRF is defined in Fig. 1.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 11

CorrectnessA,cPRF(1λ)

ChSet← A(1λ)

K ← KGen(1λ)

(x,X)← AEvalO,ConstrainO(1λ)

KX ← Constrain(K,X)

b0 := (x ∈ X)

b1 := (Eval(K,x) 6= cEval(KX , x))

return b0 ∧ b1

EvalO(x)

ensure x /∈ ChSet

y := cPRF.Eval(K,x)

return y

Pseudorandomb
A,cPRF(1λ)

ChSet← A(1λ)

K ← KGen(1λ)

f ← YX// the set of all functions from X to Y

Y0 :=
{
f(x) : x ∈ ChSet

}
Y1 :=

{
cPRF.Eval(K,x) : x ∈ ChSet

}
b′ ← AEvalO,ConstrainO(Yb)

return b

ConstrainO(X)

ensure X ∩ ChSet = ∅
KX := cPRF.Constrain(K,X)

return KX

Fig. 1. Correctness and Pseudorandomness Experiments for Constrained PRFs

4.2 Fully Homomorphic Encryption

Definition 4 (Fully Homomorphic Encryption). Let K = Kλ be a secret
key space, M =Mλ be a plaintext space, and C = Cλ be a ciphertext space. For
each n ∈ N, let Cn be the set of all polynomial-size circuits from Mn →M. A
homomorphic encryption scheme is defined as a tuple of PPT algorithms below.

KGen(1λ): On input the security parameter λ ∈ N, this key generation algorithm
returns a pair of public and secret keys (pk, sk) where sk ∈ K.

Enc(pk,m): On input pk and a message m ∈ M, this encryption algorithm
returns a ciphertext c ∈ C.

Dec(sk, c): On input sk ∈ K and a ciphertext c ∈ C, this decryption algorithm
returns the plaintext m ∈M.

Eval(pk,C, (c1, . . . , cn)): On input a public key pk, a polynomial-size circuit C ∈
Cn, and a set of ciphertexts (c1, . . . , cn) ∈ Cn for some n ∈ N, this evaluation
algorithm returns an evaluation output c′ ∈ C.

Fix λ ∈ N. For each (pk, sk) ∈ KGen(1λ), we recursively define Cpk :=c :

(
∃m ∈M s.t. c ∈ Enc(pk,m)

)
∨
(
∃n ∈ N,C ∈ Cn, (c1, . . . , cn) ∈ Cnpk s.t. c ∈ Eval(pk,C, (c1, . . . , cn))

)
to be the space of “well-formed” ciphertexts under the key pk, i.e., all ciphertexts
produced by Enc(pk, ·) and Eval(pk, ·, ·). Apparently, C ⊇

⋃
pk:(pk,sk)∈KGen(1λ) Cpk.

12 Authors Suppressed Due to Excessive Length

Typically, the decryption algorithm Dec(sk, ·) is only required to be well-
defined over Cpk for (pk, sk) ∈ KGen(1λ), but not necessarily over the entire ci-
phertext space C (which includes ciphertexts produced under other public keys).

Correspondingly, evaluation correctness is defined upon “valid” ciphertexts.
In this work, we explicitly require the decryption algorithm Dec(·, ·) of an

FHE to be well-defined over the entirety of K × C, in the sense that it always
outputs something in the message space M (albeit the message obtained when
decrypting with a wrong key might be unpredictable). We also require the scheme
to satisfy a stronger variant of evaluation correctness over all ciphertexts in C.
We bundle these extra requirements into the strong correctness property.

Correctness. An FHE scheme is correct if the following are satisfied.

– (Decryption Correctness) For any λ ∈ N, any (pk, sk) ∈ KGen(1λ), and any
message m ∈M, we have that

Pr
[
Dec(sk,Enc(pk,m)) = m

]
≥ 1− negl(λ)

where the probability is taken over the random coins of Enc.
– (Evaluation Correctness) For any λ ∈ N, any (pk, sk) ∈ KGen(1λ), any posi-

tive integer n ∈ poly(λ), any polynomial-size circuit C ∈ Cn, any ciphertexts
(c1, . . . , cn) ∈ Cnpk, if there exists mi = Dec(sk, ci) ∈M for all i ∈ {1, . . . , n},
then

Pr
[
Dec(sk, c) = C(m1, . . . ,mn) : c← Eval(pk,C, (c1, . . . , cn))

]
≥ 1− negl(λ)

where the probability is taken over the random coins of Enc and Eval.

The scheme is perfectly correct if the above probabilities are exactly 1.

Strong Correctness. A strongly-correct FHE scheme satisfies all below.

– (Decryption Correctness) Same as in the (usual) correctness definition above.
– (Well-Defined Decryption) Dec(·, ·) is well-defined over K × C, i.e., for any

(sk, c) ∈ K × C, there exists m ∈M such that m = Dec(sk, c).
– (Strong Evaluation Correctness) Evaluation correctness holds even for ci-

phertexts taken in C. Formally, for any λ ∈ N, any (pk, sk) ∈ KGen(1λ),
any positive integer n ∈ poly (λ), any polynomial-size circuit C ∈ Cn,
any ciphertexts (c1, . . . , cn) ∈ Cn (possibly with ci /∈ Cpk), if there exists
mi = Dec(sk, ci) ∈M for all i ∈ {1, . . . , n}, then

Pr
[
Dec(sk, c) = C(m1, . . . ,mn) : c← Eval(pk,C, (c1, . . . , cn))

]
≥ 1− negl(λ)

where the probability is taken over the random coins of Enc and Eval.

The scheme is perfectly strongly correct if the above probabilities are exactly 1.

Security. We recall the standard IND-CPA-security and define a new notion
called IK-IND-CPA-security, which combines key privacy and message indistin-
guishability. We also recall the notion of circular security.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 13

IND-CPAbE,A(1λ)

(pk, sk)← KGen(1λ)

(m0,m1, st)← A1(pk)

c← Enc(pk,mb)

b′ ← A2(st, c)

return b′

IK-IND-CPAbE,A(1λ)

(pk0, sk0)← KGen(1λ)

(pk1, sk1)← KGen(1λ)

(m0,m1, st)← A1(pk0, pk1)

c← Enc(pkb,mb)

b′ ← A2(st, c)

return b′

IND-CIRC-CPAbE,A(1λ)

(pk, sk)← KGen(1λ)

csk ← Enc(pk, sk)

(m0,m1, st)← A1(pk)

cb ← Enc(pk,mb)

b′ ← A2(st, csk, cb)

return b′

Fig. 2. Security Experiments of FHE (st is the state information of (A1,A2))

Definition 5 (IND-CPA). An FHE scheme E is IND-CPA-secure (has indis-
tinguishable messages under chosen-plaintext attack) if for any PPT adversary
A = (A1,A2), it holds that∣∣∣∣Pr [IND-CPA0

E,A(1λ) = 1
]
− Pr

[
IND-CPA1

E,A(1λ) = 1
] ∣∣∣∣ ≤ negl(λ)

where IND-CPAbE,A is defined in Fig. 2.

