
Analysis of Modified Shell Sort for Fully
Homomorphic Encryption?

Joon-Woo Lee1, Young-Sik Kim2, and Jong-Seon No1

1 Seoul National University, Republic of Korea
2 Chosun University, Republic of Korea

Abstract. The Shell sort algorithm is one of the most practically effec-
tive sorting algorithms. However, it is difficult to execute this algorithm
with its intended running time complexity on data encrypted using fully
homomorphic encryption (FHE), because the insertion sort in Shell sort
has to be performed by considering the worst-case input data. In this
paper, in order for the sorting algorithm to be used on FHE data, we
modify the Shell sort with an additional parameter α and a gap sequence
of powers of two. The modified Shell sort is found to have the trade-off
between the running time complexity of O(n3/2√α+ log logn) and the
sorting failure probability of 2−α. Its running time complexity is close to
the intended running time complexity of O(n3/2) and the sorting failure
probability can be made very low with slightly increased running time.
Further, the optimal window length of the modified Shell sort is also
derived via convex optimization. The proposed analysis of the modified
Shell sort is numerically confirmed by using a randomly generated ar-
rays. Further, the performance of the modified Shell sort is numerically
compared with the case of Ciura’s optimal gap sequence and the case of
the optimal window length obtained through the convex optimization.

Keywords: Fully Homomorphic Encryption · Insertion Sort · Shell Sort
· Sorting Failure Probability.

1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme that provides
encrypted data to an evaluation algorithm, which enables addition or multi-
plication of plaintext without decryption. FHE enables specific operations to
be performed on encrypted information without leaking any clue to the plain-
text. The notion of FHE was suggested by Rivest, Adleman, and Dertouzos
in 1978 [10]. Although several cryptography researchers had attempted to con-
struct the FHE scheme because of its effectiveness with respect to operations in
cloud systems, no one had been able to successfully construct it until 2009, when

? This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (R-20160229-
002941, Research on Lightweight Post-Quantum Crypto-systems for IoT and Cloud
Computing).

2 J. Lee et al.

Gentry succeeded in developing an FHE scheme using an ideal lattice [8]. Sev-
eral researchers suggested different types of FHE algorithms in series using the
bootstrapping technique in Gentry’s scheme and optimized the FHE schemes.
Recently, the computation time of certain FHE schemes has been significantly
reduced, which makes this scheme practically applicable. Further, the algorithms
used on FHE data are expected to demonstrate the oblivious property, i.e., pro-
viding the most appropriate outputs without knowing any information about the
input. In other words, the behavior of an oblivious algorithm does not depend
on the input data. If it depends on the input, it implies the leakage of input in-
formation. The oblivious property of an algorithm is essential for FHE schemes
to ensure privacy.

However, the bottleneck of operations on the FHE data is not in addition and
multiplication, but involves non-arithmetic algorithms, such as sorting, search-
ing, and neural networks, which are not frequently analyzed or optimized on
FHE data. When processing large amounts of ciphertexts in cloud systems, it
is frequently required to process the sorted data rather than unaligned data.
Thus, one of the most essential non-arithmetic operations on the FHE data is
the sorting algorithm, which is generally used as a subroutine algorithm of many
algorithms. However, most sorting algorithms are not suitable for FHE data. For
example, as the quick sort algorithm, which is one of the most popularly used
sorting algorithms, is not an oblivious algorithm, it cannot be used on FHE data.
Although numerous studies have been conducted to render the quick sort algo-
rithm oblivious, its running time complexity becomes O(n2). Its actual running
time is even longer than that of the bubble sort, which is considered to have
the longest running time among all the known sorting algorithms. Therefore,
modifying conventional sorting algorithms to make them suitable for FHE data
is necessary. Several studies have been conducted for this purpose [1, 3, 6].

The Shell sort [11], which is one of the oldest sorting algorithms, is the
generalized version of the insertion sort. The Shell sort algorithm is an in-place
algorithm, which is fast and easy to implement, and thus, many systems use it as
a sorting algorithm. It is known that Shell sort uses insertion sort as a subroutine
algorithm, and insertion sort can be performed on the FHE data [2,3]. However,
the Shell sort should be modified to be used in the FHE setting. If we do not allow
any error in sorting, then insertion sort is expected to be quite conservative, i.e.,
the number of operations for sorting must be set for the worst case, because the
insertion sort algorithm in the FHE setting is an oblivious algorithm. Thus, if
we use insertion sort in the Shell sort, the running time complexity of Shell sort
in the FHE setting must be O(n2), which makes the use of Shell sort ineffective.
Therefore, it is important to devise a sorting algorithm that is better than the
Shell sort on the FHE data in terms of running time complexity.

It is known [2] that we can reduce the running time of insertion sort on the
FHE data by allowing a sorting failure probability (SFP) using what is known
as the window technique. According to this technique, in each insertion sort,
instead of inserting the ith element into the subarray of (a1, a2, · · · , ai−1), we
insert the ith element into the subarray (ai−k, ai−k+1, · · · , ai−1) of length k,

Analysis of Modified Shell sort for FHE 3

called the window length, immediately to the left of the ith element. We call
this subarray a “window” with window length k.

In this paper, we devise a method to modify the Shell sort in the FHE setting
using the window technique, with a running time complexity close to its original
value of O(n3/2), by deriving the running time complexity while taking the trade-
off with the SFP for gap sequence 2h. It is referred to as a “modified Shell sort”.
To this end, we use the exact distribution of window lengths of subarrays in each
gap for successful sorting in the Shell sort. If the length of the subarray for the
insertion sort in some gap is s, it is discovered that the average of the required
window length for successful sorting is proportional to

√
s, and the right tail

of its probability distribution is very thin. In the sorting process, the window
length is provided as a constant multiple of

√
s, which ensures a negligible SFP.

If the window length is close to β
√
s, the SFP decays as e−β

2

, which signifies a
very fast-decaying function. Therefore, with a fixed negligible SFP, we can set a
small window length so that the running time is asymptotically faster than that
of the naive version of the Shell sort on FHE data. With this analysis, we can
obtain the running time complexity O(n3/2

√
α+ log log n) with SFP 2−α. Thus,

we can derive the trade-off between the running time complexity and the SFP
using the window length and an additional parameter α.

In this paper, we address only the gap sequence of powers of two, i.e.,
2h, h = 1, 2, 3, · · · . Although this gap sequence is not optimal in terms of running
time complexity, we first analyze the running time complexity of the modified
Shell sort on FHE data, which is important for the FHE in cloud systems. The
performance of the modified Shell sort is numerically compared with the cases
of optimal window lengths obtained through convex optimization and Ciura’s
optimal gap sequence [5], which was evaluated numerically as an optimal gap
sequence in non-FHE settings. Although we do not analyze this case, the method
of deriving the optimal window length in the modified Shell sort functions well
for Ciura’s optimal gap sequence.

We also suggest the convex optimization method to derive a tighter window
length. In other words, the window length obtained by the convex optimization
method makes the running time of the modified Shell sort to be less than that of
the case employing the analytical method in the modified Shell sort. This result
is also numerically confirmed.