Definition 6 (IK-IND-CPA). An FHE scheme E is IK-IND-CPA-secure (has
indistinguishable keys and indistinguishable messages under chosen-plaintext at-
tack) if for any PPT adversary A = (A1,A2), it holds that∣∣∣∣Pr [IK-IND-CPA0

E,A(1λ) = 1
]
− Pr

[
IK-IND-CPA1

E,A(1λ) = 1
] ∣∣∣∣ ≤ negl(λ)

where IK-IND-CPAbE,A is defined in Fig. 2.

Definition 7 (Circular Security). Let E be an FHE scheme such that K =
M. E is circular secure if for any PPT adversary A = (A1,A2), it holds that∣∣∣∣Pr [IND-CIRC-CPA0

E,A(1λ) = 1
]
− Pr

[
IND-CIRC-CPA1

E,A(1λ) = 1
] ∣∣∣∣ ≤ negl(λ)

where IND-CIRC-CPAbE,A is defined in Fig. 2.

Instantiations. While IND-CPA security is the de facto standard of FHE
schemes, virtually all of them satisfy the stronger notion of IK-IND-CPA security.
This is because FHE ciphertexts are typically indistinguishable from elements
uniformly sampled from the ciphertext space (see, e.g. [20]).

Typically, FHE schemes are proven to satisfy the standard correctness notion.
Below, we show how these schemes can be transformed into one with strong
correctness, assuming circular security and the decryption algorithm Dec(·, ·) is

14 Authors Suppressed Due to Excessive Length

well-defined over K × C. The former assumption is “for free” as it is already
needed for bootstrapping the FHE scheme [18]. The latter is already satisfied
by most existing FHE schemes and can be otherwise obtained by artificially
extending the decryption algorithm to be well-defined over any input. For the
case of FHE schemes based on learning with errors (LWE), Dec(·, ·) typically
consists of an inner product of two vectors in Z`q, followed by rounding. Thus

Dec(·, ·) is well defined for any pair of vectors in Z`q if we set C := K := Z`q.

Let E be such an FHE scheme. A public key in our transformed scheme E ′
is of the form pk′ = (pk, csk) where csk = E .Enc(pk, sk) is an encryption of the
secret key sk under pk. The secret key sk′ is identical to sk. The encryption (with
input pk) and decryption algorithms of E and E ′ are identical.

The evaluation algorithm E ′.Eval, on input pk′, a circuit C ∈ Cn, and (not
necessarily well-formed) ciphertexts (c1, . . . , cn) ∈ Cn works as follows:

– homomorphically decrypts ci using csk for each i ∈ [n], i.e., compute

c′i ← E .Eval(pk, E .Dec(·, ci), csk),
– then, evaluates C homomorphically over (c′1, . . . , c

′
n), i.e., output

c′ ← E .Eval(pk,C, (c′1, . . . , c′n)).

Clearly, if E is IK-IND-CPA-secure and circular secure, then E ′ is IK-IND-
CPA-secure. To see why E ′ has strong correctness, we note that csk ∈ Cpk by
construction and Dec(·, ci) is well-defined over K =M for all i ∈ [n] by assump-
tion. Therefore, by the (standard) correctness of E , for all i ∈ [n], E .Dec(sk, c′i) =
E .Dec(sk, ci). Next, since c′i ∈ Cpk for all i ∈ [n], we have c′ ∈ Cpk. Using the (stan-
dard) correctness of E again, if mi = E ′.Dec(sk′, ci) = E .Dec(sk, ci) for all i ∈ [n],
then E ′.Dec(sk′, c′) = E .Dec(sk, c′) = C(m1, . . . ,mn) as we desired.

To draw an analogy to LWE-based schemes, even though (c1, . . . , cn) might
have very large noise (with respect to pk), E .Eval is executed over csk, which
is well-formed (has small noise) and (c1, . . . , cn) are just constants in the de-
scription of the circuits E .Dec(·, ci). This is analogous to Gentry’s bootstrapping
procedure [18] and works for exactly the same reason.

Our modification essentially introduces an additional bootstrapping step be-
fore every homomorphic evaluation. Thus, fast bootstrapping techniques can be
applied to make the overhead we added minimal when compared to the cost of
the homomorphic evaluation. As the communication complexity of our scheme
depends on the rate (message-to-ciphertext size ratio) of the FHE scheme, one
can achieve optimal communication (for large enough data blocks) by using the
rate-1 FHE [8,19]. It is not hard to see that those schemes also satisfy the notion
of IK-IND-CPA security (since ciphertexts are identical to those of [20]).

4.3 Distributed Point Functions

A point function is a function whose images are zero at all points except one.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 15

Definition 8 (Point Function). A point function Fa,b : {0, 1}d → {0, 1}r, for
a ∈ {0, 1}d and b ∈ {0, 1}r, is defined by Fa,b(a) = b, and Fa,b(c) = 0r if c 6= a.

Unless differently specified, we interpret the output domain {0, 1}r of F as an
Abelian group G with respect to the group operator ⊕.

A distributed point function (DPF) allows secret-sharing a point function f
to multiple servers. The servers can locally evaluate the shared function at any
point x and produce output shares, which can be combined to recover f(x).

Definition 9 (Distributed Point Function [4]). For N ∈ N and t ∈ [N], a
(t,N)-DPF is a tuple of PPTalgorithms DPF.(Gen,Eval,Dec) defined as follows.

DPF.Gen(1λ, Fa,b): On input the security parameter 1λ and the description of a

point function Fa,b, the key generation algorithm returns N keys (k1, . . . , kN).

DPF.Eval(i, ki, x): On input a party index i, a key ki, and a string x ∈ {0, 1}d,
the evaluation algorithm returns a share si.

DPF.Dec(s1, . . . , sN): On input a set of shares (s1, . . . , sN), the decoding algo-
rithm returns the function output y.

We consider an N -party additive output decoder for an Abelian group (G,+)

that returns y =
∑N
i=1 si on input (s1, . . . , sN) ∈ GN . We state a relaxed cor-

rectness notion that allows the evaluation algorithm to have an error ∆, and
recall the standard notion of security.

Definition 10 (∆-Correctness). A (t,N)-DPF = (DPF.Gen,DPF.Eval,DPF.Dec)
is correct if there exists an inverse polynomial error bound ∆ such that for all
λ ∈ N, x ∈ {0, 1}d, and point functions Fa,b,

Pr

[
(k1, . . . , kN)← DPF.Gen(1λ, Fa,b)
{si ← DPF.Eval(i, ki, x)}i∈[N]

: DPF.Dec(s1, . . . , sN) 6= Fa,b(x)

]
≤ ∆.

If ∆ = 0 then we say that the scheme is perfectly correct.

Definition 11 (Security). A (t,N)-DPF = DPF.(Gen,Eval,Dec) is secure if
there exists a negligible function negl(·) such that for all λ ∈ N, subsets T ⊆ [N]
such that |T | = t, all PPTnon-uniform distinguishers A, it holds that

Pr

 ((a0, b0), (a1, b1))← A(1λ)
β ← {0, 1}
(k1, . . . , kN)← DPF.Gen(1λ, Faβ ,bβ)

: β = A({ki}i∈T)

 ≤ negl(λ).

Boyle et al. [4] showed that (1, 2)-DPF can be built from one-way functions.

Theorem 3 ([4]). A perfectly-correct (1, 2)-DPF of poly
(
d(λ+ log(|G|))

)
-size

key can be built from one-way functions.

16 Authors Suppressed Due to Excessive Length

We also observe that the complexity of the DPF.Eval algorithm in their con-
struction [4] is dominated by d-many sequential evaluations of a length-doubling
PRG. This fact is going to be useful for our later construction.

4.4 Homomorphic Secret Sharing

Homomorphic secret sharing (HSS) can be seen as generalizing a distributed
point function where the evaluation algorithm supports the evaluation of more
complex circuits. We focus on single-client HSS. In such a scheme, a single client
secret shares an input x to multiple servers. These servers can then locally eval-
uate any circuit C in the supported class of circuits to produce some output
shares. The value C(x) can then be recovered by combining these output shares.

Definition 12 (Homomorphic Secret Sharing [6]). For N ∈ N, t ∈ [N], a
(t,N)-HSS for a circuit family C is defined by the following PPT algorithms:

HSS.Gen(1λ, x): On input the security parameter 1λ and an input x, the share
generation algorithm returns a set of shares (s1, . . . , sN).

HSS.Eval(i, si, C): On input a party index i, a share si, and a circuit C ∈ C, the
evaluation algorithm returns an evaluated share zi.

HSS.Dec(z1, . . . , zN): On input a set of shares (z1, . . . , zN), the decoding algo-
rithm returns the output y.

We say that an HSS scheme is compact if the size of the output shares does
not grow with the size of the circuit given as input to the HSS.Eval algorithm.
We define correctness where the evaluation algorithm may incur an error with
probability at most ∆, for some inverse polynomial function ∆.

Definition 13 (∆-Correctness). A (t,N)-HSS = HSS.(Gen,Eval,Dec) is cor-
rect if there exists an inverse polynomial error bound ∆ such that for all λ ∈ N,
inputs x, and circuits C ∈ C, we have that

Pr

[
(s1, . . . , sN)← HSS.Gen(1λ, x)
{zi ← HSS.Eval(i, si, C)}i∈[N]

: HSS.Dec(z1, . . . , zN) 6= C(x)

]
≤ ∆.

Security is defined canonically.

Definition 14 (Security). A (t,N)-HSS = HSS.(Gen,Eval,Dec) is secure if
there exists a negligible function negl(·) such that for all λ ∈ N, subsets T ⊆ [N]
such that |T | = t, all PPTnon-uniform distinguishers A, it holds that

Pr

 (x0, x1)← A(1λ)
β ← {0, 1}
(s1, . . . , sN)← HSS.Gen(1λ, xβ)

: β = A({si}i∈T)

 ≤ negl(λ).

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 17

It is useful to recall a theorem from Boyle et al. [5], where they propose an
HSS scheme for NC1 circuits assuming the hardness of the DDH problem. There
also exists a similar construction based on the hardness of the DCR problem [17].

Theorem 4 ([5]). If the DDH problem is hard, there exists a compact ∆-correct
(1, 2)-HSS for circuits in NC1, for any inverse polynomial ∆.

5 Multi-Client ORAM and Its Simulation-based Security

5.1 Syntax

MCORAM was introduced by Maffei et al. [29] and later extended to the mali-
cious client setting [30]. Existing MCORAM definitions are mostly verbal, which
left many subtleties. We recall (a slightly rephrased version of) its definition.

Definition 15. An MCORAM scheme for message space M 6⊇ {ε} consists of
a PPT algorithm Setup and protocols (ChMod,Access) executed between a data
owner D, polynomially many independent instances of client C, and a server S:

(pp,msk, M̄)← Setup(1λ, 1n,M): The setup algorithm is run by the database
owner D. It inputs the security parameter λ, a size parameter n, and an array
M ∈ Mn of initial data. It outputs the public parameter pp (an implicit input
of all other algorithms), the master secret key msk (to be kept secret by the
owner D), and a database M̄ (to be forwarded to the server S).

〈ε; sk′; M̄ ′〉 ← ChMod〈D(msk, AR, AW);C(sk, AR, AW);S(M̄)〉: The data owner
D grants access rights to a client C, possibly with the help of the server S, using
the change-mode protocol. If C has not joined the system yet, it is assumed that
sk = ε. The basic model only allows granting additional rights.

To run ChMod, D inputs the master (owner) secret key msk, a client identifier
id ∈ {0, 1}∗, and two sets AR, AW ⊆ [n] of addresses. C inputs his secret key sk,
and the same sets of addresses AR and AW . The server S inputs the database
M̄ . Supposedly, C will be granted reading rights to AR, and writing rights to AW .

At the end of ChMod, D outputs a the empty string ε. C outputs an updated
secret key sk′. S outputs a possibly updated database M̄ ′.

〈m′; M̄ ′〉 ← Access〈C(sk, a,m);S(M̄)〉: To access a certain address of the mem-
ory, client C engages in the access protocol with the server. The client C inputs
its secret key sk, an address a ∈ [n], and some data m ∈M∪{ε}. Read access is
indicated by m = ε. Otherwise, the data m 6= ε is to be written to the address a.
The server S inputs M̄ . Regardless of the type of access, the client outputs some
data m′ read from the address a, while the server updates its database to M̄ ′.

It is straightforward to extend the MCORAM syntax and security defini-
tions to the multi-server setting. Setup outputs multiple encoded databases

18 Authors Suppressed Due to Excessive Length

M̄1, . . . , M̄N to be maintained by the respective servers. ChMod becomes an
(N + 2)-party protocol between the database owner D, the client C, and the
servers S1, . . . , SN . The outputs of D and C remain unchanged, while Si outputs
an updated database M̄ ′i . Similarly, Access becomes an (N + 1)-party protocol
between the client C and S1, . . . , SN . Their outputs are defined analogously.

Although our model allows ChMod and Access to be general multi-party
protocols, we are primarily interested in constructions where the servers do not
communicate with each other to better justify the non-colluding assumption.

5.2 Correctness and Integrity

An MCORAM scheme should not only be correct but satisfy an even stronger
property called integrity (subsuming correctness): The database entry at the
address a can only be changed by clients having write access to a, other clients
who might attempt to maliciously tamper with the data of the honest clients
will fail. It is a unique property here and is absent in the single-client setting.