Thus, our contributions are summarized as follows:

– The exact distribution of required window length in each gap is obtained for
successfully sorting each subarray in the Shell sort with the gap sequence of
powers of two.

– We propose a modified Shell sort with the gap sequence of powers of two and
an additional parameter α on FHE data, and derive its trade-off between the
running time complexity O(n3/2

√
α+ log log n) and the SFP 2−α.

– The optimal window length of each gap in the modified Shell sort is derived
via the convex optimization technique.

The remainder of this paper is organized as follows. Section 2 presents the pre-
liminary of the paper, which includes the related sorting algorithms and the

4 J. Lee et al.

notion of FHE. In Section 3, we present the distribution of the required window
length for each gap in the Shell sort on FHE data with the gap sequence of
powers of two. Then, we propose a modified Shell sort for FHE and derive the
trade-off between the running time complexity and the SFP. Section 4 discusses
a method to deduce the optimal window length of each gap of the modified Shell
sort using the convex optimization technique. Section 5 shows numerical results
that support the proposed analysis. From these results, the performance in the
case of the optimal gap sequence or the optimal window lengths can be observed.
Section 6 concludes the study and discusses the scope for future research.

2 Preliminary

2.1 Fully Homomorphic Encryption

FHE is a public-key encryption scheme, which supports an arbitrary number of
additions and multiplications of plaintext without decryption, so that anyone
without the decryption key can operate the circuit with any ciphertext without
leaking the information of its plaintext.

Gentry suggested the bootstrapping technique to transform homomorphic
encryption to a certain degree [8], which allows only a finite number of operations
on the FHE data. The bootstrapping operation has enabled several researchers to
construct FHE schemes [8], which involves implementing the decryption circuit
on encrypted data using the evaluation algorithm, that is, the addition and
multiplication algorithms in FHE setting. All of the FHE schemes suggested
thus far ensure security by adding some errors on a few elementary functions of
plaintexts. As the addition and multiplication operations are repeated, the total
number of errors increases, and if the total number of errors exceeds a certain
limit, a decryption failure occurs. Thus, the errors need to be removed after a
certain number of operations on the encrypted data, so that the ciphertexts can
be further evaluated. The purpose of the bootstrapping operation is to reset the
errors in the ciphertext when the errors are too large to be decrypted.

As bootstrapping utilizes a considerable amount of computation during the
processing of FHE, the number of bootstrapping operations significantly affects
the total operation time of FHE. In fact, the number of bootstrapping opera-
tions depends on the depth of the circuit. The lower the depth of a circuit, the
fewer the number of bootstrapping operations. Thus, it is crucial to consider
the number of the bootstrapping operations for each element, when bootstrap-
ping is implemented in FHE schemes. If the total number of operations in an
algorithm is fixed, it is better to evenly distribute the operations on the inputs.
Furthermore, to stably address errors, deterministic algorithms are better than
randomized algorithms. This is because we can predict the error size of each el-
ement in deterministic algorithms ensuring that these errors are handled easily
and error control is optimized adequately.

Analysis of Modified Shell sort for FHE 5

2.2 Sorting Algorithms

Although there exist several sorting algorithms [9], we consider only the insertion
sort and Shell sort in this paper. These are comparison-based sorting algorithms,
which do not rely on the divide-and-conquer method.

The insertion sort is an iterative sorting algorithm that sorts from the left-
most element. In each iteration, we define an element to be sorted into its left-side
subarray as the pivot element. It is assumed that the elements to the left of the
pivot element are already sorted. We then compare the already sorted elements
with the pivot element, deduce its proper position, and insert it into this posi-
tion. Its worst-case and average-case running time complexities are both O(n2).
It is known that insertion sort is slightly faster than the bubble sort in practical
cases.

The operations in the conventional insertion sort require the knowledge of
its input, and this is not allowed in case of FHE data. Therefore, we cannot
determine the correct position of a pivot element in the already sorted subarray
in the FHE setting, and thus, the operation and behavior of the insertion sort
needs to be modified. It is known [3] that we can perform an insertion sort on
FHE data by sequentially swapping the pivot element with the elements in the
already sorted subarray to its left, from left to right. In fact, the FHE version
of the insertion sort has already been proposed, and its performance has been
assessed numerically in the previous works [3, 6]. This operation, however, is
inefficient, as the number of operations is always the same as that in the worst
case, that is, its average-case running time complexity is estimated to be O(n2).
This depreciates the value of the insertion sort in comparison with that of the
bubble sort.

The Shell sort is a generalized version of the insertion sort. It requires a gap
sequence, which is the decreasing sequence of a positive integer ending with 1.
For each gap h and each integer j, 0 ≤ j ≤ h − 1, the (hi + j)-th elements
i = 0, 1, 2, · · · are sorted using insertion sort. As the gap sequence ends with 1,
we can finally obtain the correctly sorted array.

Even though the running time complexity of the Shell sort varies depending
on the gap sequences, it is asymptotically better than that of insertion sort. To
the best of our knowledge, a trial of the Shell sort on FHE data has not been
performed thus far.

2.3 Comparison Operation in FHE

In the sorting algorithms in the FHE setting, the swap operation is performed
by comparing two encrypted elements. Although it is not possible to determine
the larger element in the FHE setting, it has been established that computing
the maximum and minimum elements out of the two elements is possible in the
FHE setting, even though these elements are encrypted.

Although bit-wise encrypted numbers can be compared using certain Boolean
circuits, the circuit depth is so high that the number of required bootstrapping
operations is too large. Therefore, such a comparison is quite inefficient. Recently,

6 J. Lee et al.

Cheon et al. proposed a numerical method for comparing homomorphically en-
crypted numbers [4]. They first suggested an efficient comparison for word-wise
encrypted numbers. According to their method, the maximum function of two
numbers a and b can be computed as

max(a, b) =
a+ b

2
+
|a− b|

2
=
a+ b

2
+

√
(a− b)2

2
.

Then, the square root is approximated using Wilkes’ algorithm, which is a two-
variable iterative method. As Wilkes’ algorithm includes only arithmetic opera-
tions, we can compute the square root of some values in the FHE setting.

Thus, the swap operation is achievable in case of both insertion and bubble
sorts in the FHE setting.

3 Analysis of Modified Shell Sort over FHE

In this section, we propose a modified Shell sort using the window technique
suggested in [2], and the probability distribution of the required window length
for the successful sorting is also obtained. Finally, the running time complexity
of the modified Shell sort in each gap for the successful sorting of each subarray
is determined for FHE, considering the trade-off with the SFP.

3.1 A Modified Shell Sort over FHE

As insertion sort can be performed on FHE data, the Shell sort, which uses the
insertion sort as a subroutine algorithm, can also be performed on FHE data.
However, if the Shell sort is to be employed without any sorting failure in the
FHE setting, it is expected to be considerably conservative. In other words, as
we need to consider the worst case for each gap, its running time complexity
becomes O(n2), which does not provide any advantage in comparison with a
simple insertion sort. Thus, designing the Shell sort with a negligible SFP and a
running time complexity close to the original average-case value of O(n3/2) [7]
is necessary.