More formally, integrity is modeled by an experiment involving an adver-
sary A. The experiment acts as an honest MCORAM server, provides the in-
terface of an MCORAM instance to A, i.e., A can request to corrupt a client,
request for access permissions on behalf of a client, and access the data. To cap-
ture the notion of correctness, A maintains a plaintext copy of the MCORAM-
encoded database, i.e., all accesses are mirrored to the plaintext copy. The win-
ning condition of A is to make the maintained plaintext copy of the database
ends up inconsistent with the one encoded in the MCORAM.

Definition 16 (Integrity of MCORAM). An MCORAM Θ has integrity if,
for all PPT adversaries A, size parameters n = poly(λ), and arrays M ∈ Mn,
with experiment Int as defined in Fig. 3, we have

Pr
[
IntΘ,A(1λ, 1n,M) = 1

]
≤ negl(λ).

Integrity in the multi-server setting is almost identical, except that all oracles
now return the views of all servers, which reflects that they are all honest but
curious. However, integrity in this setting seems challenging to achieve, especially
if we assume that the servers do not communicate with each other. Instead, one
may consider a weaker notion known as accountable integrity (defined in the
single-server setting [29]), which requires that any violation of integrity can be
caught after-the-fact. Extending it to the multi-server setting is straightforward.

5.3 Obliviousness

Access in MCORAM is fully specified by (id, a,m), meaning that client id is
reading address a (if m = ε) or writing m to address a. Obliviousness mandates

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 19

IntΘ,A(1λ, 1n,M)

(pp,msk, M̄)← Setup(1λ, 1n,M)

Corrupt := ∅
Read[a] := Write[a] := ∅ ∀a ∈ [n]

M ′ := M

O := {CorrO,ChModO,AccessO}

(id∗, a∗)← AO(pp, M̄ ,M)

〈m∗; ∗〉
← Access〈C(skid∗ , a

∗, ε);S(M̄)〉
b0 := (id∗ ∈ Read[a∗])

b1 := (Corrupt ∩Write[a∗] = ∅)
b2 := (M ′[a∗] 6= m∗)

return b0 ∧ b1 ∧ b2

CorrO(id)

Corrupt := Corrupt ∪ {id}
return skid

ChModO(id, AR, AW , C
∗)

for a ∈ AR do Read[a] := Read[a] ∪{id}
for a ∈ AW do Write[a] := Write[a] ∪{id}
if id ∈ Corrupt then

〈ε; (∗; viewC∗); (M̄ ; viewS)〉
← ChMod〈D(msk, AR, AW);C∗;S(M̄)〉

else

〈ε; skid; (M̄ ; viewS)〉
← ChMod〈D(msk, AR, AW);

C(skid, AR, AW);S(M̄)〉
return (viewC∗ , viewS)// viewC∗ can be ε

AccessO(id, a,m,C∗)

if id ∈Write[a] ∧m 6= ε then M ′[a] := m

if id ∈ Corrupt then

〈(∗; viewC∗); (M̄ ; viewS)〉
← Access〈C∗;S(M̄)〉

else

〈∗; (M̄ ; viewS)〉
← Access〈C(skid, a,m);S(M̄)〉

return (viewC∗ , viewS)// viewC∗ can be ε

Fig. 3. MCORAM’s Integrity against Malicious Clients and Honest-but-Curious Server

that such information would not be leaked to any other parties, unless the access
is write access and the parties have read access to a.

More formally, (indistinguishability-based) obliviousness is modeled by a pair
of experiments, labeled by b = 0, 1 respectively, involving an adversary A. As in
the integrity experiment, the experiments provide the interface of an instance of
MCORAM to A, with some differences. First, A has to provide malicious server
codes to the interfaces, which models the setting where the server is always
trying to compromise clients’ obliviousness. Second, the interface for the access
protocol is parameterized by the bit b (which specifies the experiment) and
takes as input two access instructions (idβ , aβ ,mβ) for β ∈ {0, 1}. The interface
would execute instruction labeled with β = b. After some interactions with the
interface, A would output a bit b′, which can be interpreted as a guess of b. An
MCORAM is said to be (indistinguishably) oblivious against malicious clients if
the probabilities of A outputting 1 in either experiment are negligibly close.

20 Authors Suppressed Due to Excessive Length

OblbΘ,A(1λ, 1n,M)

(pp,msk, M̄)← Setup(1λ, 1n,M)

Corrupt := ChAddr := ∅
Read[a] := ∅ ∀a ∈ [n]

O := {CorrO,ChModO,AccessOb}

b′ ← AO(pp, M̄ ,M)

return b′

CorrO(id)

ensure ∀ a ∈ ChAddr, id /∈ Read[a]

Corrupt := Corrupt ∪{id}
return skid

ChModO(id, AR, AW , C
∗, S∗)

for a ∈ AR do Read[a] := Read[a] ∪{id}
if id ∈ Corrupt then

ensure ChAddr ∩AR = ∅
〈ε; (∗; viewC∗); (∗; viewS∗)〉
← ChMod〈D(msk, AR, AW);C∗;S∗〉

else

〈ε; skid; (∗; viewS∗)〉
← ChMod〈D(msk, AR, AW);

C(skid, AR, AW);S∗〉
return (viewC∗ , viewS)// viewC∗ can be ε

AccessOb((id0, a0,m0), (id1, a1,m1), S∗)

β0 :=
(
Corrupt ∩{id0, id1} = ∅

)
β1 :=

(
(a0,m0) 6= (a1,m1)

)
∧ (m0 6= ε)

β1 := β1 ∧ (Read[a0] ∩ Corrupt 6= ∅)
β2 :=

(
(a0,m0) 6= (a1,m1)

)
∧ (m1 6= ε)

β2 := β2 ∧ (Read[a1] ∩ Corrupt 6= ∅)
if β0 ∨ β1 ∨ β2 then return ⊥
ChAddr := ChAddr ∪ {a0, a1}
〈∗; (∗; viewS∗)〉 ← Access〈C(skidb , ab,mb);S

∗〉
return viewS∗

Fig. 4. Obliviousness Experiment of MCORAM against Malicious Clients and Server

Definition 17 (Indistinguishability-based Obliviousness). An MCO-
RAM scheme Θ is indistinguishably oblivious against malicious clients if, for
all PPTA, all λ and n = poly(λ), all arrays M ∈Mn, with Obl as in Fig. 4,∣∣∣∣Pr [Obl0Θ,A(1λ, 1n,M) = 1

]
− Pr

[
Obl1Θ,A(1λ, 1n,M) = 1

]∣∣∣∣ ≤ negl(λ).

So far, we followed Maffei et al. [29] and defined an indistinguishability-based
obliviousness definition. However, when constructing higher-level protocols, it
is often more convenient to prove security based on simulation-based security
notions of the building blocks. We thus propose a new simulation-based oblivi-
ousness definition for MCORAM, which turns out to be an equivalent one.

Our simulation-based obliviousness notion is also modeled by a pair of exper-
iments involving an adversary A, called the real and ideal experiment, respec-
tively. Both experiments provide the interface of an MCORAM instance to A.
However, the way that queries to the interface are answered varies greatly.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 21

Real-OblΘ,A(1λ, 1n,M)

(pp,msk, M̄)← Setup(1λ, 1n,M)

Corrupt := ChAddr := ∅
Read[a] := ∅ ∀a ∈ [n]

O := {CorrO,ChModO,AccessO}

b′ ← AO(pp, M̄ ,M)

return b′

CorrO(id)

ensure ∀ a ∈ ChAddr, id /∈ Read[a]

Corrupt := Corrupt ∪{id}
return skid

ChModO(id, AR, AW , C
∗, S∗)

for a ∈ AR do Read[a] := Read[a] ∪{id}
if id ∈ Corrupt then

ensure ChAddr ∩AR = ∅
〈ε; (∗; viewC∗); (∗; viewS∗)〉
← ChMod〈D(msk, AR, AW);C∗;S∗〉

else

〈ε; skid; (∗; viewS∗)〉
← ChMod〈D(msk, AR, AW);

C(skid, AR, AW);S∗〉
return (viewC∗ , viewS)// viewC∗ can be ε

AccessO(id /∈ Corrupt, a,m, S∗)

if Read[a] ∩ Corrupt = ∅ ∧m 6= ε then

ChAddr := ChAddr ∪{a}
〈∗; (∗; viewS∗)〉 ← Access〈C(skid, a,m);S∗〉
return viewS∗

Fig. 5. Real Experiment for Obliviousness against Malicious Clients and Server

In the real experiment, the interface is backed by a real execution of the
MCORAM instance (as in the integrity experiment), where A needs to pro-
vide the malicious server code (as in the indistinguishability-based obliviousness
experiment). Answering a query in the ideal experiment generally invokes a sim-
ulator S with the leakage of the query as the input. For example, upon receiving
a query (id, a,m) to the interface for the access protocol, if A has read access to
a and m 6= ε, then S is given (a,m). Otherwise, S is given no information (other
than the fact that the query is issued to the access interface). In any case, given
such a leakage, S is supposed to simulate the response of a real execution. After
some interactions, A would output a bit b′, which can be interpreted as a guess
of whether it has interacted with the real experiment or the ideal experiment.
An MCORAM is said to be semantically oblivious against malicious clients if
the probabilities of A outputting 1 in either experiment are negligibly close.

Definition 18 (Semantic Obliviousness). An MCORAM scheme Θ is se-
mantically oblivious against malicious clients if, for all PPT adversaries A, all λ
and n = poly(λ), and all arrays M ∈Mn, there exists a PPT simulator S, with
Real-Obl and Ideal-Obl as defined in Figs. 5 and 6 respectively, such that∣∣∣∣Pr [Real-OblΘ,A(1λ, 1n,M) = 1

]
− Pr

[
Ideal-OblΘ,A,S(1λ, 1n,M) = 1

]∣∣∣∣ ≤ negl(λ).

22 Authors Suppressed Due to Excessive Length

Ideal-OblΘ,A,S(1λ, 1n,M)

(pp, td, M̄)← S(‘Setup’, 1λ, 1n,M)

Corrupt := ChAddr := ∅
O := {CorrO,ChModO,AccessO}
Read := Empty dictionaries

b′ ← AO(pp, M̄ ,M)

return b′

CorrO(id)

ensure ∀ a ∈ ChAddr, id /∈ Read[a]

Corrupt := Corrupt ∪{id}
(skid, td)← S(‘Corrupt’, td, id)

return skid

ChModO(id, AR, AW , C
∗, S∗)

for a ∈ AR do Read[a] := Read[a] ∪{id}
if id ∈ Corrupt then

ensure ChAddr ∩AR = ∅
(viewC∗ , viewS∗ , td)

← SC
∗,S∗(‘CorrChMod’, td, id, AR, AW)

return (viewC∗ , viewS∗)

else

(viewS∗ , td)← SS
∗
(‘ChMod’, td, id, AR, AW)

return (viewC∗ , viewS)// viewC∗ can be ε

AccessO(id /∈ Corrupt, a,m, S∗)

if Read[a] ∩ CorrAddr 6= ∅ ∧m 6= ε then

(viewS∗ , td)← SS
∗
(‘CorrAccess’, td, a,m)

else

if m 6= ε then ChAddr := ChAddr ∪ {a}

(viewS∗ , td)← SS
∗
(‘Access’, td)

return viewS∗

Fig. 6. Ideal Experiment for Obliviousness against Malicious Clients and Server

The above two definitions can be shown equivalent using arguments for prov-
ing similar statements in encryption. See the full version for formal treatment.

Extending obliviousness to the multi-server setting where at most t of the N
servers are corrupt is slightly more complicated. To model this, we modify the
security experiments such that all N servers are initially honest, and at most t
of them can be corrupted using a modified CorrO oracle. Correspondingly, the
inputs of the modified ChModO oracle and AccessO oracle now include at most t
pieces of malicious codes {S∗j } for the respective servers, such that S∗j will be
used to generate the communication transcript if server j is corrupt.

6 FHE-based Single-Server Construction

6.1 Formal Description

Fix a database size n ∈ N with n = poly(λ). Let cPRF be a constrained PRF
family (Section 4.1) with domain [n] ∪ {0}. Let E .(KGen,Enc,Dec, Eval) be an
FHE scheme (Section 4.2) with message spaceME . Let Σ.(KGen,Sig,Verify) be
a signature scheme with message spaceMΣ := {0, 1}λ×ME . For any array M̄ ,

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 23

Setup(1λ, 1n,M = (m1, . . . ,mn))

msk← cPRF.KGen(1λ)

(pkE0 , sk
E
0) := E .KGen(1λ)

for k ∈ [n] do

rR,k := cPRF.Eval(msk, (0, k))

rW,k := cPRF.Eval(msk, (1, k))

(pkEk , sk
E
k) := E .KGen(1λ; rR,k)

(pkΣk , sk
Σ
k) := Σ.KGen(1λ; rW,k)

M̄ [k] := m̄k ← E .Enc(pkEk ,mk)

pp :=
{
pkE0 , (pk

E
k , pk

Σ
k)
}n
k=1

return (pp,msk, M̄)

ChMod〈D,C, S〉

D(msk, AR, AW)

ensure AR, AW ⊆ [n]

X := ({0} ×AR) ∪ ({1} ×AW)

sk′ := cPRF.Constrain(msk, X)

send K to C

return ε

C(sk, AR, AW)

receive sk′ from D

return sk′

S(M̄)

return M̄ ′ := M̄

Access〈C, S〉

C(skid, a,m)

receive r from S

rR,a := cPRF.cEval(sk, (0, a))

rW,a := cPRF.cEval(sk, (1, a))