To this end, we employ the window technique [2,3] in the Shell sort. During
the insertion sort in each gap, instead of searching the position of each element
in the whole partially sorted array, we search for its position in the partially
sorted subarray of a certain window length, located to the left of the pivot
element, as shown in Fig. 1. Fig. 1 shows an example of the modified Shell sort
using the window technique, where the gap is 4 and the window length is 2.
Subarrays consisting of elements that are separated by the gap are sorted using
the insertion sort. To sort each subarray, it is compared only with the elements
that are located to its left, within a distance equal to the window length from
the pivot element to be inserted, which is called the modified Shell sort.

The proposed modified Shell sort is described in Algorithm 1. As the mini-
mum and maximum functions can be computed without knowing their plaintext
in the FHE setting [4], neither of the operations in Algorithm 1 require any

Analysis of Modified Shell sort for FHE 7

knowledge of the contents of elements in the array A[i]. Thus, Algorithm 1 can
be executed in the FHE setting. In designing this algorithm, deciding the win-
dow length in each gap for successfully sorting each subarray in the Shell sort
for the given SFP 2−α is not a trivial problem. Along with the design of the
window length for each gap, we propose a modified Shell sort with an additional
parameter α. Further, the running time complexity of the modified Shell sort is
determined to be O(n3/2

√
α+ log log n) with an SFP of 2−α. The parameter α is

determined only from the SFP, regardless of the input size n. In fact, α is consid-
erably smaller than n and should be larger than or equal to

√
6 log e−1 ' 2.534,

the derivation of which is provided in a subsequent section of this paper. It is
noted that the proposed modified Shell sort considers the trade-off between the
running time complexity and the SFP.

gap = 4

subarray

window length = 2

pivot element

Fig. 1: Modified Shell sort using the window technique.

Algorithm 1: ModifiedShellSort(A[1 : n], α)

Input : An array A[1 : n] with n elements and α ≥
√

6 log e− 1 ' 2.534
Output: Sorted array B[1 : n] with SFP 2−α

1 c← α+ 1 + log log n
2 p← blog nc
3 for `← p to 0 do
4 g ← 2`

5 k ← min
{⌈√

d n2g e · (c+ `) · 1
log e

⌉
,
⌈
n
2g

⌉}
6 for i← 2 to n do

7 u← min
{
k, d ig e − 1

}
8 for j ← u to 1 do // swapping of A[i] and A[i− gj]
9 d1 ← A[i], d2 ← A[i− gj]

10 A[i− gj]← min{d1, d2}
11 A[i]← max{d1, d2}
12 end

13 end

14 end

8 J. Lee et al.

3.2 Probability Distribution of Required Window Length

In this subsection, the probability distribution of required window length in each
gap required for successfully sorting each subarray in the Shell sort is derived,
as shown in Fig. 3. This probability distribution is essential in determining the
window length of each gap in the modified Shell sort, because the properties
of the tail of the probability distribution must be used to obtain the required
window length.

While the analysis of the conventional Shell sort is performed for an average
number of operations, the analysis of the window length in the modified Shell
sort involves the maximum number of insertion operations for each subarray.

We assume that the gap sequence is powers of two, i.e., 2blognc, 2blognc−1,
· · · , 22, 2, 1. With this gap sequence, each subarray which is sorted using insertion
sort has the following structure. The elements in odd positions of the subarray
for a gap 2h are already sorted and the elements in even positions are also sorted
for a gap 2h using the previous insertion sort for a gap 2h+1. We analyze the
insertion sort under this special situation.

The array of n elements is denoted by its index vector (a1, a2, · · · , an), which
is a permuted vector of (1, 2, · · · , n). If we handle the real data, we map each
datum to its respective index in {1, 2, · · · , n}. Moreover, we assume that n is an
even integer. If n is odd, the same analysis can be applied, with an additional
dummy element inserted in the rightmost position with the largest element.
Several lemmas are needed for devising the main theorem of the probability
distribution for the required window length.

Lemma 1. Let a = (a1, a2, · · · , a2m) be a subarray in each gap in the Shell
sort with a gap sequence 2h, which is permuted from (1, 2, · · · , 2m), satisfying
ai < ai+2 for i = 1, 2, · · · , 2m − 2. Let M(a) = max1≤i≤2m |ai − i|. Then there
exists an even integer j and an odd integer k such that

M(a) = |aj − j| = |ak − k|

and (aj − j)(ak − k) ≤ 0.

Proof. Let M1,M2,M3, and M4 be defined as

M1 = max
1≤i≤m

(a2i−1 − (2i− 1))

M2 = − min
1≤i≤m

(a2i−1 − (2i− 1))

M3 = max
1≤i≤m

(a2i − 2i)

M4 = − min
1≤i≤m

(a2i − 2i).

It is clear that at least one of M1 and M2 as well M3 and M4 is a non-negative
integer. If we establish thatM1 = M4 andM2 = M3, the lemma can be proved by
the following argument. If M1 ≥M2, we obtain M(a) = M1 = M4 ≥M2 = M3,
and thus, there exist an odd index j and an even index k, such that M(a) =

Analysis of Modified Shell sort for FHE 9

aj−j = −(ak−k). If M1 < M2, M(a) = M2 = M3 ≥M1 = M4 holds, then there
exist an odd index j and an even index k, such that M(a) = −(aj − j) = ak−k.
Thus, it is sufficient to prove that M1 = M4 and M2 = M3.

To show M1 = M4 and M2 = M3, we prove the following four inequalities;
M1 ≥M4, M1 ≤M4, M2 ≥M3, and M2 ≤M3.

i) Firstly, we show that M1 ≥ M4. Consider an index l, such that a2l − 2l =
min1≤i≤m(a2i − 2i), which is −M4. We establish this case for a2` = 2m or
a2` < 2m.

i)-1 If a2l = 2m, l must be m, as 2m is the largest element. Thus, we obtain
min1≤i≤m(a2i − 2i) = 0 and a2i ≥ 2i for all i, 1 ≤ i ≤ m, which implies
that 1 cannot be in the even index and must be in the first index,
and a1 − 1 = 0. Therefore, M1 = max1≤i≤m(a2i−1 − (2i − 1)) ≥ 0 =
−min1≤i≤m(a2i − 2i) = M4.

i)-2 If a2l < 2m, we show that a2l + 1 must be in the odd index. Let a2l + 1
be in the even index; this implies that a2l + 1 = a2l+2, because all
the elements in the even indices are already sorted. Then, we obtain
a2l+2 − (2l+ 2) = (a2l + 1)− (2l+ 2) = a2l − 2l− 1 < a2l − 2l, which is
a contradiction to the assumption that a2l − 2l is the minimum value,
and thus, a2l + 1 must be in the odd index. Among {1, 2, · · · , a2l − 1},
l−1 elements have to be placed in the even indices in the left-side of a2l.
The remaining a2l− l elements must be placed in the odd indices in the
increasing order from the first index 1. Thus, the index of a2l+1 must be
2(a2l−l)+1. As a2(a2l−l)+1−(2(a2l−l)+1) = (a2l+1)−(2(a2l−1)+1) =
2l − a2l, we obtain M1 = max1≤i≤m(a2i−1 − (2i − 1)) ≥ 2l − a2l =
−min1≤i≤m(a2i − 2i) = M4.