(pkEa , sk
E
a) := E .KGen(1λ; rR,a)

(pkΣa , sk
Σ
a) := Σ.KGen(1λ; rW,k)

(p̃kE , s̃kE)← E .KGen(1λ)

σ ← Σ.Sig(skΣa , (r,m))

c̃0 ← E .Enc(p̃kE , a)

if m 6= ε then

c1 ← E .Enc(pkEa , σ), c2 ← E .Enc(pkEa ,m)

else

c1 ← E .Enc(pkE0 , 0), c2 ← E .Enc(pkE0 , 0)

send (p̃kE , c̃0, c1, c2) to S

receive c̃′0 from S

m̄′ ← E .Dec(s̃kE , c̃′0)

return m′ ← E .Dec(skEa , m̄
′)

S(M̄)

send r←$ {0, 1}λ to C

receive (p̃kE , c̃0, c1, c2) from C

send c̃′0 ← E .Eval(p̃kE ,ReadM̄ , c̃0) to C

for k ∈ [n] do

m̄′k ← E .Eval(pkEk ,WritepkΣ
k
,r, (c1, c2, m̄k))

M̄ ′[k] := m̄′k

return M̄ ′

Fig. 7. FHE-based Single-Server MCORAM Construction

nonce r ∈ {0, 1}λ, and public key pk of Σ, we define the following circuits:

ReadM̄ (addr) := M̄ [addr]

Writepk,r(sig, data
′, data) :=

{
data′ if Σ.Verify(pk, (r, data′), sig) = 1

data otherwise

With the above, Fig. 7 presents an MCORAM Θ for the message spaceME .
We highlight some key steps. We assume for now that the data ownerD generates
the keys (pkEk , sk

E
k) and (pkΣk , sk

Σ
k) for k ∈ [n] ∪{0} during setup, and publishes

all public keys as public parameters. Naturally, the keys indexed by k ∈ [n]

24 Authors Suppressed Due to Excessive Length

corresponds to the n addresses of the database, while the keys indexed by 0 are
reserved for other purposes. The database at the server S is M̄ = {m̄k}k∈[n],

where m̄k = E .Enc(pkEk ,mk). Reading and writing rights to an address a ∈ [n] is
granted to a client C by simply sending to C the key skEa and skΣa , respectively.

To obliviously access an address a ∈ [n], the client C first requests a nonce r
from the server S. C then generates a fresh FHE key p̃kE , and uses it to encrypt
a in c0. Then, for a write access, C uses skΣa to sign r and the data m to be
stored, and encrypts the resulting signature σ in c1 and m in c2. For a read
operation, C sets both σ and m to 0, and uses pkE0 to generate c1 and c2 instead.

As S is supposedly oblivious to the address, it homomorphically evaluates
the reading circuit ReadM̄ parameterized by the entire database M̄ over c0. This
results in a ciphertext encrypting ma under p̃kE , whose secret key is only known
by C. S also evaluates the writing circuit WritepkΣk ,r over (c1, c2, m̄k) for each

address k ∈ [n]. Under the hood of FHE, WritepkΣk ,r checks if σ is a valid signature

of (r,m) w.r.t. pkΣk , and if so (C has writing rights to k and intends to write
m there), returns a ciphertext m̄′k encrypting the new m under pkEk . If not, m̄′k
would be encrypting mk (the original data) under pkEk . Regardless of the result
(which S is oblivious to), S updates the k-th entry of the database to m̄′k.

To reduce the size of the master secret key, D can derive the E and Σ keys
using the pseudorandomness generated by cPRF. Correspondingly, D sends the
appropriately constrained PRF keys, so that the clients can re-derive the E and
Σ secret keys. If cPRF features succinct constrained keys (of size sublinear in the
description size of the constraining set), then the MCORAM features succinct
client keys (of size sublinear in the number of permitted addresses).

6.2 Security

Integrity requires that data written honestly can be successfully read by honest
clients, which largely follows from the correctness of the building blocks. The
more challenging requirement is to ensure the adversary can not overwrite entries
without write access. We first use the correctness of FHE and the signature
scheme to argue that, unless a valid signature of a random nonce is given, an
entry would never be overwritten, then we argue for its unforgeability.

Obliviousness is intuitive, too, because a client always sends a fresh public key
and three FHE ciphertexts during access, regardless of the access type. Although
the ciphertexts are generated using keys that may depend on the access, we can
rely on the key privacy of FHE and argue that they are still indistinguishable.
The proofs for our theorems can be found in the full version.

Theorem 5. If cPRF is selective-input correct and pseudorandom, E is strongly
correct, Σ is correct, and Σ is EUF-CMA-secure, then Θ has integrity.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 25

Theorem 6. If cPRF is selective-input pseudorandom, and E is IND-CPA-
secure and IK-IND-CPA-secure, then Θ is oblivious.

6.3 Access Rights Revocation

Generic techniques for revocation are compatible with our construction. First of
all, the data owner could always re-encrypt database entries and/or re-generate
the corresponding signature verification keys. However, this requires the data
owner to re-grant the access rights of the refreshed entries from scratch. Using
a constrained PRF for a powerful enough class of constraints, we can save the
data owner from some troubles in always re-granting the keys to the clients.

Recall that cPRF is used for deriving the address-dependent secret keys. To
support revocation, we consider an equivalent formulation of cPRF, where the
PRF key is constrained by a predicate P , such that the constrained key allows
evaluations of the PRF over the inputs x satisfying P (x) = 1. The core idea is to
put the latest client revocation list as an input of P for deriving the latest keys.

In more detail, the data owner publishes (e.g., via the server) the client
revocation lists LRead,a and LWrite,a for each a ∈ [n], which contain the identifiers
of clients whose read access and respectively write access to address a have been
revoked. Suppose client id is entitled to read access to addresses a ∈ AR and
write access to addresses a ∈ AW , respectively. The data owner delegates to
client id a PRF key constrained with respect to the following predicate PAR,AW ,id
parameterized by AR, AW , and id (i.e., they are embedded in the constraint key):

PAR,AW ,id(op, addr,CRL): If (id /∈ CRL) ∧ ((op = Read ∧ addr ∈ AR) ∨
(op = Write ∧ addr ∈ AW)), return 1; else return 0.

The last input CRL can be changing (LRead or LWrite). We still use the PRF
output to generate the signing and verification keys for the address a, but it
would be the PRF value on (Write, a,LWrite,a) for write access, for example. If
a ∈ AW and id /∈ LWrite,a, client id can evaluate the PRF on (Write, a,LWrite,a),
and hence derive the signing key needed for write access to a.

To revoke (more) clients their write access to a, the data owner informs the
server of a new verification key (which is a PRF value of the new blacklist).
Read access can be revoked similarly, except that the data owner would need to
re-encrypt those database entries whose revocation policies have been changed.