ii) We then show that M2 ≥ M3. Consider an index l, such that a2l − 2l =
max1≤i≤m(a2i − 2i), which is M3. We establish this case for a2` = 1 or
a2` > 1.

ii)-1 If a2l = 1, l must be 1, as 1 is the smallest element, and therefore,
max1≤i≤m(a2i − 2i) = −1. As a2i − 2i ≤ −1 for all i, 1 ≤ i ≤ m, 2m
cannot belong to the even index. Thus, 2m must be in the (2m− 1)-th
index, and a2m−1− (2m−1) = 1. Therefore, M2 = −min1≤i≤m(a2i−1−
(2i− 1)) ≥ −1 = max1≤i≤m(a2i − 2i) = M3.

ii)-2 If a2l > 1, we show that a2l−1 must be in the odd index. Let a2l−1 be
in the even index. We have a2l − 1 = a2l−2, because all the elements in
the even indices are already sorted. Then, we obtain a2l−2 − (2l − 2) =
(a2l − 1) − (2l − 2) = a2l − 2l + 1 > a2l − 2l, which is a contradiction
to the assumption that a2l− 2l is the maximum value, and thus, a2l− 1
must be in the odd index. Among {1, 2, · · · , a2l−2}, l−1 elements need
to be placed in the even indices in the left-side of a2l. The remaining
a2l − l − 1 elements have to be placed in the odd indices from the
first index 1. Thus, the index of a2l − 1 must be 2(a2l − l) − 1. As
a2(a2l−l)−1−(2(a2l−l)−1) = (a2l−1)−(2(a2l−l)−1) = 2l−a2l, we obtain
M2 = −min1≤i≤m(a2i−1 − (2i − 1)) ≥ −(2l − a2l) = max1≤i≤m(a2i −
2i) = M3.

10 J. Lee et al.

Similarly, we can establish thatM1 ≤M4 andM2 ≤M3 by swapping the even
indices with the odd indices. Therefore, we can prove that M3 = max1≤i≤m(a2i−
2i) ≥ −min1≤i≤m(a2i−1 − (2i − 1)) = M2, and M4 = −min1≤i≤m(a2i − 2i) ≥
max1≤i≤m(a2i−1 − (2i − 1)) = M1. Therefore, we establish that M1 = M4 and
M2 = M3.

Lemma 2. Let a = (a1, a2, · · · , a2m) be a subarray in the Shell sort with a
gap sequence 2h, which is permuted from (1, 2, · · · , 2m) satisfying ai < ai+2 for
i = 1, 2, · · · , 2m − 2. Let W (a) be the required minimum window length to sort
the subarray successfully. Then, we have

W (a) = max
1≤i≤2m

(i− ai).

Proof. When we insert ai into the partially sorted subarray, the following sce-
narios can be given; if ai < i, we require a window length of i−ai, and if ai ≥ i,
ai stays in place regardless of the window length.

Consider the first case, where ai < i. First, we assume that i is even. Consider
the elements to the left of ai. From the condition ai < ai+2, it is clear that all
the elements in even indices to the left of ai are less than ai. As there are i/2−1
even indices to the left of ai, the remaining ai− i/2 elements in {1, 2, · · · , ai−1}
have to be placed in odd indices in increasing order from the leftmost odd index.
As the number of odd indices to the left of ai is i/2 and i/2 > ai − i/2, all the
elements less than ai are located to the left of ai.

We then assume that i is odd. The proof is almost the same as that for the
scenario in which i is even. As there are (i − 1)/2 odd indices to the left of ai,
the remaining ai− (i+1)/2 elements in {1, 2, · · · , ai−1} must be placed in even
indices from the first even index, in increasing order. As the number of even
indices to the left of ai is (i−1)/2 and (i−1)/2 > ai− (i+1)/2, all the elements
less than ai are located to the left of ai.

Thus, we prove that all the elements less than ai are located to the left of ai.
The partially sorted subarray, therefore, must include the elements {1, 2, · · · , ai−
1} in the indices {1, 2, · · · , ai− 1} in the appropriate order. This implies that ai
moves to the index ai, and thus, we require a minimum window length of i− ai.

Consider the second case, in which ai ≥ i. It is evident that i/2 ≤ ai − i/2,
when i is even, and (i−1)/2 ≤ ai− (i+1)/2, when i is odd. This implies that all
the elements to the left of ai are less than ai. Thus, the partially sorted subarray
in the indices {1, 2, · · · , i − 1} comprises elements smaller than ai. Therefore,
ai does not move to the left but stays in its position, regardless of the window
length.

From Lemma 1, it is noted that M(a) is equal to W (a).

Lemma 3. Let pk(n,m) be the number of distinct arrays (a1, a2, · · · , am) of
length m, whose elements from {1, 2, · · · , n} are sorted in increasing order, ai <
ai+1, and max1≤i≤m |ai− 2i| ≤ k is satisfied for a positive integer k and n ≥ m.
Let (b0, b1, · · ·) and (c0, c1, · · ·) be the two arrays defined as

b0 = c0 = 0

Analysis of Modified Shell sort for FHE 11

bi+1 =

{
bi + (k + 1) if i is even

bi + (k + 2) if i is odd

ci+1 =

{
ci + (k + 2) if i is even

ci + (k + 1) if i is odd.

For 2m− k ≤ n ≤ 2m+ k, we obtain

pk(n,m) =

(
n

m

)
−

∑
1≤bi≤m

(−1)i+1

(
n

m− bi

)
−

∑
1≤ci≤m

(−1)i+1

(
n

m+ ci

)
. (1)

Proof. It is clear that pk(1, 1) = 1 for all k ≥ 1, and pk(n, 1) = n for n ≤ k + 2.
As the element am in the last index must be 2m − k ≤ am ≤ 2m + k from
max1≤i≤m |ai − 2i| ≤ k, the following can be determined from the condition
2m− k ≤ am ≤ 2m+ k:

i) For n < 2m− k,
pk(n,m) = 0,

because the minimum possible value of am must be 2m− k.
ii) For n > 2m+ k + 1,

pk(n,m) = pk(2m+ k,m),

because the maximum possible value of am must be 2m+ k.
iii) For 2m− k ≤ n ≤ 2m+ k + 1,

We derive the recurrence relation of pk(n,m) using the following three cases:
iii)-1 For n = 2m+ k + 1,

It is easy to derive that

pk(2m+ k + 1,m) = pk(2m+ k,m). (2)

Note that this case can be included in ii). Although this separation of
the case appears unnatural, it enables us to analyze pk(n,m) well.

iii)-2 For 2m− k + 1 ≤ n ≤ 2m+ k,
If the element in the last index m is n, the elements in the remaining
indices should be selected from {1, 2, · · · , n − 1}, and thus, there are
pk(n−1,m−1) possible arrays. If the element in the last index m is not
n, the element n cannot be located in one of the indices {1, 2, · · · ,m−1},
because the elements are sorted in increasing order. Thus, {1, 2, · · · , n−
1} should be located in the indices {1, 2, · · · ,m}, and there are pk(n−
1,m) possible arrays. Therefore, we obtain

pk(n,m) = pk(n− 1,m) + pk(n− 1,m− 1). (3)

iii)-3 For n = 2m− k,
We obtain

pk(2m− k,m) = pk(2m− k − 1,m− 1), (4)

because the element 2m− k must be located in the index m.