7 DPF-based Multi-Server Construction

7.1 Our Distributed Point Function

Let (DPF′.Gen,DPF′.Eval,DPF′.Dec) be a (1, 2)-DPF such that DPF′.Eval is in
NC1, and let (1, 2)-HSS = (HSS.Gen,HSS.Eval,HSS.Dec) be a homomorphic se-
cret sharing as defined in Section 4.4 for NC1 circuits. Fig. 8 shows our (3, 4)-DPF

26 Authors Suppressed Due to Excessive Length

DPF.Gen(1λ, Fa,b)

(k1, k2)← DPF′.Gen(1λ, Fa,b)

(s1, s2)← HSS.Gen(1λ, k1)

(s3, s4)← HSS.Gen(1λ, k2)

return (s1, s2, s3, s4)

DPF.Eval(i, ki, x)

if i ∈ {1, 3} then j := 1

if i ∈ {2, 4} then j := 2

` := 2

if i ≤ 2 then ` := 1

C ← DPF′.Eval(`, ·, a)

z ← HSS.Eval(j, ki, C)

return z

DPF.Dec(z1, z2, z3, z4)

y1 ← HSS.Dec(z1, z2)

y2 ← HSS.Dec(z3, z4)

z ← DPF′.Dec(y1, y2)

return z

Fig. 8. (3, 4)-DPF Construction

construction. The (2, 3)-DPF follows a straightforward modification, which we
include in the full version.

Theorem 7 (Correctness). Let ∆̂ and ∆̃ be inverse polynomials. Let
(1, 2)-DPF′ be a ∆̂-correct distributed point function and let (1, 2)-HSS be a
∆̃-correct homomorphic secret sharing. Our construction in Fig. 8 is a ∆-correct
(3, 4)-DPF, for some inverse polynomial ∆.

Theorem 8 (Security). Let (1, 2)-DPF′ be a secure distributed point function
and let (1, 2)-HSS be a secure homomorphic secret sharing. The construction
in Fig. 8 is a secure (3, 4)-DPF.

The proofs of Theorems 7 and 8 can be found in the full version.

Instantiations. By Theorem 4, there exists a (1, 2)-HSS for NC1 circuits with
share size poly

(
λ|a|

)
, which is ∆-correct for any inverse polynomial ∆, assum-

ing the hardness of the DDH (or DCR) problem. By Theorem 3, there exists a
perfectly-correct (1, 2)-DPF′ with poly

(
d(λ+ log(|G|))

)
key size, where {0, 1}d

is the domain of the point function, assuming the existence of one-way func-
tions. What is left to be shown is that our (3, 4)-DPF is efficient when plugging
in these two building blocks. More precisely, we will show that DPF′.Eval of
the (1, 2)-DPF′ is computable by an NC1 circuit. Recall that the complexity of
the algorithm of [4] is dominated by d calls for a length-doubling PRG. For a
point function with a polynomial-size domain, we can set d = c log(λ), for some
constant c, then implementing the length-doubling PRG with a construction
in NC0 (such as Goldreich PRG [23]) gives us an evaluation algorithm com-
putable by an NC1 circuit. The size of the resulting keys of our (3, 4)-DPF is
poly

(
λd · (λ+ log(|G|))

)
= poly

(
λc log(λ) · (λ+ log(|G|))

)
. We thus obtain:

Corollary 1. If the DDH or DCR problem is hard and there exists a PRG in
NC0, there exists a ∆-correct (3, 4)-DPF for any inverse polynomial ∆, for func-
tions with polynomial-size domain {0, 1}d with key size poly

(
λd · (λ+ log(|G|))

)
.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 27

Setup(1λ, 1n, 1N ,M = (m1, . . . ,mn))

for k ∈ [n] do

(pkEk , sk
E
k)← E .KGen(1λ)

m̄′k ← E .Enc(pkEk ,mk)

M̄ ′ := (m̄′1, . . . , m̄
′
n)

for k ∈ [N]

sample M̄k s.t. M̄ ′ =
∑
i∈[N] M̄i

for (i, j) ∈ [N]2 do M̄i,j := M̄i

pp := (pkE1 , . . . , pk
E
n)

msk := (skE1 , . . . , sk
E
n)

return (pp,msk, M̄1,1, . . . , M̄N,N)

Join(msk, id)

return skid := ε

ChMod〈D,Cid, (S1,1, . . . , SN,N)〉

D(msk, id, A ⊆ [n])

s̃kid := ∅
for a ∈ A do

s̃kid := s̃kid ∪ {(a, sk
E
a)}

send s̃kid to Cid

return ε

Cid(skid, A ⊆ [n])

receive s̃kid

return sk′id := skid ∪ s̃kid

Si,j(M̄i,j), (i, j) ∈ [N]2

return M̄ ′i,j := M̄i,j

Access〈Cid, (S1,1, . . . , SN,N)〉

Cid(skid, a,m)

(k1, . . . , kN)← DPF.Gen(1λ, Fa,1)

for (i, j) ∈ [N]2 send kj to Si,j

Si,j(M̄i,j), (i, j) ∈ [N]2

receive kj

for a′ ∈ [n] do

za′ ← DPF.Eval(j, kj , a
′)

send ci,j =
∑
a′∈[n] M̄i,j [a

′] · za′ to Cid

Cid(skid, a,m)

receive (c1,1, . . . , cN,N)

m̄′ :=
∑

(i,j)∈[N]2 ci,j

if (x, skEa) ∈ skid then

m′ ← E .Dec(skEa , m̄
′)

if m = ε then b := 0

else m̄← E .Enc(pkEa ,m), b := m̄− m̄′

(k1, . . . , kN)← DPF.Gen(1λ, Fa,b)

for (i, j) ∈ [N]2 send ki to Si,j

return m′

Si,j(M̄i,j), (i, j) ∈ [N]2

receive ki

for a′ ∈ [n] do

za′ ← DPF.Eval(i, ki, a
′)

M̄ ′i,j [a
′] := M̄i,j [a

′] + za′

return M̄ ′i,j

Fig. 9. DPF-based Multi-Server MCORAM Construction

7.2 Multi-Client ORAM from Distributed Point Functions

As described in the introduction, there exists a folklore way (e.g., [9]) to construct
distributed ORAM (DORAM) with stateless client from any (t,N)-DPF with
linear reconstruction. Such a DORAM can be further transformed into a multi-
server MCORAM by equipping it with access control. Incorporating reading
rights (while achieving obliviousness) is straightforward via encryption. Granting

28 Authors Suppressed Due to Excessive Length

meaningful writing rights and achieving integrity, however, seems impossible in
the setting where the servers cannot communicate (even indirectly).

To show the legitimacy of an update, the client needs to prove the knowledge
of a witness for a statement about the database, which is secret-shared among
the servers. As any single server has no information about the statement, the
proof cannot be verified during the access. (We discuss an alternative later).
In Fig. 9, we propose a transformation in a simplified setting where all clients
have writing rights to all addresses by default, so the ChMod protocol is used
only for granting reading rights (via decryption keys). In this setting, the syntax
of ChMod can be simplified, which inputs a set of addresses A (cf., AR and AW).