12 J. Lee et al.

We prove the lemma using these three cases and overlapped Pascal’s triangles,
as shown in Fig. 2. If we define pk(0,m) = 0 for 1 ≤ m ≤ k and pk(0, 0) = 1, then
all of pk(n,m) are well-defined. This relation is similar to the Pascal’s triangle(
n
m

)
=
(
n−1
m

)
+
(
n−1
m−1

)
shown in Fig. 2(a), except that the width of the triangle for

pk(n,m) is limited, as shown in Fig. 2(b) as well as (2) and (4). This recursive
relation can then be transformed into overlapped Pascal’s triangles. Fig. 2(c)
shows a part of Fig. 2(b) near the boundary of the lower dotted line. Here, we
only consider the lower dotted line. We then establish that this recursive relation
near the boundary in Fig. 2(c) is equivalent to the situation of Fig. 2(d), which
is two overlapped Pascal’s triangles, in which pk(0, 0) = 1 and pk(0, k+1) = −1.

First, it can be obtained that the values on the dotted line in Fig. 2(d) are
always 0, because of the symmetry of Pascal’s triangles. As adding a 0 does not
change the value, the cases of Fig. 2(c) and Fig. 2(d) are equivalent corresponding
to the area to the left of the dotted line.

However, the values on both the dotted lines in Fig. 2(b) must be 0. To satisfy
the other boundary condition pk(2m + k + 2,m) = 0 on the upper dotted line
in Fig. 2(b), we consider another Pascal’s triangle translated by −(k + 2) with
pk(0,−(k + 2)) = −1. If we add these three Pascal’s triangles P−1, P0, and P1

shown in Fig. 2(e), there are zero boundary values on the lines from Q1 to Q2

and from R1 to R2. However, the boundary value after Q2 or R2 is not equal to
0. To obtain the boundary values on the lines from Q2 to Q3 and from R2 to
R3, we must add the Pascal’s triangles P2 and P−2. Therefore, we repeat this
process, as shown in Fig. 2(e). The sequence {bi} in Lemma 3 is the distance from
the initial vertex of P0 to that of Pi, while {ci} is the distance from the initial
vertex of P0 to that of P−i. The initial value at the initial vertex of Pi is 1 if i
is even, and −1 if i is odd. Qi is defined as the intersection of the boundaries of
the two Pascal’s triangles starting from the initial vertices of Pi−1 and P−i, and
Ri is defined as the intersection of the boundaries of the two Pascal’s triangles
starting from the initial vertices of Pi and P−(i−1).

We establish that if the Pascal’s triangles Pi’s, i = · · · ,−1, 0, 1, · · · , are

overlapped, all of the integer points on the half-lines of
−−→
Q1Q2 and

−−→
R1R2 must

be 0s. The integer points on the upper half-line of
−−→
Q1Q2 exhibit the form n =

2m + k + 2 for all non-negative integers m, and those on the lower half-line of−−→
R1R2 exhibit the form n = 2m−k− 1 for all m ≥ k+ 1. First, in the case of the

points on the half-line of
−−→
Q1Q2, we consider the integer points on QjQj+1, which

can be denoted as n1 = 2m1 + k + 2 and bi−1 ≤ m1 ≤ bi. Then, we can only
consider Pascal’s triangles P−j , · · · , Pj−1. Considering the parallel translation of
each Pascal’s triangle, the overlapped values on the points are defined as

j∑
i=1

(−1)i
(

2m1 + k + 2

m1 + ci

)
+

j∑
i=1

(−1)i−1
(

2m1 + k + 2

m1 − bi−1

)
. (5)

As (m1 + ci) + (m1 − bi−1) = 2m1 + k + 2,
(
2m1+k+2
m1+ci

)
=
(
2m1+k+2
m1−bi−1

)
holds, and

(5) is equal to 0.

Analysis of Modified Shell sort for FHE 13

In the case of the points on the half-line of
−−→
R1R2, we consider the integer

points on RjRj+1, which can be denoted as n2 = 2m2−k−1 and bi ≤ bi+1. Then,
we can only consider Pascal’s triangles Pj−1, · · · , Pj . The overlapped values on
the points are defined as

j∑
i=1

(−1)i−1
(

2m2 − k − 1

m1 + ci−1

)
+

j∑
i=1

(−1)i
(

2m2 − k − 1

m1 − bi

)
. (6)

As (m2 + ci−1) + (m2 − bi) = 2m2 − k − 1,
(
2m2−k−1
m1+ci−1

)
=
(
2m2−k−1
m1−bi

)
holds, and

(6) is also equal to 0.

Therefore, we establish that with respect to the region between the two dotted
lines in Fig. 2(b), Fig. 2(b) is exactly equivalent to the hashed part of Fig. 2(e).
We obtain pk(n,m) by adding the values of points of several Pascal’s triangles
as in (1), where the first term is from the central Pascal’s triangle P0; the second
term is from the right-side Pascal’s triangles Pi’s for the positive integer i; and
the third term is from the left-side Pascal’s triangles P−i’s for the positive integer
i.

From the previous lemmas, we have the following theorem.

Theorem 4. Let C(2m, k) be the number of the permutations a of {1, 2, · · · , 2m},
such that ai < ai+2 for all possible i, and W (a) ≤ k. Then, we have

C(2m, k) =

(
2m

m

)
−

∑
1≤bi≤m

(−1)i+1

(
2m

m− bi

)
−

∑
1≤ci≤m

(−1)i+1

(
2m

m− ci

)

where bi and ci are defined in Lemma 3.

Proof. As M(a) of the odd indices is equal to that of the even indices from
Lemma 1, we consider only the even indices. Thus, we can consider this situation
to be equivalent to the following simple situation; we consider distinctm elements
from {1, 2, · · · , 2m} randomly, sort them in increasing order, and consider ai−2i
rather than ai − i. Then, C(2m, k) is identical to pk(2m,m) in Lemma 3. This
is established as

(
2m
m+bi

)
=
(

2m
m−bi

)
.

In fact, C(2m, k) denotes the number of arrays for gap 2h, which can be
successfully sorted using the proposed modified Shell sort with a window length
of k. Clearly, the exact number of arrays with W (a) = k, such that ai < ai+2

for all i can be obtained by computing C(2m, k) − C(2m, k − 1). Fig. 3 shows
the shape of the distribution of C(2m, k)−C(2m, k− 1). The peak of the curve
is observed at 32, which is the approximated value of

√
1000. With this result,

we derive the running time complexity of the modified Shell sort in the next
subsection.

14 J. Lee et al.

n

m

(a) Pascal’s triangle for
(
n
m

) (b) pk(n,m) with k = 4 for 2m − k ≤ n ≤
2m+ k

(c) Boundary case of pk(n,m) in (b)
(d) Equivalent diagram of boundary of

pk(n,m) in (b)

(e) pk(n,m) using overlapped Pascal’s triangles

Fig. 2: pk(n,m) using Pascal’s triangle.

Analysis of Modified Shell sort for FHE 15

�

�✁��✂

�✁�✄

�✁�✄✂

�✁�☎

�✁�☎✂

�✁�✆

�✁�✆✂

�✁�✝

� ✄� ☎� ✆� ✝� ✂� ✞� ✟� ✠� ✡� ✄��

☛
☞

✌

✍
✎

☛
☞

✌

✏
✑
✍

Fig. 3: Distribution of C(2m, k)− C(2m, k − 1) for m = 1000.

3.3 Derivation of Running Time Complexity for a Specific SFP

In this subsection, we derive the running time complexity O(n3/2
√
α+ log log n)

of the proposed modified Shell sort, considering the optimal trade-off with the
SFP 2−α, in which α is the parameter that controls the window length of
each gap. In the running time complexity, log log n increases gradually as n
increases. Therefore, the running time complexity is approximately proportional
to n3/2

√
α. However, the probability that the output is not successfully sorted

decreases exponentially as α increases. It is noted that the SFP 2−α is not re-
lated to the input data size. One of the advantages of the modified Shell sort
algorithm is irrespective of the size of the input data, and thus we can obtain
a trade-off between the SFP and running time complexity by considering an
appropriate α.

It is important to prove the following lemmas to determine the relation be-
tween the binomial coefficients and exponential function. It is a well-known fact
from the central limit theorem in statistics that the closer n is to infinity, the
closer a binomial distribution is to a normal distribution. Even though the bino-
mial and normal distributions are similar, we should establish that some bino-
mial coefficients are upper-bounded by the probability distribution function of
the normal distribution. The following lemma is used in the proof of Lemma 6,
and Lemma 6 is used to prove Theorem 7.

Lemma 5. Let f : [a,∞) → R be a function of some real number a satisfying
the following;

i) lim
x→∞

f(x) = M for some real number M .

ii) There exists a positive integer n, such that the n-th order derivative f (n)(x)
exists on (a,∞), and (−1)nf (n)(x) > 0 for all x ∈ (a,∞).

Then, f(x) > M for all x ∈ [a,∞).

16 J. Lee et al.

Proof. It is sufficient to show that f (m)(x)→ 0 as x→∞ and (−1)mf (m)(x) is
a monotonically decreasing function for m, 1 ≤ m ≤ n−1. If this is proved, then
f(x) is a monotonically decreasing function and is larger than the limit value M
from the first condition in Lemma 5, as f ′(x) is negative for (a,∞). Since it is
true for m = n that (−1)mf (m)(x) > 0, we will prove the following: if it is true
for 2 ≤ k ≤ n that (−1)kf (k)(x) > 0, then we have lim

x→∞
f (k−1)(x) = 0, and it is

true that (−1)k−1f (k−1)(x) is a monotonically decreasing function.
Let gk(x) = (−1)kf (k)(x). As (−1)k−1f (k)(x) = g′k−1(x) < 0 on (a,∞),

gk−1(x) is a monotonically decreasing function. As a monotonically decreasing
function always converges to a certain value, if it possesses some lower bound,
we obtain lim

x→∞
gk−1(x) = T for some T , or lim

x→∞
gk−1(x) = −∞. We assume

that lim
x→∞

gk−1(x) = T for some T 6= 0, or lim
x→∞

gk−1(x) = −∞. Then, we can

deduce some N ∈ (a,∞), R > 0, such that |gk−1(x)| > R, i.e., f (k−1)(x) > R for
all x > N , or f (k−1)(x) < −R for all x > N .

Consider the case of f (k−1)(x) > R. If we integrate both terms from N to
x ∈ (N,∞) iteratively as

f (k−2)(x)− f (k−2)(N) =

∫ x

N

f (k−1)(t)dt >

∫ x

N

Rdx = R(x−N)

f (k−3)(x)− f (k−3)(N) =

∫ x

N

f (k−2)(t)dt >

∫ x

N

(
R(x−N) + f (k−2)(N)

)
dx

=
R

2
(x−N)2 + f (k−2)(N)(x−N),

we obtain

f(x) >
R

(k − 1)!
(x−N)k−1 +

k−2∑
i=0

f (i)(N)

i!
(x−N)i,

whose right-hand side tends to infinity, as x → ∞. In this case, f(x) tends to
infinity as well, which contradicts the first condition. If we consider the case of
f (m)(x) < −R, the inequality is changed to

f(x) < − R

(k − 1)!
(x−N)k−1 +

k−2∑
i=0

f (i)(N)

i!
(x−N)i,

whose right-hand side tends to negative infinity, as x→∞. Then f(x) tends to
negative infinity as well, which also contradicts the first condition.

Thus, we obtain lim
x→∞

gk−1(x) = 0. As gk−1(x) is a monotonically decreasing

function, gk−1(x) > 0 on (a,∞), which completes the proof.

Lemma 6. For any real number α ≥
√

6 and any positive integer n ≥ dα2e, the
following inequality holds(

2n

n− dα
√
ne

)
< e−α

2

(
2n

n

)
.

Analysis of Modified Shell sort for FHE 17

Proof. It can be derived that(
2n
n

)(
2n

n−dα
√
ne
) =

(n+ dα
√
ne)(n+ dα

√
ne − 1) · · · (n+ 1)

n(n− 1) · · · (n− dα
√
ne+ 1)

=

dα
√
ne−1∏

k=0

(
1 +
dα
√
ne

n− k

)
.

We must prove that
dα
√
ne−1∏

k=0

(
1 +
dα
√
ne

n− k

)
> eα

2

. (7)

If we consider the logarithm on the left-hand side and change the form, we
obtain

dα
√
ne−1∑

k=0

ln

(
1 +
dα
√
ne

n− k

)
≥
dα
√
ne−1∑

k=0

ln

(
1 +

α
√
n− k√

n

)
. (8)

Let f(x) = log
(
1 + α

x

)
. Then, the right-hand side of (6) can be defined as

√
n

dα
√
ne∑

k=1

1√
n
f(
√
n+

1√
n
− k√

n
),

which is a type of Riemann sum of f(x). As f(x) is a monotonically decreasing
function, the Riemann sum demonstrates its lower bound as the integration of

f(x) from
√
n+ 1√

n
− dα

√
ne√
n

to
√
n+ 1√

n
. As

√
n+ 1√

n
− dα

√
ne√
n
≤
√
n+ 1√

n
−α,

we obtain

dα
√
ne−1∑

k=0

ln

(
1 +

α
√
n− k√

n

)
≥
√
n

∫ √n+ 1√
n

√
n+ 1√

n
− dα

√
ne√
n

ln
(

1 +
α

x

)
dx

≥
√
n

∫ √n+ 1√
n

√
n+ 1√

n
−α

ln
(

1 +
α

x

)
dx. (9)

To integrate right-hand side of (9), let g(x) = x lnx. We then obtain

√
n

∫ √n+ 1√
n

√
n+ 1√

n
−α

ln
(

1 +
α

x

)
dx = g(n+ α

√
n+ 1) + g(n− α

√
n+ 1)− 2g(n+ 1).