Fig. 9 assumes N2 servers, indexed by (i, j) ∈ [N]2, with at most t of them
collude. Each entry M [a] of the initial data array M is first encrypted with an
independent public key pka of a public-key encryption scheme E , and then secret-
shared using the additive N -out-of-N secret sharing scheme. The (i, j)-th server
gets the i-th share M̄i of the ciphertext. We use independent encryption and
decryption keys for each address for simplicity. The master and client secret key
sizes can be reduced using constrained PRFs as in the FHE-based construction.

To access address a, the client generates fresh DPF keys (k1, . . . , kN) for the
point function Fa,1, and sends kj to server (i, j) for (i, j) ∈ [N]2. Using the
additive reconstruction property of the DPF, the (i, j)-th server can compute
the j-th share of M̄i[a] =

∑
a′∈[n] Fa,1(a′)M̄i[a]. Collecting all N2 shares, the

client can recover M̄ [a], and decrypt it using ska to get M [a]. Regardless of
whether logical access is a read or a write, the client must write something to
ensure obliviousness. In case of a write access, the client encrypts the new data
item as m̄, and sets b := m̄ − M̄ [a]; in case of a read access, the client sets
b := 0. The client then generates another fresh tuple of DPF keys (k1, . . . , kN)
for the point function Fa,b, and sends ki to server (i, j) for (i, j) ∈ [N]2. Using
the reconstruction property again, the i-th row of servers can obtain, for each
a′ ∈ [n], the same i-th share of M̄ ′[a′] being M̄ [a′] for a′ 6= a, m̄ otherwise.

Properties of The Resulting Multi-Server MCORAM. Since the DPF is
resilient against the disclosure of any t < N shares, the multi-server (MC)ORAM
scheme is secure against a t/N2 fraction of corruptions. One can show that the
scheme is oblivious with a simple reduction to the security of DPF.

Meaningful selective writing rights can be granted by settling for accountable
integrity. The techniques for it are rather standard [29]. Roughly, assuming there
is an underlying versioning system (as in a typical storage system) that stores
each (encrypted) update instruction, we additionally require the client to anony-
mously sign the update with traceable signatures (e.g., [15]). The data owner
can then trace the misbehaving party via the anonymity revocation mechanism.

Consistency is another issue. Due to the underlying HSS [5], our DPF might
fail with a certain probability. This is undesirable, especially for write operations,
as it would leave the database in a corrupted state. Fortunately, the same HSS [5]
allows the servers to detect potential errors; thus, they can abort accordingly.

Multi-Client Oblivious RAM with Poly-Logarithmic Communication 29

Finally, note that we can even use different DPF algorithms of different
parameters for read and write. This allows some tunable trade-offs, e.g., using a
(t,N)-DPF for write and a (t′, N ′)-DPF for read brings the threshold/server-ratio
to min

{
t, t′
}
/(NN ′). Specifically, using a (t,N)-DPF for write and a (1, 1)-DPF

(i.e., a PIR scheme) for read brings the threshold/server-ratio down to t/N .

8 Concluding Remarks

Since many techniques for constructing single-client ORAM break down
completely when the client can be corrupt, it was unclear whether the poly-
logarithmic communication complexity of ORAM can be attained by MCORAM
with an access control mechanism and obliviousness against fellow clients. We
devise a cross-key trial evaluation technique and two new distributed point func-
tions for building (multi-server) MCORAM with poly-logarithmic communica-
tion complexity. Besides, existing MCORAM definitions are indistinguishability
based and may not be readily applicable in higher cryptographic applications.
This paper also filled in this gap. Our study benefits the applications of
MCORAM for building higher cryptographic primitives and enriches our
understanding of homomorphic secret sharing. Application-wise, our MCORAM
is especially useful for private anonymous data access in an outsourced setting.

References

1. Blass, E., Mayberry, T., Noubir, G.: Multi-client oblivious RAM secure against
malicious servers. In: ACNS. pp. 686–707. Springer (2017)

2. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Asiacrypt Part II. pp. 280–300. Springer (2013)

3. Boyle, E., Chung, K., Pass, R.: Oblivious parallel RAM and applications. In: TCC-
A Part II. pp. 175–204. Springer (2016)

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Eurocrypt Part II. pp.
337–367. Springer (2015)

5. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Crypto Part I. pp. 509–539. Springer (2016)

6. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS. pp. 21:1–21:21 (2018)

7. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally
and privately? In: TCC part II. pp. 662–693. Springer (2017)

8. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In: TCC Part II. pp.
407–437. Springer (2019)

9. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed
ORAM. In: SCN. pp. 215–232. Springer (2020)

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: CCS. pp. 131–140 (2009)

11. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private informa-
tion retrieval. In: TCC Part II. pp. 694–726. Springer (2017)

30 Authors Suppressed Due to Excessive Length

12. Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and corre-
lation intractability from circular-secure FHE. Cryptology ePrint Archive, Report
2018/1248 (2018)

13. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: TCC-A, Part II. pp. 205–234. Springer (2016)

14. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

15. Chow, S.S.M.: Real traceable signatures. In: SAC. pp. 92–107. Springer (2009)
16. Doerner, J., abhi shelat: Scaling ORAM for secure computation. In: CCS. pp.

523–535 (2017)
17. Fazio, N., Gennaro, R., Jafarikhah, T., III, W.E.S.: Homomorphic secret sharing

from Paillier encryption. In: ProvSec. pp. 381–399. Springer (2017)
18. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-

versity (2009)
19. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: TCC Part

II. pp. 438–464. Springer (2019)
20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-

rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Crypto Part
I. pp. 75–92. Springer (2013)

21. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Euro-
crypt. pp. 640–658. Springer (2014)

22. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC. pp. 182–194 (1987)

23. Goldreich, O.: A primer on pseudorandom generators, vol. 55. American Mathe-
matical Soc. (2010)

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

25. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA.
pp. 157–167 (2012)

26. Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data access.
In: Eurocrypt Part II. pp. 244–273. Springer (2019)

27. Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.: S3ORAM: A
computation-efficient and constant client bandwidth blowup ORAM with Shamir
secret sharing. In: CCS. pp. 491–505 (2017)

28. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS. pp. 364–373 (1997)

29. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Privacy and access control
for outsourced personal records. In: S&P. pp. 341–358 (2015)

30. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Maliciously secure multi-client
ORAM. In: ACNS. pp. 645–664. Springer (2017)

31. Sahin, C., Zakhary, V., Abbadi, A.E., Lin, H., Tessaro, S.: TaoStore: Overcoming
asynchronicity in oblivious data storage. In: S&P. pp. 198–217 (2016)

32. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
Practical private queries on public data. In: NSDI. pp. 299–313 (2017)

	Multi-Client Oblivious RAM with Poly-Logarithmic Communication