Let h(x) = g(x2 + αx + 1) + g(x2 − αx + 1) − 2g(x2 + 1) in [α,∞). If we
prove lim

x→∞
h(x) = α2, and h(3)(x) < 0 in (α,∞), we obtain h(x) > α2 in [α,∞)

using Lemma 5. As
√
n ≥ α, we obtain h(

√
n) > α2, which proves (7). We must

establish lim
x→∞

h(x) = α2, and h(3)(x) < 0 in (α,∞). To prove lim
x→∞

h(x) = α2,

we consider eh(x). Using g(x) = x lnx and h(x), we obtain

eh(x) =

(
1− α2x2

(x2 + 1)2

)x2−αx+1(
1 +

αx

x2 + 1

)2αx

.

18 J. Lee et al.

From lim
x→∞

(
1 +

p

x

)x
= ep, we obtain lim

x→∞
eh(x) = eα

2

, and thus, lim
x→∞

h(x) =

α2.
Moreover, h(3)(x) can be computed as

h(3)(x) = −4α2x(x2 − 1){α2(x4 + 4x2 + 1)− 6(x2 + 1)2}
(x2 + 1)2(x2 − αx+ 1)2(x2 + αx+ 1)2

.

As α ≥
√

6, we obtain h(3)(x) < 0 in (α,∞). Thus, we complete the proof.

We present the following theorem, which is the main theorem of this subsec-
tion.

Theorem 7. The running time complexity of the proposed modified Shell sort
algorithm is obtained as O(n3/2

√
α+ log log n). For α ≥

√
6 log e− 1, its SFP is

upper-bounded by 2−α.

Proof. As the swapping operation in the modified Shell sort algorithm can be
performed within a certain constant time, the running time complexity of the
modified Shell sort in Algorithm 1 is determined from the number of swapping
operations. Let S(n) be the number of the swapping operations with an input
size n. Then, S(n) can be upper-bounded as

S(n) ≤ n
blognc∑
`=0

k`

where the window length k` of each gap is defined as⌈√⌈ n

2`+1

⌉
· (α+ 1 + log log n+ `) · 1

log e

⌉
.

Thus, S(n) can be expressed as

S(n) = O

n 3
2

blognc∑
`=0

√
α+ log log n+ `+ 1

2`+1

 .

Using
√
a+ b ≤

√
a+
√
b, we obtain

T (n) = O

n 3
2

√α+ log log n

blognc+1∑
`=1

1

2
`
2

+

blognc+1∑
`=1

√
`

2
`
2

 .

Thus, we obtain S(n) = O(n3/2
√
α+ log log n), because

∑∞
`=1

1

2
`
2

and
∑∞
`=1

√
`

2
`
2

are both finite.
At this point, we consider the SFP. Let B denote the event that the output

of the sorting algorithm is not successfully sorted and let B` denote the event

Analysis of Modified Shell sort for FHE 19

that at least one subarray for the gap 2` is not successfully sorted. As B ⊆⋃blognc
`=0 B` =

⋃blognc
`=0

(
B` ∩

⋂blognc
u=`+1 Bcu

)
, we obtain

Pr [B] ≤
blognc∑
`=0

Pr

B` ∩
blognc⋂
u=`+1

Bcu

 ≤ blognc∑
`=0

Pr

B`

∣∣∣∣ blognc⋂
u=`+1

Bcu

where

⋂blognc
u=`+1 Bcu implies the event that the sorting is successful for the gaps

2`+1, · · · , 2blognc. All of the subarrays satisfy the condition ai < ai+2 in Theorem
4, before we perform the insertion sort for the gap 2`. Clearly, there are 2`

subarrays when the gap is 2`, and the length of subarray is less than or equal to

2d n
2`+1 e. Let m` = d n

2`+1 e, and β` =
√

(α+ 1 + log log n+ `) · 1
log e . As β` ≥

√
6,

the probability that one subarray of length 2m` is not successfully sorted can be
upper-bounded as

1−
C(2m`, β`

√
m`)(

2m`
m`

) ≤ 2

(
2m`

m`−β`
√
m`

)(
2m`
m`

) ≤ 2e−β
2
`

where the second inequality is obtained from Lemma 6. We then obtain

blognc∑
`=0

Pr

B`

∣∣∣∣ blognc⋂
u=`+1

Bcu

 ≤ blognc∑
`=0

2` · 2e−β
2
` =

2−αblog nc
log n

≤ 2−α,

and thus, the theorem is proved.

4 Optimal Window Length by Convex Optimization

It is necessary to find the shortest window length for the SFP so that the least
running time complexity of the modified Shell sort is obtained. Generally, it is
not easy to derive the optimal window length in closed form. In this section, we
obtain the optimal window length using convex optimization. Let β`

√
dn/2`+1e

be the window length for the gap 2`, and Pr

[
B`

∣∣∣∣⋂blogncu=`+1 Bcu

]
be the SFP for the

gap 2`, when sorting is successful for the gaps 2`+1, · · · , 2blognc. From Theorem
4 and Lemma 6, we obtain

Pr

B`

∣∣∣∣ blognc⋂
u=`+1

Bcu

 ≤ 2`e−β
2
` .

The objective function that needs to be minimized is the total number of swap
operations, which determines the running time. As the exact running time for-
mula is rather complicated, we consider a tight upper bound of the running

time, n
∑blognc
`=0 β`

√
dn/2`+1e, which is used in the proof of Theorem 7. Let

20 J. Lee et al.

p` = 2`e−β
2
` . Then, we have β` =

√
(`+ log(1/p`))/ log e. As it is sufficient to

minimize
∑blognc
`=0

√
dn/2`+1e(`+ log(1/p`)), the problem of the optimal window

length can be formulated as follows;

minimize

blognc∑
`=0

√
dn/2`+1e(`+ log(1/p`))

s.t.

k−1∑
`=1

p` ≤ perr.

This formulation implies that the total running time with SFP upper-bounded

by perr needs to be minimized. We can validate that
√
c+ log 1

x is a convex

function on small positive values, where c is a constant. As the weighted sum
of convex functions is also a convex function, the objective function is a con-
vex function, and the constraint is also convex. Thus, this can be termed as
a convex optimization problem. As every convex optimization problem can be
solved using numerical analysis, it is easy to obtain the optimal window length.
Then, we can deduce p`, and the optimal window length is determined to be
d
√
dn/2`+1e(`+ log(1/p`))/ log ee for each gap 2`. It is noted that the above

formulation is not sufficiently tight, because it still uses the union bound. Con-
structing a tighter formulation, which can be solved easily, can be a focus for
future research.

5 Simulation Results

The performance of the proposed modified Shell sort is numerically verified using
a personal computer with an AMD Ryzen 7 1700 CPU running at 3GHz, and
16GB RAM. First, we validate the running time and SFP when the array size
varies. Then, the running time and SFP are numerically obtained when the
parameter α is varied. Finally, the performance of the modified Shell sort is
compared with the cases corresponding to the optimal window length, which is
obtained using convex optimization, and Ciura’s optimal gap sequence, which
has been validated numerically as an optimal gap sequence in non-FHE settings.

The running time is mainly determined by the product of the number of swap-
ping operations and the running time of the maximum or minimum function.
Clearly, the running time of the maximum or minimum function is independent
of the input array size or α. The relation between the performance and the main
parameters of the proposed modified Shell sort is not significantly affected by
the use of the homomorphic encryption scheme. Thus, in our numerical analysis,
we do not use the actual homomorphic encryption scheme.

Fig. 4 shows the relation between the running time and SFP against various
array sizes for α = 3. It is observed that the array size increases from 50 to 1000.
The input arrays are randomly generated, and 105 input arrays are generated
for each array size. It is observed from Fig. 4 that the running time increases in

Analysis of Modified Shell sort for FHE 21

proportion to n3/2, and the SFP is independent of the array size. This numerical
result coincides well with the proposed analysis of the modified Shell sort.

�

�✁�✂

�✁�✄

�✁�☎

�✁�✆

�✁✝

�✁✝✂

�✁✝✄

�✁��

�✁✂�

�✁✄�

�✁☎�

�✁✆�

✝✁��

✝✁✂�

✝✁✄�

✝✁☎�

✝✁✆�

� ✂�� ✄�� ☎�� ✆�� ✝���

✞
✟
✠

✡
☛
☞✌
✍
✎

✏✑✑✒✓ ✔✕✖✗

✘✙✚✚✛✚✜ ✢✛✣✤

✥✦✧

✥✦✧ ★✩✙✚✪

Fig. 4: Running time and SFP of the modified Shell sort for varied array sizes.

Fig. 5 shows the relation between the running time and SFP for various
α values, in which g2p denotes the power of the 2-gap sequence, gop denotes
Ciura’s optimal gap sequence, and a-win and o-win denote the analytically de-
rived window length and optimal window length derived by convex optimization,
respectively. The input array size is fixed at 1000. Similar to the previous sim-
ulation, 105 input arrays are randomly generated for each α value. Algorithm
1 and the case corresponding to the Ciura’s optimal gap sequence or optimal
window length are simulated, with the optimal window length derived using the
convex optimization discussed in Section 4.

From Fig. 5, it is observed that the running time of Algorithm 1 increases
as α increases and the growth rate decreases. This observation coincides with
the proposed analysis, i.e., the running time is approximately proportional to√
α. The logarithms of the SFP values of Algorithm 1 are parallel to that of the

SFP bounds. This implies that the SFP is proportional to 2−α with some small
proportional constant.

When the gap sequence is replaced with Ciura’s gap sequence, the running
time is reduced by approximately 0.5 ms. Sorting failure is not detected in the
case of the simulation that uses Ciura’s gap sequence. This implies that the
order of the SFP of Ciura’s optimal gap sequence is less than or equal to 10−5.
Although the window lengths of each gap in this paper are analytically derived
for the power of the 2-gap sequence, a better result is obtained when Ciura’s
optimal gap sequence is used. Further analyses on using Ciura’s optimal gap
sequence will be included in future studies.

The optimal window length is derived using the convex optimization problem
described in Section 4. The running time in this case is marginally reduced
compared with the case using the analytically obtained window length. However,

22 J. Lee et al.

their values become closer as α increases. The SFP of the case using the optimal
window length for the power of the 2-gap sequence is closer to the SFP bound
than that of the case using the analytically obtained window length. Thus, the
running time can be reduced, while the SFP remains less than the SFP bound.

�✁✂

�✁✄

�✂

✄

✄

✄☎✂

✁

✁☎✂

✆

✆☎✂

✝ ✞ ✁✝ ✁✞

✟✠
✡
☛☞
✌
✍
✎

✏
✑
✒✓
✔
✕

✖ ✗✘✙✚✛

✜✢✣✤✥✦✧★✩✪✫✬✭

✜✢✣✤✥✦✧✮✩✪✫✬✭

✜✢✣✤✮✦✧★✩✪✫✬✭

✜✢✣✤✮✦✧✮✩✪✫✬✭

✯✰✱ ✲✮✳✬✴

✯✰✱✣✤✥✦✧✮✩✪✫✬✭

✯✰✱✣✤✥✦✧★✩✪✫✬✭

Fig. 5: Running time and SFP of the modified Shell sort for varied α values and
comparison of these values with those obtained from the cases of Ciura’s
optimal gap sequence and optimal window length derived by convex op-
timization.

6 Conclusion and Future Work

In this paper, we proposed a modified Shell sort with a gap sequence of powers
of two and an additional parameter α in the FHE setting, and derived the
running time complexity O(n3/2

√
α+ log log n), considering a trade-off with the

SFP 2−α. We also established that the running time complexity of the proposed
algorithm is almost the same as the average-case running time complexity of
the original Shell sort, while the SFP is maintained to be minimal. We then
obtained the optimal window length of each gap by numerically solving a convex
optimization problem. We believe that this study plays a significant role in the
foundation of the analysis of the Shell sort in FHE settings.

We plan to use the Shell sort with other gap sequences in a future study by
extending this analysis.

References

1. Chatterjee, A., Kaushal, M., Sengupta, I.: Accelerating sorting of fully homomor-
phic encrypted data. In: International Conference on Cryptology in India. pp.
262–273. Springer

Analysis of Modified Shell sort for FHE 23

2. Chatterjee, A., Sengupta, I.: Windowing technique for lazy sorting of encrypted
data. In: 2015 IEEE conference on communications and network security (CNS).
pp. 633–637. IEEE (2015)

3. Chatterjee, A., SenGupta, I.: Sorting of fully homomorphic encrypted cloud data:
Can partitioning be effective? IEEE Transactions on Services Computing (2017)

4. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical methods for com-
parison on homomorphically encrypted numbers. IACR Cryptology ePrint Archive
(2019)

5. Ciura, M.: Best increments for the average case of shellsort. In: International Sym-
posium on Fundamentals of Computation Theory. pp. 106–117. Springer (2001)

6. Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on sorting of
fully homomorphic encrypted data. In: 2015 International Conference on Cloud
Computing Research and Innovation (ICCCRI). pp. 19–24. IEEE

7. Espelid, T.O.: Analysis of a shellsort algorithm. BIT Numerical Mathematics
13(4), 394–400 (1973)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Stoc. vol. 9, pp.
169–178

9. Knuth, D.E.: The art of computer programming: sorting and searching, vol. 3.
Pearson Education (1997)

10. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

11. Shell, D.L.: A high-speed sorting procedure. Communications of the ACM 2(7),
30–32 (1959)

